
 

 

 

 

Integral-Based Inverse Problem 

Solutions for DIET Systems 

 

 

 

A thesis submitted in partial fulfilment for the Degree of 

 

Master of Engineering (Mechanical) 

 

In the University of Canterbury 

 

 

by 

Samuel J. Houghton 

 

 

_____________ 

 

University of Canterbury 

2006 



 ii 

Abstract 

 
 

Magnetic Resonance Elastography (MRE) is an emerging method for non-invasive breast cancer 

screening.  It takes the MRI displacement data output and reconstructs the internal stiffness 

distribution, where cancerous tissue is approximately five to ten times stiffer than healthy breast 

tissue.  Hence, MRE offers a high contrast solution to this diagnostic problem. 

 

Current MRE methods for reconstructing stiffness use forward simulation based optimization 

methods that are highly non-linear, non-convex and very heavy computationally. This research 

develops integral-based inverse problem solutions that reformulate the underlying differential 

equations in terms of integrals of MRI measured displacement data, and this transforms the 

problem into a linear, convex optimization. All derivative terms in the formulation are removed 

by special choice of integration limits, so no smoothing or filtering of the input data is required. 

The resulting equations can easily be solved by linear least squares requiring very minimal 

computation. 

  

1D inverse algorithms were developed to provide a proof of concept of the integral-based 

method.  Initially, the complete compressible 2D Navier's equations were used to develop the 2D 

inverse methods.  Reasonable results were achieved with the algorithm successfully identifying a 

1cm by 1cm tumour with up to 10% noise, data resolution of 20 measured points per cm and 

actuation frequencies of 100Hz. 

 

However, for the same input data set, a simplified incompressible 2D model was used as the 

basis for the final proposed inverse algorithm. This approach significantly improved results by 

removing ill-conditioned terms from the original formulation. For a 1cm by 1 cm tumour, 

accurate results were obtained with up to 40% noise, a range of actuation frequencies and very 

low data resolution of the order of 2 measured points per cm.  These results thus indicate that 

more crude and less expensive data measurement systems could be used to obtain good results. 

 

The methods developed can be readily extended to 3D by applying a similar incompressible 

integral formulation to the 3D Navier’s equations. 



 iii 

Acknowledgements

 

 

I would like to thank the following people: 

 

• Christopher E. Hann for his assistance, patience, mathematical expertise and seemingly 

endless enthusiasm towards this research project. 

 

• Associate Professor J. Geoffrey Chase for his invaluable advice and guidance, as well as 

providing me the opportunity to undertake this research  

 

• Dr. Eli Van Houten for his technical assistance and second opinion. 

 

• Ishan Singh-Levett for his friendship and companionship that has made my university 

experience all the more enjoyable. 

 

• My parents, Phillip and Karen, for their love & support 

 

• All my friends in Christchurch that have helped me maintain some form of sanity throughout 

my time at the University of Canterbury. 



 iv 

Table of Contents

 
 

 

Abstract   ...................................................................................................... ii 

Acknowledgements..................................................................................................... iii 

List of Figures  ................................................................................................... viii 

 

 

Part 1: Introduction 

1 INTRODUCTION

 1-2 

1.1 Breast Cancer ................................................................................................................................................ 1-2 

1.2 Existing Methods of Breast Cancer Screening ........................................................................................... 1-3 

1.3 Emerging Elastographic Screening Methods ............................................................................................. 1-4 

1.4 Existing Inverse Problem Solutions............................................................................................................. 1-7 

1.5 Proposed Inverse Problem Solution ............................................................................................................ 1-8 

 

 

Part 2: Methodology 

2 ONE DIMENSIONAL INVERSE PROBLEM

 2-10 

2.1 Forward Simulation of One Dimensional Data ........................................................................................ 2-10 

2.1.1 Homogeneous Model............................................................................................................................ 2-11 

2.1.2 Non-Homogeneous Model.................................................................................................................... 2-12 

2.2 One Dimensional Inverse Problem Solution Algorithms......................................................................... 2-15 

2.2.1 Local Integration................................................................................................................................... 2-16 

2.2.2 Global Single Integration with Derivative Fitting ................................................................................ 2-18 

2.2.3 Global Double Integration .................................................................................................................... 2-19 



 v 

2.2.4 Mesh Refinement ..................................................................................................................................2-23 

2.2.5 Numerical Integration ...........................................................................................................................2-23 

3 FORWARD SIMULATION OF TWO DIMENSIONAL MOTION DATA

 3-26 

3.1 Homogeneous Forward Simulation ...........................................................................................................3-26 

3.2 Application of Boundary Conditions .........................................................................................................3-28 

3.3 Verification of Homogeneous Model .........................................................................................................3-32 

3.4 Non-Homogeneous Model...........................................................................................................................3-33 

3.5 Summary......................................................................................................................................................3-37 

4 TWO DIMENSIONAL INVERSE PROBLEM SOLUTIONS

 4-38 

4.1 2D Homogeneous Inverse Algorithm.........................................................................................................4-39 

4.1.1 Initial Inverse Algorithm.......................................................................................................................4-40 

4.1.2 Centred Base Point Inverse Algorithm .................................................................................................4-44 

4.2 Non-Homogeneous Inverse Algorithms.....................................................................................................4-47 

4.2.1 Non-Homogeneous Inverse Problem Formulation................................................................................4-57 

4.3 Non-Homogeneous Stress Continuity Constraint Model.........................................................................4-59 

4.4 Summary......................................................................................................................................................4-67 

 

 

Part 3: Results & Discussion 

5 PERFORMANCE OF 1D INVERSE ALGORITHMS 

 5-70 

5.1 Verification of Forward Simulation Algorithm........................................................................................5-70 

5.2 Comparison of Integral Methods ...............................................................................................................5-71 

5.2.1 Local Inverse Algorithm .......................................................................................................................5-72 

5.2.2 Global Single Integral Inverse Algorithm.............................................................................................5-74 



 vi 

5.2.3 Global Double Integral Inverse Algorithm ........................................................................................... 5-77 

5.2.4 Summary of Evaluation of Integral Methods........................................................................................ 5-79 

5.3 Evaluation of Global Double Integral Inverse Algorithm ....................................................................... 5-79 

5.3.1 Variation with Level of Random Added Noise .................................................................................... 5-80 

5.3.2 Variation with Actuation Frequency..................................................................................................... 5-81 

5.3.3 Variation with Carcinoma Stiffness...................................................................................................... 5-82 

5.3.4 Variation with Data Resolution ............................................................................................................ 5-83 

5.3.5 Variation with Carcinoma Position....................................................................................................... 5-85 

5.3.6 Mesh Refinement Algorithm ................................................................................................................ 5-86 

5.3.7 Summary............................................................................................................................................... 5-88 

6 PERFORMANCE OF 2D INVERSE ALGORITHMS 

 6-90 

6.1 Verification of Forward Simulation Algorithm........................................................................................ 6-90 

6.1.1 Verification against Analytical Homogeneous Solution....................................................................... 6-90 

6.1.2 Convergence of Forward Simulation Algorithm .................................................................................. 6-91 

6.2 Comparison of Homogeneous Inverse Algorithms................................................................................... 6-95 

6.3 Evaluation of Non-Homogeneous Inverse Algorithm .............................................................................. 6-98 

6.3.1 Variation with Random Added Noise................................................................................................... 6-98 

6.3.2 Variation with Actuation Frequency..................................................................................................... 6-99 

6.3.3 Variation with Carcinoma Stiffness.................................................................................................... 6-102 

6.3.4 Variation with Data Resolution .......................................................................................................... 6-103 

6.3.5 Variation with Carcinoma Position and Boundary Conditions........................................................... 6-104 

6.4 Carcinoma Identification using 1D Inverse Algorithm ......................................................................... 6-106 

6.5 Non-Homogenous, Incompressible Inverse Algorithm.......................................................................... 6-108 

6.5.1 Variation with Random Added Noise................................................................................................. 6-109 

6.5.2 Variation with Data Resolution .......................................................................................................... 6-112 

6.6 Summary.................................................................................................................................................... 6-113 

 

 

 

 

 



 vii 

Part 4: Conclusions 

7 CONCLUSIONS & FUTURE WORK 

 7-116 

7.1 1D Inverse Problem Solutions ..................................................................................................................7-116 

7.2 2D Inverse Problem Solutions ..................................................................................................................7-118 

7.3 Future Work ..............................................................................................................................................7-120 

7.3.1 Measure of Homogeneity....................................................................................................................7-121 

8 REFERENCES

 8-124 

 

 

Appendix A:  MATLAB code 

A1: 1D Non-Homogeneous Forward Simulation Algorithm............................................................................A-2 

A2: 1D Inverse Algorithm – Local Double Integral Method ...........................................................................A-4 

A3: 1D Inverse Algorithm – Global Single Integral Method...........................................................................A-6 

A4: 1D Inverse Algorithm – Global Double Integral Method with Mesh Refinement..................................A-9 

A5: 2D Homogeneous Forward Simulation Algorithm – Infinite Domain Boundary Condition Model ...A-13 

A6: 2D Non-Homogeneous Forward Simulation Algorithm – Phantom Boundary Condition Model ......A-21 

A7: 2D Homogeneous Inverse Algorithm – Initial Method ...........................................................................A-37 

A8: 2D Homogeneous Inverse Algorithm – Centred Base Point Method.....................................................A-40 

A9: 2D Non-Homogeneous Inverse Algorithm with Constraint Model........................................................A-44 

 

 



 viii 

List of Figures 
 

 

Figure 1.1 Summary of the DIET process …… 1-6 

    

Figure 2.1 The piecewise constant stiffness distribution of the forward simulation model 

for the non-homogeneous case 

…… 2-13 

Figure 2.2 Description of the notation used to define the motion dataset for the purposes 

of numerical integration 

…… 2-24 

    

Figure 3.1 Description of the three types of boundary condition systems implemented;  

(a) ‘Box Shake’ model, (b) ‘Edge Effect’ model and (c) ‘Phantom’ model. 

…… 3-29 

Figure 3.2 Notation used to describe the Vertical Stiffness Boundary (a) and the 

Horizontal Stiffness Boundary (b) 

…… 3-34 

Figure 3.3 Notation used to Describe the Extreme Corner Nodes along Stiffness 

Boundary 

…… 3-35 

    

Figure 4.1 Description of the fundamental geometry and coordinate system 

nomenclature for the 2D homogeneous inverse algorithms 

…… 4-40 

Figure 4.2 Diagram detailing the local geometric structure and notation for the non-

homogeneous inverse algorithm 

…… 4-48 

Figure 4.3 Description of the geometry and local coordinate system of the 2x2 stencil …… 4-54 

Figure 4.4 Diagram that shows the discretization of the global domain into a series of 

elements each with independent stiffness values { }9,...,2,1),(,, ∈jiE ji . 

…… 4-54 

Figure 4.5 Arbitrary shape approximated by squares in order to apply the stencil shown 

in Figure 4.2 

…… 4-55 

Figure 4.6 2x2 Stencil of Figure 4.2 in global coordinates …… 4-55 

Figure 4.7 Description of the notation used to describe a vertical stiffness boundary (a) 

and a horizontal stiffness boundary (b). 

…… 4-60 

Figure 4.8 An example of calculating a ratio in Equation (4.72d) …… 4-62 

Figure 4.9 Fitting two cubics to find the left and right hand derivatives 
−

xv  and 
+

xv . …… 4-62 

Figure 4.10 Notation of the stiffness ratios between adjacent stiffness areas for Equation 

(4.79) 

…… 4-65 

Figure 4.11 The overall process applied when using the 2D non-homogeneous inverse 

algorithm 

…… 4-67 

  

 

  



 ix 

Figure 5.1 Maximum Error in 1D Simulation Solution compared against Grid 

Refinement 

…… 5-70 

Figure 5.2 90% Confidence Interval of the Reconstructed Stiffness Distribution 

compared against the Actual Distribution from the Local Inverse Algorithm 

…… 5-73 

Figure 5.3 Shear Modulus Distributions of Healthy and Cancerous Tissue from the Local 

Inverse Algorithm 

…… 5-74 

Figure 5.4 90% Confidence Interval of the Reconstructed Stiffness Distribution 

compared against the Actual Distribution from the Global Single Integral 

Inverse Algorithm 

…… 5-75 

Figure 5.5 Comparison between the derivative function calculated using polynomial 

fitting and the actual derivative function 

…… 5-76 

Figure 5.6 Shear Modulus Distributions of Healthy and Cancerous Tissue from the 

Global Single Integral Inverse Algorithm 

…… 5-77 

Figure 5.7 90% Confidence Interval of the Reconstructed Stiffness Distribution 

compared against the Actual Distribution from the Global Double Integral 

Inverse Algorithm 

…… 5-78 

Figure 5.8 Shear Modulus Distributions of Healthy and Cancerous Tissue from the 

Global Double Integral Inverse Algorithm 

…… 5-78 

Figure 5.9 The impact of random added noise on the performance of the Global Double 

Integral inverse algorithm with 20 points per segment 

…… 5-80 

Figure 5.10 The impact of actuation frequency on the performance of the Global Double 

Integral inverse algorithm with 10% random added noise and 20 points per 

segment 

…… 5-81 

Figure 5.11 The performance of the Global Double Integral inverse algorithm with a 

carcinoma to healthy tissue stiffness ratio of 5:1 (10% random added noise 

and 20 points per segment) 

…… 5-83 

Figure 5.12 The impact of the number of points per segment on the performance of the 

Global Double Integral inverse algorithm with 10% random added noise 

…… 5-84 

Figure 5.13 The impact of the number of points per segment on the performance of the 

Global Double Integral inverse algorithm with 20% random added noise 

…… 5-84 

Figure 5.14 90% confidence intervals of reconstructed carcinoma stiffness values in all 

possible positions 

…… 5-85 

Figure 5.15 Comparison between cancerous and healthy motion datasets …… 5-86 

Figure 5.16 Shear Modulus Distributions of Healthy and Cancerous Tissue from the 

Global Double Integral Inverse Algorithm using Mesh Refinement 

…… 5-87 

    

Figure 6.1 Maximum error in the simulated solution compared against the analytical 

solution at an actuation frequency of 50Hz 

…… 6-90 

Figure 6.2 Maximum error in the simulated solution compared against the analytical 

solution at an actuation frequency of 100Hz 

…… 6-91 



 x 

Figure 6.3 Maximum percentage difference of the motion dataset between current mesh 

and previous mesh for the homogeneous model using ‘Phantom’ boundary 

conditions, actuated at 100Hz 

…… 6-92 

Figure 6.4 Maximum percentage difference of the motion dataset between current mesh 

and previous mesh for the non-homogeneous model using ‘Phantom’ 

boundary conditions, actuated at 100Hz 

…… 6-93 

Figure 6.5 The solution to the 2D forward simulation algorithm at maximum 

displacement.  The carcinoma is shown in red. 

…… 6-94 

Figure 6.6 Description of the sub-domains used to generate the integral equations for the 

Initial inverse algorithm (a) and the Centred Base Point Algorithm (b).  The 

cross, × , represents the base point and the boundary of the respective sub-

domain is represented by a line of the same colour. 

…… 6-96 

Figure 6.7 Comparison between the Initial and Centred Base Point Inverse algorithms 

for the homogeneous case 

…… 6-97 

Figure 6.8 The performance of the non-homogeneous inverse algorithm with random 

added noise.  The motion data input used is defined by the ‘Phantom’ 

boundary conditions, has a carcinoma at position (7,9) and is excited at 

100Hz. 

…… 6-99 

Figure 6.9 The performance of the non-homogeneous inverse algorithm with random 

added noise.  The motion data input used is defined by the ‘Phantom’ 

boundary conditions, has a carcinoma at position (5,6) and is excited at 50Hz. 

…… 6-100 

Figure 6.10 The performance of the non-homogeneous inverse algorithm with variation of 

actuation frequency.  The motion data inputs used are defined by the ‘Box 

Shake’ boundary conditions, have the carcinoma at position (7,9) and have 

5% random added noise. 

…… 6-101 

Figure 6.11 The performance of the non-homogeneous inverse algorithm with carcinoma 

Young’s Modulus of 150kPa and random added noise.  The motion data input 

used is defined by the ‘Phantom’ boundary conditions, has the carcinoma at 

position (7,9) and is actuated at 100Hz. 

…… 6-102 

Figure 6.12 The performance of the non-homogeneous inverse algorithm with variation of 

data resolution.  The motion data input used is defined by the ‘Phantom’ 

boundary conditions, has the carcinoma at position (7,9), is actuated at 100Hz 

and has 5% random added noise. 

…… 6-103 

Figure 6.13 The performance of the non-homogeneous inverse algorithm with variation of 

data resolution.  The motion data input used is defined by the ‘Phantom’ 

boundary conditions, has the carcinoma at position (7,9) , is actuated at 

100Hz and has 10% random added noise. 

…… 6-104 

Figure 6.14 The performance of the non-homogeneous inverse algorithm with variation of 

carcinoma position.  The motion data input used is defined by the ‘Phantom’ 

boundary conditions, is actuated at 100Hz and has 5% random added noise. 

…… 6-105 



 xi 

Figure 6.15 The performance of the non-homogeneous inverse algorithm with variation of 

carcinoma position.  The motion data input used is defined by the ‘Box 

Shake’ boundary conditions, is actuated at 100Hz and has 5% random added 

noise. 

…… 6-105 

Figure 6.16 The performance of the non-homogeneous inverse algorithm with variation of 

carcinoma position.  The motion data input used is defined by the ‘Edge 

Effect’ boundary conditions, is actuated at 94Hz and has 5% random added 

noise. 

…… 6-106 

Figure 6.17 90% Confidence Interval of the Absolute Values of the Reconstructed 

Stiffness Distribution using a horizontal slice of the x direction displacement 

amplitude.  The motion data input used is defined by the ‘Phantom’ boundary 

conditions, is actuated at 100Hz and has 5% random added noise. 

…… 6-107 

Figure 6.18 The performance of the incompressible non-homogeneous inverse algorithm 

with random added noise.  The motion data input used is defined by the 

‘Phantom’ boundary conditions, has a carcinoma at position (7,9), uses 10 

data points per segment and is excited at 100Hz. 

…… 6-110 

Figure 6.19 The performance of the incompressible non-homogeneous inverse algorithm 

with random added noise.  The motion data input used is defined by the 

‘Phantom’ boundary conditions, has a carcinoma at position (5,6), uses 10 

data points per segment and is excited at 50Hz. 

…… 6-111 

Figure 6.20 The performance of the incompressible non-homogeneous inverse algorithm 

with variation of data resolution.  The motion data input used is defined by 

the ‘Phantom’ boundary conditions, has the carcinoma at position (7,9), is 

actuated at 100Hz and has 20% random added noise. 

…… 6-112 

    

Figure 7.1 Summary of the Measure of Homogeneity approach to identify tumours …… 7-123 

Figure 7.2 Identifying a 1cm× 1cm tumour using the Measure of Homogeneity approach …… 7-123 

 

 





 

 

 

 

 

 

 

 

 

 

 

Part 1 

 Introduction 

 

 



1 Introduction

 
 

1.1 Breast Cancer 

 

Breast Cancer is a serious health problem amongst women. It is the most common form of 

female cancer and is the second most fatal cancer among women worldwide [American Cancer 

Society, 2006]. One in ten women will suffer from breast cancer during their lives and 25% of 

those who develop it are predicted to die from the disease [NZBCF]. 

 

In New Zealand, breast cancer accounts for the most fatalities of all cancers in women and has 

the fifth highest incidence per 100,000 women of breast cancer in the world [American Cancer 

Society, 2006].  In 2001, 615 women died from breast cancer and this constituted 4.4% of all 

female mortalities.  There were also 2310 new registrations of breast cancer in the same year 

[NZHIS, 2001]. 

 

A number of factors have been linked to an increased risk of developing breast cancer,  including 

age, daily alcohol consumption and genetics, although only a small percentage (approximately 

20%) of occurrences of breast cancer have been known to develop from these known risk factors 

[Robertson, 2005].  Very little is fully understood regarding the occurrence and development of 

breast cancer. In particular, there exists no proven preventative intervention or treatment that 

reverses malignant tumour growth. Therefore, early detection remains the best means of survival 

[National Breast Cancer Coalition]. 

 

Early detection is particularly critical as a patient survival rate is directly related to the size of 

tumour and degree that it has spread.  If the malignant tumour is discovered while it is still 

localized (it is less than 2cm in size and has not spread to the lymph nodes) the five year survival 

rate is 95% [Cokkinides et al., 2004].  Hence, there is a great deal of research on new methods 

enabling cancer detection than is currently possible. 

 

 



Introduction 1-3 

1.2 Existing Methods of Breast Cancer Screening 

 

There are currently a number of methods used to detect breast cancer.  These include: Manual 

Palpation, Mammography, MRI (Magnetic Resonance Imaging) and Ultrasound.  Before the 

introduction of modern screening techniques, manual palpation was the most effective method of 

cancer detection, and even in modern technology it remains one of the most common forms of 

detection.  This involves a manual physical examination for lumps in the breast tissue, either 

performed by a medical practitioner or the individual themselves.  Manual Palpation is still 

currently an important method for breast cancer detection and regular self-examination is 

considered an important preventative measure.  However, the size of the cancerous lump has to 

exceed 1-2 cm in order to be located easily [Hii, 2005] and by this stage the cancerous cells may 

have spread beyond the breast. 

 

Mammography represents the principal and most effective technology currently available for 

breast cancer screening.  Since its widespread introduction in the 1970’s, mortality resulting 

from breast cancer has significantly decreased [Tabar et al. 2003].  The procedure is performed 

by compressing each breast between two plastic plates in order to spread the tissue apart.  The 

compression of the breasts ensures that a minimal dose of radiation is required and that little 

movement occurs during screening. It also provides a much sharper image as a thinner layer is 

imaged.  An X-ray image is then recorded onto radiographic film and must be interpreted by a 

highly skilled radiologist.  The accuracy of this technique is therefore highly dependent on the 

ability and experience of the radiologist reading the resulting images [Kopans. 1998]. 

 

There are a number of drawbacks associated with mammography.  Patients report a great level of 

pain and discomfort during the process of compressing the breast.  The patients are also 

constantly subjected to radiation if regular screening occurs and this provides an additional 

health risk.  However, due to refinements in the procedure (including breast compression) this 

level of radiation has been significantly reduced in comparison to traditional X-ray methods, but 

it still restricts the number of years of screening and this makes it available primarily after the 

age of 50. 

 

The level of discomfort and radiation dose has somewhat tarnished the reputation of the 

procedure and can lead to low screening compliance rates among eligible women [Chamberlain, 



Introduction 1-4 

2002].  The large size and capital cost of mammography equipment also restricts the location of 

screening facilities to urban centres.  This too causes lower screening rates, as women living in 

rural areas are not always able to maintain a regular screening programme due to large travel 

distances and inflexible scheduling for the procedure [Robertson, 2005]. 

 

Contrast-enhanced Magnetic Resonance Imaging (MRI) is a technique that has proved to be very 

useful at detecting breast cancer and providing further diagnosis [Bone et al. 1998], particularly 

among woman with very dense breasts.  However, the widespread application of this technology 

is limited by the significant cost and size of the equipment required.  It is also not recommended 

as an initial screening method because it has been known to find abnormalities that are not breast 

cancer, resulting in an increased number of unnecessary biopsy procedures [National Cancer 

Institute].  Finally, its slow turnaround time means only a very few women could be screened 

each day per MRI system, making it impractical large-scale screening. 

 

Ultrasound, also known as sonography, is an imaging method that uses high-frequency sound 

waves to create an image of the breast.   The method involves a medical practitioner moving a 

handheld probe (transducer) across the surface of the breast and interpreting the image displayed 

on a computer screen.  Although it is a valuable tool for diagnosis alongside a Mammogram as it 

is widely available, non-invasive and relatively inexpensive, it is not recommended as a primary 

breast screening method as the image contrast is poor and requires a highly skilled and 

experienced operator to interpret the output images leading to subjective and inaccurate results 

[Chamberlain, 2002].  In addition the manual nature of this method brings into doubt the 

geometric repeatability of the process, which is important when trying to implement a 

widespread, repeatable breast screening method [Peters et al. 2004]. 

 

1.3 Emerging Elastographic Screening Methods 

 

Elastographic techniques concentrate on the high contrast between the elastic properties of the 

carcinoma and the surrounding healthy breast tissue.  Separate studies completed by Krouskop et 

al. (1998) and Samani et al. (2003) measuring the elastic moduli of human tissue have shown 

invasive ductal carcinoma, or cancerous tumour, to be approximately an order of magnitude 

stiffer than fibroglandular tissue from a healthy breast.  Currently, there are a number of methods 

under development that utilise the high contrast in elastic properties. 



Introduction 1-5 

 

Magnetic Resonance Elastography (MRE) uses harmonic mechanical displacements measured 

from an MRI to calculate the internal elasticity distribution using an inverse problem algorithm.  

This technique may provide an effective means of screening for tumours within the breast 

without the false positives inherent in current MRI methods.  However, this method still requires 

an MRI system, which is expensive, not transportable, and has very low turnaround. 

 

Digital Image-Based Elasto-Tomography (DIET) is an emerging new technology that uses 

digital imaging of a sinusoidally actuated breast surface to determine the surface motion of the 

tissue [Peters et al. 2004, 2005].  The surface motion is then used to reconstruct the three 

dimensional internal elasticity distribution.  The system consists of four distinct steps, which are 

summarized in Figure 1.1: 

 

1. An actuator positioned on the surface of the breast, which operates at constant frequency and 

amplitude and induces steady-state sinusoidal motion throughout the breast tissue. 

 

2. High resolution, spatially calibrated cameras are positioned in an array over the breast.  These 

take a sequence of 2D images of reference points on the surface of the breast. 

 

3. The consecutive 2D motion output from the cameras is converted into 3D time varying 

motion vector for each reference point using image processing algorithms. 

 

4. The 3D internal elasticity distribution of the breast tissue is reconstructed using an inverse 

algorithm with the surface motion vectors used as input. 

 



Introduction 1-6 

 

Figure 1.1 – Summary of the DIET process 

 

The DIET system has a number of potential advantages over existing and developing methods of 

breast cancer screening.  These include [Robertson, 2005]; 

 

• Transportability 

• Low Cost – Equipment is less capitally intensive 

• Breast tissue is not exposed to harmful radiation 

• More comfortable than a mammogram 

• Elastographic contrast between carcinoma and healthy tissue 

• Objective interpretation of results means that technique does not require as highly skilled 

operators as other methods 

• Can collate a history of results for comparison and diagnosis 

• Suitable for dense breast tissue 

 

These potential benefits mean that the DIET system could increase screening compliance rates, 

as the portable and low cost nature of the device means that screening is more accessible, as well 

as eliminating the disincentive for screening that the often uncomfortable mammogram process 

initiates.  The ability of the system to screen breasts with more dense issue gives the ability to 



Introduction 1-7 

screen younger women, with whom this breast property is characteristic, particularly those with a 

genetic disposition towards the disease.  The elimination of doses of radiation also means that 

women in the at-risk group of 40-55 years of age, or even younger, can be screened more often, 

thus increasing the chances of early detection. 

 

1.4 Existing Inverse Problem Solutions 

 

The use of Magnetic Resonance Imaging (MRI) has been investigated for use in cancer detection 

and diagnosis.  The signal generated from carefully aligned nuclear spins is used to create cross-

sectional images and obtain displacement data throughout the tissue, at a resolution of 

approximately 1.52 measurements per 1mm
3
, creating the potential for sub-millimetre detection 

of tumours.  However, to create a stiffness image at the same voxel resolution as the original MR 

data using traditional global optimization approaches leads to an impracticably large 

computational problem. 

 

More specifically, for a typical MR dataset of 16 256x256 voxel image slices, the required RAM 

for the update matrix would be roughly 5000Gb, which is beyond the current state of computer 

technology to invert and solve [Van Houten et al. 1999].  Breast MRI is also not currently used 

for routine cancer screening.  However, clinical trials are being performed to determine its value 

in testing women at high risk for breast cancer [National Cancer Institute, 2002].  The limitations 

of current computer technology necessitate the implementation of innovative inverse problem 

solution algorithms that are computationally efficient. 

 

Previous work with Elastographic inverse problem solutions has shown that is it possible to 

solve MR Elastography problems using conventional non-linear optimization by dividing the 

total problem domain into sub-zones [Van Houten et al. 1999].  An estimated stiffness 

distribution is found that minimizes the error between measured and computed displacements.  

Simulations using 3D breast geometry indicate that the algorithm can detect 1cm diameter hard 

inclusions with 2.5x elasticity contrast to the surrounding tissue [Van Houten et al. 2001].  

However, the implementation of these algorithms remains computationally intense. 

 



Introduction 1-8 

1.5 Proposed Inverse Problem Solution 

 

This thesis investigates and formulates novel integration-based inverse problem solution 

algorithms to be applied in Magnetic Resonance Elastography (MRE) and eventually DIET 

systems.  The final algorithm is intended to take measured or estimated global 3D harmonic 

displacements of the tissue throughout the breast and use it to calculate the internal stiffness 

distribution.  The integral fitting concept is extended from ordinary differential equation models 

[Hann et al. 2005, 2006] to a partial differential equation model [Peters et al. 2004].  This 

approach transforms the problem into a linear and convex identification problem with no forward 

simulations required and involving very minimal computation on a standard personal computer 

[Hann et al. 2005, 2006]. 

 

The closet comparison to the proposed integral-based method is an optimization based method 

adopted by Van Houten et al. (1999, 2001).  Both are model based reconstructions that can 

operate with unfiltered data.  The main advantage of the integral method is that it doesn’t require 

an iterative solution because the best fit is obtained directly using linear least squares. 

 

Chapter 2 of this thesis details the simulation of the 1D Navier equation and integral-based 

parameter identification to identify the required 1D stiffness distribution.  Chapter 3 derives a 

finite difference formulation of the 2D Navier equation.  Chapter 4 presents the integral 

formulation in the 2D homogeneous case and details the general 2D inverse problem algorithm 

for the non-homogeneous case.  It also briefly outlines a proposed extension to the three 

dimensional case.  Results and discussion for the 1D and 2D inverse problem algorithms 

implemented on simulated data with random noise added are shown Chapters 5 & 6, 

respectively.  Conclusions and future work are discussed in Chapter 7. 



 

 

 

 

 

 

 

 

 

 

 

Part 2 

 Methodology 

 



2 One Dimensional Inverse Problem

 
 

2.1 Forward Simulation of One Dimensional Data 

 

Although the displacement response of an actuated breast can not realistically be modelled in a 

single dimension, it is necessary to first verify the proposed integral-based inverse problem 

solution in this simple case.  The results from this analysis can then be used to identify problems 

and limitations of the method as well as establish potential frameworks from which higher 

dimensional simulation models and inverse problem solution algorithms could be developed. 

 

One dimensional motion data is simulated using the one dimensional, time harmonic 

simplification of Navier’s Equation, given by Equations (2.1) – (2.2b).  This approximation 

represents the propagation of shear waves through the one dimensional medium as a result of 

forced harmonic displacement which is applied transversely to the direction of the medium, akin 

to the shaking of a piece of string.  It ignores the effects of longitudinal compressive waves along 

the one dimensional medium.  When modelling human tissue, this approximation is appropriate 

as tissue is effectively incompressible and the resulting waves are insignificant in comparison 

with the shear deformations. 

  

tiexvtxv ω)(),( =        (2.1) 

 

vG
dx

dv

dx

d 2ρω−=







       (2.2) 

 

ν22 +
=

E
G         (2.2b) 

 

 

where: 

G  = Shear Modulus (Pa)  

ν  = Poisson’s Ratio 



One Dimensional Inverse Problem 2-11 

E  = Young’s Modulus (Pa) 

ρ  = Tissue Density (kgm
-3
) 

v  =  Displacement perpendicular to model axis (m) 

x  = Position (m) 

ω  = Harmonic Actuation Frequency (rads
-1
) 

 

2.1.1 Homogeneous Model 

 

Initially, the model is assumed to be homogeneous in order to simplify Equation (2.2).  

Specifically, if the Shear Modulus term (G) given by Equation (2.2) is constant, it can be 

removed from the derivative term, leading to: 

 

vGvxx
2ρω−=       (2.3) 

 

For 1+m  equally spaced points along the global domain Lx ≤≤0 , finite difference 

approximations are used to numerically compute the second derivative term xxv  in Equation 

(2.3), defined as follows: 

 

1,...,1),(
)()(2)(

)( 2

2

11 −=+
+−

= +− mihO
h

xvxvxv
xv iii
ixx    (2.4) 

 

mLh /=        (2.5) 

 

where:  

ix  = miih ,...,0, =  

h = distance between discrete points (m) 

 

Equation (2.4) represents the central difference approximation.  The forward and backward 

differences need not be applied to the end points, 0x  and mx , as these are the points at which 

boundary conditions are applied.  This enables a linear system of equations to be formulated in 

terms of the displacement amplitudes after boundary conditions are applied, as shown in 

Equations (2.6-2.8). 



One Dimensional Inverse Problem 2-12 

bvA =        (2.6) 

 

Where A is an mxm  matrix and b is an 1xm  vector of the forms: 

 





























+−

+−

+−

+−

=

10000000

200000

020000

000020

000002

00000001

1

2

2

2

2

2

K

K

K

MMMMMMMM

K

K

K

GGG

GGG

GGG

GGG

h
A

ρω
ρω

ρω
ρω

(2.7) 

 























=

1

0

0

0

Mb        (2.8) 

 

In this case, the specified boundary conditions are that one end of the domain was restricted to 

give zero displacement and the other end was allowed to oscillate with a fixed amplitude of 

1mm, giving 00 =v  and 1=mv .  This forced displacement oscillation, as mentioned above, is 

applied transversely to the direction of the 1D medium. 

 

Equation (2.6) can then be solved for v  to produce a numerical approximation to the solution 

)(xv  in Equation (2.3).  Uniformly distributed noise as a percentage of the geometric mean of 

the displacement was then added to the simulated data as a means of testing the robustness of the 

inverse problem algorithm. 

 

2.1.2 Non-Homogeneous Model 

 

A more general formulation of Equation (2.2) is to allow regions of greater stiffness, or 

cancerous ‘lumps,’ within the domain.  As shown in Equation (2.3) the 1D Navier equation 

given by Equation (2.2) was significantly simplified by considering the stiffness to be constant 



One Dimensional Inverse Problem 2-13 

over the whole domain.  A similar idea can be used in this non-homogeneous case by assuming 

the Shear Modulus G in Equation (2.2) is piecewise constant.  A stiffness element is then 

considered ‘healthy’ for a low stiffness value and ‘cancerous’ for a high stiffness value.  Figure 

(2.1) shows an example of a piecewise constant Shear Modulus distribution where there is a 

cancerous lump in the domain. 

 

G

x

Cancerous

Healthy

 

Figure 2.1 – The piecewise constant stiffness distribution of the forward simulation model for the non-

homogeneous case 

 

To ensure realistic displacements, elements are linked together by enforcing stress continuity at 

the boundary between two regions of differing stiffness.  The 1D stress equation is defined: 

 

xGv
dx

dv
GG === γτ       (2.9) 

 

Where γ  is the Shear Strain and τ  is the Shear Stress with units of Nm-2
. 

