
Fast Peephole Optimization Techniques

B. J. McKenzie

University of Canterbury, Christchurch, New Zealand

Postal Address:

Dr. B.J.McKenzie,
Department of Computer Science,
University of Canterbury,
Private Bag, Christchurch,
New Zealand.

Electronic mail address (uucp):

...{mcvax,watmath, vuwcomp}!cantuar!bruce

Fast Peephole Optimization Techniques

B. J. McKenzie

University of Canterbury, Christchurch, New Zealand

SUMMARY

Techniques for increasing the throughput of a peephole optimizer for intermediate code

are presented. An analysis of the optimations to be performed enables an efficient

matching and replacement algorithm to be found which minimizes rescanning after a

successful replacement. The optimizer uses procedural interfaces; both for the input

from the front end phase of the compiler and for the output to the back end. The result

is a library module which may optionally be loaded with various other phases of the

compiler to provide a flexible range of options regarding compiler size, quality of

generated code and compilation speed.

KEY WORDS: intermediate code, peephole optimization,
deterministic finite automata, procedural interfaces, compilers

INTRODUCTION

It has become increasingly popular in the area of compiler construction to use some

form of intermediate code to communicate between the front end (source language

specific) and back end (target machine specific) phases of a compiler. Such a design

results in a clean interface between these two phases of the compiler as well as

expediting portability. It is common to share the same intermediate language for a

number of different source languages [1], or a number of different target machine

languages [2], or even both [3, 4]. Such a sharing allows tasks which are common to

all front and back ends to be isolated in modules that can be shared by all without

duplication of effort. Machine independent optimization [5] is an example of such a

common task and this paper focuses on the peephole optimizer in the Amsterdam

Compiler Kit (ACK) [6].

B.J.McKenzie Fast Peephole Optimzation Techniques

- 2 -

The ACK is a toolkit for the construction of compilers and cross-compilers for Algol-

like languages (e.g. Pascal, C, Occam, Basic, Modula-2), and byte-addressable target

machines (e.g. 680x0, pdp, vax, 8086). It uses a stack based intermediate language

called EM [4], which is encoded in a binary file for communication between phases of

the compiler. Generation of these encoded binary files is simplified by the provision of

a library of routines, (one for each distinct form of an EM instruction,) that control the

encoding and output of the binary EM code. Similarly a library for reading an encoded

EM file provides a routine that reads and decodes the next EM instruction into a C

structure variable. To ease debugging of new tools, versions of these libraries which

deal with human readable text files are also available.

EXISTING PEEPHOLE OPTIMIZER

The design of the existing peephole optimizer is described in some detail in [7]. This

optmizer reads and stores the EM instructions corresponding to a complete procedure

and then breaks this up into a series of basic blocks delimited by labels. For each such

block it makes repeated passes searching for optimizations until a complete pass makes

no replacements. Finally the blocks are output. There are currently 580 optimizations

described by a table of templates of which the following is a typical example:

loc adi w loc adi w ® loc $1+$3 adi w

This example asserts that the sequence of EM instructions, loc adi loc adi (where

loc is load constant and adi is add integer), when both the adi instructions have

arguments with value equal to the word size (w), can be replaced by a single loc

instruction which has an argument with value the sum of the two replaced loc

instructions' arguments and a single adi instruction. The search for possible

optimizations thus includes both the search through the block of EM instructions for a

pattern of EM instructions corresponding to the left hand side of the template as well as

ensuring that any restrictions on and between arguments are satisfied.

B.J.McKenzie Fast Peephole Optimzation Techniques

- 3 -

To search for potential optimizations the next three EM instruction opcodes are hashed

and the resulting value used to index a chained bucket of all possible templates that

could match. These are searched in turn attempting to match the LHS instructions of the

template. Upon a complete match any associated conditions (which have been encoded

in tables) are checked. If this is also successful any expressions required by the RHS

are evaluated (again using tables) and the LHS instructions replaced by the RHS

instructions. Scanning for subsequent optimizations continues from the beginning of

the replacement.

Table 1 presents timings for the phases using the C language front end and sun3 back

end while compiling the source of three Unix commands. All times are the sum of the

user and system cpu times under SunOS 3.5 on a Sun 3/60 and are averaged over 5

runs. The statistics regarding the source files are after pre-processing and removal of

empty lines. It can be seen that the peephole optimizer consumes a significant

proportion of the processing resources; perhaps surprisingly similar to that consumed

by the front end.

B.J.McKenzie Fast Peephole Optimzation Techniques

- 4 -

program source ar.c ctags.c cu.c

no. of lines 982 965 1128

no. of words 3111 3149 3803

no. of EM instr. before 3591 5611 4619
optimization

no. of EM instr. after 2606 3818 3413
optimization

time for C front end 1.60 1.79 2.06

time for optimizer 1.60 2.51 2.01

time for sun3 back end 3.23 5.96 4.72

time for assembler 6.64 9.07 8.34

time for loader 0.85 0.81 0.84

Table 1. Statistics regarding phases of ACK pipeline on Sun 3/60

Figure 1 graphs gives the number of passes required by the peephole optimizer for each

basic block summed over all three sources files. It also shows the frequency

distribution of the sizes of the basic blocks both before and after optimization.

From this it can be seen that there is a significant reduction in the number of EM

instructions, but also that it requires a number of passes through the block to achieve

this reduction. The last pass through each block is essentially wasted as it achieves no

improvement in the EM code. This effect becomes more pronounced as the number of

optimization patterns is increased as shown by figure 2 where the optimization time is

graphed against the number of optimized patterns used. This is a result of the increased

possibility that a replacement will be made requiring a further pass through the block

and also from an increase in the length of the hash collision chains.

B.J.McKenzie Fast Peephole Optimzation Techniques

- 5 -

RATIONALE FOR THE NEW OPTIMIZER

The analysis of the statistics presented in the previous section suggests that an algorithm

that can both reduce the overhead in detecting optimizations and reduce the requirement

of repeatedly re-scanning the basic blocks should increase the throughput of the

optimizer.

One way to reduce the re-scan would be to limit the re-scan by buffering the output and

after each successful replacement calculating how many instructions are required to be

backed up before continuing. For example, a primitive method of doing this would be

to back-up LÐ1 instructions1 where L is the length of the longest LHS of the patterns.

In practice this primitive estimate can be improved for optimizations with non-null

replacements as there is some context information available to limit the back-up.

Suppose the pattern:

a1a2 am® b1 bn

has just been successfully matched and replaced. There are four possible forms for

LHS's that require back-up; these LHS's and the amount of back-up they require

(including the replacement itself) are:

LHS pattern back-up required

a) c1 ci b1 bn d1 dj 0£i 0£j n+i

b) c1 ci b1 bj 0£i 1£j<n n+i

c) bi bn c1 cj 1<i£n 0£j n-i+1

d) bi bj 1<i<j<n n-i+1

1 LÐ1 rather than L is all that is necessary as any optimization L or more instructions back will already
have been made.

B.J.McKenzie Fast Peephole Optimzation Techniques

- 6 -

For each replacement an analysis of all possible LHS's can be made to determine

conformance with one of the above four forms and the back-up limited to the maximum

of the back-ups required.

An analysis of the optimization patterns shows that the size of the back-up ranges from

2 to 13 instructions with a mean of 4.85. More importantly, if the analysis is restricted

to those optimizations actually made during the compilation of the three source files

considered in table 1, this results in a range from 2 to 8 with an mean back-up of 3.96.

This means that the overhead resulting from re-scanning is reduced substantially from

the previous method of re-scanning the block completely if a replacement is made.

ALGORITHMS AND DATA STRUCTURES

New data structures suitable for the matching and replacement of patterns are

represented in figure 3. All matching takes place in the fixed size buffer consisting of an

array of structures, each structure representing a single decoded EM instruction. The

EM instructions are read as required from the input, decoded and then stored in a

structure of the buffer.

 This enables easy access to the instruction's opcode while searching for possible

matches and to its argument (if any) while any expression is being evaluated. The

instruction stream in the buffer can be divided into three distinct regions:

a) those instructions that have already been searched for optimizations,

b) those instructions that constitute a valid prefix for one or more patterns, and

c) those instructions that have been backed-up over after a previous replacement or

failure.

The final region may contain no instructions (indicated by end=0) in which case

attempts to access instructions from this region will cause new instructions to be read

B.J.McKenzie Fast Peephole Optimzation Techniques

- 7 -

and decoded from the input stream and deposited in the next available structure in the

buffer.

The matching process can be controlled by a deterministic finite automaton (DFA) built

from the opcodes that constitute the LHS patterns of the optimizations. Figure 4 shows

the structure of such a DFA given the following 5 optimization patterns:

loc adi w loc sbi w ® loc $1-$3 adi w

inc dec ®

inc loc adi w ® loc $2+1 adi w

inc loc sbi w ® loc $2-1 sbi w

dec loc adi w ® loc $2-1 adi w

dec loc sbi w ® loc $2+1 sbi w

Patterns are recognized by starting in state 0 and making transitions in the DFA based

on the next instruction's opcode in the matching buffer. The final states, (indicated by

double circles in the diagram,) correspond to complete LHS patterns; in these states the

success of the match is determined by evaluating any expressions associated with each

optimization with the same LHS opcodes. If none of these expressions is satisfied the

state will not be regarded as a final state and the matching process continues. If one

succeeds then the replacement RHS is constructed in the separate replacement buffer

(whose length is known to be that of the longest RHS) using the still available LHS

arguments if required. The replacement instructions can then be copied in the matching

buffer; if necessary instructions in the back-up region are moved to make room or close

up any gap. The need for such a move can be determined when the DFA is constructed,

on the basis of the difference in length of the LHS and RHS of the successful pattern.

B.J.McKenzie Fast Peephole Optimzation Techniques

- 8 -

Figure 5 shows the same DFA as figure 4 but also includes the failure transitions

calculated using the methods from the previous section. These are labelled with the

amount of back-up required before scanning continues. To simplify the diagram, failure

transitions from states that require no back-up and continue scanning from state 0 are

not shown. The figure also shows for each final state the back-up required after a

successful replacement1.

The 580 optimization patterns result in a DFA with 699 states. An attempt was made to

encode these states as a series of nested C switch statements but this exposed various

size restrictions in such constructs in a number of available C compilers. Instead, the

DFA was encoded in tables using row displacement encoding [8]. Because of the

extremely sparse nature of the DFA transition function, such encoding was extremely

successful with the 698 transitions being encoded in just 755 table entries.

After each transition to a new state, an array of functions was consulted to determine if

the new state was a final state. If this yielded a non-null entry the retrieved function was

called to check the corresponding expressions, if any, for all patterns with the same

LHS opcodes. These were written as a series of C if statements; the body of the if

statement contained code to construct the replacement instructions and perform any

subsequent copying and back-up required before returning to state 0 to continue the

search. If none of the if statements were valid or the new state was not a final state then

the tables encoded the necessary adjustments to the buffer pointers and the state to

continue from.

1 In general the back-up required for such states will depend on which RHS replacement is made. This
is not required for this simple example as there are no two patterns with the same LHS opcodes.

B.J.McKenzie Fast Peephole Optimzation Techniques

- 9 -

EFFECTIVNESS OF THE NEW OPTIMIZER

A measure of the effectiveness of the new optimizer is presented in table 2, where the

times for optimizing the three example source files are presented.

program source ar.c ctags.c cu.c

time for old optimizer 1.60 2.51 2.01

time for new optimizer 0.73 1.02 0.86

Table 2. Timing of old and new optimizers in Sun 3/60 cpu secs.

Averaged over the three source files these figures give throughputs of 2300 and 5300

EM instructions per second for the old and new optimizers respectively, so the

throughput has been improved by a factor of 2.3. The effect of the number of patterns

on optimization time for the old and new optimizers is presented in figure�6. It will be

noted that the new optimizer's time is almost independent of the number of optimization

being matched.

The instructions in the matching buffer can be flushed to the output stream whenever an

instruction that is not in any LHS pattern is read or generated by an output replacement.

In general it is not possible to calculate the largest possible size required for the

matching buffer as it is possible to construct combinations of pathological input streams

and optimization patterns that would require a matching buffer that could hold the

complete input stream before it was flushed. In practice, however, only a very modest

size buffer is required. While optimizing the three example source programs containing

a total of 12821 EM instructions the buffer was flushed 2671 times. The mean length of

the output, pattern and backup queues at the point of flushing are 2.5 , 1, and 0.2

B.J.McKenzie Fast Peephole Optimzation Techniques

- 10 -

instructions respectively while that of the sum of these is 3.6 instructions. The

maximum lengths for these same queues at flushing are 23, 1, 7 and 24 . The mean

length of the sum of these queues before each transition in the DFA is 4.6 .

Furthermore, if the buffer ever does become full, it is possible to perform a "half

flush". This involves writing out half the instructions waiting in the output queue and

then moving left all the remaining output, patterns and back-up instructions and pointers

before matching continues. The only effect of such a flush is to possibly miss some

optimizations as it limits the back-up possible after a subsequent optimization. In the

current version of the optimizer the buffer is able to hold 200 instructions and no such

half flush occurred during the optimization of the three test files. Even if such a flush

did occur it would still only result in missed optimization opportunities if (cumulative)

back-ups of the order of 100 instructions were required which is highly unlikely. An

alternative strategy would be to allow an extra passes over the intermediate code in the

exceptional situations where a half-flush occurred.

OPTIMIZER AS OPTIONAL LIBRARY

It was noted in the introduction that generation of encoded EM files by front ends was

simplified by the provision of a library of generating routines, one for each distinct EM

instruction. To generate a loc 5 instruction for example, the front end need only make

the call C_loc(5) and ensure that the corresponding library is included when the front

end is loaded.

The design of the new optimizer was carefully chosen to ensure that it was possible to

provide a similar procedural interface. This was provided via a call of the form

O_loc(5), for example, to output a loc 5 instruction to the optimizer. Each such

routine constructs an appropriate data structure in the next free location in the matching

B.J.McKenzie Fast Peephole Optimzation Techniques

- 11 -

buffer before calling the DFA matching routine. The state of the DFA is kept between

calls to the DFA routine and the DFA loop continues to make transitions, replacements

and back-ups until a new instruction is required in the matching buffer. At this point it

returns and will continue only when called again from another O_xxx routine acting like

a co-routine.

Such a structure allows the optimizer to be conveniently packaged as a library which

allows a number of flexible alternatives.

In its simplest form the library can be used to build a simple stand-alone optimizer by

providing a main program loop that reads EM instructions (using the reading EM library

routines) and then calls the O_xxx routines of the optimizer library. This is then loaded

with the EM reading, optimizing and writing routines to build a program that has the

same functionality as the old optimizer in the ACK pipeline.

program source ar.c ctags.c cu.c throughput
(secs) (secs) (secs) (lines/sec)

front end + old
optimizer 3.20 4.30 4.07 266

front end + new
optimizer 2.37 2.79 2.95 379

combined front end
and optimizer 1.95 2.19 2.38 472

Table 3. Timing for phases of ACK pipeline on Sun 3/60

Alternatively, the front-end sources can be pre-processed to change every C_xxx

procedure call to a O_xxx call, and the optimizer library is loaded with the front-end

B.J.McKenzie Fast Peephole Optimzation Techniques

- 12 -

program. This results in a front-end that produces optimized EM instructions directly

without the overhead of encoding, writing, reading and decoding the EM files between

the phases. Table 3 presents the timing for such a C language front-end using the three

example source files as input. The final column of this table gives the throughput

measured in C source lines per cpu second accumulated over the three files. This shows

that the throughput achieved by the combined front-end is 1.77 times that of the

separate front-end plus old optimizer and 1.25 times that when the new optimizer is

executed as a separate pass.

Further flexible combinations are also possible. Any step in the ACK pipeline that

outputs EM instructions can be changed to output an optimized stream of EM

instructions instead by pre-processing the sources and loading the new library. For

example, experiments were conducted with fast code expander back-ends that generate

machine code directly by expanding each EM instruction to a group of machine

instructions. These were constructed using the same procedural interface used by the

EM writing library and so could be loaded directly with the front-ends to produce a

complete compiler. These ran extremely fast but the quality of the code produced

suffered as a result of the front-ends generating EM code under the assumption that the

peephole optimizer would always remove obvious inefficiencies. Again, by pre-

processing the front-end sources and loading the optimizer library the peephole

optimization can be added to these compilers resulting in a substantial improvement in

the size and speed of the generated code with very little effect on the throughput of the

compiler.

CONCLUSIONS

The redesign of a peephole optimizer in the context of the Amsterdam Compiler Kit has

been described. By detailed analysis at the time the optimizer is constructed of the

individual optimizations to be used, limits were placed on the back-up required after

B.J.McKenzie Fast Peephole Optimzation Techniques

- 13 -

failure and successful replacement. This achieved substantial improvements in the

throughput of the optimizer. The redesigned optimizer was constructed within the

context of a Deterministic Finite Automata using a fixed sized matching buffer. This

was augmented with code to test any restrictions among the arguments of the

intermediate instructions before any successful patterns were matched and replaced in

the buffer. By providing a procedural interface, packaged as a library, flexible

combinations of front and back-ends could be achieved. The resulting reduction in the

overheads in dealing with a file-based intermediate instruction stream resulted in

substantial improvements in the throughput of the ACK pipeline.

ACKNOWLEDGEMENTS

This work was begun while the author was on leave at the Vrije Universiteit,

Amsterdam, The Netherlands. Thanks are due to Andy Tanenbaum, Ceriel Jacobs and

Dick Grune for helpful discussions about this and other problems. I thank Tim Bell and

Rod Harries for useful comments on this paper. The idea of an extra pass after a half-

flush was suggested by one of the referees.

B.J.McKenzie Fast Peephole Optimzation Techniques

- 14 -

REFERENCES

1. JOHNSTON, S.C. A tour through the portable C compiler AT&T Bell Laboratories, Murray Hill,
N.J.

2. AMMANN, U., The Zurich implementation in: Barron D.W. (1981) Pascal - The Language and its
Implementation Chichester: Wiley pp. 63-82

3. STEEL, T.B., JR. UNCOL: The myth and the fact. Annu. Rev. Autom. Program. 2 (1960), 325-
344.

4. TANENBAUM, A.S., STEVENSON, J.W., AND VAN STAVEREN, H. Description of an experimental
machine architecture for use with block structured languages. Inf. Rapp. 54, Vrije Univ.,
Amsterdam, 1980.

5. DAVIDSON, J.W., AND FRASER, C. W. The design and application of a retargetable peephole
optimizer. TOPLAS 2, 2 (April. 1980), 191-202.

6. TANENBAUM, A.S., VAN STAVEREN, H., AND STEVENSON, J.W. A practical toolkit for
making portable compilers. Commun. ACM 26, 9 (Sept. 1983), 654-660.

7. TANENBAUM, A.S., VAN STAVEREN, H., AND STEVENSON, J.W. Using peephole optimization
on intermediate code. TOPLAS 4, 1 (Jan. 1982), 21-36.

8. AHO, A.V., SETHI, R., AND ULLMAN, J.D. Compilers: Practical techniques and tools. Reading
(Masachusetts): Addison Wesley (1986), 144-146

