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Abstract 

Background: Model-based glycaemic control relies on sufficiency of underlying 

models to describe underlying patient physiology. In particular, very preterm infant 

glucose-insulin metabolism can differ significantly from adults, and is relatively 

unstudied.  In this study, C-peptide concentrations are used to develop insulin-

secretion models for the purposes of glycaemic control in neonatal intensive care. 

Methods: Plasma C-peptide, Insulin, and blood glucose concentrations (BGC)  were 

retrospectively analyzed from a cohort of 41 hyperglycemic very preterm (median 

age 27.2 [26.2 - 28.7] weeks) and very low birth-weight infants (median birth weight 

839 [735 – 1000] g). A 2-compartment model of C-peptide kinetics was used to 

estimate insulin secretion. Insulin secretion was examined with respect to nutritional 

intake, exogenous and plasma insulin concentration, and BGC. 

Results: Insulin secretion was found to be highly variable between patients and over 

time, and could not be modeled with respect to age, weight, or protein or dextrose 

intake. In 13 of 54 samples exogenous insulin was being administered, and insulin 

secretion was lower. However, low data numbers make this result inconclusive. 

Insulin secretion was found to increase with BG, with a stronger association in female 

infants than males (R2=0.51 vs. R2=0.13, and R2=0.26 for the combined cohort).  

Conclusions: A sex-based insulin secretion model was created and incorporated into 

a model-based glycemic control framework. Nutritional intake did not predict insulin 

secretion, indicating that insulin secretion is a complex function of a number of 

metabolic factors. 

 

Words: 240  
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1.0 Introduction 

Hyperglycemia (elevated blood glucose concentrations (BGC)) is a common 

complication of prematurity in very preterm (gestational age (GA) <32 weeks) infants 

[1 2], where stress and illness are compounded by immaturity of glucose-insulin 

physiology [3-5]. Hyperglycemia in very preterm babies has been associated with 

increased risk of morbidity and mortality [1 6 7], while hypoglycemia (low BGC) in 

preterm babies has also been associated with adverse neurodevelopment outcomes 

[8].  

There is currently no best practice method or target for glycemic control in preterm 

babies and BGC is often controlled by varying nutritional input [9]. Insulin therapy 

has been well established to improve glucose tolerance and increases post-natal 

weight gain (e.g. [10-13]). However, insulin treatment in preterm babies often results 

in excessive, iatrogenic, or protocol induced hypoglycemia [14 15]. Metabolic 

variability is a leading cause of this problem [16].  

STAR (Stochastic TARgeted) glycemic control is a decision support tool that uses a 

physiological model-based estimate of insulin sensitivity (SI) to describe a patient’s 

metabolic state with respect to insulin-glucose dynamics. STAR has proven safe and 

effective in adult intensive care [17 18], and a first iteration in the neonatal intensive 

care unit (NICU) has also shown promising results with tighter control and lower 

hypoglycemic incidence than other studies [19].  

STAR is a model-based system and thus relies, in part, on an accurate model of the 

glucose-insulin regulatory system to facilitate safe and accurate glycemic control. A 

key aspect of this modeling is endogenous secretion of insulin by the pancreas. Inter-

patient variability of endogenous insulin secretion can be a major cause of metabolic 

variability and difficulty in glycemic control.  In very low birth weight (VLBW) 

preterm infants, clinical limitations mean that pancreatic insulin secretion cannot be 
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quantified directly, and most studies indirectly assess insulin secretion through peak 

plasma insulin concentration.  

The aim of this study was to develop a model of insulin secretion in preterm neonates 

using a C-peptide kinetic model. An accurate model of neonatal insulin secretion will 

then be used to improve the current glucose-insulin physiological models used by 

STAR in the NICU. These results build upon previous results examining the effect of 

discrete (e.g. sex, ethnicity, singleton vs. multiple births) and clinical (e.g. CRIB2 

score) factors on insulin secretion in preterm neonates [20].   

