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A CHARACTERIZATION FOR A SET OF PARTIAL 
PARTITIONS TO DEFINE AN X-TREE 

CHARLES SEMPLE AND MIKE STEEL 

ABSTRACT. Trees whose vertices are partially labelled by elements of a finite 
set X provide a natural way to represent partitions of subsets of X. The con­
dition under which a given collection of such partial partitions of X can be 
represented by a tree has previously been characterized in terms of a chordal 
graph structure on an underlying intersection graph. In this paper, we obtain 
a related graph-theoretic characterization for the uniqueness of a tree repre­
sentation of a set of partial partitions of X. 

1. INTRODUCTION 

Throughout this paper, X denotes a non-empty finite set. Let T be a tree with 
vertex set V, and suppose we have a map <P : X ~ V with the property that, for 
all v E V with degree at most two, v E ¢(X). Then the ordered pair (T; </>),which 
we frequently denote by T, is called an X -tree. For example, Figure l(i) shows an 
X-tree with X = {1, 2, ... , 9}. If <Pis a bijection from X into the set of pendant 
vertices of T, then Tis a phylogenetic X-tree. In this case, we can view X as the 
set of pendant vertices of T, and so we frequently denote the pendant vertices of T 
by the elements of X as <P is implicitly determined. A binary phylogenetic X-tree is 
a phylogenetic X -tree in which every non-pendant (or internal) vertex has degree 
three. Figure 2(i) shows a binary phylogenetic X-tree with X = {1, 2, ... , 7}. 
Two X-trees (T1; </>1) and (T2; </>2), where T1 = (Vi, E1) and T2 = (Vi, E2), are 
isomorphic if there exists a bijection 'ljJ : Vi ~ Vz which induces a bijection between 
E1 and E2 and satisfies </>2 = 'l/Jo</>1, in which case, 'ljJ is unique. We write (T1; ¢1) ~ 
(T2; ¢2) if (T1; ¢1) is isomorphic to (T2; ¢2). 

Phylogenetic trees and X -trees arise in the study of hierarchical classification. 
For a general overview of X-trees, including a description of the natural equivalence 
between X-trees and certain set systems due to Buneman [4], see [1, Chapters 1 
and 5]. Motivated by two fundamental problems in hierarchical classification, this 
paper has two main results, Theorem 1.2 and Corollary 1.4. Each result is a graph­
theoretic characterization for when, up to isomorphism, there is a unique X-tree 
satisfying particular properties. In this section, we set up the necessary terminology 
and notation, and state Theorem 1.2 and Corollary 1.4. The proof of Theorem 1.2 
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FIGURE 1. (i) T. (ii) T!{l,3,4,5,7,8}. (iii) T'. 

is delayed until Section 3. The next section contains some known results that will 
be needed in the proof of Theorem 1.2. Section 4 completes the paper with a 
brief discussion about the statement of Theorem 1.2 and several further results 
concerning these two fundamental problems. 

A partial partition of X is a partition of a non-empty subset of X into at least 
two sets (called cells), at most one of which may be empty. If these cells are 
A1 ,A2, ... ,An, where n 2: 2, we denote the partial partition by AilA2l .. ·IAn. 
Note that the ordering of the cells in a partial partition is arbitrary. The partial 
partition is called a partial split if n = 2. Furthermore, if n = 2 and A1 U A 2 = X, 
then A 1 I A 2 is called a split of X. 

For a set I; of partial partitions of X, we denote the set 

{(A, a): A is a non-empty cell of a and a EI;} 

by C(I;). Throughout this paper, the only significant part of an element of C(I;) 
is the first coordinate. For this reason and for brevity, we denote such an element, 
(A, a) say, by just A. 

Let T = (T; ¢) be an X-tree, let I; be a set of partial partitions of X, and let 
AilA2I · · · IAn be an element of I;, where n 2: 2. If there is a set F of edges of 
T such that, for all distinct i,j E {1,2,. .. ,n}, ¢(Ai) and ¢(Aj) are subsets of 
the vertex sets of different components of T\F, then T displays AilA2I ···I An; the 
edges of F are said to display A1JA2J · · · IAn (in T). The X-tree T displays I; if 
every element of I; is displayed by T. If e is an edge of T such that every set of edges 
that display AiJA2I · · · IAn contains e, then e is distinguished by AiJA2l · · · IAn (in 
T). If each edge of T is distinguished by an element of I;, then we say that T is 
distinguished by I; or I; distinguishes T. The set I; defines T if T displays I; and 
all other X -trees that display L; are isomorphic to T. An important observation to 
note is that if L; defines an X -tree, then this X-tree must be a binary phylogenetic 
X-tree. 

Let L; be a set of partial partitions of X. The partial partition intersection graph 
of 2::, denoted int(L:), is the graph whose vertex set is C(I;) and has the property 
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FIGURE 2. (i) A binary phylogenetic X-tree T that displays 
~ = { {1, 2}1{3, 5}, {3, 4}1{2, 6, 7}, {5, 6}1{1,4, 7}}. (ii) The graphs 
int(~) (solid edges) and G(T, ~) (all edges). 
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that two vertices are joined by an edge precisely if their intersection is non-empty. 
(A characterization of partition intersection graphs, when every member of~ is a 
(full) partition of X, is given in [8].) A graph is chordal if every cycle with at least 
four vertices has an edge connecting two non-consecutive vertices. A chordalization 
(or triangulation) of a graph G = (V, E) is a graph G' = (V, E') in which G' is 
chordal and E ~ E'. A graph G is a restricted chordal completion of int(~) if G is 
a chordalization of int(I:) and the following property holds: if A and A' are non­
empty cells of an element of~, then A and A' are not adjacent in G. A restricted 
chordal completion G of int(~) is minimal if, for every non-empty subset F of edges 
in E(G) - E(int(~)), G\F is not chordal. 

To illustrate some of these notions, take X = {1, 2, ... , 7} and let 

~ = { {1, 2}1{3, 5}, {3, 4}1{2, 6, 7}, {5, 6}1{1, 4, 7} }. 

Let T be the binary phylogenetic X-tree shown in Figure 2(i). Then T displays~. 
A (unique) restricted chordal completion of int(~) is shown in Figure 2(ii), where 
int(~) is the graph induced by the solid lines of this graph. 