 

For two given elements with differing stiffness 1G  and 2G , continuity is enforced by setting: 

 

+− = ττ        (2.10) 

 



One Dimensional Inverse Problem 2-14 

+− = xx vGvG 21        (2.11) 

 

The numerical finite difference approximations to −τ  and +τ  are defined: 

 

)(
)43( 2

2

21
1 hO

h

vvv
G iii +

+−
= −−−τ     (2.12) 

 

)(
)43( 2

2

21
2 hO

h

vvv
G iii +

−+−
≈ +++τ     (2.13) 

 

This gives the following numerical stress continuity condition: 

 

)43()43( 212211 ++−− −+−≈+− iiiiii vvvGvvvG    (2.14) 

 

where: 

1G  = Shear Modulus (Nm
-2
) to the left of the stiffness boundary 

2G  = Shear Modulus (Nm
-2
) to the right of the stiffness boundary 

−
xv  = Left Side Derivative of Displacement 

+
xv  = Right Side Derivative of Displacement 

 

The reason for the notation −
xv  and +

xv  is that the first derivative of displacement ( xv ) is not 

continuous at the boundary between regions of differing stiffness.  However the product of the 

Shear Modulus and the derivative xv  is continuous throughout the domain.  Therefore the left 

hand and right hand derivatives, −
xv  and +

xv , are using a backward difference and a forwards 

difference respectively.  The magnitude of the error due to the finite difference approximations is 

kept consistent with previous approximations, in the order of h
2
. 

 

Equation (2.3) relating to the 1D Navier Equation is therefore not applied at the centre nodes 

separating two differing stiffness regions and is subsequently removed from the linear system of 

equations defined in Equations (2.6-2.8).  The corresponding stress continuity condition given by 

(Equation 2.14) is applied instead.  This gives a new linear system of equations: 

 



One Dimensional Inverse Problem 2-15 

bvA =        (2.15) 

 

Where A is an mxm  matrix similar to Equation (2.6) except in the region of the high stiffness 

‘lump’ which is defined: 

 



































−+−

−+−

=

MMMMMMMMMM

KKK

KKK

KKK

MMMMMMMMMM

KKK

KKK

KKK

MMMMMMMMMM

333

333222

222

222

222111

111

2

0000000

4)(3400000

0000000

0000000

000004)(34

0000000

1

GCG

GGGGGG

GCG

GCG

GGGGGG

GCG

h
A (2.16) 

 

Where 22 ρω+−= ii GC  and b is an 1xm  vector of the form: 

 























=

1

0

0

0

Mb        (2.17) 

 

The solution to Equation (2.15) will then approximate the solution to the non-homogenous 1D 

Navier’s equation given by Equation (2.2) for the case of a piecewise constant Shear Modulus G 

given by Equation (2.2b).  The solutions of Equation (2.6) and Equation (2.15) will converge to 

the true solution with reduction of the step size h. 

 

2.2 One Dimensional Inverse Problem Solution Algorithms 

 

Three different methods of integration were investigated when creating the one dimensional 

inverse problem solution algorithms.  All methods assume that the stiffness values that are to be 

calculated are constant along 1cm long segments and the stiffness of a segment is not constrained 



One Dimensional Inverse Problem 2-16 

to the stiffnesses of neighbouring segments in any way.  This representation of breast tissue 

stiffness distribution effectively limits the resolution of cancer detection to a 1cm long ‘tumour’.  

However as cancerous tissue is significantly stiffer than healthy breast tissue, there is still a 

possibility of picking up smaller ‘tumours’ as the average stiffness in a 1cm segment containing 

cancer will still be greater than the surrounding healthy tissue.  Furthermore, once a potential 

‘tumour’ is discovered the tissue stiffness distribution could be refined for greater accuracy. 

 

The first method investigated is a local integration method which calculates the value of the 

Shear Modulus at each segment using only displacement data from within that particular 

segment.  This means that each stiffness value is calculated independently from the surrounding 

segments. 

 

The second method involves single integration over the whole displacement dataset to formulate 

a linear system of equations involving the Shear Modulus of all segments.  Thus the interactions 

between different segments and their effects on displacement is utilised as additional knowledge 

to create a more effective algorithm.  For the single integration method, the fundamental 

equation is only integrated once and thus requires differentiation of the displacement data and 

hence is potentially more sensitive to noise. 

 

The third method involves double integrating the differential equation of motion (Equation 

(2.3)).  Thus it incorporates the global knowledge of the stiffness distribution as well as not 

requiring any differentiation.  This results in a more robust method to the effects of noise. 

  

2.2.1 Local Integration 

 

For a constant Shear Modulus G, Equation (2.3) can be rewritten: 

 

Avxv xx −=)(        (2.18) 

 

G
A

2ρω−
=         (2.19) 

 

Integrating Equation (2.18) from 1x  to x  gives: 



One Dimensional Inverse Problem 2-17 

 

∫ ′′−=−
x

x
xx xdxvAxvxv

1

)()()( 1      (2.20) 

 

Integrating Equation (2.20) from 1x  to x  gives: 

 

( )

( )dxxdxvAbax

dxxdxvAxxxvxvxv

x

x

x

x

x

x

x

x
x

∫ ∫

∫ ∫
′′−+=

′′−−+=

1 1

1 1

)(

)())(()()( 111

   (2.21) 

 

)( 1xva x=         (2.22) 

 

111 )()( xxvxvb x−=        (2.23) 

 

Note that a  and b  are treated as unknown parameters since they contain derivatives which due 

to noise may potentially corrupt the solution and hence affect the accuracy of the fitted parameter 

A . 

 

Equation (2.21) shows that two integrations of Equation (2.18) eliminates derivative terms 

leaving three unknown coefficients a , b  and A .  Given for example 10 segments, defined by 

[ ]{ }10,...,1,,1 =− ixx ii  with 10 different Shear Modulus values 10,...,1, =iGi , Equations (2.21)-

(2.23) and (2.19) become respectively: 

 

( ) [ ] 10,...,1,,,)( 1
1 1

=∈′−+= −∫ ∫ ixxxdxxvdAbxaxv ii

x

x

x

x
iii   (2.24) 

 

)( 1−= ixi xva         (2.25) 

 

111 )()( −−− −= iixii xxvxvb       (2.26) 

 

i

i
G

A
2ρω−

=          (2.27) 



One Dimensional Inverse Problem 2-18 

By choosing 3>m  values of x  in each interval [ ] 10,...,1,,1 =− ixx ii , Equation (2.24) will 

produce m10  equations in 30 unknowns { }10,...,1,,, =iAba iii .  Since 3010 >m  this is an over-

determined system which can be solved by linear least squares and will uniquely determine iA  

and hence the stiffness distribution 10,...,1, =iGi . 

 

However note that Equations (2.24-2.27) are only defined locally on each segment, independent 

of all other segments.  Thus the problem of determining the 10 iA  terms is split up into 10 

separate problems.  Also note that the integral sign is used for simplicity in notation.  It should 

be taken to mean numerical integration in all instances. 

 

2.2.2 Global Single Integration with Derivative Fitting 

 

This second method looks to include the effects of the global motion dataset, as a change of the 

Shear Modulus or stiffness within a small segment of the system affects the entire motion 

dataset.  Therefore making use of the global motion dataset would be beneficial in increasing the 

accuracy of the stiffness to be solved for.  Integrating Equation (2.2) from 0 to x  produces the 

following equation: 

 

∫−=−
x

xx dxxvGvxGxv
0

2 )()0()0()()( ρω     (2.28) 

 

For a given segment ii xxx <<−1  and a piecewise constant Shear Modulus function )(xG , shown 

in Figure (2.1), Equation (2.28) can be written in the form: 

 

[ ]ii

x

xix xxxdxxvGvGxv ,,)()0()( 1
0

2

1 −∈−=− ∫ρω    (2.29) 

 

Given 2≥m  values of x in each segment an over-determined system of linear equations can be 

set up in terms of the unknowns { }10,...,1, =iGi .  However this method requires the derivative of 

noisy displacement data.  Thus a series of quadric polynomials were fitted in each segment to 

smooth out the noise and enable a reasonably accurate approximation to derivatives.  This 

process is discussed in more detail in the results section of Chapter 5. 



One Dimensional Inverse Problem 2-19 

2.2.3 Global Double Integration 

 

The third integration method also includes the effects of the global motion dataset but has the 

advantage of not requiring any derivatives to compute.  Thus the method is more robust to the 

effects of noise.  Integrating Equation (2.2) from 0 to x  gives: 

 

∫

∫∫
′′−=−

′′−=′′′

x

xx

xx

xx

xdxvvGxvxG

xdxvxdxvxG

0

2

0

2

0

)()0()0()()(

)()()(

ρω

ρω
    (2.30) 

 

Integrating Equation (2.30) from 0 to x  gives: 

 

dxxdxvxvGxdxvxG
x x

x

x

x ∫ ∫∫ 




 ′′−=−′′′

0 0

2

0
)()0()0()()( ρω   (2.31) 

 

However for a constant piecewise function of Shear Modulus )(xG  defined: 

 

10,...,1,,)( 1 =≤≤= − ixxxGxG iii      (2.32) 

 

There is no simple immediate simplification of Equation (2.31).  Thus to obtain the generalised 

formula across the whole domain, the formula for the first three stiffness segments are initially 

derived as follows: 

 

Stiffness 1, [ ]10 , xxx∈  

 

[ ]

dxxdxvxvGvGxvG

dxxdxvxvGvxvG

dxxdxvxvGdxxvG

x x

x

x x

x

x x

x

x

x

∫ ∫

∫ ∫

∫ ∫∫






 ′′−=−−






 ′′−=−−






 ′′−=−

0 0

2

111

0 0

2

11

0 0

2

1
0

1

)()0()0()(

)()0()0()(

)()0()(

ρω

ρω

ρω

  (2.33) 

 

 

 



One Dimensional Inverse Problem 2-20 

Thus for the first segment Equation (2.31) becomes: 

 

dxxdxvaxbxvG
x x

∫ ∫ 




 ′′−=++

0 0

2

11 )()( ρω     (2.34) 

 

where:  

)0(

)0(

11

1

vGb

vGa x

−=

−=
 

 

Stiffness 2, [ ]21 , xxx∈  

 

[ ] [ ]

[ ]( ) dxxdxvxvGxvGvxvGxvG

dxxdxvxvGxvxvGvxvG

dxxdxvxvGdxxvGdxxvG

x x

x

x x

x

x x

x

x

x x

x

x

∫ ∫

∫ ∫

∫ ∫∫∫






 ′′−=−−−+






 ′′−=−−+−






 ′′−=−+

0 0

2

112112

0 0

2

11211

0 0

2

1
1

2

1

0
1

)()0()()0()()(

)()0()()()0()(

)()0()()(

ρω

ρω

ρω

 (2.35) 

 

Thus for the second segment Equation (2.31) becomes: 

 

dxxdxvaxbxvG
x x

∫ ∫ 




 ′′−=++

0 0

2

22 )()( ρω     (2.36) 

 

where:  

[ ]
))(()0(

)()0()(

)0(

2111

12112

1

GGxvvG

xvGvxvGb

vGa x

−+−=

−−=

−=

 



One Dimensional Inverse Problem 2-21 

Stiffness 3, [ ]32 , xxx∈  

 

[ ] [ ] [ ]

[ ] [ ][ ]

dxxdxv

xvGxvGxvxvGvxvGxvG

dxxdxv

xvGxvxvGxvxvGvxvG

dxxdxv

xvGdxxvGdxxvGdxxvG

x x

x

x x

x

x x

x

x

x
x

x

x
x

x

x

∫ ∫

∫ ∫

∫ ∫

∫∫∫






 ′′−=

−−−+−+






 ′′−=

−−+−+−






 ′′−=

−++

0 0

2

123122113

0 0

2

12312211

0 0

2

1
2

3

2

1
2

1

0
1

)(

)0()()()()0()()(

)(

)0()()()()()0()(

)(

)0()()()(

ρω

ρω

ρω

  (2.37) 

 

Thus for the third segment Equation (2.31) becomes: 

 

dxxdxvaxbxvG
x x

∫ ∫ 




 ′′−=++

0 0

2

33 )()( ρω     (2.38) 

 

where: 

[ ] [ ]
))(())((

)()1()()0()(

)0(

3222111

2322112

1

GGxvGGxvG

xvGxuxvGuxvGb

vGa x

−+−+−=

−−+−=

−=

 

 

Looking at Equations (2.34), (2.36) and (2.38) the general formula for the thi segment can be 

inferred as follows: 

 

dxxdxvaxbxvG
x x

ii ∫ ∫ 




 ′′−=++

0 0

2 )()( ρω     (2.39) 

 

where:  

[ ]∑
=

−− −+−=

−=
i

k
kkkii

x

GGxvvGb

vGa

2

11

1

)()0(

)0(

 

 

By treating the global constant term a and telescoping terms ib  as extra unknown parameters, it 

avoids the possibility of error in the derivative )0(xv  or )( 1−kxv  terms corrupting the solution.  



One Dimensional Inverse Problem 2-22 

Choosing 3≥m  values of x  in each interval [ ] 10,...,1,,1 =− ixx ii , Equation (2.39) will produce 

m10  equations in 21 unknowns ( ){ }aibG ii ,10,...,1,, = .  Since 2110 >m  the result is an over-

determined system of linear equations that can be solved uniquely for the stiffness distribution 

{ }10,...,1, =iGi  by linear least squares.  For example, if 3=m  the system of equations can be 

written: 

 

bA =α         (2.40) 

 

( ){ }aibG ii ,10,...,1,, ==α      (2.41) 

 







































=

)3(

10

)3(

10

)2(

10

)2(

10

)1(

10

)1(

10

)3(

2

)3(

2

)2(

2

)2(

2

)1(

2

)1(

2

)3(

1

)3(

1

)2(

1

)2(

1

)1(

1

)1(

1

1)(0000

1)(0000

1)(0000

001)(00

001)(00

001)(00

00001)(

00001)(

00001)(

xxv

xxv

xxv

xxv

xxv

xxv

xxv

xxv

xxv

A

K

K

K

MMMMMMM

K

K

K

K

K

K

   (2.42) 

 





























−=

)(

)(

)(

)(

)(

)(

)3(

10

)2(

10

)1(

10

)3(

1

)2(

1

)1(

1

2

xI

xI

xI

xI

xI

xI

b Mρω       (2.43) 

 

where: 

dxxdxvxI
i

k
i

kx xi

k ∫ ∫ 





 ′′−=

)( )(

0 0

2)(
)()( ρω  



One Dimensional Inverse Problem 2-23 

2.2.4 Mesh Refinement 

 

The global double integral 1D inverse solution algorithm of Section 2.2.3 was further enhanced 

by incorporating a localised mesh refinement technique.  This was performed by initially solving 

for the stiffness across 1cm intervals then using the resulting stiffness distribution to identify 

regions with higher stiffness, which may not have been aligned with the discretized grid.  For the 

case of a stiffness region not aligned with the discretized grid or a tumour less than 1cm the 

calculated stiffness value may contain contributions from both healthy and cancerous tissue.  

Thus the net stiffness may be less than it should be to easily detect cancer.  Therefore regions 

with greater stiffness than expected for healthy tissue are looked at more closely by a localized 

refinement of the mesh.  These identified regions are each divided into two 0.5cm regions 

producing another mesh with greater resolution.  The advantage of this refinement process is that 

only the likely cancerous regions are refined thus improving computational efficiency and 

accuracy.  A new over-determined system of linear equations is then formed in a similar way to 

Section 2.2.3 but now with more unknown stiffness values to solve for.  This technique allows 

identification of 1cm long tumours that do not neatly fit within the discretized domain and also 

enhances the ability to identify tumours down to a size of 0.5cm. 

 

2.2.5 Numerical Integration 

 

All the integral terms given in Sections 2.2.1-2.2.3 are numerical integrals.  The single integrals 

in Section 2.2.2 are simply an application of the trapezium rule as shown: 

 









+

+
=

=

∑

∫
−

=

1

1

0
)(

2

)()(

)()(
0

j

i
i

j

x

x
j

xv
xvxv

h

dxxvxE
j

    (2.44) 

 

Where the notation in Equation (2.44) and (2.47)-(2.48) is described in Figure (2.3). 



One Dimensional Inverse Problem 2-24 

v

x 0 x 1 x 2 x 3

x
x n-2 x n-1 x n

 

Figure 2.3 – Description of the notation used to define the motion dataset for the purposes of numerical 

integration 

 

However, the inverse algorithms detailed in Sections 2.2.1 and 2.2.3 both require the use of 

numerical double integrals, which are detailed as follows: 

 

dxxdxvxF
jx

x

x

x
j ∫ ∫ 





 ′′=

0 0

)()(      (2.45) 

 

However it is not immediately clear how to formulate this in terms of sums.  Therefore Equation 

(2.45) is reformulated as follows: 

 

dxxfxF
jx

x
j ∫=

0

)()(       (2.46) 

 

∫ ′′=
kx

x
k xdxvxf

0

)()(       (2.47) 

 

Equations (2.46) and (2.48) are also evaluated using the trapezium rule.  Equations (2.48) and 

(2.49) represent the trapezium rule formulation of the numerical double integral (Equation 

(2.45)) in terms of summation terms: 

 

( )







+

+
= ∑

−

=

1

1

0
)(

2

)()(
)(

j

i
i

j

j xf
xfxf

hxF     (2.48) 

 



One Dimensional Inverse Problem 2-25 

( ) nkxv
xvxv

h

kxf

k

i
i

k

k

,...,1)(
2

)()(

00)(

1

1

0 =







+

+
=

==

∑
−

=

  (2.49) 

 

This numerical double integral function based upon the trapezium rule can easily be calculated 

using inbuilt functions in MATLAB.  Both the intermediate function )(xf  and the final double 

integral function )(xF  are formulated using the cumulative trapezium function, ‘cumtrapz’.  

Therefore Equations (2.48) and (2.49) can be represented in terms of MATLAB code as follows: 

F=h
2
*cumtrapz(cumtrapz(v));  



3 Forward Simulation of Two Dimensional 
Motion Data

 
 

3.1 Homogeneous Forward Simulation 

 

To obtain global motion data that can be used as input to test the inverse solution algorithm, a 

forward simulation algorithm was formulated.  For proof of concept a simple square domain is 

used.  However, the method can be readily extended to handle any curved domain by creating an 

appropriate mesh with, for example, triangular elements near the boundary and square elements 

inside. 

 

The decision to use Finite Difference Approximations (FDAs) as the basis of the simulation 

model was made primarily due to the computational efficiency and ease of programming that 

this form of numerical approximation provides.  The simple (square) geometry also negated the 

need to develop a more complicated finite element solver.  Given their similarity to the 

fundamental DIET problem, the two dimensional plane strain, time harmonic approximations of 

Navier’s Equations are used as the fundamental defining equations for the 2D model: 

 

[ ]

[ ] vvuG
y

Gv
y

Gv
x

uvuG
x

Gu
y

Gu
x

yxyx

yxyx

2

2

))(()()(

))(()()(

ρωλ

ρωλ

−=++
∂
∂

+
∂
∂

+
∂
∂

−=++
∂
∂

+
∂
∂

+
∂
∂

   (3.1) 

 

where: 

ν22 +
=

E
G        (3.2) 

 

)21)(1( νν
ν

λ
−+

=
E

      (3.3) 

 

 



Forward Simulation of Two Dimensional Motion Data 3-27 

where: 

u  =  Displacement in x direction (m) 

v  =  Displacement in y direction (m) 

E  = Young’s Modulus (Nm
-2
) 

G  =  Shear Modulus (Nm
-2
) 

ω  =  Harmonic Actuation Frequency (rads
-1
) 

ρ  =  Tissue Density (kgm
-3
) 

ν  = Poisson’s Ratio 

λ  = Lamé’s Constant 

 

Initially, the model is assumed to have homogeneous material properties to provide a means of 

verifying against analytical results.  It also provides a baseline for comparison when 

incorporating a region or ‘lump’ of greater stiffness that models cancerous tissue.  In the 

homogeneous case, the Young’s Modulus, E , is constant.  Therefore, since the λ  and G  terms 

are linearly related to E  in Equations (3.2)-(3.3), they are also constant and can be removed 

from the derivative terms in Equation (3.1) producing: 

 

( ) ( )
( ) ( ) vuGGvvG

uvGGuuG

xyxxyy

xyyyxx

2

2

2

2

ρωλλ

ρωλλ

−=++++

−=++++
    (3.4) 

 

This approach also extends to the non-homogeneous ‘lump’ model as the stiffness distribution is 

either ‘healthy’, corresponding to low constant stiffness, or ‘cancerous’, corresponding to high 

constant stiffness. More specifically, non-homogeneous cases will assume element-wise constant 

material properties.  The stiffness elements are then connected by applying the appropriate stress 

continuity terms at the boundary of regions of differing stiffness in a similar way to the 1D case 

in Equations (2.10) and (2.11). 

 

Each of the derivative terms in Equation (3.4) are approximated by a discrete finite difference 

approximation defined: 

 

2

,1,,1 2

h

uuu
u

jijiji

xx

+− +−
≈      (3.5) 

 



Forward Simulation of Two Dimensional Motion Data 3-28 

2

1,,1, 2

h

uuu
u

jijiji

yy

+− +−
≈      (3.6) 

 

2

1,11,11,11,1

4h

vvvv
v

jijijiji

xy

++−++−−− +−−
≈     (3.7) 

 

2

,1,,1 2

h

vvv
v

jijiji

xx

+− +−
≈      (3.8) 

 

2

1,,1, 2

h

vvv
v

jijiji

yy

+− +−
≈      (3.9) 

 

2

1,11,11,11,1

4h

uuuu
u

jijijiji

xy

++−++−−− +−−
≈     (3.10) 

 

Where h  is the (typically equal) distance assumed between discrete points in both the x  and y  

direction.  Note that different or varying values of h  can be readily incorporated. 

 

Due to computer memory constraints, sparse matrix algebra in MATLAB is used to form the 

system of equations and find the solution.  This approach is efficient in this case because the 

equations relating to each node only contain contributions from the eight surrounding nodes and 

the node itself.  Thus, for grid refinements where the system of equations is expanded, the 

maximum number of terms per equation does not exceed nine. 

 

3.2 Application of Boundary Conditions 

 

Three different boundary condition models were implemented.  All three are shown 

schematically in Figure 3.1. 



Forward Simulation of Two Dimensional Motion Data 3-29 

1. ‘Box Shake’ Model - Figure 3.1(a) 

• The entire external boundary of the square domain is oscillated at known amplitude in the 

x  direction and zero amplitude in the y  direction. 

 

2. ‘Edge Effect’ Model – Figure 3.1(b) 

• The domain is restrained in both the x  & y  directions on the left hand edge. 

• The right hand edge is constrained to oscillate at known amplitude in the x direction and 

zero amplitude in the y direction. 

• The top and bottom horizontal edges of the domain are made ‘free’ edges, where the 

constraints enforced on these two edges are zero shear stress along the boundary and 

zero longitudinal stress normal to the boundary. 

 

3. ‘Phantom’ Model – Figure 3.1(c) 

• Model is similar to the breast phantoms used to simulate data for the DIET project [Peters 

et al. (2005)], except that shear excitation is used. 

• A single edge of the domain is forced to oscillate.  This forced harmonic displacement is 

parallel to the edge. 

• The other three edges are ‘free’ with zero shear stress and zero normal longitudinal stress 

enforced along these boundaries of the domain. 

 

The known peak to peak amplitude that was used for these boundary conditions was 1mm.  This 

value has been chosen because it corresponds to the capabilities and requirements of the initial 

DIET prototype system [Peters et al. (2005)]. 

 

(a) (b) (c)

 

Figure 3.1 – Description of the three types of boundary condition systems implemented;  (a) ‘Box Shake’ 

model, (b) ‘Edge Effect’ model and (c) ‘Phantom’ model. 



Forward Simulation of Two Dimensional Motion Data 3-30 

Both the ‘Edge Effect’ and ‘Phantom’ models, shown in Figures 3.1(b) and 3.1(c), require zero 

stress boundary conditions to be imposed along the ‘free’ edges.  For the ‘Edge Effect’ model of 

Figure 3.1(b) the shear stress xyτ  and the y direction longitudinal stress yσ  are used along the 

horizontal boundaries defined [Chou et al. (1967)]: 

 

)( xyxy vuG +=τ        (3.11) 

 

xyy uvG λλσ ++= )2(      (3.12) 

 

Finite differences are used to approximate Equations (3.11) and (3.12).  Specifically, at the 

bottom horizontal boundary (B) forward differences are applied perpendicular to the boundary 

and central differences are applied parallel to the boundary: 

 

0
2

)()43( ,1,12,1,,)( =
+−+−+−

≈ +−++

h

vvuuu
G

jijijijijiB

xyτ    (3.13) 

 

0
2

)(

2

)43(
)2(

,1,12,1,,)( =
+−

+
−+−

+≈ +−++

h

uu

h

vvv
G

jijijijijiB

y λλσ   (3.14) 

 

Similarly, the stresses on the top horizontal boundary (T) are defined: 

 

0
2

)()43( ,1,12,1,, =
+−++−

≈ +−−−

h

vvuuu
G

jijijijiji

xyτ     (3.15) 

 

0
2

)(

2

)43(
)2(

,1,12,1,, =
+−

+
+−

+≈ +−−−

h

uu

h

vvv
G

jijijijiji

y λλσ   (3.16) 

 

The finite difference approximations of Equations (3.11) and (3.12) are all )( 2hO  and replace 

the finite difference derivations of Equation (3.4) at each horizontal boundary node. 

 

Zero shear stress and zero normal longitudinal stress conditions are also enforced at the right 

vertical edge of the domain for the ‘Phantom’ model in Figure 3.1(c).  The normal longitudinal 

stress in this case is the x  direction longitudinal defined as follows: 



Forward Simulation of Two Dimensional Motion Data 3-31 

yxx vuG λλσ ++= )2(      (3.17) 

 

The finite difference approximations to the longitudinal and shear stresses given by Equations 

(3.11) and (3.12) along the ‘free’ vertical boundary (V) are defined: 

 

0
2

)(

2

)43(
)2(

1,1,,2,1,)( =
+−

+
+−

+≈ +−−−

h

vv

h

uuu
G

jijijijijiV

x λλσ   (3.18) 

 

0
2

)()43( 1,1,,2,1,)( =
+−++−

≈ +−−−

h

uuvvv
G

jijijijijiV

xyτ    (3.19) 

 

The ‘Phantom’ model of Figure 3.1(c) also has ‘free’ corners, where the unrestrained vertical 

edge of the domain meets the two unrestrained horizontal edges.  In this instance, there is no 

uniquely defined normal longitudinal stress that can be defined on the corner node.  So the x  

direction longitudinal stress of Equation (3.17) was chosen as a zero stress condition, in addition 

to the shear stress of Equation (3.11).  The finite difference formulas for xσ  and xyτ  are thus 

defined for the top right corner node (R) as follows: 

 

0
2

)43(

2

)43(
)2(

2,1,,,2,1,)( =
+−

+
+−

+≈ −−−−

h

vvv

h

uuu
G

jijijijijijiR

x λλσ   (3.20) 

 

0
2

)43()43( 2,1,,,2,1,)( =
+−++−

≈ −−−−

h

uuuvvv
G

jijijijijijiR

xyτ    (3.21) 

 

The finite difference formulas for xσ  and xyτ  are defined for the bottom right corner node (B) as 

follows: 

 

0
2

)43(

2

)43(
)2(

2,1,,,2,1,)( =
−+−

+
+−

+≈ ++−−

h

vvv

h

uuu
G

jijijijijijiB

x λλσ  (3.22) 

 

0
2

)43()43( 2,1,,,2,1,)( =
−+−++−

≈ ++−−

h

uuuvvv
G

jijijijijijiB

xyτ   (3.23) 

 



Forward Simulation of Two Dimensional Motion Data 3-32 

After incorporating the boundary conditions of Equations (3.11)-(3.23) and combining with 

Equations (3.4)-(3.10) a linear system of equations can be formed in terms of the displacement 

amplitudes in both Cartesian directions u  and v .  For reasons of space the full system of 

equations for each case shown in Figures 3.1(a)-(c) is not given.  The system of equations will 

have a unique solution for each given boundary condition provide the ‘measured’ data input to 

validate the inverse solution algorithms. 

 

3.3 Verification of Homogeneous Model 

 

The 2-D time harmonic, plane strain Navier’s Equations given by Equation (3.4) has a unique 

analytical solution across the infinite domain defined: 

 












+
+











+
+










+










+












+
+











+
+










+










=

G

x
C

G

y
C

G

y
C

G

y
C

G

x
C

G

x
C

G

x
C

G

x
Cyxu

2
cos

2
sincossin

2
cos

2
sinsincos),(

8765

4321

λ

ρω

λ

ρωρωρω

λ

ρω

λ

ρωρωρω

(3.24) 

 

( ) ( )

( )






















































−







 +−



















+







 +−












+







++−+−












+







++−+

+

−
=

G

x
yCGCG

G

x
yCGCG

G

y
GC

CxC
GG

G

y
GC

CxC
GG

GG
yxv

ρω
ωρρ

λ
ω

ρω
ωρρ

λ
ω

λ

ρωλρω
λ

λ

ρωλρω
λ

λρω

cos
2

sin
2

2
sin

22
2

2
cos

22
2

2

2
),(

210

19

12
12

2

8

11
11

2

7

(3.25) 

 

 By choosing random values of the initial conditions iC  and evaluating the solution of Equations 

(3.24) and (3.25) on the boundary of the square domain of Figure 3.1, the homogeneous finite 

difference solution of Equation (3.4) can be verified for accuracy.  However, to reproduce the 

solution of Equations (3.24) and (3.25) numerically it is necessary to slightly change the 

boundary conditions in the ‘Box Shake’ model of Figure 3.1(a).   

 



Forward Simulation of Two Dimensional Motion Data 3-33 

Specifically, the boundary conditions of constant amplitude along each edge of the domain in 

Figure 3.1(a) are replaced by the values of the known analytical solution which vary 

continuously along the edges.  Thus, the numerical solution should closely approximate the 

analytical solution within the square sub-domain.  This approach provides an effective means for 

debugging the numerical code because appropriate derivatives could be compared between 

analytical and numerical models, along with the resulting forward simulated displacement 

values.  It also enables a check of the overall numerical stability and accuracy of the forward 

simulation software and methods. 

 

3.4 Non-Homogeneous Model 

 

The next step in the formation of a forward simulation algorithm for this study is to 

accommodate regions of greater stiffness, or cancerous ‘lumps,’ within the domain.  By 

considering stiffness to be constant across elements, the fundamental differential equations of 

Equation (3.1) can be simplified considerably to the form of Equation (3.4).  For this new non-

homogeneous model, this assumption will be maintained, except that the stiffness will now be 

piecewise constant.  In a similar way to the 1D case of Equations (2.10) and (2.11), the different 

elements are linked via a stress continuity condition.  For simplicity the ‘lump’ is assumed to 

have a rectangular geometry. 

 

To enforce the stress continuity between regions of differing stiffness, the stress either side of the 

boundary is approximated numerically.  This enforcement is done using finite difference 

approximations with )( 2hO  error similar to Equations (2.12)-(2.14).  For the horizontal and 

vertical boundaries, both normal longitudinal and shear stress are used to enforce the stress 

continuity.  For the vertical boundary, the normal longitudinal stress is represented by the x  

direction longitudinal stress given in Equation (3.17).  For the horizontal boundary, the normal 

longitudinal stress is represented by the y  direction longitudinal stress given in Equation (3.12).  

The shear stress is given by Equation (3.11). 

 

Figure 3.2(a) illustrates the vertical boundary of the stiffness discontinuity, where the subscripts 

(L) and (R) denote the elements to the left and right of the boundary respectively.  Figure 3.2(b) 



Forward Simulation of Two Dimensional Motion Data 3-34 

illustrates the horizontal boundary where the subscripts (A) and (B) denote the elements above 

and below the boundary respectively. 

 

The finite difference equations are defined as follows: 

(b)(a)

A

B

G(L), λ(L) G(R), λ(R)L R

G(A), λ(A)

G(B), λ(B)

 

 

Figure 3.2 – Notation used to describe the Vertical Stiffness Boundary (a) and the Horizontal Stiffness 

Boundary (b) 

 

Vertical Boundary 

 

)()43)(2(

)()43)(2(

1,1,)(,2,1,)()(

1,1,)(,2,1,)()(

+−++

+−−−

+−

+−+−+−+=

+−++−+

=

jijiRjijijiRR

jijiLjijijiLL

xx

vvuuuG

vvuuuG

λλ

λλ

σσ

 (3.26) 

 

)43(

)43(

1,1,,2,1,)(

1,1,,2,1,)(

+−++

+−−−

+−

+−+−+−=

+−++−

=

jijijijijiR

jijijijijiL

xyxy

vvuuuG

vvuuuG

ττ

   (3.27) 

 

Horizontal Boundary 

 

)()43)(2(

)()43)(2(

,1,1)(2,1,,)()(

,1,1)(2,1,,)()(

jijiAjijijiAA

jijiBjijijiBB

yy

vvvvvG

vvvvvG

+−++

+−−−

+−

+−+−+−+=

+−++−+

=

λλ

λλ

σσ

 (3.28) 



Forward Simulation of Two Dimensional Motion Data 3-35 

)43(

)43(

,1,12,1,,)(

,1,12,1,,)(

jijijijijiA

jijijijijiB

xyxy

vvuuuG

vvuuuG

+−++

+−−−

+−

+−+−+−=

+−++−

= ττ

   (3.29) 

 

The extreme corner nodes on the boundary of two elements with differing stiffnesses, denoted as 

‘A’ and ‘B’ in Figure 3.2(a) and ‘L’ and ‘R’ in Figure 3.2(b), require additional equations to 

represent stress continuity due to their geometric position.  For the cancerous ‘lump’ geometry 

there are four corner nodes, as shown in Figure 3.4. 

