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Abstract. We construct unramified central simple algebras representing 2-torsion classes
in the Brauer group of a hyperelliptic curve, and show that every 2-torsion class can be
constructed this way when the curve has a rational Weierstrass point or when the base
field is C1. In general, we show that a large (but in general proper) subgroup of the 2-
torsion classes are given by the construction. Examples demonstrating applications to the
arithmetic of hyperelliptic curves defined over number fields are given.

1. Introduction

Let X be a smooth, projective and geometrically integral variety over a field K of char-
acteristic different from 2. The Brauer group of X, denoted BrX, is a generalization of
the usual notion of the Brauer group of a field. By the Purity Theorem [Fuj02], BrX is
the unramified subgroup of Brk(X), the Brauer group of the function field of X, and it is
known [Mer81] that any 2-torsion element of BrX can be written as a tensor product of
quaternion algebras over k(X). The goal of this paper is to make this explicit in the case
that X = C is a double cover of the projective line, henceforth denoted by π : C → P1.
To our knowledge, this has only previously been achieved in the special cases where π is
assumed to have a K-rational branch point (see [Wit04, Prop. 2.2], [Sko01, p.91], [RTY01]
and [CG01] and the discussion in §1.3 below).

We show how unramified central simple algebras over k(C) can be constructed from func-
tions defined on the branch locus of π, and determine precisely when two such functions
yield the same Brauer class. Furthermore, we show that every 2-torsion Brauer class can be
constructed this way when π has a K-rational branch point or when K is a C1 field. The
former case includes all elliptic curves. The latter applies when C is the generic fiber of a
double cover of a ruled surface over a separably closed field. This is used in [CV14] to obtain
an equally explicit presentation of the 2-torsion in the Brauer group of such a surface.

Of course, much of the interest in Brauer groups of varieties arises from arithmetic ap-
plications in which the variety is not known to have rational points and the base field is
emphatically not C1. Specifically, if K is a global field, then, as Manin [Man71] observed,
elements of the Brauer group can obstruct the existence of K-points, even when there is no
local obstruction. Over global fields our construction yields a presentation of a subgroup of
(BrC)[2] which can (and usually will) be proper, but remains large enough for interesting
applications to the study of rational points.

To illustrate, let us consider the example C : y2 = 2(x4 − 17). It has been shown [Lin40,
Rei42] that C is locally solvable, yet has no rational points. By work of Cassels [Cas62] and

1991 Mathematics Subject Classification. 14F22, 14G05.
The second author was partially supported by NSF grant DMS-1002933.

1



Manin [Man71] it is known that this failure of the local-global principle must be attributable
to some element in BrC. Our results allow us to write down such an element explicitly.
Namely, the quaternion algebra A := (−x2 − 4,−2)2 represents an element of BrC which
obstructs the existence of rational points on C. Indeed, a rational point P = (x0, y0) ∈ C(Q)
would give rise to a quaternion algebra, evalP (A) = (−x2

0 − 4,−2)2 ∈ BrQ, which would
necessarily be trivial over Qp for every finite prime p, but nontrivial over R.1 Thus, the class
A ∈ BrC allows us to see that the existence of a rational point on C is incompatible with
the reciprocity law in the Brauer group of Q.

In general, if C is defined over a number field and is locally solvable, our method allows us
to construct explicit representatives for all 2-torsion Brauer classes that are locally constant
as in the example above (see Theorem 1.8 for the precise statement). Modulo constant
algebras, these classes correspond to elements of X(J), the Shafarevich-Tate group of J . As
shown in [Man71, Théorème 6], the obstruction given by such an algebra is closely related
to the Cassels-Tate pairing on X(J). Using this, our results give a practical algorithm
for computing the Cassels-Tate pairing between the elements of X(J)[2] and the torsor
Pic1

C ∈ X(J) parameterizing divisor classes of degree 1 on C. In an example we carry
out such computations for a family of quadratic twists, giving an infinite family of abelian
surfaces over Q with nontrivial Shafarevich-Tate group.

1.1. Construction of the algebras. Let K be a field of characteristic different from 2 and
let π : C → P1 be an irreducible double cover of the projective line defined over K with
Jacobian J := Jac(C). We say that π is odd if π is ramified above ∞ ∈ P1(K). Otherwise
we say that π is even. Provided K has sufficiently many elements (e.g. if K is infinite) a
change of coordinates on P1 allows us to obtain an isomorphic double cover which is even.
On the other hand, π is isomorphic to an odd double cover if and only there is a K-rational
ramification point. While there is thus no loss of generality in considering only even double
covers, it is possible to obtain results that are sharper in the case of odd double covers (cf.
Theorem 1.7 and Remark 2.8). We have chosen the notation below to allow the two cases
to be treated in parallel.

By Kummer theory, C has a model of the form y2 = cf(x) with c ∈ K× and f(x) a square
free monic polynomial with coefficients in K. Moreover, when C (or equivalently deg(f)) is
odd, we can perform a change of coordinates to arrange that c = 1. Let Ω ⊆ C be the set of
ramification points of π, and let L = MapK(Ω, K) denote the étale K-algebra corresponding
to Ω. When C is even we may identify K[θ]/f(θ) with L. When C is odd, K[θ]/f(θ) can
be identified with the subalgebra L◦ ⊆ L consisting of elements ` ∈ L = MapK(Ω, K) that
take the value 1 at the ramification point above ∞ ∈ P1(K). In the odd case this gives a
canonical isomorphism L ∼= L◦ ×K.

Let x− α denote the image of x− θ in k(CL) := L⊗K k(C); in the odd case this means
x − α is the image of (x − θ, 1) in k(CL◦) × k(C). In [Sch95, PS97] x − α is applied to the
classical problem of descents on Jacobians of hyperelliptic curves (see §1.3). In this paper

1For an odd prime p the algebra can only be nontrivial if x4
0 ≡ 16 mod p (as −x2

0 − 4 must have odd
valuation), but for this one must have −2 ∈ Q×2

p since −2 ≡ 2(x4
0 − 17) mod p. Similarly, to satisfy the

equation defining C one must have x0 ≡ ±3 mod 8, from which it follows that (−x4
0 − 4,−2)2 is isomorphic

to the trivial algebra (3,−2)2 over Q2. The algebra is nontrivial over R because −x2
0 − 4 is negative.
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we study the related homomorphism,

γ′ : L× → (Brk(C))[2], ` 7→ Cork(CL)/k(C)((`, x− α)2) .

This map constructs a central simple algebra over k(C) from an element ` ∈ L×. Propo-
sition 2.4 below shows how to write γ′(`) as a tensor product of quaternion algebras over
k(C). For example, when C : y2 = 2(x4− 17) the element ` = (−θ2− 4) ∈ L× is mapped by
γ′ to the quaternion algebra A = (−x2 − 4,−2)2 considered above (see Example 2.6).

1.2. Statement of the results. We provide answers to the following questions:

(1) Which elements of L× are mapped by γ′ into BrC?
(2) When do two elements of L× map to the same class in Brk(C)?
(3) Which elements of BrC lie in the image of γ′ and, in particular, when does γ′ surject

onto BrC[2]?

Set

L =
L×

K×L×2

For a ∈ K× and ` ∈ L×, we use a and ` to denote the corresponding classes in K×/K×2 and
L, and set

La =
{
` ∈ L : NormL/K

(
`
)
∈ 〈a〉

}
,

where NormL/K denotes the map L→ K×/K×2 induced by the norm on L. Note that when
C is odd we have a canonical isomorphism L ∼= L×◦ /L

×2
◦ under which NormL/K coincides

with the map induced by the norm on L◦.
The first question above is answered by the following.

Theorem 1.1. Let ` ∈ L×. If C is odd, then γ′(`) ∈ BrC. If C is even, then γ′(`) ∈ BrC
if and only if ` ∈ Lc.

As shown in [Sch95, PS97] x − α induces a homomorphism PicC → L, where PicC is
the Picard group of C. This is defined as follows. For a closed point P ∈ C \ (Ω ∪ π−1(∞))

one defines x(P ) − α =
∏d

i=1(xi − α) ∈ L×, where P (K) = {(x1, y1), . . . , (xd, yd)}. Every
divisor class [D] ∈ PicC can be represented by a sum

∑
P nPP of such closed points, and

(x− α)([D]) is defined to be the class of
∏

P (x(P )− α)nP in L.

Theorem 1.2. The map γ′ induces a complex of abelian groups

C :
PicC

2 PicC

x−α−→ Lc
γ−→
(

BrC

Br0C

)
[2]

∂0−→ 0 ,

where Br0C := im (BrK → BrC) is the subgroup of constant algebras.

Remark 1.3. If C and π are defined over a subfield K0 ⊂ K such that K/K0 is Galois, then
all of the groups in C have a natural action of Gal(K/K0) and one sees from the definitions
that the maps are Gal(K/K0)-equivariant.

The second and third questions above ask to compute the groups

H1(C) :=
ker(γ)

im(x− α)
and H0(C) :=

ker(∂0)

im(γ)
.

For good measure, the group H2(C) := ker(x− α) is determined in Proposition 4.7.
3



Theorem 1.4. Let Pic1C denote the set of divisor classes of degree 1 on C and let Pic1
C(K)

denote the subset of divisor classes of degree 1 on CK that are fixed by Galois. Then

H1(C) =

{
Lc/L1 if Pic1C = ∅ 6= Pic1

C(K),

0 otherwise.