We can now describe the first of the two fundamental problems mentioned earlier. 
Suppose that X is a set of objects. In evolutionary biology, X may be a set of 
species. A particular character (or attribute) of a subset of the objects induces 8: 
partial partition of X so that the states of this character correspond to the cells 
of this partial partition and an element of X is in some cell precisely if it takes 
this state for this character. Suppose that T is a phylogenetic X -tree representing 
the historical "evolution" of the members in X, and suppose that A1IA2I · · · IAn, 
where n 2 2, is a partial partition of X. Ifwe make the assumption that the states 
of a character evolve along the edges of T so that a change to some particular 
state occurs at most once, then T displays A1IA2l · · · IAn. Let~ be a set of partial 
partitions of X. In the more general setting of X -trees, the first problem is to 
determine if there exists an X-tree that displays ~ and;· if there is such an X -tree, 
determine whether it is unique up to isomorphism. Deciding the first part is an 
NP-complete problem [3, 10]. However, Theorem 1.1 (indicated in [5] and [9], and 
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formally proved in [10]) is a graph-theoretic characterization for when there exists 
such an X -tree. 

Theorem 1.1. Let :E be a set of partial partitions of X. Then there exists an 
X -tree that displays :E if and only if there exists a restricted chordal completion of 
int(:E). 

Our first main result, Theorem 1.2, is the uniqueness analogue of Theorem 1.1. 
Let T be an X-tree and let X 1 be a subset of X. We denote the minimal subtree of 
T containing X 1 by T(X 1

). (Observe that T(X 1
) may not be an X 1-tree.) ~ow let 

A and A1 be subsets of X. If the intersection of the vertex sets of T(A) and T(A1
) 

is non-empty, then T(A) nT(A1
) is said to be non-empty; otherwise, T(A) n T(A1

) 

is empty. Note that if AilA2I · · · IAn is a partial partition of X and Tis an X-tree 
that displays AilA2I · · · IAn, then T(Ai) n T(Aj) = 0 for all distinct i and j in 
{ 1, 2, ... , n}. Let :E be a set of partial partitions of X. The subtree intersection 
graph of T induced by :E is the graph whose vertex set is C (:E) and which has 
the property that two vertices, A and A' say, are joined by an edge precisely if 
T(A) n T(A') is non-empty. This graph is denoted by G(T, :E). As an example, 
consider the binary phylogenetic X -tree T and the set :E of partial partitions of 
X shown in Figure 2. Then G(T, :E) is the graph, with dashed lines included, in 
Figure 2(ii). 

Theorem 1.2. Let :E be a set of partial partitions of X. Then :E defines an X -tree 
if and only if the following two conditions are satisfied: 

(i) there is a binary phylogenetic X -tree that displays :E and is distinguished by 
:E; and 

(ii) there is a unique minimal restricted chordal completion of int(:E). 

Furthermore, if T is the X -tree defined by :E, then T is a binary phylogenetic X -
tree that displays :E and is distinguished by :E, and G(T, :E) is the unique minimal 
restricted chordal completion of int(:E). 

The proof of Theorem 1.2 is the substance of Section 3. In Section 4, we highlight, 
with two examples, that conditions (i) and (ii) in the statement of Theorem 1.2 
cannot be weakened. We remark here that a different type of combinatorial char­
acterization has recently been given in [2] for when a minimum sized set of partial 
X-splits, where each cell of every partial X -split has size two, defines an X-tree. 

We next describe two basic operations on X -trees. Let T = (T; </>) be an X -tree 
and let X' be a subset of X. The restriction of T to X', denoted TIX', is the 
X'-tree obtained from T(X') by suppressing all vertices of degree two that are not 
in </>(X'). The operation of restriction is illustrated by (i) and (ii) in Figure 1. Now 
let e be an edge of T with end-vertices u and v, and let Ve be the vertex of T / e that 
identifies u and v. Then the X-tree obtained from T by contracting e is (T / e; <Pe), 
where <Pe is the map from X to the vertex set of T / e defined by 

</>e(x) = {</>(x) if x ¢ ¢-
1
(u) U ¢-

1
(v), 

Ve if x E ¢- 1 (u) U ¢-1 (v). 
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The X-tree (T / e; <Pe) is denoted by T / e. An X-tree T' is said to be obtained 
from T by contraction if T 1 can be obtained from T by contracting a sequence 
of edges. It is easily checked that the ordering of the edges in such a sequence is 
arbitrary. Note that if E is a set of partial partitions of X and T is an X -tree that 
is distinguished by E, then no contraction of T displays E. 

Let X1 and X 2 be subsets of X. An Xi-tree Ti resolves an X2-tree 72 if 72 
can be obtained from a restriction of Ti by contraction (or, equivalently, 72 is a 
restriction of a contraction of Ti), in which case, Ti is said to be a resolution of 72, 
This provides a convenient partial order on the set of X'-trees which we denote 
by :::;, where X' is a subset of X. -In the case above, we write 72 :::; Ti. As an 
example, in Figure 1 we have T' :::; T. 

We now state the second fundamental problem. For i E { 1, 2, ... , n }, let 1i be an 
Xi-tree, where Xi is a subset of X. A basic task in hierarchical classification is to 
combine all of the members (the input trees) of LJ~=l {'Ii} into a single X-tree (the 
output tree) so that, for each i, the output tree is a resolution of Ti,. Informally, this 
means that, for each i, the output tree contains all of the "branching" information 
of 1i. Of course, this may not be possible, and so we have our second fundamental 
problem: determine if there exists an X -tree T such that, for each i, Ti, :::; T and, if 
there is such an X -tree, determine whether it is unique up to isomorphism. Like the 
first fundamental problem, deciding the first part of this problem is an NP-complete 
problem [10], but again there is a graph-theoretic characterization for when there 
exists an X -tree with the desired properties. Corollary 1.3 is a consequence of 
Theorem 1.1. It does not seem to be explicitly stated anywhere, but, as. shown 
below, it is easily deduced from results in [10]. 

Let T = (T; </>)be an X-tree and let e be an edge of T. Then e is the unique edge 
of T that displays the X-split </>- 1 (Vi)l</>- 1(V2), where Vi and Vz are the vertex 
sets of the components of T\e. We denote the collection of X-splits of T that are 
displayed by the edges of T by E(T). 

Corollary 1.3. For i E {1,2, ... ,n}, let 1i be an Xi-tree, where Xi~ X. Let 
E = LJ~=l E('Ji). Then there exists an X -tree T such that, for all i, 1i :::; T if and 
only if there exists a restricted chordal completion of int(E). 

Proof. It is shown in [10, Proposition 2(2)] that an X-tree T' displays E if and 
only if 1i :::; T' for all i. Corollary 1.3 now readily follows from Theorem 1.1. D 

Our second main result, Corollary 1.4, is the uniqueness analogue of Corollary 1.3 
and is easily deduced using [10, Proposition 2(2)] in combination with Theorem 1.2. 

Corollary 1.4. For i E {1,2, ... ,n}, let 'Ji be an Xi-tree, where Xi~ X. Let 
E = LJ7=1 E('Ji). Then there is a unique X-tree that resolves 'Ii, for all i, if and 
only if the following two conditions are satisfied: 

(i) there is a binary phylogenetic tree X -tree that displays E and is distinguished 
by E; and 

(ii) there is a unique minimal restricted chordal completion of int(E). 
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Furthermore, if T is the unique X -tree that resolves 'Yi for all i, then T is a binary 
phylogenetic X -tree that displays r: and is distinguished by 2:, and G(T, 2:) is the 
unique minimal restricted chordal completion of int(L.:). 

2. SOME USEFUL RESULTS 

All of the results presented in this section are needed for the proof of Theorem 1.2. 
The first result is a characterization of chordal graphs published independently by 
Buneman [5], Gavril [6], and Wal~er [11]. The proof of Theorem 1.1 in [10] is based 
on this result. 

Theorem 2 .1. The fallowing statements are equivalent for a graph G with vertex 
set V: 

(i) G is chordal; 
(ii) G is the intersection graph of a collection of subtrees of a tree; and 

(iii) There exists a tree T whose vertex set C is the set of maximal cliques of G 
such that, for each v E V, the subgraph of T induced by the elements of C 
that contain v is a subtree of T. 

Corollary 2.2 is an immediate consequence of the equivalence of Parts (i) and (ii) 
of Theorem 2.1. 

Corollary 2.2. Let r: be a set of partial partitions of X, and let T be an X -tree. 
Then G ( T, r:) is chordal. 

The next two lemmas are implicit in the proof of Theorem 1.1 given in [10]. 
However, because of their role in the proof of Theorem 1.2, we include their proofs. 
We freely use Lemma 2.3 in Section 3. 

Lemma 2.3. Let T be an X -tree, and let r: be a set of partial partitions of X. 
Then G(T, L.:) is a restricted chordal completion of int(:E) if and only if T displays 
r:. 

Proof. If T displays r:, then, as the edge set of int(L.:) is a subset of the edge set of 
G(T, :E), it follows by Corollary 2.2 that G(T, :2:) is a restricted chordal completion 
of int(Z:). 

Conversely, suppose that T does not display r:. Then there is a pair of non-empty 
cells Ai and A2 of a partial partition of L.: such that T(A1) n T(A2) is non-empty. 
Therefore {A1, A2} is an edge of G(T, L.:), and so, although G(T, L.:) is chordal, it 
is not a restricted chordal completion of int(:E). This completes the proof. 0 

Lemma 2.4. Let L.: be a set of partial partitions of X. If G is a restricted chordal 
completion of int(:E), then there exists an X -tree T such that E( G(T, L.:)) <,;;:; E(G). 

Proof. If G is disconnected, then there is a partitioning of X based upon the com­
ponents of G as an element x of X can only be an element of a vertex label of 
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exactly one component. With this in mind, it is easily seen that that, provided the 
result holds for when G is connected, it also holds for when G is disconnected. 

Suppose G is connected with vertex set V. By Theorem 2.1, there exists a tree 
T' = ( C, E) whose vertex set C is the set of maximal cliques of G such that, for each 
v EV, the subgraph of T' induced by the elements of C that contain vis a subtree 
of T'. We complete the proof of Lemma 2.4 by defining an X -tree T = (T; ¢) via 
T' and showing that E(G(T, :E)) ~ E(G). 

Let a be an element of X. Since int(:E) is a subgraph of G, the set Va of vertices 
of G that contain a induce a clique of G, and so there is an element Ca of C in 
which Va is a subset. Identify a .with this vertex and set ¢(a) = Ca. Repeat this 
process for the remaining elements of X. Define T to be the tree obtained from 
T 1

· by suppressing all vertices of degree at most two that are not identified by an 
element of X. We claim that E(G(T, :E)) ~ ~(G). 

Let Ai and Az be elements of C(:E), and suppose that Ai and A2 are non­
adjacent in G. Then the subtrees T{ and T~ of T' induced by the elements of 
C that contain Ai and A2 , respectively, do not intersect. Since the elements of 
Ai can only be identified with vertices in Tf, for each i E {1, 2}, it follows that 
T(A1) n T(A2) is empty. Therefore Ai and A2 are non-adjacent in G(T, :E), and 
the claim follows. D 

If :E is a set of partial partitions of X and G is a restricted chordal com­
pletion of int(:E), then there no guarantee that there exists an X-tree T such 
that G(T, :E) = G. For example, suppose that X = {1, 2, 3, 4, 5, 6} and :E = 
{ {1, 2}j{3, 5}, {2, 3}j{ 4, 5}, {3, 4}j{5, 6} }. Let G be the graph obtained from int(:E) 
by adding the edge { {1, 2}, {3, 4} }. Clearly, G is a restricted chordal completion 
of int(:E). FUrthermore, it is easily deduced that all of the X-trees that display :E 
are resolutions of the X -tree that is a path consisting of four vertices labelled, in 
order, {1, 2}, {3}, { 4}, and {5, 6}. Since the subtrees of this X-tree induced by 
{1, 2} and {3, 4} do not intersect, it follows by Lemma 2.3 that there is no X-tree 
with the desired property. 

An immediate consequence of Lemma 2.4 that becomes useful in the last part of 
the proof of Theorem 1.2 is Corollary 2.5. 

Corollary 2.5. Let :E be a set of partial partitions of X, and let G be a minimal 
restricted chordal completion of int(:E). Then there exists an X -tree T such that 
G(T, :E) = G. 

We noted earlier that if :E is a set of partial partitions of X that defines an 
X -tree, then this X -tree must be a binary phylogenetic X-tree. Combining this 
note with [10, Proposition 6], we get Proposition 2.6. 

Proposition 2.6. Let :E be a set of partial partitions of X. If :E defines an X -tree 
T, then T is a binary phylogenetic X -tree that displays :E and is distinguished by 
:E. 
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3. PROOF OF THEOREM 1.2 

The proof of Theorem 1.2 is based on Lemma 3.1. Indeed, most of the work in 
proving this theorem goes into proving this lemma. Theorem 1.2 is formally proved 
after the proof of Lemma 3.1. 

Lemma 3.1. Let E be a set of partial X -splits. Suppose that the following two 
conditions are satisfied: 

(i) there is a binary phylogenetic X -tree that displays E and is distinguished by 
E; and 

(ii) there is a unique minimal restricted chordal completion of int(E). 

Then E defines an X -tree. 

Before proving Lemma 3.1, we establish several results, the first of which may 
have independent interest, so we call it a theorem. 

Theorem 3.2. Let E be a set of partial X -splits, and let T be a binary phylogenetic 
X -tree that displays E and is distinguished by E. Let T' be an X -tree that displays 
E. If the edge set of G(T', E) is a subset of the edge set of G(T, E), then T' 2:! T. 

Proof. Let T = (T; ¢) and T' = (T'; ¢'). We prove Theorem 3.2 by showing that 
the result holds if T' has the additional property that, for each edge e' of T', the 
edge set of G(T' / e', E) is not a subset of the edge set of G(T, E). To see that this 
is sufficient, suppose that T' does not have this additional property. Then there is 
an X-tree T" = (T"; ¢") that displays E, satisfies T" ::::; T', and has the property 
that, for each edge e11 of T", the edge set of G(T" / e11

, E) is not a subset of the edge 
set of G(T, E). If T" 2:! T, then, as T is a binary phylogenetic X-tree, T" = T'. 
Thus we may assume that T' does indeed have the additional property. 

Let E and E' denote the edge sets of G(T, E) and G(T', E), respectively. Since 
every edge of T is distinguished by an element of E and since T is phylogenetic, it 
follows that, for every element x of X, the set { x} is a vertex of int(E). Therefore 
the map ¢1 is one-to-one, for otherwise E' g; E. We freely use this fact throughout 
the proof. 

The proof is by induction on the cardinality of X. If JXJ E {2, 3}, then the 
theorem clearly holds. Let JXJ = n, where n 2 4, and assume that the theorem 
holds for when JXJ = n - 1. 

Since T is a tree, there exists a pair of pendant vertices of T, u and v say, with 
the property that u and v are adjacent to the same vertex, w say, of T. As T is 
binary and JXJ 2 4, u and v are the only pendant vertices adjacent tow. Let a and 
b be the elements of X such that ¢(a) = u and ¢(b) = v. We make two observations. 
The first observation is that, as each edge of Tis distinguished by an element of E, 
{a, b} is a vertex of int(E). Furthermore, if C is a vertex of int(E) and { {a, b}, C} 
is an element of E, then either a orb is an element of C. The second observation 
is that, as T displays E, there is no element, AJB say, of E such that a EA, b EB, 
JAJ 2 2, and IBI 2 2. 



DEFINING AN X-TREE 9 

Let u' and v' be the vertices of T' such that ¢' (a) = u' and ¢' ( b) = v'. The 
following result enables us to break the proof into two manageable cases. 

3.2.1. In T', the path P' from u' to v' contains at most two edges and, moreover, 
the one possible intermediary vertex in P' is not an element of <P'(X). 

Proof. It follows from the first observation that there is no intermediary vertex on 
the path from u' to v' that is an element of ¢'(X), for otherwise E' is not a subset 
of E. Now suppose, to the contrary, that P' contains at least three edges. Then 
there exists an edge, e' say, in P' that is incident with neither u' nor v'. Let wi 
and w~ be the end-vertices of e' so· that u' is in the same component of T'\e' as 
wi. Since no intermediary vertex of P' is an element of ¢' ( X) and since T' is an 
X -tree, wi and w~ both have degree at least three. By our additional assumption 
on T', E(G(T' /e', I:)) <£ E(G(T, I:)). Therefore there are elements C and D of 
C(I:) such that wi E T'(C), w~ tt T'(C), w~ E T'(D), wi tt T'(D), and {C, D} is 
not an element of E(G(T, I:)). 

If a tt C, then {{a, b}, C} is an element of E'. However, as b tt C, {{a, b}, C} 
is not an edge of E; a contradiction. Therefore a E C. Similarly, b E D. Since 
wi tt ¢'(X), it follows that !Cl 2: 2. Similarly, !DI 2: 2. But then, by considering T, 
it is easily seen that T( C) n T(D) is non-empty, contradicting the fact that { C, D} 
is not an element of E(G(T, I:)). This completes the proof of (3.2.1). D 

Let L:b be the set of partial (X - { b} )-splits obtained from I: by making the 
following replacements: (i) if {a}!B is an element of I: such that b E B, then 
replace {a}!B with 0!Bb, where Bb is obtained from B by replacing b with a; (ii) if 
{ b} I A is an element of I: such that a E A, then replace { b} I A with 01 A; and (iii), for 
each remaining element of I:, replace b with a. The fact that I:b is a set of partial 
splits on X - { b} follows from the second observation. 

By (3.2.1), there are two cases to consider depending upon whether the number 
of edges in P' is one or two. 

Case (a). The number of edges in P' is two. 

Let n be the tree obtained from T by contracting the edges { u, w} and { v, w}, 
and let Wb denote the vertex of n identifying u, v, and w. Let ¢b be the map from 
X - {b} into the vertex set of n defined by </Jb(a) = Wb and, for all XE X - {a, b}, 
</Jb(x) = ¢(x). Let Tt, = (I'b; </Jb)· Since Tis a binary phylogenetic X-tree, Tt, is a 
binary phylogenetic (X - {b} )-tree. Denoting the vertex of T' adjacent to both u' 
and v' by w', let T{, be the tree obtained from T' by contracting the edges { u', w'} 
and { v', w'}, and let w~ denote the vertex of T{, that identifies u', v', and w'. Let 
<Pb be the map from X - {b} into the vertex set of T{, defined by ¢b(a) = wl, and, 
for all x EX - {a, b}, ¢!,(x) = ¢'(x). Let Tb= (T{,; ¢!,). 

Consider the assumptions made on T and T' in the statement of Theorem 3.2. 
We next show that the analogous assumptions hold for Tt, and T;, respectively, with 
I:b replacing I:. 



10 CHARLES SEMPLE AND MIKE STEEL 

It is easily checked that Tii displays L,b and Tii is distinguished by I:b. Suppose 
that Tb does not display L,b· Then, as T' displays I:, it is easily seen that there must 
be an element, AilBi say, of I: such that except for {u',w'} and {v',w'} no other 
edges of T' displays AilBi in T', and so its counterpart in L,b is not displayed by Tb. 
Clearly, this counterpart in L,b is not produced via a type (i) or (ii) replacement. 
Suppose that { u', w'} is distinguished by Ail Bi in T'. Without loss of generality, we 
may assume that q/(Ai) is a subset of the vertex set of the component of T'\ { u', w'} 
containing u', in which case, b <f. Ai. If a is not an element of Ai, then, by the first 
observation, { {a, b}, Ai} is not an element of E, but { {a, b}, Ai} is an element of E'; 
a contradiction. Thus a E Ai. Since the counterpart of Ail Bi in I:b is not produced 
via a type (i) or (ii) replacement, IA; I 2:: 2, and therefore, as w' <f. q/ (X), it follows 
by the second observation that b <f. B1. This implies, by the first observation, that 
{{a,b},B1} is not an element of E. However, {{a,b},Bi} is an element of E'; a 
contradiction. Hence {u',w'} is not distinguished by AilB1. Similarly, {v',w',} is 
not distinguished by A 1IB1 · Therefore { u', w'} and { v', w'} are precisely the edges 
of T' that display A1IBi in T'. Without loss of generality, we may assume that 
q/ (Ai) and q/ (B1) are subsets of the vertex sets of the components of T'\ { u', w'} 
and T'\ { v', w'} containing u' and v', respectively. Assuming a is not an element 
of Ai and arguing as above, we deduce that a E A1. Similarly, b E B1. Since 
the counterpart of AilB1 in L,b is not produced via a type (i) or (ii) replacement, 
IA1I 2:: 2 and IB11 2:: 2, contradicting the second observation. Thus Tb does indeed 
display L,b· 

Let Eb and E£ denote the edge sets of the graphs G(Tii, I:b) and G(Tb, Lib), 
respectively.· We now show that E£ ~ Eb· Let Cb and Db be elements of C(Lib), 
and suppose that {Cb, Db} is an element of E£. Let C and D be the counterparts 
of Cb and Db in C(Li), respectively. If a is an element of both Cb and Db, then 
{Cb, Db} .is an element of Eb. Therefore we may assume that a is not an element 
of both Cb and Db. We next show that { C, D} is an element of E'. The only 
plausible case where this may not happen is when Tb(Cb) n Tb(Db) = {w~} and 
T'(C) n T'(D) = 0, in which case, { {a, b}, C} and { {a, b}, D} are both elements of 
E'. Since E' ~ E, it follows by the first observation that either a orb is an element 
of C and either a orb is an element of D. But then a is an element of both Cb and 
Db, contradicting our assumption earlier in the paragraph. Thus { C, D} E E'. So, 
as E' ~ E, { C, D} E E, which in turn implies that {Cb, Db} E Eb. Hence E£ ~ Eb 
as claimed. 

At la.st, we can invoke the induction assumption whic~ implies that Tb is isomor­
phic to Tti. Using the facts that T£ is obtained by contracting { u', w'} and { v', w'} 
in T', and that each of { u, w} and { v, w} of T is distinguished by an element of 
I:, it is easily deduced that T' is isomorphic to T. This completes the proof of 
Case (a). 

Case (b). The number of edges in P' is one. 

In this case, we argue, as in Case (a), to deduce that Tb is isomorphic to Tti. How­
ever, in this case, as each of { u, w} and { v, w} of T is distinguished by an element 
of I: in T, we deduce a contradiction. This completes the proof of Theorem 3.2. D 
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The next lemma, [9, Rule 2], is needed for the proof of Lemma 3.4. 

Lemma 3.3. Let AilB1 and A2IB2 be partial X -splits. Let T be a phylogenetic 
X -tree that displays AilB1 and A2IB2. If T(A1) n T(A2), T(A2) n T(B1), and 
T(B1) n T(B2) are all non-empty, then T displays (A1 U A2)IB2. 

Let T = (T; ¢) be a phylogenetic X-tree, and let e = { u, v} be an internal edge 
of T that displays the partial X-split AIB so that A is a subset of the vertex set 
of the component of T\e containing u. Then e is strongly distinguished by AIB if 
the vertex set of each component of T\u, except for the one containing v, contains 
an element of A and the vertex set of each component of T\v, except for the one 
containing u, contains an element of B. Observe that if e is strongly distinguished 
by AIB, then e is distinguished by AIB. Moreover, if T is a binary phylogenetic 
K -tree, then the notions of distinguished and strongly distinguished are equivalent. 

Lemma 3.4. Let :Ebe a set of partial X-splits. Let 7i. = (T1; ¢1 ) and'Tz = (T2 ; ¢2 ) 

be phylogenetic X -trees that display :E. Suppose that every internal edge of T1 is 
strongly distinguished by an element of :E and, moreover, !:El is equal to the number 
of internal edges of Ti. If the edge set of G(7i., :E) is a subset of the edge set of 
G(Tz, :E), then 7i. :S Tz. 

Proof. The proof of Lemma 3.4 is by induction on the number of internal edges 
of Ti. If Ti has exactly one internal edge, then, as Tz displays :E, it is clear that 
'Ii ::; Tz. Suppose that T1 has n internal edges, where n 2: 2, and assume that the 
result holds for all phylogenetic X -trees with a smaller number of internal edges. 
Throughout the proof, we denote the edge sets of G(7i., :E) and G('Tz, :E) by E1 and 
E2, respectively. 

Let e be an internal edge of T1 with the property that every vertex adjacent to 
one of its end-vertices is a pendant vertex. Note that Ti must have such an edge. 
Denote the end-vertex of e with this property by w1 and denote the other end-vertex 
of e by W2. Let Ji, fz, . . . , fr and g1, g2, . . . , g 8 denote the pendant edges of T1 that 
are incident with w1 and w2 , respectively. Let h1, h2 , ••• , ht denote the internal 
edges ofT1, other thane, that are incident with w2 • Note that r 2: 2 and s+t 2: 2 
since 7i. is a phylogenetic X-tree. Let AjB be the (unique) partial X-split of :E 
that strongly distinguishes e. Without loss of generality, we may assume that A = 
{ a1, az, ... , ar}, where a1, az, ... , ar are the pendant vertices of T1 corresponding 
to the end-vertices of Ji, Jz, ... , fr, respectively. Let bi, bz, ... , bs+t be elements 
of B such that, for each distinct j, k E {1, 2, ... , s + t}, bj and bk are in different 
components of Ti \wz. Thus e is strongly distinguished by Al{b1, bz, ... , bs+t} in 
7j_. 

Let :Ee be the set of partial X-splits obtained from :E by removing AIB and, for 
each i E {1, 2, ... , t}, replacing the element AilBi of :E that strongly distinguishes 
hi by (Ai U A)jBi, where Ai n A is non-empty. 

Consider 'Ii/ e. Evidently, 7i. / e is a phylogenetic X -tree that displays :Ee and 
!:Eel is equal to the number of internal edges of Ti/ e. Furthermore, as every internal 
edge of T1 is strongly distinguished by an element of :E in 'Ii, it is easily seen that 
every internal edge of Ti/ e is strongly distinguished by an element of :Ee in 'Ii. Now 
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consider 72. We next show that 72 displays Ee. Since 72 displays E, it suffices to 
show that, for each i E {1, 2, ... , t}, 72 displays (AiuA)IBi. It is straightforward to 
deduce that each of 11(A)n11(Ai), 11(Ai)n11 (B), and 11(B)n11(Bi) is non-empty. 
Therefore, as Ei ~ E2, each of 72(A) n 72(Ai), 72(Ai) n72(B), and 72(B) n 72(Bi) 
is non-empty. Hence, by Lemma 3.3, 72 displays (Ai U A)IBi. 

To invoke the induction assumption, we lastly show that the edge set Eie of 
G(11/e, Ee) is a subset of the edge set E2e, of G(72, Ee). Let { C, D} be an element of 
Eie· Then 11/e(C)n11/e(D) is non-empty. There are three possibilities to consider 
depending upon whether C or D is of the form Ai U A for some i E {1, 2, ... , t}. 

Evidently, if C and D are of the forms Ai U A and Aj U A, for some i, j E 
{1, 2, ... , t}, then 72(C) n72(D) is non-empty. Suppose that exactly one of C and 
D is of the form Ai U A for some i. Without loss of generality, we may assume 
that Chas this property. If D n A is non-empty, then 72(C) n 72(D) is non-empty. · 
Therefore assume that D n A is empty. Then, as every element of A is adjacent 
to wi in Ti and 11/e(C) n 11/e(D) is non-empty, it follows that 11(Ai) n 11(D) is 
non-empty. This in turn implies that 72(A)n72(D) is non-empty as E1 ~ E2, and 
therefore 72(C) n 72(D) is non-empty. 

Now suppose that neither C nor D is of the form AU A. For this possibility, we 
show that 11 (C)n11 (D) is non-empty, thus showing that 72(C)n72(D) is non-empty 
as Ei ~ E2. Assume that 11(C) n 11(D) is empty. Then, as 11/e(C) n 11/e(D) is 
non-empty, wi E 11 ( C) and w2 </. 11 ( C). Therefore, by the assumptions on I: in the 
statement of the theorem, C must equal A. However, A is not an element of C(Ee)· 
This contradiction completes the proof of the last possibility, and so E1e ~ E2e· 

It now follows by the induction assumption that 11/e :S 72. Suppose that 72 is 
not a resolution of 11. Then 72 must resolve 11/e so that, for every internal edge 
e' of T2 with the property that A is a subset of the vertex set V' of one component 
of T2 \e1

, B n V' is non-empty. But this implies that 72 does not display AIB. This 
contradiction completes the proof of Lemma 3.4. D 

The next corollary generalizes Lemma 3.4. 

Corollary 3.5. Let E be a set of partial X -splits. Let 11 and 72 be phylogenetic X -
trees that display E. Suppose that every internal edge of Ti is strongly distinguished 
by an element of E. If the edge set of G(11, E) is a subset of G(72, E), then 11 :S 72. 

Proof. Let 11 = (Ti; ¢1), and choose E' to be a subset of E so that IE'I is equal 
to the number of internal edges of T1 and every internal edge of T1 is strongly 
distinguished by an element of E'. Since E(G(11, E)) ~ E(G(72, E)), it follows that 
E(G('Ii., E')) ~ E(G(72, E')). Therefore, by Lemma 3.4, 11 :S 72 as required. D 

We now combine Theorem 3.2 and Corollary 3.5 to formally prove Lemma 3.1. 

Proof of Lemma 3.1. Let T be a binary phylogenetic X-tree that displays E and is 
distinguished by E, and let G be the unique minimal restricted chordal completion 
of int(E). Combining Corollary 2.5 and Theorem 3.2, we deduce that G(T, E) = G. 
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Suppose that T' is an X-tree that displays E. Then there is a phylogenetic X-tree 
T" that displays E such that T' :::; T". Since T is binary and is distinguished by 
E, every internal edge of T is strongly distinguished by an element of E. Therefore, 
by Corollary 3.5, T:::; T". But Tis a binary phylogenetic X-tree, and so T" ~ T. 
As T is distinguished by E, it follows that T' = T". We conclude that E defines 
T. 0 

Proof of Theorem 1.2. Suppose that E defines an X-tree T. Then, by Proposi­
tion 2.6, T satisfies the properties of (i). Let G be a restricted chordal completion of 
int(E). We next show that there is a unique minimahestricted chordal completion 
of int(E), namely, G(T, E). 

Let G' be a minimal restricted chordal completion of int(E) so that E(G') is 
a sttbset of E(G). Then, by Corollary 2.5, there exists an X-tree T' such that 
E(G(T',E)) = E(G'). By Lemma 2.3, T' displays E and so, as E defines T, we 
must have T' ~ T. Since E(G(T', E)) ~ E(G), it follows that E(G(T, E)) ~ E(G). 
Hence there is a unique minimal restricted chordal completion of int(E), namely, 
G(T, E). 

It now follows that the proof of Theorem 1.2 is completed by showing that if (i) 
and (ii) hold, then E defines an X-tree. We begin with three lemmas. For n 2': 2, 
let A1IA2l · · · IAn be an element of E, and consider the set Ui~i<j~n{AilAj}. Let 
E' denote the collection of all such sets that are obtained in this way from the 
elements of E. 

Lemma 3.6. An X -tree T' displays E if and only if T' displays E'. 

Proof. Let A1IA2I ···I An be an element of E, where n 2': 2. To prove Lemma 3.6, 
we simply need to show that T' displays A1 IA2 I · · · I An if and only if T' displays 
LJ 1 ~ i<j ~ n {Ai I Aj}. The "only if" part of this last statement clearly holds. To 
prove the converse, suppose that T' does not display A1JA2l · · · IAn. Then, for 
some distinct i and j of {1, 2, ... , n}, the set T'(Ai) n T'(Aj) is non-empty. But 
then T' does not display AilAj, and so T' does not display LJ 1~i<j~n {AilAj}. This 
completes the proof of Lemma 3.6. 0 

The first of the next two lemmas is a useful observation which is repeatedly use 
in the rest of the proof. 

Lemma 3. 7. Let T' be an X -tree that displays E (or, equivalently, displays E'). 
Let A and B be elements of C(E) such that An B is empty. Then {A, B} is an 
edge of G(T', E) if and only if {A, B} is an edge of G(T', E'). 

Lemma 3.8. Let T' be an X -tree that displays E (or, equivalently, displays E' ). 
If G(T',E') is a minimal restricted chordal completion o/int(E'), then G(T',E) is 
a minimal restricted chordal completion of int(E). 

Proof. Suppose that G(T', E') is a minimal restricted chordal completion of int(E'), 
but G(T', E) is not a minimal restricted chordal completion of int(E). Then, 
by Corollary 2.5, there is an X-tree T" that displays E such that E(G(T",E)) 
is a proper subset of E(G(T',E)). By Lemma 3.6, T" displays E', and so, by 
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Lemma 2.3, G(T", 'E') is a restricted chordal completion of int('E'). We obtain a 
contradiction by showing that E(G(T",'E')) is a proper subset of E(G(T','E')). 

Let {A', B'} be an edge of G(T", 'E'). If A' n B' =/= 0, then {A', B'} is an edge 
of G(T', 'E'). Therefore assume that A' n B' = 0. Then, by Lemma 3.7, {A', B'} is 
an edge of G(T", 'E), and so, as E(G(T", 'E)) C E(G(T', 'E)), {A', B'} is an edge 
of G(T', 'E). By Lemma 3. 7, {A', B'} is an edge of G(T', 'E'). Thus E(G(T", 'E')) 
is a subset of E(G(T','E')). To see that this inclusion is proper, let {A,B} be 
an element of E(G(T', 'E)) - E(G(T", 'E)). Clearly, An B is empty, and so using 
Lemma 3.7 twice, we get that -{A, B} is an edge of G(T', 'E'), but is not an edge of 
G(T", :E'). Hence E(G(T", :E')) is a proper subset of E(G(T', :E')), thus completing 

.~the proof of Lemma 3.8. 0 

We now combine Lemmas 3.6 and 3.8 with Lemma 3.1 to complete the proof of 
Theorem 1.2. 

Suppose that (i) and (ii) hold. We first show that (i) and (ii) of Lemma 3.1 
hold with :E' replacing "'E". Using Lemma 3.6, it is easily seen that an X-tree that 
satisfies (i) of Theorem 1.2 satisfies (i) of Lemma 3.1. Now suppose, to the contrary, 
that there is not a unique minimal restricted chordal completion of int(:E'). Let G~ 
and G~ be two distinct minimal restricted chordal completions of int(:E'). By Corol­
lary 2.5, there exists two distinct X-trees, T{ and 'If say, such that G(T{, :E') = G~ 
and G(T{, :E') = G~. By Lemma 3.8, G(T{, 'E) and G(T{, :E) are both minimal 
restricted chordal completions of int(:E). vVe show that the last two graphs are 
distinct, thus getting our desired contradiction. 

Since G~ and G~ are distinct, there is an edge { C', D'} of G~ that is not an 
edge of G~. Clearly, C' n D' = 0. Therefore, by Lemma 3.7, { C', D'} is an edge of 
G(T{, :E), but is not an edge of G(T{, 'E). Thus G('Ii, :E) and G(Tz, :E) are distinct; 
a contradiction. Hence there is a unique minimal restricted chordal completion of 
int('E'). 

With (i) and (ii) of Lemma 3.1 satisfied it now follows that :E' defines an X-tree, 
which in turn implies by Lemma 3. 6 that :E defines an X -tree, completing the proof 
of Theorem 1.2. 0 

4. EXAMPLES AND FURTHER RESULTS 

We begin this section with two examples highlighting the fact that conditions (i) 
and (ii) in the statement of Theorem 1.2 cannot be weakened. 

The first example shows that if (i) holds, the uniqueness part of (ii) in the 
statement of Theorem 1.2 is necessary. Let X = {1, 2, ... , 6} and let 'E be the set 

{ { 1, 2}J{3, 5}, {3, 4}J{2, 6}, {5, 6}J{l, 4}} U {{i}JX - {i} : i E {1, 2,. .. , 6}} 

of partial partitions of X. The two binary phylogenetic X-trees in Figure 3 display 
'E, and thus :E does not define an X-tree. However, as shown in [2], the first of 
these binary phylogenetic X-trees (as well as the second) also distinguishes :E, and 
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1 2 1 4 

6 3 5 2 

FIGURE 3. Two binary phylogenetic X-trees with X = {1, 2, ... , 6}. 

1,2,7 

5,6 3,4 

FIGURE 4. An X-tree that is distinguished by 
{ {1, 2}1{3, 5}, {3, 4}1{2, 6, 7}, {5, 6}1{1, 4, 7} }. 

so, by Theorem 1.2, there are at least two minimal restricted chordal completions 
of int(E). 

The next example shows that even deleting "minimal" in the second condition 
in the statement of Theorem 1.2 is no guarantee that the theorem holds without 
the full strength of (i). Let X = {1, 2, ... , 7} and let E be the set 

{{1,2}J{3,5},{3,4}1{2,6,7},{5,6}1{1,4,7}} 

of partial partitions of X. The graph in Figure 2(ii) is the unique restricted chordal 
completion of int(:E). However, every resolution of the X-tree in Figure 4 displays 
E. The tree in Figure 2(i) is one such X-tree. Hence, by Theorem 1.2, no X-tree 
displaying E can be a binary phylogenetic X -tree that is distinguished by E. 

We finish this section with some minor results relating to Theorems 1.1 and 1.2. 

Proposition 4.1. Let E be a set of partial partitions of X, where IXI 2 3. If E 
defines a binary phylogenetic tree, then int(E) is connected. 

Proof. Suppose, to the contrary, that int(E) is disconnected. We prove the case 
for when int(E) has two components, G1 and G2 say. This argument extends 
straightforwardly to cover the case when int(E) has at least three components. 

For each i E {1, 2}, let Ci denote the vertex set of Ci, and let Xi denote the 
union of the elements of Ci. As int(E) is disconnected, X is the disjoint union of 
X 1 and X 2 . Let T be the binary phylogenetic tree defined by E. Since IXI 2 3, 
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either IX1I 2: 2 or IX2I 2: 2. Without loss of generality, we may assume that 
IX1I 2: 2: Since both X1 and X2 are non-empty, and since IXI 2: 3, there exists a 
binary phylogenetic tree on X, different from T, that can be constructed by adding 
a vertex to an edge of TIX1 and either (i) adding a vertex to an edge of TIX2, and 
then joining the two new vertices with an edge if jX2j 2: 2, or (ii) joining the new 
vertex with the vertex of TIX2 with an edge if jX21 = 1. In either case, denote the 
resulting binary phylogenetic tree on X by T'. 

We now show that G(T', Li) is a restricted chordal completion of int(I:). By 
Corollary 2.2, G(T', Li) is chordal.-Let A and A' be non-empty cells of an element 
of Li. We need to show that A and A' are non-adjacent in G(T', Li). If A and A' 
arejn different components of int(Li), then A and A' are non-adjacent in G(T', Li). 
Suppose that A and A' are in the same component of int(L,). Without loss of 
generality, we may assume that both A and A' are vertices of G1. Then both A 
and A' are subsets of X1. Since T displays Li, T displays every partial partition of 
Li containing A and A'. Therefore AjA' is a partial split of T. By our construction 
of T', this means that AjA' is a partial split of T'. Therefore A and A' are non­
adjacent in G(T', Li). Thus G(T', Li) is a restricted chordal completion of int(Li), 
and so, by Lemma 2.3, T' displays Li. This contradiction to the fact that Li defines 
T completes the proof of Proposition 4.1. D 

Let Li be a collection of partial partitions of X, and let x be an element of X. For 
any subset A of X, let Ax denote the set A - { x} and, for any a in Li, let ax denote 
the partial partition of X obtained from a by deleting x from every cell. Provided 
{ x} is not an element of C (Li), let 'Lix = {ax : a E Li} We say x is redundant (relative 
to Li) if the x-deletion map 'ljJ from Li into 'Lix defined by 1/;(a) =ax induces a graph 
isomorphism between int(Li) and int('Lix)· 

Lemma 4.2. Let x be an element of X, and let Li be a set of partial partitions of 
X. If x is redundant, and Tx is an Xx -tree that displays 'Lix, then there exists an 
X -tree T that displays Li and satisfies Tl Xx = Tx. 

Proof. Let V denote the subset of C(Li) in which each element contains x. Thus 
every two elements of Vis adjacent in int('Li). Let Vx = {Ax : A EV}. 

Since int(Li) ~ int('Lix) under the x--deletion map, every two elements of Vx 
are adjacent in int('Lix)· Consequently, for all pairs Ax and A~ in Vx, we have 
Tx(Ax) n Tx(A~) i= 0. By the Helly property for subtrees of a tree (see [7, p. 92]), 
it follows that n Tx(Ax) i= 0. 

Select a vertex v E nA.EVx Tx(Ax), and let T be the X-tree obtained from Tx 
by mapping x to v. Clearly TIXx = Tx, so provided T displays :E the proof is 
complete. 

Let Band B' be elements ofC(Li). IfTx(Bx)nTx(B~) i= 0, then T(B)nT(B') i= 
0. Conversely, if Tx(Bx) n Tx(B~) = 0, then T(B) n T(B') = 0 as x labels a vertex 
in nAxEVx Tx(Ax)· Therefore the x-deletion map from Li to :Ex induces, not only 
the isomorphism between int(Li) and int(Lix), but also an isomorphism between 
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int( {T(B) : B E C(E)}) and int( {Tx(Bx) : B E C(E)} ). Hence int( {T(B) : B E 
C(E)}) is a restricted chordal completion for int(E), and so, by Lemma 2.3, T 
displays E as required. D 

The proof of Corollary 4.3 is omitted. It is a straightforward consequence of 
Lemma 4.2. 

Corollary 4.3. Let E be a set of partial partitions of X. Suppose that x E X is 
redundant. Then 

(i) there exists an X -tree that displays E if and only if there exists an X-tree 
that displays Ex; and 

(ii) E defines an X -tree if and only if Ex defines an X -tree. 
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