 

G1, λ1 G2, λ2

Top Left Node Top Right Node

Bottom Left Node Bottom Right Node

 

 

Figure 3.4 – Notation used to Describe the Extreme Nodes along Stiffness Boundary 

 

For these nodes, the x  direction and y  direction longitudinal stress equations, given by 

Equations (3.17) and (3.12), are used to enforce stress continuity, since each stress equation is 

equally valid in this case.  The finite difference formulations for the four cases are defined: 

 

Top Left Node 

 

)43()43)(2(

)43()43)(2(

2,1,,2,2,1,22

2,1,,1,2,1,11

)2()1(

−−++

++−−

+−+−+−+=

−+−++−+

=

jijijijijiji

jijijijijiji

xx

vvvuuuG

vvvuuuG

λλ

λλ

σσ

  (3.30) 

 



Forward Simulation of Two Dimensional Motion Data 3-36 

)43()43)(2(

)43()43)(2(

,2,1,22,1,,22

,2,1,12,1,,11

)2()1(

jijijijijiji

jijijijijiji

yy

uuuvvvG

uuuvvvG

++−−

−−++

−+−++−+=

−−+−+−+

=

λλ

λλ

σσ

  (3.31) 

 

Top Right Node 

 

)43()43)(2(

)43()43)(2(

2,1,,2,2,1,22

2,1,,1,2,1,11

)2()1(

−−−−

++++

+−++−+=

−+−+−+−+

=

jijijijijiji

jijijijijiji

xx

vvvuuuG

vvvuuuG

λλ

λλ

σσ

  (3.32) 

 

)43()43)(2(

)43()43)(2(

,2,1,22,1,,22

,2,1,12,1,,11

)2()1(

jijijijijiji

jijijijijiji

yy

uuuvvvG

uuuvvvG

−−−−

++++

+−++−+=

−+−+−+−+

=

λλ

λλ

σσ

  (3.33) 

 

Bottom Left Node 

 

)43()43)(2(

)43()43)(2(

2,1,,2,2,1,22

2,1,,1,2,1,11

)2()1(

++++

−−−−

−+−+−+−+=

+−++−+

=

jijijijijiji

jijijijijiji

xx

vvvuuuG

vvvuuuG

λλ

λλ

σσ

  (3.34) 

 

)43()43)(2(

)43()43)(2(

,2,1,22,1,,22

,2,1,12,1,,11

)2()1(

jijijijijiji

jijijijijiji

yy

uuuvvvG

uuuvvvG

++++

−−−−

−+−+−+−+=

−−++−+

=

λλ

λλ

σσ

  (3.35) 

 

Bottom Right Node 

 

)43()43)(2(

)43()43)(2(

2,1,,2,2,1,22

2,1,,1,2,1,11

)2()1(

++−−

−−++

−+−++−+=

+−+−+−+

=

jijijijijiji

jijijijijiji

xx

vvvuuuG

vvvuuuG

λλ

λλ

σσ

  (3.36) 

 



Forward Simulation of Two Dimensional Motion Data 3-37 

)43()43)(2(

)43()43)(2(

,2,1,22,1,,22

,2,1,12,1,,11

)2()1(

jijijijijiji

jijijijijiji

yy

uuuvvvG

uuuvvvG

−−++

++−−

+−+−+−+=

−+−++−+

=

λλ

λλ

σσ

  (3.37) 

 

3.5 Summary 

 

Combining Equations (3.4)-(3.23) forms a linear system of equations that can be uniquely solved 

to determine the displacement response.  The displacement response is equivalent to the 

numerical solution of Equations (3.1)-(3.3) with stepwise constant stiffnesses and boundary 

conditions given by Figures 3.1(a)-(c).  Equations (3.26)-(3.37) describe the stress continuity 

conditions linking elements with different stiffnesses.  This allows a ‘lump’ to be placed in the 

geometry.  This forward solution of a non-homogeneous system is the basis for testing the 

integral-based inverse algorithms using random added noise to account for measurement and/or 

model error. 



 

4 Two Dimensional Inverse Problem Solutions

 
 

The inverse algorithms developed in Section 2.2 for the 1D Navier Equation formulate equations 

in terms of integrals of measured displacement amplitudes of sinusoidally actuated elastic 

material to identify the unknown Young’s Modulus distribution of the material.  This idea is 

extended for the 2D case.  As with the 1D case, the algorithm is initially formulated for the 

homogeneous case.  The non-homogeneous case is then treated as piecewise homogeneous. 

 

The formulation of the inverse algorithms involves integrating the two dimensional Navier’s 

Equations. 

 

u
yx

xyx 2ρω
τσ

−=
∂

∂
+

∂

∂
    (4.1) 

 

v
xy

xyy 2ρω
τσ

−=
∂

∂
+

∂

∂
     (4.2) 

 

where: 

 

yxx vuG λλσ ++= )2(     (4.3) 

 

xyy uvG λλσ ++= )2(     (4.4) 

 

)( yxxy uvG +=τ       (4.5) 

 

 
)21)(1( νν

ν
λ

−+
=

E
     (4.6) 

 

ν22 +
=

E
G        (4.7) 

 



Two Dimensional Inverse Problem Solutions 4-39 

where: 

u  = x  direction displacement (m) 

v  = y  direction displacement (m) 

xσ  = Longitudinal Stress in the x  direction (Pa) 

yσ  = Longitudinal Stress in the y  direction (Pa) 

xyτ  = Shear Stress (Pa) 

G  = Shear Modulus (Pa) 

λ  = Lamé’s Constant 

E  = Young’s Modulus (Pa) 

ν  = Poisson’s Ratio 

ρ  = Tissue Density (kgm
-3
) 

ω  = Harmonic Actuation Frequency (rads
-1
) 

 

Geometrically, for this 2D case, the single integral used in Equation (2.30) for the 1D case is 

replaced by an area or double integral, along the Cartesian coordinates x  and y .  Therefore, this 

double area integral represents a quadruple integral of Equations (4.1) and (4.2). 

 

Choosing the same type of limits of integration as in the 1D case leads to first order derivative 

terms on the boundary of the rectangular region of interest.  Given noisy displacement 

measurements, this derivative can corrupt the solution.  Therefore, these integration limits must 

be chosen carefully. 

 

4.1 2D Homogeneous Inverse Algorithm 

 

The fundamental (assumed) geometry and coordinate system nomenclature is shown in Figure 

4.1.  It is applied for all 2D homogeneous inverse algorithms and is extended to the non-

homogeneous. 

 



Two Dimensional Inverse Problem Solutions 4-40 

E

x

 y

 y 0

 x 0
 

Figure 4.1 – Description of the fundamental geometry and coordinate system nomenclature for the 2D 

homogeneous inverse algorithms 

 

4.1.1 Initial Inverse Algorithm 

 

Initially, Equations (4.1) and (4.2) are integrated from a fixed base point at the coordinate origin, 

assuming it represents a ‘corner’ where all dimensions ),( yx are in the positive valued quadrant. 

 

( ) dxdyydxdyxu

dxdyydxd
y

yx

x

yx

y x y x

y x y x xyx

′′′′−=

′′








∂

′′∂
+

∂

′′∂

∫ ∫ ∫ ∫

∫ ∫ ∫ ∫
0 0

0 0

0 0 0 0

2

0 0 0 0

),(

),(),(

ρω

τσ

    (4.8) 

 

( ) dxdyydxdyxv

dxdyydxd
x

yx

y

yx

y x y x

y x y x xyy

′′′′−=

′′








∂

′′∂
+

∂

′′∂

∫ ∫ ∫ ∫

∫ ∫ ∫ ∫
0 0

0 0

0 0 0 0

2

0 0 0 0

),(

),(),(

ρω

τσ

   (4.9) 

 

Geometrically, Equations (4.8) and (4.9) can be written in the following form: 

 

( ) xy

yAx Axy

yx

xy

yAx Axy

yx

xyx

dAdAyxu

dAdA
y

yx

x

yx

∫ ∫

∫ ∫












′′−=





















∂

′′∂
+

∂

′′∂

′′

′′

00

00

),(

),(),(

2ρω

τσ

   (4.10) 

 



Two Dimensional Inverse Problem Solutions 4-41 

( ) xy

yAx Axy

yx

xy

yAx Axy

yx

xyy

dAdAyxv

dAdA
x

yx

y

yx

∫ ∫

∫ ∫












′′−=





















∂

′′∂
+

∂

′′∂

′′

′′

00

00

),(

),(),(

2ρω

τσ

    (4.11) 

 

Where xyA  is the rectangular region defined by { }yyxx ≤′≤≤′≤ 0,0  and dxdydAxy = . 

 

The reason for integrating twice over each coordinate x  and y  is to remove the second order 

derivatives of u  and v  that arise from Equations (4.1)-(4.5) and are sensitive to noise.  To 

simplify the formulation of Equations (4.8) and (4.9), or equivalently Equations (4.10) and 

(4.11), each term is integrated separately and the orders of integration interchanged as required.  

The primes on the coordinates of x′  and y′  are dropped for simplicity of notation for all 

integrals in the remainder of this chapter.  After utilising the formulas for xσ , yσ  and xyτ  given 

by Equations (4.3)-(4.5), the results of the integration of Equation (4.10) and (4.11) are as 

follows: 

 

( )

( )

( )

( )

( )dydyyuxyuyxuG

dxdyvyvxvyxv

dxdydyyuyxuG

dydxdyyvyxv

dydxdyyyx

dxdydxdy
x

dAdA
x

y y

y x

y y x

xx

y x y

yy

y x y

xx

y x y x
x

xyxy

yAx Axy

x

∫ ∫

∫ ∫

∫ ∫ ∫

∫ ∫ ∫

∫ ∫ ∫

∫ ∫ ∫ ∫∫ ∫

−−++

+−−=

−++

−=

−=









∂

∂
=








∂

∂

0

0 0

0 0

0 0

0 0

0 0

00

0 0
00

0 0

0 0 0

0 0 0

0 0 0

0 0 0 0

),0(),0(),()2(

)0,0(),0()0,(),(

),0(),()2(

),0(),(

),0(),(

λ

λ

λ

λ

σσ

σσ

  (4.12) 

 



Two Dimensional Inverse Problem Solutions 4-42 

( )

( )

( )

( )

( )dxdxxuyxuyxuG

dxdyvxvyvyxvG

dydxdxxuyxuG

dxdxdyxvyxvG

dxdxdyxyx

dydxdxdy
y

dAdA
y

x x

y

y x

x x y

yy

y x x

xx

y x x

xyxy

y x x y xy

xyxy

yAx Axy

xy

∫ ∫

∫ ∫

∫ ∫ ∫

∫ ∫ ∫

∫ ∫ ∫

∫ ∫ ∫ ∫∫ ∫

−−+

+−−=

−+

−=

−=










∂

∂
=









∂

∂

0

0 0

0 0

0 0

0 0

0 0

00

0 0
00

0 0

0 0 0

0 0 0

0 0 0

0 0 0 0

)0,()0,(),(

)0,0()0,(),0(),(

)0,(),(

)0,(),(

)0,(),( ττ

ττ

    (4.13) 

 

Note that the constants G  and λ  have been pulled out of the resulting integrals. 

 

Adding the results of Equations (4.12) and (4.13) and using the formulas for λ  and G  given by 

Equations (4.6) and (4.7), Equation (4.8) can be written in the form: 

 

( ) ( )dxdydxdyuEff
y x y x

uv ∫ ∫ ∫ ∫ −=+
0 0

0 0 0 0

2ρω     (4.14) 

 

where uf  and vf  are integral functions of (measured) displacements u  and v , defined: 

 

( )






 +−−=

+−−=

∫∫∫ ∫

∫ ∫
000 0

0 0

0
000

0
0

0 0
1

0 0
1

)0,0(),0()0,(),(

)0,0(),0()0,(),(

yxy x

y x

v

vyxdyyvxdxxvydxdyyxva

dxdyvyvxvyxvaf
 (4.15) 

 

( )

( )dxdxxuyxuyxua

dydyyuxyuyxuaf

x x

y

y y

xu

∫ ∫

∫ ∫
−−+

−−=

0

0

0 0
003

0 0
002

)0,()0,(),(

),0(),0(),(
     (4.16) 

 

However, it is important to note that Equation (4.16) still requires a derivative of the measured 

displacement u , as xu . 

 

where: 

)1(2

1

)21)(1(
1 ννν

νλ
+

+
−+

=
+

=
E

G
a    (4.17) 



Two Dimensional Inverse Problem Solutions 4-43 

 

ννν
νλ

+
+

−+
=

+
=

1

1

)21)(1(

2
2

E

G
a     (4.18) 

 

)1(2

1
3 ν+

==
E

G
a        (4.19) 

 

The formulation of the terms that relate to the integration of the second Navier’s equation, 

Equation (4.9), are similar to those in Equation (4.8) and therefore only the end result is shown 

for simplicity: 

 

( ) ( )dxdydxdyvEgg
y x y x

vu ∫ ∫ ∫ ∫ −=+
0 0

0 0 0 0

2ρω     (4.20) 

 

where: 

( )






 +−−=

+−−=

∫∫∫ ∫

∫ ∫
000 0

0 0

0
000

0
0

0 0
1

0 0
1

)0,0(),0()0,(),(

)0,0(),0()0,(),(

yxy x

y x

u

uyxdyyuxdxxuydxdyyxua

dxdyuyuxuyxuag
 (4.21) 

 

( )

( )dxdxxvyxvyxva

dydyyvxyvyxvag

x x

y

y y

xv

∫ ∫

∫ ∫
−−+

−−=

0

0

0 0
002

0 0
003

)0,()0,(),(

),0(),0(),(
     (4.22) 

 

where 1a , 2a  and 3a  are also defined in Equations (4.17)-(4.19). 

 

However, note that Equation (4.22) requires a derivative of the measured displacement v , as yv . 

 

Equations (4.14) and (4.20) can be used to form an over-determined system of equations by 

choosing various values of ),( 00 yx  and varying the position of the origin.  The details are not 

shown here, but it is similar to the process that is presented in detail for the non-homogeneous 

case later in this chapter. 

 



Two Dimensional Inverse Problem Solutions 4-44 

4.1.2 Centred Base Point Inverse Algorithm 

 

The integral formulation of Equations (4.8) and (4.9) given by Equations (4.14) and (4.20) 

involves computing derivatives of u  and v  along the boundary, which is difficult using noisy 

data.  The appearance of these derivatives in Equations (4.14) and (4.20) is directly related to the 

choice of integration limits.  In this section, a new integral formulation is presented involving the 

innovative use of integration limits to eliminate all derivative terms in the resulting equations for 

the inverse problem. 

 

Consider the following integration of Equation (4.1): 

 

( )dxdxdydyu

dxdxdydy
yx

y yy

yy

x xx

xx

y yy

yy

x xx

xx

xyx

∫ ∫ ∫ ∫

∫ ∫ ∫ ∫
+

−

+

−

+

−

+

−

−=










∂

∂
+

∂

∂

0 0

0

0 0

0

0 0

0

0 0

0

0 0

2

0 0

ρω

τσ

    (4.23) 

 

( )dxdxdydyv

dxdxdydy
xy

y yy

yy

x xx

xx

y yy

yy

x xx

xx

xyy

∫ ∫ ∫ ∫

∫ ∫ ∫ ∫
+

−

+

−

+

−

+

−

−=










∂

∂
+

∂

∂

0 0

0

0 0

0

0 0

0

0 0

0

0 0

2

0 0

ρω

τσ

     (4.24) 

 

With the appropriate change in the orders of integration the first derivative term of Equations 

(4.23) can be rewritten as follows: 

 

( )dxdydyyxxyxxdxdxdydy
x

y yy

yy

x

xx

y yy

yy

x xx

xx

x ∫ ∫ ∫∫ ∫ ∫ ∫
+

−

+

−

+

−
−−+=








∂

∂ 0 0

0

00 0

0

0 0

0 0 0
00

0 0
),(),( σσ

σ
 (4.25) 

 

Substituting xxz += 0  and xxz −= 0  yields a right hand side: 

 

dydydxyxdxyx
y yy

yy

x

x

x

xx∫ ∫ ∫ ∫
+

−





 −=

0 0

0

0

0

0

0

2

0
),(),( σσ     (4.25b) 

 



Two Dimensional Inverse Problem Solutions 4-45 

Substituting Equation (4.3) for ),( yxxσ : 

 

dydydxyxvdxyxv

dydydxyxuGdxyxuG

y yy

yy

x

x

x

yy

y yy

yy

x

x

x

xx

∫ ∫ ∫ ∫

∫ ∫ ∫ ∫
+

−

+

−






 −+






 +−+=

0 0

0

0

0

0

0 0

0

0

0

0

0

2

0

0

2

0

),(),(

),()2(),()2(

λλ

λλ
  (4.25c) 

 

Changing limits in ),( yxv y integrand: 

 

( )

( ) dxdydyyxv

dxdydyyxv

dydydxyxuGdxyxuG

x y yy

yy y

x

x

y yy

yy
y

y yy

yy

x

x

x

xx

∫ ∫ ∫

∫ ∫ ∫

∫ ∫ ∫ ∫

+

−

+

−

+

−

+

+






 +−+=

0 0 0

0

0

0

0 0

0

0 0

0

0

0

0

0 0

2

0

0

2

0

),(

),(

),()2(),()2(

λ

λ

λλ

  (4.25d) 

 

Integrating xu  with respect to x  and yv  with respect to y : 

 

( )

( )

( )dydxyyxvyyxv

dydxyyxvyyxv

dydyyuyxuyxuG

x y

x

x

y

y yy

yy

∫ ∫

∫ ∫

∫ ∫

−−+−

−−++

+−+=
+

−

0 0

0

0

0

0 0

0

0 0
00

2

0
00

0
00

),(),(

),(),(

),0(),(2),2()2(

λ

λ

λ

   (4.25e) 

 

Substituting xxz += 0  and xxz −= 0  and simplifying: 

 

( )

dxdyyxvdyyxv

dxdyyxvdyyxv

dydyyuyxuyxuG

x y

y

y

x

x

y

y

y

y yy

yy

∫ ∫ ∫

∫ ∫ ∫

∫ ∫






 −−






 −+

+−+=
+

−

0 0

0

0

0

0

0

0

0

0 0

0

0

2

0

2 2

0

0
00

),(),(

),(),(

),0(),(2),2()2(

λ

λ

λ

   (4.25f) 

 

Similarly, the second term in Equation (4.23) can be rewritten: 

 

( )dydxdxyyxyyxdydydxdx
y

x xx

xx

y

xyxy

x xx

xx

y yy

yy

xy

∫ ∫ ∫∫ ∫ ∫ ∫
+

−

+

−

+

−
−−+=









∂

∂ 0 0

0

00 0

0

0 0

0 0 0
00

0 0
),(),( ττ

τ
 (4.26) 

 

Substituting xxz += 0  and xxz −= 0  yields a right hand side: 

 

dxdxdyyxdyyx
x xx

xx

y

y

y

xyxy∫ ∫ ∫ ∫
+

−





 −=

0 0

0

0

0

0

0

2

0
),(),( ττ      (4.26b) 



Two Dimensional Inverse Problem Solutions 4-46 

Substituting Equation (4.5) for ),( yxxyτ : 

 

dxdxdyyxGvdyyxGv

dxdxdyyxGudyyxGu

x xx

xx

y

y

y

xx

x xx

xx

y

y

y

yy

∫ ∫ ∫ ∫

∫ ∫ ∫ ∫
+

−

+

−






 −+






 −=

0 0

0

0

0

0

0 0

0

0

0

0

0

2

0

0

2

0

),(),(

),(),(

   (4.26c) 

 

Changing limits in ),( yxv y integrand: 

 

( ) ( ) dxdydxyxGvdxdydxyxGv

dxdxdyyxGudyyxGu

y x xx

xx
x

y

y

x xx

xx
x

x xx

xx

y

y

y

yy

∫ ∫ ∫∫ ∫ ∫

∫ ∫ ∫ ∫
+

−

+

−

+

−

++






 −=

0 0 0

0

0

0

0 0

0

0 0

0

0

0

0

0 0

2

0

0

2

0

),(),(

),(),(

 (4.26d) 

 

Integrating yu  with respect to y  and xv  with respect to x : 

 

( )

( )

( )dxdyyxxvyxxvG

dxdyyxxvyxxvG

dxdxxuyxuyxuG

y x

y

y

x

x xx

xx

∫ ∫

∫ ∫

∫ ∫

−−+−

−−++

+−=
+

−

0 0

0

0

0

0 0

0

0 0
00

2

0
00

0
00

),(),(

),(),(

)0,(),(2)2,(

   (4.26e) 

 

Substituting xxz += 0  and xxz −= 0  and simplifying: 

 

( )

dydxyxvdxyxvG

dydxyxvdxyxvG

dxdxxuyxuyxuG

y x

x

x

y

y

x

x

x

x xx

xx

∫ ∫ ∫

∫ ∫ ∫

∫ ∫






 −−






 −+

+−=
+

−

0 0

0

0

0

0

0

0

0

0 0

0

0

2

0

2 2

0

0
00

),(),(

),(),(

)0,(),(2)2,(

   (4.26f) 

 

Note that Equations (4.25f) and (4.26f) do not have any derivatives of u  and v  in the results, 

having eliminated them by the choice of integration limits 

 

Adding Equations (4.25f) and (4.26f) and using the formulas for λ  and G  given by Equations 

(4.17)-(4.19), Equation (4.23) can be written without derivatives of u  or v . 

 

( ) ( )dxdxdydyuEff
y yy

yy

x xx

xxuv ∫ ∫ ∫ ∫
+

−

+

−
−=+

0 0

0

0 0

00 0

2ρω     (4.27) 

 



Two Dimensional Inverse Problem Solutions 4-47 

where: 






 +−−= ∫ ∫∫ ∫∫ ∫ ∫∫

0 00 0

0

0

0

0

0

00

0 0 00

22 2

0

2

1 ),(),(),(),(
y xy x

x

y

y

y

y

xx

x
v dxdyyxvdxdyyxvdxdyyxvdxdyyxvaf  (4.28) 

 

( )

( )dxdxxuyxuyxua

dydyyuyxuyxuaf

x xx

xx

y yy

yyu

∫ ∫

∫ ∫
+

−

+

−

+−+

+−=

0 0

0

0 0

0

0
003

0
002

)0,(),(2)2,(

),0(),(2),2(

   (4.29) 

 

The formulation of the terms that relate to the integration of Equation (4.24) are similar to those 

in Equation (4.23) and therefore only the end result is shown for simplicity. 

 

( ) ( )dxdxdydyvEgg
y yy

yy

x xx

xxvu ∫ ∫ ∫ ∫
+

−

+

−
−=+

0 0

0

0 0

00 0

2ρω     (4.30) 

 

where: 






 +−−= ∫ ∫∫ ∫∫ ∫ ∫∫

0 00 0

0

0

0

0

0

00

0 0 00

22 2

0

2

1 ),(),(),(),(
y xy x

x

y

y

y

y

xx

x
u dxdyyxudxdyyxudxdyyxudxdyyxuag   (4.31) 

 

( )

( )dydyyvyxvyxva

dxdxxvyxvyxvag

y yy

yy

x xx

xxv

∫ ∫

∫ ∫
+

−

+

−

+−+

+−=

0 0

0

0 0

0

0
003

0
002

),0(),(2),2(

)0,(),(2)2,(

   (4.32) 

 

Similar to Equations (4.14) and (4.20) in the previous section, Equations (4.27) and (4.30) can be 

used to form an over-determined system of equations by choosing various limits of ),( 00 yx  and 

varying the position of the origin.  The details are not shown here, but it is similar to the process 

that is presented in detail for the non-homogeneous case later in this chapter. 

 

4.2 Non-Homogeneous Inverse Algorithms 

 

A non-homogeneous inverse algorithm is formulated that is capable of identifying a square 

tumour within the global domain.  It consists of a 2×2 stencil shown in Figure 4.2, which can be 

mapped across the global domain to produce an over-determined system of linear equations that 



Two Dimensional Inverse Problem Solutions 4-48 

inter-relates all of the discretized stiffness regions throughout the domain.  The algorithm adopts 

integration limits similar to that of the homogeneous centred base point inverse algorithm to 

negate the need to calculate derivatives of the displacement amplitudes.  The mapping of the 

stencil is performed by moving the local base point across the global domain. 

 

y

x
2x0x0

y0

2y0

G12, λ12

G11, λ11 G21, λ21

G22, λ22

 

Figure 4.2 – Diagram detailing the local geometric structure and notation for the non-homogeneous inverse 

algorithm 

 

The integral formulation in this non-homogeneous case follows the same procedure as that of 

Equations (4.23) and (4.24) in the homogeneous case.  In particular, Equations (4.25b) and 

(4.26b) still hold for the non-homogeneous case since the x  and y  direction longitudinal 

stresses, xσ  and yσ , and the shear stress, xyτ , are continuous over the whole domain.  For 

example, over the sub-domain of Figure 4.2: 

 

),(),(

),(),(),(),(

00

0000

0

0

0

0

0

0

yxxyxx

yxxyxyxyxx

dx
x

dx
x

dx
x

xx

xxxx

x

xx

x
xx

x

x
xx

xx

x

−−+=

−−+−+=









∂

∂
+








∂

∂
=








∂

∂

−+

−

++

− ∫∫∫

σσ

σσσσ

σσσ

  (4.33) 

 

That is, the stress terms either side of the stiffness boundary cancel out due to stress continuity, 

similarly for yσ  and xyτ . 

 

However, the λ  and G  terms can no longer be factored straight out of the integrals as in 

Equations (4.25e) and (4.26e).  In this non-homogeneous case, they each take on four constant 



Two Dimensional Inverse Problem Solutions 4-49 

values in the sub-domains of Figure 4.2.  For simplicity of notation and for each ),( ji  element in 

Figure 4.2, xσ , yσ  and xyτ  are denoted as follows: 

 

{ }
( )xyij

ij

xy

xijyijij

ij

y

yijxijij

ij

x

vuG

jiuvG

vuG

+=

∈++=

++=

τ

λλσ

λλσ

2,1),()2(

)2(

  (4.34) 

 

Equation (4.25b) can then be broken into the four portions and written in the form: 

 

dydydxyxdydydxyx

dydydxyxdydydxyx

y y

yy

x

x

y y

yy

x

x x

y yy

y

x

x

y yy

y

x

x x

∫ ∫ ∫∫ ∫ ∫

∫ ∫ ∫∫ ∫ ∫

−−

++

−+

−

0 0

0

00 0

0

0

0

0 0

0

00 0

0

0

0

0 0

11

0

2 21

0 0

12

0

2 22

),(),(

),(),(

σσ

σσ
  (4.35) 

 

Substituting Equation (4.34) for ),( yx
ij

xσ : 

 

( ) ( )

( ) ( )

( ) ( )

( ) ( ) dydxdyyxvdydydxyxuG

dydxdyyxvdydydxyxuG

dydxdyyxvdydydxyxuG

dydxdyyxvdydydxyxuG

x y y

yy
y

y y

yy

x

x

x

x

y y

yy
y

y y

yy

x

x
x

x y yy

y
y

y yy

y

x

x

x

x

y yy

y
y

y yy

y

x

x
x

∫ ∫ ∫∫ ∫ ∫

∫ ∫ ∫∫ ∫ ∫

∫ ∫ ∫∫ ∫ ∫

∫ ∫ ∫∫ ∫ ∫

−−

−−

++

++

−+−

+++

−+−

++=

0 0 0

0

0 0

0

0

0

0

0 0

0

0 0

0

0

0

0 0 0

0

0 0

0

0

0

0

0 0

0

0 0

0

0

0

0 0
11

0 0
1111

2

0
21

0

2

2121

0 0
12

0 0
1212

2

0
22

0

2

2222

),(),()2(

),(),()2(

),(),()2(

),(),()2(

λλ

λλ

λλ

λλ

 (4.36) 

 

Integrating xu  with respect to x  and yv  with respect to y : 

 

( ) ( )

( ) ( )

( ) ( )

( ) ( )dydxyyxvyxvdydyyuyxuG

dydxyyxvyxvdydyyxuyxuG

dydxyxvyyxvdydyyuyxuG

dydxyxvyyxvdydyyxuyxuG

x yy y

yy

x

x

yy y

yy

x

x

yy yy

y

x

x

yy yy

y

∫ ∫∫ ∫

∫ ∫∫ ∫

∫ ∫∫ ∫

∫ ∫∫ ∫

−−−−+−

−−+−++

−+−−+−

−++−+=

−

−

+

+

0 00 0

0

0

0

00 0

0

0

0

00 0

0

0

0

00 0

0

0 0
0011

0
01111

2

0
0021

0
002121

2

0
0012

0
01212

2

0
0022

0
002222

),(),(),0(),()2(

),(),(),(),2()2(

),(),(),0(),()2(

),(),(),(),2()2(

λλ

λλ

λλ

λλ

 (4.37) 

 

Substituting xxz += 0  and xxz −= 0  and simplifying: 

 



Two Dimensional Inverse Problem Solutions 4-50 

( )

( )

( )

( ) dydxyxvdxyxuydydyyuyxuG

dydxyxvdxyxuydydyyxuyxuG

dxyxuydydxyxvdydyyuyxuG

dxyxuydydxyxvdydyyxuyxuG

x yxy y

yy

x

x

yx

x

y y

yy

xx y

y

y yy

y

x

x

x

x

y

y

y yy

y

∫ ∫∫∫ ∫

∫ ∫∫∫ ∫

∫∫ ∫∫ ∫

∫∫ ∫∫ ∫

+−−+−

−+−++

+−−+−

−+−+=

−

−

+

+

0 000 0

0

0

0

00

0

0 0

0

00 0

0

0 0

0

0

0

0

0

0

0

0 0

0

0 0
11

0
0011

0
01111

2

0
21

2

0021
0

002121

0
0012

0

2

12
0

01212

2

0022

2 2

22
0

002222

),(),(),0(),()2(

),(),(),(),2()2(

),(),(),0(),()2(

),(),(),(),2()2(

λλλ

λλλ

λλλ

λλλ

(4.38) 

 

Similarly, using the notation of Equation (4.34), Equation (4.26b) can be written in the form: 

 

dxdxdyyxdxdxdyyx

dxdxdyyxdxdxdyyx

x x

xx

y

xy

x x

xx

y

y xy

x xx

x

y

xy

x xx

x

y

y xy

∫ ∫ ∫∫ ∫ ∫

∫ ∫ ∫∫ ∫ ∫

−−

++

−+

−

0 0

0

00 0

0

0

0

0 0

0

00 0

0

0

0

0 0

11

0

2 12

0 0

21

0

2 22

),(),(

),(),(

ττ

ττ
  (4.39) 

 

Substituting Equation (4.34) for ),( yx
ij

xyτ : 

 

( ) ( )

( ) ( )

( ) ( )

( ) ( )dxdxdyyxvGdxdxdyyxuG

dxdxdyyxvGdxdxdyyxuG

dxdxdyyxvGdxdxdyyxuG

dxdxdyyxvGdxdxdyyxuG

y x x

xx
x

x x

xx

y

y

y

y

x x

xx
x

x x

xx

y

y
y

y x xx

x
x

x xx

x

y

y

y

y

x xx

x
x

x xx

x

y

y
y

∫ ∫ ∫∫ ∫ ∫

∫ ∫ ∫∫ ∫ ∫

∫ ∫ ∫∫ ∫ ∫

∫ ∫ ∫∫ ∫ ∫

−−

−−

++

++

−−

++

−−

+=

0 0 0

0

0 0

0

0

0

0

0 0

0

0 0

0

0

0

0 0 0

0

0 0

0

0

0

0

0 0

0

0 0

0

0

0

0 0
11

0 0
11

2

0
12

0

2

12

0 0
21

0 0
21

2

0
22

0

2

22

),(),(

),(),(

),(),(

),(),(

   (4.40) 

 

Integrating yu  with respect to y  and xv  with respect to x : 

 

( ) ( )

( ) ( )

( ) ( )

( ) ( )dxdyyxxvyxvGdxdxxuyxuG

dxdyyxxvyxvGdxdxyxuyxuG

dxdyyxvyxxvGdxdxxuyxuG

dxdyyxvyxxvGdxdxyxuyxuG

y xx x

xx

y

y

xx x

xx

y xx xx

x

y

y

xx xx

x

∫ ∫∫ ∫

∫ ∫∫ ∫

∫ ∫∫ ∫

∫ ∫∫ ∫

−−−−−

−−+−+

−+−−−

−++−=

−

−

+

+

0 00 0

0

0

0

00 0

0

0 00 0

0

0

0

00 0

0

0 0
0021

0
011

2

0
0012

0
0012

0 0
0021

0
021

2

0
0022

0
0022

),(),()0,(),(

),(),(),()2,(

),(),()0,(),(

),(),(),()2,(

 (4.41) 

 

Substituting xxz += 0  and xxz −= 0  and simplifying: 

 



Two Dimensional Inverse Problem Solutions 4-51 

( )

( )

( )

( ) ∫∫ ∫∫ ∫

∫∫ ∫∫ ∫

∫∫ ∫∫ ∫

∫∫ ∫∫ ∫

+−−−

−+−+

+−−−

−+−=

−

−

+

+

00 00 0

0

0

0

0 0

0

0 0

0

00

0

00 0

0

0

0

0

0

0

0

0 0

0

0
0011

0 0
11

0
011

2

0012
0

2

12
0

0012

0
0021

2

0
21

0
021

2

0022

2 2

22
0

0022

),(),()0,(),(

),(),(),()2,(

),(),()0,(),(

),(),(),()2,(

yx yx x

xx

y

y

x y

y

x x

xx

yx

x

yx xx

x

y

y

x

x

y

y

x xx

x

dyyxvxGdydxyxvGdxdxxuyxuG

dyyxvxGdydxyxvGdxdxyxuyxuG

dyyxvxGdydxyxvGdxdxxuyxuG

dyyxvxGdydxyxvGdxdxyxuyxuG

(4.42) 

 

Thus, for the non-homogeneous case, adding Equations (4.38) and (4.42) and collecting common 

terms involving u  and v  (measured displacement) gives the derivative free integral formulation 

of Equation (4.23): 

 

( ) ( )( )

( ) ( )( )

( ) ( )( )

( ) ( )( )

( )dxdxdydyu

dydxyxvEadydxyxvEa

dydxyxvEadydxyxvEa

dxyxvyEEaadxyxvyEEaa

dyyxvxEEadyyxvxEEa

dxdxyxuxuEyxuyxuEa

dxdxyxuxuEyxuyxuEa

dydyyxuyuEyxuyxuEa

dydyyxuyuEyxuyxuEa

y yy

yy

x xx

xx

x

x

y

y

x y

y

x

x

yx y

xx

x

yy

y

x x

xx

x xx

x

y y

yy

y yy

y

∫ ∫ ∫ ∫

∫ ∫∫ ∫

∫ ∫∫ ∫

∫∫

∫∫

∫ ∫

∫ ∫

∫ ∫

∫ ∫

+

−

+

−

−

+

−

+

−=

+−

−+

−−+−−+

−+−+

−+−+

−+−+

−+−+

−+−

0 0

0

0 0

0

0

0

0

0

0 0

0

0

0

00 0

00

0

00

0

0 0

0

0 0

0

0 0

0

0 0

0

0 0

2

2 2

221
0

2

121

2

0
211

0 0
111

0
00111231

2

00222131

0
0011213

2

0022123

0
01100123

0
02100223

0
01100212

0
01200222

),(),(

),(),(

),())((),())((

),()(),()(

),()0,(),()2,(

),()0,(),()2,(

),(),0(),(),2(

),(),0(),(),2(

ρω

  (4.43) 

 

Where 1a , 2a  and 3a  are given by Equations (4.17)-(4.19), but the following identities also hold 

for { }2,1),( ∈ji : 

 

)1(2

1

)21)(1(
1 ννν

νλ

+
+

−+
=

+
=

ij

ijij

E

G
a     (4.44) 

 

ννν
νλ

+
+

−+
=

+
=

1

1

)21)(1(

2
2

ij

ijij

E

G
a     (4.45) 

 



Two Dimensional Inverse Problem Solutions 4-52 

)1(2

1
3 ν+

==
ij

ij

E

G
a         (4.46) 

 

Note that the stiffness values ijE  in Equation (4.43) relate to a local region or ‘stencil’ involving 

the four elements shown in Figure 4.2.  As this stencil is moved over a larger global domain, the 

global indices of the element in Figure 4.2 would change.  Hence the notation ijE  is replaced 

with ijE  to denote the local coordinates of stiffness relative to the stencil in Figure 4.2. 

 

Equation (4.43) can therefore be rewritten directly in terms of these more general unknown local 

stiffness elements, 11E , 21E , 12E  and 22E  as follows: 

 

( )dxdxdydyuEkEkEkEk
y yy

yy

x xx

xx∫ ∫ ∫ ∫
+

−

+

−
−=+++

0 0

0

0 0

00 0

2
2222121221211111 ρω   (4.47) 

 

( ) ( )

dxdyyxvadxyxvyaadyyxvxa

dxdxxuyxuadydyyuyxuak

y xxy

x x

xx

y y

yy

∫ ∫∫∫

∫ ∫∫ ∫
+−−−

+−++−=
−−

0 000

0 0

0

0 0

0

0 0
1

0
0031

0
003

0
03

0
0211

),(),()(),(

)0,(),(),0(),(
  (4.48) 

 

( ) ( )

dxdyyxvadxyxvyaadyyxvxa

dxdxxuyxuadydyyxuyxuak

y x

x

x

x

y

x xx

x

y y

yy

∫ ∫∫∫

∫ ∫∫ ∫
−−++

+−+−=
+

−

0 0

0

0

0

0

0 0

0

0 0

0

0

2

1

2

0031
0

003

0
03

0
00221

),(),()(),(

)0,(),(),(),2(

  (4.49) 

 

( ) ( )

dxdyyxvadxyxvyaadyyxvxa

dxdxyxuyxuadydyyuyxuak

y

y

xxy

y

x x

xx

y yy

y

∫ ∫∫∫

∫ ∫∫ ∫
−−++

−++−=
−

+

0

0

000

0

0 0

0

0 0

0

2

0
1

0
0031

2

003

0
003

0
0212

),(),()(),(

),()2,(),0(),(

  (4.50) 

 

( ) ( )

dxdyyxvadxyxvyaadyyxvxa

dxdxyxuyxuadydyyxuyxuak

y

y

x

x

x

x

y

y

x xx

x

y yy

y

∫ ∫∫∫

∫ ∫∫ ∫
+−−−

−+−=
++

0

0

0

0

0

0

0

0

0 0

0

0 0

0

2 2

1

2

0031

2

003

0
003

0
00222

),(),()(),(

),()2,(),(),2(

  (4.51) 

 

The formulation of the derivative free terms that relate to the integration of Equation (4.24) are 

similar to those in Equation (4.23) and therefore only the end results in terms of the local 

stiffness elements, ijE , are shown for simplicity: 



Two Dimensional Inverse Problem Solutions 4-53 

( )dxdxdydyvEmEmEmEm
y yy

yy

x xx

xx∫ ∫ ∫ ∫
+

−

+

−
−=+++

0 0

0

0 0

00 0

2
2222121221211111 ρω    (4.52) 

 

( ) ( )

dxdyyxuadxyxuyadyyxuxaa

dxdxxvyxvadydyyvyxvam

y xxy

x x

xx

y y

yy

∫ ∫∫∫

∫ ∫∫ ∫
+−−−

+−++−=
−−

0 000

0 0

0

0 0

0

0 0
1

0
003

0
0031

0
02

0
0311

),(),(),()(

)0,(),(),0(),(
 (4.53) 

 

( ) ( )

dxdyyxuadxyxuyadyyxuxaa

dxdxxvyxvadydyyxvyxvam

y x

x

x

x

y

x xx

x

y y

yy

∫ ∫∫∫

∫ ∫∫ ∫
−+−+

+−+−=
+

−

0 0

0

0

0

0

0 0

0

0 0

0

0

2

1

2

003
0

0031

0
02

0
00321

),(),(),()(

)0,(),(),(),2(

 (4.54) 

 

( ) ( )

dxdyyxuadxyxuyadyyxuxaa

dxdxyxvyxvadydyyvyxvam

y

y

xxy

y

x x

xx

y yy

y

∫ ∫∫∫

∫ ∫∫ ∫
−+−+

−++−=
−

+

0

0

000

0

0 0

0

0 0

0

2

0
1

0
003

2

0031

0
002

0
0312

),(),(),()(

),()2,(),0(),(

 (4.55) 

 

( ) ( )

dxdyyxuadxyxuyadyyxuxaa

dxdxyxvyxvadydyyxvyxvam

y

y

x

x

x

x

y

y

x xx

x

y yy

y

∫ ∫∫∫

∫ ∫∫ ∫
+−−−

−+−=
++

0

0

0

0

0

0

0

0

0 0

0

0 0

0

2 2

1

2

003

2

0031

0
002

0
00322

),(),(),()(

),()2,(),(),2(

  (4.56) 

 

Equations (4.47) and (4.52) relate the Young’s Modulus values of four independent stiffness 

regions in a given stencil, and the u  and v  displacement within the geometry and local 

coordinate system that is defined in Figure 4.3.  It effectively represents a 2×2 stencil that can be 

applied to any four discretized stiffness areas of any compatible sizes within a two dimensional 

global domain. 

 

The two dimensional global domain adopted for the purposes of verifying this algorithm is 

shown in Figure 4.4.  The geometry of this global domain is square as it directly relates to the 

geometry of the forward simulation model with a total size of 0.1m×0.1m.  However, note that 

the 2×2 stencil is derived from an equation that makes no assumptions about the boundary 

conditions applied to the actuated elastic medium.  Therefore, the algorithm could be applied to 

any sinusoidally actuated, 2D plane strain elastic medium with arbitrary boundary conditions and 

shape.  For example Figure 4.5 shows an arbitrary shape that is first approximated by squares.  

The stencil of Figure 4.3 could then be moved over the domain. 

 



Two Dimensional Inverse Problem Solutions 4-54 

 

y local

2x0x0

y0

x local

2y0

Ē 12

Ē 11 Ē 21

Ē 22

 

Figure 4.3 – Description of the geometry and local coordinate system of the 2x2 stencil 

 

E1,10 E2,10 E3,10 E4,10 E5,10 E6,10 E7,10 E8,10 E9,10 E10,10

E1,9 E2,9 E3,9 E4,9 E5,9 E6,9 E7,9 E8,9 E9,9 E10,9

E1,8 E2,8 E3,8 E4,8 E5,8 E6,8 E7,8 E8,8 E9,8 E10,8

E1,7 E2,7 E3,7 E4,7 E5,7 E6,7 E7,7 E8,7 E9,7 E10,7

E1,6 E2,6 E3,6 E4,6 E5,6 E6,6 E7,6 E8,6 E9,6 E10,6

E1,5 E2,5 E3,5 E4,5 E5,5 E6,5 E7,5 E8,5 E9,5 E10,5

E1,4 E2,4 E3,4 E4,4 E5,4 E6,4 E7,4 E8,4 E9,4 E10,4

E1,3 E2,3 E3,3 E4,3 E5,3 E6,3 E7,3 E8,3 E9,3 E10,3

E1,2 E2,2 E3,2 E4,2 E5,2 E6,2 E7,2 E8,2 E9,2 E10,2

E1,1 E2,1 E3,1 E4,1 E5,1 E6,1 E7,1 E8,1 E9,1 E10,1

0

x

y

10x 05x 0

5y 0

10y 0

 

Figure 4.4 – Diagram that shows the discretization of the global domain into a series of elements each with 

independent stiffness values { }9,...,2,1),(,, ∈jiE ji . 

 



Two Dimensional Inverse Problem Solutions 4-55 

 

Figure 4.5 – Arbitrary shape approximated by squares in order to apply the stencil shown in Figure 4.2 

 

The 2×2 stencil of Figure 4.3 in global coordinates with respect to Figure 4.4 is shown in Figure 

4.6 where { }9,...,2,1),( ∈ji  and 0x  and 0y  are fixed at 10mm to contain precisely four stiffness 

elements or regions. 

Ei,j+1 Ei+1,j+1

Ei,j Ei+1,j

iy 0

  x

y

ix 0
 

Figure 4.6 – 2x2 Stencil of Figure 4.3 in global coordinates 

 

For a given midpoint ),(),( 00 jyixyx ji =  in Figure 4.6, Equations (4.47)-(4.56) can be rewritten 

in terms of the global coordinates and ijE  as defined in Figure 4.4: 

 

( )dxdxdydyu

EkEkEkEk

y yy

yy

x xx

xx

ji

ji

ji

ji

ji

ji

ji

ji

∫ ∫ ∫ ∫
+

−

+

−

++++

−=

+++

0 0

0

0 0

00 0

2

1,1

),(

221,

),(

12,1

),(

21,

),(

11

ρω
    (4.57) 

 

 



Two Dimensional Inverse Problem Solutions 4-56 

where for { }1,...,2,1),( −∈ nji : 

 

( ) ( )

dxdyyxvadxyxvyaadyyxvxa

dxdxyyxuyxuadydyyxxuyxuak

j

j

i

i

i

i

j

j

i

i

j

j

y

yy

x

xx

x

xx j

y

yy
i

x x

xx jj

y y

yy
ii

ji

∫ ∫∫∫

∫ ∫∫ ∫

− −−−

−−

+−−−

−+−+−+−=

0 000

00

),(),()(),(

),(),(),(),(

103103

0
03

0
02

),(

11

(4.58) 

 

( ) ( )

dxdyyxvadxyxvyaadyyxvxa

dxdxyyxuyxuadydyyxuyxxuak

j

j

i

i

i

i

j

j

i

i

j

j

y

yy

xx

x

xx

x j

y

yy
i

x xx

x jj

y y

yy
ii

ji

∫ ∫∫∫

∫ ∫∫ ∫

−

++

−

+

−

−−++

−+−+−+=

0

00

0

00

),(),()(),(

),(),(),(),(

103103

0
03

0
02

),(

21

(4.59) 

 

( ) ( )

dxdyyxvadxyxvyaadyyxvxa

dxdxyxuyyxuadydyyxxuyxuak

yy

y

x

xx

x

xx j

yy

y
i

x x

xx jj

y yy

y
ii

ji

j

j

i

i

i

i

j

j

i

i

j

j

∫ ∫∫∫

∫ ∫∫ ∫
+

−−

+

−

+

−−++

−++−+−=

0

00

0

00

),(),()(),(

),(),(),(),(

103103

0
03

0
02

),(

12

  (4.60) 

 

( ) ( )

dxdyyxvadxyxvyaadyyxvxa

dxdxyxuyyxuadydyyxuyxxuak

yy

y

xx

x

xx

x j

yy

y
i

x xx

x jj

y yy

y
ii

ji

j

j

i

i

i

i

j

j

i

i

j

j

∫ ∫∫∫

∫ ∫∫ ∫
+ +++

++

+−−−

−++−+=

0 000

00

),(),()(),(

),(),(),(),(

103103

0
03

0
02

),(

22

  (4.61) 

 

and: 

 

( )dxdxdydyv

EmEmEmEm

y yy

yy

x xx

xx

ji
ji

ji
ji

ji
ji

ji
ji

∫ ∫ ∫ ∫
+

−

+

−

++++

−=

+++

0 0

0

0 0

00 0

2

1,1
),(

221,
),(

12,1
),(

21,
),(

11

ρω
   (4.62) 

 

where for { }1,...,2,1),( −∈ nji : 

 

( ) ( )

dxdyyxuadxyxuyadyyxuxaa

dxdxyyxvyxvadydyyxxvyxvam

j

j

i

i

i

i

j

j

i

i

j

j

y

yy

x

xx

x

xx j

y

yy
i

x x

xx jj

y y

yy
ii

ji

∫ ∫∫∫

∫ ∫∫ ∫

− −−−

−−

+−−−

−+−+−+−=

0 000

00

),(),(),()(

),(),(),(),(

103031

0
02

0
03

),(

11

(4.63) 

 



Two Dimensional Inverse Problem Solutions 4-57 

( ) ( )

dxdyyxuadxyxuyadyyxuxaa

dxdxyyxvyxvadydyyxvyxxvam

j

j

i

i

i

i

j

j

i

i

j

j

y

yy

xx

x

xx

x j

y

yy
i

x xx

x jj

y y

yy
ii

ji

∫ ∫∫∫

∫ ∫∫ ∫

−

++

−

+

−

−+−+

−+−+−+=

0

00

0

00

),(),(),()(

),(),(),(),(

103031

0
02

0
03

),(

21

(4.64) 

 

( ) ( )

dxdyyxuadxyxuyadyyxuxaa

dxdxyxvyyxvadydyyxxvyxvam

yy

y

x

xx

x

xx j

yy

y
i

x x

xx jj

y yy

y
ii

ji

j

j

i

i

i

i

j

j

i

i

j

j

∫ ∫∫∫

∫ ∫∫ ∫
+

−−

+

−

+

−+−+

−++−+−=

0

00

0

00

),(),(),()(

),(),(),(),(

103031

0
02

0
03

),(

12

  (4.65) 

 

( ) ( )

dxdyyxuadxyxuyadyyxuxaa

dxdxyxvyyxvadydyyxvyxxvam

yy

y

xx

x

xx

x j

yy

y
i

x xx

x jj

y yy

y
ii

ji

j

j

i

i

i

i

j

j

i

i

j

j

∫ ∫∫∫

∫ ∫∫ ∫
+ +++

++

+−−−

−++−+=

0 000

00

),(),(),()(

),(),(),(),(

103031

0
02

0
03

),(

22

  (4.66) 

 

Note that Equations (4.57)-(4.66) reduce to Equations (4.47)–(4.56) when 1== ji or 

equivalently ),(),(),( 0011 yxyxyx ji == . 

 

For a global domain with 2n  discretized stiffness segments, the 2×2 stencil provides 2)1(2 −n  

equations that relate the displacement amplitudes of the actuated material to the Young’s 

Modulus of each discretized stiffness area.  Thus, there are now 2)1(2 −n  independent equations 

in 2n  unknowns.  For 4≥n , this presents an over-determined system of linear equations that can 

be solved for the unknown material property constants by linear least squares. 

 

For the 10x10 global domain presented in Figure 4.4, 10=n , and there are 100 unknown 

stiffness values assigned to each discretized stiffness area and 162)110(2 2 =−  independent 

equations that relate these stiffness values to the displacement amplitudes. 

 

4.2.1 Non-Homogeneous Inverse Problem Formulation 

 

To demonstrate the process of forming this over-determined system of equations as a matrix 

function, Equation (4.57) is applied across a global domain for 4=n .  In this case, there will be 

9)1( 2 =−n  equations consisting of Equation (4.57) with all combinations of { }3,2,1),( ∈ji .  For 

example, choosing )1,1(),( =ji  gives the equation: 



Two Dimensional Inverse Problem Solutions 4-58 

 

( )dxdxdydyuEkEkEkEk
y yy

yy

x xx

xx∫ ∫ ∫ ∫
+

−

+

−
−=+++

0 1

1

0 1

10 0

2

2,2

)1,1(

222,1

)1,1(

121,2

)1,1(

211,1

)1,1(

11 ρω   (4.67) 

 

Continuing for the other 8 ),( ji  combinations, { })3,3(),3,2(),3,1(),2,3(),2,2(),2,1(),1,3(),1,2( , the 

equations can be written in matrix form as follows: 

 

beA =        (4.68) 

 

where: 

 



































=

)3,3(

22

)3,3(

12

)3,3(

21

)3,3(

11

)3,2(

22

)3,2(

12

)3,2(

21

)3,2(

11

)3,1(

22

)3,1(

12

)3,1(

21

)3,1(

11

)2,3(

22

)2,3(

12

)2,3(

21

)2,3(

11

)2,2(

22

)2,2(

12

)2,2(

21

)2,2(

11

)2,1(

22

)2,1(

12

)2,1(

21

)2,1(

11

)1,3(

22

)1,3(

12

)1,3(

21

)1,3(

11

)1,2(

22

)1,2(

12

)1,2(

21

)1,2(

11

)1,1(

22

)1,1(

12

)1,1(

21

)1,1(

11

000000000000

000000000000

000000000000

000000000000

000000000000

000000000000

000000000000

000000000000

000000000000

kkkk

kkkk

kkkk

kkkk

kkkk

kkkk

kkkk

kkkk

kkkk

A  (4.69) 

 

( )
( )

( ) 





















−

−

−

=

∫ ∫ ∫ ∫

∫ ∫ ∫ ∫
∫ ∫ ∫ ∫

+

−

+

−

+

−

+

−

+

−

+

−

−

−

−

−

dxdxdydyu

dxdxdydyu

dxdxdydyu

b

y yy

yy

x xx

xx

y yy

yy

x xx

xx

y yy

yy

x xx

xx

n

n

n

n

0 1

1

0 1

1

0 1

1

0 2

2

0 1

1

0 1

1

0 0

2

0 0

2

0 0

2

ρω

ρω

ρω

M

    (4.70) 

 

[ ]TEEEEEEEEEEEEEEEEe 4,43,42,41,44,33,32,31,34,23,22,21,21,41,31,21,1 ,,,,,,,,,,,,,,,=   (4.71) 

 

A 2×2 non-homogeneous stencil was found to be the optimal size for the best conditioned global 

non-homogeneous inverse problem solution.  This result occurs because a 1x1 non-homogeneous 

stencil effectively integrates over only half of each stiffness element.  Thus, there are less points 

to average out the effects of noise in the measured displacements u  and v .  On the other hand, a 

3×3 or 4×4 discretized stencil still end up being formulated across a single 10mm×10mm 



Two Dimensional Inverse Problem Solutions 4-59 

element, so there is no net gain.  However, these larger stencils introduce more single integral 

terms that are less accurate than the double integral terms which have a greater low-pass filtering 

effect on the data.  Thus, the effect of using higher order stencils is to decrease the accuracy of 

the algorithm.  Hence in all further cases of testing the algorithm, a 2×2 stencil is used. 

 

4.3 Non-Homogeneous Stress Continuity Constraint Model 

 

The non-homogeneous integral formulation of the previous section was found to work well for 

excitation frequencies on the order of 100Hz, but not as well for lower frequencies of around 

50Hz for the given system parameters chosen for both the simulation and inverse algorithm.  

This is because the spatial wavelengths of the motion data are inversely proportional to the 

actuation frequency.  Therefore, the proportion of sinusoidal waveforms per discretized element 

or ‘spatial information’ decreases with a decrease in the actuation frequency.  This loss of 

information makes the inverse algorithms more sensitive to noise. 

 

To improve the performance of the 2D non-homogeneous inverse algorithm, where the 

frequency of excitation is low (50 Hz), a constraint model is introduced to the non-homogeneous 

inverse algorithm.  This constraint model enforces stress continuity across each of the boundaries 

between discretized stiffness elements.  Continuity in the shear stress, xyτ , given in Equation 

(4.5), is enforced along the boundaries as the longitudinal stresses are significantly ill-

conditioned.  Specifically, yx vuG λλ −≈+ )2(  and xy uvG λλ −≈+ )2(  in Equations (4.3) and 

(4.4) are ill-conditioned, since breast tissue is very close to incompressible with a Poisson’s ratio 

of 0.49. 

 

The calculation of the shear stress, xyτ , requires the calculation of derivatives.  To reduce the 

effects of noise when calculating the shear stress, cubic polynomials are fitted to local vertical 

and horizontal strips of the motion amplitude dataset.  The polynomials are then differentiated 

and the derivatives are then evaluated at the appropriate position. 



Two Dimensional Inverse Problem Solutions 4-60 

G left G right G bottom

G bottom

x 0 2x 0

y 0

x 0

y 0

2y 0

y local

y local

x local x local

(a) (b)

 

Figure 4.7 – Description of the notation used to describe a vertical stiffness boundary (a) and a horizontal 

stiffness boundary (b). 

 

Figure 4.7(a) shows two stiffness elements that form a vertical boundary in local ),( yx  

coordinates.  Stress Continuity across the vertical boundary is defined: 

 

( ) ( ) 00000 0,),(),(),(),( yyyxvyxuGyxvyxuG xyrightxyleft ≤≤+=+ +−
  (4.72) 

 

Where yu  is continuous along the boundary and xv  is not.  For simplicity of notation, Equation 

(4.72) is rewritten in the form: 

 

( ) ( )+− +=+ xyrightxyleft vuGvuG     (4.72b) 

 

( )
( )+

−

+

+
=⇒

xy

xy

left

right

vu

vu

G

G
      (4.72c) 

 

( )
( )+

−

+

+
=⇒

xy

xy

left

right

vu

vu

E

E
       (4.72d) 

 

Equation (4.72d) follows from Equation (4.72c) by using Equation (4.7).  Similarly, stress 

continuity across the horizontal boundary shown in Figure 4.7(b) is defined: 

 



Two Dimensional Inverse Problem Solutions 4-61 

( ) ( ) 00000 0,),(),(),(),( xxyxvyxuGyxvyxuG xytopxybottom ≤≤+=+ +−
 (4.73) 

 

This is rewritten: 

 

( ) ( )xytopxybottom vuGvuG +=+ +−
    (4.73b) 

 

( )
( )xy

xy

bottom

top

vu

vu

G

G

+

+
=⇒

+

−

      (4.73c) 

 

( )
( )xy

xy

bottom

top

vu

vu

E

E

+

+
=⇒

+

−

     (4.73d) 

 

The final stiffness ratio over the vertical boundary in Figure 4.7(a) is formulated as the average 

of all the ratios along this boundary.  For a given data point, the stiffness ratio is defined by 

Equation (4.72d).  Figure 4.8 shows an example of how one such ratio in Equation (4.72d) is 

calculated for a typical data point denoted by an ‘× ’ along the vertical boundary. 

 

Along the line vL  in Figure 4.8, xv  is continuous at 0x .  To evaluate the left hand derivative 
−

xv  

and right hand derivative 
+

xv  at 0x , a cubic polynomial is fitted each side of 0x , using the 

displacement data { }020),,( xxyxv ≤≤ .  An example of this calculation is shown in Figure 4.9, 

where )(1 xp  and )(2 xp  represent the cubics fitted to the motion data.  Thus, )( 01 xpvx
′=−

 and 

)( 02 xpvx
′=+

. 

 

As discussed in Chapter 3, yu  is continuous along all vertical boundary lines in the domain.  

Hence, yu  can be evaluated at the point ),( 0 yx  by fitting a single cubic )(yq  along the line uL  

in Figure 4.8, which is 05.0 y±  from y , and extends outside the stiffness elements leftE  and 

rightE .  Therefore, )(yqu y
′= .  A similar method is used for the horizontal boundary in Figure 

4.7(b). 

 



Two Dimensional Inverse Problem Solutions 4-62 

E left E right

x 0 2x 0

y 0

y 0 /2

y 0 /2

y local

x local

L u L v

 

Figure 4.8 – An example of calculating a ratio in Equation (4.72d) 

 

x 2x 0

v

x

 p 1

  p 2

 

Figure 4.9 – Fitting two cubics to find the left and right hand derivatives 
−

xv  and 
+

xv . 

 

For the global domain of Figure 4.4, there is potentially 180290 =×  final stiffness ratios 

corresponding to all the vertical and horizontal boundaries.  However, on a given stiffness 

boundary, there is the potential for a number of the ratios for each data point in Equations 

(4.72d) and (4.73d) to be ill-conditioned and therefore corrupt the final average ratio.  To avoid 

ill-conditioning, several checks are performed. 

 

One cause of ill-conditioning occurs when yx vu +  comes close to zero in Equations (4.72d) and 

(4.73d).  The first check is to discard the corresponding ratio if the following identities hold: 



Two Dimensional Inverse Problem Solutions 4-63 

Horizontal Stiffness Boundary Terms – Equation (4.72d) 

 

toleranceuvtolerance yx +<−<− +
1/1    (4.74) 

 

toleranceuvtolerance yx +<−<− −
1/1    (4.75) 

 

Vertical Stiffness Boundary Terms – Equation (4.73d) 

 

tolerancevutolerance xy +<−<− +
1/1    (4.76) 

 

tolerancevutolerance xy +<−<− −
1/1    (4.77) 

 

The tolerance parameter described above is found from simulation and the optimal value can 

change slightly for differing boundary conditions and actuation frequencies.  However, it is 

typically in the region of 20% or 0.2. 

 

A second ill-conditioning check is also performed on the derivative terms used to calculate the 

stiffness ratios.  The check is to impose a minimum limit, sizetol , on the size of the absolute 

values of yu  and xv  from Equations (4.72d) and (4.73d) respectively.  That is, the stiffness ratio 

is discarded if the following identities hold: 

 

sizetoluv yx ≤,       (4.78) 

 

The reason for imposing this limit is that as the value of the derivative terms approaches zero, 

the ability of the polynomial fitting algorithm to give an accurate value is compromised. 

 

After discarding all of the ill-conditioned terms using Equations (4.74)-(4.78), the average of all 

the remaining ratios produces a final stiffness ratio that is representative of the ratio of Young’s 

Modulus between the two neighbouring discretized stiffness areas.  If there are less than three 

remaining stiffness ratios per stiffness boundary after discarding the ill-conditioned terms, it is 



Two Dimensional Inverse Problem Solutions 4-64 

considered an insufficient number of terms to provide an accurate average.  Therefore, in this 

case, there is no final ratio used for this particular stiffness boundary. 

 

The algorithm then assigns each stiffness element jiE ,  an average stiffness ratio jiq ,  defined as 

follows: 

( ) ( ) ( ) ( )
4

11

,

−− +++
= topbottomrightleft

ji

hhvv
q    (4.79) 

 

( )
BoundaryLeftleft

right

left
E

E
v 










=      (4.80) 

 

( )
1

1

−

−











=

BoundaryRightleft

right

right
E

E
v      (4.81) 

 

( )
BoundaryBottombottom

top

bottom
E

E
h 








=     (4.82) 

 

( )
1

1

−

−









=

BoundaryTopbottom

top

top
E

E
h      (4.83) 

 

The terms ( ) 1−
rightv  and ( ) 1−

toph ensure that the value of jiq ,  reflects precisely the ratio of jiE ,  to 

its surrounding four stiffness values. 

 

If jiq , is close to 1 for a particular stiffness it shows that it is a locally homogenous region.  The 

larger the value increases from 1 the more non-homogeneous the region becomes.  To constrain 

the stiffness values throughout the global domain of Figure 4.4, each jiE ,  is written as a constant 

multiple of an unknown stiffness Ê : 

 

EqE jiji
ˆ

,, =        (4.84) 

 

where jiq ,  is defined in Equation (4.79). 



Two Dimensional Inverse Problem Solutions 4-65 

For a 1cm tumour at some position in Figure 4.4, Ê  can be interpreted as the healthy stiffness 

value of the region surrounding the tumour.  By combining the equality constraints of Equation 

(4.84) with the integral formulation of Equations (4.57)-(4.66), Young’s Modulus can be 

determined for each stiffness area in Figure 4.4. 

 

Note that if jiE ,  in Figure 4.10 is a carcinoma surrounded by healthy tissue, the four surrounding 

elements jiE , , jiE , , jiE ,  and jiE ,  will each contain one high final stiffness boundary ratio along 

with three ratios close to 1.  If the cancer element jiE ,  is 5 times stiffer than the healthy tissue, 

( ) 24/5111 =+++ .  Thus the effect of a tumour on the formulation of Equation (4.79) is to 

slightly lift the stiffness of the four surrounding stiffness elements.  However, there will be a 

significant rise in the stiffness distribution at the element jiE , , the only difference is that the rise 

will be potentially slightly smoother.  This behaviour was found to have no significant effect in 

simulation. 

 

E i,j E i+1,j

E i,j+1

E i,j-1

E i-1,j

v left

v right
h bottom

h top

 

 

Figure 4.10 – Notation of the stiffness ratios between adjacent stiffness areas for Equation (4.79) 

 

For a given healthy base-line stiffness Ê , the overall constraint model is summarized as follows: 

 

deC =        (4.85) 

 



Two Dimensional Inverse Problem Solutions 4-66 



























−

−

−

−

−

=

10,10

10,9

1,3

1,2

1,1

10000

01000

00100

00010

00001

q

q

q

q

q

C

L

L

MMMMMM

L

L

L

    (4.86) 

 





























=

E

E

E

E

E

E

e

ˆ
1,1

1,1

1,3

1,2

1,1

M        (4.87) 

 

















=

0

0

Md        (4.88) 

 

This constraint model is combined with the integral formulation of Equations (4.57)-(4.66) to 

find Ê  and thus all jiE ,  for { }10,...,2,1),( ∈ji .  Note that the current model assumes that the 

cancerous region coincides precisely with one of the stiffness elements in Figure 4.4.  Therefore, 

in practice the stiffness distribution model would need to be varied in steps to ensure the tumour 

is as close as possible to matching with a stiffness element.  For example, the stiffness 

distribution of Figure 4.4 could be translated up and across in steps of 0.0025m giving a total of 

10132 =+  combinations including Figure 4.4.  However, this method is only included as one 

possible way of handling low actuation frequencies in the order of 50Hz and further 

investigations and development into the robustness of this approach is left to future work. 



Two Dimensional Inverse Problem Solutions 4-67 

4.4 Summary 

 

Two 2D homogeneous inverse algorithms were developed in order to investigate the different 

integral methods and provide a framework for the development of a non-homogeneous 

algorithm.  The Initial inverse algorithm of Equations (4.14)-(4.22) adopts an integral method 

that uses the local origin as the reference with which to integrate from.  This method contains 

derivatives terms that are particularly susceptible to noise and are the primary source of error 

within the solution.  It also contains single integral terms that are not as effective at filtering the 

noise as the double integral terms. 

 

The centred base point algorithm of Equations (4.27)-(4.32) adopts a unique method of 

integrating the 2D plain strain Navier’s Equations that contains only double integral terms.  

These terms effectively filter the effects of noise and make the algorithm very robust.  

Subsequently, the basis of this integral technique is adopted in the non-homogeneous algorithm. 

 

 

 

Figure 4.11 – The overall process applied when using the 2D non-homogeneous inverse algorithm 

 

Generate measured displacement data 

using 2D forward simulation algorithm

Use the measured displacements to 

formulate the integral terms in Equations 

(4.57)- (4.66).  This sets up an over - 

determined system of equations similar to 

the example for the 4x4 global domain 

given in Equations (4.67) - (4.70)

Use linear least squares to solve for the 

unknown Young ’s Modulus parameters 

and output global stiffness distribution 

Generate measured displacement data 

using 2D forward simulation algorithm

Use the measured displacements to 

formulate the integral terms in Equations 

(4.57)- (4.66).  This sets up an over - 

determined system of equations similar to 

the example for the 4x4 global domain 

given in Equations (4.68) - (4.71)

Use linear least squares to solve for the 

unknown Young ’s Modulus parameters 

and output global stiffness distribution 



Two Dimensional Inverse Problem Solutions 4-68 

Finally, a 2D non-homogeneous inverse algorithm was then formulated that is capable of 

identifying a square 1cm square tumour within the square global domain with 10cm sides.  It 

consists of a 2×2 stencil (Figure 4.3) that can be mapped across the global domain to produce an 

over-determined system of linear equations that inter-relates all of the discretized stiffness 

elements throughout the domain.  The mapping of the stencil is performed by moving the local 

base point across the global domain.  Figure 4.11 shows the overall process of using the 2D non-

homogeneous inverse algorithm. 

 

A constraint model, as described in Section 4.3, was formulated that enforces shear stress 

continuity at the boundary between discretized stiffness elements.  It was primarily formulated to 

increase the ability of the inverse algorithm to identify carcinoma using an actuation frequency 

of 50Hz, as initial investigations suggest that the method is more sensitive to noise at this lower 

frequency for the assumed system and modelling parameters that are adopted. 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

Part 3 

 Results & Discussion 
 

 



 

5 Performance of 1D Inverse Algorithms 

 
 

5.1 Verification of Forward Simulation Algorithm 

 

The 1D forward simulation model of Section 2.1 is verified using an analytical solution for both 

the homogeneous and non-homogeneous cases.  The analytical solutions are obtained by solving 

Equation (2.2), with boundary conditions 001.0)(,0)0( == Lvv  using MAPLE.  Since these 

analytical solutions are only required for validation of the numerical solutions, the details are not 

included. 

 

Figure 5.1 shows the convergence of both a homogeneous and non-homogeneous model against 

their respective analytical solutions.  In both instances, the medium is assumed to have a 

‘healthy’ Young’s Modulus value of 30kPa.  For the non-homogeneous forward simulation, a 

1cm long carcinoma or region of greater stiffness is included in the 0.4-0.5cm region of the 

domain.  The value of Young’s Modulus for this carcinoma is 300kPa which is ten times greater 

than the surrounding healthy tissue.  The excitation frequency was 100Hz for both instances. 

 

0

1

2

3

4

5

6

7

8

0 200 400 600 800 1000

No. of Independent Nodes in Solution

M
a
x
im

u
m
 P
e
rc
e
n
ta
g
e
 E
rr
o
r 
(%

)

Non-Homogeneous Homogeneous

 

Figure 5.1 - Maximum Error in 1D Simulation Solution compared against Grid Refinement 



Performance of 1D Inverse Algorithms 5-71 

The ‘measured’ displacement data used as input into the inverse algorithms was based on a 

forward model solution using 2000 independent nodes.  For the non-homogeneous geometric 

representation defined above this choice gives a maximum percentage error of 0.0193% between 

the numerical and analytical simulations. 

 

The Young’s Modulus value of 30kPa is the value used for ‘healthy’ tissue for all simulations in 

both 1D and 2D.  In MRI tests, it has been shown that for 20% precompression of breast tissue 

and excitation frequency of 4Hz that the Young’s Modulus of fat tissue is 624 ± kPa [Krouskop 

et al,1998].  Fat tissue represents the most significant tissue within a female breast.  It has also 

been shown that Young’s Modulus increases with an increase in excitation frequency [Krouskop 

et al,1998].  As the excitation frequency for the proposed MRE method is expected to exceed 

50Hz the upper bound of this stiffness value (30kPa) is chosen as the representative ‘healthy’ 

Young’s Modulus value. 

 

It has been shown in static analysis performed by Samani et al. (2003) that the Young’s Modulus 

of ductal carcinoma is approximately 6 times greater than the surrounding fat tissue.  The 

dynamic analysis performed by Krouskop et al. (1998) shows that the Young’s Modulus of 

ductal carcinoma is approximately 10 times greater the surrounding fat tissue at an excitation 

frequency of 4Hz.  Therefore, for the analysis of the inverse algorithms, Young’s Modulus 

values representing carcinoma were chosen in the range of 150-300kPa, which is 5-10 times 

stiffer than healthy tissue. 

 

The other tissue properties required for the forward simulation and subsequent inverse problem 

algorithm are the density and Poisson’s ratio.  These values were assumed to be similar to the 

corresponding properties of water, which is the primary constituent of fat tissue.  The values of 

density and Poisson’s ratio are therefore chosen to be 1020kgm
-3
 and 0.49 respectively. 

 

5.2 Comparison of Integral Methods 

 

The three different integral methods of Sections 2.2.1-2.2.3 are evaluated and compared to 

establish the best method for further development.  The global motion data output from the 

forward simulation requires post-processing before providing the input to the inverse algorithms.  