In particular, this group has order at most 2.

Our description of the group H0(C) is more difficult to state (see Proposition 5.1). The
next three theorems give special cases in which it is trivial.

Theorem 1.5. If (BrK)[2] = 0, then C is an exact sequence.

Theorem 1.6. If Ω admits a Galois-stable partition into two sets of odd cardinality, then C
has an exact subcomplex

0→ J(K)/2J(K)
x−α−→ L1

γ−→
(

BrC

Br0C

)
[2]→ 0 .

Theorem 1.7. If C is odd, then γ′ induces an exact sequence

0→ J(K)/2J(K)
x−α−→ L1

γ−→ (Br0C)[2]→ 0 ,

where Br0C denotes the subgroup of BrC consisting of Brauer classes that evaluate to 0 at
the K-rational ramification point of C lying above ∞ ∈ P1(K).

When K is a number field and C is generic, H0(C) does not vanish (see Remark 5.4).
However, as mentioned above, the image of γ is large enough for interesting arithmetic
applications.

Theorem 1.8. Suppose that K is a number field and C is locally solvable. If A ∈ (BrC)[2]
is locally constant (in the sense that (A⊗Kv) ∈ Br0CKv for each completion Kv of K), then
the image of A in H0(C) is trivial.

Some applications of this result are explored in §6.

1.3. Outline of the proofs. Theorems 1.1 and 1.2 are proved by explicitly computing the
residues of an algebra of the form Cork(CL)/k(C)((`, x − α)2), and then applying the purity
theorem [Fuj02]. This is carried out in §2.

The proofs of the other theorems are inspired by the classical problem of 2-descents on
Jacobians of hyperelliptic curves. Here one attempts to compute J(K)/2J(K) by describing
its image under the connecting homomorphism δ in the Kummer sequence,

0→ J(K)/2J(K)
δ→ H1(K, J [2])→ H1(K, J)[2]→ 0 . (1.1)

To make use of this in practice, one requires concrete descriptions of H1(K, J [2]) and the map
δ. When C is odd this is achieved in [Sch95] by giving an explicit isomorphism H1(K, J [2]) '
L1 whose composition with δ is equal to the x − α map. Moreover, the existence of a
rational point implies an isomorphism H1(K, J)[2] ' Br0(C)[2]. Together with (1.1) these
isomorphisms imply the existence of an exact sequence as stated in Theorem 1.7, and the
task is to verify that the description of γ given is correct. This will ultimately be achieved
by a cocycle computation. In the case that C = J is an elliptic curve with rational 2-torsion
this has been carried out in [Wit04, Prop. 2.2] (see also [Sko01, p.91]).
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In [RTY01] and [CG01] the 2-torsion in the Brauer group of a hyperelliptic curve (resp.
an elliptic curve) whose Jacobian has a nontrivial rational 2-torsion point is computed using
a similar approach. Then, using the fact that the Jacobian of an odd hyperelliptic curve
always has a nontrivial rational 2-torsion point over some extension of odd degree, they are
able to compute explicit presentations of BrC[2] when C is odd.

When C is even there are complications due to the fact that, in general, neither of the
aforementioned isomorphisms exist. In the first instance we are forced to replace the iso-
morphism of [Sch95] with the fake descent setup of [PS97]. This implies the existence of an
exact sequence,

Pic0C

2 Pic0C

x−α−→ L1
d−→ H1(K, J)[2]

〈Pic1
C〉

, (1.2)

where under suitable hypothesis (e.g. if BrK[2] = 0) the final map is surjective. When C
has no K-rational divisors of degree 1 the second isomorphism above must be replaced by
an exact sequence,

0→
(

BrC

Br0C

)
[2]

h0→
(

H1(K, J)

〈Pic1
C〉

)
[2]→ H3(K,K

×
) . (1.3)

This means that, even under the assumption that K is C1, the image of the map d in (1.2)
may only correspond to an index 2 subgroup of (BrC/Br0C)[2]. Our solution to this problem
is inspired by [Cre13b] where it is shown how the elements of Lc \ L1 correspond to certain
Pic1

C-torsors under J [2]. The natural images of these torsors in H1(K, J) lie in the fiber
above Pic1

C under multiplication by 2. This allows one to deduce the existence of a complex

PicC

2 PicC

x−α−→ Lc
d−→
(

H1(K, J)

〈Pic1
C〉

)
[2] −→ 0 , (1.4)

which is compatible with (1.2), and is exact when BrK[2] = 0. To prove Theorems 1.4
and 1.5 we must show that these maps are compatible in the sense that h0 ◦ γ = d.

1.4. Notation. Let K be a field, choose a separable closure K and let GK := Gal(K/K)
be the absolute Galois group. If M is a GK-module (with the discrete topology) and
i ≥ 0, then Hi(K,M) := Hi(GK ,M) denotes the ith Galois cohomology group. Simi-
larly Ci(K,M) and Zi(K,M) are, respectively, the groups of continuous i-cochains and
i-cocycles. More generally, if A is an étale K-algebra, then Hi(A,M) denotes the étale co-
homology group Hi

ét(SpecA,M). If A '
∏
Kj for field extensions Kj/K, Shapiro’s lemma

shows that Hi(A,M) '
∏

Hi(Kj,M). If G is an algebraic group defined over K we define
Hi(K,G) := Hi(K,G(K)), and analogously for the other groups defined above.

The Brauer group of a scheme X is the étale cohomology group BrX := H2
ét(X,Gm);

when X = SpecR is the spectrum of a ring R we define BrR := Br SpecR. Given invertible
elements a, b in an étale K-algebra A, we define the quaternion algebra

(a, b)2 := A[i, j]/〈i2 = a, j2 = b, ij = −ji〉.
We will often conflate (a, b)2 with its class in BrA where we write the group law additively.
If X and S are K-schemes, we set XS := X ×SpecK S. We also define X := XK and
XA := XSpecA, for a K-algebra A of finite type. If X is an integral K-scheme, k(X) denotes
its function field. More generally, if X is a finite union of integral K-schemes Xi, then
k(X) :=

∏
k(Xi) is the ring of global sections of the sheaf of total quotient rings. In
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particular, if A '
∏
Kj is an étale K-algebra, then XA is a union of integral K-schemes and

k(XA) '
∏

k(XKj).
Now suppose that X is a smooth, projective and geometrically integral variety over K. Let

PicX be its Picard group and let PicX be its Picard scheme. Then PicX = DivX/PrincX,
where DivX (resp. PrincX) is the group of divisors (resp. principal divisors) of X defined
over K. If D ∈ DivX, then [D] denotes its class in PicX. There is a bijective map
(PicX)GK → PicX(K), but in general the map PicX → PicX(K) is not surjective. Let
Pic0

X ⊆ PicX denote the connected component of the identity, and use Pic0X to denote the
subgroup of PicX mapping into Pic0

X(K). Then NSX := PicX/Pic0X is the Néron-Severi
group of X. If λ ∈ (NSX)GK , let PicλX denote the corresponding component of the Picard
scheme and use PicλX and DivλX to denote the subsets of PicX and DivX mapping into
PicλX(K). We write AlbX for the Albanese scheme of X and, for i ∈ Z, write AlbiX for
the degree i component of AlbX . Then AlbiX is a K-torsor under the abelian variety Alb0

X .
When X is a curve, NSX = Z, PiciX = AlbiX for all i ∈ Z and Jac(X) := Pic0

X = Alb0
X is

called the Jacobian of X.

2. Corestriction, residues and purity

Every prime valuation v on k(C) induces a residue map,

∂v : Brk(C) −→ H1 (k(C),Q/Z) ,

where k(v) denotes the residue field associated to v (see [GS06, §6.4]). By the purity theorem
[Fuj02] we have

BrC =
⋂
v

ker
(

Brk(C)
∂v−→ H1 (k(C),Q/Z)

)
,

the intersection running over all valuations corresponding to prime divisors on C.
Restricting to the 2-torsion subgroup, identifying µ2 with 1

2
Z/Z, and applying Hilbert’s

Theorem 90 the residue map corresponding to v gives a map

∂2
v : (Brk(C))[2] −→ H1 (k(v), µ2) ' k(v)×/k(v)×2 ,

which sends the class represented by a quaternion algebra (a, b)2 to

∂2
v ((a, b)2) =

(
(−1)v(a)v(b)av(b)b−v(a)

)
∈ k(v)×/k(v)×2

(see [GS06, Example 7.1.5]).
The following lemma will enable us to compute the residues for a Brauer class of the form

Cork(CL)/k(C)((`, x− α)2).

Lemma 2.1. Suppose E is a field of characteristic prime to 2 and that v is a discrete
valuation on E with residue field k(v) of equal characteristic. If F/E is a field of finite
degree over E, then for any a, b ∈ F× we have

∂2
v

(
CorF/E((a, b)2)

)
=
∏
w|v

Normk(w)/k(v)

(
(−1)w(a)w(b)aw(b)b−w(a)

)
,

the product running over all discrete valuations of F lying over v.
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Proof. Consider the following diagram:

KM
2 (F )

NF/E

��

⊕∂Mw
//

h2F,2

&&

⊕
w|vK

M
1 (k(w))

∑
w|v Nk(w)/k(v)

��

⊕h1
k(w),2

))

H2(F, µ⊗2
2 )

⊕∂2w
//

CorF/E

��

⊕
w|v H1(k(w), µ2)

∑
w|v Cork(w)/k(v)

��

KM
2 (E)

∂Mv
//

h2E,2

&&

KM
1 (k(v))

h1
k(v),2

))

H2(E, µ⊗2
2 )

∂2v
// H1(k(v), µ2)

(2.1)

The back, side, top, and bottom squares are all commutative [GS06, Cor. 7.4.3 and Prop.
7.5.1 & 7.5.5]. Therefore, all ways of traversing from KM

2 (F ) to H1(k(v), µ2) are equivalent.
By the Merkurjev-Suslin theorem [GS06, Thm. 4.6.6], h2

F,2 is surjective so the front square
is commutative.

Hilbert’s Theorem 90 yields identifications H2(E, µ⊗2
2 ) ' (BrE)[2] and H1(k(v), µ2) '

k(v)×/k(v)×2 (and similarly with F and k(w)) under which the front square of (2.1) becomes

(BrF )[2]
⊕w∂2w

//

CorF/E

��

⊕
w|v k(w)×/k(w)×2

Normk(w)/k(v)

��

(BrE)[2]
∂2v

// k(v)×/k(v)×2 .

(2.2)

The lemma now follows immediately from the explicit formula for the residue map mentioned
above. �

Proof of Theorem 1.1. Let ` ∈ L×. By the purity theorem and Lemma 2.1, we have that
γ′(`) lies in BrC if and only if

∂2
v(γ
′(`)) =

∏
w|v

Normk(w)/k(v)

(
(−1)w(`)w(x−α)`w(x−α)(x− α)−w(`)

)
(2.3)

is a square in k(v)×, for all valuations v. Since ` is a constant in k(CL), w(`) = 0 for all
valuations w. When C is odd, w(x− α) ≡ 0 mod 2, for all valuations w, so (2.3) is clearly a
square. Hence we may assume that C is even. Furthermore we can restrict our attention to
valuations v such that there exists a w | v with w(x− α) 6= 0.

For all valuations w such that w(x − α) is positive, we have that w(x − α) ≡ 0 mod 2
so (2.3) is clearly a square. Thus we may consider the valuations v for which there exists a
w | v with w(x− α) < 0. Such valuations v correspond to the points at infinity on C, and,
for every w | v, we have that w(x− α) = −1. In this case (2.3) can be simplified to

∂2
v(γ
′(`)) =

∏
w|v

Normk(w)/k(v)

(
`−1
)

= NormL/K(`−1).

This shows that γ′(`) ∈ BrC if and only if NormL/K(`) ∈ k(v)×2. But k(v) = K(
√
c), so

this is equivalent to requiring that ` ∈ Lc. This completes the proof. �
7



Lemma 2.2. γ′ induces a homomorphism γ : L → Brk(C)/Br0C such that the natural
square commutes.

Proof. The map γ′ is clearly a homomorphism. It remains to show that γ′ sends K×L×2 into
Br0C. Let a ∈ K×, ` ∈ L×; we may expand γ′(a`2) as follows

γ′(a`2) = Cork(CL)/k(C) ((a, x− α)2) + Cork(CL)/k(C)

(
(`2, x− α)2

)
= (a,Normk(CL)/k(C)(x− α))2 = (a, f(x))2 = (a, y2/c)2 = (a, c)2 .

This completes the proof since (a, c)2 ∈ Br0C. �

Theorem 1.2 is a corollary of the following proposition.

Proposition 2.3. If P ∈ C \ (Ω ∪ π−1(∞)) is a closed point, then γ′((x(P )− α)) ∈ Br0C.

Proof of Theorem 1.2. [D] ∈ PicC is represented by a linear combination
∑

P nPP of points
P as in the proposition (see [PS97, §5]), and, by definition, (x − α)([D]) is the class of∏

(x(P )− α)nP in L. �

Proof of Proposition 2.3. Let p(x) ∈ K[x] be the minimal polynomial of the x-coordinate of
P . If P is the pullback of a point from P1, then (x(P )− α) ∈ L×2 and so γ′(x(P )− α) = 0.
Assume otherwise; then γ′(x(P ) − α) = CorL(x)/K(x)

(
((−1)deg(P )p(α), x− α)2

)
; we note

this element is in BrK(x) = Brk(P1
K). We will show that the algebras γ′(x(P ) − α) and

A := (cf(x), (−1)deg(P )p(x))2 have the same residue at all points of P1
K . Since BrP1

K = BrK,
this shows that γ′(x(P )− α) and A differ by a constant algebra. To complete the proof, we
note that A ∈ ker(Brk(P1

K)→ Brk(C)).
Considered as an element of Brk(P1), the algebra γ′(x(P ) − α) has trivial residue away

from the ∞ and the roots of f(x). The residue at ∞ is NormL/K((−1)deg(P )p(α)) which is

equal to cdeg(P ) in K×/K×2.
Now we compute the residues at the roots of f(x). Let fQ be an irreducible factor of

f corresponding to a root Q of f(x), and let β be the image of θ in k(Q) = K[θ]/fQ(θ).
There is a unique valuation on k(Q)(x) ⊆ L(x) lying above Q such that ((−1)deg(P )p(α), x−
α)2 has nontrivial residue, namely the valuation corresponding to the point Q′ = (α : 1).
Furthermore, the norm map k(Q′)→ k(Q) is an isomorphism which sends α to β. Therefore,
using Lemma 2.1, we see that the residue at Q is (−1)deg(P )p(β).

Now we consider the algebra A; it has trivial residue away from P , ∞ and the zeros
of f(x). The residue at P is equal to cf(x(P )), which is a square, the residue at ∞ is
(−1)deg(P ) deg(f)(cf(∞))deg(P )((−1)deg(P )p(∞))− deg(f) = cdeg(P ), and the residue at a zero Q
of f(x) is (−1)deg(P )p(β). Therefore, the residues of A and γ′(x(P )− α) are equal. �

2.1. Corestriction as a tensor product of quaternion algebras. Using Rosset-Tate
reciprocity, one can write the corestriction of a quaternion algebra over an extension as a
sum of quaternion algebras over the base field. This is described in [GS06, Corollary 7.4.10
and Remark 7.4.12]. In our situation this allows us to write γ′(`) as a sum of quaternion
algebras over K(x). We caution the reader that the f and g appearing in the proposition
below are not to be confused with the f and g of [GS06, Corollary 7.4.10].

Proposition 2.4. Suppose ` ∈ L×\K× and let g(x) ∈ K[x] be the minimal degree polynomial
such that g(α) = `. Set r0 = f(x), r1 = g(x), and for i ≥ 0 define ri+2 to be the unique
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polynomial of degree less than deg(ri+1) such that ri+2 ≡ ri mod ri+1. Then

Cork(CL)/k(C) ((`, x− α)2) =

(
n∑
i=0

(ri+1, ri)2

)
+

(
n∑
i=0

(ai+1, ai)2

)
,

where ai is the leading coefficient of ri and n is the first integer such that rn+2 = 0.

Corollary 2.5. Modulo constant algebras, γ′(`) may be written as a sum of g(C)+1 quater-
nion algebras over K(x).

Proof. The proposition shows that, modulo constant algebras,

γ′(`)= (r1, r0)2 + (r2, r1)2︸ ︷︷ ︸
=(r1,r0r2)2

+ · · ·+ (rn, rn−1)2 + (rn+1, rn)2︸ ︷︷ ︸
=(rn,rn−1rn+1)2

is a sum of dn/2e quaternion algebras overK(x). On the other hand, the ri are the remainders
obtained by applying the Euclidean algorithm to f(x) and g(x), so n ≤ deg(f(x)) ≤ 2(g(C)+
1). �

Example 2.6. Suppose C : y2 = 2(x4 − 17). Then ` := (−α2 − 4) ∈ L× has norm 1, so
` ∈ L1. In the notation of Proposition 2.4 we have

(x4 − 17)︸ ︷︷ ︸
f(x)=r0

= (−x2 − 4)︸ ︷︷ ︸
g(x)=r1

(−x2 + 4) + (−1)︸︷︷︸
r2

Hence,

γ′(`) = (−x2 − 4, x4 − 17)2 + (−1,−x2 − 4)2

= (−x2 − 4, 2)2 + (−1,−x2 − 4)2

= (−x2 − 4,−2)2 ,

as in the introduction.

Proof of Proposition 2.4. For i ≥ 0, let Ri(y) = ri(x + y), considered as an element in the
Euclidean ring K(x)[y]. Then, for all i ≥ 0, the leading coefficient of Ri(y) is ai, and

Ri+2(y) ≡ Ri(y) mod Ri+1(y) .

Moreover, R0(−x+α) = f(α) = 0 and R1(−x+α) = g(α) = `, and Ri and Rj are relatively
prime for all i, j since ` ∈ L×. In particular, rn+1 and Rn+1 are nonzero constants. So
by [GS06, Lemma 7.4.6 and Proposition 7.5.5],

CorL(x)/K(x) ((`, x− α)2) = (R1(y)|R0(y))rt ,

where (·|·)rt denotes the Rosset-Tate symbol. For any i ≥ 0, the Rosset-Tate reciprocity law
[GS06, Theorem 7.4.9] and the Merkurjev-Suslin theorem [GS06, Theorem 4.6.6] give

(Ri+1(y)|Ri(y))rt = (Ri+2(y)|Ri+1(y))rt + (Ri+1(0), Ri(0))2 + (ai+1, ai)2

= (Ri+2(y)|Ri+1(y))rt + (ri+1, ri)2 + (ai+1, ai)2 .

From this the result easily follows by induction. �
9



2.2. When C is odd.

Lemma 2.7. Suppose that C is odd. Then, for every ` ∈ L×, γ′(`) evaluates to 0 at the
point ∞C ∈ C(K) above ∞ ∈ P1(K).

Proof. Since deg f(x) is odd, the functions (x− α) and (x−α)deg f(x)

y2
represent the same class

in k(CL)×/k(CL)×2. The latter evaluates to 1 at ∞C , from which it follows that γ′(`) is
trivial at ∞C . �

Remark 2.8. For this lemma it is not enough to assume the existence of a rational ramifi-
cation point; one must in fact have an odd double cover. For example, suppose C is defined
by y2 = x(x − a1)(x − a2)(x − a3) with ai ∈ K×. Then L1 ' (K×/K×2) × (K×/K×2) and
γ′ sends (k1, k2) ∈ K× ×K× to (k1, (x− a1)(x− a3))2 + (k2, (x− a2)(x− a3))2. Evaluating
at the ramification point ω = (0, 0) we have the algebra (k1, a1a3)2 + (k2, a2a3)2. The only
conditions these must satisfy are ki, ai ∈ K× and that the ai are distinct. Over say, K = Q,
one can easily find ki, ai for which this algebra is nontrivial.

3. Computation of cocycles

Consider the following diagram:

BrK // BrC
h

//
� _

φ
�

H1(K,PicC) //
� _

ρ
�

H3(K,Gm)

BrK // H2(K,k(C)×) //

div∗
��

j∗
// H2(K,k(C)×/K

×
) //

div∗
��

H3(K,Gm)

H2(K,DivC) H2(K,DivC)

(3.1)

We claim that this diagram is commutative and that all rows and columns are exact. The
existence and exactness of the morphisms in the top row can be deduced from exactness in
the rest of the diagram. The second row and column come, respectively, from the Galois
cohomology of the exact sequences,

1→ K → k(C)×
j→ k(C)×/K

× → 1 ,

and

1→ k(C)×/K
× div→ DivC → PicC → 0 .

The connecting homomorphism ρ is injective since DivC is a permutation module, which by
Shapiro’s lemma implies that H1(K,DivC) = 0. By Tsen’s theorem the inflation map

inf : H2(K,k(C)×)→ H2(k(C),k(C)
×

) = Brk(C)

is an isomorphism. The map φ is the composition of the inverse of this inflation map with the
inclusion BrC ⊂ Brk(C). Exactness of the first column is proven in [CTS77, Lemme 14].
Commutativity of the bottom square is obvious. The other squares commute by definition,
so the diagram is exact and commutative as claimed.
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Remark 3.1. The existence of an exact sequence as in the top row of (3.1) also follows
from the spectral sequence Hp

ét(K,H
q
ét(C,Gm)) ⇒ Hn

ét(C,Gm). Using this approach one
may define h for any smooth, projective and geometrically integral variety X/K as a map
from the algebraic Brauer group Br1(X) = ker

(
Br(X)→ Br(X)

)
to H1(K,PicX). In the

case that X is a curve, Br(X) = Br1(X) by Tsen’s theorem, and one can check that these
two definitions of h coincide, at least up to sign. See [CTS77, Annexe].

It follows from the definition of φ that the map BrK → BrC in the top row of (3.1) is
the natural map induced by the structure morphism of C. Hence, the map h in the top
row induces an injective homomorphism h0 : BrC/Br0C → H1(K,PicC). The goal of this
section is to compute the composition

Lc
γ−→ BrC

Br0C

h0−→ H1(K,PicC) (3.2)

explicitly. This is accomplished in Proposition 3.2 below, but first we need to fix some
notation.

Given ` ∈ L×, let χ` ∈ Z1(K,µ2(L)) be the corresponding quadratic character, i.e., fix

a square root m ∈ L× of `, and define χ`(σ) = σ(m)/m. Composing χ` with the bijection
µ2 → {0, 1} ⊆ Z sending −1 to 1, we obtain a map χ̃` ∈ C1(K,ZΩ). For any τ ∈ GK ,
we may consider χ̃`(τ) as a map Ω → {0, 1} ⊆ Z whose value at ω ∈ Ω will be denoted
χ̃`(τ)ω. Note that the action of an element σ ∈ GK on the map χ̃`(τ) is then given by
σ(χ̃`(τ))ω = χ̃`(τ)σ−1ω. The norm of χ` is the quadratic character χa ∈ Z1(K,µ2(K))
associated to a = NormL/K(`) ∈ K×. We let χ̃a ∈ C1(K,Z) denote the corresponding map
to {0, 1}. We can then define a 1-cochain g` ∈ C1(K,Z) by requiring that∑

ω∈Ω

χ̃`(σ)ω = 2g`(σ) + χ̃a(σ) , for all σ ∈ GK . (3.3)

When C is even we use ∞+ and ∞− to denote the points on C lying above ∞ ∈ P1. When
C is odd we use both ∞+ and ∞− to denote the unique point ∞C ∈ C(K) lying above
∞ ∈ P1(K). In both cases we set m = (∞+ +∞−) ∈ DivC.

Proposition 3.2. Let ξ` ∈ C1(K,PicC) be the 1-cochain defined by

ξ`(σ) =

(∑
ω∈Ω

χ̃`(σ)ω[ω]

)
− g`(σ)[m]− χ̃a(σ)[∞+] . (3.4)

If ` represents a class in Lc, then

(1) ξ` is a cocycle, and
(2) the image of ξ` in H1(K,PicC) is equal to (h ◦ γ′)(`).

To prove Proposition 3.2(2) we will explicitly compute the images of ξ` and γ′(`) under
the maps φ and ρ of diagram (3.1). This will involve a rather technical computation with
cocycles carried out in the lemmas below. Having accomplished this, the proposition will
follow from a simple diagram chase.

Lemma 3.3. For any σ, τ ∈ GK and ω ∈ Ω we have

(1) χ̃`(τ)σ−1ω + χ̃`(σ)ω − χ̃`(στ)ω = 2χ̃`(σ)ωχ̃`(τ)σ−1ω, and

(2) g`(τ) + g`(σ)− g`(στ) + χ̃a(σ)χ̃a(τ) = #{ω ∈ Ω : χ̃`(σ)ωχ̃`(τ)σ−1ω = 1}.
11



If, moreover, ` represents a class in Lc, then

(3) σ(χ̃a(τ)∞+) + χ̃a(σ)∞+ − χ̃a(στ)∞+ = χ̃a(σ)χ̃a(τ)m .

Proof. Since χ` is a 1-cocycle, we have χ`(στ) = σ(χ`(τ))χ`(σ). Evaluating at ω and rear-
ranging we get χ`(τ)σ−1ω = χ`(στ)ω/χ`(σ)ω. From this it follows that

χ̃`(τ)σ−1ω ≡ χ̃`(σ)ω − χ̃`(στ)ω mod 2 .

Since all of the terms are either 0 or 1 we see that

χ̃`(τ)σ−1ω + χ̃`(σ)ω − χ̃`(στ)ω =

{
2 if χ̃`(σ)ω = χ̃`(τ)σ−1ω = 1 ,

0 otherwise .

This proves (1). To prove (2) we sum both sides of (1) over all ω ∈ Ω and apply (3.3). This
gives

2g`(τ) + 2g`(σ)− 2g`(στ) + χ̃a(τ) + χ̃a(σ)− χ̃a(στ) = 2#{ω ∈ Ω : χ̃`(σ)ωχ̃`(τ)σ−1ω = 1} .

Using that

χ̃a(τ) + χ̃a(σ)− χ̃a(στ) = 2χ̃a(σ)χ̃a(τ)

(which is proved by the same argument as above), and then removing the common factor of
2 gives (2).

If ` represents a class in Lc, then a ∈ crK×2 for some r ∈ {0, 1}. If a ∈ K×2 then both
sides of (3) are trivial, so to prove (3) we may assume a ∈ cK×2. Under this assumption,
the action of GK on ∞+ is determined by the character χa, so all of the terms in (3) are
determined by the values of χ̃a(σ) and χ̃a(τ). In each of the four possibilities, one can check
directly that (3) holds. This completes the proof. �

Lemma 3.4. Assume that ` represents a class in Lc, let ξ′` ∈ C1(K,DivC) denote the
1-cochain defined by

ξ′`(σ) =

(∑
ω∈Ω

χ̃`(σ)ωω

)
− g`(σ)m− χ̃a(σ)∞+ ,

and let ∂ : C1(K,DivC)→ C2(K,DivC) denote the coboundary map on cochains. Then for
(σ, τ) ∈ GK ×GK, we have

∂ξ′`(σ, τ) = div
(
Normk(CL)/k(C)

(
(x− α)χ̃`(σ)·σ(χ̃`(τ))

))
.

In particular, ξ` is a cocycle and the image of its class under ρ is represented by the 2-cocycle

(σ, τ) 7→ Normk(CL)/k(C)((x− α)χ̃`(σ)·σ(χ̃`(τ))).

Proof. The second statement follows easily from the first.
To prove the first statement we compute ∂ξ′` explicitly. For (σ, τ) ∈ GK ×GK we have

(∂ξ′`)(σ, τ) =
∑
ω∈Ω

(σ(χ̃`(τ)ωω) + χ̃`(σ)ωω − χ̃`(στ)ωω) (3.5)

− (g`(τ) + g`(σ)− g`(στ))m (3.6)

−
(
σ(χ̃a(τ)∞+) + χ̃a(σ)∞+ − χ̃a(στ)∞+

)
. (3.7)
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Noting that
∑

ω∈Ω χ̃`(τ)ωσ(ω) =
∑

ω∈Ω χ̃`(τ)σ−1ωω and applying Lemma 3.3(1), (3.5) can be
reduced to

∑
ω∈Ω χ̃`(σ)ωχ̃`(τ)σ−1ω2ω. Lemma 3.3(3) states that (3.7) is equal to−χ̃a(σ)χ̃a(τ)m.

Using these facts and then applying Lemma 3.3(2) we obtain,

(∂ξ′`)(σ, τ) =

(∑
ω∈Ω

χ̃`(σ)ωχ̃`(τ)σ−1ω2ω

)
− (g`(τ) + g`(σ)− g`(στ) + χ̃a(σ)χ̃a(τ))m

=

(∑
ω∈Ω

χ̃`(σ)ωχ̃`(τ)σ−1ω2ω

)
−# {ω ∈ Ω : χ̃`(σ)ωχ̃`(τ)σ−1ω = 1}m

=
∑
ω∈Ω

χ̃`(σ)ωχ̃`(τ)σ−1ω (2ω −m)

=
∑
ω∈Ω

div
(
(x− x(ω))χ̃`(σ)ωχ̃`(τ)σ−1ω

)
= div

(
Normk(CL)/k(C)

(
(x− α)χ̃`(σ)·σ(χ̃`(τ))

))
.

This completes the proof. �

Lemma 3.5. Let ε ∈ C2(K,k(C)×) be the 2-cochain defined by

ε(σ, τ) = Normk(CL)/k(C)

(
(x− α)χ̃`(σ)·σ(χ̃`(τ))

)
.

Then ε is a 2-cocycle and the map φ in (3.1) sends γ′(`) to the class of ε in H2(K,k(C)×).

Proof. The composition inf ◦φ : BrC → Brk(C) is the natural inclusion. If ε̄ denotes the
cohomology class of ε, then inf(ε̄) is represented by the cocycle εk(C) defined by

εk(C)(σ, τ) = Normk(CL)/k(C)

(
(x− α)ψ̃`(σ)·σ(ψ̃`(τ))

)
,

where ψ̃` ∈ C1
(
k(C), {0, 1}Ω

)
and ψ` ∈ Z1

(
k(C), µ2(L)

)
denote the lifts of χ̃` and χ`,

obtained by considering ` as an element of k(CL). We want to show that εk(C) represents
Cork(CL)/k(C) ((`, x− α)2). We will instead show that Cork(CL)/k(C) ((x− α, `)2) is repre-
sented by the inverse of εk(C). The result then follows from standard properties of the cup
product (or because all elements in question are 2-torsion).

Standard cohomological arguments combined with Shapiro’s lemma give a sequence of
isomorphisms

Brk(CL)[2] ' H2
(
k(CL), µ⊗2

2

)
' H2

(
k(C), µ2(L)⊗2

)
' H2

(
k(C), µ2(L)

)
,

under which (x−α, `)2 is represented by the cup product, (ψx−α ∪ ψ`) ∈ Z2(k(C), µ2(L)⊗2).
Here ψx−α denotes the quadratic character ψx−α ∈ Z1

(
k(C), µ2(L)

)
associated to x−α, i.e.,

if s ∈ k(C)
×
L := (k(C)⊗K L)× is a square root of x− α, then ψx−α(σ) = σ(s)/s. The image

in H2(k(C), µ2(L)) of the cup product above is represented by the 2-cochain,

(ψx−α ∪ ψ`) (σ, τ) = ψx−α(σ)⊗ σ(ψ`(τ))

=

(
σ(s)

s

)σ(ψ̃`(τ))

=
σ(sψ̃`(τ))

sσ(ψ̃`(τ))

=

(
σ(sψ̃`(τ))sψ̃`(σ)

sψ̃`(στ)

)(
sψ̃`(στ)

sσ(ψ̃`(τ))sψ̃`(σ)

)
.
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We now note that the first factor is the coboundary of the 1-cochain(
σ 7→ sψ̃(σ)

)
∈ C1

(
k(C),k(C)

×
L

)
,

while using the obvious analog of Lemma 3.3(1) we can rewrite the second factor as

(x− α)−ψ̃`(σ)·σ(ψ̃`(τ)) .

The norm of this expression is the inverse of εk(C). This proves that ε is a cocycle, and that
εk(C) represents Cork(CL)/k(C)((x− α, `)2) as required. �

Proof of Proposition 3.2. The first statement was proven in Lemma 3.4. For the second
statement, suppose ` represents a class in Lc and let ξ̄` denote the class of ξ` in H1(K,PicC).
Lemmas 3.4 and 3.5 show that

(j∗ ◦ φ ◦ γ′)(`) = ρ(ξ̄`).

Since ρ ◦ h = j∗ ◦ φ by (3.1) and ρ is injective, this completes the proof. �

4. Cohomological setup for 2-descent

In the previous section we explicitly computed the map h ◦ γ : Lc → H1(K,PicC). In this
section we relate this to the map L1 → H1(K, J)/〈Pic1

C〉 coming from the theory of explicit
2-descents described in [PS97].

The 2-torsion subgroup of J(K) may be identified (as a Galois module) with the set of
even cardinality subsets of Ω, modulo complements. Under this identification addition in
J [2] is given by the symmetric difference (i.e., the union of the sets minus their intersection),
and the Weil pairing, denoted e2, of two subsets is given by the parity of their intersection.
By convention, for any ω ∈ Ω, the notation {ω, ω} will be understood to mean the identity
element.

For any ω0 ∈ Ω, we may define a map

eω0 : J [2]→ µ2(L) = Map(Ω, µ2(K)), P 7→ (ω 7→ e2(P, {ω, ω0})) . (4.1)

If ω1 ∈ Ω, then, for every P ∈ J [2], eω0(P ) and eω1(P ) differ by an element of µ2(K) ⊆ µ2(L),
namely the constant map ω 7→ e2(P, {ω0, ω1}). Therefore we obtain a map e : J [2] →
µ2(L)/µ2(K) that is independent of the choice of ω0 ∈ Ω. Nondegeneracy and Galois equiv-
ariance of the Weil pairing show that e is an injective homomorphism of GK-modules. On
the other hand,

∑
ω∈Ω{ω, ω0} = 0 ∈ J [2]. So e fits into a short exact sequence,

0→ J [2]
e→ µ2(L)/µ2(K)

NormL/K−→ µ2(K)→ 1 . (4.2)

Remark 4.1. When C is odd we may take ω0 to be the ramification point ∞C ∈ C(K).
The identification of L◦ ⊆ L as the subalgebra of elements taking the value 1 at ∞C then
induces a canonical isomorphism of short exact sequences of GK-modules:

0 // J [2] �
� e∞C

// µ2(L◦)
NormL◦/K

//

∼=
��

µ2(K) // 1

0 // J [2] �
� e

// µ2(L)

µ2(K)

NormL/K
// µ2(K) // 1 .
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Applying Galois cohomology to (4.2) gives an exact sequence,

µ2(K) // H1(K, J [2])
e∗
// H1(K,µ2(L)/µ2(K))

(NormL/K)∗
// H1(K,µ2) . (4.3)

If D ∈ Div1(C) is any divisor of degree 1 on C, then the 1-cocycle sending σ ∈ GK to
[σ(D) − D] ∈ Pic0(C) = J(K) represents the class in H1(K, J) of the torsor Pic1

C parame-
terizing divisor classes of degree 1. Choosing D = ω for some ω ∈ Ω gives a cocycle taking
values in J [2], whose class in H1(K, J [2]) does not depend on the choice for ω. We will abuse
notation slightly by denoting this class in H1(K, J [2]) also by Pic1

C . One can then check that
−1 maps to Pic1

C under the map µ2(K)→ H1(K, J [2]) in (4.3) (cf. [PS97, Lemma 9.1]).

Lemma 4.2. The following are equivalent:

(1) The class of Pic1
C in H1(K, J [2]) is trivial.

(2) Ω admits an unordered GK-stable partition into two sets of odd cardinality.
(3) [m] ∈ 2 PicC(K).

Proof. See [PS97, Lemma 11.2] �

Remark 4.3. Note that these equivalent conditions are trivially satisfied when C is odd.
When C is even they occur if and only if f(x) has a factor of odd degree or if the genus of
C is even and there exists a quadratic extension F of K such that f(x) is the norm of a
polynomial in F [x].

Combining (4.3) with the Galois cohomology of

1→ µ2(K)→ µ2(L)
q→ µ2(L)/µ2(K)→ 1 ,

we obtain a commutative diagram with exact rows and columns,

L×

K×L×2

NormL/K
//

� _

q∗
�

K×

K×2

H1(K,J [2])

〈Pic1C〉
� � e∗

/

Υ
&&

H1
(
K, µ2(L)

µ2(K)

) (NormL/K)∗
//

��

H1(K,µ2)

BrK[2]

(4.4)

The map labelled Υ sends ξ ∈ H1(K, J [2]) to the image of ξ ∪ Pic1
C under the map

H1(K, J [2]⊗ J [2])→ H2(K,µ2) = BrK[2]

induced by the Weil pairing [PS97, Proposition 10.3]. Exactness at the central term of (4.4)
implies the existence of an exact sequence

1→ L1
d→ H1(K, J [2])

〈Pic1
C〉

Υ→ BrK[2] . (4.5)

The exact sequence of K-group schemes

0→ Pic0
C → PicC

deg→ Z→ 0
15



induces an isomorphism H1(K, J)/〈Pic1
C〉 ' H1(K,PicC). So, composing with d, the inclu-

sions J [2] ⊆ J = Pic0
C ⊆ PicC induce maps from L1 to H1(K, J)/〈Pic1

C〉 and to H1(K,PicC).
By abuse of notation we will use d to denote any of these three maps. The following propo-
sition, due to Poonen and Schaefer, relates (4.5) to the Kummer sequence (1.1).

Proposition 4.4. The composition d◦ (x−α) and the connecting homomorphism δ in (1.1)
define the same map Pic0C → H1(K, J [2])/〈Pic1

C〉.

Corollary 4.5. There is an exact sequence

Pic0C
x−α−→ L1

d→ H1(K,PicC) .

Proof of Proposition 4.4. See [PS97, Theorem 9.4] when C is even and [Sch95, Theorem 1.1]
when C is odd (see Remark 4.1). �

The following lemma gives an explicit description of the map d.

Lemma 4.6. Suppose ` ∈ L× represents a class ` ∈ L1 and let χ̃`, g` ∈ C1(K,Z) be as
in (3.3). Then d(`) is represented by the 1-cocycle ξ′′` ∈ Z1(K, J [2]) defined by

ξ′′` (σ) =

(∑
ω∈Ω

χ̃`(σ)ω[ω]

)
− g`(σ)[m].

Proof. The map q∗ in diagram (4.4) sends the class of ` to the class represented by χ`, while
e∗ is induced by the map in (4.2), itself induced by the map eω0 of (4.1). To prove the lemma
it is enough to show that, for every σ ∈ GK , eω0(ξ

′′
` (σ)) and χ`(σ) define the same element

of µ2(L)/µ2(K).
For any σ ∈ GK ,

g`(σ)[m] = g`(σ)[2ω0] = 2g`(σ)[ω0] =
∑
ω∈Ω

χ̃`(σ)ω[ω0] .

Since [ω]− [ω0] = {ω, ω0}, we may thus rewrite ξ′′` (σ) as

ξ′′` (σ) =
∑
ω∈Ω

χ̃`(σ)ω{ω, ω0}.

Now let υ ∈ Ω. We may express eω0(ξ
′′
` (σ))(υ) = e2(ξ′′` (σ), {υ, ω0}) as follows

e2(ξ′′` (σ), {υ, ω0}) =
∏
ω∈Ω

e2({ω, ω0}, {υ, ω0})χ̃`(σ)ω =
∏

ω 6=υ,ω0

e2({ω, ω0}, {υ, ω0})χ̃`(σ)ω .

Observing that e2({ω, ω0}, {υ, ω0}) = −1 unless ω = υ, ω = ω0 or υ = ω0, it follows that

eω0(ξ
′′
` (σ))(υ) = e2(ξ′′` (σ), {υ, ω0}) =

∏
ω 6=υ,ω0

χ`(σ)ω, for any v 6= ω0.

Finally, we note that
∏

ω∈Ω χ`(σ)ω = 1 as ` ∈ L1 and obtain the desired conclusion, that
eω0(ξ

′′
` (σ))(υ) = χ`(σ)υχ`(σ)ω0 . �
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4.1. The kernel of (x − α). The kernel of (x − α) on the subgroup Pic(2)C ⊂ PicC
consisting of divisors classes of even degree is given by [PS97, Theorem 11.3]. Using this we
derive the following.

Proposition 4.7. The kernel of x− α : PicC
2 PicC

→ Lc is generated by PicC ∩ 2 PicC(K) and
the K-rational divisors on C lying above ∞ ∈ P1. In particular, if PicC = PicC(K), then

ker (x− α) =

{
〈[m]〉 if c /∈ K×2,

〈[m], [∞+]〉 if c ∈ K×2.

Proof. By [PS97, Proposition 11.1] the kernel of

x− α : Pic(2)C → L

is generated by PicC ∩ 2 PicC(K) and [m]. Clearly (x − α) maps divisors of degree m to
classes with norm in cmK×2. In particular, if c /∈ K×2, then the kernel of (x − α) does
not contain any divisor classes of odd degree. On the other hand, if c ∈ K×2, then [∞+] is
defined over K and lies in ker(x− α). �

5. Proofs of the main theorems

For n ≥ 2 define

BrnC =
{
A ∈ BrC : h(A) ∈ image

(
H1(K, J [n])→ H1(K,PicC)

)}
, and

BrΥ
2 C =

{
A ∈ BrC : h(A) ∈ image

(
ker(Υ)→ H1(K,PicC)

)}
,

where h : BrC → H1(K,PicC) is as in (3.1), Υ : H1(K, J [2]) → BrK[2] is as in (4.5) and
the map H1(K, J [n])→ H1(K,PicC) is induced by the inclusion J [n] ⊆ J = Pic0

C ⊆ PicC .

Proposition 5.1. There is an exact sequence

Pic0C
x−α−→ L1

γ−→ BrΥ
2 C/Br0C → 0 .

Proof. From Proposition 3.2 and Lemma 4.6 it is clear that h0 ◦ γ and d give the same map
L1 → H1(K,PicC). Since (4.5) is exact, im(d) = ker(Υ), so γ(L1) = BrΥ

2 C/Br0C. The
exactness stated in the proposition now follows immediately from Corollary 4.5. �

Lemma 5.2. The index of Br2C/Br0C in (BrC/Br0C)[2] divides 2. If Pic1
C(K) 6= ∅ or

Pic1
C /∈ 2 H1(K, J), then the index is 1.

Proof. Consider the following commutative diagram with exact rows.

0 //

(
BrC
Br0 C

)
[2]

h0
// H1(K,PicC)[2] // H3(K,Gm)

0 // Br2 C
Br0 C

//
?�

OO

H1(K,J)[2]

〈Pic1C〉
//

?�

OO

H3(K,Gm)

The vertical map in the middle is an isomorphism if Pic1
C(K) 6= ∅ or Pic1

C /∈ 2 H1(K, J), and
its image has index 2 otherwise. �

Lemma 5.3. If BrK[2] = 0 or Ω admits a GK-stable unordered partition into two sets of
odd cardinality, then BrΥ

2 C = Br2C.
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Proof. Either assumption implies that Υ = 0. �

Remark 5.4. In general one should not expect that BrΥ
2 C = Br2C. For example, if K is a

p-adic field, Pic1
C(K) 6= ∅ and Ω does not admit a GK-stable partition into two sets of odd

cardinality, then BrΥ
2 C 6= Br2C. To see this, recall that the cup product on H1(K, J [2]) is

nondegenerate (see [Tat63, §2]). The above assumptions therefore imply that there exists
some T ∈ H1(K, J [2]) such that Υ(T ) 6= 0. Let T ′ ∈ H1(K,PicC) be the image of T . Then
every lift of T ′ to H1(K, J [2]) is of the form T̃ = T + δ(P ) for some P ∈ J(K), and none of
them lie in ker(Υ) since Υ(T̃ ) = Υ(T ) + Υ(δ(P )) = Υ(T ) 6= 0. Here Υ(δ(P )) = 0 since Pic1

C

lies in the image of δ, which is self-orthogonal with respect to the pairing (ibid.). This shows
that if A ∈ Br2C is such that h(A) = T ′, then A /∈ BrΥ

2 C. Moreover, such an A exists as
H3(K,Gm) = 0.

5.1. Proof of Theorems 1.6 and 1.7. In the odd case we have already seen that γ maps
L1 to Br0C (Lemma 2.7). Using Lemmas 5.2 and 5.3 we see that the hypotheses imply that
BrΥ

2 C/Br0C = (BrC/Br0C)[2], so the theorems follow from Proposition 5.1. �

5.2. Proof of Theorems 1.4 and 1.5.

Lemma 5.5. We have that γ(Lc \ L1) 6⊆ Br2C/Br0C if and only if Pic1
C(K) = ∅ and

Lc 6= L1.

Proof. The statement is trivially true when Lc = L1. So suppose ` ∈ L× is a representative
for a class ` ∈ Lc \ L1. Then h0 ◦ γ(`) is represented by the cocycle ξ` ∈ C1(K,PicC) of
Proposition 3.2. Using that 2[ω] = [m] in PicC we have

2ξ`(σ) =

(∑
ω∈Ω

χ̃`(σ)ω2[ω]

)
− 2g`(σ)[m]− 2χ̃c(σ)[∞+]

= χ̃c(σ)[m]− χ̃c(σ)2[∞+]

= χ̃c(σ)([∞]− − [∞+]) .

This shows that, when considered as a cocycle taking values in Pic0C = J(K), 2ξ` represents
the class of Pic1

C in H1(K, J). This class is trivial if and only if Pic1
C(K) 6= ∅. The lemma

now follows easily from the definition of Br2C. �

Proof of Theorem 1.4. We must show that the complex

Pic(C)
x−α−→ Lc

γ−→
(

BrC

Br0C

)
[2]

is exact except possibly if Pic1C = ∅ 6= Pic1
C(K) and c̄ ∈ NormL/K(L), in which case

ker(γ)/ im(x− α) is generated by any element of Lc \ L1.
Consider the following commutative diagram.

Pic0 C
2 Pic0 C

(x−α)
//

��

L1
γ
//

��

Br2 C
Br0 C

��

PicC
2 PicC

(x−α)
// Lc

γ
// BrC
Br0 C

(5.1)

The top row is exact by Proposition 5.1, and the bottom row is a complex by Theorem 1.2.
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Let us first consider the case when Lc = L1. This happens if and only if c ∈ K×2 or c̄ /∈
NormL/K(L). When c ∈ K×2 we have [∞+] ∈ ker(x− α), and when c̄ /∈ NormL/K(L) there
are no K-rational divisor classes of odd degree [Cre13b, Corollary 4.4]. Both possibilities
imply that (x − α)(PicC) = (x − α)(Pic0C), and so exactness of the bottom row follows
from exactness of the top row of (5.1).

Now we consider the case Lc 6= L1, which implies that c̄ ∈ NormL/K(L). Then (x − α)
sends K-rational divisor classes of odd degree to Lc \L1 [Cre13b, Lemma 4.3]. If [Lc : L1] =[

PicC
2 PicC

: Pic0 C
2 Pic0 C

]
= 2, then exactness follows from the fact that the top row is exact and the

bottom row is a complex. So we may assume there are no K-rational divisors of odd degree.
Then (x − α)(PicC) = (x − α)(Pic0C) ⊆ L1, and exactness follows from exactness of the
top row of (5.1), except possibly if γ(Lc) ∩ γ(L1) 6= ∅. Lemma 5.5 shows that this can only
happen when Pic1

C(K) 6= ∅. �

Proof of Theorem 1.5. We must show that γ(Lc) = (BrC/Br0C)[2] when BrK[2] = 0. By
Proposition 5.1 and Lemma 5.3 the assumption on BrK[2] implies that γ(L1) = Br2C/Br0C.
Lemma 5.2 allows us to further assume that Pic1

C is nonzero and divisible by 2 in H1(K, J).
The index of Br2C/Br0C in (BrC/Br0C)[2] divides 2, so using Lemma 5.5 it suffices to
show that Lc \L1 6= ∅. We know that c /∈ K×2, otherwise Pic1

C would be trivial in H1(K, J).
So we are reduced to showing that there exists some ` ∈ L× such that NormL/K(`) ∈ cK×2.

For this we will make use of the theory of torsors under groups of multiplicative type as
described in [Sko01, Part I]. For X = C or X = Pic1

C , let λn denote the canonical embedding
λn : J [n] ∼= Pic0

X [n] ⊆ PicX . An n-covering of X is an X-torsor under J [n] of type λn.
Since Pic1

C ∈ 2 H1(K, J), there exists a 2-covering T → Pic1
C (see [Sko01, Proposition 3.3.5]).

Pulling this back along the canonical embedding C → Pic1
C gives a 2-covering ψ : Y → C.

For any ω ∈ Ω the pull back ψ∗[ω] is a K-rational divisor class on Y .
If ψ∗[ω] ∈ PicY , then it induces a projective embedding of Y in which the pull backs of the

ramification points on C are hyperplane sections. Up to composition with the hyperelliptic
involution on C, the 2-coverings of C with a model of this type are parameterized by the
elements in the set

{
` ∈ L : NormL/K(`) ∈ cK×2

}
(see [BS09, §3] or [Cre13b, Proposition

5.4]). In particular, it will suffice to show that ψ∗[ω] ∈ PicY , for then there exists some
` ∈ L× with norm in cK×2.

The obstruction to a rational divisor class being represented by a rational divisor is given

by a well known exact sequence, 0→ PicY → PicY (K)
θ→ BrK . In our situation, 2ψ∗[ω] =

ψ∗[2ω] = ψ∗[m] ∈ PicY . So θ(ψ∗[ω]) ∈ BrK[2], which is trivial by assumption. This
completes the proof. �

Remark 5.6. If one is willing to assume that K is C1, then the final argument of the proof
above can be simplified: the equation NormL/K(`) = ca[L:K] with ` ∈ L and a ∈ K gives a
homogeneous equation of degree [L : K] in [L : K] + 1 variables. If K is C1, then it must
have a solution.
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6. Relation to the Cassels-Tate pairing

Throughout this section K is a number field. Let X be a smooth, projective, and geomet-
rically integral variety X over K. There is a well known pairing due to Manin,

〈·, ·〉Br : Br(X)×X(AK) −→ Q/Z , 〈A, (Pv)〉Br 7→
∑
v

invv evalPv(A) ,

where the sum runs over all places of K. By the Hasse reciprocity law, the left kernel
contains Br0(X) and the right kernel contains the diagonal image of X(K) in X(AK). For
any subgroup B ⊆ Br(X), we denote by X(AK)B the subset of X(AK) which is orthogonal
to B with respect to the pairing. Define

BrxX =
{
A ∈ Br1X : h(A) ∈ im

(
X(Pic0

X)→ H1(K,PicX)
)}

,

where Br1(X) is the algebraic Brauer group defined in Remark 3.1 (where the map h is also
defined), and for an abelian variety A over K, X(A) denotes its Tate-Shafarevich group.

The following is a slight generalization of [Sko01, Theorem 6.2.3], which is due to Manin.
Similar methods have been used to give a conditional proof that the Brauer-Manin obstruc-
tion to 0-cycles of degree 1 on smooth projective curves is the only one (see [ES08, The-
orem 1.1], [CT99, Proposition 3.7], [Sai89, Theorem 8.4]). As a corollary we observe that
[Sto07, Corollary 7.7] holds for all curves, not just those possessing a K-rational divisor class
of degree 1. The notation AlbiX for components of the Albanese scheme was defined in §1.4.

Theorem 6.1. Assume that X(AK) 6= ∅. Let A = Alb0
X , V = Alb1

X and suppose A ∈ BrxX
is such that h(A) is the image of W ∈ X(Pic0

X) = X(A∨). Then, for any adelic point
(Pv) ∈ X(AK),

〈A, (Pv)〉Br = −〈V,W 〉ct ,
where 〈·, ·〉ct denotes the Cassels-Tate pairing on X(A) ×X(A∨). In particular, X(AK)A

is either empty or equal to X(AK), and X(AK)BrxX = ∅ if and only if Alb1
X is not divisible

in X(A).

Corollary 6.2. If X is a smooth, projective, and geometrically integral curve, then for any
n,

X(AK)n-ab = X(AK)BrX[n] ,

i.e., the adelic information coming from an n-descent is precisely the information coming
from the n-torsion in the Brauer group.

Remark 6.3. The set X(AK)n-ab is defined in [Sto07]; [Sko01, Theorem 6.1.2] shows that
X(AK)n-ab = X(AK)BrnX , where BrnX ⊆ BrX is as defined at the beginning of §5. Thus
the corollary can also be interpreted as saying that the elements of BrX[n] \BrnX provide
no additional information regarding the adelic points of X. In fact, the proof below shows
that the elements of BrX[n] \ BrnX provide no information whatsoever.

Proof of Corollary 6.2. As remarked above, X(AK)BrX[n] ⊆ X(AK)BrnX = X(AK)n-ab. So if
X has no locally solvable n-coverings, then both sets in question are empty. We may thus
assume that X has an everywhere locally solvable n-covering. This implies that Pic1

X = nW
for some W ∈ X(J) and that 〈·, ·〉ct is alternating [PS99]. Now suppose w ∈ BrxX has
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the same image in H1(K,PicX) as W . For any adelic point (Pv) ∈ X(AK), applying the
theorem gives:

〈w, (Pv)〉Br = 〈Pic1
X ,W 〉ct = 〈nW,W 〉ct = n〈W,W 〉ct ,

which is trivial since the pairing is alternating. Hence, X(AK)w = X(AK).
In the exact sequence,

Z→ H1(K,Pic0
X)→ H1(K,PicX)→ 0 ,

1 ∈ Z maps to the class of Pic1
X . It follows that the quotient of (BrX/Br0X)[n] by

BrnX/Br0X is cyclic and generated by the image of w. The result follows since we have
shown that w does not obstruct any adelic points. �

Proof of Theorem 6.1. For the case that X is a torsor under an abelian variety (e.g., X = V )
see [Man71, 6. Théorème] or [Sko01, Theorem 6.2.3]. To derive the general result from this,
note that the canonical morphism φ : X → V induces an isomorphism Pic0

X
∼= Pic0

V , and
consequently a commutative diagram,

X(Pic0
V )

φ∗

� � // H1(K,Pic0
V )

φ∗

// H1(K,PicV )

φ∗

��

Br1 V/Br0 V

φ∗

��

X(Pic0
X) �
�

// H1(K,Pic0
X) // H1(K,PicX) Br1X/Br0X .

Suppose W ∈X(Pic0
X) and A ∈ BrxX are as in the statement. From the diagram above

it is clear that there exists A′ ∈ Brx V such that φ∗A′ ≡ A mod Br0X. Then we have

〈A, (Pv)〉Br = 〈φ∗A′, (Pv)〉Br = 〈A′, φ(Pv)〉Br = −〈V,W 〉ct ,
since the theorem holds for V .

The final statement follows from the fact that the left and right kernels of the Cassels-Tate
pairing are the maximal divisible subgroups [Tat63]. �

6.1. Computing Brauer-Manin Obstructions. The following proposition proves Theo-
rem 1.8.

Proposition 6.4. Let C be a double cover of P1
K with C(AK) 6= ∅. Then

(BrxC/Br0C)[2] ⊆ γ(Lc) .

Proof. Set Brx,2C = (BrxC) ∩ (Br2C). By [PS97, Theorem 13.3], the subgroup of
H1(K, J [2])/〈Pic1

C〉 mapping into X(J)[2]/〈Pic1
C〉 is contained in the kernel of Υ. It follows

that Brx,2C ⊆ BrΥ
2 C, and so Brx,2C/Br0C ⊆ γ(L1) by Proposition 5.1. If BrxC[2] ⊆

Brx,2C, then there is nothing more to prove. Hence we may assume that there exists
some w ∈ BrxC[2] \ Brx,2C. Then, as in the proof of Corollary 6.2, the quotient of
(BrxC/Br0C)[2] by Brx,2C/Br0C is of order 2.

The existence of w implies that there exists W ∈ X(J) such that 2W = Pic1
C 6= 0. By

[Cre13b, Theorem 4.6] this implies that there exists some ` ∈ Lc \ L1 such that resv(`) ∈
(x − α)(Pic1CKv), for every completion Kv of K. Since γ ◦ (x − α) = 0 by Theorem 1.2,
we must have γ(`) ∈ BrxC/Br0C. On the other hand, γ(`) /∈ Br2C/Br0C by Lemma 5.5.
Thus γ(`) must generate the quotient of (BrxC/Br0C)[2] by Brx,2C/Br0C. Therefore,
(BrxC/Br0C)[2] ⊆ γ(Lc). �

21



Remark 6.5. Regardless of whether C is locally solvable or not, the proof of Corollary 6.2
shows that C(AK)(Brx C)[2] = C(AK)Brx,2 C . When C has a Kv-rational divisor of degree 1
for every completion Kv of K, then Brx,2C/Br0C ⊆ γ(L1). In this case the subgroup of L1

mapping into BrxC/Br0C is the fake 2-Selmer group of J , denoted Sel2fake(J). An algorithm
for computing it is described in [PS97]. Together with the following proposition, this gives
a practical algorithm for computing the induced map

Sel2fake(J)→ X(J)[2]

〈Pic1
C〉

〈Pic1C ,·〉−→ Q/Z ,

at least when C(AK) 6= ∅.

Proposition 6.6. Suppose C : y2 = cf(x) is an even double cover of P1 defined over K
with C(AK) 6= ∅ and that the coefficients of cf(x) are integral. Let β ∈X(J), and suppose
` represents ` ∈ Lc such that d(`) and β give the same class in X(J)/〈Pic1

C〉. Then, for any
(Pv) ∈ C(AK) ,

〈Pic1
C , β〉ct =

∑
v∈S

invv evalPv Cork(CL)/k(C)(`, (x− α))2 .

The sum here runs over the primes in the finite set S consisting of all primes of K appearing
with multiplicity greater than or equal to 2 in 4c2 · disc(f) and all archimedean primes.

Proof. If v does not lie in S, then both (x−α)([Pv]) and ` have even valuation at all primes
w above v, by [BS09, Lemma 4.3] and [Sto01, Proposition 5.10]. For such v the invariant
invv evalPv Cork(CL)/k(C)(`, (x− α))2 = 0. �

6.2. An Example.

Theorem 6.7. Let c be a square free integer, let C be the locally solvable double cover of P1
Q

given by
C : y2 = c(x2 + 1)(x2 + 17)(x2 − 17) .

Then (−1, x2 − 17)2 ∈ BrxC, and if W ∈X(J) denotes a corresponding torsor, then

〈Pic1
C ,W 〉ct =

#
{
p | c : p is an odd prime, and

(
17
p

)
=
(
−1
p

)
= −1

}
2

+
sign(c)− 1

4

Furthermore, if 〈Pic1
C ,W 〉ct = 1/2, then dimF2 X(J)[2] ≥ 2 and neither W nor Pic1

C is
divisible by 2 in H1(Q, J).

Proof. We first note that (−1, x2 − 17)2 = γ′(`), for the element

` = (1, 1,−1) ∈ Q(
√
−1)×Q(

√
−17)×Q(

√
17) ' L.

It is easy to see that C is locally solvable. In fact, it has a Qp-rational ramification point

for every prime p. One can also check that resp(`) ∈ (L⊗Qp)
×/Q×p (L⊗Qp)

×2 is trivial for

every prime p (this is weaker than requiring resp(`) ∈ Q×p (L ⊗ Qp)
×2 everywhere locally).

This imples that γ′(`) ∈ BrxC. Consequently there is a torsor W ∈X(J) whose class in
X(J)/〈Pic1

C〉 is represented by d(`). By Theorem 6.1 and Proposition 6.6, for any (Pp) ∈
C(AQ), we have

〈Pic1
C ,W 〉ct = 〈γ′(`), (Pp)〉Br =

∑
p

invp
(
evalPp(−1, x2 − 17)2

)
, (6.1)
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To ease notation, let us set εp = invp
(
evalPp(−1, x2 − 17)2

)
. Note that, by Theorem 6.1, εp

depends on c, but not on the subsequent choice for Pp.

Lemma 6.8. Let p be an odd prime. Then

εp =

{
1/2 if

(
−1
p

)
=
(
−17
p

)
= −1 and p | c ,

0 if else .

ε2 =

{
0 if c ≡ 1, 2 or 5 mod 8 ,

1/2 if c ≡ 3, 6 or 7 mod 8 ;

ε∞ =

{
0 if c > 0 ,

1/2 if c < 0 ;

The lemma is proved below; using it gives:

ε2 = #

{
p | c :

(
−1

p

)
= −1

}
/2

= #

{
p | c :

(
−1

p

)
=

(
17

p

)
= −1

}
/2 + #

{
p | c :

(
−1

p

)
=

(
−17

p

)
= −1

}
/2

= #

{
p | c :

(
−1

p

)
=

(
17

p

)
= −1

}
/2 +

∑
p|c

εp ,

from which the formula in the theorem follows easily.
Now let us prove the final statement of the theorem. Since C(AK) 6= ∅, the pairing 〈·, ·〉ct

is alternating [PS99]. Tate’s proof that the left and right kernels of the pairing are the
maximal divisible subgroups [Tat63, Theorem 3.2] shows that 〈·, ·〉ct induces a nondegenerate
alternating pairing on X(J)[2]/2X(J)[4]. As is well known, this implies that the order of
this group is a square. If 〈Pic1

C ,W 〉ct = 1/2, then the group is nontrivial, and hence
has dimension at least 2. To show that this also implies that Pic1

C /∈ 2 H1(K, J), we use
[Cre13a, Theorem 3], which states that an element of X(J) is divisible by n in H1(K, J) if
and only if it pairs trivially with the image of X1(K, J [n]) in X(J)[n]. In our situation we
know that W lies in this image of X1(K, J [2])→X(J), because ` is locally trivial. �

Proof of Lemma 6.8. Suppose p is odd. If
(

17
p

)
= −1, then ` is trivial since −1 is a square

in Q(
√

17) ⊗ Qp. So suppose
(

17
p

)
= 1, let a ∈ Qp be a square root of 17 and set Pp =

(a, 0) ∈ C(Qp). Then

εp = invp eval(a,0)(−1, x2 − 17)2

= invp eval(a,0)

(
−1, c(x2 + 17)(x2 + 1)

)
2

= invp(−1, c · 22 · 32 · 17)2

= invp(−1, c)2 ,

which is nontrivial if and only if p | c and
(
−1
p

)
= −1. To arrive at the statement in the

lemma, note that if
(
−1
p

)
= −1 and

(
17
p

)
= 1, then

(
−17
p

)
= −1.
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Clearly ε2 depends only on the class of c in Q×2 /Q×2
2 . The table below gives, for each square

class, a value x(P2) ∈ Z for which f(x(P2)) ≡ c mod Q×2
2 , i.e., x(P2) is the x-coordinate of

a Q2-point on the curve y2 = cf(x). The corresponding invariant is then

ε2 = inv2(−1, x(P2)2 − 17)2 ,

The claim above follows immediately from the table.

c mod Q×2
2 1 2 3 5 6 7 10 14

x(P2) 9 5 2 15 13 0 11 3
ε2 0 0 1/2 0 1/2 1/2 0 1/2

For any real point P∞ ∈ C(R) \Ω, ε∞ = inv∞(−1, x(P∞)2− 17)2, which can be nonzero if
and only if there are real points with |x(P∞)| <

√
17, which occurs if and only if c < 0. �
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