2.0 Methods    

 

2.1 Patient Cohort 

The cohort and C-Peptide analysis have been described elsewhere in full [15 20]. In 

brief: retrospective analysis was carried out on plasma samples collected during a 

randomized control trial of glycemic control (The HINT trial [15], Australian Clinical 

Trials Registry 12606000270516, ethics approval from Northern X ethics committee). 

Hyperglycemic (two BGC measures >153 mg/dL more than 4 hours apart) very 

preterm (GA < 32 weeks, or birth weight <1500g) neonates were assigned to tight 

glycemic control (TGC, target BGC range 72-108 mg/dL) or standard care at 

National Women’s Health NICU, Auckland City Hospital, New Zealand [15]. 

BGC, insulin infusions, and daily nutritional intake were recorded.  Blood samples 

were taken to determine plasma insulin (Azsym system auto-analyzer, Abbott 

Laboratories, Abbott Park, IL) and BGC (glucose oxidise method, ABL 700, 

Radiometer Ltd, Copenhagen, Denmark) for each infant at randomization, 7 and 14 

days after randomization, and at GA=36 weeks. Remaining plasma samples were 

frozen. 
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Retrospective C-peptide analysis (immunometric assays, Elecsys 2010, Roche 

Diagnostics, Germany) was carried out on some of the frozen samples if there was 

sufficient remaining blood from samples taken 0-15 days after randomization, and if 

infant had GA<32 weeks. Cohort characteristics are given in Table 1.  

Table 1: Sample cohort patient characteristics 

Characteristic Value 

 Total patients 41 

      Control group 21 

      Tight Glycemic Control group 20 

 Male (%) 20 (49%) 

 Multiple Birth 11 (27%) 

 Antenatal steroid exposure 39 (95%) 

 Maternal diabetes 1 (2%) 

Age  

 Gestational, weeks 27.2 [26.2 - 28.7] 

 Post natal age, days 9.5 [4 -17] 

Birth weight  

 grams 839 [735 – 1000] 

 Z score -0.19[-1.03 - 0.14] 

 Small for gestational age 6 (15%) 

 CRIB 2 score 12 [10-14] 

Ethnicity  

 Asian 9 (22%) 

 Caucasian 11 (27%) 

 Maori 17 (41%) 

 Pacific Island 4 (10%) 

Sample data  

 Number of Samples 54 

 Day after randomization  7 [0 - 14] 

 BGC, mg/dL 135 [92 – 189] 

 Plasma insulin concentration, mU/L 59.0  [99.3 – 181.9] 

 Plasma C-peptide concentration, nmol/L 2.3 [1.1 - 4.2] 

 Cortisol at randomization, μg/dL 10.1 [9.1-15.1] 

Numbers are presented as median [IQR] or number (% of total). CRIB 2: Clinical 

Risk Index for Babies.  
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2.2 Model Equations of C-peptide kinetics 

C-peptide is secreted in equimolar quantities with insulin, and is predominantly 

cleared by the kidney. In comparison, insulin is cleared by liver and peripheral tissues 

in a highly variable manner, as well as through the kidneys. Therefore, the relatively 

simple kinetics of C-peptide provide a better means to estimate insulin secretion [21]. 

A 2 compartment kinetics model [21] is used to describe the concentration of C-

peptide in the central compartment of plasma, C, and peripheral extra vascular 

compartment, Y: 

𝑑𝐶

𝑑𝑡
= 𝑆 − (𝑘1 +  𝑘3)𝐶 + 𝑘2𝑌 (1) 

𝑑𝑌

𝑑𝑡
= 𝑘1𝐶 − 𝑘2𝑌 (2) 

 

The rate of C-peptide (and insulin) secretion is S, and transport of C-peptide from the 

central to the peripheral compartment, and vice versa, is described by k1 and k2. The 

parameter k3  describes the irreversible renal clearance of C-peptide from the central 

compartment via the kidney [21].  

Sampling constraints due to limited blood volume in this cohort (~50 mL/kg, [22]) 

mean frequent, serial measurements of C-peptide were not physically or ethically 

possible. Assuming steady-state, it follows from Equation 2 that the rate of C-peptide 

entering and leaving the peripheral compartment must be equal. Hence, substituting 

this equality into Equation 1 and rearranging yields:  

𝑆 =  𝑘3𝐶 (3) 

 

Since insulin is secreted in equimolar quantities with C-peptide, under steady state 

conditions the rate of secretion of insulin is directly proportional to the measured 
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concentration of C-peptide in the central compartment. In infants fed via constant IV 

infusion, this steady state assumption is reasonable. 

Since no studies have been performed in preterm or term neonates to determine C-

peptide kinetics, adult data and methodology [21 23] were used as an approximation 

given that the functionality is also no different. A short half life of 4.95 min and a 

fraction, F, of 0.96 was used based on non-obese or diabetic adult data [21]. The long 

half life thus was calculated using [21]: 

long-half life (min)= 0.14*age (years) + 29.2. (4) 

To give an estimated long half-life of 29.2 minutes for newborns [23]. The kinetic 

parameters were then individually calculated using these cohort specific values, as 

per [21]: 

𝑘2 =  𝐹 (𝑏 − 𝑎) +  𝑎 (5) 

𝑘3 =  
𝑎 𝑏

𝑘2
 (6) 

𝑘1 =  𝑎 +  𝑏 −  𝑘2 − 𝑘3 (7) 

Where a = log(2)/(short half life), and b = log(2)/(long half life). The resulting 

calculated value for 𝑘3 for all neonates was 𝑘3 = 0.0644 min-1, which is within the 

reported normal clearance rates in Table 2. 

Table 2: C-peptide kinetic parameters in adults [21 24 25] 

 
Patient 

Cohort 
k1 [1/min] k2 [1/min] k3 [1/min] 

 Eaton et 

al, 1980 

Normal 

n=20 

0.047 

± 0.002 

0.035 

± 0.002 

0.049 

± 0.001 

Van Cauter 

et al, 1992 

Normal 

n=111 

0.053 

± 0.002 

0.051 

± 0.001 

0.062 

± 0.001 

Obese 

n=53 

0.067 

± 0.003 

0.051 

± 0.002 

0.065 

± 0.013 

Polonsky 

et al, 1986 

Normal 

n=10 

0.057 

± 0.006 

0.054 

± 0.006 

0.06 

± 0.002 

Diabetic 

n=7 

0.037 

± 0.004 

0.031 

± 0.004 

0.057 

± 0.002 

 All values are mean ± SEM, 
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2.3 Trend analysis 

Endogenous insulin secretion was calculated using Equations 3 – 7. Results were 

analyzed with respect to patient birth weight, GA, dextrose and protein intake, 

nutritional delivery method, plasma insulin and BGC, and patient sex, to determine 

strong predictors of insulin secretion within this cohort.  

2.4 Statistical Analysis 

Results are presented as median with interquartile range (IQR). Non parametric data 

were analyzed by the Mann-Whitney U-test, and the Kruskal-Wallis test, which 

extends the Mann-Whitney U-test to more than 2 samples. Correlations were 

calculated using a linear least squares regression analysis, and p-values are given with 

respect to the null hypothesis that the slope of the linear regression is 0.  Statistical 

power of subgroup results analysis is calculated using the method of [26] applied to 

log-normalized insulin secretion values. Multiple linear regression across a range of 

variables, such as GA, weight, postnatal age, and BGC, was used to generate more 

complex models.  
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3.0 Results 

 

 

Birth weight or GA and insulin secretion were not strongly correlated (Figure 1, 

R2≤0.07), but endogenous insulin secretion did decrease with increasing weight 

and/or gestational age (p≤0.06). However, trends with post-natal age are confounded 

by the fact that there was significantly higher BGC at randomization than 7-14 days 

post-randomization (99 [81–125] vs. 191 [164–229] mg/dL, p<0.005).  

 

Neither daily protein nor dextrose intake was significantly correlated with insulin 

secretion (Figure 2). Adjusting for BGC at the time of the sample did not affect this 

result, with high and low protein intakes being equally scattered with respect to blood 

glucose and insulin secretion rate. Insulin secretion could not be modeled based on 

nutritional intake. 

 

 

Figure 1: Insulin secretion is highly variable with birth weight.  
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a) b) 

  
c) d) 

Figure 2: Endogenous insulin secretion and blood glucose concentration (BGC) 

with respect to protein (a & b) and total dextrose intake (c & d) on the day the 

sample was taken. In parts a) and c) data points are scaled in size by the 

magnitude of nutritional intake, with data points from infants with a larger mass 

of intake being larger in size. 

In 13 babies there was an exogenous insulin infusion at the time of the C-peptide 

sample. Figure 3 shows lower insulin secretion in the presence of exogenous insulin, 

(3.7 [1.8-6.9] vs. 9.8[4.7-17.8] mU.kg-1.min-1, p=0.02, statistical power 90%). There 

was a positive relationship between plasma insulin concentration and insulin 

secretion, as shown in Figure 3b, but this is heavily influenced by a relative few 

measures towards the upper end of the data range. There was no clear relationship 

between both BGC and plasma insulin with insulin secretion (Figure 2a). While there 
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is evidence of suppression of insulin secretion with exogenous insulin, data is 

insufficient to build further models. 

  

a) b) 

 Figure 3: Endogenous insulin secretion with a) blood glucose concentration 

(BGC) and plasma insulin concentration, and b) plasma insulin. In parts a) data 

points are scaled in size by the magnitude of plasma insulin, with larger data 

points representing samples with higher plasma insulin concentration. Open (o) 

and closed (●) circles denote results from infants not receiving and receiving 

exogenous insulin at the time of sampling respectively.  

There was a weak relationship between insulin secretion and BGC (Figure 4), which 

was stronger in females than males.  It has been previously reported that the 

difference between the sexes in insulin secretion was true over the entire BGC range 

(p<0.005, statistical power >95%) with no statistically significant difference between 
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regimes (p ≥ 0.34) [20]. Figure 4 also shows separate male and female models for 

BGC dependant secretion in these cohorts, as well as an overall cohort method. 

Insulin secretion as a function of sex and BGC is defined: 

𝑢𝑒𝑛 =  {
max(4.2, −1.5 + 0.106 ∗ 𝐵𝐺𝐶)   
max(2.2, −0.37 + 0.048 ∗ 𝐵𝐺𝐶)
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  if male
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The 95% confidence interval for the intercept and slope were (-7.9, 4.9) and (0.061, 

0.150) respectively for the female subcohort, and (-8.0, 8.0) and (-0.150, 0.206) 

respectively  for the male subcohort. The whole cohort model in Figure 4 is defined: 

𝑈𝑒𝑛 = max (3.3, −1.3 + 127.0 ∗ 𝐵𝐺𝐶) (9) 

The 95% confidence interval for the intercept and slope of the whole cohort model 

was (-7.2, 4.6) and (-0.046, 0.132). 

Multiple linear regression models which accounted for combinations of GA, weight, 

postnatal age, BGC, dextrose intake and exogenous insulin were not able to predict 

insulin secretion (R2 ≤ 0.2). 

Figure 4: Models of endogenous insulin secretion as a function of blood glucose 

concentration (BGC) over the whole cohort and male and female sub cohorts. A 

total of 5 data points from 54 total (9%) were excluded from the analysis as 

outliers based on a 2-3 fold difference with other data points of similar BGC. Of 

these data points, 3/5 were from heavier and older patients of GA>29 weeks. 

However, 2 were from male and female babies with a GA of 26 weeks’. 
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4.0 Discussion 

In the past insulin secretion in preterm infants has been indirectly analyzed using 

peak plasma insulin concentration. In contrast, this study assesses insulin secretion 

using C-peptide concentrations, which is a more accurate predictor insulin secretion 

due to its simpler and less variable clearance kinetics. From this data, models of 

insulin secretion were built.  

Insulin secretion was found to increase with increasing BGC, a result reported 

previously in infant and adult dogs [27]. In preterm infants,  a reduction in plasma 

glucose concentration in hyperglycemic preterm infants has been observed to be  

accompanied by a reduction in insulin secretion [5]. This result matches expected 

physiology, where GLUT2 transporters in pancreatic beta cells enable sensitivity to 

changes in BGC [28].   

Sensitivity of insulin secretion to BGC was higher in females. This result is consistent 

with previous work showing overall higher insulin secretion in female preterm 

infants, independent of a number of clinical factors [20]. Insulin secretion was similar 

between males and females at the lower end of the basal blood glucose range, but the 

linear model fitted to the female sub cohort had a larger slope, indicating heightened 

pancreatic response to changes in BGC. This result perhaps suggests that the males 

were sicker or had higher C-peptide clearance.  Higher insulin secretion in the 

females at comparable plasma insulin concentrations could also indicate higher 

insulin clearances. However, glomerular filtration rate has not been observed to differ 

with sex previously [29]. Insulin secretion and glycemic differences between the 

sexes in later life is more fully discussed elsewhere [20]. 

No differentiation of insulin secretion rates was seen between differing levels of 

protein or glucose intake in the neonates. This result is unexpected as an increase in 

plasma insulin concentrations in response to a glucose stimulus [30-34], amino acids 
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such as theophylline [32 35-38], and glucose priming [30] has been previously been 

observed in preterm infants. This discrepancy could be a result of differing study 

methodology and the more direct approach to estimating insulin secretion taken here. 

It could also be a result of nutrition records reflecting daily totals only, or reflect the 

differing physiological stress and degree of prematurity. The latter is regarded as 

more likely, as nutrition infusions or feeds are usually kept relatively constant 

throughout the day. Previous work analyzed differences between feeding methods, 

and found no difference in insulin secretion with method or bias by infant sex 

distribution between groups [20]. In contrast to previous studies, this cohort is 

hyperglycemic, and thus more likely to have an underlying condition. In this study, 

some neonates showed high insulin secretion rates with relatively higher protein 

intakes (3-5g/kg/day), as would be expected. In those that did not behave as expected, 

it is possible that if a pancreas is compromised due to prematurity, or for any reason, 

then the presence of protein is unlikely to affect endogenous insulin secretion.  

There was a positive correlation between endogenous insulin secretion and plasma 

insulin. Infants in this post-hoc analysis were evenly distributed between control and 

TGC cohorts in the original HINT study [15]. Male and female infants were evenly 

spread between the exogenous insulin and no exogenous insulin groups, indicating 

sex was not responsible for this difference, and vice versa. These data points are 

tightly clustered with respect to BGC, and are thus heavily influenced by one or two 

points at extremes in BGC. In addition, endogenous insulin secretion was not further 

suppressed in the presence of increasing exogenous insulin infusion, as might be 

expected. 

The regulation of blood glucose is complex and involves both the liver and the 

pancreas. Unfortunately, it was not possible to describe the contribution of the liver to 

glycemic regulation in this study. In adults, insulin secretion by the pancreas is 

regulated by plasma insulin and BGC, as well as hormones such as glucagon, cortisol, 
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and adrenaline [39-41]. Stress can also affect secretion [42], generally through these 

aforementioned hormones. Previous work did not find trends between insulin 

secretion and GA, randomization, singleton vs. multiple birth, ethnicity, plasma 

cortisol, pre-natal steroid exposure, or nutrition delivery type [20]. Multiple linear 

regression using GA, weight, postnatal age, nutritional intake, exogenous insulin, and 

BGC as predictor variables did not significantly alter insulin secretion predictability. 

The individual effect of each of these factors is impossible to isolate, and very 

complicated models that could not be specified easily at the bedside, if at all, would 

be required to successfully model insulin secretion to a high degree of accuracy. 

Much of the variability observed in this data can probably be attributed to stress, 

differing patient conditions, and the effect of hormone signaling on the steady state 

assumption. In addition, data available was insufficient to give an indication of 

insulin secretion between morbidity groups in the cohort.   

The major assumption of this research is that of steady state C-peptide kinetics. This 

assumption was driven by necessity, as the very low blood volume of very premature 

neonates (~ 50 mL/kg, [22])  means serial sampling of blood over time periods 

necessary to capture metabolic dynamics is not ethically and practically possible 

[43], particularly given the large percentage of total blood volume that would be 

required.. However, while this assumption may be necessary, it does not inevitably 

follow that it is entirely inaccurate.  

C-peptide dynamics are predominantly a function of insulin (and C-peptide) secretion 

and kidney clearance. Insulin secretion is known to be affected by a number of 

factors, which are predominantly nutritional. Steady state is therefore a reasonable 

assumption in premature infants who receive their nutrition intravenously. While this 

assumption is theoretically less reasonable in enterally fed infants, no significant 

difference in insulin secretion  was found between enterally and parenterally fed 

infants (p=0.59), and the sex based difference in insulin secretion held if only 
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parenterally fed infants were considered [20]. This perhaps suggests that enteral 

nutrition administration times (~5-30min depending on delivery method and patient 

condition) are long enough, and/or feeds are administered frequently enough, to 

approximate steady state administration, or that there was little effect on insulin 

secretion due to immaturity in gut function, hormonal signaling, or metabolism. 

Renal clearance rates are affected by gestational age and weight [44], medication, and 

illness and injury such as sepsis and intra-ventricular hemorrhage [45]. Differences in 

renal clearance of C-peptide may account for some of the inter-patient variability in 

insulin secretion results, but is unlikely to affect the assumption of steady state, 

particularly given constant nutrition inputs. The insulin secretion model developed is 

a population model and reflects a generalized response across the cohort. As 

previously mentioned, glomerular filtration rate has not been previously observed to 

differ with sex [29]. 

Finally, while there is the potential that some glucose-insulin flux was occurring in 

any given infant, across the cohorts used there are enough subjects to assure that the 

central tendency holds. Thus, the snapshot of data obtained would be random in 

regard to a given net tendency or flux. Hence, since the model is based on cohort 

trends, the central tendency should hold around this assumption. 

Adult C-peptide kinetic parameters, adjusted for age, were used because of the 

inability to comprehensively derive parameters for the neonatal cohort. If the 

resulting insulin secretion is also calculated using k3 kinetic values that are 

approximately 2 standard deviations (k3 = [0.05, 0.07]) from the normal kinetics 

reported in Table 2, then the insulin secretion could be in error by up to ~20%. In 

addition, it is not possible in this cohort to determine patient specific C-peptide 

kinetic parameter values.  For the purposes of model based control, the k3 parameter 

used is thus sufficient, and changes to this parameters does not change any of the 



Page 18 of 21 
 

results or trends observed, but only shift these trends. In addition, in terms of outputs 

from the control protocol, any scale inaccuracies are absorbed and scale the time 

varying patient-specific insulin sensitivity parameter [46]. In model based control, it 

is the insulin secretion dynamic shape, more than the value (assuming it is within a 

reasonable rang of the true value), that is important, so scale inaccuracies will not 

significantly affect control outputs.    

This study has been carried out in the context of model-based control. While samples 

were taken from both arms of a glycemic control trial and reflect a range of different 

clinical intervention histories, it is believed that this cohort adequately describes 

likely candidates for glycemic control and thus the results provide new insights from 

data that is only rarely available.  A total of 54 samples is greater than the 51 samples 

required for a regression analysis with a single independent variable [47]. As a result 

of this study, a sex and BGC based model for insulin secretion in preterm infants was 

created. 

5.0 Conclusions 

Insulin secretion was estimated from C-peptide concentrations and used to generate a 

model for use in model-based glycemic control. Blood glucose concentration and sex 

were found to be the strongest predictors for insulin secretion, with females having 

higher insulin secretion and a more consistent increase with blood glucose 

concentration. Insulin secretion was observed to be lower in the presence of 

exogenous insulin, but data was insufficient to be conclusive. Insulin secretion was 

not found to be highly correlated with glucose or protein intake. Insulin secretion in 

preterm neonates is a complex function of a number of factors, and high variability is 

seen between patients of a similar gestational age and weight.  
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