In particular, the number of data points per centimetre is reduced to correspond to a level similar 



Performance of 1D Inverse Algorithms 5-72 

to what can be achieved using current MRI technology.  More specifically, 1.5 Tesla MRI 

machines, which represent the base model of MRI technology, record spatial data at an 

approximate average of 0.75mm intervals [Haack et al. 1999].  This value represents just greater 

over 13 points per centimetre.  Stronger MRI machines (3 Tesla and greater) are capable of 

further the density of spatial data points [Haack et al. 1999].  Therefore, a base value of 20 points 

per centimetre, which is equivalent to the number of points in each discretized segment, is used 

for initial comparison of integral methods. 

 

Random noise is also added to the forward simulated motion data input.  The added noise is 

calculated as a percentage of the median of the absolute values of the motion dataset.  By 

increasing the noise up to 10% the relative merits of each integral method can be determined.  

For a Poisson’s ratio of 49.0=ν , the Young’s Modulus of 30kPa used corresponds to a Shear 

Modulus of approximately =G 10.1kPa Equation (2.2b).  To test the algorithm the carcinoma is 

positioned at the 7
th
 discretized stiffness segment and has stiffness 10 times the healthy value.  

This location relates to a position of 6-7cm along the 1D global domain shown in Figure 2.1.  

This location is essentially arbitrary as in general the position doesn’t significantly affect the 

algorithms performance, as discussed later in this Chapter.  The excitation frequency chosen is 

100Hz. 

 

For each set of parameters are evaluated, 20 separate runs of the algorithm are performed with 

random noise added to the motion data input each run.  This Monte Carlo approach provides a 

means of quantifying the median and range of each stiffness value reconstructed.  Using the 

cumulative data from the 20 runs a 90% confidence interval is defined for each discretized 

segment. 

 

5.2.1 Local Inverse Algorithm 

 

The local inverse algorithm of Equations (2.24)-(2.27) is applied.  Figure 5.2 shows the 90% 

confidence interval corresponding to the 20 reconstructed stiffness values for each discretized 

segment except segment 7, compared against the actual value used in the simulation.  The 

median values are denoted by an × . 



Performance of 1D Inverse Algorithms 5-73 

1 2 3 4 5 6 7 8 9 10
0

10

20

30

40

50

60

70

80

90

100

110
S

h
e
a
r 
M

o
d
u
lu

s
 (
k
P

a
)

Discretized Segment No.

Actual

Reconstructed

 

Figure 5.2 – 90% Confidence Interval of the Reconstructed Stiffness Distribution compared against the 

Actual Distribution from the Local Inverse Algorithm 

 

The complete 90% confidence interval for segment 7 is not shown on Figure 5.2 as it 

significantly exceeds the Shear Modulus range of interest.  The maximum and minimum values 

of the 90% confidence interval are 1443.5kPa and -324.1kPa respectively.  Hence, the 

reconstruction of the carcinoma stiffness is very inaccurate using this Local inverse algorithm.  

On the other hand, as can be seen in Figure 5.2, the healthy tissue can be reconstructed 

accurately. 

 

The reason for the significantly different results between the healthy and cancerous segments is 

because each discretized segment is treated independent from all the others.  Therefore, the 

calculation of the stiffness relies solely on the dynamics of the motion dataset in each individual 

segment, which is governed by the spatial period.  The low stiffness values, by definition, have a 

much shorter spatial period.  Thus, for the healthy Shear Modulus value of 30kPa, each 1cm 

discretized segment of motion data will contain approximately 1/3 of the spatial period of the 

excited tissue, which is sufficient to accurately identify the tissue stiffness even with added 

noise.  However, the motion dataset of the cancerous tissue contains approximately only 1/30 of 



Performance of 1D Inverse Algorithms 5-74 

the spatial period of the excited tissue for each segment.  After adding noise, the small portion of 

the sinusoid is essentially a straight line which has an infinite spatial period and thus an infinite 

stiffness.  Therefore, in this case, the inverse problem is virtually undefined and it is not possible 

to accurately identify the stiffness of the carcinoma. 

 

0

10

20

30

40

50

60

70

80

90

100

-5
0

-4
5

-4
0

-3
5

-3
0

-2
5

-2
0

-1
5

-1
0 -5 0 5

1
0

1
5

2
0

2
5

3
0

3
5

4
0

4
5

5
0

5
5

6
0

6
5

7
0

7
5

8
0

8
5

9
0

9
5

1
0
0

1
0
5

1
1
0

M
o
re

Shear Modulus (kPa) - Interval Maximum

F
re
q
u
e
n
c
y
 -
 H
e
a
lt
h
y

0

1

2

3

4

5

6

7

8

9

10

F
re
q
u
e
n
c
y
 -
 C
a
rc
in
o
m
a

Healthy Carcinoma

 

Figure 5.3 – Shear Modulus Distributions of Healthy and Cancerous Tissue from the Local Inverse 

Algorithm 

 

Although the range of the 90% confidence interval for the cancerous tissue overlaps the intervals 

of the healthy tissue, Figure 5.3 shows that the distributions do not overlap at any stage.  The 

algorithm is most likely to calculate a large negative stiffness, which is physically impossible, or 

a large positive stiffness value.  Therefore, in most cases the Local inverse algorithm can detect 

regions where there is a large change of stiffness, but it is not able to calculate the stiffness of the 

carcinoma accurately. 

 

5.2.2 Global Single Integral Inverse Algorithm 

 

Figure 5.4 shows the median calculated stiffness value and the corresponding 90% confidence 

interval for each discretized segment compared against the actual value used for simulation for 

the Global Single Integral inverse algorithm of Equation (2.29), with 10% random noise. 



Performance of 1D Inverse Algorithms 5-75 

1 2 3 4 5 6 7 8 9 10
0

10

20

30

40

50

60

70

80

90

100

110
S

h
e
a
r 
M

o
d
u
lu

s
 (
k
P

a
)

Discretized Segment No.

Actual

Reconstructed

 

Figure 5.4 – 90% Confidence Interval of the Reconstructed Stiffness Distribution compared against the 

Actual Distribution from the Global Single Integral Inverse Algorithm 

 

As with the Local inverse algorithm, the calculated stiffness values of healthy tissue are quite 

accurate and the range is very small for the majority of segments.  However, the Shear Modulus 

of the carcinoma is severely underestimated and the lower limit of the 90% confidence interval 

of segment 7 coincides with the upper limit of the 90% confidence interval of the healthy tissue 

in segment 1.  The advantage of introducing the use of global information from the motion 

dataset is offset by using only a single integral formulation, rather than the double integral 

formulation of the Local inverse algorithm.  This behaviour occurs because the single integral 

formulation requires the calculation of derivative terms, which are sensitive to noise.  The Global 

Single Integral inverse algorithm fits quartic polynomials to the noisy motion dataset to reduce 

the effects of noise.  However, Figure 5.5 verifies that there is still considerable error in the 

derivative function. 

 



Performance of 1D Inverse Algorithms 5-76 

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1
-500

-400

-300

-200

-100

0

100

200

300

400

500

Position (m)

D
e
ri
v
a
ti
v
e
 o

f 
D

is
p
la

c
e
m

e
n
t 
A

m
p
lit

u
d
e

Actual

Fitted

 

Figure 5.5 – Comparison between the derivative function calculated using polynomial fitting and the actual 

derivative function 

 

Figure 5.6 shows that there is no positive discrimination between healthy and cancerous stiffness 

values as the distributions overlap.  Although in most cases it is possible to identify a region of 

greater stiffness, it is not always the case.  Thus, there is the possibility that outliers in the 

reconstruction of healthy tissue could be confused for carcinoma and provide a false positive.  

There is also the possibility that the calculated stiffness value for the carcinoma falls within the 

healthy stiffness distribution so that the algorithm does not identify the carcinoma at all. 

 

As mentioned previously, the main problem with the Global Single Integral method is the 

calculation of the derivative.  This derivative is difficult to obtain accurately since it is sensitive 

to noise.  Hence, this method is also not fully suitable, and further integrations are required. 



Performance of 1D Inverse Algorithms 5-77 

0

10

20

30

40

50

60

70

80

3 6 9 12 15 18 21 24 27 30 33 36 39 42 45 48 51 54 57 60 63 66 69 72

Shear Modulus (kPa) - Interval Maximum

F
re
q
u
e
n
c
y

Healthy Carcinoma

 

Figure 5.6 – Shear Modulus Distributions of Healthy and Cancerous Tissue from the Global Single Integral 

Inverse Algorithm 

 

5.2.3 Global Double Integral Inverse Algorithm 

 

Figure 5.7 shows the median calculated stiffness value and the corresponding 90% confidence 

interval for each discretized segment compared against the actual value used for simulation for 

the Global Double Integral inverse algorithm of Equations (2.39)-(2.43).  The overall 

performance of the Global Double Integral inverse algorithm is very good.  The Shear Moduli 

calculated for discretized segments with healthy tissue are accurate with the smallest 90% 

confidence interval range of the three integral methods.  The Shear Moduli calculated for the 

carcinoma segment also had the smallest confidence interval range.  The median value of 

carcinoma stiffness was still underestimated by approximately 30%.  However as Figure 5.8 

shows, there is still clear positive discrimination between healthy and cancerous stiffness values. 



Performance of 1D Inverse Algorithms 5-78 

1 2 3 4 5 6 7 8 9 10
0

10

20

30

40

50

60

70

80

90

100

110
S

h
e
a
r 
M

o
d
u
lu

s
 (
k
P

a
)

Discretized Segment No.

Actual

Reconstructed

 

Figure 5.7 – 90% Confidence Interval of the Reconstructed Stiffness Distribution compared against the 

Actual Distribution from the Global Double Integral Inverse Algorithm 

 

0

20

40

60

80

100

120

5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90

Shear Stress (kPa) - Interval Maximum

F
re
q
u
e
n
c
y
 -
 H
e
a
lt
h
y

0

2

4

6

8

10

12
F
re
q
u
e
n
c
y
 -
 C
a
rc
in
o
m
a

Healthy Carcinoma

 

Figure 5.8 – Shear Modulus Distributions of Healthy and Cancerous Tissue from the Global Double Integral 

Inverse Algorithm 



Performance of 1D Inverse Algorithms 5-79 

5.2.4 Summary of Evaluation of Integral Methods 

 

From the comparative evaluation of the three different inverse algorithms developed it is clear 

that the Global Double Integral inverse algorithm performs the best.  It successfully identifies 

both the Shear Moduli of both the carcinoma and healthy tissue with comparatively small 90% 

confidence interval range.  The Local inverse algorithm has potential benefits due to its overall 

simplicity, but it is only effective at identifying where there is sufficient spatial information 

within each discretized segment.  For example, if the magnitude of Shear Modulus is sufficiently 

low or the size of the discretized segment is sufficiently large.  The single integral formulation 

was a little better at identifying the actual stiffness value of the carcinoma than the Local inverse 

algorithm.  However, the median carcinoma stiffness was very low and the minimum value of 

the 90% confidence interval of this stiffness overlapped with the healthy tissue stiffness range.  

Therefore, the method cannot reliably detect the presence of cancer which is predominantly due 

to the calculation of derivatives which are sensitive to noise and corrupt the solution. 

 

The main reason for its success is that the Global Double Integral method does not require any 

calculation of derivatives.  Therefore, it is robust to noise, as shown by the good separation of 

stiffness values between the healthy and cancerous regions in Figures 5.7 and 5.8.  Thus, the key 

point to note is that the integral methods are more robust for this type of problem where no 

further derivatives need to be calculated.  The trade off is that added numerical integrations must 

be performed, adding some complexity in both the formulation and computation. 

 

5.3 Evaluation of Global Double Integral Inverse Algorithm 

 

The Global Double Integral inverse algorithm is evaluated further to quantify its performance 

and robustness with the variation of important system parameters.  These parameters include: 

 

• The level of noise in the input data 

• Frequency of the tissue actuation 

• Level of carcinoma stiffness in relation to healthy tissue stiffness 

• Resolution or number of points per segment of the input motion data 

• Position of the carcinoma within the global domain. 



Performance of 1D Inverse Algorithms 5-80 

5.3.1 Variation with Level of Random Added Noise 

 

The level of randomly added noise significantly affects the performance of any inverse 

algorithm.  Figure 5.9 shows the performance of the algorithm with respect to the level of 

uniform random noise added to the motion data input, where the 90% confidence interval for the 

calculated Shear Modulus values is shown for each point.  As the level of noise increases, the 

Shear Modulus calculated for the carcinoma decreases significantly.  The Shear Modulus of the 

healthy tissue also becomes less accurate. 

 

The reason for the decrease in stiffness for the cancerous region is that for greater levels of noise 

there is more potential freedom for a fitted model solution of Equation (2.39) to move.  In other 

words, the frequency of potential fitted model curves would increase with increasing noise, 

which corresponds to a decrease in fitted stiffness.  However, there is clear discrimination for all 

noise levels evaluated. 

 

1 2 3 4 5 6 7 8 9 10
0

10

20

30

40

50

60

70

80

90

100

110

S
h
e
a
r 
M

o
d
u
lu

s
 (
k
P

a
)

Discretized Segment No.

Actual

0% Noise

10% Noise

20% Noise

 

Figure 5.9 – The impact of random added noise on the performance of the Global Double Integral inverse 

algorithm with 20 points per segment 

 



Performance of 1D Inverse Algorithms 5-81 

5.3.2 Variation with Actuation Frequency 

 

The actuation frequency is a significant parameter of the inverse problem as it directly relates to 

the spatial period of the shear wave induced in the 1D medium.  However, the amount the 

frequency can be increased is limited by both the performance of the actuation system and the 

frequency of data collection of the MRI system used.  The performance of the algorithm with 

respect to the actuation frequency of the tissue sample is detailed in Figure 5.10. 

 

As the frequency increases, the overall accuracy of the algorithm increases.  For example, at 

150Hz the carcinoma stiffness calculated is very close to the actual stiffness and the healthy 

tissue values are very accurate with a small range.  In comparison, the algorithm significantly 

underestimates the carcinoma stiffness, and the healthy tissue stiffness values are relatively 

inaccurate for the tissue actuated at 50Hz.  The clear discrimination of stiffness values, which is 

clear at 100Hz and 150Hz, is much less obvious at 50Hz. 

1 2 3 4 5 6 7 8 9 10

0

10

20

30

40

50

60

70

80

90

100

110

S
h
e
a
r 
M

o
d
u
lu

s
 (
k
P

a
)

Discretized Segment No.

Actual

50Hz

100Hz

150Hz

 

Figure 5.10 – The impact of actuation frequency on the performance of the Global Double Integral inverse 

algorithm with 10% random added noise and 20 points per segment 

 

The reason for a decreased accuracy in the algorithm for an actuation frequency of 50Hz is 

because the spatial period of the actuated tissue is inversely proportional to the actuation 



Performance of 1D Inverse Algorithms 5-82 

frequency.  Therefore, for a smaller frequency, the spatial period is larger and thus there is a 

relatively smaller proportion of the spatial sinusoidal wave contained within each segment.  This 

smaller contrast effectively provides less independent motion information to the inverse 

algorithm resulting in a less accurate stiffness reconstruction. 

 

This decrease in accuracy of the inverse algorithm with decreasing actuation frequency is 

dependent on the stiffness and mass parameters assumed for the forward simulation of the 

motion data.  These parameter values directly relate to the natural frequency of the tissue and 

thus define the elastic response created as input to demonstrate the inverse algorithms.  

Therefore, a final 3D inverse algorithm needs to be tested for all reasonable ranges of breast 

tissue stiffness and density to verify its performance with variation of the actuation frequency.  

These results, however, give an indication of the trends and potential limitations of integration 

methods that might be encountered with respect to the mechanical properties and dynamic 

frequency response of the breast. 

 

5.3.3 Variation with Carcinoma Stiffness 

 

Currently, there is no definitive data on the actual stiffness of ductal carcinoma at the range of 

actuation frequencies proposed using this method.  However, significant positive discrimination 

of stiffness between healthy and cancerous tissue has been found using both static analysis and 

dynamic tests at actuation frequencies of up to 4Hz [Samani et al, 2003, Krouskop et al, 1998].  

Therefore, the performance of the algorithm is quantified using a range based on the limited data 

available. 

 

Previous analysis of the Global Double Integral inverse algorithm has used a carcinoma stiffness 

that is 10 times greater than the healthy tissue.  Figure 5.11 evaluates the algorithm with 

carcinoma to healthy tissue stiffness ratio of 5:1, as this level approximately represents the lower 

limit of this ratio in both static and dynamic testing [Samani et al. 2003, Krouskop et al. 1998].  

It shows that the algorithm more accurately reconstructs the tissue distribution for the lower 

stiffness ratio of 5:1 than for the stiffness ratio of 10:1 using the equivalent analysis shown in 

Figure 5.9.  This result occurs because the spatial period of the carcinoma is reduced, making 

more spatial information available per segment, which results in identifying the Shear Modulus 

more accurately. 



Performance of 1D Inverse Algorithms 5-83 

However, as discussed in Section 5.3.2 this is also dependent on the response defined by the 

natural frequency.  Therefore, the variation of tissue density and healthy tissue stiffness 

combined with this variation in carcinoma stiffness is required to provide comprehensive 

analysis of the performance of 1D inverse algorithm. 

1 2 3 4 5 6 7 8 9 10
0

5

10

15

20

25

30

35

40

45

50

55

S
h
e
a
r 
M

o
d
u
lu

s
 (
k
P

a
)

Discretized Segment No.

Actual

0% Noise

10% Noise

20% Noise

 

Figure 5.11 – The performance of the Global Double Integral inverse algorithm with a carcinoma to healthy 

tissue stiffness ratio of 5:1 (10% random added noise and 20 points per segment) 

 

5.3.4 Variation with Data Resolution 

 

The data resolution parameter is limited by the magnetic strength of the MRI system used to 

produce the motion dataset and is discussed in detail in Section 5.2.  Figures 5.12 and 5.13 show 

the performance of the algorithm with respect to the data resolution of the input motion dataset 

with 10% and 20% random noise added respectively.  It shows the 90% confidence interval of 

calculated Shear Modulus values for each point. 

 

As the resolution of the input data increases, there is no distinct change in the median value of 

the Shear Modulus values calculated.  However, the range of the 90% confidence interval 

reduces, particularly for the carcinoma stiffness values.  As the number of data points across the 



Performance of 1D Inverse Algorithms 5-84 

domain increases for the same length, the accuracy of the double integral terms in Equation 

(2.39) increases along with the number of equations used in the linear least squares solution to 

Equations (2.40)-(2.43).  With more data points the effects of noise are more likely to be filtered 

or offset, thus reducing the variability of the solution. 

 

1 2 3 4 5 6 7 8 9 10
0

10

20

30

40

50

60

70

80

90

100

110

S
h
e
a
r 
M

o
d
u
lu

s
 (
k
P

a
)

Discretized Segment No.

Actual

10 points per segment

20 points per segment

40 points per segment

 

Figure 5.12 – The impact of the number of points per segment on the performance of the Global Double 

Integral inverse algorithm with 10% random added noise 

 

1 2 3 4 5 6 7 8 9 10
0

10

20

30

40

50

60

70

80

90

100

110

S
h
e
a
r 
M

o
d
u
lu

s
 (
k
P

a
)

Discretized Segment No.

Actual

10 points per segment

20 points per segment

40 points per segment

 

Figure 5.13 – The impact of the number of points per segment on the performance of the Global Double 

Integral inverse algorithm with 20% random added noise 



Performance of 1D Inverse Algorithms 5-85 

5.3.5 Variation with Carcinoma Position 

 

The position of the carcinoma can affect the global motion dataset and therefore the performance 

of the Global Double Integral inverse algorithm. The carcinoma is thus positioned throughout the 

global domain to analyze the effect on the algorithm.  For simplicity in the forward simulation, 

the carcinoma is assumed to lie in the segments 2-9 in the global domain.  In all simulations 10% 

random noise is added and 20 points are used per segment. 

 

Figure 5.14 shows the results of the fitted carcinoma stiffness over the 8 different segments.  

Positive discrimination between healthy and cancerous stiffness values is maintained in most 

cases.  However, this result is potentially compromised in position 6 and severely compromised 

in position 3 where there is no discrimination. 

1 2 3 4 5 6 7 8 9 10

0

20

40

60

80

100

S
h
e
a
r 
M

o
d
u
lu

s
 (
k
P

a
)

Discretized Segment No.

Actual

Reconstructed

Maximum Healthy
 

Figure 5.14 – 90% confidence intervals of reconstructed carcinoma stiffness values in all possible positions 

 

In the instance where the carcinoma is positioned at the third discretized segment, the median 

value of the stiffness calculated directly corresponds to the healthy tissue stiffness.  This 

inaccurate reconstruction of tissue stiffness is caused by the carcinoma being positioned in such 

a way that it does not significantly affect the global motion dataset, as compared to a 



Performance of 1D Inverse Algorithms 5-86 

homogeneous solution with Shear Modulus 31.2kPa, as shown in Figure 5.15.  Note that both the 

spatial amplitude and spatial phase are not altered significantly on either side of the carcinoma.  

Therefore, with the addition of noise, the benefit of using global information to effectively 

identify a carcinoma within the global domain is diminished in this specific case.  This unique 

effect is less likely to happen in a more realistic 3D model, as shear and longitudinal stress 

waves propagate in three dimensions.  However, this problem can be somewhat remedied by 

increasing the actuation frequency by 10% as this change sufficiently alters the contrast between 

the healthy and cancerous global motion datasets. 

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1
-1.5

-1

-0.5

0

0.5

1

1.5

Position (m)

D
is

p
la

c
e
m

e
n
t 
(m

m
)

Carcinoma between 0.02m and 0.03m

Healthy
 

Figure 5.15 – Comparison between cancerous and healthy motion datasets 

 

5.3.6 Mesh Refinement Algorithm 

 

The enhancement of the Global Double Integral inverse algorithm to incorporate mesh 

refinement was developed in Section 2.2.4 to identify carcinomas that are not aligned with the 

discretized segments of the domain.  It is evaluated by simulating the carcinoma (or region of 

greater stiffness) of length 1cm, at a position so that it is half in one discretized stiffness segment 

and half in the adjacent segment.  This geometry represents the worst case scenario in terms of 

alignment of the discretized grid with the carcinoma.  Figure 5.16 shows the distribution of 



Performance of 1D Inverse Algorithms 5-87 

healthy tissue stiffness compared against the maximum carcinoma stiffness calculated for each 

run. 

 

Although the carcinoma is successfully identified, there is a significant range of fitted healthy 

tissue stiffness values, which subsequently extends into the carcinoma stiffness distribution, 

creating false positives within the solution.  Therefore, the mesh refinement process as described 

in Section 2.2.4 is not an effective method for identifying a tumour that is misaligned with the 

grid.  The reason for this result is that reducing segments from 1cm to 0.5cm effectively reduces 

the amount of spatial information in each segment to the level where it can no longer accurately 

identify even the healthy stiffness values, at this actuation frequency. 

 

0

10

20

30

40

50

60

70

80

-2
5

-2
0

-1
5

-1
0 -5 0 5

1
0

1
5

2
0

2
5

3
0

3
5

4
0

4
5

5
0

5
5

6
0

6
5

7
0

7
5

8
0

8
5

9
0

9
5

1
0
0

M
o
re

Shear Modulus (kPa) - Interval Maximum

F
re
q
u
e
n
c
y

Healthy Maximum Carcinoma Value

 

Figure 5.16 - Shear Modulus Distributions of Healthy and Cancerous Tissue from the Global Double Integral 

Inverse Algorithm using Mesh Refinement 

 

However, one way around this problem that avoids mesh refinement would be to change the 

alignment of the grid a number of times until it lines up more approximately with the tumour.  

For example, in order to get a 2mm resolution of position on a carcinoma of 1cm size and for a 

domain that is 0.1cm long, the global double integral inverse algorithm could be applied on 5 

different discretizations of the grid defined as follows: 



Performance of 1D Inverse Algorithms 5-88 

{ }
{ } 5,...,2,]92.0,82.0[],...,22.0,12.0[],12.0,2.0[

]10,9[,],2,1[],1,0[1

=+++++=

=

iiiiiiiD

D

i

K
  (5.1) 

 

where iD  is the set of discretized segments used for each iteration of the inverse algorithm. 

 

This approach implies that for some discretized grid, 5,...,1, =iDi , the inverse algorithm will be 

sufficiently aligned with the carcinoma to give a clear indication of the increase in stiffness of 

the tissue and the position.  The fact that the double integral method requires no forward 

simulation and can identify all the stiffness values with one very fast linear least squares solution 

ensures the method of Equation (5.1) will not have any significant effect on the overall 

computational speed or intensity of the algorithm. 

 

5.3.7 Summary 

 

The Global Double Integral inverse algorithm was found to be robust to the effects of random 

added noise.  As the actuation frequency of the tissue simulation is decreased the accuracy of the 

algorithm also decreases due to the reduction of spatial information.  An increase in the data 

resolution of the motion data input results in reduced variability of the calculated carcinoma 

stiffness resulting in increased positive discrimination of stiffness values.  A reduction of 

carcinoma stiffness to the lower limits of expected Young’s Modulus values, as discussed in 

Section 5.1 results in increased performance of the algorithm due to the increased spatial 

information within the carcinoma segment. 

 

These results are for the assumed mass and stiffness system parameters used in forward 

simulation.  These parameters define the natural frequency and therefore the response of breast 

tissue.  Thus, a change in these parameters could alter the dynamic response so that the inverse 

algorithm is potentially less accurate for certain actuation frequencies. 

 

Successful identification of the carcinoma is not always guaranteed when its position is varied 

throughout the global domain.  This loss of accuracy occurs because the carcinoma can be 

positioned in this 1D example in such a way that it does not significantly alter the global motion 

dataset in comparison to a homogeneous model.  These cases are therefore geometrically ill-



Performance of 1D Inverse Algorithms 5-89 

conditioned and not likely to occur in a physiologically realistic 3D case.  However, a 10% 

variation in actuation frequency can alter the global motion dataset sufficiently for successful 

identification of the carcinoma, even in this simplified case. 

 

A method of localized mesh refinement was developed as an adaptation to the Global Double 

Integral inverse algorithm.  This method was developed to identify carcinoma not aligned with 

the discretized grid and carcinoma smaller than the discretized grid.  It proved to be relatively 

unsuccessful as the reduction of grid size can create false positives within the solution as the 

segment length becomes too small to accurately identify the healthy tissue stiffness due to the 

lack of spatial information.  However, a method was proposed to identify carcinoma not aligned 

with the discretized grid that involves multiple iterations of the inverse algorithm where the 

position of the grid is moved incrementally for each iteration, such that the grid will 

approximately align with the tumour at some iteration. 

 



 

6 Performance of 2D Inverse Algorithms 

 
 

6.1 Verification of Forward Simulation Algorithm 

6.1.1 Verification against Analytical Homogeneous Solution 

 

The homogeneous forward simulation algorithm is initially verified by comparison against the 

analytical solution that exists in the infinite domain.  Thus, the basic foundations of the algorithm 

can be checked against an accurate analytical solution before more physically realistic boundary 

conditions are applied.  Figures 6.1 and 6.2 show the convergence of the numerical solution to 

the analytical solution with actuation frequencies of 50Hz and 100Hz.  The Young’s Modulus of 

the healthy tissue is set at 30kPa, as justified in Section 5.1. 

 

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

5.5

50 100 150 200 250 300 350 400 450

No. Of Independent Nodes Along Each Side Of Domain

M
a
x
im

u
m
 P
e
rc
e
n
ta
g
e
 E
rr
o
r 
(%

)

x direction displacement y direction displacement

 

Figure 6.1 - Maximum Error in the Simulated Solution compared against the Analytical Solution at an 

actuation frequency of 50Hz 

 



Performance of 2D Inverse Algorithms 6-91 

0

2

4

6

8

10

12

14

16

18

100 150 200 250 300 350 400 450

No. Of Independent Nodes Along Each Side Of Domain

M
a
x
im

u
m
 P
e
rc
e
n
ta
g
e
 E
rr
o
r 
(%

)
x direction displacement y direction displacement

 

Figure 6.2 - Maximum Error in the Simulated Solution compared against the Analytical Solution at an 

actuation frequency of 100Hz 

 

The results in Figures 6.1 and 6.2 show that the finite difference based forward simulation 

algorithm can accurately model the analytical solution.  The convergence of the solution at an 

actuation frequency of 100 Hz is much slower than at 50Hz because the greater actuation 

frequency produces a more dynamic response with higher spatial frequencies. 

 

6.1.2 Convergence of Forward Simulation Algorithm 

 

For both the homogeneous and non-homogenous case, there exists no known analytical solution 

for the 2D plane strain problem of Equation (3.1) with arbitrary boundary conditions.  Therefore, 

the numerical forward simulation of these cases has to be verified by relative convergence of the 

solution with successive grid refinement.  In this case, small changes at successive refinements 

indicate convergence. 

 

Resonance can be a problem with the forward simulation of the 2D plane strain simplification of 

Navier’s equations in Equation (3.1).  Specifically, the model does not include damping.  The 

presence of undamped resonance within the motion dataset can severely reduce the ability of the 

forward simulation model to converge within the maximum resolution of data points, the number 



Performance of 2D Inverse Algorithms 6-92 

of which is limited by the memory constraints of the computer where the simulation is being run.  

However, if a resonant model does converge successfully, then the inverse algorithm should still 

successfully solve for the stiffness as the fundamental dynamics of the model are still satisfied. 

 

Figure 6.3 shows the convergence of the homogeneous model with the ‘Phantom’ boundary 

conditions of Section 3.2 applied.  The error in the solution is measured based on the maximum 

percentage difference of the motion dataset between the current mesh and the previous mesh.  

The Young’s Modulus of the healthy tissue is set at 30kPa and the excitation frequency is 

100Hz.  At 250 nodes the forward simulation converges within 1%, and as the number of nodes 

increase, the error decreases exponentially.  More specifically, after 250 nodes the forward 

solution becomes mesh independent. 

100 200 300 400 500 600 700 800
0

0.5

1

1.5

2

2.5

3

3.5

4

M
a
x
im

u
m
 P
e
rc
e
n
ta
g
e
 D
if
fe
re
n
c
e
 (
%
)

No. of Independent Nodes Along Each Side Of Domain

x direction displacment

v direction displacement

 

Figure 6.3 – Maximum Percentage Difference of the Motion Dataset between Current Mesh and Previous 

Mesh for the Homogeneous Model using ‘Phantom’ Boundary Conditions Actuated at 100Hz 

 

Figure 6.4 shows the convergence of a non-homogeneous model with the ‘Phantom’ boundary 

conditions applied.  The carcinoma is positioned at (7,9) as described in Figure 4.3 and has a 

Young’s Modulus of 300kPa.  This forward simulation model is the primary model used to 

evaluate the non-homogeneous inverse algorithm. 

 

The convergence of this model is not as clear and consistent as in the homogeneous case.  This 

less clear result is due to the interactions between the carcinoma and healthy tissue.  In this case, 



Performance of 2D Inverse Algorithms 6-93 

it is not possible to perform further mesh refinement to the model to conclusively show that the 

forward simulation solution has converged and is mesh independent because of memory 

limitations of the computers available (maximum of 4096Mb of RAM).  Therefore, although not 

conclusive, the model of Figure 6.4 is considered to have converged sufficiently to provide an 

input to the non-homogeneous inverse problem algorithm. 

100 200 300 400 500 600 700 800
0

2

4

6

8

10

12

14

16

18

20

M
a
x
im

u
m
 P
e
rc
e
n
ta
g
e
 D
if
fe
re
n
c
e
 (
%
)

No. of Independent Nodes Along Each Side Of Domain

x direction displacment

v direction displacement

 

Figure 6.4 – Maximum Percentage Difference of the Motion Dataset between Current Mesh and Previous 

Mesh for the Non-Homogeneous Model using ‘Phantom’ Boundary Conditions Actuated at 100Hz 

 

However, this result is not always the case for the non-homogeneous forward simulation 

solutions.  Using excitation frequencies of 50Hz and approximately 100Hz, less than half of all 

possible geometric cases converged sufficiently.  Note that the criterion for convergence is that 

at least two successive iterations fall below 1% before reaching the maximum of 750 nodes.  In 

particular, it was found that where the forward simulation solution was more likely to converge 

is when the carcinoma is placed in positions (i,6) and (i,9) of Figure 4.4 where 9,...,2=i .  Note 

that for simplicity in the forward simulation code the carcinoma was not placed on the boundary 

of the global domain corresponding to 10,1=i . 

 

Conversely, the solutions don’t converge when the carcinoma is placed in positions (i,7) and (i,8) 

where 9,...,2=i .  This criterion consists of all the possible carcinoma positions using the given 

boundary condition models described in Section 3.2.  In particular, all other possible geometrics 



Performance of 2D Inverse Algorithms 6-94 

are permutations of existing ones once symmetry is taken into account.  Therefore, only forward 

simulation models with carcinoma placed at positions (i,6) and (i,9) where 9,...,2=i  are used as 

input to test the inverse algorithm.  The convergence of the forward simulation solutions of the 

non-homogeneous models is relatively inconclusive and a computer with greater memory 

capacity is required to investigate them comprehensively.  In all cases, the inverse algorithms are 

being tested against the input properties and full convergence or accuracy is not required to test 

the reconstruction. 

 

As an example, Figure 6.5 shows the solution for the non-homogeneous forward simulation.  The 

‘Phantom’ boundary conditions are applied and the tissue is actuated at 100Hz.  The carcinoma 

is located at position (7,9) and is 10 times stiffer than surrounding tissue.  The results are 

qualitatively consistent with finite element results and expected behaviour. 

 

0 0.02 0.04 0.06 0.08 0.1

0

0.02

0.04

0.06

0.08

0.1

Position (m)

P
o
s
it
io

n
 (
m

)

 

Figure 6.5 – The solution to the 2D forward simulation algorithm at maximum displacement.  The carcinoma 

is shown in red 

 



Performance of 2D Inverse Algorithms 6-95 

6.2 Comparison of Homogeneous Inverse Algorithms 

 

The initial inverse algorithm of Equations (4.14)-(4.22) and the centred base point inverse 

algorithm Equations (4.27)-(4.32), are evaluated and compared to establish the best method for 

further development.  The global motion data output from the forward simulation requires post-

processing before providing the input to the inverse algorithms.  In particular, the number of data 

points per centimetre is reduced to correspond to a level similar to what can be achieved using 

current MRI technology, as discussed in Section 5.2.  A base value of 20 points per centimetre, 

which is equivalent to 20x20 or 400 points per each discretized element, is used for the initial 

comparison of integral methods.  For the forward solution motion data that was calculated using 

a number of nodes which is not a multiple of 400, cubic spline interpolation was performed to 

obtain the motion at each ‘measured’ data point. 

 

The steps used to generate and validate the inverse algorithm are summarized as follows: 

 

1. Random noise is also added to the motion data input in order to determine the robustness 

of each of the algorithms and provide a means of comparative analysis.  This is 

calculated as a percentage of the median of the absolute values of the respective 

amplitude displacements from each Cartesian direction u  and v . 

 

2. The excitation frequency is 100Hz and the ‘Box Shake’ boundary condition model of 

Figure 3.1(a) is used. 

 

3. For each set of parameters that the algorithms are evaluated, 20 separate runs of the 

algorithm are performed, each with different random noise added to the motion data 

input.  This Monte Carlo approach provides a means of quantifying the median and range 

of each of the stiffness values reconstructed. 

 

4. Using the cumulative data from the 20 runs a 90% confidence interval is used to evaluate 

the range of stiffness values calculated for each discretized element. 

 

For both algorithms, an over-determined system of 20 equations in 1 unknown was formulated 

for the homogeneous case.  For the initial algorithm described by Equations (4.14)-(4.22), the 



Performance of 2D Inverse Algorithms 6-96 

bottom left corner of the sub-domain acts as the integral base point.  Therefore, this point is 

varied to reduce the effects of a potentially ill-conditioned base point corrupting the solution, as 

shown in Figure 6.6(a).  For the centred base point algorithm, the centre of the sub-domain acts 

as the integral base point.  Therefore, this point is also varied as shown in Figure 6.6(b). 

 

For both algorithms, the area of the sub-elements increases successively, as shown in Figure 6.6, 

until the final sub-element maps onto the entire global domain.  These approaches may not 

represent the optimal methods for defining sub-elements to formulate independent equations.  

However, they are simplistic and give accurate representations of the performance of each 

algorithm for comparison. 

 

x

 y

x

 y

(a) (b)

 

Figure 6.6 – Description of the sub-domains used to generate the integral equations for the Initial inverse 

algorithm (a) and the Centred Base Point Algorithm (b).  The cross, × , represents the base point and the 

boundary of the respective sub-domain is represented by a line of the same colour. 

 

 

Figure 6.7 compares the relative performance of the two homogeneous inverse algorithms for the 

same given motion data input.  As can be seen in Figure 6.7, the initial inverse algorithm is very 

sensitive to the applied noise.  However, the centred base point algorithm shows very little effect 

to the increase in random added noise within the range shown. 

 

This robustness occurs because the initial inverse algorithm requires the calculation of 

derivatives within the formulation of the equations.  The derivatives are calculated using finite 



Performance of 2D Inverse Algorithms 6-97 

difference approximations and are very susceptible to noise.  These terms thus contribute the 

most significant proportion of error to the system of equations. 

 

It is possible to calculate the derivative terms more accurately using techniques such as 

polynomial fitting or a low pass filter.  However, they still remain a significant source of error 

within the solution and would also decrease the computational efficiency of the algorithm.  The 

initial inverse algorithm also contains single integral terms within the formulation of the 

equations.  Simulation has shown that single integral terms do not reduce the effects of noise as 

significantly as double integrals as they provide less effective low-pass filtering.  Thus, their use, 

in comparison to double integral formulations, introduces further potential relative error into the 

algorithm. 

Initial Centred Base Point
0

5

10

15

20

25

30

35

40

45

50

Y
o
u
n
g
's

 M
o
d
u
lu

s
 (
k
P

a
)

Actual

0% Noise

5% Noise

10% Noise

20% Noise

 

Figure 6.7 – Comparison between the Initial and Centred Base Point Inverse algorithms for the homogeneous 

case 

 

The centred base point inverse algorithm, by comparison, does not require the calculation of 

derivatives and all integral terms calculated are double integrals.  The algorithm thus much more 

successfully nullifies the effects of noise and accurately reconstructs the Young’s Modulus of the 

homogeneous tissue.  The development of a non-homogeneous inverse algorithm is therefore 

based on the integral techniques adopted in the centred base point inverse algorithm. 



Performance of 2D Inverse Algorithms 6-98 

6.3 Evaluation of Non-Homogeneous Inverse Algorithm 

 

The non-homogeneous inverse algorithm uses an integral method based upon the homogeneous 

centred base point inverse algorithm, as this formulation negates the need to calculate error prone 

derivative terms.  It is evaluated to quantify its performance and robustness with the variation of 

important system parameters.  These parameters are: 

 

• The level of noise in the input data 

• Frequency of the tissue actuation 

• Level of carcinoma stiffness in relation to healthy tissue stiffness 

• Resolution, or number of points per element of the input motion data 

• Boundary conditions used to generate the input data 

• Position of the carcinoma within the global domain 

• The application of the stress continuity constraint model of Section 4.3 

 

For each set of parameters evaluated, 20 separate runs of the algorithm are performed, each with 

different random noise added to the motion data input.  Using the data from the 20 runs, the 

median and 90% confidence interval are calculated for the reconstructed healthy and cancerous 

stiffness values. 

 

6.3.1 Variation with Random Added Noise 

 

The level of randomly added noise significantly affects the performance of the inverse algorithm.  

Figure 6.8 shows the performance of the algorithm with respect to the level of random noise 

added to the motion data input.  The motion input data used is defined by the ‘Phantom’ 

boundary conditions, has a carcinoma at position (7,9) and is excited at 100Hz.  As the level of 

noise increases, the median Elastic Modulus calculated for the carcinoma decreases significantly.  

The confidence interval range of both the healthy and cancerous stiffness values also increase 

significantly as the level of added noise increases.  The results are precisely the same behaviour 

as was observed for the 1D case in Section 5.2.1. 



Performance of 2D Inverse Algorithms 6-99 

Healthy Carcinoma
0

50

100

150

200

250

300

350
Y

o
u
n
g
's

 M
o
d
u
lu

s
  
(k

P
a
)

Actual

0% Noise

5% Noise

10% Noise

10% Noise - Constrained

 

Figure 6.8 – The performance of the non-homogeneous inverse algorithm with random added noise.  The 

motion data input used is defined by the ‘Phantom’ boundary conditions, has a carcinoma at position (7,9) 

and is excited at 100Hz. 

 

The application of the simple constraint model based upon shear stress continuity between 

discretized elements can enhance the solution.  Using the unconstrained algorithm, with 10% 

random added noise, the positive discrimination between healthy and cancerous stiffness values 

is not significant in comparison with the range of the carcinoma stiffness.  However with the 

application of the constraint model, the accuracy of the carcinoma stiffness is increased and the 

range of both cancerous and healthy tissue stiffnesses are significantly reduced resulting in clear 

positive discrimination.  This result is also illustrated in Figure 6.8. 

 

6.3.2 Variation with Actuation Frequency 

 

The actuation frequency is a significant parameter of the inverse problem as it directly relates to 

the spatial period of the shear and longitudinal waves induced in the 2D medium.  It is limited by 

both the performance of the actuation system and the frequency of data collection of the MRI 

system used.  Figure 6.9 shows the performance of the algorithm when the tissue simulation is 



Performance of 2D Inverse Algorithms 6-100 

actuated at 50Hz.  The 90% confidence interval of the calculated Young’s Modulus is shown for 

the healthy tissue and carcinoma. 

Healthy Carcinoma

0

50

100

150

200

250

300

350

Y
o
u
n
g
's

 M
o
d
u
lu

s
 (
k
P

a
)

Actual

0% Noise

2% Noise

5% Noise

5% Noise - Constrained

 

Figure 6.9 – The performance of the non-homogeneous inverse algorithm with random added noise.  The 

motion data input used is defined by the ‘Phantom’ boundary conditions, has a carcinoma at position (5,6) 

and is excited at 50Hz. 

 

By comparing the results of Figures 6.8 and 6.9 it can be seen that the non-homogeneous inverse 

algorithm is much less robust in the presence of noise at 50Hz compared with an actuation 

frequency of 100Hz.  At 50Hz with 5% random added noise there is no positive discrimination 

between healthy and cancerous stiffness values.  However, by using the constraint model, the 

accuracy of the calculated carcinoma stiffness is increased and the range of both healthy tissue 

and carcinoma stiffness is reduced.  This approach results in positive discrimination of stiffness 

values and therefore a clear identification of the carcinoma. 

 

The application of the Box Shake system of boundary conditions described in Section 3.2 results 

in solutions that are significantly more converged than using other boundary conditions.  This 

difference results because this particular set of boundary conditions constrains the tissue more 

significantly than the other methods described.  Therefore, using the Box Shake boundary 

conditions it is possible to simulate a non-homogeneous dataset at 150Hz that successfully 



Performance of 2D Inverse Algorithms 6-101 

converges and thus direct comparisons can be made between the results of a greater range of 

actuation frequencies. 

 

Figure 6.10 shows the performance of the algorithm with respect to actuation frequency for the 

Box Shake boundary conditions and 5% random added noise.  The results show that as the 

actuation frequency is increased, the accuracy of the algorithm also increases.  There is clear 

positive discrimination between healthy and cancerous tissue values at both 100Hz and 150Hz, 

with the results at 150Hz having a more accurate median value and a smaller 90% confidence 

interval range. 

Healthy Carcinoma

0

50

100

150

200

250

300

350

Y
o
u
n
g
's

 M
o
d
u
lu

s
 (
k
P

a
)

Actual

50Hz

100Hz

150Hz

 

Figure 6.10 - The performance of the non-homogeneous inverse algorithm with variation of actuation 

frequency.  The motion data inputs used are defined by the ‘Box Shake’ boundary conditions, have the 

carcinoma at position (7,9) and have 5% random added noise. 

 

The spatial period of the actuated tissue is inversely proportional to the actuation frequency.  

Therefore, the proportion of sinusoidal waveforms per discretized element or ‘spatial 

information’ increases with an increase in the actuation frequency.  The performance of the 

inverse algorithm is thus substantially enhanced.  These results are for the assumed stiffness and 

mass properties of the simulation.  Significant variation of these parameters would change the 

dynamic response and the inverse algorithm performance for that specific case. 



Performance of 2D Inverse Algorithms 6-102 

6.3.3 Variation with Carcinoma Stiffness 

 

The analysis of the Non-Homogeneous inverse algorithm so far, has used a carcinoma stiffness 

that is 10 times greater than the healthy tissue.  Figure 6.11 evaluates the algorithm with the 

carcinoma to healthy tissue stiffness ratio of 5:1, as this level approximately represents the lower 

limit of this ratio in both static and dynamic testing [Samani et al. 2003, Krouskop et al. 1998].  

The system parameters used in Figure 6.11 are the same as for Figure 6.8. 

 

Healthy Carcinoma
0

20

40

60

80

100

120

140

160

Y
o
u
n
g
's

 M
o
d
u
lu

s
 (
k
P

a
)

Actual

0% Noise

5% Noise

10% Noise

10% Noise - Constrained

 

Figure 6.11 - The performance of the non-homogeneous inverse algorithm with carcinoma Young’s Modulus 

of 150kPa and random added noise.  The motion data input used is defined by the ‘Phantom’ boundary 

conditions, has the carcinoma at position (7,9) and is actuated at 100Hz. 

 

The results show that the algorithm more accurately reconstructs the median healthy and 

cancerous Elastic Modulus values for the lower stiffness ratio contrast of 5:1 than for the 

stiffness ratio of 10:1.  This result occurs because the spatial period of motion data in a 

homogeneous element is inversely proportional to the square root of the stiffness.  As the spatial 

period of the carcinoma is reduced there is more spatial information available per segment, 

which results in identifying the Shear Modulus more accurately.  However, the relative positive 



Performance of 2D Inverse Algorithms 6-103 

discrimination between healthy and cancerous stiffness is very similar to the 10:1 stiffness ratio 

because the lower stiffness ratio, by definition, effectively reduces the positive discrimination 

between healthy and cancerous tissue stiffness.  Thus, the algorithm behaves similarly within the 

given 5-10 times stiffness contrast of ductal carcinoma. 

 

6.3.4 Variation with Data Resolution 

 

The data resolution parameter is limited by the magnetic strength of the MRI system used to 

produce the motion dataset, and is discussed in detail in Section 5.2.  Figure 6.12 shows the 

performance of the algorithm with variation of the data resolution of the input motion dataset and 

with 5% random added noise.  As the resolution of the input data increases, the calculated 

stiffness values increase in accuracy and the range of the 90% confidence intervals are reduced.  

With 10 points per segment there is very little positive discrimination between stiffness values, 

but clear identification of the carcinoma is possible with 20 points per segment and greater.  The 

reason for the increase in accuracy is that the more data points the more the noise will tend to 

cancel or be filtered by the integrations employed. 

Healthy Carcinoma
0

50

100

150

200

250

300

350

Y
o
u
n
g
's

 M
o
d
u
lu

s
 (
k
P

a
)

Actual

10 points per segment

20 points per segment

40 points per segment

 

Figure 6.12 – The performance of the non-homogeneous inverse algorithm with variation of data resolution.  

The motion data input used is defined by the ‘Phantom’ boundary conditions, has the carcinoma at position 

(7,9), is actuated at 100Hz and has 5% random added noise. 



Performance of 2D Inverse Algorithms 6-104 

The performance of the algorithm with respect to data resolution and with 10% random added 

noise is detailed in Figure 6.13.  The results are similar to the 5% noise case of Figure 6.12, but 

the accuracy and positive discrimination of stiffness values are compromised more due to the 

effects of the increased noise. 

Healthy Carcinoma

0

50

100

150

200

250

300

350

Y
o
u
n
g
's

 M
o
d
u
lu

s
 (
k
P

a
)

Actual

10 points per segment

20 points per segment

40 points per segment

 

Figure 6.13 - The performance of the non-homogeneous inverse algorithm with variation of data resolution.  

The motion data input used is defined by the ‘Phantom’ boundary conditions, has the carcinoma at position 

(7,9) , is actuated at 100Hz and has 10% random added noise. 

 

6.3.5 Variation with Carcinoma Position and Boundary Conditions 

 

The non-homogeneous inverse algorithm should provide accurate identification of carcinoma 

within healthy tissue regardless of its position.  The performance of the algorithm for different 

carcinoma positions is thus investigated including the variation in results for different boundary 

conditions applied to the tissue simulation, as described in Section 3.2.  Figures 6.14-6.16 show 

that although there are deviations in the median and 90% confidence interval range of the 

stiffness values calculated for each of the combinations of carcinoma position and applied 

boundary condition, positive discrimination between healthy and cancerous stiffness values is 



Performance of 2D Inverse Algorithms 6-105 

maintained.  This set of results show that the algorithm is universally applicable given the 5% 

random noise added to the input motion data. 

Healthy Carcinoma
0

50

100

150

200

250

300

350
Y

o
u
n
g
's

 M
o
d
u
lu

s
 (
k
P

a
)

Actual

Position (5,6)

Position (5,9)

Position (7,9)

 

Figure 6.14 – The performance of the non-homogeneous inverse algorithm with variation of carcinoma 

position.  The motion data input used is defined by the ‘Phantom’ boundary conditions, is actuated at 100Hz 

and has 5% random added noise. 

Healthy Carcinoma
0

50

100

150

200

250

300

350

400

Y
o
u
n
g
's

 M
o
d
u
lu

s
 (
k
P

a
)

Actual

Position (7,6)

Position (9,6)

Position (8,9)

 

Figure 6.15 – The performance of the non-homogeneous inverse algorithm with variation of carcinoma 

position.  The motion data input used is defined by the ‘Box Shake’ boundary conditions, is actuated at 

100Hz and has 5% random added noise. 



Performance of 2D Inverse Algorithms 6-106 

Healthy Carcinoma
0

50

100

150

200

250

300

350

400

Y
o
u
n
g
's

 M
o
d
u
lu

s
 (
k
P

a
)

Actual

Position (2,6)

Position (8,6)

Position (9,9)

 

Figure 6.16 – The performance of the non-homogeneous inverse algorithm with variation of carcinoma 

position.  The motion data input used is defined by the ‘Edge Effect’ boundary conditions, is actuated at 94Hz 

and has 5% random added noise. 

 

6.4 Carcinoma Identification using 1D Inverse Algorithm  

 

In this section, a different approach to the inverse problem is considered by investigating the 

ability of a very simplified model to detect cancer.  The 1D Global Double Integral inverse 

algorithm is used to identify a carcinoma within a 2D simulated tissue sample by taking slices of 

either the x  direction or the y  direction displacement amplitudes (u  or v  respectively).  The 

motivation for this approach is to get some idea on the feasibility of using a 2D model to detect 

cancer from a 3D simulated dataset.  Using a 1D model to detect cancer in a 2D model would 

provide a very crude proof of this concept. 

 

The 1D model only accounts for the shear wave displacement and is very simplistic compared to 

the 2D model that accounts for the shear and longitudinal waves in two dimensions.  However, 

Figure 6.17 shows that it is still possible to successfully identify a carcinoma by taking a slice of 

the simulated 2D displacement amplitude solution and using it as input to the 1D non-

homogeneous inverse algorithm.  Note that the values shown are the absolute values of the 



Performance of 2D Inverse Algorithms 6-107 

reconstructed Shear Modulus values as the calculated carcinoma stiffness was found to be 

always negative for this case. 

1 2 3 4 5 6 7 8 9 10
0

50

100

150

200

250

300

350

S
h
e
a
r 
M

o
d
u
lu

s
 (
k
P

a
)

Discretized Segment No.

Actual

Reconstructed

 

Figure 6.17 – 90% Confidence Interval of the Absolute Values of the Reconstructed Stiffness Distribution 

using a horizontal slice of the x direction displacement amplitude.  The motion data input used is defined by 

the ‘Phantom’ boundary conditions, is actuated at 100Hz and has 5% random added noise. 

  

Each 2D motion dataset has four possible inputs to the 1D inverse algorithm, the vertical and 

horizontal slices of the x  direction and the y  direction displacement amplitudes.  Initial 

investigations showed that clear positive identification of the carcinoma is possible from at least 

one of these motion data inputs, and in some cases two or more motion data inputs provided 

positive results.  These investigations include a range of applied boundary conditions and 

carcinoma positions.  The results are not given here as they are very preliminary and not the 

focus of this thesis.  However, they strongly suggest a possible avenue for future development. 



Performance of 2D Inverse Algorithms 6-108 

6.5 Non-Homogenous, Incompressible Inverse Algorithm 

 

The idea of applying the 1D inverse algorithm to slices of data to act as a simplified 2D inverse 

algorithm is taken further by modifying the existing 2D non-homogeneous inverse algorithm.  

The Poisson’s ratio of breast tissue is approximately 0.49, which is virtually incompressible.  

Therefore, the existing 2D inverse algorithm is modified so that it assumes that the elastic 

material is incompressible.  However, the ‘measured’ data generated from forward simulation is 

still based on the compressible Navier’s equations with 49.0=ν .  Incompressibility is 

equivalent to zero divergence in the displacement field: 

 

0=+ yx vu        (6.1) 

 

The compressible 2D Navier’s Equations (4.1) and (4.2) can be written in the form: 

 

( ) ( ) ( ) uvuG
x

Gu
y

Gu
x

yxyx
2)(( ρωλ −=++

∂
∂

+
∂
∂

+
∂
∂

  (6.2) 

 

( ) ( ) ( ) vvuG
y

Gv
y

Gv
x

yxyx
2)(( ρωλ −=++

∂
∂

+
∂
∂

+
∂
∂

   (6.3) 

 

Substituting Equation (6.1) into Equations (6.2) and (6.3) gives the incompressible Navier’s 

equations defined as follows: 

 

( ) ( ) uGu
y

Gu
x

yx
2ρω−=

∂
∂

+
∂
∂

    (6.4) 

 

( ) ( ) vGv
y

Gv
x

yx
2ρω−=

∂
∂

+
∂
∂

    (6.5) 

 

Note that Equations (6.4) and (6.5) can also be obtained from Equations (6.2) and (6.3) by the 

substitution G−=λ .  Thus, the coefficients of the integral terms used for the 2D non-

homogeneous inverse algorithm in Equations (4.57)-(4.66) can be reformulated with no further 



Performance of 2D Inverse Algorithms 6-109 

adaptation required to the existing code.  These coefficients, previously defined in Equations 

(4.44)-(4.46), are now defined, following the substitution of G−=λ , as follows: 

 

01 =
+−

=
+

=
ij

ijij

ij

ijij

E

GG

E

G
a

λ
     (6.6) 

 

)1(2

122
2 ν

λ

+
==

+−
=

+
=

ij

ij

ij

ijij

ij

ijij

E

G

E

GG

E

G
a    (6.7) 

 

)1(2

1
3 ν+

==
ij

ij

E

G
a         (6.8) 

 

The 1a  coefficient of Equation (6.6) is now zero, thus the incompressible method requires the 

formulation of fewer terms than the compressible method, and thus less computation.   

 

6.5.1 Variation with Random Added Noise 

 

Figure 6.18 shows the performance of the incompressible 2D non-homogeneous inverse 

algorithm, using 10 data points per segment and an actuation frequency of 100Hz, with respect to 

the level of random noise added to the motion data input.  The results of Figure 6.18 can be 

compared to the compressible model for 10 data points per segment in Figure 6.13, as the same 

geometric conditions and actuation frequency are adopted.  At 40% noise there is clear 

discrimination between healthy and cancerous stiffness values, however for the compressible 

model there is no clear discrimination at only 10% noise.  The decreased accuracy of the 

reconstructed healthy tissue stiffness at 0% noise is due to modelling error. 

 

The reason for this significantly increased robustness to noise is that the integral equations 

formulated using the incompressible method exhibit increased numerical stability.  Specifically, 

the double integral terms of ),( yxv  in Equation (4.43), given by Equation (6.9) can cancel out 

creating ill-conditioning in the integral equations for the compressible model case.  In other 

words, for the compressible case, noise could switch the sign of Equation (6.9), thus corrupting 

the solution.  However, for the incompressible case, 01 =a .  Therefore, these ill-conditioned 



Performance of 2D Inverse Algorithms 6-110 

terms disappear from the incompressible integral formulation of Equations (6.4) and (6.5) as 

shown in Equation (6.9). 

 

( ) ( )[ ]∫ ∫∫ ∫∫ ∫∫ ∫ +−+ vEvEvEvEa 122122111     (6.9) 

 

Also, for near incompressible materials the value of the coefficient 3a  in Equation (4.44) is 

approximately 1/50 the size of coefficients 1a  and 2a  from Equations (4.45) and (4.46).  Thus, 

the terms with a coefficient of 3a  do not significantly contribute to the solution, as compared to 

terms with a coefficient of 1a  or 2a , even if they are relatively accurate.  The implementation of 

the incompressible model therefore eliminates the ill-conditioned terms and provides equal 

weighting to all integral terms.  This change significantly increases the numerical stability and 

accuracy of the 2D inverse algorithm. 

Healthy Carcinoma
0

50

100

150

200

250

300

350

Y
o
u
n
g
's

 M
o
d
u
lu

s
 (
k
P

a
)

Actual

0% Noise

10% Noise

20% Noise

40% Noise

 

Figure 6.18 – The performance of the incompressible non-homogeneous inverse algorithm with random 

added noise.  The motion data input used is defined by the ‘Phantom’ boundary conditions, has a carcinoma 

at position (7,9), uses 10 data points per segment and is excited at 100Hz. 

 



Performance of 2D Inverse Algorithms 6-111 

The incompressible method is also performed at an actuation frequency of 50Hz.  Figure 6.19 

shows that the accuracy of the inverse algorithm also increases significantly at this relatively 

lower frequency.  There is clear discrimination in the results between healthy and cancerous 

stiffness values with 20% noise in comparison a limit of 2% noise using the compressible 

method.  This increase in accuracy is also attributable to the increased numerical stability of the 

algorithm. 

 

However, the analysis for the actuation frequency of 50Hz ignores the stiffness distribution 

along the boundary of the global domain.  This choice is made because there is significant 

modelling error in these regions.  Initial simulation has shown that by allowing each divergence 

term in Equations (6.2) and (6.3) to be a constant piecewise function along the boundary can 

significantly reduce this modelling error.  However, further analysis of this case is left to future 

work. 

Healthy Carcinoma
0

50

100

150

200

250

300

350

S
h
e
a
r 
M

o
d
u
lu

s
 (
k
P

a
)

Actual

0% Noise

10% Noise

20% Noise

30% Noise

 

Figure 6.19 – The performance of the incompressible non-homogeneous inverse algorithm with random 

added noise.  The motion data input used is defined by the ‘Phantom’ boundary conditions, has a carcinoma 

at position (5,6), uses 10 data points per segment and is excited at 50Hz. 

 



Performance of 2D Inverse Algorithms 6-112 

6.5.2 Variation with Data Resolution 

 

Figure 6.20 shows the performance of the incompressible algorithm with variation of the data 

resolution of the input motion data.  The results show that the incompressible method also 

significantly enhances the robustness of the inverse algorithm to the level of data resolution.  

There is clear discrimination between healthy and cancerous stiffness values using only 2 points 

per segment.  For a 2D 10cm×10cm global domain, this equates to a total of 4412121 =×  

global data points.  This value is very small in comparison to the number of data points required 

for the compressible inverse algorithm, which was on the order of 40401201201 =×  global data 

points (equivalent to 20 points per segment). 

Healthy Carcinoma
0

50

100

150

200

250

300

350

Y
o
u
n
g
's

 M
o
d
u
lu

s
 (
k
P

a
)

Actual

2 points per segment

4 points per segment

10 points per segment

 

Figure 6.20 – The performance of the incompressible non-homogeneous inverse algorithm with variation of 

data resolution.  The motion data input used is defined by the ‘Phantom’ boundary conditions, has the 

carcinoma at position (7,9), is actuated at 100Hz and has 20% random added noise. 

 

The robustness of the incompressible inverse algorithm to both noise and a reduction in the data 

resolution opens up new possibilities for the measurement of the internal displacements.  For 

example, a relatively cheap and portable Ultrasound device, which is typically very noisy, now 

presents a potential method of measuring the internal breast tissue displacements and obtaining a 

realistic reconstruction, instead of MRI. 



Performance of 2D Inverse Algorithms 6-113 

6.6 Summary 

 

The two 2D homogeneous inverse algorithms were evaluated and their relative performance was 

compared.  It was found that the Centred Base Point method of Equations (4.27)-(4.32) was 

significantly more accurate than the Initial method of Equations (4.14)-(4.22).  This difference 

occurs because the Initial method requires the calculation of derivatives that are sensitive to 

noise. 

 

The 2D non-homogeneous inverse algorithm was evaluated by quantifying its accuracy and 

robustness with the variation of important system parameters.  At an actuation frequency of 

100Hz the algorithm consistently identifies the carcinoma for a range of positions and applied 

boundary conditions with up to 5% random added noise.  This limit is increased to 10% if the 

simple shear stress continuity constraint model is adopted.  At an actuation frequency of 50Hz 

the algorithm requires the use of the constraint model to successfully identify the carcinoma with 

up to 5% random noise added to the motion data input because the lower actuation frequency 

gives less spatial information per discretized element for this specific set of parameters. 

 

An increase in the data resolution of the motion data increases the accuracy of the reconstructed 

carcinoma and reduces the 90% confidence interval range resulting in greater positive 

discrimination of stiffness values.  At 10×10 points per element and with an actuation frequency 

of 100Hz the algorithm does not show clear positive discrimination between healthy and 

cancerous stiffness values with 5% random added noise.  However, with 20×20 points per 

element and greater, this is no longer an issue and the accuracy continues to increase as the data 

resolution increases.  The algorithm is also shown to produce consistent results within the 

anticipated range of carcinoma Young’s Modulus values. 

 

These results have to be put into perspective, as the algorithm was evaluated for only a limited 

range of stiffness values and no variation in the density of the tissue.  These parameters are used 

in the simulation of the forward simulated motion displacements and directly relate to the natural 

frequency and therefore the dynamic response of the breast tissue.  Therefore, for a certain 

combination of these system parameters, there could be little or no displacement response for a 

specific actuation frequency.  This actuation frequency could coincide with one that is intended 

to be used for carcinoma identification, causing the inverse algorithm to be drowned out by 



Performance of 2D Inverse Algorithms 6-114 

noise.  Thus, further investigations are required into these natural frequency effects for a 

complete range of mass and stiffness properties when the inverse algorithm is extended to 3D 

cases. 

 

The 1D Global Double Integral inverse algorithm was used to identify a carcinoma within a 2D 

simulated tissue sample by taking slices of either the x  direction or the y  direction 

displacement amplitudes (u  or v  respectively) and using it as input to the 1D inverse algorithm.  

The 1D model only accounts for the shear wave displacement and is very simplistic compared 

against the 2D model that accounts for the shear and longitudinal waves in two dimensions.  

However, initial investigations showed that it is possible to successfully identify a carcinoma 

using this technique. 

 

The accuracy of the 2D non-homogeneous inverse algorithm was improved considerably by 

assuming the elastic material is incompressible.  This simplified approach removes ill-

conditioned terms and increases the numerical stability of the integral equations.  At an actuation 

frequency of 100Hz, it became possible to successfully identify carcinoma with a data resolution 

of down to 2 points per segment and random added noise of 40% and greater.  At 50Hz 

actuation, it is possible to successfully identify carcinoma with up to 20% noise and 10 data 

points per segment.  This increased accuracy and robustness represents a significant 

improvement on the initial compressible model and opens up the possibility of adopting 

ultrasound, or similarly noisy measurement device, as a measurement technique instead of MRI. 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

Part 4 

 Conclusions 
 

 



 

7 Conclusions & Future Work 

 
 

7.1 1D Inverse Problem Solutions 

 

A non-homogeneous 1D forward simulation algorithm that approximates the 1D Navier’s 

equation is formulated based on finite difference approximations.  The method allows step-wise 

constant spatial variation of stiffness to incorporate carcinoma as regions of significantly greater 

stiffness than the adjacent healthy tissue.  The algorithm is successfully verified against 

corresponding analytical solutions.  The displacement amplitude solution to the forward 

simulation provides motion data that can then be used as input with random added noise to test 

the inverse problem algorithms. 

 

Three 1D inverse algorithms were developed based upon different integral methods.  The Local 

Inverse algorithm, is a local integration method that calculates the value of the Shear Modulus at 

each segment using only displacement data from that particular segment.  Thus, each stiffness 

value is calculated independently from the surrounding segments.  The Global Single Integral 

inverse algorithm involves single integration over the whole displacement dataset to formulate a 

linear system of equations involving the Shear Modulus of all segments.  Thus, the interactions 

between different segments and their effects on displacement are utilised to create a more 

effective algorithm.  For the single integration method, the fundamental equation is only 

integrated once and thus requires differentiation of the displacement data.  The error in 

calculating the derivative is reduced by fitting a quartic polynomial to the noisy motion dataset 

and differentiating this polynomial to create a derivative function.  Finally, the Global Double 

Integral inverse algorithm, involves double integrating the differential equation of motion.  Thus, 

it incorporates the global knowledge of the stiffness distribution, and does not require any noise 

sensitive, numerical differentiation. 

 

From comparative evaluation of the three different inverse algorithms developed it is clear that 

the Global Double Integral inverse algorithm performs the best.  It accurately identifies the Shear 

Moduli of both the carcinoma and healthy tissue and provides clear positive discrimination 

between stiffness values.  The Local inverse algorithm has potential benefits due to its overall 



Conclusions & Future Work 7-117 

simplicity, but is highly dependent on the parameters of the problem.  It is effective at 

identifying regions where there is sufficient spatial information within each discretized segment.  

For example, if the magnitude of Shear Modulus is sufficiently low or the size of the discretized 

segment is sufficiently large.  It would also be the best method for identifying the Shear Modulus 

of homogenous material. The Global Single Integral inverse algorithm does not provide 

significant positive discrimination between healthy and cancerous stiffness values due to the 

sensitivity to noise involved in numerically calculating derivatives.  Thus, the Global Double 

Integral method most effectively filters the noise through the double integral process to provide 

the most accurate result utilising all motion data. 

 

The Global Double Integral was evaluated further and was found to be robust to the effects of 

random, uniformly distributed noise.  The main findings are summarized as follows: 

 

• As the actuation frequency of the tissue simulation is decreased the accuracy of the 

algorithm also decreases due to the reduction of spatial information. 

 

• An increase in the data resolution of the motion data input results in reduced variability 

of the calculated carcinoma stiffness resulting in increased positive discrimination. 

 

• A reduction of carcinoma stiffness to the lower limits of expected Young’s Modulus 

values results in increased performance of the algorithm due to the increased spatial 

information within the carcinoma segment. 

 

Note that these results are for the assumed mass and stiffness system parameters used in forward 

simulation.  These parameters define the natural frequency and therefore the response of breast 

tissue.  Thus, a change in these parameters could alter the dynamic response so that the inverse 

algorithm is no longer accurate for certain actuation frequencies. 

 

Successful identification of the carcinoma is not always guaranteed when its position is varied 

throughout the global domain.  This loss of accuracy occurs because the carcinoma can be 

positioned in this 1D example such that it does not significantly alter the global motion dataset in 

comparison to a homogeneous model.  These cases are therefore geometrically ill-conditioned, 

but are not likely to occur in a physiologically realistic 3D case.  However, it should be noted 



Conclusions & Future Work 7-118 

that a realistic 10% variation in actuation frequency can alter the global motion dataset 

sufficiently for successful identification of the carcinoma, even in this simplified case. 

 

A method of localized mesh refinement was developed as an adaptation to the Global Double 

Integral inverse algorithm.  This method was developed to identify carcinoma not aligned with 

the discretized grid and carcinoma smaller than the discretized grid.  It proved to be relatively 

unsuccessful as the reduction of grid size can create false positives within the solution as the 

segment length becomes too small to accurately identify the healthy tissue stiffness due to the 

lack of spatial information.  However, a method was proposed to identify carcinoma not aligned 

with the discretized grid that involves multiple iterations of the inverse algorithm where the 

position of the grid is moved incrementally for each iteration, such that the grid will 

approximately align with the tumour at some iteration. 

 

7.2 2D Inverse Problem Solutions 

 

A non-homogeneous 2D forward simulation algorithm that solves the 2D plane strain Navier’s 

Equation is formulated using finite difference approximations.  The algorithm allows step-wise 

constant variation of stiffness in order to incorporate a carcinoma, which is modelled as a region 

of stiffness significantly greater than the adjacent healthy tissue.  The finite difference 

approximation to the homogeneous model is successfully verified against the analytical solution 

that exists in the infinite domain.  However, there exist no analytical solutions for models using 

more realistic boundary conditions and/or have non-homogeneous material properties.  

Therefore, these models were verified by checking convergence of the solutions for successive 

grid refinements.  The homogeneous models showed clear convergence and grid independence, 

but this convergence is not as clear for the non-homogeneous model, particularly at high 

actuation frequencies.  An increase in the memory capacity of the computers used would be 

required to confidently prove convergence of the forward simulation algorithm compared with 

the 4096Mb of RAM used for the current simulations.  The displacement amplitudes generated 

from the forward simulation provide the ‘measured’ motion data that is used as input to test the 

inverse problem algorithms. 

 

Two homogeneous inverse algorithms were developed to find the best framework for the 

development of a non-homogeneous algorithm.  The Initial inverse algorithm adopts an integral 



Conclusions & Future Work 7-119 

method that uses the local origin as the reference with which to integrate from.  This method 

contains derivatives terms that are particularly susceptible to noise and are the primary source of 

error within the solution.  There are also single integral terms that are not as effective at filtering 

the noise as the double integral terms.  The second method is the Centred Base Point algorithm 

that adopts a unique set of integration limits, resulting in a formulation that does not require the 

calculation of derivatives and contains only double integral terms.  The algorithm is thus very 

robust to noise and is used as the basis for a non-homogeneous algorithm. 

 

A 2D non-homogeneous inverse algorithm was then formulated that is capable of identifying a 

square 1cm square tumour within the square global domain with 10cm sides.  The algorithm 

consists of a 2×2 stencil that can be mapped across the global domain to produce an over-

determined system of linear equations that inter-relates all of the discretized stiffness elements 

throughout the domain.  The mapping of the stencil is performed by moving the local base point 

across the global domain. 

 

This algorithm was evaluated by quantifying its accuracy and robustness with the variation of 

important system parameters.  For an actuation frequency of 100Hz the algorithm consistently 

identifies the carcinoma for a range of positions and boundary conditions with up to 5% random, 

uniformly distributed noise.  This limit is increased to 10%, with similar results, if the simple 

shear stress continuity constraint model is adopted.  For an actuation frequency of 50Hz the 

algorithm requires the use of the constraint model to successfully identify the carcinoma with up 

to 5% random noise added to the motion data input because the lower actuation frequency gives 

less spatial information per discretized element for this specific set of parameters. 

 

An increase in the data resolution of the motion data increases the accuracy of the reconstructed 

carcinoma and reduces the 90% confidence interval range resulting in greater positive 

discrimination of stiffness values.  For 10×10 points per element and with an actuation 

frequency of 100Hz the algorithm does not show clear positive discrimination between healthy 

and cancerous stiffness values with 5% random added noise.  However, with 20×20 points per 

element and greater, there is clear discrimination and the accuracy continues to increase as the 

data resolution increases.  The algorithm is also shown to produce consistent results within the 

anticipated range of cancerous Young’s Modulus values. 

 



Conclusions & Future Work 7-120 

The concept of using a simplified model to identify a tumour was applied by using the 1D Global 

Double Integral inverse algorithm to identify a carcinoma within a 2D simulated tissue sample. 

The 1D inverse algorithm was applied to the 2D dataset by using slices of either the x  direction 

or the y  direction displacement amplitudes (u  or v  respectively) as motion data input.  The 1D 

model only accounts for the shear wave displacement and is very simplistic compared against the 

2D model that accounts for the shear and longitudinal waves in two dimensions.  However, 

initial investigations showed that it is possible to successfully identify a carcinoma using this 

technique. 

 

This concept was extended by assuming the elastic material is incompressible and reformulating 

the 2D non-homogeneous inverse algorithm.  This simplified approach removes ill-conditioned 

terms and increased the numerical stability of the inverse solutions.  For an actuation frequency 

of 100Hz, a carcinoma was successfully identified with a data resolution down to 2 points per 

segment and noise of 40% and greater.  At 50Hz actuation, a carcinoma was identified with up to 

20% noise and 10 data points per segment.  This increased accuracy and robustness represents a 

significant improvement on the initial compressible model formulation and opens up the 

possibility of adopting cheaper and more portable measurements systems like ultrasound, instead 

of MRI. 

 

7.3 Future Work 

 

The next step is to develop a 3D non-homogeneous inverse algorithm that takes the displacement 

amplitude motion data of harmonically actuated breast from an MRI machine as input and 

provides a three dimensional map of the tissue stiffness.  The 3D formulation would involve 

extending the integral based 2×2 stencil from the 2D plain strain non-homogeneous inverse 

algorithm to a 2×2×2 stencil, based on similar integration techniques applied to the 3D Navier’s 

Equations.  The incompressible model could easily be incorporated by setting the divergence of 

the 3D Navier’s equations to zero. 

 

Verification and testing of this algorithm should be first applied on simulated motion data before 

applying to existing MRI datasets of actuated phantoms with high stiffness.  The inverse 

algorithm could also be extended to incorporate the more complex geometry of the breast by 

incorporating, for example, triangular elements near the boundary. 



Conclusions & Future Work 7-121 

 

A carcinoma was successfully identified in 2D using simplistic models like the 1D inverse 

algorithm and the incompressible model formulation.  However, when identifying carcinoma at 

an actuation frequency of 50Hz using the incompressible model there are significant erroneous 

effects in the stiffness distribution along the boundary of the global domain.  One possible way 

around this is to incorporate extra step-wise constant, spatial varying parameters within these 

regions of high modelling error, to absorb the non-linear effects [Singh-Levett, 2006]. 

 

Initial investigations adopted the divergence as a spatially varying parameter and identified this 

parameter along the boundary of the global domain, as well as the internal stiffness distribution.  

Preliminary results show this approach could remove the modelling error in the calculated 

stiffness distribution and thus increase the accuracy of the inverse algorithm.  Therefore a similar 

approach could be taken in 3D where a simplified ‘minimal model’ that captures the 

fundamental dynamics of the actuated tissue but reduces the overall complexity and numerical 

instability.  The degree of complexity should only be the amount that gives answers to the key 

questions regarding the stiffness distribution of the breast tissue, which are the location and 

approximate stiffness of the carcinoma.  The main point is that clear positive discrimination is 

maintained between healthy and cancerous stiffness values. 

 

7.3.1 Measure of Homogeneity 

 

The ‘Measure of Homogeneity’ is an alternative approach to identifying a tumour.  It further 

displays the flexibility and power of the current methodology for future applications.  The 

method looks to develop a measure of local homogeneity throughout the domain so that cancer 

will show up as a large error between the measured displacement and the simulated 

displacements from an assumed locally homogeneous model.  In other words, instead of directly 

calculating the stiffness of every element in the global domain to detect cancer, a low resolution 

stiffness distribution is assumed throughout the domain.  For example, a piecewise constant 

stiffness model could be applied over 3cm× 3cm elements.  This simplified locally homogeneous 

model can be rapidly and accurately fitted using the non-homogeneous integral method of 

Section 4.2 and would readily take into account the natural variations in healthy tissue.  This 

stiffness is then used to generate displacements from one forward simulation of the 



Conclusions & Future Work 7-122 

homogeneous model, and the generated displacements are compared with the measured 

displacements to detect regions that are highly non-homogeneous suggesting cancer. 

 

However, note that a direct comparison of the homogeneous model generated displacements with 

the measured data is not sufficient, as a tumour has both local effects and global effects on the 

displacement.  Thus, the algorithm locally translates regions to remove the major global effects 

and to enhance the local effect of the tumour on its surrounding area.  Note also that local 

regions that are topologically similar would be effectively overlaid.  Details and analysis of this 

approach are left for future work. 

 

An example of this concept is given where the locally homogeneous baseline model is taken to 

be homogeneous over the whole domain.  That is, a single 10cm×10cm element is chosen for 

simplicity rather than the 3cm× 3cm elements described above.  This amounts to one Young’s 

Modulus value being fitted throughout the domain, which is achieved using the Centred Base 

Point formulation of Section 4.1.2.  Steps 1-4 in Figure 7.1 show the overall process of this 

method.  Figure 7.2 shows the results of this homogeneity method using the Edge Effect 

boundary condition forward simulation of Figure 3.1(b), an actuation frequency of 50 Hz and 

10% uniformly distributed noise added to the displacements.  A 9 point moving average is also 

applied on the noisy data, before applying the process in Figure 7.1.  The tumour is clearly 

identified showing the future potential of this approach. 

 



Conclusions & Future Work 7-123 

Step 3 

Choose a locally homogeneous 

baseline model with a low 
resolution piecewise constant 

stiffness distribution 

Fit stiffness distribution using 

Centred Based Point 

homogeneous inverse algorithm 

Compute a distance metric by 

comparing the displacements of 

Step 3 with the measured tissue 

displacements.  High errors 

correspond to a tumour, small 

errors correspond to healthy tissue 

Using result in Step 2, perform 

one forward simulation of the 
model of Step 1 to generate 

displacements 

Step 1 

Step 2 

Step 4 

 

Figure 7.1 – Summary of the Measure of Homogeneity approach to identify tumours 

 

 

P
o
si
ti
o
n
 (
m
) 

Position (m) 

D
is
ta
n
ce
 M
et
ri
c 

 

Figure 7.2 – Identifying a 1cm× 1cm tumour using the Measure of Homogeneity approach 

 



 

8 References

 
 

American Cancer Society. (2006): ‘Cancer Facts & Figures 2006’, www.cancer.org 

 

B. Bone, P. Aspelin, L. Bronge, and B. Veress. (1998): ‘Contrast-enhanced MR Imaging as a 

Prognostic Indicator of Breast Cancer,’ Acta Radiol, 39:279-284. 

 

P. C. Chou, N.J. Pagano. (1967): ‘Elasticity – Tensor, Dyadic, and Engineering Approaches,’ 

D. Van Nostrand Co., Inc. 

 

J. Chamberlain. (2002): ‘Breastscreen Aotearoa an Independent Review.’ 

 

V.C. Cokkinides, A. Samuels, E.M. Ward, and M.J. Thun. (2004): ‘Cancer Prevention & Early 

Detection Facts & Figures,’ American Cancer Society. 

 

E.M. Haack, R.W. Brown, M.R. Thompson, R. Venkatesan. (1999): ‘Magnetic Resonance 

Imaging: Physical Properties & Sequence Design,’ Wiley-Liss. 

 

C.E. Hann, J.G Chase, J. Lin, T. Lotz, C.V. Doran, and G.M. Shaw. (2005): ‘Integral-Based 

Parameter Identification For Long-Term Dynamic Verification Of A Glucose-Insulin System 

Model,’ Computer Methods and Programs in Biomedicine, Vol 77(3), pp. 259-270, ISSN: 0169-

2607. 

 

C.E. Hann, J.G Chase, and G.M. Shaw (2006): ‘Integral-Based Identification of Patient Specific 

Parameters for a Minimal Cardiac Model,’ Computer Methods and Programs in Biomedicine, 

81(2), pp. 181-192, ISSN: 0169-2607. 

 

A. Hii (2005): ‘Cluster Tracking Algorithms for a Digital Image-based Elasto-Tomography 

System.’ Masters Thesis, Mechanical Engineering, University of Canterbury. 

 

T.M. Krouskup, T. Wheeler, F. Kallel, B.S. Garra and T. Hall. (1998): ‘Elastic Modulli of Breast 

and Prostate Tissues Under Compression,’ Ultrasonic Imaging, Vol. 20, pp. 260-274. 



References 8-125 

National Breast Cancer Coalition, Washington D.C. www.stopbreastcancer.org 

 

National Cancer Institute. www.cancer.gov 

 

New Zealand Breast Cancer Foundation (NZBCF). ‘Facts on Breast Cancer,’ www.nzbcf.org.nz 

 

New Zealand Health Information Service. (2001): ‘Cancer: New Registrations and Deaths 

2001,’ www.nzhis.govt.nz 

 

A. Peters, A. Milsant, J. Rouzé, L. Ray, J.G. Chase and E.E.W. Van Houten. (2004): ‘Digital 

Image-based Elasto-Tomography: Proof of concept studies for surface-based mechanical 

property reconstruction,’ JSME Int. J., Ser. C, 47, pp. 1117-23. 

 

A. Peters, S. Wortmann, R Elliot, M. Staiger, J.G. Chase, and E.E.W. Van Houten (2005): 

‘Digital Image-based Elasto-Tomography: First Experiments in Surface Based Mechanical 

Property Estimation of Gelatine Phantoms,’ JSME Int. J., Ser. C, 48, pp. 562-69. 

 

M.B. Robertson (2005): ‘Commercialisation and IP Strategies for Digital Image-based Elasto-

Tomography (DIET),’ Masters in Engineering Management Thesis, University of Canterbury. 

 

A. Samani, J. Bishop, C, Luginbuhl, D.B. Plewes (2003): ‘Measuring the elastic modulus of ex 

vivo small tissue samples,’ Phys. Med. Biol., 48, pp. 2183-98. 

 

I. Singh-Levett (2006): ‘Real-Time Integral Based Structural Health Monitoring,’ Masters 

Thesis, Mechanical Engineering, University of Canterbury. 

 

L. Tabar, M. Yen, B. Vitak, H. T. Chen, R. A. Smith, and S.W. Duffy.(2003): ‘Mammography 

service screening and mortality in breast cancer patients: 20-year follow-up before and after 

introduction of screening,’ The Lancet, 361:1405-1410. 

 

E.E.W. Van Houten, KD. Paulsen, M. I Miga, F.E. Kennedy, and J.B. Weaver. (1999): ‘An 

Overlapping Subzone Technique for MR-Based Elastic Property Reconstruction,’ Magnetic 

Resonance in Medicine 42:779-786, Wiley-Liss, Inc. 

 



References 8-126 

E.E.W. Van Houten, KD. Paulsen, M. I Miga, F.E. Kennedy, and J.B. Weaver. (2001): ‘Three-

Dimensional Subzone-Based Reconstruction Algorithm for MR Elastography’, Magnetic 

Resonance in Medicine 45:827-837, Wiley-Liss, Inc. 



 

Appendix A: MATLAB Code

 
 

A1 1D Non-Homogeneous Forward Simulation Algorithm ……… A-2 

A2 1D Inverse Algorithm – Local Double Integral Method ……… A-4 

A3 1D Inverse Algorithm – Global Single Integral Method ……… A-6 

A4 1D Inverse Algorithm – Global Double Integral Method with Mesh 

Refinement 

……… A-9 

A5 2D Homogeneous Forward Simulation Algorithm – Infinite 

Domain Boundary Condition Model 

……… A-13 

A6 Non-Homogeneous Forward Simulation Algorithm – Phantom 

Boundary Condition Model 

……… A-21 

A7 2D Homogeneous Inverse Algorithm – Initial Method ……… A-37 

A8 2D Homogeneous Inverse Algorithm – Centred Base Point Method ……… A-40 

A9 2D Non-Homogeneous Inverse Algorithm with Constraint Model ……… A-44 

 



Appendix A A-2 

A1: 1D Non-Homogeneous Forward Simulation Algorithm 

 

%========================================================================== 
  
% 1D NON-HOMOGENEOUS FORWARD SIMULATION ALGORITHM 
% By Samuel J. Houghton 
% 2005 
  
% This algorithm uses Finite Difference Approximations to solve for the 
% Harmonic Displacement Amplitudes from the 1D Navier's Equation.  It 
% incorporates a carcinoma by allowing a step-wise constant stiffness 
% distribution and enforces stress continuity at the boundary of segments 
% with differing stiffness. 
  
%========================================================================== 
  
clear 
clc 
  
tt0 = cputime; 
  
% Defining Model Parameters =============================================== 
  
rho = 1020;             % Density (kg/m3) 
omega = 100*2*pi;       % Actuation Frequency (rad/s) 
mu = 0.49;              % Poisson’s Ratio 
  
% Longitudinal Wave Formulation 
% A = (rho*omega^2)/(1/(1+mu) + mu/((1+mu)*(1-2*mu))); 
  
% Shear Wave Formulation 
A = (rho*omega^2); 
  
len = 2000;             % Total number of Discretized Data Points in Domain 
samp = 0.1;             % Length of Domain (m) 
h = samp/len;           % Step size 
  
% Define Carcinoma Position 
g1 = len*0.2+1; 
g2 = len*0.3+1; 
g3 = len+1; 
  
E1 = 30000;             % Define Young's Modulus of Healthy Tissue (Pa) 
  
G1 = E1/(2+2*mu);       % Shear Modulus of Healthy Tissue to Left of Carcinoma 
G2 = 10*G1;             % Define Shear Modulus of Carcinoma 
G3 = G1;                % Shear Modulus of Healthy Tissue to Right of Carcinoma 
  
% Initialize Matrices & Vectors for System of Equations 
A1 = A/G1; 
A2 = A/G2; 
A3 = A/G3; 
  
G = ones(len+1,1);  
G(1:g1) = G1;       G(g1+1:g2) = G2;        G(g2+1:g3) = G3; 
AA1(1:g1) = A1;     AA1(g1+1:g2) = A2;      AA1(g2+1:g3) = A3; 
  
n = len+1; 
K = zeros(n,n); 
RHS = zeros(n,1); 
  
% Assembling System of Equations & Solve ================================== 
  
 



Appendix A A-3 

% 1st Segment Stiffness Terms --------------------------------------------- 
  
%Forward Differences 
K(1,1) = 2/(h^2) + A1; 
K(1,2) = -5/(h^2); 
K(1,3) = 4/(h^2); 
K(1,4) = -1/(h^2); 
  
%Central Differences 
for i = 2:g1-1 
   K(i,i-1) = 1/(h^2); 
   K(i,i)   = -2/(h^2) + A1; 
   K(i,i+1) = 1/(h^2); 
end 
  
% 2nd Segment Stiffness Terms --------------------------------------------- 
  
% Enforce Stress Continuity 
K(g1,g1-2) = G1; 
K(g1,g1-1) = -4*G1; 
K(g1,g1)   = 3*(G1+G2); 
K(g1,g1+1) = -4*G2; 
K(g1,g1+2) = G2; 
  
% Central Differences 
for i = g1+1:g2-1 
   K(i,i-1) = 1/(h^2); 
   K(i,i)   = -2/(h^2) + A2; 
   K(i,i+1) = 1/(h^2); 
end 
  
% 3rd Segment Stiffness Terms --------------------------------------------- 
  
% Enforce Stress Continuity 
K(g2,g2-2) = G2; 
K(g2,g2-1) = -4*G2; 
K(g2,g2)   = 3*(G2+G3); 
K(g2,g2+1) = -4*G3; 
K(g2,g2+2) = G3; 
  
% Backwards Differences 
K(g3,g3) = 2/(h^2) + A3; 
K(g3,g3-1) = -5/(h^2); 
K(g3,g3-2) = 4/(h^2); 
K(g3,g3-3) = -1/(h^2); 
  
% Central Differences 
for i = g2+1:g3-1 
   K(i,i-1) = 1/(h^2); 
   K(i,i)   = -2/(h^2) + A3; 
   K(i,i+1) = 1/(h^2); 
end 
  
% Apply Boundary Conditions ----------------------------------------------- 
  
% Boundary Conditions: U(0) = 0, U(n) = 0.001 (displace end of bar by 1mm) 
Kbc = K; 
Kbc(1,:) = zeros(1,n); 
Kbc(1,1) = 1; 
Kbc(n,:) = zeros(1,n); 
Kbc(n,n) = 1; 
  
RHS(1) = 0; 
RHS(g3) = 0.001; 
  
% Solve Forward Simulation ------------------------------------------------ 
  
format long 



Appendix A A-4 

v = Kbc\RHS; 
v = v*1000; 
  
% Post-Processing ========================================================= 
  
% Plot Results ------------------------------------------------------------ 
  
figure(1) 
x = [0:1:(n-1)]*h; 
plot(x,v,'color','b') 
xlabel('Node') 
ylabel('Displacement mm') 
grid on 
  
xexact = x; 
vexact = v; 
  
% Save Results ------------------------------------------------------------ 
  
save fwdsol A G xexact vexact samp 
  
tt1 = cputime - tt0 
  
%-------------------------------------------------------------------------- 

 

A2: 1D Inverse Algorithm – Local Double Integral Method 

 

%========================================================================== 
  
% 1D INVERSE ALGORITHM - LOCAL DOUBLE INTEGRAL METHOD 
% By Samuel J. Houghton 
% 2005 
  
% This algortihm uses a double integral formualtion of the 1D Navier's 
% Equation to provide the basis of an inverse algortihm that solves for the 
% stiffness distribution.  The integration is local - that is each segment 
% is integrated independently and only incorporates motion data from within 
% that segment. 
  
%========================================================================== 
  
clc 
clear all 
  
tt0 = cputime; 
  
% Introduce and Define Parameters ========================================= 
  
load fwdsol     % Load Forward Simulation Data 
Gorig = G; 
clear G 
  
ip = 20;        % No. of integration points 
seg = 10;       % No. of discretized segments 
  
% Vectors U and x must be of equal lengths => interpolate 
xend = samp; 
h = samp/seg/ip; 
x = [0:h:xend]; 
v = interp1(xexact,vexact,x); 
  
 
 



Appendix A A-5 

% NOISE GENERATOR ========================================================= 
  
% Calulating Geometric Mean 
sortv = sort(abs(v)); 
percentilenoise = 50;   %Percentile of Absolute Data (Median - 50%) 
propv = sortv(ceil(length(v)*percentilenoise/100)); 
  
% Defining Percentage Noise 
perror = 10; 
f1 = length(v); 
rand1 = rand(f1,1) <= 0.5; 
  
% Geometric Mean (Median) Absolute Noise 
vN1 = (-1).^rand1*(perror/100)*propv; 
vN2 = rand(f1,1); 
vN3 = vN1.*vN2; 
v  = v + vN3'; 
  
% Formulate System of Equations & Solve for Stiffness ===================== 
  
for j = 1:10        % Loop for each stiffness segment 
     
    % Define Local Coordinates 
    xx1 = (j-1)*0.1*samp; 
    xx2 = j*0.1*samp; 
     
    % Define Local Motion Dataset 
    xj = x((j-1)*ip+1:j*ip+1); 
    vj = v((j-1)*ip+1:j*ip+1); 
     
    % Formulate Double Integral 
    dint = h^2*cumtrapz(cumtrapz(vj)); 
  
    % Generate matrix of equations in the form A*x = B, 
    % where x = [Ebar;a1;b1] 
    A1 = zeros(length(dint),3); 
    B1 = zeros(length(dint),1); 
    A1(:,1) = -dint'; 
    A1(:,2) = xj'; 
    A1(:,3) = ones(length(dint),1); 
     
    B1 = vj'; 
     
    % Solve using Linear Least Squares 
    X1 = lsqlin(A1,B1); 
  
    Gbar(j) = X1(1); 
    G(j) = A/Gbar(j); 
    a1(j) = X1(2); 
    b1(j) = X1(3); 
     
end 
  
% Post-Processing ========================================================= 
  
Glong(1) = G(1); 
for i = 1:10 
    for j = 2:ip+1 
        Glong(j+(i-1)*ip) = G(i); 
    end 
end 
 
figure (1) 
plot(x,Glong,xexact,Gorig) 
format short 
G'./1000 
tt1 = cputime-tt0 
%-------------------------------------------------------------------------- 



Appendix A A-6 

A3: 1D Inverse Algorithm – Global Single Integral Method 

 

%========================================================================== 
  
% 1D INVERSE ALGORITHM - GLOBAL SINGLE INTEGRAL METHOD 
% By Samuel J. Houghton 
% 2005 
  
% This algortihm uses a single integral formualtion of the 1D Navier's 
% Equation to provide the basis of an inverse algortihm that solves for the 
% stiffness distribution.  The integration is global - that is each the 
% formulation incorporates global motion data.  However, the defining 
% equation is integrated only once, requiring the calculation of 
% derivatives using quardic polynomial fitting. 
  
%========================================================================== 
  
clc 
clear all 
  
tt0 = cputime; 
  
% Introduce and Define Parameters ========================================= 
  
load fwdsol     % Load Forward Simulation Data 
Gorig = G; 
x = xexact; 
v = vexact; 
  
ip = 20;            % No. of integration points 
seg = 10;           % No. of discretized segments 
h = samp/seg/ip;    % Step Size 
  
xend = samp; 
xnew = [0:h:xend]; 
vnew = interp1(x,v,xnew); 
  
poly1 = 4;          % Define Polynomial Order for Fitting - Note the 
                    % derivative formulations require manual alteration 
  
% NOISE GENERATOR ========================================================= 
  
% Calulating Geometric Mean 
sortv = sort(abs(vnew)); 
percentilenoise = 50;   %Percentile of Absolute Data (Median - 50%) 
propv = sortv(ceil(length(vnew)*percentilenoise/100)); 
  
% Defining Percentage Noise 
perror = 10; 
f1 = length(vnew); 
rand1 = rand(f1,1) <= 0.5; 
  
% Geometric Mean (Median) Absolute Noise 
vN1 = (-1).^rand1*(perror/100)*propv; 
vN2 = rand(f1,1); 
vN3 = vN1.*vN2; 
vnew  = vnew + vN3'; 
  
 
% Formulate System of Equations & Solve for Stiffness ===================== 
  
% POLYNOMIAL FITTING ------------------------------------------------------ 
  
ynew = zeros(1,ip*10); 
yderiv = zeros(1,ip*10); 



Appendix A A-7 

 % 1st Polynomial Fitting -------------------------------------------------- 
  
    coeff1 = polyfit(xnew(1:ip+1),vnew(1:ip+1),poly1); 
     
    ynew(1,1:ip+1) = polyval(coeff1,xnew(1:ip+1)); 
     
%     % Cubic Derivative 
%     yderiv(1,1:ip+1) = 3*coeff1(1)*xnew(1,1:ip+1).^2... 
%         + 2*coeff1(2)*xnew(1,1:ip+1) + coeff1(3); 
     
    % Quardic Derivative 
    yderiv(1,1:ip+1) = 4*coeff1(1)*xnew(1,1:ip+1)... 
        .^3 + 3*coeff1(2)*xnew(1,1:ip+1).^2 + 2*coeff1(3)*xnew(1,1:ip+1)... 
        + coeff1(4); 
     
% Last Polynomial Fitting ------------------------------------------------- 
  
    coeff10 = polyfit(xnew(9*ip+1:10*ip+1),vnew(9*ip+1:10*ip+1),poly1); 
     
    ynew(1,9*ip+2:10*ip) = polyval(coeff10,xnew(9*ip+2:10*ip)); 
     
%     % Cubic Derivative 
%     yderiv(1,9*ip+2:10*ip) = 3*coeff10(1)*xnew(1,9*ip+2:10*ip).^2... 
%         + 2*coeff10(2)*xnew(1,9*ip+2:10*ip) + coeff10(3); 
     
    % Quardic Derivative 
    yderiv(1,9*ip+2:10*ip) = 4*coeff10(1)*xnew(1,9*ip+2:10*ip)... 
        .^3 + 3*coeff10(2)*xnew(1,9*ip+2:10*ip).^2... 
        + 2*coeff10(3)*xnew(1,9*ip+2:10*ip) + coeff10(4); 
  
% Rest of Polynomial Fitting ---------------------------------------------- 
  
for i = 2:9 
    coeffi = polyfit(xnew((i-1)*ip+1:i*ip+1),vnew((i-1)*ip+1:i*ip+1),poly1); 
     
    ynew(1,(i-1)*ip + 2:i*ip+1) = polyval(coeffi,xnew((i-1)*ip + 2:i*ip+1)); 
     
%     % Cubic Derivative 
%     yderiv(1,(i-1)*ip + 2:i*ip+1) = 3*coeffi(1)*xnew(1,(i-1)*ip... 
%         + 2:i*ip+1).^2 + 2*coeffi(2)*xnew(1,(i-1)*ip + 2:i*ip+1) + coeffi(3); 
  
    % Quardic Derivative 
    yderiv(1,(i-1)*ip + 2:i*ip+1) = 4*coeffi(1)*xnew(1,(i-1)*ip + 2:i*ip+1)... 
        .^3 + 3*coeffi(2)*xnew(1,(i-1)*ip + 2:i*ip+1).^2 + 2*coeffi(3)... 
        *xnew(1,(i-1)*ip + 2:i*ip+1) + coeffi(4); 
end 
  
% Numerical Derivative - Alternate Derivative Formulation 
deltat = xnew(2)-xnew(1); 
lxnew = length(xnew); 
  
vderiv(1,1) = 1/(2*deltat)*(-3*vnew(1)+4*vnew(2)-vnew(3)); 
vderiv(1,lxnew) = 1/(2*deltat)*(3*vnew(lxnew)-4*vnew(lxnew-1)+vnew(lxnew-2)); 
for i = 2:(length(xnew)-1) 
    vderiv(1,i) = 1/(2*deltat)*(vnew(i+1)-vnew(i-1)); 
end 
  
% Actual Numerical Derivative - Derivative of Non-Noisy Data 
deltat2 = x(2)-x(1); 
lx = length(x); 
  
vderivactual(1,1) = 1/(2*deltat2)*(-3*v(1)+4*v(2)-v(3)); 
vderivactual(1,lx) = 1/(2*deltat2)*(3*v(lx)-4*v(lx-1)+v(lx-2)); 
for i = 2:(length(x)-1) 
    vderivactual(1,i) = 1/(2*deltat2)*(v(i+1)-v(i-1)); 
end 
  
% Derivative Terms Comparison --------------------------------------------- 



Appendix A A-8 

figure(1) 
plot(xnew(1:lxnew-1),ynew,xnew,vnew,'r') 
figure(2) 
plot(xnew(1:lxnew-1),yderiv,xnew,vderiv,'r') 
figure(3) 
plot(xnew,vderiv,'g',x,vderivactual,xnew(1:lxnew-1),yderiv,'r') 
xlabel('Position (m)') 
ylabel('Derivative of Displacement Amplitude') 
legend('Numerical','Actual','Fitted','Location','NorthWest') 
  
x0 = xnew(1:lxnew-1); 
vderivactual1 = interp1(x,vderivactual,x0); 
vderivactual2 = interp1(x,vderivactual,xnew); 
  
comp1 = abs(yderiv-vderivactual1)/mean(abs(vderivactual1))*100; 
comp2 = abs(vderiv-vderivactual2)/mean(abs(vderivactual2))*100; 
  
lim1 = 0.6; 
lim2 = lim1 + 0.1; 
comp1a = comp1(ip*10*lim1+1:ip*10*lim2); 
mean(comp1) 
mean(comp2) 
max(comp1) 
max(comp2) 
  
% Assemble System of Equations ============================================ 
  
AA = zeros(ip*10,10); 
  
FF = h*cumtrapz(vnew(1:end-1)); 
BB = -A*FF; 
  
for j = 1:10 
     
    xnewj = xnew((j-1)*ip + 1:j*ip); 
    vnewj = vnew((j-1)*ip + 1:j*ip); 
    yderivj = yderiv((j-1)*ip + 1:j*ip); 
     
    AA((j-1)*ip + 1:j*ip,j) = yderivj'; 
     
end 
  
yd0 = yderiv(1); 
AA(:,1) = -yd0; 
  
X1 = lsqlin(AA,BB); 
     
% Post-Processing ========================================================= 
  
Glong(1) = X1(1); 
for i = 1:10 
    for j = 2:ip+1 
        Glong(j+(i-1)*ip) = X1(i); 
    end 
end 
  
figure (4) 
plot(xnew,Glong,xexact,Gorig) 
grid on 
%Ylim([0 30000]) 
format short 
G = X1./1000 
  
tt1 = cputime-tt0 
  
%-------------------------------------------------------------------------- 

 



Appendix A A-9 

A4: 1D Inverse Algorithm – Global Double Integral Method with Mesh 

Refinement 

 

%========================================================================== 
  
% 1D INVERSE ALGORITHM - GLOBAL DOUBLE INTEGRAL METHOD 
% By Samuel J. Houghton 
% 2005 
  
% This algortihm uses a double integral formualtion of the 1D Navier's 
% Equation to provide the basis of an inverse algortihm that solves for the 
% stiffness distribution.  The integration is global - that is each the 
% formulation incorporates global motion data. 
  
% It also incorporates a localized mesh refinement algorithm that attempts 
% to identify carcinoma smaller than or not aligned with the original 
% discretized grid.  It also adopts the global double integral method. 
  
%========================================================================== 
  
clear all 
clc 
  
% Introduce Variables ===================================================== 
  
load fwdsol         % Load Forward Simulation Data 
Gorig = G; 
clear G 
B = A; 
  
ip = 20;            % No. of Integration Points 
ipa = ip/2;         % No. of Integration Points - Refined Elements 
seg = 10;           % No. of Segments 
sega = 2*seg;       % No. of Segments (if all segments refined) 
hh = samp/ip/seg;   % Step Size 
xend = samp; 
x = [0:hh:xend]; 
v = interp1(xexact,vexact,x);   % Generate Motion Dataset 
cutoff = 1.2;       % The proportion of which that exceeds the stiffness  
                    % threshold before mesh is refined locally in the 
                    % particular region 
  
% NOISE GENERATOR ========================================================= 
  
% Calulating Geometric Mean 
sortv = sort(abs(v)); 
percentilenoise = 50;   %Percentile of Absolute Data (Median - 50%) 
propv = sortv(ceil(length(v)*percentilenoise/100)); 
  
% Defining Percentage Noise 
perror = 10; 
f1 = length(v); 
rand1 = rand(f1,1) <= 0.5; 
  
% Geometric Mean (Median) Absolute Noise 
vN1 = (-1).^rand1*(perror/100)*propv; 
vN2 = rand(f1,1); 
vN3 = vN1.*vN2; 
v  = v + vN3'; 
  
% GLOBAL DOUBLE INTEGRAL METHOD =========================================== 
  
% Define & Solve System of Equations ====================================== 
  



Appendix A A-10 

% Double Integral Formulation --------------------------------------------- 
  
dint1 = cumtrapz(cumtrapz(v))*hh^2; 
dint = dint1(1:ip*seg)'; 
  
% Form Matrices & Solve --------------------------------------------------- 
  
AA = zeros(ip*seg,2*seg+1); 
AA(:,1) = x(1:ip*seg)'; 
  
for i = 1:seg 
    Vx = v(((i-1)*ip+1):i*ip); 
    AA(((i-1)*ip+1):i*ip,(i+1)) = Vx; 
     
    AA(((i-1)*ip+1):i*ip,(i+seg+1)) = ones(ip,1); 
end 
  
RHS = -B*dint; 
xx = lsqlin(AA,RHS); 
G = xx(2:seg+1); 
  
% Initial Plotting of Global Double Integral Method Results---------------- 
  
Glong(1) = G(1); 
for i = 1:seg 
    for j = 2:ip+1 
        Glong(j+(i-1)*ip) = G(i); 
    end 
end 
figure(1) 
plot(x,Glong,xexact,Gorig) 
  
figure(2) 
plot(xexact,vexact) 
  
% ADAPTIVE MESH ALGORITHM ================================================= 
  
% Specify Stiffness Threshold 
  
% for i = 1:seg 
%     thresh1(i) = G(i)/mean(G); 
% end 
  
thresh1 = G./(Gorig(1)); 
  
if max(thresh1) >= cutoff 
     
    % Identify Segments That Exceed Stiffness Threshold ------------------- 
     
    ind1 = []; 
    for i = 1:seg 
        if thresh1(i) >= cutoff 
            ind1 = [ind1 i]; 
        end 
    end 
         
 
 
    % Introduce Variables ------------------------------------------------- 
  
    hha = samp/ipa/sega; 
    xa = [0:hha:xend]; 
    va = interp1(x,v,xa); 
     
    % Generate Adjusted x & v vectors in order to refine mesh ------------- 
     
    count = 1; 
    xb = []; 



Appendix A A-11 

    hhnew = ones(1,ip*seg+1)*hh; 
    xb = [0:hh:xend]; 
    hhi = ones(1,hh/hha*ip)*hha; 
    seg1 = seg; 
    count = 0; 
     
    for i = 1:length(ind1)     
        if ind1(i) == 1 
            xi = [0:hha:ind1(i)*xend/seg-hha]; 
            xb = [xi,xb(ip+1:end)]; 
            hhnew = [hhi,hhnew(ip+1:end)]; 
            count = count + 1; 
        elseif ind1(i) == seg    
            xi = [(ind1(i)-1)*xend/seg:hha:ind1(i)*xend/seg]; 
            xb = [xb(1:(ind1(i)-1)*ip+count*(ipa-ip)),xi]; 
            hhnew = [hhnew(1:(ind1(i)-1)*ip+count*(ipa-ip)),hhi];   
        else 
            xi = [(ind1(i)-1)*xend/seg:hha:ind1(i)*xend/seg-hha]; 
            xb = [xb(1:(ind1(i)-1)*ip+count*(ipa-ip)),xi,xb((ind1(i))*ip... 
                +count*(ipa-ip)+1:end)]; 
            hhnew = [hhnew(1:(ind1(i)-1)*ip+count*(ipa-ip)),hhi,... 
                hhnew((ind1(i))*ip+count*(ipa-ip)+1:end)]; 
            count = count + 1; 
        end 
        seg1 = seg1 + 1; 
    end 
         
    vb = interp1(x,v,xb); 
  
    % Double Integral Formulation ----------------------------------------- 
  
    sint1b = cumtrapz(xb,vb); 
    dint1b = cumtrapz(xb,sint1b); 
    dintb = dint1b(1:end-1)'; 
  
    % Form & Solve System of Equations ------------------------------------ 
     
    Cseg = (sega/seg)*(seg1-seg); 
    Dseg = sega/seg; 
    Eseg = (sega*ipa)/seg-ip; 
     
    AAb = zeros((seg1-Cseg)*ip+Cseg*ipa,2*seg1+1); 
    AAb(:,1) = xb(1:end-1)'; 
     
    counta = 1; 
    countb = 1; 
     
    for i = 1:seg 
         
        if i == ind1(counta) 
        
            vai1 = va(Dseg*(i-1)*ipa+1:(Dseg*i-1)*ipa);  
            vai2 = va((Dseg*i-1)*ipa+1:Dseg*i*ipa); 
             
            z0 = zeros(size(vai1)); 
            z1 = ones(size(vai1)); 
             
            vai = [vai1' z0';z0' vai2']; 
            zi = [z1' z0';z0' z1']; 
             
            AAb((i-1)*ip+(countb-1)*Eseg+1:i*ip+countb*Eseg,i... 
                +countb:i+countb+1) = vai; 
            AAb((i-1)*ip+(countb-1)*Eseg+1:i*ip+countb*Eseg,i+countb... 
                +seg1:i+countb+seg1+1) = zi; 
             
            clear zi 
             
            if counta == length(ind1) 



Appendix A A-12 

            countb = countb+(Dseg-1); 
            else 
            counta = counta+(Dseg-1); 
            countb = countb+(Dseg-1); 
            end 
             
        else   
            vi = v((i-1)*ip+1:i*ip); 
            zi = ones(size(vi)); 
             
            AAb((i-1)*ip+(countb-1)*Eseg+1:i*ip+(countb-1)*Eseg,i+countb)... 
                = vi; 
            AAb((i-1)*ip+(countb-1)*Eseg+1:i*ip+(countb-1)*Eseg,i+countb... 
                +seg1) = zi; 
        end          
    end 
  
    RHSb = -B*dintb; 
      
    % Solve Linear Least Squares Problem ---------------------------------- 
     
    xxb = lsqlin(AAb,RHSb); 
     
    % Post-Processing ===================================================== 
     
    % Plotting of Mesh Refinement Results --------------------------------- 
     
    Gb = xxb(2:seg1+1);   
    Ga = ones(1,sega)*xxb(2);    
     
    ind1a = []; 
    rt = sega/seg; 
    for i = 1:length(ind1) 
        ind1a = [ind1a rt*ind1(i)+[-rt+1:1:0]]; 
    end 
  
    for i = 1:seg1 
        for j = 1:rt 
            Ga(j+(i-1)*rt) = Gb(i); 
        end 
    end 
    Gc = Ga; 
     
    count = 0; 
     
    for i = 1:length(ind1) 
        lGa = length(Ga); 
        Ga = [Ga(1:(rt*ind1(i))-1),Ga((rt*ind1(i)+2):lGa)]; 
    end 
     
    Glonga(1) = Ga(1); 
    for i = 1:sega 
        for j = 2:ipa+1 
            Glonga(j+(i-1)*ipa) = Ga(i); 
        end 
    end 
    Glonga = Glonga;     
    xa = [0:hha:xend]; 
     
    figure(4) 
    plot(xa,Glonga,xexact,Gorig,x,Glong) 
    xlabel('Distance Along Breast (m)') 
    ylabel('Modulus of Elasticity (Pa)')   
     
end 
format short 
Ga'./1000 
%-------------------------------------------------------------------------- 



Appendix A A-13 

A5: 2D Homogeneous Forward Simulation Algorithm – Infinite 

Domain Boundary Condition Model 

 

%========================================================================== 
  
% 2D HOMOGENEOUS FORWARD SIMULATION ALGORITHM - INFINITE DOMAIN B.C. 
% By Samuel J. Houghton 
% 2006 
  
% This algorithm uses Finite Difference Approximations to solve for the 
% Harmonic Displacement Amplitudes from the 2D Plain Strain Navier's 
% Equations.  The medium has homogeneous material properties. 
  
% It adopts Type I boundary conditions along the exterior of the square 
% global domain that are a function of an analytical solution that exists 
% across the infinite domain.  Therefore the solution of the forward 
% simulation algorithm can be verified against analytical results. 
  
%========================================================================== 
  
clear 
clc 
  
tt0 = cputime; 
  
% Definition of Variables ================================================= 
  
rho = 1020;             % Density (kg/m3) 
omega = 2*pi*100;       % Frequency of Oscillation (rad/s) 
mu = 0.49;              % Poisson's Ratio 
  
sampi = 0.1;            % Length in the x direction 
sampj = 0.1;            % Length in the y direction 
  
gr = 400;               % Grid Refinement 
grefinex = gr; 
grefiney = gr; 
h = sampi/grefinex;     % Step Size 
k = h; 
  
ni = gr + 1; 
nj = gr + 1; 
totaln = ni*nj;         % Total No. of Equations 
  
E = 30000;              % Elastic Modulus (Pa) 
G = E/(2+2*mu); 
gamma = mu*E/((1+mu)*(1-2*mu)); 
  
% Define Coefficients ===================================================== 
  
% Crossover Terms 
cuv5 = (gamma+G)/(4*h*k);; 
  
% Define Boundary Conditions Based Upon Analytical Solution Across Infinite 
%   Domain 
  
kk1 = omega*sqrt(rho/G); 
kk2 = omega*sqrt(rho)/sqrt(gamma+2*G); 
  
xx1 = 0; 
yy1 = (0:k:sampj)'; 
     
xx2 = sampi; 
yy2 = (0:k:sampj)'; 



Appendix A A-14 

xx3 = (0:h:sampi); 
yy3 = 0; 
     
xx4 = (0:h:sampi)'; 
yy4 = sampj; 
  
ux1 = zeros(gr+1,1); 
vx1 = zeros(gr+1,1); 
ux2 = zeros(gr+1,1); 
vx2 = zeros(gr+1,1); 
uy1 = zeros(gr-1,1); 
vy1 = zeros(gr-1,1); 
uy2 = zeros(gr-1,1); 
vy2 = zeros(gr-1,1); 
     
for i = 1:gr+1 
     
    Cyy1 = yy1(i); 
    Cyy2 = yy2(i); 
     
    Cux1 = sin(kk1*xx1) + sin(kk1*Cyy1) + 2*sin(kk2*Cyy1); 
    Cvx1 = 2*(-0.5*(-2*omega^2*rho*xx1 + 4*gamma + 8*G)*sqrt(G)*... 
        sqrt(gamma+2*G)*cos(kk2*Cyy1) + omega*(-1*omega*(gamma/2+G)*... 
        rho*cos(kk1*xx1)*Cyy1 + 0.5*sin(kk1*xx1)*sqrt(G)*(gamma+2*G)*... 
        sqrt(rho)))/(sqrt(G*rho)*(gamma+2*G)*omega); 
     
    Cux2 = sin(kk1*xx2) + sin(kk1*Cyy2) + 2*sin(kk2*Cyy2); 
    Cvx2 = 2*(-0.5*(-2*omega^2*rho*xx2 + 4*gamma + 8*G)*sqrt(G)*sqrt(gamma+2*G)... 
        *cos(kk2*Cyy2) + omega*(-1*omega*(gamma/2+G)*rho*cos(kk1*xx2)*Cyy2 + ... 
        0.5*sin(kk1*xx2)*sqrt(G)*(gamma+2*G)*sqrt(rho)))/(sqrt(G*rho)*... 
        (gamma+2*G)*omega); 
     
    ux1(i) = Cux1; 
    vx1(i) = Cvx1; 
    ux2(i) = Cux2; 
    vx2(i) = Cvx2; 
     
end 
  
for j = 2:gr 
     
    Cxx3 = xx3(j); 
    Cxx4 = xx4(j); 
     
    Cuy1 = sin(kk1*Cxx3) + sin(kk1*yy3) + 2*sin(kk2*yy3); 
    Cvy1 = 2*(-0.5*(-2*omega^2*rho*Cxx3 + 4*gamma + 8*G)*sqrt(G)*sqrt(gamma+2*G)... 
        *cos(kk2*yy3) + omega*(-1*omega*(gamma/2+G)*rho*cos(kk1*Cxx3)*yy3 + ... 
        0.5*sin(kk1*Cxx3)*sqrt(G)*(gamma+2*G)*sqrt(rho)))/(sqrt(G*rho)*... 
        (gamma+2*G)*omega); 
     
    Cuy2 = sin(kk1*Cxx4) + sin(kk1*yy4) + 2*sin(kk2*yy4); 
    Cvy2 = 2*(-0.5*(-2*omega^2*rho*Cxx4 + 4*gamma + 8*G)*sqrt(G)*sqrt(gamma+2*G)... 
        *cos(kk2*yy4) + omega*(-1*omega*(gamma/2+G)*rho*cos(kk1*Cxx4)*yy4 + ... 
        0.5*sin(kk1*Cxx4)*sqrt(G)*(gamma+2*G)*sqrt(rho)))/(sqrt(G*rho)*... 
        (gamma+2*G)*omega); 
  
    uy1(j-1) = Cuy1; 
    vy1(j-1) = Cvy1; 
    uy2(j-1) = Cuy2; 
    vy2(j-1) = Cvy2; 
     
end 
  
X1count = 1; 
X2count = 1; 
Y1count = 1; 
Y2count = 1; 
  



Appendix A A-15 

% Define System of Equations ============================================== 
  
% Initialize Vectors 
  
iSuxx1 = zeros(3*totaln,1); 
iSuyy1 = zeros(3*totaln,1); 
iSufreq = zeros(1*totaln,1); 
iSBC = zeros(1*totaln,1); 
  
jSuxx1 = zeros(3*totaln,1); 
jSuyy1 = zeros(3*totaln,1); 
jSvxx1 = zeros(3*totaln,1); 
jSvyy1 = zeros(3*totaln,1); 
jSufreq = zeros(1*totaln,1); 
jSBC = zeros(1*totaln,1); 
  
sSuxx1 = zeros(3*totaln,1); 
sSuyy1 = zeros(3*totaln,1); 
sSufreq = zeros(3*totaln,1); 
sSBC = zeros(3*totaln,1); 
  
iRHSsparse = zeros(2*(grefinex+grefiney),1); 
jRHSsparse = zeros(2*(grefinex+grefiney),1); 
sRHSsparsex = zeros(2*(grefinex+grefiney),1); 
sRHSsparsey = zeros(2*(grefinex+grefiney),1); 
  
iCsparse = zeros(4*totaln,1); 
jCsparse = zeros(4*totaln,1); 
sCsparse = zeros(4*totaln,1); 
  
% Initialize Counts 
  
RHScount = 1; 
Suxx1count = 1; 
Suyy1count = 1; 
Sufreqcount = 1; 
SBCcount = 1; 
Ccount = 1; 
  
% Loop for Each Discrete Node to Formulate Appropriate Equations ---------- 
  
for q = 1:totaln 
     
    % Specify Coordinates of Node of Interest 
    j = ceil(q/ni); 
    if rem(q,ni) ~= 0 
        i = q - ni*floor(q/ni); 
    else 
        i = ni; 
    end 
        
    if i == 1       % Left Vertical Boundary - Type I BCs 
         
        iqBC = q; 
        jqBC = q; 
        sqBC = 1; 
        iRHS = q; 
        jRHS = 1; 
        sRHSx = ux1(X1count); 
        sRHSy = vx1(X1count); 
         
        iBC(SBCcount,1) = iqBC; 
        jBC(SBCcount,1) = jqBC; 
        sBC(SBCcount,1) = sqBC; 
         
        iRHSsparse(RHScount,1) = iRHS; 
        jRHSsparse(RHScount,1) = jRHS; 
        sRHSsparsex(RHScount,1) = sRHSx; 



Appendix A A-16 

        sRHSsparsey(RHScount,1) = sRHSy; 
         
        X1count = X1count + 1; 
        RHScount = RHScount + 1; 
        SBCcount = SBCcount + 1; 
         
    elseif i == ni  % Right Vertical Boundary - Type I BCs 
         
        iqBC = q; 
        jqBC = q; 
        sqBC = 1; 
        iRHS = q; 
        jRHS = 1; 
        sRHSx = ux2(X2count); 
        sRHSy = vx2(X2count); 
         
        iBC(SBCcount,1) = iqBC; 
        jBC(SBCcount,1) = jqBC; 
        sBC(SBCcount,1) = sqBC; 
         
        iRHSsparse(RHScount,1) = iRHS; 
        jRHSsparse(RHScount,1) = jRHS; 
        sRHSsparsex(RHScount,1) = sRHSx; 
        sRHSsparsey(RHScount,1) = sRHSy; 
         
        X2count = X2count + 1; 
        RHScount = RHScount + 1; 
        SBCcount = SBCcount + 1; 
         
    elseif j == 1   % Bottom Horizontal Boundary - Type I BCs 
         
        iqBC = q; 
        jqBC = q; 
        sqBC = 1; 
        iRHS = q; 
        jRHS = 1; 
        sRHSx = uy1(Y1count); 
        sRHSy = vy1(Y1count); 
         
        iBC(SBCcount,1) = iqBC; 
        jBC(SBCcount,1) = jqBC; 
        sBC(SBCcount,1) = sqBC; 
         
        iRHSsparse(RHScount,1) = iRHS; 
        jRHSsparse(RHScount,1) = jRHS; 
        sRHSsparsex(RHScount,1) = sRHSx; 
        sRHSsparsey(RHScount,1) = sRHSy; 
         
        Y1count = Y1count + 1; 
        RHScount = RHScount + 1; 
        SBCcount = SBCcount + 1; 
    elseif j == nj  % Top Horizontal Boundary - Type I BCs 
         
        iqBC = q; 
        jqBC = q; 
        sqBC = 1; 
        iRHS = q; 
        jRHS = 1; 
        sRHSx = uy2(Y2count); 
        sRHSy = vy2(Y2count); 
         
        iBC(SBCcount,1) = iqBC; 
        jBC(SBCcount,1) = jqBC; 
        sBC(SBCcount,1) = sqBC; 
         
        iRHSsparse(RHScount,1) = iRHS; 
        jRHSsparse(RHScount,1) = jRHS; 
        sRHSsparsex(RHScount,1) = sRHSx; 



Appendix A A-17 

        sRHSsparsey(RHScount,1) = sRHSy; 
         
        Y2count = Y2count + 1; 
        RHScount = RHScount + 1; 
        SBCcount = SBCcount + 1; 
         
    else 
         
        % Apply Finite Differnce Approximations to Centre Nodes ----------- 
         
        % Suxx1/Svyy1 ----------------------------------------------------- 
         
        iqSuxx1 = ones(3,1)*q; 
        jqSuxx1 = [q-1 q q+1]'; 
        sqSuxx1 = [(gamma+2*G)/h^2 -2*(gamma+2*G)/h^2 (gamma+2*G)/h^2]'; 
         
        jqSvyy1 = [q-ni q q+ni]'; 
         
        iSuxx1(Suxx1count:Suxx1count+2,1) = iqSuxx1; 
        jSuxx1(Suxx1count:Suxx1count+2,1) = jqSuxx1; 
        sSuxx1(Suxx1count:Suxx1count+2,1) = sqSuxx1; 
         
        jSvyy1(Suxx1count:Suxx1count+2,1) = jqSvyy1; 
         
        Suxx1count = Suxx1count + 3; 
         
        % Suyy1/Svxx1 ----------------------------------------------------- 
         
        iqSuyy1 = ones(3,1)*q; 
        jqSuyy1 = [q-ni q q+ni]'; 
        sqSuyy1 = [G/h^2 -2*G/h^2 G/h^2]'; 
         
        jqSvxx1 = [q-1 q q+1]'; 
         
        iSuyy1(Suyy1count:Suyy1count+2,1) = iqSuyy1; 
        jSuyy1(Suyy1count:Suyy1count+2,1) = jqSuyy1; 
        sSuyy1(Suyy1count:Suyy1count+2,1) = sqSuyy1; 
         
        jSvxx1(Suyy1count:Suyy1count+2,1) = jqSvxx1; 
         
        Suyy1count = Suyy1count + 3; 
         
        % Sufreq ---------------------------------------------------------- 
         
        iqSufreq = q; 
        jqSufreq = q; 
        sqSufreq = rho*omega^2; 
         
        iSufreq(Sufreqcount,1) = iqSufreq; 
        jSufreq(Sufreqcount,1) = jqSufreq; 
        sSufreq(Sufreqcount,1) = sqSufreq; 
        Sufreqcount = Sufreqcount + 1; 
         
        % Cross-Over Terms------------------------------------------------- 
         
        iq = ones(4,1)*q; 
        jq = [(q-ni-1) (q-ni+1) (q+ni-1) (q+ni+1)]'; 
        sq = [cuv5 -cuv5 -cuv5 cuv5]'; 
         
        iCsparse(Ccount:Ccount+3,1) = iq; 
        jCsparse(Ccount:Ccount+3,1) = jq; 
        sCsparse(Ccount:Ccount+3,1) = sq; 
         
        Ccount = Ccount + 4; 
  
        %------------------------------------------------------------------ 
    end       
end 



Appendix A A-18 

  
iSuxx1 = iSuxx1(find(iSuxx1)); 
iSuyy1 = iSuyy1(find(iSuyy1)); 
iSufreq = iSufreq(find(iSufreq)); 
iBC = iBC(find(iBC)); 
  
jSuxx1 = jSuxx1(find(jSuxx1)); 
jSuyy1 = jSuyy1(find(jSuyy1)); 
jSvyy1 = jSvyy1(find(jSvyy1)); 
jSvxx1 = jSvxx1(find(jSvxx1)); 
jSufreq = jSufreq(find(iSufreq)); 
jBC = jBC(find(jBC)); 
  
sSuxx1 = sSuxx1(find(sSuxx1)); 
sSuyy1 = sSuyy1(find(sSuyy1)); 
sSufreq = sSufreq(find(sSufreq)); 
sBC = sBC(find(sBC)); 
  
% Convert i, j and s Vectors to Sparse Matrix Format ---------------------- 
  
Suxx1 = sparse(iSuxx1,jSuxx1,sSuxx1,ni*nj,ni*nj); 
Suyy1 = sparse(iSuyy1,jSuyy1,sSuyy1,ni*nj,ni*nj); 
Svyy1 = sparse(iSuxx1,jSvyy1,sSuxx1,ni*nj,ni*nj); 
Svxx1 = sparse(iSuyy1,jSvxx1,sSuyy1,ni*nj,ni*nj); 
Sufreq = sparse(iSufreq,jSufreq,sSufreq,ni*nj,ni*nj); 
SBC = sparse(iBC,jBC,sBC,ni*nj,ni*nj); 
  
Sx = (Suxx1+Suyy1+Sufreq+SBC); 
Sy = (Svyy1+Svxx1+Sufreq+SBC); 
  
iRHSsparse = [iRHSsparse; (iRHSsparse+totaln)]; 
jRHSsparse = [jRHSsparse; jRHSsparse]; 
sRHSsparse = [sRHSsparsex; sRHSsparsey]; 
  
Srhs = sparse(iRHSsparse,jRHSsparse,sRHSsparse,2*ni*nj,1); 
  
iCsparse = iCsparse(find(iCsparse)); 
jCsparse = jCsparse(find(jCsparse)); 
sCsparse = sCsparse(find(sCsparse)); 
  
Sc = sparse(iCsparse,jCsparse,sCsparse,ni*nj,ni*nj); 
  
% Combine Matrices & Solve System of Equations----------------------------- 
  
Sfull = [Sx Sc; Sc Sy]; 
a0 = Sfull\Srhs; 
a1 = full(a0); 
  
% Post-Processing ========================================================= 
  
u1 = a1(1:totaln); 
v1 = a1(totaln+1:2*totaln); 
  
u2 = u1; 
v2 = v1; 
  
U0 = []; 
V0 = []; 
  
for i = 1:nj 
     
    U0 = [U0; u2((nj-i)*ni+1:(nj-i+1)*ni)']; 
    V0 = [V0; v2((nj-i)*ni+1:(nj-i+1)*ni)']; 
         
end 
  
tt1 = cputime-tt0 
  



Appendix A A-19 

% Analytical Comparison --------------------------------------------------- 
  
Au = zeros(totaln,1); 
Av = zeros(totaln,1); 
u_xx = zeros(totaln,1); 
u_yy = zeros(totaln,1); 
v_xx = zeros(totaln,1); 
v_yy = zeros(totaln,1); 
u_xy = zeros(totaln,1); 
v_xy = zeros(totaln,1); 
  
count = 1; 
  
for j = 1:nj 
    for i = 1:ni 
     
    xx = (i-1)*h; 
    yy = (j-1)*k; 
         
    cAu = sin(kk1*xx) + sin(kk1*yy) + 2*sin(kk2*yy); 
    cAv = 2*(-0.5*(-2*omega^2*rho*xx + 4*gamma + 8*G)*sqrt(G)*... 
        sqrt(gamma+2*G)*cos(kk2*yy) + omega*(-1*omega*(gamma/2+G)*... 
        rho*cos(kk1*xx)*yy + 0.5*sin(kk1*xx)*sqrt(G)*(gamma+2*G)*... 
        sqrt(rho)))/(sqrt(G*rho)*(gamma+2*G)*omega); 
     
    Au(count)= cAu; 
    Av(count)= cAv; 
    
    u_xx(count) = -sin(kk1*xx)*omega^2*rho/G; 
     
    u_yy(count) = -sin(kk1*yy)*omega^2*rho/G... 
        - 2*sin(kk2*yy)*omega^2*rho/(gamma+2*G); 
     
    v_xx(count) = 2*(yy*omega^3*(gamma/2+G)*rho^2*cos(kk1*xx)/G... 
        - 1/2*sin(kk1*xx)*omega^2*rho^(3/2)*(gamma+2*G)/sqrt(G))... 
    /(sqrt(G*rho)*(gamma+2*G)); 
     
    v_yy(count) = ((-2*omega^2*rho*xx+4*gamma+8*G)*cos(kk2*yy)... 
        *omega*sqrt(rho))/(gamma+2*G)^(3/2); 
     
    v_xy(count) = 2*(-omega^3*rho^(3/2)*sqrt(G)*sin(kk2*yy)... 
        + (omega^3*(gamma/2+G)*rho^(3/2)*sin(kk1*xx))/sqrt(G))... 
        /(sqrt(G)*sqrt(rho)*(gamma+2*G)*omega); 
     
    count = count + 1; 
    end 
end 
  
% u_xxtest = (Suxx1 + 0*Suxx2 + 0*Suxx3)*Au/(gamma+2*G) - u_xx; 
% u_yytest = (Suyy1 + Suyy2 + Suyy3)*Au/G - u_yy; 
% v_xxtest = (Suxx1 + Suxx2 + Suxx3)*Av/(gamma+2*G) - v_xx; 
% v_yytest = (Suyy1 + Suyy2 + Suyy3)*Av/G - v_yy; 
% u_xytest = Sc*Au/(gamma+G) - u_xy; 
% v_xytest = Sc*Av/(gamma+G) - v_xy; 
%  
% u_xx_approx = (Suxx1 + 0*Suxx2 + 0*Suxx3)*Au/(gamma+2*G); 
% u_yy_approx = (Suyy1 + Suyy2 + Suyy3)*Au/G; 
% v_xx_approx = (Suxx1 + Suxx2 + Suxx3)*Av/(gamma+2*G); 
% v_yy_approx = (Suyy1 + Suyy2 + Suyy3)*Av/G; 
% u_xy_approx = Sc*Au/(gamma+G); 
% v_xy_approx = Sc*Av/(gamma+G); 
  
AU0 = []; 
AV0 = []; 
  
for i = 1:nj 
     
    AU0 = [AU0; Au((nj-i)*ni+1:(nj-i+1)*ni)']; 



Appendix A A-20 

    AV0 = [AV0; Av((nj-i)*ni+1:(nj-i+1)*ni)']; 
        
end 
  
% Plot Comparative Results & Evaluate Error ------------------------------- 
  
% Surface Plot comparing x direction displacment amplitudes 
figure(1) 
subplot(1,2,1) 
surf(U0) 
title('U Disp - Numerical') 
shading interp 
subplot(1,2,2) 
surf(AU0) 
title('U Disp - Analytical') 
shading interp 
  
% Surface Plot comparing y direction displacment amplitudes 
figure(2) 
subplot(1,2,1) 
surf(V0) 
title('V Disp - Numerical') 
shading interp 
subplot(1,2,2) 
surf(AV0) 
title('V Disp - Analytical') 
shading interp 
  
paxis1 = 0:1:totaln-1; 
  
EU0 = (U0-AU0)./(max(max(abs(AU0))))*100; 
EV0 = (V0-AV0)./(max(max(abs(AV0))))*100; 
  
% Calculating Maximum Error 
emaxU0 = max(max(abs(U0-AU0)))/(mean(mean(abs(AU0))))*100 
emaxV0 = max(max(abs(V0-AV0)))/(mean(mean(abs(AV0))))*100 
  
nU0 = []; 
nV0 = []; 
  
for i = 1:nj     
    nU0 = [nU0; u2(1:ni)']; 
    nV0 = [nV0; v2(1:ni)']; 
     
    u2 = u2((ni+1):length(u2)); 
    v2 = v2((ni+1):length(v2));       
end 
  
U0 = []; 
V0 = []; 
  
for i = 1:nj     
    U0 = [U0; u1(1:ni)']; 
    V0 = [V0; v1(1:ni)']; 
     
    u1 = u1((ni+1):length(u1)); 
    v1 = v1((ni+1):length(v1));   
    
end 
  
xx1 = (0:h:sampi); 
yy1 = (0:k:sampj)'; 
[X,Y] = meshgrid(xx1,yy1); 
  
% 2D Dot Plot 
figure(3) 
hold on 
for i = 1:length(xx1) 



Appendix A A-21 

    plot(X(:,i) + U0(:,i)./1000,Y(:,i) + V0(:,i)./1000,'.'); 
end 
  
save Infinite100Hz-200-2323T U0 V0 omega 
  
%-------------------------------------------------------------------------- 

 

A6: 2D Non-Homogeneous Forward Simulation Algorithm – Phantom 

Boundary Condition Model 

 

%========================================================================== 
  
% 2D NON-HOMOGENEOUS FORWARD SIMULATION ALGORITHM - PHANTOM B.C. 
% By Samuel J. Houghton 
% 2006 
  
% This algorithm uses Finite Difference Approximations to solve for the 
% Harmonic Displacement Amplitudes from the 2D Plain Strain Navier's 
% Equations.  The medium has pieceweise constant stiffness, with stress 
% continuity enforced at the boundary of regions of differing stiffness. 
% The carcinoma can be any rectangular shape positioned away from the 
% boundary of the global domain. 
  
% This model adopts boundary conditions where the global domain is 
% excited by shear (/or longitudinal) sinusoidal vibrations with constant 
% displacment amplitudes along a single boundary of the square global 
% domain.  This is done using Type I BCs. 
  
% The other 3 boundaries of the global domain are modelled as free 
% boundaries with zero shear and longitudinal stresses being enforced. 
% These are Type II BCs with derivative terms being approximated by Finite 
% Differences. 
  
% This boundary condition model represents the primary model used for the 
% analysis of the inverse algorithms and the 'Box Shake' and 'Edge Effect' 
% BC models can easily be created by adapting this model where appropriate. 
  
%========================================================================== 
  
clear 
clc 
  
tt0 = cputime; 
  
% Definition of Variables ================================================= 
  
rho = 1020;         % Density (kg/m3) 
omega = 2*pi*50;    % Actuation Frequency (rad/s) 
poisson = 0.49;     % Poisson's Ratio 
  
% Specify Displacement Amplitudes along Boundary 
uamp0 = 0.000;           % u displacement (m) 
vamp0 = 0.001;           % v displacement (m) 
  
% Size of Global Domain (m) 
sampi = 0.1; 
sampj = 0.1; 
  
gr = 200;               % Grid Refinement - !!Must be divisible by 10!! 
grefinex = gr; 
grefiney = gr; 
h = sampj/grefinex;     % Step Size 



Appendix A A-22 

k = sampi/grefiney; 
  
nj = sampj/h + 1; 
ni = sampi/k + 1; 
totaln = ni*nj;         % Total No. of Equations 
  
E1 = 30000;             % Define Young's Modulus of Healthy Tissue 
E2 = 10*30000;          % Define Young's Modulus of Carcinoma 
  
G1 = E1/(2+2*poisson); 
gamma1 = poisson*E1/((1+poisson)*(1-2*poisson)); 
G2 = E2/(2+2*poisson); 
gamma2 = poisson*E2/((1+poisson)*(1-2*poisson)); 
  
V = poisson; 
  
% Geometrically Define Carcinoma Position --------------------------------- 
  
x1coord = .02; 
x2coord = .03; 
y1coord = .02; 
y2coord = .03; 
  
% Use Geometric Carcinoma Position to Identify Type of Equations applied to 
% each individual node ---------------------------------------------------- 
  
% Corners numbered clockwise with top left being no. 1 
ic1 = x1coord/sampi*grefinex+1; 
jc1 = y1coord/sampj*grefiney+1; 
corner1 = [ic1 jc1]; 
ic2 = x2coord/sampi*grefinex+1; 
jc2 = y1coord/sampj*grefiney+1; 
corner2 = [ic2 jc2]; 
ic3 = x2coord/sampi*grefinex+1; 
jc3 = y2coord/sampj*grefiney+1; 
corner3 = [ic3 jc3]; 
ic4 = x1coord/sampi*grefinex+1; 
jc4 = y2coord/sampj*grefiney+1; 
corner4 = [ic4 jc4]; 
  
x1eqn = x1coord/sampi*grefinex+1; 
x2eqn = x2coord/sampi*grefinex+1; 
y1eqn = y1coord/sampj*grefiney+1; 
y2eqn = y2coord/sampj*grefiney+1; 
  
yeqnbound = y1eqn:1:y2eqn; 
xeqnbound = x1eqn:1:x2eqn; 
  
lenxeqnb = length(xeqnbound); 
lenyeqnb = length(yeqnbound); 
  
Tq = zeros(lenxeqnb*lenyeqnb,1); 
for i = 1:lenyeqnb 
    for j = 1:lenxeqnb         
        Tq((i-1)*lenxeqnb+j,1) = (yeqnbound(i)-1)*ni+xeqnbound(j);        
    end 
end 
  
Tqcorner1 = Tq(1); 
Tqcorner2 = Tq(lenxeqnb); 
Tqcorner3 = Tq(lenyeqnb*lenxeqnb); 
Tqcorner4 = Tq((lenyeqnb-1)*lenxeqnb+1); 
  
Tqtophoriedge = Tq(2:lenxeqnb-1,1); 
Tqbothoriedge = Tq((lenyeqnb-1)*lenxeqnb+2:lenyeqnb*lenxeqnb-1); 
  
Tqleftvertedge = zeros(lenyeqnb-2,1); 
Tqrighvertedge = zeros(lenyeqnb-2,1); 



Appendix A A-23 

for i = 1:lenyeqnb-2 
    Tqleftvertedge(i,1) = Tq(i*lenxeqnb+1); 
    Tqrighvertedge(i,1) = Tq((i+1)*lenxeqnb); 
end 
  
Tqcentre = zeros(lenyeqnb*lenxeqnb-2*(lenyeqnb+lenxeqnb-2),1); 
for i = 1:lenyeqnb-2 
    Tqcentre((i-1)*(lenxeqnb-2)+1:i*(lenxeqnb-2),1) = Tq(i*lenxeqnb+2:(i+1)*lenxeqnb-
1); 
end 
  
% Define System of Equations ============================================== 
  
nterm = 1; 
  
cc1 = 2*G1 + gamma1; 
cc2 = 2*G2 + gamma2; 
  
% Crossover Terms 
Hcuv5 = (gamma1+G1)/(4*h*k)/nterm; 
Tcuv5 = (gamma2+G2)/(4*h*k)/nterm; 
  
% Initialize Vectors 
  
iSuxx1 = zeros(3*totaln,1); 
iSuyy1 = zeros(3*totaln,1); 
iSufreq = zeros(1*totaln,1); 
iSXBC = zeros(1*totaln,1); 
iSYBC = zeros(1*totaln,1); 
  
jSuxx1 = zeros(3*totaln,1); 
jSuyy1 = zeros(3*totaln,1); 
jSvxx1 = zeros(3*totaln,1); 
jSvyy1 = zeros(3*totaln,1); 
jSufreq = zeros(1*totaln,1); 
jSXBC = zeros(1*totaln,1); 
jSYBC = zeros(1*totaln,1); 
  
sSuxx1 = zeros(3*totaln,1); 
sSuyy1 = zeros(3*totaln,1); 
sSufreq = zeros(3*totaln,1); 
sSXBC = zeros(3*totaln,1); 
sSYBC = zeros(3*totaln,1); 
  
iRHSsparse = zeros(grefiney+1,1); 
jRHSsparse = zeros(grefiney+1,1); 
sRHSsparsex = zeros(grefiney+1,1); 
sRHSsparsey = zeros(grefiney+1,1); 
  
iCXsparse = zeros(4*totaln,1); 
jCXsparse = zeros(4*totaln,1); 
sCXsparse = zeros(4*totaln,1); 
  
iCYsparse = zeros(4*totaln,1); 
jCYsparse = zeros(4*totaln,1); 
sCYsparse = zeros(4*totaln,1); 
  
% Initialize Counts 
  
RHScount = 1; 
Suxx1count = 1; 
Suyy1count = 1; 
Sufreqcount = 1; 
SXBCcount = 1; 
SYBCcount = 1; 
CXcount = 1; 
CYcount = 1; 
  



Appendix A A-24 

tophoricount = 1; 
bothoricount = 1; 
leftvertcount = 1; 
righvertcount = 1; 
centrecount = 1; 
  
% Loop for Each Discrete Node to Formulate Appropriate Equations ---------- 
  
for q = 1:totaln 
     
    % Specify Coordinates of Node of Interest 
    i = ceil(q/ni); 
    if rem(q,ni) ~= 0 
        j = q - ni*floor(q/ni); 
    else 
        j = ni; 
    end 
     
    % Apply Boundary Conditions ------------------------------------------- 
     
    if j == 1       % