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Abstract

The cosmic microwave background (CMB) dipole, measured in the heliocentric frame, is
conventionally attributed entirely to a local Lorentz boost. However, recent work [1] sug-
gests the CMB dipole may have a non-kinematic component arising from local expansion
gradients in space, or relativistic differential expansion. In this thesis we examine the
possibility of a non-kinematic dipole component using exact inhomogeneous cosmological
models that naturally give rise to this notion of differential expansion. In particular, we
investigate the spherically symmetric Lemâıtre-Tolman-Bondi (LTB) model describing a
local void and a less symmetric Szekeres model describing both a void and a neighbouring
overdense structure. We derive analytic formulae to estimate the non-kinematic dipole
and find a non-kinematic component of −0.12± 0.22 mK. As yet, a precise determina-
tion of a non-zero non-kinematic dipole is not possible given current measurements of
the boost velocity of the heliocentric frame relative to the Local Group (LG) frame. We
further characterise the extent to which observers in a local void, described by the LTB
model, will see secondary effects attributed to a Lorentz boost, namely the aberration
and modulation effects. We find that similar effects do arise for observers in the LTB
model and therefore such effects are not unique to a Lorentz boost.
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Chapter 1

Introduction

Unlike fields such as high-energy particle physics, in which theories can be tested in the

lab, cosmology relies solely on observations of the universe. It can perhaps be said that

the universe itself is the lab. The nature of cosmology means that data comes to us

primarily from electromagnetic observations,1 whether of type Ia supernovae (SNe Ia),

Cepheid variable stars, luminous red galaxies or the cosmic microwave background (CMB)

radiation. It is remarkable how much our understanding of the universe has changed in

the last 20 years by merely looking out into the universe. For these reasons, it is essential

that the universe is accurately modelled in order to reflect the way photons propagate in

the realistic lumpy universe, as this ultimately determines how one interprets the data

and what conclusions one draws.

1.1 The standard model of cosmology

At the time of decoupling approximately 380,000 years after the big bang, when photons

began their transit through the universe mostly uninterrupted, the primordial plasma

is thought to have been very homogeneous. This assumption, which is justified by the

highly uniform CMB,2 suggests that the universe was well described by a spatially homo-

geneous and isotropic Friedmann-Lemâıtre-Robertson-Walker (FLRW) model, a solution

to the Einstein equations that treats the plasma as a perfect fluid. However, the fact that

the universe was not exactly homogeneous is crucial. Slight inhomogeneities in the cosmic

fluid formed the ‘seeds’ that developed through gravitational instability into the various

structures we see today. The spatially homogeneous and isotropic FLRW background

geometry, with initial metric perturbations, and their growth—often treated with New-

tonian N -body simulation—together constitute the current standard model of cosmology.

1Astrophysical neutrinos [2] and gravitational waves [3] provide alternative windows on the universe,
which are likely to dramatically change the range of physical phenomena accessible to observations in
the coming decades.

2Deviations from isotropy occur at a level of 1 part in 100,000 when the CMB dipole has been
subtracted.

1



2 Chapter 1. Introduction

The FLRW geometry is conveniently written in comoving coordinates,

ds2 = − dt2 + a2(t)

[
dr2

1− kr2
+ r2 dΩ2

]
, (1.1)

in terms of a single cosmic scale factor, a(t), where k = −1, 0, 1 is the spatial curvature

and dΩ2 is the metric on a 2-sphere. Independently of the energy-momentum tensor,

the luminosity distance relation of any FLRW cosmology, can be Taylor expanded at low

redshifts to give [4]

dL(z) =
c

H0

{
z +

1

2

[
1− q0

]
z2 − 1

6

[
1− q0 − 3q0

2 + j0 +
kc2

H0
2a0

2

]
z3 +O(z4)

}
(1.2)

where dL is the luminosity distance to the observed galaxy; a0 = a(t0) is the value of

the scale factor at the present epoch3, t0; and H0 = H(t0), q0 = q(t0) and j0 = j(t0) are

respectively the present values of the Hubble parameter, deceleration parameter and jerk

parameters, which are defined in general by

H(t) ≡ 1

a

da

dt
, (1.3)

q(t) ≡ −1

aH2

d2a

dt2
, (1.4)

j(t) ≡ 1

aH3

d3a

dt3
. (1.5)

Note: the deceleration parameter is positive if the Universe is decelerating, and negative

if it is accelerating. In what follows, distances will be defined in units h−1Mpc, where h is

a dimensionless parameter related to the Hubble constant by H0 = 100h km s−1 Mpc−1.

In the current paradigm, the background FLRW geometry is a solution to Ein-

stein’s equations with a spatially homogeneous isotropic perfect fluid consisting of two

‘dark’ components: non-relativistic ‘cold’ dark matter (CDM) made up of unknown non-

baryonic particles that have yet to be directly detected, and dark energy in the form of a

positive cosmological constant Λ (the simplest of dark energy proposals). There are four

main, independent probes one uses to constrain this FLRW model:

1. the luminosity distance-redshift relation of SNe Ia (‘standard candles’), and to a

lesser extent, gamma ray bursts using various empirical correlations;

2. anisotropies in the CMB as measured by the Wilkinson Microwave Anisotropy Probe

(WMAP) [5] and Planck satellite [5, 6];

3. baryon acoustic oscillations (BAO) seen through spatial correlations in the galaxy

field (‘standard rulers’);

3In what follows we will choose units with a
0

= 1.



1.1. The standard model of cosmology 3

4. large-scale galaxy clustering.

In the context of the FLRW model, these observations indicate that the universe at the

present epoch is (i) undergoing accelerated expansion, (ii) almost spatially flat, and (iii)

its energy density consists of approximately 70 % dark energy, 25 % dark matter and 5 %

baryonic matter. This is the standard ΛCDM model of cosmology, or the concordance

model, offering the broadest and most in-depth picture of the universe.

The extent to which individual datasets, such as SNe Ia, support these observations

involve matters of some debate [7] given unknown systematic uncertainties. Furthermore,

there are various tensions between different datasets [8] and the particular problem of

the primordial lithium abundance, which is anomalous at the 5.3σ level [9], unless new

particles such as decaying gravitinos are assumed [10] or improvements in the determi-

nation of observational systematics from the measurement of light element abundances

are made. Nonetheless, at present the ΛCDM model has been successfully tested against

more datasets than any other model.

1.1.1 The dark energy problem

The first compelling evidence for cosmic acceleration came4 from interpreting the lumi-

nosity distance-redshift relation of distant (z ∼ 0.5) supernovae [12, 13]. Prior to these

seminal papers, the universe was thought to be matter dominated, possibly open5 and

decelerating due to the universal attraction of gravity. However, supernovae appeared

fainter than expected from a such a cosmology—possible if the expansion of the universe

is accelerating. With the data instead favouring a universe with a cosmological constant,

cosmologists now had to reckon with the knowledge that the energy density of the present

universe is ostensibly dominated by dark energy.

Despite the success of the standard model, there are still major theoretical issues to

be resolved. In particular, the precise nature of dark energy, which appears to dominate

the energy density and drive the recent accelerated expansion of the universe, is not well

understood. The inclusion in the standard model without any direct evidence of an exotic

substance that violates the strong energy condition6 has led to many other proposals. A

4Over time the direct evidence for cosmic acceleration from supernovae alone has not improved to
become decisive, as was noted in the mid-2000s [7, 11].

5By the early 1990s there was considerable observational evidence [14,15] for a matter density param-
eter Ωm0 ' 0.2± 0.1. In the context of FLRW models this meant that either the universe was negatively
curved, or that there was a cosmological constant—a possibility favoured by some [14], given that a
total energy density parameter close to unity was theoretically preferred from the inflationary universe
paradigm. Direct evidence for spatial curvature being close to zero only arrived with the measurement
of the angular scale of the first acoustic peak in the CMB anisotropy spectrum by BOOMERANG in
2000 [16].

6Ordinary self gravitating matter which clusters gravitationally (whether baryonic or CDM) satisfies
the strong energy condition w > −1/3. A cosmological constant has negative pressure with p = −ρ,
saturating the dominant energy condition p = wρ, with −1 ≤ w ≤ 1. “Phantom energy” with w < −1
would violate known physical laws such as causality and is pathological [17] (if assumed to be a fluid in the
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brief survey of recent arXiv postings reveals a range of alternative theories including the

existence of scalar fields (so-called quintessence); modifications to general relativity on

cosmological scales such as f(R) gravity, massive gravity etc. (See the review [18]; for a

critique on the status of dark energy see [19,20]).

If dark energy is a cosmological constant then the question of why it takes a partic-

ular value represents a fine-tuning problem, which can only be resolved by invoking the

anthropic principle [21]. However, the cosmic coincidence problem still remains: namely

why is the value of ΩΛ comparable to Ωm just at the present epoch so that cosmic accel-

eration started only recently, and is not yet dominant?

1.1.2 Overview of the CMB

The cosmic microwave background (CMB) radiation is the most important observational

evidence justifying use of the FLRW geometry. It is also one of the most important tools

in cosmology today providing a glimpse into the early universe. The CMB is a relic of

the big bang—radiation that can be directly traced back to the time of recombination

when photons, baryons and leptons formed a hot dense plasma generally known as the

baryon-photon plasma. The plasma was opaque due to Thomson scattering of photons

from free electrons (and also protons and helium nuclei to a lesser extent). When protons

and electrons combined to form neutral atoms, the rate of scattering dropped to a point

that photons could stream freely throughout space. This time is called freeze out and the

interval between the time of recombination and freeze out is known as last scattering.

The CMB is a near ideal blackbody spectrum, perhaps one of the best examples in

nature. Furthermore, the spectrum is isotropic over the sky with a mean temperature

T0 = 2.7255 K [22] that is uniform to a few parts in 100,000, indicating that the entire

observed universe was in thermal equilibrium at the epoch of last scattering. Since scales

greater than roughly one degree apart cannot have been in causal contact in FLRW

models with ordinary matter and radiation this leads to the horizon problem of the

standard cosmology, which is usually circumvented by introducing primordial scalar fields

and gives an epoch of inflation at very early times [23].

Inflation is also generically assumed to stretch an initial spectrum of density pertur-

bations to arbitrarily large scales, giving rise to an almost scale-free matter spectrum

by the epoch that inflation ceases during a period of reheating to subsequent radiation

domination. The potential wells generated by these density perturbations on the surface

of last scattering give rise to additional redshifts and blueshifts that generate anisotropies

in the blackbody spectrum we observe. Indeed, it is these highly revealing anisotropies

energy–momentum tensor), but is often considered for parameter constraints neglecting its fundamental
origin. Physically non-pathological dark energy requires an equation of state with −1 ≤ w ≤ −1/3, while
w ' −1 is found by many observational tests.
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that have provided a great deal of information about the early universe essential to the

precise determination of cosmological parameters.

There are two types of anisotropies: (i) primary anisotropies that have their origin

before the time of recombination and are therefore related to the physics of the early

universe and, (ii) secondary anisotropies that are generated after recombination when

structure began to form. Processes that can cause secondary anisotropies include inverse

Compton scattering in ionised gas associated with cosmic structures (or the Sunyaev-

Zel’dovich effect), weak gravitational lensing, and the integrated Sachs Wolfe (ISW) effect,

which we will discuss further in chapter 2.

1.1.3 The CMB dipole

In order to investigate the primary and secondary anisotropies, it is first necessary to

subtract the CMB dipole, which is the largest contribution to the CMB anisotropy with

a magnitude [24] of

3.3645± 0.0020 mK, (1.6)

in the direction

(l, b) = (263.99◦ ± 0.14◦, 48.26◦ ± 0.03◦), (1.7)

as measured in the heliocentric frame. By comparison the primordial CMB fluctuations

are two orders of magnitude smaller, (i.e. ∼ 10 µK).

The large dipole in the CMB is usually attributed to the peculiar velocity of the

solar system barycentre relative to the CMB rest frame, i.e., the frame in which the

CMB appears most isotropic. In this thesis we will examine the light propagation in

inhomogeneous solutions of Einstein’s equations in which this assumption is revisited. It

is therefore first important to understand the effect of a boost on the CMB blackbody

spectrum in the standard FLRW model.

There are also two secondary effects on the observed CMB sky, associated with a

local Lorentz boost. These are the aberration and modulation effects. Both are special

relativistic effects related to how objects appear to boosted observers, e.g., in transforming

between the CMB and heliocentric rest frames. The aberration effect is the phenomenon

that shifts the observed direction of light rays towards the direction of the boost. This

effect is well-known in popular culture: space ships moving at relativistic speeds see a

convergence of light rays in the direction of travel, with light that would otherwise not

be seen coming into the field of view. The sky in the direction of the boost appears more

squashed together, while the opposite side appears more stretched out.

The boost direction divides the sky into two hemispheres. For the hemisphere that

the observer is moving towards, the magnitude of the CMB fluctuations increases, while

on the other hemisphere it decreases. Thus, hot (cold) spots appear hotter (cooler) on
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one hemisphere, while hot (cold) spots appear cooler (hotter) on the other (see fig. 1.1).

This is known as the modulation effect.

Suppose an observer O sees a photon in the sky arriving from the direction n̂nn with

frequency ν. According to such an observer, the photon has a 4-momentum pµ = E(1,−n̂nn)

with energy E = hν. Another observer, O′, boosted with respect to O, will measure a

4-momentum p′µ ≡ E ′(1,−n̂nn′) = Λµ
ν p

ν with

Λµ
ν =

(
γ −γβββT
−γβββ I + (γ − 1)β̂βββ̂ββ

T

)
, βββ = (βx, βy, βz). (1.8)

Here β̂ββ = βββ/β, γ = (1 − β2)−1/2 is the Lorentz factor and β = |βββ| = v/c the boost

parameter. Evaluating the transformation Λµ
ν p

ν results in two equations. The first is

the well known Doppler shift

ν ′ = γ(1 + βββ · n̂nn)ν, (1.9)

while the second

n̂nn′ =
n̂nn+ [γβ + (γ − 1)β̂ββ · n̂nn]β̂ββ

γ(1 + βββ · n̂nn)
, (1.10)

gives the relativistic aberration effect, whereby boosted observers measure photons arriv-

ing in directions shifted (or aberrated) relative to an unboosted observer.

Although the above formulae relate quantities in the unboosted frame to the boosted

frame, it turns out to be more convenient to write the measured frequency ν ′ in terms of

n̂nn′, since this is what will be measured. To do this we apply an equivalent boost in the

opposite direction, that is, we undo the original boost. Observe that

ν ′ −→ γ(1− βββ · n̂nn′)ν ′ = γ2(1− βββ · n̂nn′)(1 + βββ · n̂nn)ν. (1.11)

Projecting (1.10) onto βββ (i.e. taking the dot product βββ · n̂nn′) and some simple algebra we

of course find

γ2(1− βββ · n̂nn′)(1 + βββ · n̂nn) = 1. (1.12)

Rearranging (1.11) we obtain the Doppler shift in terms of the direction the boosted

observer actually measures:

ν ′ =
ν

γ(1− βββ · n̂nn′) . (1.13)

Indeed, since T ′/T = ν ′/ν we can rewrite in terms of temperature as

T ′(n̂nn′) =
T (n̂nn)

γ(1− βββ · n̂nn′) . (1.14)

This is one of the main equations we will be using in later sections. We can go one step

further and write unboosted blackbody temperature T (n̂nn) in terms of n̂nn′, that is, we will

need to invert (1.10). However, based on symmetry considerations this is just

n̂nn =
n̂nn′ − [γβ + (γ − 1)β̂ββ · n̂nn]β̂ββ

γ(1− βββ · n̂nn)
, (1.15)
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Figure 1.1: Modulation and aberration effects for a boost along the z-axis (exaggerated
for effect with β = 0.8). In reality the effects are much more subtle.

i.e., we replace βββ → −βββ. We emphasise the above equations are entirely general, applying

to any blackbody spectrum and, naturally, there is no better example of a blackbody than

the CMB. We thus turn our attention to the CMB dipole and secondary effects as it relates

to a Lorentz boost.

We begin with the simplest case of an isotropic temperature field T (n̂nn) = T0 =

2.7255 K. It is commonly assumed the dipole in the heliocentric frame is entirely the

result of a boost β = 1.23 × 10−3, or v = βc = 369 km s−1, relative to the CMB rest

frame. The small boost permits a Taylor expansion:

T ′(n̂nn′) = T0

(
1 + βββ · n̂nn′ + (βββ · n̂nn′)2 − 1

2
β2 +O(β3)

)
≈ T0(1 + βββ · n̂nn′) (1.16)

Clearly, a boost induces a dipole on the CMB (along with a small quadrupole etc).

Including primordial fluctuations δT (n̂nn′) so that T ′(n̂nn′) = T0 + δT (n̂nn′), (1.16) to linear-

order becomes

T ′(n̂nn′) ≈ (T0 + δT (n̂nn′))(1 + βββ · n̂nn′)
= T0 + T0βββ · n̂nn′ + (1 + βββ · n̂nn′) δT (n̂nn′) (1.17)

The first and second terms are of course just the monopole and dipole respectively; the

third term represents a modulation in 1+βββ ·n̂nn′, and also an aberration, since the observed

direction n̂nn′ will be related to n̂nn through (1.10). The two effects are shown in fig. 1.1 for

a map generated using an underlying Planck best-fit power spectrum. The modulation

effect can be seen to amplify anisotropies on one side of the sky, making hot fluctuations

hotter and cold fluctuations colder, while doing the opposite on the other side of the sky.

Also notice the stretching and squashing in the lower and upper hemispheres respectively,

from photons being aberrated towards the boost direction.



8 Chapter 1. Introduction

1.1.4 Structure formation in the standard model

The standard model approach to structure formation is based on cosmological perturba-

tion theory (which we discuss further in chapter 2). The Einstein equations are solved

‘order-by-order’, in that the zeroth-order equations are just the background Friedmann

equations—preserving the FLRW dynamics—while the first-order equations govern the

evolution of large-scale structure on the fixed FLRW background. As such, the first-order

perturbations do not modify the background expansion rate, implying no backreaction.

Put another way, the inhomogeneities do not “inform” the average cosmic evolution.

On large scales, one speaks of the linear regime, when fluctuations are small in am-

plitude and the growth is linear. However, implicit in this is a notion of averaging as

one assumes that the local density, when averaged over sufficiently large scales, is close

to the background density with the fluctuations represented by small perturbations.7 On

small scales (. 10 Mpc) the density can differ significantly from the uniform background

density as here one finds structures such as galaxies (δρ ∼ 105) and near-empty voids

(δρ ∼ −1). It is on these scales that linear perturbation theory breaks down and one

enters the nonlinear regime. In the standard model, one then resorts to Newtonian N -

body simulations [26], in which gravitational clustering is Newtonian and the evolution

of perturbations is tracked against the rigidly expanding FLRW background. In this

framework, the crucial assumption is that the small scale dynamics break away from the

evolution of the background.

Although a FLRW model with first-order perturbations and linear evolution seems

to be a reasonable approximation of the universe at high redshifts, the late universe is

evidently very inhomogeneous, having since transitioned from the linear regime to the

highly nonlinear regime of structure formation. The effects of small-scale structure on

large-scale structure is precisely the issue of backreaction. Is it possible that the average

cosmic expansion has since departed from the standard FLRW evolution?

While perturbation theory allows a semi-analytical approach to structure formation,

there is no substitute for full, nonlinear general relativity. Using exact solutions with no

approximations one can study the nonlinear regime, and in particular, the effect these

structures have on light propagation.

1.2 The cosmic web

At late times matter is no longer smoothly distributed in a fluid-like continuum, as had

been the case at decoupling, but is instead locked up in regions of virialised structure.

Galaxies and clusters of galaxies are found to form sheets, filaments and knots, that

surround and thread large void regions, forming a complex cosmic web [27, 28]. The

7There is also a notion of smoothing scale involved in specifying the local density of matter [25].
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voids dominate the late epoch Universe by volume [29], and often have density contrasts,

δρ ≡ (ρ − ρ)/ρ, relative to the background density, ρ, that are not much larger than

the minimum δρ = −1 corresponding to complete emptiness. Furthermore, the void

distribution also has characteristic scales, with voids of a typical diameter 30h−1Mpc and

visible matter8 density contrast δρ . −0.94 alone accounting for ∼40 % of the volume of

the present epoch Universe [34,35].

This leads to a vastly more complex picture of the late epoch Universe than in the

early Universe. It potentially demands a more sophisticated cosmological model than

a homogeneous and isotropic solution of Einstein’s equations will allow. Whether the

universe rigidly evolves in a FLRW-like manner—preserving uniform spatial curvature—

at late times is far from obvious. The fluid approximation breaks down, as soon as

the geodesics of the initial particles cross to form condensed matter concentrations, and

the distribution of matter can only be considered homogeneous and isotropic in some

statistical or averaged sense, once we coarse grain over all the virialised galaxy clusters.

Despite this, the current paradigm of cosmology makes the implicit assumption that the

FLRW metric continues to hold on all cosmologically relevant spatial scales.

1.2.1 Light propagation and the lumpy universe

If we retain an average expansion governed by the FLRW geometry, but try to embed more

realistic nonlinear structures such as voids and matter overdensities within the FLRW

geometry, then it turns out that the average effect of light propagation through such

structures can differ from light propagation on the average background. Light originating

from low redshift sources traverses mainly underdense regions and implies important

consequences on supernovae observations.

A typical beam size, (i.e., the cross-section of a light-ray bundle) of SNe Ia is narrow.

For example, an observation of SNe Ia at z ∼ 1, have an angular size of about 10−7 arc

seconds [36]. This is much smaller than the typical distance between objects the beam

might encounter, such as stars, galaxies, hydrogen clouds etc. Beams of this size tend

to propagate in regions where the local density is lower than the cosmic average. On

these scales the perfectly smooth cosmic fluid fails to capture the relevant physics, even

in some average sense. Thus, light does not necessarily propagate in a FLRW manner,

or for that matter, according to the average model, but is affected by local matter inside

8These density contrasts are based on the galaxy-galaxy correlation function and do not probe dark
matter directly. However, dark matter and baryonic matter are highly correlated in models of structure
formation and so the galaxy population has to be very significantly biased if this density contrast δρ
determined from galaxy surveys is to deviate strongly from the overall contrast including dark matter.
One can fit lensing profiles to voids including dark matter to obtain lower density contrasts, e.g. δρ ∼ −0.4
[33]. However, this is of course a fit to the ΛCDM model rather than a direct measurement. Comparisons
of void statistics to N -body simulations is a test of the ΛCDM model. However, given the astrophysical
uncertainties, this is a subject of ongoing debate [30–32] that will take decades of future observations to
resolve.
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and outside the beam path.

Light propagation in a lumpy universe need not have the same average behaviour

as a completely uniform medium since the size of the beam may not sample under and

overdense regions in equal measure [37]. How matter affects beams depends on whether

it is inside or outside the beam. A beam which encounters very little matter will undergo

a different kind of focusing related to the Weyl curvature as compared to a beam that

propagates in smoothed out continuum of matter, which is related to the Ricci curva-

ture. Indeed, the Weyl curvature vanishes in the standard model, so that distortion and

magnification effects associated with inhomogeneous mediums are absent. This idea was

first pointed out by Zel’dovich [38] for the special case of light propagation in a vacuum

and then generalised by Dyer and Roeder to beams partially filled with matter [39]. Re-

cent studies show that this underdense ‘selection effect’ results in a shift in the Hubble

diagram as well as introducing dispersion [36,40,41].

1.2.2 Non–Copernican solutions to the dark energy problem

Another alternative in general relativistic approaches to inhomogeneous cosmology, which

takes an opposite extreme to the small scale nonlinear inhomogeneities in a FLRW back-

ground discussed in Section 1.2.1, is to consider exact inhomogeneous solutions of the Ein-

stein equations with dust as background solutions for the whole Universe in the epoch of

matter domination. Given the evidence of the CMB that anisotropies are small, the only

solution that can be practically used in these circumstances is the spherically symmetric

Lemâıtre-Tolman-Bondi (LTB) model [42–44]. This model contains a spherically symmet-

ric inhomogeneous dust source, ρ(t, r), and scale factor R(t, r), and a varying spherically

symmetric spatial curvature function, E(r), on the spatial hypersurfaces formed by ob-

servers comoving with the dust. These parameters are defined in detail in Section 3.1, as

we will study the same solutions as models for small scale inhomogeneities (rather than

models of the whole late epoch Universe) in Chapters 3 and 4.

Given that there are two free functions in the LTB model it is possible to solve the

Einstein equations for a given present epoch dust profile ρ(t0, r) so as to fit a huge class of

luminosity distance–redshift relations. Indeed, one can readily match SNe Ia data [12,13]

even without a cosmological constant [45, 46], even better than any FLRW model with

Λ ≥ 0. While large voids, with radii of hundreds of Mpc are typically assumed [45, 46],

the model that fits best actually has a hump in the density profile [47].

This is an interesting toy model, as it shows that cosmological data for the average

expansion history can be accounted for just as well as in FLRW models. As a realistic

solution to the dark energy problem, however, this scenario encounters two significant

problems. Firstly, in order to fit supernova data, observers must be placed very near

the origin of spherical symmetry, which is implausible in view of the Copernican princi-

ple. Secondly, the inhomogeneity has to be very large—e.g., a void or underdensity of
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hundreds of megaparsecs—and there is no reasonable theory of structure formation that

would produce such large structures consistently with the observed small temperature

fluctuations at last scattering [48].

1.2.3 Backreaction of inhomogeneities

Another potential solution to the dark energy problem is to demand consistency with

observations, but to reconsider the role of small scale inhomogeneities on average cos-

mological dynamics, by revisiting the assumptions of the standard model. (See the re-

views [19, 25, 49–52] and references therein.) This is a considerably more conservative

approach to address the dark energy problem than many alternative theories that either

invoke new fundamental fields that have never been observed, or new physics from modi-

fications to the gravitational action, making radical departures from well-tested theories.

The use of the FLRW metric is argued to be an oversimplification, with the appear-

ance of dark energy in the standard model merely a phenomenological artefact necessary

to fit observations. The basic question this approach seeks to answer is: “How do in-

homogeneities in matter and geometry affect the average cosmological dynamics of the

universe?” This idea is known as cosmological backreaction.

In contrast to the standard model that takes the FLRW metric as the starting point

for the averaged universe, in one widely used backreaction approach one constructs the

averaged model using an explicit scalar averaging formalism [53,54].

The Einstein equations are not assumed to hold on arbitrarily large scales, but only

on small scales. From first principles, if the Einstein equations are assumed to be causal

evolution equations then there is no a priori reason why they should hold when averaged

on spatial scales larger than those that light and gravitational waves have had time to

propagate on. Furthermore, the rest-energy density of non-relativistic particles dominates

over the rest-energy density of radiation at late epochs on the right-hand side of Einstein’s

equations. There is also no a priori reason for the average of the small scale Einstein

equation to remain an exact solution of the same equations when averaged over spatial

scales on which non-relativistic matter propagates.

Fundamental issues arise as to the scale over which matter and geometry can be

considered to be coupled by the Einstein equations when taking averages. Because of the

nonlinearity of the Einstein field equations the order we average and evolve the system

is important, i.e., they do not commute. By averaging the scalar parts of the field

equations an analogue of the Friedmann equations can be derived, with the variables

being quantities averaged over a spatial domain. The non-commutativity results in an

extra term, the kinematical backreaction scalar, which taken at face value, could be seen

as a way to potentially mimic the effects that are usually attributed to dark energy.

The extent to which backreaction plays a role in cosmology has been the subject of

debate [55–58]. Green and Wald [56–58] have proven a result that, assuming average
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evolution is an exact solution of Einstein’s equations on any spatial scale, then backre-

action effects are negligible, within a particular mathematical framework with additional

assumptions. While Buchert et al. [55] disagree about the generality of these mathe-

matical assumptions, both sides of the debate agree that the Green-Wald theorem does

not apply to the scalar averaging approach of Buchert, since this does not assume that

average evolution is an exact solution of Einstein’s equations.9

It is nonetheless true that since Buchert’s formalism is a statistical one, extra physical

ingredients are required to relate local observations to statistical quantities, for example

in relation to the time parameter appearing in the averaging formalism as compared

to time parameters of individual observers. Since the inference of cosmic acceleration

involves two time derivatives this is a crucial point. Ishibashi and Wald [60] raised such

concerns already in 2006. Wiltshire’s timescape model [61] aims to address such concerns,

via an additional principle, the cosmological equivalence principle [62], which is applied

to relate local observables to the Buchert averages.

1.2.4 The scale of statistical homogeneity

An in depth view of the present universe reveals one that is dominated in volume by

voids [29,34,35] and is very much inhomogeneous on the small scales of galaxies and galaxy

clusters. Only when averaged over large scales does the universe exhibit some notion of

homogeneity. The transition between the “small” and the “large” scales demarcates

the scale of statistical homogeneity [63–66], and is important in any phenomenologically

successful model of backreaction.

There is no universally agreed definition of a statistical homogeneity scale. Gener-

ally one must interpret observations in terms of spatial averages of the density field,

related mathematically to an average on a compact domain of a spatial hypersurface, Σt,

according to 〈
ρ(t)

〉
DR =

1

V(t)

(∫
DR

d3x
√

det 3g ρ(t,x)

)
, (1.18)

where V(t) ≡ αR3(t) =
∫
DR d3x

√
det 3g is the volume of the domain DR ⊂ Σt, gij,

(1 ≤ i, j ≤ 3) is the intrinsic metric on Σt and α is a dimensionless constant determined

by a choice of geometry; e.g., α = 4π/3 for Euclidean spheres. If the ergodic theorem

is assumed to apply, a definition of homogeneity often presupposes the existence of an

average positive density, ρ0(t), defined by the limit

lim
R(t)→∞

〈
ρ(t)

〉
DR = ρ0(t) > 0. (1.19)

9Green and Wald responded to Buchert et al. [55] with a note [59] in which they redefined the
word “backreaction” to refer to the specific setting they address in their own formalism, labelling other
approaches which constitute most of the papers in the literature as “pseudo-backreaction”. They further
clarified that their formalism was “never intended or claimed to apply” to such approaches, and, in
particular, that their results “do not apply to the Buchert formalism”.
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A homogeneity scale, λ0(t), is then defined [67] by the requirement that every point in

Σt be contained in a domain Dλ0 ⊂ DR such that∣∣∣〈ρ(t)
〉
DR − ρ0(t)

∣∣∣ < ρ0(t), ∀ R > λ0. (1.20)

In practice, the density field can only be inferred indirectly from the statistical properties

of the distribution of galaxies, with all of the systematic issues related to finite sample

volumes and observational biases. Thus, any practical measure of statistical homogeneity

is not directly based on a relation such as (1.20), but rather on the scale dependence of

galaxy–galaxy 2–point correlation functions.

The precise scale is not well defined as the transition to homogeneity is gradual [65].

However, in observational cosmology it is usually assumed in the standard model that

the FLRW metric applies below this scale as well.

In this thesis, it is our aim to study the effect on light propagation of fully nonlin-

ear exact solutions of Einstein’s equations for inhomogeneities with characteristic scales

smaller than the statistical homogeneity scale. In these cases the FLRW metric will not

apply on the small scales. We will adopt the most conservative estimate of a statistical

homogeneity scale of order 100h−1Mpc (or redshift z∼ 0.03), based on the 2-point galaxy

correlation function.

If one were to adopt a strict definition of homogeneity based on convergence (1.19),

(1.20). That would, however, require that all higher order N–point galaxy correlation

functions also converge, and this has not been observed. In the largest survey volumes

that have been studied, the density contrast δρ has been observed to have a standard

deviation of 7–8% on the largest spatial scales [63,64]. In models of backreaction in which

the average evolution in non–Friedmann, convergence of (1.19), (1.20) would not occur

in the observable universe. The statistical homogeneity scale then demarcates between a

large scale on which the standard deviation of δρ remains bounded at the present epoch,

while being arbitrarily large on small scales [62].

In this thesis, we will not investigate the effects of backreaction and will simply retain

an average FLRW model on large spatial scales, to model the average propagation of

light for most of its journey to us from the CMB. We will therefore isolate the effect on

light propagation of nonlinear inhomogeneities on relative close (< 100h−1Mpc) spatial

scales, and investigate the differences from the FLRW model.

1.3 Hubble expansion variation as a cosmological probe

As our understanding of the properties of galaxies, clusters, Cepheids, SNe Ia, gamma

ray bursters etc, has grown, so too has the observational cosmologist’s ability to exploit

them as a sensitive probe of the universe. Developments in photometry and spectroscopy,

as well as technical advances, has led to a surge in the number of astronomical surveys,
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with numerous space observatories launched capable of observing in optical, infrared

wavelength bands etc. As a result, astronomers have been able to map the universe in

exquisite detail, and chart our local cosmic neighbourhood.

If the early universe consisted of particles in random motion, with the motion of nearby

particles uncorrelated, the late universe is characterised by the gravitational collapse of

matter. As discussed in Section 1.1, the conventional picture is based on Newtonian

gravitational instability theory, set against the backdrop of a rigid FLRW background.

The redshift, z, of distant sources, for the case of an observer and source both at rest

with respect to the t = const hypersurfaces of (1.1), is given by

1 + z =
a0

a(t)
. (1.21)

More generally, this relation is modified to become

(1 + zobs) = (1 + zFLRW)(1 + zDoppler) , (1.22)

where zFLRW is given by (1.21) and zDoppler incorporates the local Lorentz boosts of both

the observer and the source. Provided we can correct for our own local motion, to

transform to the cosmic rest frame, namely the t0 = const hypersurface of (1.1), then in

the limit of small redshifts the deviations of the luminosity distance–redshift relation from

the leading order linear term of (1.2)—the Hubble law—are treated as peculiar velocities,

vpec = cz −H0 dL . (1.23)

In the framework of linear perturbations of the FLRW model discussed in Section

1.1.4, peculiar velocities are considered as Newtonian in character, being caused by the

gravitational pull of matter overdensities10 which deviate from the background. This

furnishes a velocity field vvv, which in turn is related to the density perturbation field. In

this framework large-scale motions are then probes of the underlying gravitational po-

tential. The Newtonian perturbative framework laid down by Peebles in the 1980s [70]

is sometimes used even on scales < 100h−1Mpc in which the density perturbations be-

come nonlinear. However, more sophisticated analyses recognise that N–body Newtonian

simulations are required to make inferences about the nonlinear regime [71,72].

1.3.1 The cosmic rest frame and bulk flows

As mentioned in section 1.1.3, in the standard framework the observed CMB dipole

referred to the heliocentric frame11 is assumed to be caused entirely by the motion of the

Sun with respect to the t0 = const hypersurface of (1.1). The local Lorentz frame in which

10In this Newtonian framework, astronomers include components of the velocity field which “push”
away from voids [68, 69], which is conceptually challenging given that there is no known fundamental
force with this character, Λ being spatially homogeneous.

11As expected, the dipole is modulated at parts in 104 by the motion of the Earth around the Sun.
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the CMB dipole vanishes is thus assumed to be the cosmic rest frame. After taking into

account the known motions of the Sun in its orbit within the Milky Way galaxy, and of

the Milky Way itself with respect to the barycentre of the Local Group of galaxies—the

largest bound structure of which it is a part—one deduces the Local Group (LG) must

have a velocity with respect to the CMB frame [68] of

635± 38 km s−1 towards (l, b) = (276.4◦, 29.3◦)± 3.2◦, (1.24)

which is in the constellation Hydra.

Ever since the first accurate determination of the CMB dipole [24] all observations of

redshifts have been routinely transformed to the CMB rest frame before performing cos-

mological measurements. Such measurements include the determination of the luminosity

distance–redshift relation [12,13], cosmological parameters from CMB anisotropies [5,6],

or indeed any cosmological parameter estimates based on relating the redshift to mea-

surements that determine the expansion history in any form.

In the framework of Newtonian perturbation theory, which we will further discuss in

the next Chapter, our observed peculiar velocity field (1.23) in the CMB rest frame is

expected to be given by

vvv(t0, rrr) =
H0Ω0.55

M0

4π

∫
δρ(rrr

′)
rrr − rrr′
|rrr − rrr′|3 d3rrr′. (1.25)

at the present epoch in the case of a spatially flat FLRW model with nonzero Λ, where

ΩM0 = 8πGρM0/(3H0
2) is the present epoch matter density parameter, i.e., the ratio of

the matter density to the critical density. (See §2.1.2 for further discussion.) There are

two important expectations of this analysis:

(1) The magnitude and direction of the peculiar velocity (1.24) of the Local Group are

numerically consistent with an observed clustering dipole of the nearby peculiar field

determined by (1.25), or nonlinear extensions thereof, once the effects of all mass

perturbations in our vicinity are accounted for.

(2) The spherical average of the peculiar velocity field (1.25) should tend to zero at

very large distances, consistent with a stochastic field of peculiar velocities whose

amplitude is determined from realistic Newtonian N–body simulations.

The study of cosmic flows in this framework has led to sometimes confusing and

conflicting claims in its 40 year history, and both of the points above are the subject of

ongoing debate. In particular, a significant dipolar moment in the local velocity field,

or bulk flow velocity, is observed to extend out to & 300 Mpc, beyond the ∼ 100h−1Mpc

scale of statistical homogeneity. Such an unexpected large-scale coherent motion of nearby

galaxies is not easily explained.
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The measurement of the amplitude and direction of the bulk flow has seen a range

of results [73–84], using a variety of methods for determining distances. These methods

include both: (i) direct estimate of luminosity distances via methods such as the Tully-

Fisher, Faber-Jackson and Fundamental Plane relations, SNe Ia etc; and (ii) indirect

estimates using the signatures of galaxy clusters on the CMB anisotropies via the kine-

matic Sunyaev–Zel’dovich (kSZ) effect, a secondary CMB anisotropy. All observations are

subject to complex statistical biases, selection effects and systematic uncertainties. These

questions, as well as the question of the whether the bulk flow amplitude is consistent

with the expectations of the ΛCDM model. Estimates of the bulk flow amplitude via the

kSZ effect as high as 600 – 1000 km s−1 on large scales [75] are particularly controversial

and the subject of much debate [79,81,82].

Observations with more traditional distance estimators sometimes also find bulk flows

inconsistent with the ΛCDM model [73, 74]. Watkins et al. [73] find an amplitude of

407± 81 km s−1 towards (287◦±9◦, 8◦±6◦). By comparison the best-fit WMAP5 ΛCDM

model predicted a velocity field with a root mean square standard deviation ∼ 110 km s−1.

By contrast, Davis & Nusser [77] and Ma & Scott [80] find a bulk flow in similar directions

as [73, 74] but with amplitudes consistent with the ΛCDM expectation.

Identifying the most significant source of the bulk flow, has been at the centre of

cosmic flow studies. Early studies looked for a distant, massive concentration that could

“pull” galaxies towards it, such as the Great Attractor and Local Supercluster, at a

distance of ∼ 30 – 55h−1Mpc [85]. More recently studies have focused on the more distant

Shapley concentration, at a distance of ∼ 125 – 150h−1Mpc [85]. However, subsequent

studies [86] found no signature of infall of galaxies on the far side, as would be expected

in the Newtonian framework.

1.3.2 Minimum spherically averaged Hubble expansion varia-
tion

Recently Wiltshire and collaborators [87, 88] have analysed observations of the variation

of the local expansion, by considering spherical and angular averages of luminosity dis-

tances versus redshifts, generalising techniques first introduced by Li and Schwarz [89]

for spherical averages, and by McClure and Dyer [90] for angular averages.

In the case of the spherical averages a best fit linear Hubble law is determined in inde-

pendent radial shells – even on small scales in which the average expansion is nonlinear –

by standard linear regression, minimising the quantity χ2
s =

∑Ns
i=1

[
σ−1
i ((dL)i − czi/Hs)

]2
,

where s runs over the independent radial shells and Ns is the number of data points in

the sth shell. Different Hubble constants Hs are fit in each independent shell, being given
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by

Hs =

 Ns∑
i=1

(czi)
2

σ2
i

 Ns∑
i=1

czi(dL)i
σ2
i

−1

(1.26)

where σi is the uncertainty in (dL)i. Wiltshire et al. [87] analysed the composite sam-

ple12 of 4534 galaxy and cluster redshifts and distances [73, 74] by this approach and

found, with strong Bayesian evidence, that the Hubble expansion is significantly more

uniform in the frame of the Local Group (LG) of galaxies than in the standard CMB rest

frame. (The rest frame of the Local Sheet in which the LG is embedded shows results

similar to the LG frame.)

It was found the Hubble parameter in each shell approaches the asymptotic value,

H̄0, faster when measured in the LG frame, rather than the CMB frame. Such a result

might appear counter-intuitive at first as far as the standard cosmology is concerned,

as it is assumed that the CMB frame coincides with the cosmic rest frame and näıvely

the cosmic rest frame is the one in which the Hubble expansion is most uniform in a

statistical sense.

Wiltshire et al. [87] also observed that the difference ∆Hs = Hs,CMB − Hs,LG was

roughly inversely proportional to the average value of the squared luminosity distance,〈
(dL)2

〉
s
, in each shell. They deduced that this could be understood by considering

redshifts, zi, observed in a frame of reference in which the variation of the spherically

averaged Hubble expansion is minimised. An arbitrary local boost of the central observer

then leads to inferred redshifts, z′i, in the new frame given by

czi → cz′i = c(γ − 1) + γ
[
czi + vvv · n̂nni(1 + zi)

]
' czi + vvv · n̂nni(1 + zi) +O

(
β2
)

(1.27)

' czi
[
1 +O(β)

]
+ vvv · n̂nni . (1.28)

where β = v/c and γ is the Lorentz factor. In the Newtonian velocity addition approxima-

tion13, (1.28) with terms O(β) neglected—which is widely used in the peculiar velocities

community—this results in the changes (czi)
2 → (cz′i)

2 = (czi)
2 + 2czi vvv · n̂nni + (vvv · n̂nni)2

in the numerator of (1.26), and czi(dL)i → czi(dL)i + (dL)i vvv · n̂nni in the denominator.

Given data uniformly distributed over the sky then the terms linear in (1.26) are roughly

12The composite sample is a compilation of several major peculiar velocity surveys and was designed
to select the best data available.

13The O(β) correction is at most 0.5% for the data sets considered, at least one order of magnitude
smaller than typical distance uncertainties.
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self-cancelling and one finds to leading order

∆Hs = H ′s −Hs∼

 Ns∑
i=1

(vvv · n̂nni)2

σ2
i

 Ns∑
i=1

czi(dL)i
σ2
i

−1

≈ v2

3H̄0

〈
(dL)2

i

〉
s

(1.29)

McKay and Wiltshire [88] systematically investigated the characterisation of the frame

of minimum spherically averaged Hubble expansion variation via (1.29), upon performing

arbitrary boosts of the central observer. They investigated both the composite sample

and the Cosmicflows-II sample [91] of 8162 redshifts and distances, finding consistent

results, although the latter sample has an unsubtracted distribution Malmquist bias which

limited its usefulness. They confirmed that the CMB frame is significantly different from

the frame in which the spherically averaged Hubble expansion converges most quickly to

an asymptotic linear Hubble law. The difference of the CMB and LG frames coincides

with the expectation (1.29) apart from a small range of distances 40 . dL . 60h−1Mpc,

in which the CMB frame gives a better fit. By contrast, the LG frame is a member of

a degenerate set of local Lorentz frames that cannot be distinguished from each other as

candidate minimum Hubble expansion variation frames, on the basis of existing data14.

This result was unexpected in the standard framework, as no one had anticipated a

relation such as (1.29) which could make sense of the “nonlinear regime” well below the

statistical homogeneity scale. Indeed, in SNe Ia analyses data is often simply cut off below

a redshift z < 0.023 [92]. However, very recently Kraljic & Sarkar [93] further investigated

spherical averages using N -body simulations. They concluded that not only can one find

candidate LG locations which give results numerically consistent with Eq. (1.29) when

comparing the simulated difference between the simulated LG and CMB frames, but the

departure from the relation (1.29) seen in the composite and Cosmicflows–II in the

distance range in which structures are most nonlinear can also be fit numerically if a bulk

flow is included in the LG frame. The likelihood of such bulk flows is yet to be determined

in the ΛCDM framework, and cannot be separated from the question of selection effects

and statistical biases as different bulk flow magnitudes were found in comparing the fits

of the composite and Cosmicflows–II samples [93]. Consequently, the results of [88]

do not directly contradict the ΛCDM paradigm. The statistical likelihood of the bulk

flow amplitude and its match to observations are separate questions which are still to be

resolved in the ΛCDM framework.

14There is no data in the plane of our Milky Way galaxy, as it obscures more distant galaxies. This
does not pose a problem in terms of sky coverage for the statistical tests, as the missing region—the
so-called ‘Zone of Avoidance’—is symmetrical on the sky. However, it turns out that one can perform
boosts of order 100 – 200 km s−1 in the plane of the Milky Way without changing the statistical likelihood
of the fit to (1.29) [88].



1.3. Hubble expansion variation as a cosmological probe 19

1.3.3 Tests of differential cosmic expansion

In addition to the result concerning the uniformity of the spherically averaged Hubble

expansion, Wiltshire et al. [87] also studied angular averages. They found that there is a

range of distances 40 . dL . 60h−1Mpc for which there is a deviation from the spherical

average relation (1.29) of difference of the Hubble parameter in the CMB and LG frames,

which also correlates with a significant difference in the fit of a dipole Hubble expansion

law in independent spherical shells. Evidently nonlinear structures in this range (which

encompasses the Great Attractor) are responsible for both effects.

The boost to the CMB frame improves the fit of the spherical averaged expansion in

the distance range 40 . dL . 60h−1Mpc relative to the LG frame, and also greatly reduces

the dipole. As the distance is further increased, however, Wiltshire et al. [87] find that

the dipole in the CMB frame increases while the that in the LG frame reduces becoming

statistically consistent with zero15. This suggests a possibility that the large bulk flow seen

in the CMB frame may be a systematic error resulting from a wrong choice of rest frame if

the geometry below the statistical homogeneity scale is not the standard FLRW geometry.

In particular, exact solutions of Einstein’s equations for general dust inhomogeneities—

such as the LTB [42–44] and Szekeres [94] models—generally exhibit deviations from

uniform Hubble expansion that cannot be interpreted as local boosts relative to a spatially

flat background. Rather generic inhomogeneities should be understood to give rise to

relativistic differential expansion [1], corresponding to gradients in the local expansion of

underdense regions and neighbouring overdense regions.

Recently, in order to characterise the effects of relativistic differential cosmic expan-

sion, Bolejko, Nazer & Wiltshire [1] have begun investigating ray tracing of null geodesics

in exact solutions of Einstein’s equations which asymptote to a standard FLRW cosmol-

ogy on large spatial scales & 100h−1Mpc, while containing inhomogeneities on smaller

scales which are not small perturbations of the FLRW geometry. The models are con-

strained by using the composite sample in the LG frame to constrain the dipole of

the local Hubble expansion field—assuming the LG frame to be the frame which is the

expansion is closest to uniform—while also demanding that the amplitude and direction

of the CMB dipole in the LG frame are consistent.

In these models, light propagation no longer leads to the simple redshift relation

(1.22). The term zFLRW is replaced by a redshift term with an intrinsic anisotropy in

addition to the anisotropies arising from the multipoles of the Doppler term in (1.22).

The redshift anisotropy can therefore be considered to be non-kinematic. If a significant

fraction of the CMB dipole is non-kinematic, this raises the possibility [87] that various

large angle anomalies in the CMB anisotropy spectrum might be related to unexpected

systematic errors arising from removal of the CMB dipole, which is performed at the

15For very large distances, dL & 100h−1Mpc the data becomes too sparse to draw firm statistical
conclusions.
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same time as removal of microwaves emissions due to the Milky Way galaxy and point

sources.

Since the first WMAP data was released potential anomalies have been detected in

the primordial CMB anisotropy spectrum, with varying degrees of statistical significance.

These include

(1) a power asymmetry between the northern and southern galactic hemispheres [95–98];

(2) very low power in the CMB quadrupole power [95,99];

(3) the alignment of the quadrupole and octupole [99–101]; and

(4) a “parity asymmetry” between even and odd multipoles [104].

Although there is much debate about the use of a posteriori statistics, and the significance

of the anomalies given realisations of the CMB anisotropy spectrum from primordial

inflation within the ΛCDM model, the significance of some of these problems has increased

with the release of Planck satellite data [105,106]. Some of the anomalies may be related:

a study of systematic effects by Freeman et al. [107] revealed that a 1-2% error in the

CMB dipole subtraction could potentially cure the power asymmetry anomaly, which in

turn may affect the parity anomaly and possibly the quadrupole/octupole alignment.

1.3.4 Characterising a non-kinematic CMB dipole

The programme instigated by Bolejko, Nazer & Wiltshire [1] of using exact solutions

of Einstein’s equations as small scale nonlinear foreground inhomogeneities requires a

huge amount of development still, in order to characterise the differences that might

be expected from the standard model in terms of the large angle multipoles. Possible

implications such as the question of large angle anomalies cannot be investigated until

such work is carried out. As a step towards this Bolejko et al. [1] suggested defining

non-kinematic relativistic differential expansion to occur when the difference

∆Tnk−hel =
TAIE

γAIE(1− βββAIE · n̂nnhel)
− T0

γCMB(1− βββCMB · n̂nnhel)
, (1.30)

has a measurably nonzero dipole16 when expanded in spherical harmonics, where βββAIE =

vvvAIE/c is the boost of a particular “Average Isotopic Expansion (AIE) frame” to the

heliocentric frame, γAIE = (1− β2
AIE

)−1/2,

TAIE(n̂nnAIE) =
TCMB

1 + zAIE(n̂nnAIE)
. (1.31)

16In practice this means a contribution to (1.30) of at the least the same level, 10−5T
0
, as the primordial

spectrum; i.e., one order of magnitude larger than the conventional boost dipole.
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is the anisotropic CMB temperature as measured in the AIE frame, and

TCMB = (1 + zdec)T0 (1.32)

is the mean intrinsic temperature of the primordial plasma at decoupling, zdec being the

constant isotropic redshift of decoupling in the FLRW model. The AIE frame is defined

as the local Lorentz frame at our location in which the spherically averaged luminosity

distance–redshift relation in independent radial shells has minimal variations relative to

a linear Hubble law [87, 88]. In this thesis will take the AIE frame to be the Local

Group frame. The definition (1.30), (1.31) still leaves various ambiguities. It is the

aim of this thesis to clarify such ambiguities in an effort to more concretely characterise

non-kinematic anisotropies in CMB analysis.

There are several ways that a local Lorentz boost manifests on the blackbody spectrum

beyond inducing a large dipole. A boost also induces quadrupole and octupole moments

on the orders 10−6 K and 10−9 K respectively. In practice these contributions are too

small to be measured as they are swamped by the 10−5 K primordial fluctuations that

serves to noisy the signal.

The size of these effects become more apparent with larger boosts. However, as

the dipole is ∼ 1 mK the boost required is only weakly relativistic with a magnitude of

β ∼ 10−3 (or ∼ 300 km s−1) and so the effects on the CMB are subtle. Nevertheless they

have been measured.

In 2013 the Planck collaboration measured the direction and magnitude of the boost

using the aberration and modulation effects [108]. The aberration and modulation effects

manifest in the statistics of the CMB. In particular, they induce couplings between mul-

tipole moments [109,110] and it is precisely these couplings that have been measured by

Planck. However, their claim that the kinematic nature of the transformation from the

heliocentric to CMB frames has been verified by these effects actually depends on angular

scale. The boost direction coincides with the expected direction (`, b) = (264◦, 48◦) only

for small angle multipoles lmin = 500 < l < lmax = 2000. For large angle multipoles

l < lmax = 100 the inferred boost direction moves across the sky to coincide with the

modulation dipole anomaly direction [98], (`, b) = (224◦,−22◦) ± 24◦, associated with

the CMB anomalies. Since the non-kinematic terms in (1.30) only affect large angle

power, the angular scale dependence of the results of [108] and their association with the

anomaly direction provides some tentative evidence for the hypothesis of Wiltshire and

collaborators [1, 87].

It has been known for some time now that off-centre observers in the spherically

symmetric LTB void models can also observe a large dipole [45, 46, 111, 112]. The idea

that such a dipole may contribute to a significant fraction of the CMB dipole has not been

seriously considered, however, until the work of Bolejko et al. [1]. One reason for this is
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that attention has often been focused on the non-Copernican models with unrealistically

large voids discussed in §1.2.2.

Another reason is that simple analytic estimates of higher order multipoles have been

made based on the case of both source and observer being outside the void – this making

it possible to do estimates without the complex ray tracing methods studied by Bolejko

et al. [1]. Based on such estimates, generally a “Rees–Sciama quadrupole” of the same

magnitude as the “Rees–Sciama dipole” was anticipated, and so an “alternative origin of

the CMB dipole” was dismissed [113]. The results of Bolejko et al. show, however, that

such näıve estimates do not apply to the case observers deep inside nonlinear structures.

One must account for the actual local environment, which in our case includes structures

such as the Local Void and Great Attractor – semi-realistic profiles for which have emerged

from the ray tracing constraints in the Bolejko et al. analysis [1].

To make further progress it is therefore necessary that we also consider the higher

order effects induced on light propagation by nonlinear structures, such as the aberration

and modulation signatures. Even in the well-studied case of spherical voids little attention

has been paid to the question of whether one might find signatures nominally identified

as the aberration and modulation effects. (See, however, [114, 115].) As one aim of this

thesis, in Chapter 4 we will systematically investigate this question, including the manner

in which Lorentz boost like signatures can be found in the limiting linear regime.

1.4 Summary of research

In this thesis we investigate the possibility of the existence of a non-kinematic dipole com-

ponent by modelling nonlinear voids using exact solutions of the Einstein field equations.

We

• use the LTB and Szekeres solutions to explore the dependence of observer’s position

(i.e. the ‘peculiar potential’) on the CMB dipole and quadrupole;

• compare the predictions of linear theory with the exact models;

• derive formulae to estimate the monopole and dipole of the CMB measured in the

heliocentric frame based on the LTB model;

• investigate the extent to which such structures can induce a CMB dipole degenerate

with the standard kinematic interpretation. In particular, we look for physical

mechanisms that might induce couplings of the type seen by Planck, but caused by

the influence of inhomogeneous structures on the CMB.

Chapter 2 will begin with a review of perturbation theory in the standard FLRW cos-

mology, and how it sources anisotropies. Chapter 3 will review the exact inhomogeneous
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dust solutions of Einstein’s equations that are important for our investigations, namely

LTB and Szekeres model. Chapter 4 presents new original results. Chapter 5 concludes

with brief discussion of the impact of our results for future research.

Notation and units: Unless otherwise stated, we use geometrised units in which G =

1 = c, where G is the gravitational constant and c the speed of light. We use the Einstein

summation convention with Greek indices µ, ν, λ, . . . running over spacetime coordinates

labelled 0, 1, 2, 3, and Latin indices i, j, k, . . . running over spatial coordinates labelled

1, 2, 3. We use the metric sign convention, (−,+,+,+). Spatial 3-vectors are denoted in

boldface. Euclidean space unit 3-vectors (“directed line segments”) will be denoted with

hats, e.g., n̂nn. We use comma notation to denote partial derivatives and semicolons to

denote covariant derivatives, e.g., Φ,r ≡ ∂Φ/∂r and T µν;ν ≡ ∇νT
µν .





Chapter 2

Cosmological Perturbation Theory
and the Effects of Cosmic Structure

In this thesis we are primarily interested in evaluating the effects of light propagation in

exact solutions of the Einstein field equations, which are fully nonlinear and beyond the

realm of perturbation theory. By contrast, the standard ΛCDM cosmology is based on

perturbation theory about a global FLRW background in the early universe, while the

growth of structure in the late epoch universe is subsequently modelled by Newtonian

gravity [26] when perturbation theory breaks down.

In order to compare and contrast our nonlinear approach (see chapter 3), we first

review the treatment of perturbations in the standard FLRW cosmology, particularly in

relation to the generation of the secondary CMB anisotropies, which are the focus of our

investigation.

2.1 Cosmological perturbation theory

In the standard framework, initially on all scales and at present large (� 100h−1 Mpc)

scales, large-scale structure is represented by first-order perturbations on the FLRW

background geometry. The first-order perturbed metric has the form

gµν = gµν + δgµν , (2.1)

where gµν = gFLRW
µν is the unperturbed background metric and δgµν the first-order per-

turbation. The perturbed equations are found by inserting these quantities into the field

equations keeping only terms up to first-order.

In general, the perturbed line element in comoving coordinates takes the form

ds2 = gµν dxµ dxν = −(1 + 2A) dt2 + 2Bi dx
i dt+ a2(t)(gij + hij) dxi dxj, (2.2)

where A, Bi and hij are all functions of t and xi and between them possess ten degrees

of freedom. Four of these are coordinate degrees of freedom and can be fixed by a choice

of gauge. For instance, in the synchronous gauge A = 0 and Bi = 0 so that the metric

25
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is in diagonal form with gtt = −1 and gti = 0 = git and coordinate time coincides with

proper time. The perturbation hij can be decomposed into scalar, vector and tensor parts

and it turns out that for a FLRW background these decouple, i.e., each sector evolves

independently of the others.1 In this chapter we will focus on scalar perturbations,

ignoring vector and tensor perturbations as their contribution to the CMB anisotropy is

negligible.

In the epoch of early structure formation when the ISW effect first becomes apparent,

it is most intuitive to study evolution of perturbations in the Newtonian gauge. We

consider the case in which the background metric gµν = gFLRW
µν is given by the spatially

flat FLRW metric:

ds̄2 = gFLRW
µν dxµ dxν = − dt2 + a2 δij dxi dxj, (2.3)

where a = a(t) is the scale factor of the spatially flat FLRW background. The perturbed

metric (2.1) in Newtonian gauge then reads

ds2 = gµν dxµ dxν = −(1 + 2Φ) dt2 + a2(1− 2Ψ) δij dxi dxj, (2.4)

where Φ = Φ(t,xxx), Ψ = Ψ(t,xxx) are known as the Newtonian and curvature potentials

respectively.

2.1.1 Evolution of structure

Before we can evaluate (2.59) we first need to determine the explicit time dependence

of Φ and Ψ by solving the field equations for the metric (2.4) and a linearly perturbed

perfect fluid energy-momentum tensor. Since the spatially flat background rigidly evolves,

one can solve the Einstein equations order by order. The zeroth order (or unperturbed)

equations are just the Friedmann equations

H2 =

(
ȧ

a

)2

=
8πρ

3
+

1

3
Λ and

ä

a
= −4π

3
(ρ+ 3p) +

1

3
Λ. (2.5)

For the following discussion we consider only a subset of the Einstein equations of the

metric (2.4) and a perturbed perfect fluid energy-momentum tensor.2 These are

∇2Ψ− 3H(Ψ′ +HΨ) = 4πa2δρ, (2.6a)

Ψ′′ + 3HΨ′ + (2H′ +H2)Ψ = 4πa2δp, (2.6b)

∇2Ψ = 4πa2δρ, (2.6c)

where the equality sign should be understood to mean equality up to first order only. The

equations are written in terms of conformal time with H = a′/a the conformal Hubble

1The decoupling of sectors is a special property not shared by other perturbed models, such as
perturbed LTB models [116,117].

2The complete set of perturbed Einstein equations may be found in, e.g., §2.3 of [118].
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parameter, δρ = δρ(η,xxx) and δp = δp(η,xxx) the first order perturbations in density and

pressure respectively. Note the gradient operator is taken w.r.t. the comoving coordinates

xxx. Further we assume the anisotropic stress in the perturbed energy-momentum tensor

vanishes so that we have Φ = Ψ.3 Using (2.6a) and (2.6b) along with the Friedmann

equations (2.5), and assuming that perturbations are adiabatic so that δp = w δρ (with

w the equation of state parameter of p = wρ), we can derive the evolution equation

Ψ′′ + 3H(1 + w)Ψ′ − w∇2Ψ = 0. (2.7)

At this point it is standard in cosmological perturbation theory to write this equation in

Fourier space where each Fourier mode can be solved through the second-order ODE

Ψ′′k + 3H(1 + w)Ψ′k + wk2Ψk = 0. (2.8)

The kth mode, Ψk ≡ Ψ(η,kkk), is the Fourier transform of Ψ = Ψ(η,xxx):

Ψ(η,kkk) =

∫
d3xxxΨ(η,xxx) eikkk·xxx. (2.9)

We consider three cases of a universe dominated by (i) matter, (ii) radiation, and (iii)

dark energy.

Matter domination Consider an Einstein-de Sitter background Friedmann model,

i.e., one that is spatially flat and dust dominated ρ = ρm ∝ a−3. Since dust has zero

pressure w = 0 and a ∝ η2/(1+3w) = η2 (which implies H = 6/η), (2.8) becomes

Ψ′′k +
6

η
Ψ′k = 0. (2.10)

The general solution is Ψk = Ak + Bkη
−5, where Ak and Bk are constants. Because

perturbations are small in the early universe (i.e. when η is small), we have Bk = 0 so

that

Ψk = const, (2.11)

or, in real space, the potential Ψ is time-independent.

At last scattering Ωm ' 0.76 and Ωr ' 0.24, but Ωr drops below 1% by a redshift

z = 33, so that the universe then becomes matter dominated.

Radiation domination In the case of a spatially flat universe which is radiation dom-

inated, the ISW effect comes into play. Now w = 1/3 and a ∝ η which implies H = 1/η

so the evolution equation is

Ψ′′k +
4

η
Ψ′k +

k2

3
Ψk = 0. (2.12)

3Strictly this is only true if we assume the potentials decay at infinity.



28 Chapter 2. Cosmological Perturbation Theory and the Effects of Cosmic Structure

The solutions are more complicated being given in terms of spherical Bessel functions

of the first and second kind. Qualitatively, modes with wavelength λ(∝ k−1) larger

than the Hubble horizon H−1 (i.e. superhorizon modes) decay much slower than modes

smaller than the horizon that decay as a−2 ∝ η−2. Realistically, a more complicated

solution before dark energy dominates applies, namely

a = aeq

[(
η

η∗

)2

+ 2

(
η

η∗

)]
, (2.13)

where η∗ = 2 Ω
1/2
r /(H0 Ωm) and aeq = Ωr/Ωm [23]. Then a ∝ η2 when radiation domi-

nates, and a ∝ η when matter dominates. Modes that were subhorizon during the epoch

of radiation domination will then be significantly damped at the time of matter-radiation

equality compared with modes that were superhorizon.

Dark energy domination Once the radiation density becomes negligible, the spatially

flat FLRW model with matter and a cosmological constant is given by the background

solution

a =

(
Ωm

ΩΛ

)1/3

sinh2/3

(
3

2

√
ΩΛH0t

)
, (2.14)

where ΩΛ = Λ/(3H2
0 ). Consider the limiting case (in the future) in which the cosmological

constant dominates the energy density, ρ ' ρΛ = const. The cosmological constant has

an equation of state pΛ = −ρΛ = const and we assume its density and pressure remains

unperturbed δρΛ = δpΛ = 0. Thus the r.h.s. of (2.6b) vanishes and we have the following

closed equation in real space

Ψ′′ + 3HΨ′ + (2H′ +H2)Ψ = 0, (2.15)

where H ≡ a′/a is the comoving Hubble parameter. Using the Friedmann equations (2.5)

it is straightforward to show that 2H′+H2 = a2Λ. When expressed in cosmic time (2.15)

is

Ψ̈ + 4HΨ̇ + ΛΨ = 0. (2.16)

We remark this equation as well as (2.10), which may be expressed as Ψ̈ + 4HΨ̇ = 0,

does not have any scale dependence (i.e.,k does not appear) so that all modes evolve

uniformly.4

When dark energy dominates we have H2 ' Λ/3 and the equation becomes

Ψ̈ + 4

√
Λ

3
Ψ̇ + ΛΨ = 0, (2.17)

4This is important in the early initial period of inflationary expansion, which closely resembles a de
Sitter universe. This means that the primordial initial conditions which seeded structure were scale-
invariant. In Fourier space, one speaks of the fluctuations having a scale-invariant matter power spec-
trum. In fact in the standard model a close to scale-invariant matter power spectrum is observed, with
departures from the exact scale-invariance depending on both the potentials of the inflationary model
and the manner in which the period of inflation ends.
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which has the general solution

Ψ(t,xxx) = c1(xxx)e−3Ht + c2(xxx)e−Ht, (2.18)

where H =
√

Λ/3 = const and as we can see both solutions are decaying.

The continuity and Euler equations

With the metric (2.4) the conservation equation ∇µT
µν = 0 splits into a continuity

equation
∂δ

∂t
+

1

a
∇ ·
[
(1 + δ)vvv

]
= 0, (2.19)

and the Euler equation of motion

∂ vvv

∂t
+Hvvv +

1

a
(vvv · ∇)vvv = −1

a
∇Ψ. (2.20)

These equations to first order are

∂δ

∂t
+

1

a
∇ · vvv = 0, (2.21)

and
∂ vvv

∂t
+Hvvv = −1

a
∇Ψ. (2.22)

2.1.2 The assumption of uniform growth of scales

Within the above framework of cosmological perturbation theory often an additional

assumption is made, which is that all scales grow uniformly:

δ(t, rrr) = D(t) δ(t0, rrr) ⇐⇒ δ(t,kkk) = D(t) δ(t0, kkk), D(t0) = 1, (2.23)

where δ(t, rrr) = δρ(t, rrr)/ρ(t) is the density contrast, D(t) is determined from the field

equations, and δ(t0, rrr) can be freely chosen (provided it does not violate |δ(t0, rrr)| � 1).

Under such an assumption the time dependence is separated out from δ(t, rrr) thereby

allowing one to solve Poisson’s equation (2.6c) analytically. Using Friedmann’s equation

we can rewrite Poisson’s equation in a more useful form as

∇2Φ =
3

2
ΩmH

2
0 a
−1(t) δ(t, rrr). (2.24)

In linear theory this becomes

∇2Φ =
3

2
ΩmH

2
0 g(t) δ(t0, rrr), (2.25)

where g(t) ≡ D/a is known as the linear growth factor. For brevity, we define the

shorthand δ(rrr) ≡ δ(t0, rrr) to mean the density contrast at the present time so that δ on

its own is understood to mean δ(rrr).
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For the rest of this section we assume an isolated and spherically symmetric matter

distribution, so that in a coordinate system centred at the origin we have δ(rrr) = δ(r) and

Φ(t, rrr) = Φ(t, r).

Solving Poisson’s equation using the method of Green’s functions with the boundary

condition Φ→ 0 as r →∞ we obtain

Φ(t, r) = −3

2
ΩmH

2
0 g(t)F (r), (2.26)

with

F (r) ≡
∫ r

0

r′2

r
δ(r′) dr′ +

∫ ∞
r

r′δ(r′) dr′, (2.27)

satisfying ∇2F = −δ. The linear growth factor g(t), or equivalently D(t), is determined

by substituting δ(t, r) = D(t) δ(t0, r) into (3.25) to obtain the following ODE:

D̈ + 2
ȧ

a
Ḋ − 4πGρ̄D = 0. (2.28)

Note that D(t) < 1 for t < t0 and the general solution to this equation has a growing and

decaying solution. For the case of a spatially flat background, Ωk = 0, one can verify the

growing solution [119] is

D(t) ∝ H(t)

∫ t

0

dt′

a2(t′)H2(t′)
, (2.29)

with the constant of proportionality set by the initial conditions. A more convenient

description of D was found [120] by working in conformal time and introducing a function

P = P (η) related to D by

g ≡ D

a
= A

(
1− a′

a
P ′
)
, (2.30)

where A = 1/(1− a′

a
P ′)|a=1 since D(t0)/a(t0) = 1. Substituting this into (2.28) and using

the Friedmann equations (2.5), we have after a straightforward, if tedious, calculation

the simpler equation

P ′′ + 2
a′

a
P ′ − 1 = 0. (2.31)

Thus, we have swapped an equation of D for an equation of P , which is readily solved to

obtain

P (η) =

∫ η

0

dη′

a−2(η′)

[∫ η′

0

dη′′a2(η′′)

] . (2.32)

With our expression (2.26) for Φ in hand, we are ready to solve (2.22) for the first-order

velocity vvv:
∂ vvv

∂t
+Hvvv =

3

2
ΩmH

2
0 a
−1(t) g(t)∇F (r). (2.33)

Observing that the right-hand side is the product of functions of t and r, we assume the

solution to be of the form vvv ∝ G(t)∇F (r), with the proportionality constant judiciously
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chosen to simplify the resulting equation of G. Substituting this ansatz into (2.33) we

find the constraint on G:

G′ +
a′

a

(
G+ P ′

)
− 1 = 0. (2.34)

Comparing with (2.31) we see that this is satisfied if G = P ′. Thus

vvv(t, r) =
3

2
AΩmH

2
0P
′(η)∇F = −3

2
AΩmH

2
0P
′(η)

(
r−2

∫ r

0

δ(r′)r′
2

dr′
)
r̂rr. (2.35)

By differentiating (2.30) by η and using (2.31) as well as the Friedmann equations it can

be shown that D′ = 3
2
AΩmH

2
0P
′. Using this relation and ∂/∂η = a ∂/∂t we have the

radial component v in a more standard form as

v(t, r) = −a(t) Ḋ(t) r−2

∫ r

0

δ(r′)r′
2

dr′ = −a(t)H(t)f(t) r−2

∫ r

0

δ(r′)r′
2

dr′, (2.36)

where

f(t) ≡ 1

H

Ḋ

D
=

dlnD

dln a
(2.37)

is called the linear growth rate. A widely used approximation by Peebles [70] when Ωk = 0

and ΩΛ = 0 is the simple relation f ≈ Ω0.6
m , where now Ωm = Ωm0/a

3 is the matter

density parameter not necessarily at the present time. If ΩΛ 6= 0 then f ≈ Ω0.55
m [121].

Besides a, H and f , which all depend on the background FLRW model only (i.e., they

are independent of the details of the density perturbations), the velocity of an observer

located at radius r is determined entirely by the density within a ball of radius r.

Note for a general matter distribution δ(rrr) we have upon rearranging (2.21) the equa-

tion

∇ · vvv = −a δ̇(t, rrr) = −aHfδ(rrr), (2.38)

which may be solved using Green’s functions to give

vvv(t, rrr) =
1

4π
aHf

∫
δ(rrr′)

rrr − rrr′
|rrr − rrr′|3 d3rrr′. (2.39)

We remark that this is the key equation used in the peculiar velocity formalism to inves-

tigate bulk flows (see §1.3.1).

2.2 CMB anisotropy from perturbation theory

The CMB temperature anisotropy was first put on a theoretical footing by Sachs and

Wolfe in their pioneering 1967 work [122], which saw the first detailed study of the effects

of a perturbed FLRW cosmology on the CMB. Indeed the study of light propagation in

the universe underpins the theory of the CMB.

In this section we derive the CMB temperature anisotropy, ∆T/T , in the framework

of linear perturbation theory. These standard results can be found in, e.g., [118]. The

statistical analysis of the CMB is deferred to §2.3.
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In general relativity,5 light is assumed to follow null geodesics given by

kν∇νk
µ = 0, kµ ≡ dxµ

dλ
, (2.40)

i.e., the null geodesic equations. With an affine parameter λ the equations become

dkµ

dλ
+ Γµαβk

αkβ = 0, (2.41)

where Γµαβ is the Christoffel symbol.

Using the fact that null geodesics of conformally related geometries are identical6 we

can instead consider null geodesics of the conformally related metric given by

γµν ≡ a−2gµν = ηµν + hµν (2.42)

where ηµν = diag(−1, 1, 1, 1) is the Minkowski metric, hµν the first-order perturbation,

and gµν the metric (2.4). The conformally related line element is

a−2 ds2 = γµν dxµ dxν = −(1 + 2Φ) dη2 + (1− 2Ψ) δij dxi dxj, (2.43)

where η is conformal time and related to cosmic time by dη = dt/a.

We denote by Γµαβ and δΓµαβ the Christoffel symbols of γµν and hµν respectively, and

since the connection vanishes in Minkowski space Γµαβ = δΓµαβ. Further we denote by kµ

the null tangent vector of the conformally related metric (2.43). Note the only Christoffel

symbols required in the following linear calculation is

Γ0
αβ =

1

2
η0ρ
(
∂βhαρ + ∂αhρβ − ∂ρhαβ

)
= −1

2

(
∂βhα0 + ∂αh0β − ∂0hαβ

)
(2.44)

Henceforth barred quantities will denote unperturbed quantities of the conformally re-

lated background ηµν . Thus k̄µ is the null tangent vector such that ηµν k̄
µk̄ν = 0.

We assume the null geodesics of (2.43) are parametrised by an affine parameter λ and

that

kµ ≡ dxµ

dλ
= k̄µ + δkµ. (2.45)

where δkµ is the perturbation. The null geodesic equations (2.41) to first order are

0 =
d

dλ
kµ + Γµαβk

αkβ

' d

dλ
δkµ + δΓµαβk̄

αk̄β (2.46)

5Just as in special relativity, light propagates according to the wave equation ∇µ∇µϕ = 0, the
difference now being that spacetime is curved and solutions have the form ϕ(x) = A(x)eiψ(x) + · · · .
Light propagation is based on the eikonal or geometric optics approximation, which assumes that the
phase ψ is changing much faster than the amplitude A so that the tangent vector, kµ ≡ ∂µψ, of light
rays are null, i.e, kµkµ = 0. The fact that kµ is the gradient of a scalar means that light rays are
irrotational, ∇[µkν] = 0 and from these two items it follows that 0 = ∇µ(kνkν) = 2kν∇µkν = 2kν∇νkµ,
i.e., kν∇νkµ = 0.

6If gµν and γµν are conformally related and have common coordinates xµ then a null geodesic γµ =
γµ(λ) of gµν is also a null geodesic of γµν . However, the affine parameters will be different.
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since d
dλ
k̄µ = 0. Here and in the following we denote by ' equality to first order only.

The equation for the conformal time component ‘0’ is explicitly

d

dλ
δk0 = −δΓ0

αβk̄
αk̄β

= k̄αk̄β∂βhα0 −
1

2
k̄αk̄β∂0hαβ

= k̄β∂β(hα0k̄
α)− 1

2
k̄αk̄β∂0hαβ (2.47)

Integrating between decoupling, λ∗, and the time of reception, λ0, we find

[
δk0
]λ0
λ∗

=
[
h00 + h0j k̄

j
]λ0
λ∗
− 1

2

∫ λ0

λ∗

∂

∂η
hαβk̄

αk̄β dλ. (2.48)

where we have used

(k̄0)2 = δij k̄
ik̄j = 1, (2.49)

on the first term. By (2.49) and noting

hµν dxµ dxν = −2Φ dη2 − 2Ψ δij dxi dxj, (2.50)

equation (2.48) becomes

[
δk0
]λ0
λ∗

= [−2Φ + 0]λ0λ∗ −
1

2

∫ λ0

λ∗

[
k̄0k̄0 ∂

∂η
(−2Φ) + δij k̄

ik̄j
∂

∂η
(−2Ψ)

]
dλ

' −2Φ
∣∣λ0
λ∗

+

∫ λ0

λ∗

∂

∂η
(Φ + Ψ) dλ (2.51)

An observer in the conformally related geometry γµν has a 4-velocity of the form

uµ = ūµ + δuµ = (1 + δu0, δui). (2.52)

Imposing the timelike condition uµuµ = −1 we obtain the relation

−1 = γ00(u0)2 + γiju
iuj

= −(1 + 2Φ)(1 + δu0)2 + (1 + 2Ψ) δijδu
iδuj

' −1− 2(δu0 + Φ) (2.53)

i.e., δu0 = −Φ. Defining vi ≡ δui, the 4-velocity has the form uµ = (1 − Φ, vi). We

decompose the unperturbed null vector as k̄µ = ūµ + eµ where eµ is a unit spacelike

vector in the Minkowski background, i.e., ηµνe
µeν = 1. Then

kµ = k̄µ + δkµ = (1 + δk0, ei + δki). (2.54)

Given the affine parameter λ of the metric γµν , a short calculation shows that λ′ = a2λ

is an affine parameter of the original metric gµν . Letting k̃µ be the null tangent vector
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of gµν , we have the relation k̃µ = a−2kµ. The energy measured by an observer with

4-velocity ũµ is then

E = −gµν ũµk̃ν = −a−1γµνu
µkν (2.55)

since ũµ = dxµ

dt
= dη

dt
dxµ

dη
= a−1uµ. Evaluating

γµνu
µkν = γ00u

0k0 + γiju
ikj

= −(1 + 2Φ)(1− Φ)(1 + δk0) + (1− 2Ψ)δijv
i(ej + δkj)

' −1− Φ− δk0 + δijv
iej

and using (2.51) and (2.55), the ratio of the observed and emitted photon energy, E0 and

E∗ respectively, is

E0

E∗
=

(gµν ũ
µk̃ν)|0

(gµν ũµk̃ν)|∗

' a∗
a0

(
1− vvv · êee+ Φ + δk0

) ∣∣
0

(1− vvv · êee+ Φ + δk0)
∣∣
∗
' a∗
a0

{
1− [vvv · êee− Φ]0∗ +

[
δk0
]0
∗

}

=
a∗
a0

{
1− [vvv · êee+ Φ]λ0λ∗ +

∫ λ0

λ∗

(
Φ′ + Ψ′

)
dλ

}
. (2.56)

Here vvv · êee ≡ δij v
i ej, the prime ′ denotes a partial derivative w.r.t. conformal time, and

the potentials are integrated along geodesics, that is, Φ′ = Φ′(η(λ),x(λ)) is understood.

Now recall that the CMB temperature falls as T0 = T∗/(1+z) and let T0(n̂nn) = T 0+∆T0(n̂nn)

and T∗(n̂nn) = T ∗+ ∆T∗(n̂nn), where T (∝ a−1) is the unperturbed temperature of the FLRW

background and n̂nn is the direction of observation. Assuming the temperature fluctuations

are small7 we have

1

1 + z
=
T 0 + ∆T0

T ∗ + ∆T∗
≈ a∗
a0

(
1 +

∆T0

T 0

− ∆T∗

T ∗

)
, (2.57)

and since E0/E∗ = 1/(1 + z), upon inserting into (2.56) and rearranging we finally have

∆T0

T 0

(n̂nn) =
∆T∗

T ∗
−
[
vvv · (−n̂nn) + Φ

]λ0
λ∗

+

∫ λ0

λ∗

(
Φ′ + Ψ′

)
dλ. (2.58)

This is the first order temperature anisotropy observed in the direction n̂nn = −êee and

at time t0. The integral represents the ISW effect and generically means the frequency

change arising from time-varying potentials, we emphasise that in the standard model it

has often come to refer to the effect when only first order perturbation are considered.

Note for Einstein-de Sitter models the ISW term vanishes (c.f. (2.11)).

The above derivation computed the ISW effect to linear order assuming that |hµν | � 1

or, equivalently, that |Φ| and |Ψ| are much less than unity. Clearly, nonlinear collapsed

7Indeed, the largest contribution is from the dipole, which is at the level of 10−3 K.
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structures such as galaxies and clusters can also generate anisotropies in the CMB. The

effect these structures have on the CMB is a nonlinear version of the ISW effect called

the Rees-Sciama (RS) effect [123]. Whereas the ISW effect arises from first order density

fluctuations the RS effect arises from the nonlinear density fluctuations characteristic of

late epoch structure formation.8

Evaluating the ISW integral requires solutions to the null geodesic equations, which in

turn requires determining the potentials Φ and Ψ explicitly from the lumpy distribution

of matter. To linear order, often in the standard framework one simply evaluates the ray

along the unperturbed trajectory xxx(λ) = xxx∗ + (λ − λ∗) êee, i.e., in Minkowski space. This

is known as the Born approximation and simplifies numerical calculations as one simply

ray traces along the line-of-sight, ignoring the null geodesic equations of the perturbed

metric. As a result deflections in the trajectory are not considered, but will however affect

the CMB.9 These effects are treated separately from the ISW effect under the subject of

weak lensing of the CMB [125].

By the Born approximation kµ ' k̄µ = ūµ + eµ, from which we find that kη ' k̄η =

ūη = δηη = 1, i.e., dη/ dλ ' 1. Thus dλ ' dη allowing us to rewrite the ISW term as(
∆T0

T 0

)
ISW

'
∫ η0

η∗

(Φ′ + Ψ′) dη, (2.59)

with Φ′ = Φ′(η,xxx(η)) and Ψ′ = Ψ′(η,xxx(η)).

The other terms in (2.58) are interpreted as follows

• vvv · n̂nn is the kinematic dipole caused by the peculiar motion of the observer relative

to the CMB rest frame.

• Φ(t(λ∗),xxx(λ∗)) is known as the ordinary Sachs-Wolfe effect. It reflects the fact that

photons may be emitted inside potentials in which case they lose or gain energy

leaving it.

• Φ(t(λ0),xxx(λ0)) is the monopole contribution due to the present day gravitational

potential. Regardless of which direction the CMB is observed in, the temperature

shift is the same.

8At late times of structure formation, the dark energy driven expansion causes a flattening of the
potential but is somewhat cancelled out by matter collapsing under gravity. Treated as the source of
the RS effect, this has the tendency of causing the potential Φ to grow and become steeper opposing
the effects of expansion. Overall, the ISW effect dominates the RS effect at late times but going to
larger redshift the roles reverse as the effects of dark energy become less prominent and matter comes to
dominate.

9In the standard framework, the deflection angle depends on a term proportional to the transverse
gradient of the potential Ψ, basically, the ‘force’ acts orthogonally to the ray so that it does not induce
a change in frequency.
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• ∆T∗/T∗ is related to the intrinsic fluctuation in the radiation energy density (δγ).

Using the Stefan-Boltzmann law ργ ∝ T
4

we see that

∆T∗

T ∗
=

1

4

δργ
ργ

∣∣∣∣
∗
≡ 1

4
δγ
∣∣
∗. (2.60)

We remark that the standard interpretations immediately assume an operational in-

terpretation which is open to debate, even in the standard model. In particular, linear

perturbation theory is not valid on small scales, and consequently neither the monopole

contribution Φ(t(λ0), x(λ0)) to the CMB spectrum, nor the kinematic dipole vvv ·n̂nn relevant

to our own observations can be estimated simply from perturbation theory. If one assumes

that the FLRW geometry plus Newtonian N -body simulations are valid approximations

for the actual universe, then one can estimate such quantities on the basis of many simu-

lations. However, even state of the art simulations are still based on coarse graining dust

as dark matter particles. The relationship between the calibration of effective potentials

experienced by ordinary baryonic matter and dark matter is not known. Dark matter

particles are simply assumed as a proxy for actual observers. Consequently, even in the

standard framework there are aspects of the more general fitting problem [126,127] which

are not widely addressed. However, some related observational issues have been recently

discussed within the standard framework [72,128].

2.3 Statistics of the CMB

In order to quantify the observed temperature anisotropy, it is standard to expand ∆T/T

in spherical harmonic functions Y`m(n̂nn):

Θ(n̂nn) ≡ ∆T

T
(n̂nn) =

∞∑
`=0

∑̀
m=−`

a`m Y`m(n̂nn), (2.61)

where ` is the multipole moment (or for short, the multipole), and again n̂nn is a unit

3-vector in the direction of observation. The decomposition into spherical harmonics of

any function on the sphere is unique. The set of spherical harmonics are orthonormal, in

the sense that ∫
Y`m(n̂nn)Y ∗`′m′(n̂nn) dn̂nn = δ``′δmm′ , (2.62)

and form a basis of functions on the unit sphere. Here the integral is over is over the sky

and δ``′ is the Kronecker delta symbol defined as δ``′ = 1 if ` = `′ and zero otherwise. By

(2.62) we then have

a`m =

∫
Θ(n̂nn)Y ∗`m(n̂nn) dn̂nn. (2.63)

Spherical harmonic functions also satisfies the addition theorem,∑
m

Y`m(n̂nn)Y ∗`m(n̂nn′) =
2`+ 1

4π
P`(n̂nn · n̂nn′), (2.64)
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where P` is the Legendre polynomial of order `.

Note ` is inversely proportional to the angular scale so that small ` describes large

angular scales etc. The coefficients a`m are complex numbers but Θ(n̂nn) being real imposes

a∗`m = (−1)ma`−m (following the Condon-Shortley convention [129]), with ∗ denoting the

complex conjugate. All cosmological information about the anisotropy field is encoded

in these complex quantities.

In principle, we can conceive of an ensemble of universes, each a distinct realisation of

the physical processes that governs a given cosmological model. It is the average over the

ensemble, which we denote 〈A〉 for some observable A, that should be compared against

the model. Given that we are only able to perform measurements in the universe in which

we find ourselves, these averages cannot be performed. However, if one invokes the ergodic

theorem10 as is often done in the standard framework, the ensemble average can be traded

for an average over positions in a single realisation. Thus, ensemble averages can, in

principle, be done by measuring the CMB at different observational points. Showing that

an underlying model has certain properties required for ergodicity is not straightforward

requiring additional assumptions of the statistics of random fields. In the case of Gaussian

random fields, ergodicity can be demonstrated (e.g., inflationary models predict Gaussian

density perturbations).

Assuming Θ(n̂nn) is statistically isotropic means the 2-point correlation function

C(n̂nn, n̂nn′) = 〈Θ(n̂nn)Θ(n̂nn′)〉, (2.65)

depends only on the angle θ between n̂nn and n̂nn′, that is

C(n̂nn, n̂nn′) = C(n̂nn · n̂nn′) = C(θ), (2.66)

and as such the correlation function is invariant under rotations n̂nn→ Rn̂nn and n̂nn′ → Rn̂nn′.

We emphasise that this does not imply Θ(Rn̂nn) = Θ(n̂nn) but only that the statistics are

preserved between points of a fixed angular separation.

Since n̂nn·n̂nn′ = cos θ ∈ [−1, 1] let us expand the correlation function in terms of Legendre

polynomials P`(cos θ):

C(θ) = 〈Θ(n̂nn)Θ(n̂nn′)〉 (2.67a)

=
∑
`

2`+ 1

4π
C`P`(cos θ). (2.67b)

Note the factor (2`+ 1)/4π has been extracted from the basis coefficients C` as this will

simplify the following calculations. Using (2.61) on the right-hand side of (2.67a) and

10While the assumption of ergodicity is clearly relevant in isolated systems in statistical physics, this
assumption might be questioned for the whole universe, which is not close to any equilibrium state over
long periods of time. The application of this assumption to primordial fluctuations is an additional
physical ingredient for models of the very early universe, such as inflation.
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Figure 2.1: The CMB angular power spectrum for ` ≥ 2 of 9-year WMAP measurements.
The red curve is the theoretical curve of the best-fit ΛCDM model while the blue band
shows the cosmic variance. The region ` ∼ 10 is known as the Sachs-Wolfe plateau
due to the power `(` + 1)C` being roughly flat, though it is less apparent here with the
logarithmic scale more compressed towards lower `. (Credit: WMAP collaboration)

the addition theorem (2.64) on (2.67b) we obtain the relation∑
`m`′m′

〈a`ma∗`′m′〉Y`m(n̂nn)Y ∗`′m′(n̂nn
′) =

∑
`m

C`Y`m(n̂nn)Y ∗`m(n̂nn′). (2.68)

Multiplying both sides by Y ∗`1m1
(n̂nn)Y`2m2(n̂nn

′), then integrating over n̂nn and n̂nn′, and using

the orthogonality relation (2.62), we find

〈a`ma∗`′m′〉 = C` δ``′ δmm′ . (2.69)

Thus, for a statistically isotropic field Θ(n̂nn) the angular power spectrum C` = 〈|a`m|2〉
encodes the same information as C(θ). We can then equivalently think of the statistics in

real space, associated with the correlation function, or harmonic space, associated with

the power spectrum. Though from a practical standpoint there are significant computa-

tional advantages using the latter. Another reason is the power spectrum can be directly

compared among different experiments (e.g. Planck and WMAP), whereas the correlation

function will depend on the angular resolution of the experiment.

We observe C` = 〈|a`m|2〉 depends only on ` and not on the rotational degrees of

freedom m; this is as we would expect since we have assumed statistical isotropy. Thus,

for a given ` we have at most a sample of 2`+ 1 measurements of C`, one for each m.11

11Often the power spectrum C` of temperature fluctuations is denoted CTT` to distinguish between
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With the further assumption that Θ(n̂nn) is Gaussian random field we have 〈Θ(n̂nn)〉 = 0

or equivalently 〈a`m〉 = 0. Each a`m is then a Gaussian random variable with mean zero

and variance C` = 〈|a`m|2〉. All n-point correlation functions (n products of Θ(n̂nn)) reduce

down to the sum of the products of 2-point correlation functions (2.67a), a result that

tells us that the statistics of Θ(n̂nn) is described entirely by the angular power spectrum.

2.3.1 Cosmic variance

In the previous section we discussed the angular power spectrum in terms of abstract en-

semble averages, that is, averages over many realisations of the same underlying universe.

In the real world cosmological data comes to us from all but one realisation, meaning

that at best all we can do is estimate the true power spectrum.

Assuming statistical isotropy, the simplest estimator of the power spectrum uses the

fact that C` is independent of m so one has 2` + 1 different measurements, one for each

m. Thus for a given ` one just takes the arithmetic average

C̃` ≡
1

2`+ 1

∑̀
m=−`

|a`m|2, (2.70)

with |a`m|2 = a`ma
∗
`m. This is known as the pseudo-C` (PCL) estimator [171] and is

unbiased, that is, 〈C̃`〉 = C`. It is to be compared with the true C`.
12 Assuming that

Θ(n̂nn) obeys Gaussian statistics (as is done in the standard model), and applying Wick’s

theorem we find13 that

Var[C̃`] ≡
〈

(C` − C̃`)2
〉

=
2

2`+ 1
C2
` . (2.71)

This is known as cosmic variance and represents an intrinsic uncertainty due to the fact

that we observe a single realisation. Even with perfect instruments and full-sky coverage

one can do no better than this uncertainty. Cosmic variance affects all angular scales but

is particularly significant on large angular scales, corresponding to large scale structure

(see fig. 2.1).

The power at low multipoles are thought to come mainly from the primordial epoch

when the power spectrum would have been close to scale-invariant, i.e., one would measure

at this epoch `(`+ 1)C` ' const. The power spectrum measured today has largely been

processed by a range of effects, (e.g., Baryon Acoustic Oscillations, Silk damping, etc) to

other power spectra. So far we have focused on scalar fluctuations in the CMB temperature field, but the
CMB is also polarised. There are two types, so-called E-modes and B-modes, and one often constructs
the cross-power spectra, e.g., CTE` , CTB` , CEB` etc. Henceforth, since we do not investigate polarisation
we will simply denote CTT` as C`.

12This estimator (2.70) assumes an ideal full-sky coverage of the CMB so that each a`m can be mea-
sured, however, in practice the sky is obscured by foregrounds such as galactic dust and galactic syn-
chrotron emission, and will suffer from instrument noise. Estimators may also be constructed taking
partial sky coverage into consideration (see e.g. [132]).

13Again, see §2.6 of [133] for details.
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arrive at fig. 2.1. At low ` the spectrum remains relatively flat, suggesting the power at

these scales is mostly of a primordial origin. This region is commonly referred to as the

Sachs-Wolfe plateau (c.f. (2.58)).

2.4 Detecting the ISW effect

As we saw above the linear ISW effect in a perturbed Friedmann cosmology arises from

the time-evolution of the Newtonian and curvature potentials. In the standard model, the

stretching and flattening of the potentials is caused by the expansion of the universe; at

late times the apparent acceleration is brought on by dark energy producing a significant

ISW signature in the CMB anisotropy. By this token, the ISW effect can be used to

constrain the cosmological constant in the standard ΛCDM model. Curvature can also

affect the ISW signature but in ΛCDM this is of course negligible so that dark energy

can be directly probed.

However, given that the contribution from ISW to the temperature shift ∆T/T is

small—about an order of magnitude smaller than the primary anisotropies— detecting

it directly from the CMB proves difficult. Low multipoles, corresponding to large scale

structures, in the angular power spectrum have low power (or amplitude) compared with

intrinsic fluctuations and also suffer from cosmic variance14, which is particularly acute

on large scales.

Cross-correlations with tracers. An alternative method was proposed by Crittenden

and Turok [134]. The idea is that the ISW signature should in principle be correlated with

local matter tracers since we see that the potential Φ is related to the density contrast

δ through the Poisson equation (2.6c). In turn, the density contrast can be expected

to be related to the density of galaxies and quasars. The relation between the matter

distribution δ and the galaxy distribution δg will generally be biased [135], usually linearly

as δg = bδ where the constant b is the bias parameter.

This is the basis of many efforts today to detect the ISW signal and, indirectly, dark

energy from cross-correlation of the temperature map with matter tracers (or the absence

thereof).

With the arrival of WMAP and more recently Planck CMB data, many detections of

the ISW signal have been reported using the above method (see Table 1 of [132] and [136]

for a summary of recent results). Tracer objects are found through observations of electro-

magnetic waves in optical wavelengths (Sloan Digital Sky Survey (SDSS) Luminous Red

Galaxies and Quasars), radio wavelengths (NVRAO VLA Sky Survey (NVSS)) among

others. Many signals tend to be weak (2–3σ significant) although, notably, Giannantonio

14Cosmic variance can be thought of as the inherent limit on the amount of information that can be
measured on large scales. Unlike the usual concept variance, cosmic variance cannot be avoided.
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et al. [137] find a 4.5σ signal. Their method combines tracer data from six different sur-

veys, however, such a large signal should be interpreted cautiously because of problems

in estimating errors associated with correlated data sets.

Stacking superstructures. In theory, overdense and underdense superstructures should

be correlated with hot and cold regions respectively in the CMB temperature map, that

is, large scale structures are expected to be ‘imprinted’ on the CMB. However, in practice

the ISW signal coming from individual superstructures is too weak to be detected due

to the significant amount of noise from primary anisotropies. By averaging or ‘stack-

ing’ N superstructures, such as supervoids or superclusters, the signal-to-noise can be

improved as the noise from uncorrelated primary anisotropies falls as ∝ 1/
√
N . This

method was used by Granett et al. [138] to detect an ISW signal with a temperature shift

of ∼− 11 µK at 3.7σ significance for supervoids, ∼8 µK at 2.6σ for superclusters, and an

absolute temperature shift averaged over both supervoids and superclusters of 9.6 µK at

>4σ significance. The stacking method involves superposing cutouts of the CMB tem-

perature map at the locations of supervoids and superclusters as determined by luminous

red galaxies (LRG) in the SDSS catalogue. In the sample the superstructures used are

at a redshift of ∼0.5 and size ∼ 100h−1 Mpc. Interpreted in the standard model, the hot

and cold spots are seen as evidence for a late time ISW effect caused by the onset of dark

energy domination.

The high amplitude and statistical significance reported by Granett et al. is the focus

of much debate. The typical amplitude |∆T | detected by tracers is much smaller than

when using stacked supervoids/clusters and falls in line with the ΛCDM expectation.

Interestingly, the Planck team [139] find a signal for both supervoids and superclusters

consistent with the temperature shift ∆T found by Granett et al. when using the same

sample of superstructures but supplemented with CMB polarisation data. (As it turns

out, they do not find any correlation of polarisation with the signal). However, us-

ing CMB-tracer cross-correlations the Planck team results are otherwise consistent with

ΛCDM levels.

Compared with the value predicted by the standard model, the observed temperature

deviation ∼9 µK is far larger. Nadathur et al. [140] estimate the expected value 〈∆T 〉
from an ensemble of supervoids15 of size ∼ 100h−1 Mpc and different (central) density

contrasts δmin based on the standard ΛCDM model finding a temperature deviation of

∆T . 2 µK in ΛCDM—a value which is discrepant with [138] by >3σ.

The calculation uses the linear growth approximation in which all scales grow at

the same rate. Moreover it assumes that: (i) the density contrast when smoothed on

some scale is a Gaussian random field so that large scale structures are given by linear

fluctuations, δ . 1 and that, (ii) locally the density field around superstructures are

15Supervoids are less prone than superclusters to selection effects in superstructure finding algorithms.
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on average spherically symmetric with the density profile given in [141]. The density

amplitudes and radii of the profile are chosen from a distribution to produce the largest

possible estimate. The potential Φ is found from the Poisson equation (2.6c) and the

temperature map ∆T/T can then be constructed using (2.59) for different lines-of-sight

~n. In the context of the standard model we note in passing that the nonlinear contribution

to the full nonlinear ISW effect is thought to be small at low redshifts [142].

Flender et al. [143] subsequently used a slightly modified approach to [140] with

the aim of achieving the largest ISW effect in ΛCDM, still find that the discrepancy

of Granett et al. persists at >3σ. Moreover, this result is robust against varying the

cosmological parameters in ΛCDM and also possible selection effects of the sample. They

also argued unlikely that unidentified systematics and galactic foregrounds can account

for this tension.

Very recently, Nadathur and Crittenden [144] introduced a new matched filtering ap-

proach for detection of the ISW effect, which they claim is not subject to an a posteriori

bias in the way that earlier techniques were. They apply their method to Planck CMB

data using voids and superclusters identified in the CMASS galaxy data from the Sloan

Digital Sky Survey Data Release 12. They detect the ISW effect with at a 3.1σ signif-

icance, but contrary to earlier results its amplitude AISW = 1.64 ± 0.53 relative to the

ΛCDM expectation is in agreement with the predictions of the standard cosmology.

The Cold Spot. The recent discovery of a supervoid [145] in the direction of the CMB

Cold Spot seemed to suggest that its temperature fluctuation ∼− 150 µK could be the

result of the ISW and RS effects. In fact, one group claimed that this supervoid could

entirely account for the Cold Spot [146]. Centred at a redshift z = 0.155 with a size of

∼ 200h−1 Mpc and central density contrast of δ0 = −0.25, the supervoid was reported

to produce a RS effect an order of magnitude larger than the ISW effect contrary to

the results of [142] that the RS effect is negligible for z . 1. In a more detailed study

by [147] the authors dispute this claim showing that when the void is modelled either

perturbatively or exactly using an LTB model it is unable to explain the temperature

profile. Following this work, the authors of [146] revise their paper and come to a similar

conclusion.

It is shown in [147] that the RS contribution is in fact two orders of magnitude

smaller than from the ISW effect, which gives ∼− 20 µK. This is not surprising as the

second order perturbations should provide corrections to the linear order calculation if

the linearised theory is to be valid. Moreover, they argue that supervoids such as the

one detected are not as uncommon as first thought with ∼ 20 voids of a similar nature

expected to be found with a redshift less than ∼ 0.5.

They conclude that the size and density contrast of a supervoid required to match

the observed signal would need be so severe as to be improbable in the standard model.
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N-body simulations. A higher than expected temperature decrement can also be seen

in N -body simulations. For instance, Granett et al. compared their stacked imprint to

the ΛCDM prediction using a 500h−1 Mpc length box simulation finding that the region

giving largest ISW signal was still ∼2σ different to the stacked result.

N -body simulations have also been used to study the nonlinear regime. In [142] a

1h−3 Gpc3 size simulation showed by ray tracing that the RS effect is subdominant to

the ISW effect at late times but dominates in the matter dominated epoch. A much

larger simulation (216h−3 Gpc3) finds that the ISW signal from structures with redshift

less than 1.4 is no more than ∼50 µK over the whole sky [148].

The ongoing debate about observations of the amplitude of the ISW effect involves

very complex issues of statistics and a posteriori selection effects, as well as the statistics

of Newtonian N–body numerical simulations. It is important to have other realistic

models beyond the standard cosmology which might potentially lead to differences that

might be further tested. This motivates the study of exact inhomogeneous solutions of

Einstein’s equations, to which we now turn.





Chapter 3

Exact Cosmological Models

In the previous chapter we reviewed the standard model approach to modelling inhomo-

geneities in the Universe, namely using linear cosmological perturbation theory. Given

the complexity of the late epoch Universe we saw how perturbation theory fails to de-

scribe the small scales (tens of megaparsecs) of realistic structures such as voids and

clusters.

While perturbation theory offers semi-analytical predictions there is no substitute to

models based on full general relativity. However, constructing a model of the universe

based on exact solutions to the Einstein equations, which takes into account the statistical

spatial homogeneity on scales &100h−1 Mpc and the emergence of the cosmic web of the

late epoch universe, is a very difficult task (as we discussed in §1.2.4 and §1.1.4). It

took decades to successfully solve even just the 2-body problem numerically in general

relativity [149].

In the last year two teams [150, 151] have begun the extremely complex problem

of computational cosmology based on general relativity using the Baumgarte-Shapiro-

Shibata-Nakamura (BSSN) formalism [152]. These numerical calculations assume an

initial global FLRW geometry in the dust dominated epoch, and must make particular

choices of slicing by hypersurfaces, gauge choices for coordinates, and assumptions of

initial density perturbations of the early universe, (e.g., Bentivegna & Bruni [151] as-

sume a simple periodic initial perturbation, which has an unrealistically high degree of

symmetry). Nonetheless, even with as yet crude approximations, some deviations from

the expectations of the standard cosmology have been found. In particular, the variation

of local expansion is larger than in the standard approach.

In this thesis we approach the fully nonlinear problem by the alternative approach of

embedding small scale exact solutions within a standard FLRW model corresponding to

the ΛCDM cosmology.

This chapter is dedicated to the subject of modelling inhomogeneous structures using

exact solutions of general relativity. Being non-perturbative, these models allow an exact

description of cosmological structures on scales < 100h−1 Mpc that are largely ignored

45
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in the standard framework (at least in the relativistic context).

3.1 The Lemâıtre-Tolman-Bondi solution

The Lemâıtre-Tolman-Bondi (LTB) models [42–44] are a class of spherically symmetric,

time-dependent solutions with the right-hand side of the Einstein field equations specified

by a pressureless fluid, i.e., dust. (In fact Lemâıtre originally studied the more general

case involving pressure [42].) In this section we derive the solution and discuss the theory,

properties, pathologies and basic tools of LTB models.

To obtain the LTB solution we begin by noting that a spherically symmetric metric

in coordinates comoving with the dust has the general form

ds2 = gµν dxµ dxν = −e2ν(t,r) dt2 + e2λ(t,r) dr2 +R2(t, r) dΩ2. (3.1)

The conditions on ν(t, r), λ(t, r) and R(t, r) are found by inserting the ansatz into the

Einstein field equations

Gµν = κTµν − Λgµν , (3.2)

where Gµν = Rµν − 1
2
Rgµν is the Einstein tensor, Rµν is the Ricci tensor, R ≡ gµνRµν ,

κ ≡ 8πG/c4 = 8π and

Tµν = ρ(t, r)uµuν ,

is the energy-momentum tensor of dust. Here uµ is the dust 4-velocity field, ρ(t, r) the

dust density and dΩ2 = dθ2 + sin2 θ dφ2 is the 2-sphere metric. For a universe containing

dust matter only, it follows from T µν;ν = 0 that uν∇νu
µ = 0, i.e., the dust flow follows

(timelike) geodesics. Because of spherical symmetry the dust flow is purely radial, and as

a result rotation free so that we may choose synchronous coordinates [153] in which we

can set e2ν = 1. Thus coordinate time coincides with proper time τ . Dust particles are

labelled by the single coordinate r on account of spherical symmetry and parametrised

by t so that uµ = dxµ

dτ
= δµt = (1, 0, 0, 0). The only field equations we need to consider

are

Gt
r = 2

Ṙ′

R
− 2

R′

R
λ̇ = 0, (3.3a)

Gr
r =

R′2

R2
e−2λ − 2

R̈

R
− Ṙ2

R2
− 1

R2
= −Λ, (3.3b)

Gt
t = e−2λ

(
R′2

R2
+ 2

R′′

R
− 2

R′

R
λ′
)
− Ṙ2

R2
− 2

Ṙ

R
λ̇− 1

R2
= −8πρ− Λ. (3.3c)

Here we use the shorthand that an overdot denotes the partial derivative ∂/∂t, and a

prime the partial derivative ∂/∂r, so that Ṙ′ ≡ R,rt etc. All other field equations are

either satisfied identically or provide no new independent equations. Equation (3.3a)
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admits a first integral f(r) ≡ 1 + 2E(r) ≥ 0 and so we find

e2λ(t,r) =
R′2

1 + 2E
. (3.4)

Written in this way E(r) is an arbitrary function, so long as E(r) ≥ −1
2
. Equality,

E = −1
2
, can be achieved provided R′ = 0. The function E(r) determines the spatial

curvature of a hypersurface of constant t but can also be interpreted as the energy per

unit mass of the dust. Note the denominator is written in this way for convenience only;

it simplifies solving the other equations.

By multiplying (3.3b) by ṘR2, then integrating by t we obtain

Ṙ2 =
2M

R
+ 2E +

1

3
ΛR2, (3.5)

where M(r) is a first integral. This is the only dynamical equation of the LTB solution.

The arbitrary function M(r) represents the effective gravitating mass contained in a shell

of radius r.

Notice that this equation only involves a t partial derivative whereas R is a function

of t and r meaning that the initial condition is specified by some arbitrary function of r.

By simple rearrangement of (3.5) we find

t− tb(r) =

∫ R(t,r)

0

dR̃√
2M/R̃ + 2E + ΛR̃2/3

, (3.6)

where the arbitrary function tb(r) is known as the ‘bang time’, the time at which

R(tb(r), r) = 0 meaning that the big bang need not occur everywhere at ‘once’ but

can vary with position. In general, (3.5) is solved numerically since it does not permit a

solution in terms of elementary functions, except in the special case Λ = 0 (see §3.1.1).

Using (3.4) and (3.5) in equation (3.3c) above we obtain

8πρ(t, r) =
2M ′

R′R2
. (3.7)

The LTB line element in comoving-synchronous coordinates now reads

ds2 = − dt2 +
R′2

1 + 2E
dr2 +R2 dΩ2, (3.8)

with R(t, r) given by solving (3.5).

Specifying E(r), M(r) and tb(r) determines the LTB model completely. Notice that

(3.7) and (3.8) are covariant w.r.t. r, i.e., there remains a coordinate freedom r → r̃ =

f(r) and this can be chosen to fix the scale but can also be used to redefine one of the

three functions in a more convenient form. Therefore, only two of the above functions

are independent with a gauge specified.
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We note here the Hubble expansion rate, in general, may be defined as

H(t, r) ≡ 1

3
Θ =

1

3
∇µu

µ =
1

3

(
2Ṙ

R
+
Ṙ′

R′

)
, (3.9)

where the kinematic scalar Θ ≡ ∇µu
µ is the fluid expansion [154] and in the FLRW limit

H = ȧ/a

Note M(r) is not the same as the total mass of all particles integrated over the same

ball which would instead be

M(r) =

∫
V

ρ(t, r)
√

g3 d3 x

= 4π

∫ r

0

ρ
R2R′√
1 + 2E

dr̃ =

∫ r

0

M ′(r̃)√
1 + 2E(r̃)

dr̃ (3.10)

and as we can see the total Newtonian mass differs from M(r) by a factor
√

1 + 2E(r).

The difference is known as the mass defect in bound gravitational systems. Moreover we

see M′√1 + 2E = M ′.

3.1.1 Parametric solutions in the case Λ = 0

As noted above, when Λ 6= 0, (3.5) cannot be solved by hand but involves elliptical

integrals that cannot be expressed in terms of elementary functions (though Valkenburg

[155] has reformulated (3.5) in Carlson’s symmetric form of elliptic integrals). In the

special case Λ = 0 this equation has the following parametric solutions:

• If E(r) > 0 then evolution is hyperbolic:

R(t, r) =
M

2E
(coshu− 1), (3.11a)

t− tb(r) =
M

(2E)3/2
(sinhu− u), 0 ≤ u <∞. (3.11b)

• If E(r) = 0 then evolution is parabolic:

R(t, r) =

[
9M

2

(
t− tb(r)

)2
]1/3

. (3.12)

• IF E(r) < 0 then evolution is elliptic:

R(t, r) =
M

(−2E)
(1− cosu), (3.13a)

t− tb(r) =
M

(−2E)3/2
(u− sinu), 0 ≤ u ≤ 2π. (3.13b)
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In the last case, each spherical dust shell labelled r is expanding (Ṙ > 0) until it reaches

a maximum size at u = π corresponding to a critical πM/(−2E)3/2, at which point it

begins to collapse returning to a singular state after a total time

tc − tb(r) = 2πM/(−2E)3/2, (3.14)

where tc is known as the crunch time. (In the FLRW limit, described in the next section,

M/(−2E)3/2(r) = const so the crunch time is simultaneous for all shells.) Such models

are suited to describing the evolution of bound overdense spherical structure such as

galaxy clusters (see, for example [156]).

On the other hand, provided no shell crossings occur (see below), choosing a function

E(r) < 0 ensures that shells will continue to expand since if Λ > 0, as is true for most

cosmological models of interest, then by (3.5) we have Ṙ > 0 for all t.

3.1.2 Recovering the FLRW limit

The spatially homogeneous and isotropic Friedmann-Lemâıtre-Robinson-Walker (FLRW)

dust solutions are the class of LTB models in which tb = const and E/M2/3 = const. (In

fact, these are necessary and sufficient conditions.) To recover the standard Friedmann

equation one chooses

M(r) = M0r
3,

E(r) = −1

2
kr2,

for some constant k. The scale function then factorises as R(t, r) = a(t)r where a(t) is

the usual scale factor appearing in the Friedmann equation.

We remark that by setting M(r) = const and Λ = 0 then it follows (3.7) that ρ = 0,

i.e., the metric is a vacuum solution. Indeed, since the solution is spherically symmetric,

by Birkhoff’s theorem, the metric must be given by the exterior Schwarzschild metric and

when given in Lemâıtre-Novikov coordinates the metric will be of the form (3.8). The

remaining functions remain arbitrary with E representing the energy of a test particle

and 2M being the Schwarzschild radius.

3.1.3 Prescribing LTB models

LTB models are often used to study inhomogeneous cosmologies embedded in a Friedmann

background in which E(r), M(r) and tb(r) asymptotically approaches the FLRW values

E(r) = const, M(r) = M0r
3 and tb(r) = const, as r → ∞. Alternatively, one is

often interested in modelling individual inhomogeneities of a finite size within the LTB

framework. Here the inhomogeneity has a comoving radius rb beyond which the model

becomes FLRW. This is the case for LTB Swiss cheese in §3.3 below.
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The second of these two inhomogeneous models can be defined in the following way.

The coordinate r is chosen such that at some initial time R(ti, r) = air where ai = a(ti)

is the FLRW scale factor. We also demand that Ṙ(ti, r) = ȧir = aiHir where Hi is the

Hubble parameter of the background FLRW model. Thus the inhomogeneity at this epoch

is contained in the density profile, and is related to the background density by ρ(ti, r) =

ρ̄(ti)(1+δ(ti, r)). The model is then completely determined by {R(ti, r), Ṙ(ti, r), ρ(ti, r)}.
With these functions chosen M(r) is found by integrating (3.7) to get

M(r) = 4π

∫ r

0

ρ(ti, r̃)R(ti, r̃)
2R′(ti, r̃) dr̃ = 4πa3

i

∫ r

0

ρ(ti, r̃)r̃
2 dr̃, (3.15)

while the function E(r) is obtained from (3.5) by setting t = ti. Finally, the bang time

is then found from (3.6) at t = ti. Thus, specifying {R(ti, r), Ṙ(ti, r), ρ(ti, r)} translates

into a choice of {E(r),M(r), tb(r)}.

Alternative methods

Rather than specifying the arbitrary functions outright, often it is more practical to

specify an initial and/or final density profile since these can readily be chosen based on

observational data. The following methods for Λ = 0 models are due to Krasinski and

Hellaby [157,158]. In these models the coordinate r is defined as r = M and the density

profile is specified at times t1 and t2. With this coordinate choice it follows from (3.7)

that R can be directly evaluated from the profile as

R3(t,M) =

∫ M

0

3

4πρ(t, M̃)
dM̃. (3.16)

The remaining functions E(r) and tb(r) are found directly from the parametric solutions

above (§3.1.1).

Not all initial states are compatible with each other, but must satisfy a certain in-

equality. For example, in the case of E > 0, the following must be true:

t2 − t1 <
√

2

3
√
M

(
R3/2(t2,M)−R3/2(t1,M)

)
. (3.17)

The inequalities for other types of LTB models can be found in [157].

In fact, there are myriad other data that can be used to define LTB models. For

instance, the velocity profile defined as b(M) ≡ Ṙ(ti,M)/M1/3 can also define the model.

What is more, initial and final data need not be of the same type. For example, one can

specify a velocity profile at t1 and a density profile at t2 etc. For a list of valid data see

§2.1.6 of [156].

3.1.4 Growing and decaying modes

Similarly to perturbed FLRW cosmologies, the evolution of LTB spacetimes can be char-

acterised by growing and decaying modes, i.e., fluctuations that increase or decrease with
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time respectively. In [159], the growing and decaying modes were studied for cases Λ > 0.

This is summarised below.

The line element is recast in a way that it resembles the FLRW line element by

redefining the quantities as R(t, r) = a(t, r)r, 2E(r) = −k(r)r2 while the coordinate r

is defined so that M(r) = M0r
3 and tb is chosen to be constant. The line element (3.8)

then becomes

ds2 = − dt2 + a2

[
(1−∆)2 dr2

1− kr2
+ r2 dΩ2

]
, (3.18)

where

∆(t, r) ≡ 1− 3
MR′

M ′R
= 1− ra

′

a
, (3.19)

and a(t, r) is a solution to the equation

ȧ2(t, r) =
2M0

a(t, r)
− k(r) +

Λa2(t, r)

3
. (3.20)

This has essentially the same form as the Friedmann equation except now a and k de-

pend on r. For each r the associated dust shell worldline is precisely the same as its

corresponding FLRW model in which k = const = k(r) and tb = const = tb(r). Thus,

locally the evolution of dust shells are identical to FLRW dust models.

The quantity ∆(t, r) has a geometrical nature having the elegant form

∆2 =
9

16

CµσρλC
µσρλ

RµνRµν − 1
4
R2

. (3.21)

We see that ∆ ∝ w where w = CµσρλC
µσρλ is the Weyl scalar and in fact ∆ = 0 is a

necessary and sufficient condition to obtain the FLRW limit [159]. Recall Cµσρλ = 0 for

FLRW metrics so we see at once ∆ = 0. To show that ∆ = 0 implies the FLRW metric

we solve 1 − 3MR′/M ′R = 0 to find R(t, r) = aM1/3, then substitute into (3.5) from

which it follows that
E(r)

M2/3(r)
= const, (3.22)

precisely the condition (together with tb = const) needed to recover the FLRW limit.

Evaluating (3.21) using the field equations we find

∆(t, r) =
ρ−M/(4πR3/3)

ρ
, (3.23)

so that it can be physically interpreted as the density contrast. Using (3.5) and differen-

tiating ∆ = 1− ra′/a by t it can be shown that ∆ satisfies the exact equation

∆̈ + 2
ȧ

a
∆̇− 3

M0

a3
∆ = 0. (3.24)

This equation has a similar form to the equation

δ̈ + 2Hδ̇ − 4πρ̄δ = 0, (3.25)
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governing the leading order evolution of the density contrast δ from perturbed FLRW

cosmologies. (Note H is the Hubble parameter of the FLRW background.) In fact, these

equations have the same form since from (3.7) we have M0 = 4πρ̄/3. Notice that the coef-

ficients in (3.24) are functions of r so these equations are not entirely equivalent, however,

for a given r the dynamics are identical. Therefore, both equations can be considered

second-order linear differential equation having in general two linearly independent so-

lutions corresponding to the growing and decaying mode of cosmological perturbation

theory. In the case of (3.24), the coefficients of the growing and decaying modes are, in

general, functions of r and as it turns out, these coefficients are fixed by the arbitrary

functions tb(r) and k(r). The growing mode is proportional to the gradient k′(r), or

(E/M2/3)′ for an arbitrary r coordinate, while the decaying mode is proportional to t′b(r)

(See for example [160] for Λ = 0 models and §3 of [159] for Λ > 0 models.) The function

tb(r) can then be thought of as the ‘inhomogeneity’ in the bang time while k(r) can be

thought of as the inhomogeneity in the spatial curvature. Both of these functions are of

course constant in the FLRW limit so that growing and decaying modes vanish and we

have ∆ = 0.

For collapsing models E < 0 the situation is different. The decaying mode depends

on the derivative of the crunch time t′c(r), the time at which the shell becomes singular

again.

Though E,M and tb are arbitrary giving an infinite number of LTB models, certain

types of models can be ruled out as unphysical. For example, models in which t′b 6= 0

contain decaying modes implying that the universe was less homogeneous and isotropic at

early times and thus incompatible with observations. Realistic LTB models then dictate

t′b = 0, or tb = const, corresponding to a simultaneous big bang.

Cosmic voids and clusters

The existence of voids was predicted as early as 1934 in Tolman’s original study of

what are now known as LTB models. Tolman showed that the formation of voids is

a consequence of the instability of inhomogeneities on a Friedmann background. For

example, consider an idealised LTB model in which there is a small under- or overdensity

at the centre isolated to a small region. Using (3.5) and (3.7) with the initial conditions

R(ti, r) = air, Ṙ(ti, r) = aiHir and ρ(ti, r) = ρ̄i(1 + δ(ti, r)) it can be shown that

∂2

∂t2
(ln ρ− ln ρ̄) = 4π(ρ− ρ̄). (3.26)

This equation shows that small perturbations away from ρ̄ grow to be more pronounced

over time. Underdense regions will become even emptier leading to the formation of

voids. On the other hand, the growth of overdensities will continue unbounded until the

breakdown of the model, e.g. when shell crossings occur (see below).
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Since the evolution of the LTB model is governed by gravitating mass alone it is well

suited to the study of structures on the scale of tens of megaparsecs, e.g., clusters and

voids. On smaller scales the situation is complicated by hydrodynamical processes, when

pressure and rotation, (which plays a crucial role in galaxy formation), become important.

The flexibility in choosing density profiles that are not just limited to the linear regime

make LTB models ideal candidates for describing voids within the framework of general

relativity.

3.1.5 Shell crossing

It is possible that two nearby dust shells of different comoving radii will cross causing

world lines of dust particles to intersect. Thus coordinates (r, θ, φ) no longer uniquely

label worldlines. This causes the Kretschmann scalar, RµσρλR
µσρλ, and the density to

diverge, leading to a singularity. Shell crossings signal a breakdown of the assumptions

in LTB models, an artefact of an idealised dust model that a realistic model containing

pressure can prevent. Shell crossings can be avoided by a judicious choice of the arbitrary

functions.

Conditions to avoid shell crossing

Recall shells are uniquely labelled by the comoving coordinate r. As nearby shells collide,

the proper distance between adjacent shells must then become zero implying that R′ = 0

at shell crossings. However, this is not sufficient as the density, ρ, must also diverge. If

R′ = 0 but M ′/R′ (c.f. (3.7)) is finite, so that ρ is finite, then these surfaces are regular

extrema.

If R′ > 0 for all t, as is the case when ρ > 0, then we can be sure no shell crossings

occur. Necessary and sufficient conditions for no shell crossings have been given for Λ = 0

models [161] and sufficient conditions have been given in the Λ > 0 case in [159]. There

are three sets of conditions each for E > 0 (hyperbolic), E < 0 (elliptic), and E = 0

(parabolic). These conditions restrict the properties that E(r), M(r) and tB(r) can have

but at the same time are sufficiently flexible that they can be easily satisfied.

3.2 The Szekeres solution

A broader class of inhomogeneous cosmologies can be found in the family of Szekeres

solutions. These solutions are a generalisation of the LTB solutions (and by extension

FLRW solutions) in which the requirement of spherical symmetry is relaxed, allowing

anisotropic and inhomogeneous models to be studied in a GR setting. Naturally, there

is a greater level of freedom that can be brought to bear on astrophysical cosmology but

at the cost of added complexity. In this section we present the Szekeres solution and

highlight the relevant details that will be needed in Chapter 4.
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The energy-momentum tensor is that of dust, T µν = ρ uµuν , but one can also include

pressure (see the Szekeres-Szafron family of solutions [162]). The density, ρ, is in general

a function of all spacetime coordinates.

We follow the original presentation of the solution due to Szekeres [94]. We begin

with the general line element of the form

ds2 = − dt2 + e2α dr2 + e2β(dx2 + dy2), (3.27)

where α and β are functions of the synchronous-comoving coordinates t, r, x and y. We

recall these coordinates can always be found for a dust source and worldlines are labelled

not only by r, as in LTB solutions, but by x and y as well. While we label one of

the spatial coordinates r, we emphasise that Szekeres solutions do not in general have

an ‘origin’ as in the case of LTB solutions, so r should not be thought of as a radial

coordinate.

With the metric of the above form and source specified, the field equations give

Gr
x = e−2α(β,rα,x − β,rx) = 0, (3.28a)

Gr
y = e−2α(β,rα,y − β,ry) = 0, (3.28b)

which implies

β,r = u(t, r)eα, (3.29)

with u(t, r) a first integral. The Szekeres solutions can be split into two classes according

to whether β,r = 0 or β,r 6= 0 (or, equivalently u(t, r) = 0 or u(t, r) 6= 0). The β,r = 0

case encompasses the homogeneous FLRW and Kantowski-Sachs solutions. Here we shall

focus on the β,r 6= 0 case as this has a far wider application to inhomogeneous cosmology.

We can safely assume β,tx = 0 = β,ty, as only then do solutions exist [94, 163]. Thus,

β will be of the form

β(t, r, x, y) = ln Φ(t, r) + ν(r, x, y), (3.30)

or

eβ(t, r, x, y) = Φ(t, r)eν(r,x,y). (3.31)

The field equation, Gt
r = 8πT tr , gives

(eβ−αβ,r),t = 0, (3.32)

and together with (3.31) implies

eα = Φ(t, r)β,r. (3.33)

Using (3.31) and (3.33) the field equation, Gr
r + Λ = 8πT rr , reduces to

e−2ν(ν,xx + ν,yy) + 1 = 2Φ,ttΦ + Φ2
,t − ΛΦ2. (3.34)
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Observing that the left-hand side depends on r, x and y while the right hand side depends

only on t and r, by the separation of variables we conclude that both sides are equal to

some function of r, i.e.,

2Φ,ttΦ + Φ2
,t − ΛΦ2 =: 2E(r). (3.35)

In the same way as for the field equation (3.3b) of the LTB solution, we multiply the

above equation by Φ,t and integrate by t to obtain

Φ2
,t =

2M

Φ
+ 2E +

1

3
ΛΦ2, (3.36)

where M(r) is another first integral. Notice this equation has exactly the same form as

(3.5) for the LTB case. Likewise the initial condition of (3.36) furnishes another arbitrary

function, tb(r), i.e., the bang time.

Returning to the left-hand side of (3.34), we have

e−2ν(ν,xx + ν,yy) + 1 = 2E(r). (3.37)

By using complex coordinates, it can be shown1 that e−ν must have the general form

e−ν = A(r)(x2 + y2) + 2B1(r)x+ 2B2(r)y + C(r), (3.38)

where A(r), B1(r), B2(r) and C(r) are arbitrary functions subject to the constraint

4(AC −B2
1 −B2

2) = 1− 2E. (3.39)

The density is obtained from the (tt) field equation:

8πρ(t, r, x, y) =
(2Me3ν),r
e2β(eβ),r

=
2(M,r + 3Mν,r)

Φ2(Φ,r + ν,r)
. (3.40)

To summarise, the metric components are

gtt = −1, (3.41a)

grr = Φ2(t, r)β2
,r, (3.41b)

gxx = gyy = Φ2(t, r)/e−2ν(r,x,y) = (Φ,r + Φν,r)
2, (3.41c)

with ν given by (3.38) and Φ determined by the single dynamical equation (3.36). The

Szekeres solution is then completely specified by the functions E(r), M(r), tb(r), A(r),

B1(r), B2(r), and C(r). All told there are seven functions in the solution, of which six are

independent on account of (3.39) but with a suitable coordinate transformation r = f(r′),

only five need to be specified.

1See the appendix of [94] for a proof.



56 Chapter 3. Exact Cosmological Models

A more convenient formulation for the Szekeres solution was found by Hellaby [164].

The functions are redefined as follows:

Φ =
√
|`|R, E = |`|Ẽ, M = |`|3/2M̃, ε = `/|`|, (3.42)

A =
√
|`|/(2S), B1 = −

√
|`|P/(2S), B2 = −

√
|`|Q/(2S), (3.43)

where `(r) := 4(AC −B2
1 −B2

2) = 1− 2E, (3.44)

and imposing the constraint (3.39) we find

C =

√
|`|S
2

[
P 2 +Q2

S2
+ ε

]
, (3.45)

so that

e−ν =
√
|`|E , (3.46)

where E :=
S

2

[(
x− P
S

)2

+

(
y −Q
S

)2

+ ε

]
. (3.47)

As a result, all functions are independent and the constraint (3.39) is identically satisfied.

The line element takes the form

ds2 = − dt2 +
(R′ −RE ′/E)2

ε+ 2E
dr2 +

R2

E2
(dx2 + dy2), (3.48)

while the density becomes

8πρ(t, r, x, y) =
2(M ′ − 3ME ′/E)

R2(R′ − E ′/E)
. (3.49)

Note that the tildes above M and E have been dropped as from this point on we will no

longer need to distinguish between the two formulations.

Comparing (3.48) and (3.49) with the LTB line element (3.8) and density (3.7) we

immediately see that the term E ′(r, x, y)/E(r, x, y) represents the departure from spherical

symmetry.

There are now six arbitrary functions P (r), Q(r), S(r), E(r), M(r), tb(r) sharing five

physical degrees of freedom with a coordinate freedom in r. Moreover ε = −1, 0, 1 corre-

sponding to quasi-hyperbolic, quasi-plane and quasi-spherical type models respectively.

As the names suggests, these models characterise the geometry of t = const hyper-

surfaces, although within a given hypersurface the geometries of the r = const 2-surfaces

can change with r. Note the LTB solutions are recovered for the quasi-spherical case

when P , Q and S are all constant.

For the remainder of this section we focus solely on the quasi-spherical ε = 1 case. It

is by far the most researched case [156, 163] and is capable of modelling a wide range of

cosmological scenarios.
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3.2.1 Mass dipole

In the quasi-spherical case the density distribution on each shell, consists of a monopole

and dipole moment, i.e.,

ρ(t, r, x, y) = ρmono(t, r) + ∆ρ(t, r, x, y). (3.50)

Shells labelled by different r will have different dipolar axes, which in general are not

aligned with each other. Using (3.49) we decompose (3.49) as

8πρ =
2(M ′ − 3ME ′/E)

R2(R′ − E ′/E)
+

Z

R2
− Z

R2
(3.51)

=
Z

R2
+

(2M ′ − ZR′)− (6M −RZ)E ′/E
R2(R′ −RE ′/E)

(3.52)

where we have introduced an arbitrary function Z = Z(t, r). Note the first and second

terms correspond to ρmono(t, r) and ∆ρ(t, r, x, y) respectively. The splitting is not unique

as there are many ways in which Z(t, r) can be defined, e.g., by demanding that ∆ρ = 0

at r = 0 (see [156] for details).

3.2.2 The Szekeres solution in spherical coordinates

The quasi-spherical Szekeres solutions represent a family of t = const, r = const 2-

dimensional spheres, or ‘shells’, with areal radius R, each with the line element R2 dΩ2.

In general these shells are displaced from each other according to the functions P , Q and

S. In the LTB limit these shells are concentric. This can be understood by changing to

spherical coordinates via the stereographic projection:

(x− P )/S = cot(θ/2) cosφ, (y −Q)/S = cot(θ/2) sinφ. (3.53)

This is a mapping of the infinite (x, y) plane onto the 2-sphere described by the finite

range of coordinates θ and φ. Through these equations the role of P , Q and S becomes

clear. The function P and Q represent r-dependent displacements of the 2-spheres, while

the function S gives the magnification of the 2-sphere when mapped onto the (x, y) plane.

In these coordinates we have

E = S/(1− cos θ). (3.54)

The line element is non-diagonal in these coordinates:

ds2 =− dt2 +
1

1 + 2E

[
R′ +

R

S
(S ′ cos θ +N sin θ)

]2

dr2

+R2

[
S ′ sin θ +N(1− cos θ)

S

]2

dr2 +R2

[
N,φ(1− cos θ)

S

]2

dr2

−R2 2[S ′ sin θ +N(1− cos θ)]

S
dr dθ +R2 2N,φ sin θ(1− cos θ)

S
dr dθ

+R2 dΩ2, (3.55)

where N(r, φ) = P ′ cosφ+Q′ sinφ and primes again denote r partial derivatives.
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3.3 Other exact models

3.3.1 The Swiss cheese model

Obtaining a solution of the field equations that describes the Universe on more than one

scale is a difficult problem. However, a solution of the field equations can be constructed

out of other known solutions. Such constructions with different regions described by

different metrics are known as Swiss cheese models.

The Einstein-Straus Swiss cheese [165] is one such example obtained by embedding a

Schwarzschild solution in a Friedmann background and was originally intended to describe

the local effects of stars within a cosmological setting. More sophisticated models have

since been studied. For example one can describe a lattice of holes by LTB solutions in

which the density profile can be tuned to model different types of cosmological structures

(including � 100h−1 Mpc sized structures). When used as cosmological models, (i.e.,

with a FLRW background) the boundary of the hole forms a comoving surface, subject

to the Darmois-Israel junction conditions [166,167].2

These types of models add another layer of depth to modelling the universe with a

FLRW metric in that they are able introduce nonlinear inhomogeneities. However, in

these models the holes maintain the same (comoving) distance with the boundary. As

a result the evolution of the holes do not influence the evolution of the background in

which they are embedded, so that these models are not useful in studying the effects

of inhomogeneities on the average evolution of the universe, i.e., backreaction does not

arise.

3.4 Light propagation

3.4.1 Radial null geodesics in LTB models

In the case of the LTB model there is an alternative way to determine the geodesics.

For the special case that the observer receives the photon along a radial trajectory the

problem becomes 1-dimensional and we can evaluate the redshift without having to first

solve the null geodesic equations. We summarise below a method due to Bondi [44] for

computing the redshift.

We consider an infalling photon which is emitted from a source at r = rem and received

by an observer at r = ro. Both source and observer are taken to be comoving. As the

geodesic does not cross the centre, we may use the radial coordinate to parametrise the

2The technical construction, amounting to matching at the hole boundary the first and second fun-
damental forms, gij and Kij respectively, is known as the Darmois-Israel junction conditions. The
requirement that the two regions share a symmetry (e.g. spherical symmetry) at the boundary is not
essential but does simplify the construction. For example, Szekeres Swiss cheese models are possible and
have no symmetry at the boundary.
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trajectory t = t(r). Using the null condition kµkµ = 0 we obtain the equation

dt

dr
= − R′√

1 + 2E
, (3.56)

where we take the negative root since the photon is infalling and R′ > 0 for ρ > 0.

Assuming that the period τ of the photon remains small over the time of flight, then the

evolution of the period τ for two identical photons emitted τ(r) apart is to first order

dτ(r)

dr
=

d
(
t(r) + τ(r)

)
dr

− dt

dr

≈ −Ṙ
′(t(r), r)√
1 + 2E

τ(r)

where we have used (3.56). Solving the above gives the redshift measured by an observer

at t = t(ro) and emitted at t = t(rem):

1 + z ≡ λo
λem

=
νem

νo
=

τ(ro)

τ(rem)

= exp

(∫ ro

rem

Ṙ′(t(r), r)√
1 + 2E(r)

dr

)
.

3.4.2 Non-radial null geodesics in LTB model

In this section we consider an off-centre observer located at point p with coordinates

(tp, rp) and derive the null geodesics xµ(λ) that pass through this point. The photon

trajectory is completely determined by this position and the angle α between the photon

direction and the direction away from the centre of the model. Note given any affine

parameter λ we can set kt|p = 1 by making an affine transformation λ 7→ aλ + b and

choosing an appropriate a. In addition we choose b such that λ is monotonically decreasing

to λ = 0 at the observation point p.

One can then integrate back up the geodesic to the source position with the initial

conditions kt|p = 1, t = tp, and r = rp. By spherical symmetry, one can think of the

photon as moving within a plane defined by, say θ = π/2, so that kθ = 0. We note that

kµkµ = 0 gives the constraint

(kt)2 =
R′2

1 + 2E
(kr)2 +R2(kφ)2. (3.57)

The null geodesic equation of φ,

dkφ

dλ
+

2

R

dR

dλ
kφ = 0, (3.58)

can be integrated by multiplying both sides by R2 to get

kφ =
J

R2
, (3.59)
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xµ(λ)

p

α

Figure 3.1: Angle α subtended by the direction of observation and the line joining the
origin to the observer.

which means that kφ = J is constant on geodesics. Here J represents the angular mo-

mentum of the particle. Since kt|p = 1, kr|p = A cosα and kφ|p = B sinα and the above

constraint must hold for all angles, by taking (3.57) at (tp, rp) with angles α = 0 and

α = π/2 we find

A =
(1 + 2E(rp))

1/2

R′(tp, rp)
and B = R−1(tp, rp), (3.60)

respectively. We then have kφ = gφφk
φ|p = R(tp, rp) sinα is constant. The remaining

geodesic equations then reduce to two equations in two unknowns t and r, or, equivalently,

as three first order equations in t, r and kt:

dt

dλ
=kt, (3.61a)

dr

dλ
=± (1 + 2E)1/2

R′

[
(kt)2 − J2

R2

]1/2

, (3.61b)

dkt

dλ
=
J2

R2

(
Ṙ′

R′
− Ṙ

R

)
− Ṙ′

R′
(kt)2, (3.61c)

where Rp ≡ R(tp, rp). The plus (minus) sign is taken for an outgoing (ingoing) photon,

i.e., an observer looking inward (outward).

By spherical symmetry one can always treat a photon as propagating on the plane,

i.e., as a 2-dimensional problem. However, in Chapter 4 when we ray trace over the whole

sky all 4 null geodesic equations need to be solved. The complete equations can be found

in Appendix A.

Finally we note that the redshift for a comoving source and observer, with respective 4-

velocities uµem = δµt and uµ0 = δµt, and measured energies Eem = −uµemkµ and E0 = −uµ0kµ,

is given by

1 + z =
gµνu

µ
emk

ν

gµνu
µ
0k

ν |p
= kt, (3.62)

where gµνu
µ
0k

ν |p = 1 with the above choice of affine parameter.
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Method and Results

Using the techniques described in chapter 3, we investigate two models, namely the LTB

and Szekeres models. These models will be used to describe a nonlinear void, and an

additional overdensity in the Szekeres case. We will use them to generate CMB maps by

solving the null geodesic equations. Of particular interest is how observers located in and

around the void will affect the observed CMB dipole and quadrupole.

In this chapter we also investigate the prospect that the CMB dipole has a non-

kinematic origin. It has been known for some time that LTB observers displaced from

the centre of spherical symmetry can induce a significant dipole, just like Lorentz boost.

While the size of the dipole can be matched by tuning the void, what is not clear is

whether the void can also give rise to modulation and aberration-like effects, associated

with a Lorentz boost. With the recent detection of such effects by Planck [108] it is an

important test of the non-kinematic hypothesis.

4.1 Setting up the model

The model can be set up in many ways as we have discussed in previous sections. Here

we follow the procedure given by Bolejko [168]. The steps are as follows.

The mass function is of the form

M(r) = M0(r) + δM(r), (4.1)

where

M0(r) =
4

3
πρ(t0)r3 =

1

2
ΩmH

2
0r

3, (4.2)

is the homogeneous FLRW mass profile, while δM(r) gives the deviation away from ho-

mogeneity. The arbitrary function δM will be chosen so that the mass function asymptot-

ically approaches zero in the limit that r goes to infinity, i.e., M(r)→M0(r) as r →∞.

As was discussed in §3.2, a given worldline of a Szekeres spacetime is labelled by its

spatial coordinates and can be identified with a congruence of worldlines of some FLRW

61
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model. In this sense, the Szekeres model is said to be asymptotically FLRW. In terms of

the background parameters we have

M(r) =
1

2
ΩmH

2
0r

3 (1 + δ) , (4.3)

where we have introduced δ = δ(r), which fully entails the deviation from homogeneity.

As in [1] this function is chosen to be

δ(r) =
1

2
δ0

(
1− tanh

r − r0

2∆r

)
, (4.4)

where δ0 ∈ [−1, 0], r0 and ∆r are constants; r0 gives the characteristic size of the void,

while ∆r determines the steepness of the profile (see fig. 4.3). We emphasise that δ0

is not the central density contrast and the function δ(r) is not the conventional density

contrast. The density contrast is defined as ∆ ≡ (ρ−ρ)/ρ, with the density ρ determined

from (3.49) and will depend on all coordinates, not just r.

The coordinate gauge is fixed such that the radial coordinate coincides with the areal

radius at the present time, i.e., R(t0, r) = r where t0 is the age of the universe.

We shall take R(t, r), P (r), Q(r), S(r), t and r to have units Mpc.

Requiring that the universe evolved from a more homogeneous initial state, we take

tb(r) = const. As discussed in §3.1.4, since t′b = 0 the model contains no decaying mode

so that the void profile is shallower into the past and deeper into the future with the

overdense shell becoming denser still (see fig. 4.3). It remains to find E(r), which with

this choice of gauge, is obtained by solving (3.6) at t = t0, i.e., by solving the integral

equation

t0 =

∫ r

0

(
2M(r)

a
+ 2E(r) +

1

3
Λa2

)−1/2

da. (4.5)

The curvature function k(r) ≡ −2E(r) is shown in fig. 4.1. Also shown is the Hubble

parameter normalised w.r.t. the FLRW background. As can be seen the local Hubble

parameter for an observer in the void at the present epoch can be as much as ≈20%

higher than the background.

The Szekeres model we study will be defined by (4.3) and the following functions:

P (r) = 0, Q(r) = 0, S(r) = (r/1 Mpc)α Mpc. (4.6)

The anisotropic aspect of this model is then parametrised by α and represents a one-

parameter family of Szekeres solutions. When α→ 0 we recover the LTB limit in which

the density is uniform on each shell. The function S represents a displacement of these

shells in the direction (θ, φ) = (π, 0), with a larger α corresponding to a greater concen-

tration of matter on one end of the shell than on the other, resulting in a density dipole.

As was mentioned in §3.2, each shell’s matter dipole are generally not aligned, however,

the functions P and Q being zero means these shells will share a common dipolar axis, as
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Figure 4.1: Left: The function k(r) = −2E(r) in geometric units. Right: Evolution of
the LTB Hubble expansion profile normalised to the background Hubble parameter H(t).

can be seen in fig. 4.2. Thus, while this particular Szekeres model is less symmetric than

the LTB model, it is however axially symmetric possessing the Killing vector ∂φ. This

is clear since the quantity E ′/E = − sin θS ′(r)/S(r) does not depend on φ and therefore

ρ = ρ(t, r, θ), i.e., matter is distributed symmetrically about the axis of the dipole. Al-

though the density contrast ∆ depends on R and R′, and therefore requires numerical

computation, we can, however, write down its form at the present epoch t0, since with

the above gauge choice R(t0, r) = r and R′(t0, r) = 1. With the choice of functions (4.4)

and (4.6) we find

∆(t0, r, θ) = ∆mono(t0, r)−
1

3

α sin θ

(1 + α sin θ)
rδ′(r), (4.7)

where

∆mono(t0, r) = δ(r) +
1

3
rδ′(r), (4.8)

is the density contrast monopole. The LTB limit is then recovered by setting α = 0,

upon which we find ∆ = ∆mono(r).

The Szekeres model is chosen to asymptotically approach the spatially flat FLRW

model specified by the Planck 2013 Legacy archive parameters,

{Ωm, ΩΛ,Ωk, h} = {0.315, 0.685, 0, 0.673}, (4.9)

where Ωm, ΩΛ and Ωk are the matter, cosmological constant and spatial curvature

density parameters respectively, and h is related to the Hubble parameter by H0 =

100h km s−1 Mpc−1. Note since Ωk = 0, the Friedmann equation (2.5) can be solved

analytically giving the formula for the age of the universe

t0 =
1

3
√

ΩΛH0

ln

(
1 +
√

ΩΛ

1−√ΩΛ

)
. (4.10)
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Figure 4.2: The density of the Szekeres model normalised to the background density. Note
we define the coordinates X := R(t0, r) cos θ = r cos θ and Z := R(t0, r) sin θ = r sin θ.

Following [1] the Szekeres model is specified by

r0 = 38.5h−1 Mpc, δ0 = −0.86 and α = 0.86 (4.11)

while the LTB model is specified by

r0 = 45.5h−1 Mpc, δ0 = −0.95 and α = 0. (4.12)

In both models we take ∆r = 0.1r0. These parameters were found through a 5-dimensional

parameter space search with the requirements that the resultant model is consistent with

the CMB dipole and quadrupole, as well as the dipole and quadrupole1 of the Hubble

expansion anisotropy [1]. The choice of ∆r was made in order to reduce the size of

parameter space, and as can be seen in fig. 4.3, it gives a somewhat steep transition

to homogeneity. Thus, the situation we are interested in studying is inhomogeneous on

scales . 100h−1 Mpc.

4.2 Methodology

4.2.1 Ray tracing

Now that we have specified the model, we turn to the task of simulating the CMB sky as

seen by a hypothetical observer located within the void.

To do this we ray trace through the above models by solving the null geodesic equa-

tions in spherical coordinates. The reason is that the observer’s angular coordinates (on

the sky) are most naturally related to these coordinates. In the LTB model the geodesic

equations are given by (3.61a)–(3.61c). The geodesic equations in the Szekeres case are

not as simple, due to the more complicated Szekeres metric (even more so in spherical

1The magnitude of the dipoles match, but as yet the simulated quadrupoles are smaller.
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Figure 4.3: The evolution of the density profile of the LTB model normalised to the
background FLRW model.

coordinates). These can, however, be found in the appendix of [169] (and we confirm that

these are indeed correct using Maple). The redshift z is determined from (3.62). The ray

tracing code we use is based on a numerical code by Krzysztof Bolejko, which was used to

obtain the results in [1]. We modify and optimise the code to allow for fast computation

of redshift and the inversion of the integral equation (4.5). In particular we solve the null

geodesic equations using the Dormand-Prince 8th-order Runge-Kutta method.

We use the HEALPix2 (Hierarchical Equal Area isoLatitude Pixelisation) scheme to

partition the sky into equal sized areas or pixels. The ith pixel is assigned a ray with

angular coordinates (li, bi), which, together with t = t0 and r = robs, fixes the initial

position of the null geodesic equations to be solved.

The number of pixels is determined by Npix = 12N2
side, where Nside (the number of

‘sides’) is a convenient way to parameterise the resolution of the map, and corresponds

to the number of isolatitude bands that encircle the sphere.

Ray tracing over the whole sky is a computationally intensive task, even if one is just

sampling the sky to a resolution of a few degrees. In this work we choose Nside = 16.

This is more than sufficient given that we are primarily interested in the dipole and

quadrupole induced by these models. This corresponds to 3072 pixels each covering an

area of ∆Ω = 4π/Npix ≈ 1.6× 10−5 sr of the sky. Each pixel determines the initial

conditions of the null geodesic propagated in the pixel’s direction on the sky (see below).

As a rule of thumb the power spectrum should only be computed up to `max ≤ Nside/2

2For more information go to http://healpix.sourceforge.net.

http://healpix.sourceforge.net
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in order to avoid sampling below the resolution of the pixel sky.

Initial conditions

Figure 4.4: Observer’s celestial sky in relation to the Szekeres spherical coordinates.
(Credit: Bolejko [170])

Here we outline how to obtain the initial conditions for the null geodesics. As we adopt

the HEALPix scheme, we describe an algorithm to convert each pixel to its corresponding

initial null vector.

Recall the null geodesic equations are a set of 4 second-order ODEs or, equivalently, 8

first-order ODEs. Thus, one needs a total of 8 initial conditions: 4 for the initial position

xµ and 4 for the initial direction of propagation kµ = dxµ

dλ
. Since we solve the geodesic

equations backwards in time the initial position is taken to be at the observer’s location:

(ti, ri, θi, φi) = (t0, ro, ϑ, ϕ), (4.13)

where, because of axial symmetry of the Szekeres model, ϕ can be set to any value. (In

the LTB model this is true for ϑ as well.) The remaining initial conditions kµ are required

to be consistent with the HEALPix convention, i.e., we want the geodesics to emanate

from the observer in a uniform manner. The procedure to obtain them from the pixel

coordinates l, b are involved and is the subject of the rest of this section.

First let us decompose the null vector w.r.t. a timelike vector uµ = δµt and a spacelike

vector nµ:

kµ = kt(uµ + nµ), nµ = (0, ni), (4.14)

with uµuµ = −1, nµnµ = 1 and uµnµ = 0. (Recall gµνk
µuν = kt.) At the point of

reception we can always set kt = 1 by a suitable choice of affine parameter (see §3.4.2).
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This leaves 3 initial conditions to be specified. In fact, only 2 of these are physical since

at the point of reception ki = ni is just the direction the photon is observed, and this

is related to the observer’s coordinates l, b (see fig. 4.4). We therefore ray trace only in

those directions specified by the HEALPix pixels.

During the course of this investigation it was discovered that the algorithm by Bolejko

for the initial conditions in the numerical code contained an error that did not take into

account the fact that (3.55), the Szekeres metric in spherical coordinates, is non-diagonal.

In the following we outline a corrected algorithm by Bolejko [170]. It takes as input the

galactic coordinates l, b and outputs to the initial null vector kµ.

For each pixel p ∈ {1, 2, . . . , 12N2
side}, corresponding to the direction n̂nn or angular

coordinates (l, b) (this will be the direction the photon is observed)

(i) Compute the vector n̂nn in Cartesian coordinates of a local spatial frame corresponding

to standard galactic latitude and longitude

n̂x = sin b cos l, n̂y = sin b sin l, n̂z = cos l. (4.15)

In the local orthonormal frame the null vector is kâ = (−1, n̂nn) and we have implicitly

chosen the affine parameter so that the rays travels backwards in time.

(ii) Compute the local orthonormal tetrad basis {eeeâ} (see Appendix B for details).

(iii) Transform back to Szekeres spherical coordinates: kµ = kâeâ
µ.

4.2.2 The CMB anisotropy from null geodesics

We recall that the temperature, Tem of the CMB at emission (which we assume to be

at the time of last scattering) is related to the temperature of the observed CMB by

T = Tem/(1 + z) or

(1 + z) =
Tem

T
(4.16)

where T = T (n̂nn) is the observed temperature in the direction n̂nn, and thus z is also

directionally dependent. The redshift can be computed directly from the model using

(3.62), that is, by solving the null geodesic equations.

To calculate the raw temperature we must input by hand either the temperature

at reception or emission. The dimensionless anisotropy, however, can be determined in

terms of redshift alone by observing

∆T

T
≡ T (n̂nn)− 〈T 〉Ω

〈T 〉Ω
=
T (n̂nn)/Tem − 〈T 〉Ω /Tem

〈T 〉Ω /Tem

=
(1 + z)−1 −

〈
(1 + z)−1

〉
Ω〈

(1 + z)−1
〉

Ω

(4.17)
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where angle brackets with subscript Ω denotes the spherical average

〈T 〉Ω =
1

4π

∫
T (n̂nn) dn̂nn =

1

4π

∫ 2π

0

dφ

∫ π

0

dθ sin θ T (θ, φ). (4.18)

Here and in the following θ and φ are angular coordinates on the observer’s celestial

sphere not the coordinates of the LTB or Szekeres models. It should however be clear

from the context which are being used. We have assumed the photon is emitted at the

time of last scattering and also Tem = Tlss = constant so that 〈Tem〉Ω = Tem. For an

inhomogeneous spacetime the intersection of the observer’s past light cone with the last

scattering surface cannot be said to form a sphere, so the quantity 〈Tem〉Ω is not well

defined. However, since the age of the universe is the same everywhere for the dust

cosmologies we consider, we can take the last scattering surface to be a t = constant

hypersurface with the temperature of the universe assumed to be very uniform.

In principle, the redshift is computed by integrating the geodesics all the way back to

the surface of last scattering. However, in practice the size of our voids are much smaller

than the Hubble radius. It therefore suffices to propagate the geodesics to r & 200h−1 Mpc

for observers located within r = 70h−1 Mpc. Beyond this distance, the local geometry is

essentially that of a FLRW cosmology, and the redshift anisotropy that rays pick up is

negligible.

All rays are propagated backwards in time, starting from the point of observation

(4.13), and ending when the elapsed time reaches 400 Mpc/c. This ensures the rays are

well clear of the void and into the homogeneous outer regions.

We decompose ∆T/T into spherical harmonics:

Θ(θ, φ) ≡ ∆T (θ, φ)

T
=
∞∑
`=0

∑̀
m=−`

a`m Y`m(θ, φ). (4.19)

By the properties of spherical harmonic functions the coefficients a`m are given by

a`m =

∫ 2π

0

dφ

∫ π

0

dθ sin θΘ(θ, φ)Y ∗`m(θ, φ). (4.20)

In practice, numerically the integral becomes a sum, and following the HEALPix scheme,

the sum is over Npix points. The coefficients are computed as follows:

a`m ≈
Npix∑
i=1

Θ(θi, φi)Y
∗
`m(θi, φi) sin θi ∆θi ∆φi

=
4

Npix

Npix∑
i=1

Θ(n̂nni)Y
∗
`m(n̂nni) (4.21)

where n̂nni = n̂nn(θi, φi). Note for a given Nside, ∆θ = ∆θi is constant since the sides are

isolatitude by construction. The power of HEALPix is in its ability to identify each
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pixel by a single, unique index i ∈ {1, . . . , 12N2
side}, thereby allowing fast and efficient

evaluation of the a`m, from an input map.

As discussed in §2.3 an observer only has access to their sky, and only their sky, so

estimates

C̃` =
1

2`+ 1

∑
m

|a`m|2. (4.22)

By convention, what is of actual interest when analysing CMB data is not3 C` but instead

D` ≡
`(`+ 1)C̃`

2π
〈T 〉2Ω , (4.23)

where we have multiplied by 〈T 〉2Ω, since the power spectrum is associated with Θ ≡
∆T/ 〈T 〉Ω not ∆T (for which we would have D` = `(`+ 1)C̃`/(2π) as is often seen in the

literature). Note D` has units of temperature squared.

4.2.3 A framework for the computation of the dipole

The presence of a foreground inhomogeneity on the CMB induces large-angle fluctuations,

most notably the dipole, and to a lesser extent, the quadrupole. The effect on ` ≥ 3

multipoles is on the order ∆T/T . 10−9, far below the size of primordial fluctuations

(∆T/T ∼ 10−5). In this section we focus on the theory of the dipole, and derive general

tools used in the computation of the dipole.

For a function T (θ, φ) =
∑

`m a`mY`m(θ, φ) the dipole is the part
∑1

m=−1 a1mY1m(θ, φ).

Expanding this out we find

1∑
m=−1

a1mY1m(θ, φ) = a1−1

√
3

8π
e−iφ sin θ + a10

√
3

8π
cos θ − a11

√
3

8π
eiφ sin θ

=

√
3

8π

[
(a1−1 + a∗1−1) sin θ cosφ− i(a11 − a∗11) sin θ sinφ+

√
2 a10 cos θ

]
=

√
3

8π
(−2are11 sin θ cosφ+ 2aim11 sin θ sinφ+

√
2a10 cos θ) (4.24a)

≡ ddd · n̂nn (4.24b)

where

n̂nn = (n̂x, n̂y, n̂z) = (sin θ cosφ, sin θ sinφ, cos θ), (4.25)

is a direction on the observers celestial sphere, are11 and aim11 denote the real and imaginary

parts of a11 and we have used a∗`m = (−1)ma`−m on the first line and are1−1 = −are11 on

the second. The formulae for the spherical harmonics can be found in Appendix D. The

3The reason for this is because for a scale-invariant power spectrum characterised by the spectral
index ns = 1, the angular power spectrum has the form C` ∼ 2π

`(`+1) . Note observational data from

Planck and WMAP indicate an index close to 1.
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Figure 4.5: Profiles of the dipole and quadrupole of the LTB model. The position of an
LTB observer at a coordinate distance of ro = 28h−1 Mpc from the centre, as found in [1],
is indicated by the vertical dashed line.

dipole vector ddd is defined by (4.24a), i.e.,

ddd = (dx, dy, dz) =

√
3

4π
(−
√

2are11,
√

2aim11 , a10). (4.26)

Thus the dipole defines a direction in the sky and determining ddd is equivalent to com-

puting the coefficients a1m. The temperature difference induced by the dipole is then the

amplitude given by

∆Td = max{|ddd · n̂nn|} = |ddd| =
√

3

4π

√
a2

10 + 2(are11)2 + 2(aim11 )2

=

√
3

4π

√
a2

10 + 2|a11|2 (4.27)

where we have noted that |a11| = |a1−1| to obtain the last equality. This shows that ∆Td

does not depend on the coordinates (θ, φ) and we can assume the dipole lies along the

z-axis so that a11 = a1−1 = 0 and the above simplifies to

∆Td =
1

2

√
3

π
a10. (4.28)

Working in harmonic space is more computationally efficient since we deal purely with

large-angle fluctuations, so that the first few a`m carries most of the information about

underlying sky. However it is more intuitive to see the equivalent expression in real space:

∆Td = 3
〈
T (n̂nn) d̂dd · n̂nn

〉
Ω
, (4.29)

where 〈·〉Ω = 1
4π

∫
dn̂nn(·) is the spherical average and d̂dd the dipole unit vector. This expres-

sion can be derived by first multiplying both sides of (4.24b) by T (n̂nn) =
∑

`′m′ a
∗
`′m′Y

∗
`′m′
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Figure 4.6: Dipole and quadrupole of the Szekeres model shown as a 2-dimensional cross
section through the axis of cylindrical symmetry. The plane is divided into pixels of area
(1h−1 Mpc)2. Left: Dipole ∆Td in units mK. Right: Quadrupole D2 = 6C2/(2π) in
units µK2 = 10−12 K2. Coordinates are defined as X ≡ R(t0, r) sin θ cosφ = r sin θ and
Z ≡ R(t0, r) cos θ = r cos θ. The position of the Szekeres observer of [1] is indicated by
the cross ‘+’.

then integrating over the sky to get

1

4π

1∑
m=−1

∑
`′m′

a1ma
∗
`′m′

∫
dn̂nn Y1m(n̂nn)Y ∗`′m′(n̂nn) =

〈
T (n̂nn)ddd · n̂nn

〉
Ω
. (4.30)

Recalling the orthogonality relation (2.62) this simplifies to

1

4π

1∑
m=−1

|a1m|2 =
〈
T (n̂nn)ddd · n̂nn

〉
Ω
, (4.31)

and (4.29) follows after some algebraic manipulation.

In practice, one never has full coverage of the sky due to, for example, the presence of

dust in the galactic plane, astrophysical point-sources, masked regions etc. The integral

over the sky then becomes a weighted integral:∫
dn̂nn →

∫
dn̂nnW (n̂nn), (4.32)

where W (n̂nn) is some weighting function on the sky, and generically results in unwanted

correlations between the C`. In general, ddd is found by solving the system of equations

〈n̂nn n̂nnT 〉Ω ddd = 〈T (n̂nn) n̂nn〉Ω, n̂nn = (n̂x, n̂y, n̂z). (4.33)
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Note the average is taken over each entry, so the spherical average of a vector quantity

is a vector of averages, e.g.,〈
T (n̂nn) n̂nn

〉
Ω
≡
(〈
T (n̂nn) n̂x

〉
Ω
,
〈
T (n̂nn) n̂y

〉
Ω
,
〈
T (n̂nn) n̂z

〉
Ω

)
. (4.34)

In the case of full-sky coverage, the cross-terms vanish (e.g. 〈n̂xn̂y〉Ω = 0) and we find

that
〈
n̂nnn̂nnT

〉
Ω

= diag(1
3
, 1

3
, 1

3
), or 〈n̂2

x〉Ω = 〈n̂2
y〉Ω = 〈n̂2

z〉Ω = 1
3
. Thus (4.33) reduces to

ddd = 3
〈
T (n̂nn) n̂nn

〉
Ω
, (4.35)

and in pixel space

ddd ≈ 3

Npix

Npix∑
ipix=1

T (n̂nnipix) n̂nnipix. (4.36)

Notice with the estimator (4.22) the temperature of the dipole may be written in a more

convenient form as

∆Td =
3

2

√
C̃1

π
. (4.37)

We remark that all multipoles admit a geometric description in terms of directional

vectors [172] with the `th multipole associated with a set of ` Cartesian vectors. This

geometric framework is often used to test alignments between multipoles, (e.g., the

quadrupole-octupole alignment). Naturally, various statistics can be constructed by tak-

ing appropriate combinations of dot products and cross products etc.

Dipole and quadrupole in the LTB and Szekeres models

The dipole temperature for the LTB model is shown in fig. 4.5 for a set of theoreti-

cal observers placed around the void, while the case of the Szekeres model is shown in

fig. 4.6. In the LTB model the dipole is evidently largest when the observer is located

inside the void. Furthermore, comparing the profiles of the dipole and Hubble expansion

(see fig. 4.1) it is clear that the peak dipole at roughly 35h−1 Mpc, coincides with the

distance at which the gradient in the Hubble expansion (or differential Hubble expansion)

is steepest. A local void also induces other large angle fluctuations, though the size of

these contributions decrease with higher `.

For the Szekeres model we see the size of quadrupole is much more sensitive to the

position of the observer, with the maximum quadrupole occuring when the observer is

placed near (X,Z) = (0, 0). From fig. 4.2 this can be understood as the point along the

axis of the mass dipole where the adjacent overdensity sharply transitions to the central

underdensity.

It is interesting to consider the magnitude of the temperature dipole ∆Td shown in

fig. 4.6 for the case of observers just outside the structures, as this represents the much

studied Rees–Sciama effect [123] for CMB photons that cross a nonlinear structure. For



4.3. Comparison with linear perturbation theory 73

Figure 4.7: Comparison of the temperature dipole between exact LTB models and its
linear theory expectation. Note both use the same density contrast profile (4.8).

the numerical example of fig. 4.6 we find |∆T |/T < 3 × 10−7, which is consistent with

previous estimates which use larger voids and generate a somewhat larger amplitude

[102,103]. Since |∆T |/T ∼ 2× 10−3 for observers inside the void, this numerical example

clearly demonstrates how the actual observer’s position relative to the inhomogeneities

is crucial in numerical modelling of realistic structures.

Furthermore, in fig. 4.6 the CMB quadrupole, for the observer whose dipole matches

our CMB dipole in the LG frame (as shown by the cross), is D2 = 26.6µK2, an order of

magnitude smaller than the observed CMB quadrupole. This demonstrates how näıve

numerical estimates for the quadrupole based on photons that traverse a void from one

side to the other [113] cannot be relied on when realistically considering the origin of the

CMB dipole using exact solutions of Einstein’s equations. As Bolejko et al. [1] argue,

there is considerable scope to include additional structures in the Szekeres model to

further improve the fit of the Hubble expansion quadrupole, which is as yet not quite

large enough to match that of the actual composite sample.

4.3 Comparison with linear perturbation theory

There are two ways to obtain a large dipole. The first is with a very large structure

such as a void, often several times the size of the Hubble radius. Take for instance a
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Figure 4.8: CMB fluctuation as seen by an off-centre LTB observer located at r =
28h−1 Mpc.
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Figure 4.9: Comparison of the size, r0 of the maximum possible dipole in the LTB model
for different sized voids. Here we show for δ0 = −0.25 but the scaling is typical for all δ0.

spherical void. The motion induced by local expansion gradients is proportional to the

size of the void, so objects further away from the centre measures a larger dipole. This

approach can be treated entirely within linear theory but it would appear unlikely, given
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Gaussian primordial density fluctuations. The second way is with a very under- or over-

dense structure |δ| � 0. On one hand, this does not require anomalously large structures

unlike the first approach, but on the other it is not amenable to analytic approximations.

Such structures are, therefore, studied non-perturbatively using numerical methods.

Nevertheless we can still gain some intuition in the linear regime. Recall the pecu-

liar velocity in linear theory is given by (2.36). For the spherically symmetric case, we

substitute the density contrast (4.7) with α = 0 into (2.36):

v(t, r) = −a(t)H(t) f(t) r−2

∫ r

0

∆(r′) r′
2

dr′

= −1

3
a(t)H(t) f(t) r ∆̂(r) (4.38)

where

∆̂(r) ≡ 3

4πr3

∫ r

0

dr′ r′
2

∫ π

0

dθ sin θ

∫ 2π

0

dφ∆(r′). (4.39)

is the average density contrast of a ball of radius r. Evaluating the integral by hand is

long and tedious, however, the final result is surprisingly simple:

∆̂(r) =
δ0

e(r−r0)/∆r + 1
. (4.40)

As an aside, a void is said to be compensated if ∆̂(r) → 0, as r → ∞, i.e., all the

matter removed must be replaced elsewhere. Clearly, (4.40) vanishes in the limit r →∞
so, at least in the linear regime, the LTB void is compensated.

Since the temperature dipole ∆Td is linearly proportional to |v(t, r)|, we can find the

dependence of the peculiar velocity on the size of the void r0 by solving ∂
∂r
v = 0 and

substituting the solution back into (4.38). Although we cannot find a closed form solution

for rmax with this particular density contrast profile, we find that ∆Td ∝ |v(t, r)| scales

linearly with the size of the void, i.e., ∆Td ∼ r0. This shows that in order to match the

observed CMB dipole in linear theory, one must be willing to accept the fact that we

happen to reside in a very large void. As shown in fig. 4.7, a more plausible scenario is

that of a dipole instead arising from a highly underdense void, with a density contrast of

approximately −0.9. Certainly, such a hypothesis is not at odds with observations that

indicates a late-universe dominated by nonlinear voids [29,34,35].

Solving the perturbation equations of chapter 2 we compute the temperature fluctu-

ation of a photon passing through the centre of the void as measured by an observer in

the void. This is shown in fig. 4.8. Since we compare the total CMB anisotropy with

the LTB model, we compute all terms of (2.58) (excluding the unobservable monopole).

In linear theory the off-centre observer’s dipole moment is indeed much larger than the

ISW effect. Not surprisingly linear theory breaks down well before the density contrast

reaches the magnitude of our LTB model, in which δ0 = −0.95. However visually in-

specting fig. 4.8, linear theory does appear to agree well with the exact predictions when
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map.

δ0 > −0.2. Notice that in linear theory a large dipole can be achieved without requiring

a highly underdense void provided the void is (unrealistically) large (see fig. 4.9). We

remark that while linear theory clearly breaks down for δ0 = −0.95, as shown in fig. 4.7,

the location of the peak of ∆Td predicted in this regime still corresponds well with the

exact prediction.

4.4 Comparison of the kinematic and non-kinematic

dipoles in the LG frame

We next compare the coefficients a`m of a uniform map of temperature T0 that has been

boosted, with that of an off-centre LTB observer. Due to the azimuthal symmetry we

again take β̂ββ = ẑzz, so that we only need to consider the zonal modes a`0. The coefficients

are given by

a`0 =

∫ 2π

0

dφ

∫ π

0

dθ sin θ
T0

γ(1− β cos θ)
Y ∗`0(θ, φ) (4.41)
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and, as it turns out, for each ` this integral can be expressed in terms of elementary

functions. The first few a`0 are

a00 =
√
π
T0

βγ
ln

(
1 + β

1− β

)
= T0

(
1− 1

6
β2 +O(β4)

)
(4.42a)

a10 =
√

3π
T0

β2γ

[
−2β + ln

(
1 + β

1− β

)]
= T0

(
β +

1

10
β3 +O(β5)

)
(4.42b)

a20 = −1

2

√
5π

T0

β3γ

[
(β2 − 3) ln

(
1 + β

1− β

)
+ 6β

]
= T0

(
β2 +

5

14
β4 +O(β6)

)
(4.42c)

a30 = −1

6

√
7π

T0

β4γ

[
(9β2 − 15) ln

(
1 + β

1− β

)
− 8β3 + 30β

]
= T0

(
β3 +

11

18
β5 +O(β7)

)
(4.42d)

For small β, the coefficients clearly have the asymptotic behaviour a`0 ∼ β`. In particular,

for the dipole (see (4.28)) we have the simple scaling ∆Td ∝ a10 ∼ β. Given that ∆Td is

in milliKelvin, it follows that β ∼ 10−3. While a boost contributes to all multipoles, the

quadratic and higher-order terms are . 10−6, i.e., one order of magnitude smaller than

the primordial fluctuations and beyond the sensitivity of current detectors.

To compare the boosted blackbody T ′(n̂nn′) with the temperature map seen by an off-

centre void observer in the LTB model we define the anisotropy

Θ(n̂nn′) =
T ′(n̂nn′)−

〈
T ′(n̂nn′)

〉
Ω′〈

T ′(n̂nn′)
〉

Ω′

. (4.43)

Note this is independent of T0 and can be compared directly with the LTB model. We

emphasise that the dimensionless fluctuation Θ of the LTB model, (or for that matter

any cosmological solution of the field equations), can be expressed in terms of redshift

only, that is, it is independent of T0. Therefore, this eliminates any ambiguity related to

how the monopole temperature is set since
〈
Θ(n̂nn′)

〉
Ω′

= 0.

The dipole the off-centre observer will measure we take to be 5.64 mK, consistent with

the LG frame dipole. We investigate the size of the boost needed to match this dipole.

The power spectrum of the of the ray traced CMB in the LTB model is computed using

HEALPix, while we use the analytic formulae (4.42a)–(4.42d) for the boosted spectrum.

The results are shown in fig. 4.10. Superscripts of CΘΘ
` are used emphasise that it is

the power spectrum of Θ. Beyond CΘΘ
2 the power spectrums begin to diverge, but as

far as current detectors are concerned, both spectrums are observationally degenerate.

Furthermore, the multipoles of the LTB model also show a hierarchical scaling CΘΘ
1 >

CΘΘ
2 > CΘΘ

3 > . . . in the same way as a boost. This puts a limit on how much the

quadrupole observed by Planck can be produced by a foreground inhomogeneity.
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4.5 Boosting the LG frame to the heliocentric frame

Aside from an induced dipole, there are two secondary effects on the CMB associated

with a Lorentz boost, namely, the aberration and modulation effects.

From a practical standpoint, the aberration effect presents a problem in that boosting

a HEALPix map pixel by pixel does not result in another HEALPix map. Thus each

pixel of the boosted map cannot be said to be uniformly spaced as the pixel density

is now higher (lower) towards (away from) the boost direction. Simply, the number of

pixels in each hemisphere is no longer equal. To get around this, often one transforms

the map in pixel space to harmonic space, then applies the boost. This problem can be

overcome, owing to the magnitude of the boosts being small (β ∼ 10−3) and the fact

that the temperature maps of the LTB and Szekeres models do not induce small-scale

fluctuations. For this reason we only need to consider the first few multipoles.

In this section we give formulae relating the boosted monopole and dipole in two

frames, one boosted relative to the other. The formulae derived are (4.68) and (4.69) and

we use these to investigate the possibility of the existence of a non-kinematic dipole in the

heliocentric frame. In the following, we outline the calculation based on the assumption

that the boost is small, expanding to second-order in β. The advantage of these formulae

is that we are able to avoid having to boost the entire CMB map. If, however, we look

at boosting more featureful maps with significant fluctuations beyond ` ≥ 3 then the

following analysis no longer holds.

Recall the key equations for a local Lorentz boost of the (generally anisotropic) mean

temperature of a blackbody distribution are (1.14) and (1.10). We restate them here for

convenience to the reader:

T ′(n̂nn′) =
T (n̂nn)

γ(1− βββ · n̂nn′) = γ(1 + βββ · n̂nn)T (n̂nn), (4.44a)

n̂nn′ =
n̂nn+ [γβ + (γ − 1)β̂ββ · n̂nn]β̂ββ

γ(1 + βββ · n̂nn)
, (4.44b)

where the primes denote the quantities in the boosted frame. Without loss of generality

we assume the boost is in the z-direction4 so β̂ββ = ẑzz, from which it follows ẑzz = ẑzz′. We

project n̂nn′ onto the z-axis to find

cos θ′ =
cos θ + γβ + (γ − 1) cos θ

γ(1 + β cos θ)
=

cos θ + β

1 + β cos θ
, (4.45)

and taking the differential we obtain

sin θ′ dθ′ =
sin θ dθ

γ2(1 + β cos θ)2
. (4.46)

4We can always rotate the coordinate system before boosting so that the boost is in the z-direction
from which the angle θ is measured. As we are attempting to obtain formulae for the CMB monopole
and dipole, we should find that these observables are independent of the observer’s angular coordinates.



4.5. Boosting the LG frame to the heliocentric frame 79

Since φ = φ′ for a boost along the z-direction, the differential solid angle dΩ = sin θ dθ dφ

in the boosted frame transforms as

dΩ′ =
dΩ

γ2(1 + β cos θ)2
'
[
1− 2βββ · n̂nn+ 3(βββ · n̂nn)2 − β2

]
dΩ, (4.47)

where ' will denote equality to second order in β.

Since we need to distinguish what frame the spherical average is taken in, we will use

〈·〉Ω′ to denote the spherical average in the boosted frame.

4.5.1 The monopole

We now compute the monopole temperature in the boosted frame by expanding (4.44a)

in powers of β: 〈
T ′(n̂nn′)

〉
Ω′

=
〈
T (n̂nn)γ(1 + βββ · n̂nn)

〉
Ω′

=

〈
T (n̂nn)[1 + βββ · n̂nn+

1

2
β2 +O(β3)]

〉
Ω′

'
〈
T (n̂nn)

〉
Ω′

+
〈
T (n̂nn)βββ · n̂nn

〉
Ω′

+
1

2
β2
〈
T (n̂nn)

〉
Ω′

(4.48)

In the following, we will rewrite each term on the last line above in terms of quantities

in the unboosted frame, i.e., in terms of unprimed quantities.

Using (4.47), we first note the spherical average of any observable A(n̂nn) as measured

in the boosted frame is related to the unboosted frame by〈
A(n̂nn)

〉
Ω′
'
〈
A(n̂nn)

〉
Ω

(1− β2)− 2
〈
A(n̂nn)βββ · n̂nn

〉
Ω

+ 3
〈
(βββ · n̂nn)2A(n̂nn)

〉
Ω
. (4.49)

Applying this to the observed temperature in (4.48) the respective terms may be rewritten

as follows〈
T (n̂nn)

〉
Ω′
'
〈
T (n̂nn)

〉
Ω

(1− β2)− 2
〈
T (n̂nn)βββ · n̂nn

〉
Ω

+ 3
〈
(βββ · n̂nn)2T (n̂nn)

〉
Ω
, (4.50a)〈

T (n̂nn)βββ · n̂nn
〉

Ω′
'
〈
T (n̂nn)βββ · n̂nn

〉
Ω
− 2

〈
(βββ · n̂nn)2T (n̂nn)

〉
Ω
, (4.50b)

1

2
β2
〈
T (n̂nn)

〉
Ω′
' 1

2
β2
〈
T (n̂nn)

〉
Ω
, (4.50c)

where we neglect terms O(β3). Hence (4.48) becomes〈
T ′(n̂nn′)

〉
Ω′
'
〈
T (n̂nn)

〉
Ω

(1− 1

2
β2)−

〈
T (n̂nn)βββ · n̂nn

〉
Ω

+
〈
(βββ · n̂nn)2 T (n̂nn)

〉
Ω
. (4.51)

Let us check that this reduces to the familiar case when T (n̂nn) = T = const. Indeed〈
T ′(n̂nn′)

〉
Ω′
' T (1− 1

2
β2)− T 〈βββ · n̂nn〉Ω + T

〈
(βββ · n̂nn)2

〉
Ω

(4.52a)

= T (1− 1

6
β2) (4.52b)
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where we have used

〈uuu · n̂nn〉Ω = 0 and
〈
(uuu · n̂nn)2

〉
Ω

=
1

3
|uuu|2, (4.53)

for any vector uuu.

The temperature T (n̂nn) can be written in real space, rather than harmonic space, as

T (n̂nn) =
〈
T (n̂nn)

〉
Ω

+ ddd · n̂nn+ . . . , (4.54)

where ddd · n̂nn =
∑

m a1mY1m(n̂nn) and the ellipsis denotes the remaining multipoles, i.e.,

quadrupole, octupole etc. Substituting this into
〈
T (n̂nn) n̂nn

〉
Ω

we find〈
T (n̂nn) n̂nn

〉
Ω

= 〈n̂nn〉Ω
〈
T (n̂nn)

〉
Ω

+
〈
(ddd · n̂nn) n̂nn

〉
Ω

+ . . . =
〈
(ddd · n̂nn) n̂nn

〉
Ω

+ . . . , (4.55)

since 〈n̂nn〉Ω = 0. It therefore follows that the second term on the right-hand side of (4.51)

is 〈
T (n̂nn)βββ · n̂nn

〉
Ω

= βββ ·
〈
T (n̂nn) n̂nn

〉
Ω

= βββ ·
〈
(ddd · n̂nn) n̂nn

〉
Ω

+ . . . =
1

3
βββ · ddd+ . . . , (4.56)

while the last term of (4.51) becomes〈
(βββ · n̂nn)2 T (n̂nn)

〉
Ω

=
〈
(βββ · n̂nn)2

〉
Ω

〈
T (n̂nn)

〉
Ω

+
〈
(βββ · n̂nn)2 ddd · n̂nn

〉
Ω

+ . . .

=
1

3
β2
〈
T (n̂nn)

〉
Ω

+ . . . (4.57)

In arriving at (4.56) and (4.57) we used the fact that for any vectors uuu and vvv we have the

general results 〈
(uuu · n̂nn) n̂nn

〉
Ω

=
1

3
uuu and

〈
(uuu · n̂nn)(vvv · n̂nn) n̂nn

〉
Ω

= 0. (4.58)

This can be verified by simply evaluating the spherical averages.

In the case of our models, the next highest contribution after the dipole is the

quadrupole, which is order 10−6 K. It turns out the quadrupole can be neglected, as

we show in appendix C. We thus have

T (n̂nn) ≈
〈
T (n̂nn)

〉
Ω

+ ddd · n̂nn, (4.59)

i.e., at the level of precision we are interested in, we can simply approximate the tem-

perature as the sum of a monopole and dipole. Since the boosts we are considering are

small (e.g. β ∼ 10−3) we can write〈
T (n̂nn)βββ · n̂nn

〉
Ω
≈ 1

3
βββ · ddd, (4.60)

with corrections on the order of 10−9 K. Hence for our models we have the simple formula〈
T ′(n̂nn′)

〉
Ω′
≈
〈
T (n̂nn)

〉
Ω

(1− 1

6
β2)− 1

3
βββ · ddd. (4.61)

The last term gives the correction when T (n̂nn) is not constant, as will be the case in the

frame of the Local Group.
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4.5.2 The dipole

We now turn to obtaining an expression for the dipole in the boosted frame in terms of

the quantities in the unboosted frame. Using (4.29), the dipole in the boosted frame is

∆T ′d = 3
〈
T ′(n̂nn′) d̂dd

′ · n̂nn′
〉

Ω′
(4.62a)

= 3
〈
T (n̂nn)γ(1 + βββ · n̂nn) d̂dd

′ · n̂nn′
〉

Ω′
(4.62b)

where d̂dd
′

is the direction of the dipole in the boosted frame and we have used (4.44a) in

the second line. We define

qqq := d̂dd
′ − d̂dd, (4.63)

with qqq = qqq(β) and qqq(0) = 0 so that d̂dd
′
= d̂dd when β = 0. Expanding (4.62b) we then have

γ(1 + βββ · n̂nn) d̂dd
′ · n̂nn′ = d̂dd

′ · n̂nn+
[
γβ + (γ − 1)β̂ββ · n̂nn

]
d̂dd
′ · β̂ββ

= d̂dd · n̂nn+ qqq · n̂nn+ βββ · d̂dd′ +O(β2) (4.64)

where we have used (4.44b) in the first line and expanded the square brackets to second

order in β. Hence

∆T ′d = 3
〈
T (n̂nn) d̂dd · n̂nn

〉
Ω′

+ 3
〈
T (n̂nn)qqq · n̂nn

〉
Ω′

+ 3βββ · d̂dd′
〈
T (n̂nn)

〉
Ω′

+O(β2)

= 3
〈
T (n̂nn) d̂dd · n̂nn

〉
Ω

+ 3
〈
T (n̂nn)qqq · n̂nn

〉
Ω

+ 3βββ · d̂dd′
〈
T (n̂nn)

〉
Ω

− 6
〈
T (n̂nn)(d̂dd

′ · n̂nn)(βββ · n)
〉

Ω
+O(β2) (4.65)

where we have made use of (4.49) in the second line.

For our models we insert (4.59) into the above to find

∆T ′d ' ∆Td + 3qqq ·
〈
(ddd · n̂nn) n̂nn

〉
Ω

+ 3βββ · d̂dd′
〈
T (n̂nn)

〉
Ω

− 6βββ ·
〈

(d̂dd
′ · n̂nn) n̂nn

〉
Ω

〈
T (n̂nn)

〉
Ω
− 6βββ ·

〈
(d̂dd
′ · n̂nn)(ddd · n̂nn) n̂nn

〉
Ω
, (4.66)

where we have used (4.53) and ∆Td = 3
〈
T (n̂nn) d̂dd · n̂nn

〉
Ω

. Finally by recalling (4.58), we

obtain

∆T ′d ' ∆Td(1 + qqq · d̂dd) + βββ · d̂dd′
〈
T (n̂nn)

〉
Ω

= (d̂dd · d̂dd′)∆Td + βββ · d̂dd′
〈
T (n̂nn)

〉
Ω

(4.67)

This equation as well as (4.61) are the key equations.

These equations can be rewritten in a more convenient form as

T
′ ' T

(
1− 1

6
β2 − 1

3
Θd β cosα1

)
(4.68)

∆T ′d ' T (Θd cosα3 + β cosα2) (4.69)
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where we have introduced the separation angles α1, α2 and α3 defined by β̂ββ · d̂dd = cosα1,

β̂ββ · d̂dd′ = cosα2 and d̂dd · d̂dd′ = cosα3. We also defined the shorthands T ≡
〈
T (n̂nn)

〉
Ω

,

T
′ ≡

〈
T ′(n̂nn′)

〉
Ω′

and the unitless dipole Θd ≡ ∆Td/T , which we note can be computed

directly from the model without having to input temperature, that is, it can be expressed

in terms of redshift only.

4.5.3 Estimating the non-kinematic dipole in the heliocentric
frame

Using the formulae derived above we wish to compute the dipole of the residual temper-

ature (1.30), which we rewrite here in a slightly different form as

∆Tnk ≡ T1(n̂nnhel)− T2(n̂nnhel), (4.70)

where

T1(n̂nnhel) ≡ T (n̂nnLG)

γhel−LG(1− βββhel−LG · n̂nnhel)
, (4.71)

and

T2(n̂nnhel) ≡ T
CMB

γhel−CMB(1− βββhel−CMB · n̂nnhel)
. (4.72)

Here βββhel−CMB is the boost from the CMB frame to heliocentric frame with γhel−CMB its

respective Lorentz factor, βββhel−LG is the boost from the LG frame to heliocentric frame

with γhel−LG its respective Lorentz factor, T (n̂nnLG) is the temperature seen by an observer

in a frame comoving with the dust which we take to be the frame of an observer in the

LTB model located at r = 28h−1 Mpc. If T (n̂nnLG) is the temperature of the CMB resulting

from a boost, as it is assumed in the standard model, then ∆Tnk = 0. This is because

the assumption that the CMB dipole in the LG frame is due to a boost implies

T (n̂nnLG) =
T

CMB

γLG−CMB(1− βββLG−CMB · n̂nnLG)
, (4.73)

with βββLG−CMB the boost from the CMB frame to LG Frame, so that boosting from the

LG frame to the heliocentric frame is then equivalent to deboosting from the LG frame

followed immediately by boosting to the heliocentric frame. Thus a non-zero dipole of

∆Tnk entails a non-kinematic dipole, as discussed in §1.3.4. The non-kinematic dipole

can then be estimated by computing the difference of the dipoles of T1(n̂nn) and T2(n̂nn).

Ultimately we want the non-kinematic monopole to vanish in the heliocentric frame

at the µK level and the dipole to vanish at one order of magnitude below the boost

dipole, i.e., ∼ 0.1 mK. Solving the first equation (4.68) determines what the monopole

temperature T = T
LG

in the Local Group frame should be to achieve this based on our

knowledge in the heliocentric frame. Thus, in the equations above the primed frame is

the heliocentric frame and the unprimed the Local Group frame, i.e., we have{
T
′
, ∆T ′d, Θd, β

}
=
{
T

hel
, ∆T hel

d , ΘLG
d , βhel−LG

}
. (4.74)
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T
CMB

2.7255± 0.0006 K Fixsen (2009) [22]

d̂ddLG (276.4◦, 29.3◦)± 3.2◦ Tully et al. (2008) [68]

β̂ββhel−LG (106◦,−6◦)± 4◦ Tully et al. (2008) [68]

β̂ββhel−CMB = d̂ddhel (264.14◦, 48.26◦)± 0.15◦ Fixsen et al. (1996) [24]
cβhel−LG 318.6± 20.0 km s−1 Tully et al. (2008) [68]
cβhel−CMB 371± 1 km s−1 Fixsen et al. (1996) [24]

The three angles can be determined from the literature whereas the unitless dipole ΘLG
d

is computed directly from the LTB or Szekeres model. Moreover d̂dd ≡ d̂ddLG, d̂dd
′ ≡ d̂ddhel and

β̂ββ ≡ β̂ββhel−LG.

To simplify notation let D ≡ ∆T hel
d be the dipole in the heliocentric frame; subscripts

‘1’ and ‘2’ shall label each respective term above.

We now compute the non-kinematic dipole in the case of the LTB model. The

monopole and dipole of (4.71) and (4.72) above are

T
hel

1 = T
LG
(

1− 1

6
β2

hel−LG −
1

3
ΘLG
d βhel−LG cosα1

)
(4.75a)

T
hel

2 = T
CMB

(1− 1

6
β2

hel−CMB) (4.75b)

D1 = T
LG
(

ΘLG
d cosα3 + βhel−LG cosα2

)
(4.75c)

D2 = T
CMB

βhel−CMB (4.75d)

As we want the monopoles to cancel at the µK level we solve T
hel

1 = T
hel

2 for T
LG

. We

assume d̂ddhel = β̂ββhel−CMB, i.e., the measured dipole direction is the same as the direction

given for the boost. The values we use are given in the table while we find from our

model ΘLG
d = 2.070 54× 10−3. (Note this gives a dipole temperature of ≈ 5.64 mK.)

With these values we have

cosα1 = β̂ββhel−LG · d̂ddLG = −0.91± 0.04

cosα2 = β̂ββhel−LG · d̂ddhel = −0.69± 0.05

cosα3 = d̂ddhel · d̂ddLG = 0.933± 0.020

In the heliocentric frame we find

T
hel

1 = T
hel

2 = 2.7255± 0.0006 K

T
LG

= 2.7255± 0.0006 K

D1 = 3.26± 0.22 mK

D2 = 3.373± 0.009 mK

With these values we find a non-kinematic dipole

∆Dnk ≡ D1 −D2 = −0.12± 0.22 mK. (4.76)
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As a check we use HEALPix-boost [173], a modified version of HEALPix that allows

inclusion of modulation and aberration effects on CMB maps, to calculate ∆Dnk. Indeed,

by this consistency check we find ∆Dnk ≡ D1−D2 = −0.11 mK. The uncertainty on this

value we can take to be the one quoted, which was computed by propagating the errors

according to the dipole formula (4.69).

In the Szekeres model, for an observer located at ro = 25h−1 Mpc, we have ΘLG
d =

2.052 96× 10−3. While we have only computed ∆Dnk for the LTB model, we expect that

the estimate from the Szekeres model would be very similar. This is because, in this

analysis, we only require the magnitude of the dipole of the LTB or Szekeres models and

not the quadrupole (as we argue in appendix C). In the case of the Szekeres model, the

lack of axial symmetry of the observer’s celestial sphere means the spherical harmonic

decomposition of the sky will include contributions beyond just the zonal harmonics

Y`0, unlike the spherically symmetric LTB models. However, the CMB seen by generic

observers in both LTB and Szekeres models are dominated by a dipole, with the next

largest fluctuation being the quadrupole, which is 3 orders of magnitude smaller than the

dipole. Thus, in the above analysis a non-kinematic dipole cannot sufficiently distinguish

between our LTB and Szekeres models, at least not at the level of precision required to

cancel the monopole.

4.6 Aberration in the LTB model

As mentioned above the aberration effect causes a shift of the observed direction towards

the direction of the boost βββ, so a photon originally observed from n̂nn now appears coming

from n̂nn′ = n̂nn′(n̂nn). The effect breaks the statistical isotropy of the unboosted sky, and

implies that the 2-point correlation function C(n̂nn1, n̂nn2) will no longer depend on just the

relative separation of n̂nn1 and n̂nn2.

Let us begin by reviewing the aberration effect of a boost. The temperature T ′(n̂nn′)

measured in a boosted frame is related to the temperature T (n̂nn) in the unboosted frame

by

T ′(n̂nn′) =
T (n̂nn)

γ(1− βββ · n̂nn′) . (4.77)

We wish to rewrite T (n̂nn) as a function of n̂nn′ by expanding n̂nn = n̂nn(n̂nn′) in powers of β.

Assuming the boost is small we have

n̂nn =
n̂nn′ − [γβ + (γ − 1)β̂ββ · n̂nn′]β̂ββ

γ(1− βββ · n̂nn′)
' n̂nn′ − βββ +

(
n̂nn′ · βββ

)
n̂nn′ = n̂nn′ −ααα (4.78)

where

ααα := βββ − (n̂nn′ · βββ)n̂nn′ ' n̂nn′ − n̂nn, (4.79)
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is responsible for the aberration effect. Note thatααα is tangent to the sphere since n̂nn′·ααα = 0.

We can therefore think of ααα as a vector field on the sphere that remaps observations on the

sky. In the following we show how the aberration is degenerate with a curl-free deflection

field from gravitational lensing.

It is a basic fact that any vector field vvv on the sphere can be decomposed as the sum

of a curl-free vector field and a divergence-free vector field:

vvv = ∇ψ + n̂nn×∇χ, (4.80)

where ψ and χ are scalar functions (or potentials) on the sphere that are determined up

to an additive constant. Written in component form in terms of intrinsic coordinates on

the sphere we have

vA = ∇Aψ + εAB∇Bχ, (4.81)

where A,B ∈ {1, 2} label the coordinates, ∇A is the covariant derivative on the unit

sphere and εAB is the Levi-Civita symbol. We have the identities ∇×∇ψ = 0 (curl-free)

and ∇ · (n̂nn × ∇χ) = 0 (divergence-free), and by taking either the divergence or curl of

(4.80), the potentials can be recovered from the following equations

∇ · vvv = ∇2ψ, (4.82a)

∇× vvv = ∇× (n̂nn′ ×∇χ). (4.82b)

In the context of a boost we set vvv = ααα, then substitute into (4.82a) above to obtain

the first equation

∇2ψ = −∇ · [
(
n̂nn′ · βββ

)
n̂nn′]. (4.83)

Let us focus on the “source term” on the right-hand side. Expanding the right-hand side

we find

−∇ · [
(
n̂nn′ · βββ

)
n̂nn′] = −n̂nn′ · ∇(n̂nn′ · βββ)− (n̂nn′ · βββ)∇ · n̂nn′ = −2 n̂nn′ · βββ, (4.84)

where in the second equality we have used ∇ · n̂nn′ = 2 with

∇ ≡ eθ̂ ∂θ + eφ̂
1

sin θ
∂φ, (4.85)

being the gradient operator on the unit sphere. Here eθ̂ and eφ̂ form a local orthonormal

basis and are tangent to lines of longitude and latitude respectively. Thus, we see that

the right-hand side of (4.83) is a pure dipole (c.f. (4.24b)) so when expanded in spherical

harmonics the only non-zero5 a`m are those with ` = 1:

− 2 n̂nn′ · βββ = −2
1∑

m=−1

a1mY1m =
1∑

m=−1

a1m(−2Y1m). (4.86)

5Recall that the decomposition into spherical harmonics is unique.
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Noting the following property of spherical harmonics

∇2Y`m = −`(`+ 1)Y`m, (4.87)

we have ∑
m

a1m(−2Y1m) =
∑
m

a1m∇2Y1m = ∇2
∑
m

a1mY1m = ∇2
(
n̂nn′ · βββ

)
. (4.88)

Referring back to (4.83) we have shown ∇2ψ = ∇2(n̂nn′ · βββ), from which it is easy to see

that

ψ = n̂nn′ · βββ + constant. (4.89)

The constant, or monopole arises because the kernel of the operator ∇2 is degenerate

with a monopole, that is, constant functions are solutions to ∇2f = 0. The potential ψ

is, therefore, not observable while the aberration field ααα is.

Next we determine the divergence-free vector field or equivalently the function χ =

χ(θ, φ) from (4.82b). Again, without loss of generality, we let the boost be directed along

the z-axis so that the aberration is azimuthally symmetric, i.e., it is independent of φ.

Observe that

ααα ·ααα =
(
βββ − (n̂nn′ · βββ) n̂nn′

)2
= β2(1− cos2 θ′) = β2 sin2 θ′. (4.90)

From the azimuthal symmetry we deduce ααα = −β sin θ′ êeeθ, where the minus sign ap-

pears because the deflection is towards the direction of the boost. However, we have

−β sin θ′ êeeθ = ∇(n̂nn′ · βββ) = ∇ψ, which implies that n̂nn′ ×∇χ = 0 or χ = constant. Hence

ααα = ∇(n̂nn′ · βββ), (4.91)

meaning that, physically, the aberration effect does not induce any curl modes on the

CMB beyond what is already present. We have therefore shown the aberrating field ααα

amounts to a curl-free vector field:

n̂nn′ − n̂nn ' ∇
(
n̂nn′ · βββ

)
. (4.92)

The aberration is a purely kinematic effect, but is in fact very similar to the deflection

caused by gravitational lensing, in this case, of a foreground structure. The lensing

convergence [174], κ, is defined by

κ(n̂nn) ≡ 1

2
∇ ·ααα. (4.93)

The convergence is unique only up to a constant (or monopole), but this is often set to

zero as we do here. In the case of a boost we have

κ =
1

2
∇ ·ααα =

1

2
∇2(n̂nn′ · βββ) = −n̂nn′ · βββ. (4.94)

where we again used (4.87). Thus we expect κ ∼ 10−3 in the heliocentric frame.
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Figure 4.11: Map of the convergence for an off-centre observer located at ro = 28h−1 Mpc
in the LTB model. Here we use Nside = 16. Note dipolar axis has been rotated onto the
z-axis and the monopole has been subtracted.

4.6.1 Estimating the deflection

In order to quantify to what extent a local void can mimic the aberration effect of a local

Lorentz boost we compute the convergence in the LTB model. As there is no explicit

expression for the convergence for an LTB spacetime, we resort to numerical integration

of the geodesic deviation equations, or the related Sachs optical equations [174].

We recall the Sachs optical equations are a set of coupled equations describing the

effects of geometry (and thus matter) on a light beam. Here we will only need the equation

dθ̂

dλ
+ θ̂2 + σ̂2 = −1

2
Rµνk

µkν , (4.95)

where θ̂ ≡ 1
2
∇µk

µ and σ̂2 ≡ 1
2
∇µkν∇µkν − θ̂2 are the null expansion and shear scalars

respectively. This equation can be recast in terms of the angular diameter distance DA,

by noting the relation

θ̂ =
d

dλ
lnDA. (4.96)

Thus (4.95) becomes
d2DA

dλ2
+

(
σ̂2 +

1

2
Rµνk

µkν
)
DA = 0. (4.97)

The shear term, σ̂2, is associated with the Weyl curvature and its effect on a geodesic

beam is subdominant to the Ricci term in our models. We therefore neglect it in the

following and work in the Ricci focusing regime. (See [175] for justification.) Observe

that (4.95) and (4.97) are purely geometrical equations. They can be related to the

matter content by inserting Einstein’s equations as

Rµν = 8π

(
Tµν −

1

2
Tgµν

)
− Λgµν = 8πρ

(
uµuν +

1

2
gµν

)
− Λgµν (4.98)
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where T = Tµν g
µν and uµ = δµt in comoving coordinates. Twice contracting (4.98) with

the null tangent vector, (4.95) becomes

d2DA

dλ2
+ 4πρ(kt)2DA = 0, (4.99)

which we solve simultaneously with the null geodesic equations. We remark that, although

Λ vanishes, the effect of Λ still persists through ρ, whose evolution depends on it by (3.5).

Although the type of structures under study are in the nonlinear density regime, the size

of the deflection angle α is small (arc minutes) [176]. We are therefore justified in working

in the weak lensing regime [125], in which we are able to refer to an unlensed ray—the

direction the ray would be measured at, in the absence of the void.

In the weak lensing regime, the main object of interest is the amplification matrix,

A =

(
1− κ− γ1 γ2 − ω
γ2 + ω 1− κ+ γ1

)
, (4.100)

and all lensing effects are described by the convergence (as above), γ1 and γ2, the shear

and ω, the vorticity. These lensing variables are related to the optical scalars θ̂ and σ̂

while observable quantities are related to invariants of the matrix (e.g. trace, eigenvalues,

determinant etc). Here we will only be interested in the magnification, which is given by

µ =
D

2

A

D2
A

= (detA)−1 =
[
(1− κ)2 + γ2

]−1
, (4.101)

where DA is the angular diameter distance of the FLRW background. In the case of

the LTB model under study, the convergence and shear are small,6 (i.e. |κ| � 1 and

γ2
1 + γ2

2 � 1) so we can relate the angular diameter distance to the convergence to

leading order:

µ =
D

2

A

D2
A

' 1 + 2κ =⇒ κ ' 1

2
(µ− 1). (4.102)

Following [176] we take the angular diameter distance of the FLRW background to be

D
2

A = a2(t)(r2 + r2
o − 2 rro cosϑ), (4.103)

for an off-centre observer at r = ro, ϑ = 0 and ϕ = π/2. This formula reduces to

the familiar expression, DA = a(t)r, by centring the coordinates at the position of the

observer, rather than the would-be void’s centre. (It can also be shown to solve (4.99)

with ρ = ρ and kt = a−1.) The comoving coordinate r in (4.103) is set to the radial

distance reached by the beam in the LTB spacetime and computed using the null geodesic

equations. Each light beam is integrated backwards, starting from the observer and

terminating when the elapsed time has reached 400 Mpc/c. The convergence is shown as

a map in fig. 4.11. As can be seen in (4.94), the convergence has a dipole structure, much

like a boost, and further, κ10 matches the corresponding boost value well (see fig. 4.12).

6This is more often the case than not (see §1.5 of [125]).
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Figure 4.12: Plot of the convergence coefficient κ10 as a10 is varied by increasing the
density contrast parameter δ0 (each marker represents a different δ0 with underdense
values toward the right). Here the observer is placed at a distance ro = 5h−1 Mpc. For
reference we show the boost prediction, κ10 = β · n̂nn, as the dashed line. Note the slight
rise of the LTB curve is due to numerical errors when our LTB model approaches the
FLRW limit and should therefore be ignored.

4.7 Modulation in the LTB model

Having seen that the LTB model induces a deflection of the same order of magnitude as a

local Lorentz boost, we now turn our attention to whether a modulation effect is present

for an off-centre observer.

Recall the observed CMB for an observer boosted relative to the CMB rest frame

with boost vector βββ, is given by (1.17), with 1 +βββ · n̂nn representing the modulation and n̂nn

the direction of observation in the boosted frame. Notice for the hemisphere in which βββ

points 1 + βββ · n̂nn > 1 while on the opposite hemisphere 1 + βββ · n̂nn < 1. Since β ∼ 10−3 the

effect on the primordial fluctuations, δT (n̂nn) ∼ 10−5 K, induces a modulation at the level

of

(1 + βββ · n̂nn) δT − δT ∼ 10−8 K. (4.104)

The modulation serves to break the statistical isotropy of the primordial fluctuations

and induce a power asymmetry on the sky. The modulation effect is closely related to

the empirical dipole modulation [177], 1 + AAA · n̂nn, used to explain the observed power

asymmetry. However, the modulation given by a boost, 1 +βββ · n̂nn, is only degenerate with

the empirical modulation at linear order.

The difficulty in constructing a modulation for our LTB model comes from the fact

that we require a reference sky on which the modulation acts. In the case of a boost
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Figure 4.13: Residual power spectrum of a modulated and unmodulated temperature
map. The temperature maps are generated as Gaussian realisations of the Planck best-fit
power spectrum. Shown is the average over 1000 realisations.

this is simply the CMB observed in the CMB rest frame. By deboosting to the CMB

rest frame we ‘undo’ the induced dipole (as well as other small contributions to higher

multipoles). While an off-centre observer will see a large dipole, this is not due to the

“peculiar motion” but rather that photons traversing the void are redshifted by different

amounts depending on the trajectory taken.

The underlying (or unmodulated) CMB will be chosen in the following way. We first

assume a reference FLRW model, which we take to be the Planck 2013 ΛCDM model (see

(4.9)) and denote by T o(n̂nn) the temperature of the unmodulated sky seen by a generic

observer in this model. Because of spatial homogeneity and isotropy the intersection of

the observer’s past light cone and the last scattering surface (which we assume to be a

t = tlss = const hypersurface) forms a sphere. We assume the CMB anisotropies are

generated on the surface of last scattering. We denote by zlss = const the redshift to this

surface. Assuming the CMB anisotropies are laid down on this surface then

Tlss(n̂nn)

T o(n̂nn)
= 1 + zlss, (4.105)

where Tlss(n̂nn) is the temperature of the CMB blackbody at the time of last scattering.

Since in our LTB model there are no decaying modes (as we chose tb(r) = const),

the universe becomes more spatially homogeneous further back in time. At a redshift of
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zlss ' 1100 we identify the last scattering surface with the last scattering surface in the

reference FLRW model. The temperature at last scattering in both models will then be

Tlss(n̂nn). We denote by To(n̂nn) the temperature observed by an off-centre observer at time

t0 and z(n̂nn) the redshift determined by propagating the null geodesic, according to the

LTB model, in the direction n̂nn back to t = tlss from an observer who receives the photon

at t = t0. In the LTB model we thus have

Tlss(n̂nn)

To(n̂nn)
= 1 + z(n̂nn). (4.106)

Note we have not taken into account the bending of photon trajectories as we expect such

deflections are small in view of the previous section (§4.6). Thus we simply identify a

point n̂nn = n̂nn(θ, φ) on the last scattering sphere with a point n̂nn = n̂nn(θ, φ) on the observer’s

celestial sphere allowing us to isolate the modulation from lensing effects. We remark we

can always ensure the deflection is small by placing the observer closer to the origin; at

the centre we have no deflection since trajectories are radial on account of the spherical

symmetry of the model. With this assumption we find

Tlss(n̂nn)

To(n̂nn)
= 1 + z(n̂nn) ⇐⇒ T o(n̂nn) (1 + zlss)

To(n̂nn)
= 1 + z(n̂nn), (4.107)

and therefore

To(n̂nn) = T o(n̂nn)

[
1 + zlss

1 + z(n̂nn)

]
= g(n̂nn)T o(n̂nn), (4.108)

where

g(n̂nn) ≡ 1 + zlss

1 + z(n̂nn)
. (4.109)

In the nonlinear regime we do not have an analytic form for g(n̂nn), but we can, however,

analyse its limiting behaviour by checking that it reduces to familiar expressions in the

linear regime. As we will see this term is analogous to the modulation factor 1 + βββ · n̂nn.

We recall the redshift (2.56) from linear theory, which we rewrite in terms of n̂nn as

1

1 + z(n̂nn)
=
a(tlss)

a(t0)

{
1−

[
βββ · (−n̂nn) + Φ

]t0
tlss

+ I(n̂nn)
}
, (4.110)

where I is the ISW term with the integral taken over the line of sight (hence the n̂nn

dependence). Clearly such terms vanish in the FLRW limit, however, more subtle is the

peculiar velocity vvv = cβββ, which depends on the density field through

vvv(t, rrr) =
a(t)f(t)H

4π

∫
δ(rrr′)

rrr − rrr′
|rrr − rrr′|3 d3rrr′. (4.111)

It is clear vvv → 0 as δ → 0, from which it follows g → 1 in the homogeneous limit.

In the background we have a(t0)/a(tlss) = 1 + zlss so (4.110) may be rewritten

1 + zlss

1 + z(n̂nn)
= 1 + βββ · n̂nn+ . . . . (4.112)
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Here we have assumed that at last scattering βββ · n̂nn is zero (or negligible) and we omitted

the other terms since they are at least two orders or magnitude smaller than the kinematic

term. Clearly the right-hand side of (4.112) is just the Lorentz boost to linear order:

1

γ(1− βββ · n̂nn)
= 1 + βββ · n̂nn+ . . . . (4.113)

Thus, in the linear regime, g(n̂nn) reduces to the linear modulation

g(n̂nn) ' 1 + βββ · n̂nn. (4.114)

In fig. 4.13 we illustrate the power modulation induced by our model void on a fiducial

Planck best-fit power spectrum.7

4.7.1 Multipole couplings induced by g(n̂nn)

Although we do not have an analytic form for g(n̂nn) we can still estimate the effect on the

power spectrum. Like the a boost, the modulation g(n̂nn) also induces couplings between

multipoles, which we make explicit below.

As usual, we expand the temperatures in spherical harmonics:

To(n̂nn) =
∑
`m

a`mY`m(n̂nn) and T o(n̂nn) =
∑
`m

a`mY`m(n̂nn), (4.115)

but now

a`m =

∫
dn̂nn To(n̂nn)Y ∗`m(n̂nn) =

∫
dn̂nn g(n̂nn)T o(n̂nn)Y ∗`m(n̂nn)

=
∑
`′m′

a`′m′

∫
dn̂nn g(n̂nn)Y`′m′(n̂nn)Y ∗`m(n̂nn)

=
∑
`′m′

A`′m′`m a`′m′ (4.116)

and in the last line we define the mode coupling matrix

A`′m′`m ≡
∫

dn̂nn g(n̂nn)Y`′m′(n̂nn)Y ∗`m(n̂nn), (4.117)

in much the same way as for a boost [109]. The details of the coupling will depend on the

details of the local void being studied and the difference between the LTB and Szekeres

models will manifest in A`′m′`m. We remark that if g = 1 we recover the orthogonality

relation:

A`′m′`m = δ``′δmm′ , (4.118)

so that a`m = a`m (no coupling).

7See http://pla.esac.esa.int/pla/.

http://pla.esac.esa.int/pla/
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Without loss of generality we align g(n̂nn) with the observer’s z-axis so that we only

need to consider the zonal modes g`0. Thus with

g(n̂nn) =
∑
`0

g`0 Y`0(n̂nn), (4.119)

equation (4.117) becomes

A`1m1`2m2 =
∑
`

g`0

∫
dn̂nn Y`0(n̂nn)Y`1m1(n̂nn)Y ∗`2m2

(n̂nn)

=
∑
`

g`0

√
(2`+ 1)(2`1 + 1)(2`2 + 1)

4π

× (−1)m2

(
`1 `2 `
0 0 0

)(
`1 `2 `
m1 −m2 0

)
, (4.120)

where

(
`1 `2 `3

m1 m2 m3

)
is the Wigner 3j symbol (see Appendix D). The Wigner 3j

symbols have several useful properties but for now it suffices to say they are non-zero if

both

m1 +m2 +m3 = 0, (4.121)

and the triangle inequality,

|`1 − `2| ≤ `3 ≤ `1 + `2, (4.122)

are satisfied. By (4.121) we must have m1 = m2 for the Wigner 3j symbol to be non-zero.

In addition we also have the property that if

(
`1 `2 `
0 0 0

)
is non-zero then `1 + `2 + `

is even. This result comes from the fact that the Wigner 3j symbol picks up a factor

(−1)`1+`2+`3 on odd permutations of its columns.

Using these properties of the Wigner 3j symbols, we can show how the multipole

couplings affect the power spectrum. Note the following are standard results for when

g(n̂nn) = 1 +βββ · n̂nn. However, in the case of our LTB model we do not have an analytic form

for g(n̂nn).

Consider 〈
a`1m2a

∗
`2m2

〉
=
∑
`′1m

′
1

∑
`′2m

′
2

A`′1m′1`1m1
A∗`′2m′2`2m2

〈
a`′1m′1a

∗
`′2m

′
2

〉
, (4.123)

We remind the reader angle brackets without ‘Ω’ denote the ensemble average. Given

that we only need to consider the zonal modes g`0 we see from (4.120) that the coupling

matrix must also be real: A∗`′1m′1`1m1
= A`′1m′1`1m1

. Assuming the underlying, unmodulated

power spectrum, C`, is statistically isotropic (i.e. 〈a`′1m′1a∗`′2m′2〉 = C`′1
δ`′1`′2 δm′1m′2), we find〈

a`1m2a
∗
`2m2

〉
=
∑
`′1m

′
1

∑
`′2m

′
2

A`′1m′1`1m1
A`′2m′2`2m2

C`′1
δ`′1`′2 δm′1m′2

=
∑
`′1m

′
1

A`′1m′1`1m1
A`′1m′1`2m2

C`′1
(4.124)
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Applying the selection rule (4.121), the first and second coupling matrices are non-

vanishing when m′1 = m1 and m′1 = m2 respectively. Thus〈
a`1m2a

∗
`2m2

〉
=
∑
`′1

A`′1m1`1m1
A`′1m1`2m2

C`′1

= δm1m2

∑
`′1

A`′1m1`1m1
A`′1m1`2m1

C`′1
(4.125)

It is clear from the last line that 〈a`1m2a
∗
`2m2
〉 is a linear combination of the C` and

therefore need not vanish for `1 6= `2. The axial symmetry of an off-centre observer

manifests in the Kronecker delta δm1m2 . No such simplification will occur for a generic

Szekeres observer since in general g`m 6= 0 for m 6= 0 implying that
〈
a`1m2a

∗
`2m2

〉
6= 0 for

m1 6= m2.

In the LTB model we find

g00 = 3.545

g10 = 4.238× 10−3

g20 = 4.390× 10−6

with contributions from higher ` multipoles increasingly small. Thus g(n̂nn) has a similar

multipole structure to the CMB anisotropy (4.43). This is not surprising given g(n̂nn) ∝
(1 + z)−1 ∼ ∆T/T (see (4.17)). The multipole structure of g(n̂nn) is that of a dominant

dipole, with a small quadrupole moment that may be dropped.8 Thus

g(n̂nn) ≈ g00 Y00 + g10 Y10

=
1√
4π

g00 + g10

√
3

4π
cos θ

≈ 1 + g10

√
3

4π
cos θ (4.126)

where we have used g00/
√

4π = g00Y00 =
〈
g(n̂nn)

〉
Ω

= 1.000026 ≈ 1. The last line can then

be identified as a modulation effect.

Formulae for an (exact) modulation,

g(n̂nn) = (1 +AAA · n̂nn), (4.127)

where AAA is some general direction on the sky (not necessarily the boost vector) are well

known [178]. In the case of our model the coupling formula is

〈
a`ma

∗
`+1m

〉
≈ g10 (C` + C`+1)

√
(`−m+ 1)(`+m+ 1)

(2`+ 3)(2`+ 1)
. (4.128)

As we can see a modulations couples the ` and `+ 1 modes.

8The modulation, 1 + βββ · n̂nn, also has corrections from the quadrupole if we keep terms of order β2.
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Conclusion

The physical origin of the CMB dipole needs to be re-examined from the principles of

general relativity. While a local Lorentz boost might be a natural candidate to explain

the dipole, there is no a priori reason this has to be so. The recent work by Bolejko

et al. [1] using exact cosmological models suggests a different picture to that of peculiar

motion relative to a rigidly expanding FLRW background. Rather, the late epoch universe

characterised by nonlinear structure formation, modelled using full general relativity,

naturally gives rise to a notion of differential expansion of space. This feature is often

overlooked in the standard framework but is a generic feature of exact inhomogeneous

solutions of Einstein’s equations. Nevertheless, it has immediate consequences beyond the

Hubble expansion anisotropy that was studied in [1]. In particular, it points to a CMB

dipole that is not caused entirely by a boost and thus has a non-kinematic component

arising instead from the local expansion gradients. This was the conclusion that was

reached in [1] and in this thesis we aimed to investigate the non-kinematic CMB dipole

by computing the magnitude and characterising its associated effects.

In order to estimate the non-kinematic CMB dipole in the heliocentric frame, we

derived to second order in β formulae for the monopole and dipole. These formulae allow

us to circumvent the technical difficulty related to boosting maps in pixel space. As we

mentioned in §4.5 this stems from the aberration effect on individual pixels and results

in a map with pixels that are no longer equally spaced (and means the dipole cannot be

computed in HEALPix).

Using these formulae we found a non-kinematic dipole of ∆Dnk = −0.12± 0.22 mK.

While this value is consistent with zero we note that this estimate is based on values

of βSun−LG and β̂ββSun−LG derived from an using Newtonian velocity addition [68]. The

uncertainties of βSun−LG and β̂ββSun−LG will need to be improved in the future as they are

as yet too large for any precise determination of a non-zero non-kinematic dipole to be

made. It is conceivable to construct a model in which βββSun−LG is known exactly and the

non-kinematic dipole is non-vanishing. However, such an exercise amounts to fine tuning

the boost velocity and the parameters of the LTB model.

95
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As well as inducing a large dipole, a boost is associated with two other effects: (i) the

aberration effect causing a lensing-like deflection on the CMB and (ii) a modulation of

the primordial CMB anisotropies. At linear order in βββ, a boost breaks statistical isotropy

by inducing correlations among ` and `± 1 multipoles, as is well known [109,110]. These

effects were detected by the Planck collaboration, who measured the boost velocity by

analysing the multipole couplings that such effects induce. If the CMB dipole is induced

by a local void then it must be able to reconcile these couplings with other physical

processes.

In view of this, we have shown that an effect similar to the aberration effect of a

local Lorentz boost is also present. This is not surprising given that the aberration is

degenerate with the gravitational deflection from the lensing of structures. In the case

of an off-centre observer in the LTB model the lensing is from a spherically symmetric

foreground inhomogeneity. Since the off-centre observer sees a CMB sky that is axially

symmetric about the axis defined by the radial line connecting the observer to the origin,

the deflection field is also axially symmetric, and the convergence, κ, can be decomposed

entirely in terms of the zonal harmonics, Y`0(n̂nn). Like a boost, the deflection field ααα is

a gradient of a scalar on account of the axial symmetry for an off-centre observer in the

LTB model.

Assuming the deflection is small (a few arc seconds) the deflection can be treated in the

weak lensing regime. In computing the convergence, κ, for the off-centre LTB observer,

we require a reference FLRW model in order to define the magnification µ ≡ (DA/DA)2,

where DA is the angular diamter distance of the reference model. This is taken to be the

FLRW background in which the void is embedded.

The angular diameter distance for an observer in the background is then given by

(4.103). This is equivalent to the more familiar DA = a(t)r, only now the coordinates are

centred at the void’s centre, hence the unconventional form. In the case of the Szekeres

metric, while we can define spherical coordinates, r, θ, φ, there is no “origin” to speak

of as in the LTB model. Consequently the angular diameter distance of the background

cannot be defined in the same way. As such we have only computed the deflection in

the LTB model. However, in the Szekeres model we expect the deflection field to contain

both gradient and curl terms (c.f. (4.80)) due to the absence of axial symmetry for generic

observers who do not lie on the axis of the density gradient.

We find the convergence is of the same order of magnitude as the convergence for a

local Lorentz boost, i.e., κ ∼ 10−3. Indeed the dipole of the convergence is proportional

to the dipole of CMB just as with a boost for which k10 ∼ β and a10 ∼ β. While we have

not computed how such a deflection impacts the full CMB temperature power spectrum,

given the similarity of the deflection with the aberration of local boosts, we expect these

effects to be highly degenerate with the boost interpretation.1

1Lensing effects generically break statistical isotropy of the CMB temperature (see the review [125]).
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While the LTB metric is an exact solution, in the limit that the density contrasts are

small (|δ0| � 1), the metric can be made to resemble the perturbed FLRW metric in

the Newtonian gauge by making a suitable coordinate transformation [180–182]. Thus it

should be no surprise that the LTB model is highly degenerate with perturbed FLRW

models in this limit. (See for example fig. 4.8.) One can therefore ‘decompose’ the

CMB anisotropy in the form of (2.58), identifying a peculiar velocity contribution, ISW

contribution etc. The coordinate transformation can only be done in the linear regime

so it is no surprise that this identification breaks down for nonlinear voids, such as those

considered in this thesis.

Since the linearly perturbed FLRW model can always be mapped to an LTB model

we expect the LTB model, even in the nonlinear regime, to also induce aberration and

modulation effects, associated with the peculiar velocity term of (2.58). However the

aberration effect has a different physical mechanism, namely lensing by the local void.

In §4.7 we made some tentative steps towards making explicit the modulation of the

LTB model. This allows us to investigate the couplings between multipoles in the same

way as for a boost. We demonstrated that local voids can also give rise to a modulation

effect and that we recover the usual modulation, 1 +βββ · n̂nn, in the limit the LTB model is

in the linear regime.

Towards the end of this research, we became aware of a recently uploaded arXiv

eprint by Cusin et al. [115], “Are we living near the centre of a void?”, investigating

the “geometrical origin” of the CMB dipole, that is, whether a local void can mimic the

effects caused by a local Lorentz boost. Though they study a toy void model described

by a Kottler metric embedded in a FLRW background, their analytic results show that

lensing of the local void induces correlations among all multipoles,2 a signature they say

that distinguishes itself from a boost. This is an interesting development that deserves

further research in the context of more realistic void models, such as the observationally

constrained models used in this work.

In this work we have concentrated mainly on the simpler LTB model, but the fact

there is no axial symmetry seen by generic observers in the Szekeres model would seem to

suggest that there would be lensing and modulation effects not accounted for in spherically

symmetric models such as the Kottler embedded FLRW model of [115] and generic LTB

models. For the Szekeres model this could potentially show up in the structure of the

off-diagonal correlations used in [115]. Moreover because of the lack of symmetry of

Szekeres models, such effects, if present, will thus depend on the position of the observer

in relation to the underdensity and neighbouring overdensity.

To date, Szekeres models have received little interest as models of cosmic structures.

The additional free functions of the Szekeres solution allows much more realistic mod-

2Off-diagonal correlators can be constructed, that are non-vanishing when statistical isotropy is bro-
ken.
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els. Indeed, more sophisticated Szekeres models have recently been developed [183] that

advances the cosmic web picture of the universe. Cosmic structures have most typically

been approximated as spherical using the LTB model. While this might be suitable for

isolated structures it does not take into account expansion gradients that arise between

structures such as voids and adjacent superclusters. How non-spherical structures affect

the CMB has not been widely studied but in our view, when confronted with data, these

models have a lot to offer.
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universes, Mon. Not. Roy. Astron. Soc. 179 (1977) 351.

http://www.arxiv.org/abs/astro-ph/0601445
http://www.arxiv.org/abs/astro-ph/0602478
http://www.arxiv.org/abs/1001.4613
http://www.arxiv.org/abs/1303.5083
http://www.arxiv.org/abs/1510.07929
http://www.arxiv.org/abs/astro-ph/0510406
http://www.arxiv.org/abs/1303.5087
http://www.arxiv.org/abs/1007.4539
http://www.arxiv.org/abs/1008.1183
http://www.arxiv.org/abs/astro-ph/0607334
http://www.arxiv.org/abs/1007.3065
http://www.arxiv.org/abs/1603.02664
http://www.arxiv.org/abs/1609.02061
http://www.arxiv.org/abs/0804.1787
http://www.arxiv.org/abs/0903.5040


106 Bibliography

[120] K. Tomita, Relativistic second-order perturbations of nonzero-Λ flat cosmological models
and CMB anisotropies, Phys. Rev. D 71 (2005) 083504, [astro-ph/0501663].

[121] O. Lahav, P. B. Lilje, J. R. Primack and M. J. Rees, Dynamical effects of the cosmological
constant, Mon. Not. Roy. Astron. Soc. 251 (1991) 128.

[122] R. K. Sachs and A. M. Wolfe, Perturbations of a cosmological model and angular variations
of the microwave background, Astrophys. J. 147 (1967) 73.

[123] M. J. Rees and D. W. Sciama, Large scale Density Inhomogeneities in the Universe,
Nature 217 (1968) 511.

[124] A. Lewis and A. Challinor, Weak gravitational lensing of the CMB, Phys. Rept. 429
(2006) 1, [astro-ph/0601594].

[125] A. Lewis and A. Challinor, Weak Gravitational Lensing of the CMB, Phys. Rept. 429
(2006) 1, [astro-ph/0601594].

[126] G. F. R. Ellis, Relativistic cosmology: its nature, aims and problems, in B. Bertotti, F. de
Felice and A. Pascolini (eds.), General Relativity and Gravitation, (D. Reidel Publishing
Co., Dordrecht, Holland, 1984) pp. 215–288.

[127] G. F. R. Ellis and W. Stoeger, The ‘fitting problem’ in cosmology, Class. Quant. Grav. 4
(1987) 1697.

[128] V. Marra, L. Amendola, I. Sawicki and W. Valkenburg, Cosmic variance and the
measurement of the local Hubble parameter, Phys. Rev. Lett. 110 (2013) 241305,
[arXiv:1303.3121].

[129] E. U. Condon and G. H. Shortley, The Theory of Atomic Spectra, Cambridge University
Press, Cambridge, 1970.

[130] K. Bolejko, in preparation.

[131] E. Hivon, K. M. Gorski, C. B. Netterfield, B. P. Crill, S. Prunet and F. Hansen, MAS-
TER of the Cosmic Microwave Background Anisotropy Power Spectrum: A Fast Method
for Statistical Analysis of Large and Complex Cosmic Microwave Background Data Sets,
Astrophys. J. 567 (2002) 2, [astro-ph/0105302].

[132] F.-X. Dupe, A. Rassat, J.-L. Starck and M. J. Fadili, Measuring the Integrated Sachs-
Wolfe Effect, Astron. Astrophys. 534 (2011) A51, [arXiv:1010.2192].

[133] S. Weinberg, Cosmology, Oxford University Press, Oxford, 2009.

[134] R. G. Crittenden and N. Turok, Looking for a Cosmological constant with the Rees-Sciama
Effect, Phys. Rev. Lett. 76 (1996) 575.

[135] N. Kaiser, On the Spatial correlations of Abell clusters, Astrophys. J. 284 (1984) L9.

[136] A. J. Nishizawa, The integrated Sachs-Wolfe effect and the Rees-Sciama effect, Prog.
Theor. Exp. Phys. 2014 (2014) 06B110, [arXiv:1404.5102].

[137] T. Giannantonio, R. Scranton, R. G. Crittenden, R. C. Nichol, S. P. Boughn, A. D. Myers
and G. T. Richards, Combined analysis of the integrated Sachs-Wolfe effect and cosmo-
logical implications, Phys. Rev. D 77 (2008) 123520, [arXiv:0801.4380].

[138] B. R. Granett, M. C. Neyrinck and I. Szapudi, An Imprint of Super-Structures on the
Microwave Background due to the Integrated Sachs-Wolfe Effect, Astrophys. J. 683 (2008)
L99, [arXiv:0805.3695].

http://www.arxiv.org/abs/astro-ph/0501663
http://www.arxiv.org/abs/astro-ph/0601594
http://www.arxiv.org/abs/astro-ph/0601594
http://www.arxiv.org/abs/1303.3121
http://www.arxiv.org/abs/astro-ph/0105302
http://www.arxiv.org/abs/1010.2192
http://www.arxiv.org/abs/1404.5102
http://www.arxiv.org/abs/0801.4380
http://www.arxiv.org/abs/0805.3695


Bibliography 107

[139] P. A. R. Ade et al. [Planck Collaboration], Planck 2015 results. XXI. The integrated
Sachs-Wolfe effect, Astron. Astrophys. 594 (2016) A21 [arXiv:1502.01595].

[140] S. Nadathur, S. Hotchkiss and S. Sarkar, The integrated Sachs-Wolfe imprints of cosmic
superstructures: a problem for ΛCDM, JCAP 06 (2012) 042, [arXiv:1109.4126].

[141] J. M. Bardeen, J. R. Bond, N. Kaiser and A. S. Szalay, The Statistics of Peaks of Gaussian
Random Fields, Astrophys. J. 304 (1986) 15.

[142] Y. C. Cai, S. Cole, A. Jenkins and C. S. Frenk, Full-sky map of the ISW and Rees-
Sciama effect from Gpc simulations, Mon. Not. Roy. Astron. Soc. 407 (2010) 201,
[arXiv:1003.0974].

[143] S. Flender, S. Hotchkiss and S. Nadathur, The stacked ISW signal of rare superstructures
in ΛCDM, JCAP 02 (2013) 013, [arXiv:1212.0776].

[144] S. Nadathur and R. Crittenden, A detection of the integrated Sachs-Wolfe imprint of
cosmic superstructures using a matched-filter approach, Astrophys. J. 830 (2016) L19,
[arXiv:1608.08638].

[145] I. Szapudi et al., Detection of a Supervoid Aligned with the Cold Spot of the Cosmic Mi-
crowave Background, Mon. Not. Roy. Astron. Soc. 450 (2015) 288, [arXiv:1405.1566].

[146] F. Finelli, J. Garcia-Bellido, A. Kovacs, F. Paci and I. Szapudi, Supervoids in the
WISE-2MASS catalogue imprinting Cold Spots in the Cosmic Microwave Background,
[arXiv:1405.1555].

[147] S. Nadathur, M. Lavinto, S. Hotchkiss and S. Räsänen, Can a supervoid explain the Cold
Spot?, Phys. Rev. D 90 (2014) 10, 103510, [arXiv:1408.4720].

[148] W. A. Watson et al., The Jubilee ISW Project I: Simulated ISW and weak lensing
maps and initial power spectra results, Mon. Not. Roy. Astron. Soc. 438 (2014) 412,
[arXiv:1307.1712].

[149] F. Pretorius, Evolution of binary black hole spacetimes, Phys. Rev. Lett. 95 (2005) 121101,
[gr-qc/0507014].

[150] J. T. Giblin, J. B. Mertens and G. D. Starkman, Departures from the Friedmann-Lemâıtre-
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Appendix A

Christoffel symbols and the null
geodesic equations

For completeness we collect here the elements needed in the ray tracing code.

The non-zero LTB Christoffel symbols are

Γtrr =
R′Ṙ′

1 + 2E
, Γtθθ = RṘ, Γtφφ = ṘR sin2 θ,

Γrtr =
Ṙ′

R′
, Γrrr =

R′′

R′
− E ′

1 + 2E
, Γrθθ = −(1 + 2E)

R

R′
,

Γrφφ = −(1 + 2E)
R

R′
sin2 θ,

Γθθt = Γφφt =
Ṙ

R
, Γθθr = Γφφr =

R′

R
, Γθφφ = − sin θ cos θ, Γφθφ = cot θ.

The LTB null geodesic equations are

d2t

dλ2
− J2

R2

(
Ṙ′

R′
− Ṙ

R

)
+
Ṙ′

R′

(
dt

dλ

)2

= 0, (A.1)

d2r

dλ2
− (1 + 2E)

R

R′

(
dφ

dλ

)2

+

(
R′′

R′
− E ′

1 + 2E

)(
dr

dλ

)2

+ 2
Ṙ′

R′
dt

dλ

dr

dλ
= 0, (A.2)

d2φ

dλ2
+

1

R

dR

dλ

dφ

dλ
+ cot θ

dφ

dλ

dθ

dλ
= 0, (A.3)

d2θ

dλ2
+

1

R

dR

dλ

dθ

dλ
− sin θ cos θ

(
dφ

dλ

)2

= 0. (A.4)

These reduce to a system of two equations (with kφ = constant and kθ = 0) by assuming

the geodesic curve lies on the θ = π/2 plane.

The Szekeres null geodesic equations in spherical coordinates {t, r, θ, φ} are tedious to

compute. However, in coordinates {t, r, x, y} they can be found in Appendix A of [169].
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They are

d2t

dλ2
+

Φ̇′ − Φ̇ E ′/E
ε− k (Φ′ − ΦE ′/E)

(
dr

dλ
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+
ΦΦ̇
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(A.8)

with dots and primes denoting partial derivatives of t and r respectively,



Appendix B

Details of the initial condition
method

In this section we present in greater detail the steps outlined in §4.2.1 needed to compute

the initial conditions.

First we determine the local orthonormal basis {eeeâ}. Note the line element in a local

orthonormal frame reads

ds2 = gµν dxµ dxν = ηâb̂ωωω
âωωωb̂, (B.1)

where ηââ = diag(−1, 1, 1, 1) and the 1-forms {ωωωâ} are dual to {eeeâ}, i.e.,

ωωωâ(eeeb̂) = ωâµe
µ

b̂
= δâ

b̂
, (B.2)

with ωâµ the components of ωωωâ.

The Szekeres line element with the choice of functions (4.6) becomes

ds2 =− dt2 +
1

1 + 2E

[
R′ +

R

S
(S ′ cos θ)

]2

dr2 +R2

(
S ′

S

)2

sin2 θ dr2

− 2R2 S
′

S
sin θ dr dθ +R2(dθ2 + sin2 θ dφ2). (B.3)

The 1-forms are easily obtained by inspecting the line element (B.3). They are

ωωω0̂ = dt, (B.4a)

ωωω1̂ =
R√

1 + 2E

(
R′

R
+
S ′

S
cos θ

)
dr, (B.4b)

ωωω2̂ = −RS
′

S
sin θ dr +R dθ, (B.4c)

ωωω3̂ = R sin θ dθ. (B.4d)

From this the orthonormal basis can be recovered by solving (B.2), i.e., by inverting ωâµ.
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We find

eee0̂ = ∂t, (B.5a)

eee1̂ =

√
1 + 2E

R

(
R′

R
+
S ′

S
cos θ

)−1(
∂r +

S ′

S
sin θ ∂θ

)
, (B.5b)

eee2̂ =
1

R
∂θ, (B.5c)

eee3̂ =
1

R sin θ
∂φ. (B.5d)

In component form we have

e µ
â =


1 0 0 0
0 Γ 0 0

0 ΓS′

S
sin θ 1

R
0

0 0 0 1
R sin θ

 , (B.6)

where

Γ ≡
√

1 + 2E

R

(
R′

R
+
S ′

S
cos θ

)−1

. (B.7)

The initial null vectors are prescribed by

kµ0 = kâe µ
â |t=t0 =



−1

Γn̂x

Γ
S ′

S
sin θ n̂x +

1

R
n̂y

1

R sin θ
n̂z


t=t0

. (B.8)



Appendix C

Justification for excluding
quadrupole terms in (4.59)

Here we will demonstrate why the quadrupole can be neglected when we make the ap-

proximation in (4.59). We do this by revisiting (4.51), stated here for convenience:

〈
T ′(n̂nn′)

〉
Ω′
'
〈
T (n̂nn)

〉
Ω

(1− 1

2
β2)−

〈
T (n̂nn)βββ · n̂nn

〉
Ω

+
〈
(βββ · n̂nn)2T (n̂nn)

〉
Ω
. (C.1)

We shall simplify this by evaluating the second and third terms. (The first is trivial.)

Thus we insert

T (n̂nn) =
∑
`m

a`mY`m(n̂nn), (C.2)

in (C.1) but we make no assumptions on the size of the dipole, quadrupole etc.

The second term of (C.1) becomes

〈
T (n̂nn)βββ · n̂nn

〉
Ω

=
∑
`m

a`m
〈
Y`m(n̂nn)(βββ · n̂nn)

〉
Ω

=
∑
`m

1∑
m′=−1

a`mb
∗
1m′

〈
Y`m(n̂nn)Y ∗1m′(n̂nn)

〉
Ω

=
1

4π

∑
`m

1∑
m′=−1

a`mb
∗
1m′δ`1δmm′

=
1

4π

1∑
m=−1

a1mb
∗
1m =

1

3
βββ · ddd (C.3)

where βββ · n̂nn =
∑

m b1mY1m(n̂nn), (i.e., a pure dipole), and we have used (2.62) in the third

equality. The last equality comes about using

ddd = (dx, dy, dz) =

√
3

4π
(−
√

2are11,
√

2aim11 , a10), (C.4)
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and some straightforward algebra:

1∑
m=−1

a1mb
∗
1m = a11 b

∗
11 + a10 b10 + a1−1 b

∗
1−1

= a11 b1−1 + a∗11 b
∗
1−1 + a10 b10

= a11 b1−1 + (a11 b1−1)∗ + a10 b10

= 2 Re(a11 b1−1) + a10 b10

= 2
(
are11 b

re
1−1 + i2aim11 b

im
1−1

)
+ a10 b10

= 2
(
are11 b

re
11 + aim11 b

im
11

)
+ a10 b10

= (−
√

2bre11,
√

2bim11 , b10) · (−
√

2are11,
√

2aim11 , a10)

=
4π

3
βββ · ddd (C.5)

We define the quadrupole as

Q(n̂nn) =
2∑

m=−2

a2m Y2m(n̂nn). (C.6)

The third term of (C.1) becomes

〈
(βββ · n̂nn)2 T (n̂nn)

〉
Ω

=
〈
(βββ · n̂nn)2

〉
Ω

〈
T (n̂nn)

〉
Ω

+
〈
(βββ · n̂nn)2(ddd · n̂nn

〉
Ω

+
〈
(βββ · n̂nn)2Q(n̂nn)

〉
Ω

+ . . .

=
1

3
β2
〈
T (n̂nn)

〉
Ω

+
〈
(βββ · n̂nn)2Q(n̂nn)

〉
Ω

+ . . . (C.7)

where the second term of (C.7) is zero because

〈
(uuu · n̂nn)(vvv · n̂nn)(www · n̂nn)

〉
Ω

= 0, (C.8)

for any vectors uuu, vvv and www. As an aside, the last term involving Q(n̂nn) involves the product

of three Y`m and as such is not zero, but can be evaluated using the formula∫
dn̂nn Y`1m1(n̂nn)Y`2m2(n̂nn)Y`3m3(n̂nn) =

√
(2`1 + 1)(2`2 + 1)(2`3 + 1)

4π

×
(
`1 `2 `3

0 0 0

)(
`1 `2 `3

m1 m2 m3

)
(C.9)

where

(
`1 `2 `3

m1 m2 m3

)
is the Wigner 3j symbol. We remark

〈
(βββ · n̂nn)2(ddd · n̂nn)

〉
Ω

also

involves the product of three Y1m and this term can be shown to vanish using (C.9) with

`1 = `2 = `3 = 1 and the property that

(
`1 `2 `3

0 0 0

)
is zero if `1 + `2 + `3 is an odd

number.
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Thus, (C.1) becomes〈
T ′(n̂nn′)

〉
Ω′

=
〈
T (n̂nn)

〉
Ω

(1− 1

2
β2)− 1

3
βββ · ddd+

1

3
β2
〈
T (n̂nn)

〉
Ω

+
〈
(βββ · n̂nn)2Q(n̂nn)

〉
Ω

+ . . .

=
〈
T (n̂nn)

〉
Ω

(1− 1

6
β2)− 1

3
βββ · ddd+

〈
(βββ · n̂nn)2Q(n̂nn)

〉
Ω

+ . . . (C.10)

Note this formula is entirely general, i.e., no assumptions on T (n̂nn) have been made. Here

the ellipsis represents octupole and higher ` multipoles and since T (n̂nn) is generic these

terms are not necessarily small. However, for our LTB and Szekeres models only the

monopole and dipole (and to a lesser extent the quadrupole) are significant so we have

not explicitly included these in the expansions above.

In the case of our models, we have |ddd| ∼ 1 mK and Q(n̂nn) ∼ 1 µK and so the term〈
(βββ · n̂nn)2Q(n̂nn)

〉
Ω

, while not zero, is very small (∼ 10−12 K). This term can therefore be

dropped, furnishing the final expression (4.61), relating the monopole temperature in the

boosted frame with that in the unboosted frame.





Appendix D

Spherical harmonics and the Wigner
3j symbols

For the purposes of keeping this thesis as self-contained as possible we list the spherical

harmonics needed in Chapter 4:

Y00(θ, φ) =
1√
4π
, (D.1)

Y10(θ, φ) =

√
3

4π
cos θ, (D.2)

Y20(θ, φ) =
1

4

√
5

π
(3 cos2 θ − 1), (D.3)

Y30(θ, φ) =
1

4

√
7

π
(5 cos3 θ − 3 cos θ), (D.4)

and

Y1−1(θ, φ) =

√
3

8π
e−iφ sin θ, (D.5)

Y11(θ, φ) = −
√

3

8π
eiφ sin θ. (D.6)

D.1 Wigner 3j symbols

We give here some elementary properties of the Wigner 3j symbols (see [184] for more

details). The Wigner 3j symbols are related to the Clebsch-Gordan coefficients as follows:(
`1 `2 `3

m1 m2 −m3

)
≡ (−1)`1−`2+m3

√
2`3 + 1

〈`1m1`2m2|(`1`2)`3m3〉. (D.7)

They are non-zero if all of the following conditions hold:

(i) `1 + `2 + `3 is a non-negative integer;
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(ii)

|m1| ≤ `1, |m2| ≤ `2, |m3| ≤ `3; (D.8)

(iii)

m1 +m2 = m3; (D.9)

(iv)

|`1 − `2| ≤ `3 ≤ `1 + `2. (D.10)

They have the following properties. Under an even permutation of columns:(
`1 `2 `3

m1 m2 m3

)
=

(
`2 `3 `1

m2 m3 m1

)
=

(
`3 `1 `2

m3 m1 m2

)
. (D.11)

Under an odd permutation of columns:(
`1 `2 `3

m1 m2 m3

)
= (−1)`1+`2+`3

(
`2 `1 `3

m2 m1 m3

)
(D.12)

= (−1)`1+`2+`3

(
`1 `3 `2

m1 m3 m2

)
. (D.13)

Sign inversion:(
`1 `2 `3

−m1 −m2 −m3

)
= (−1)`1+`2+`3

(
`1 `2 `3

m1 m2 m3

)
. (D.14)

Formulae for Wigner 3j symbols are in general complicated. However, in the special

case m1 = m2 = m3 = 0 and `1 + `2 + `3 is even the formula is relatively simple:(
`1 `2 `3

0 0 0

)
= (−1)−(`1+`2+`3)/2

(
`1+`2+`3

2

)
!(

−`1+`2+`3
2

)
!
(
`1−`2+`3

2

)
!
(
`1+`2−`3

2

)
!

×
√

(−`1 + `2 + `3)!(`1 − `2 + `3)!(`1 + `2 − `3)!

(`1 + `2 + `3 + 1)!
. (D.15)
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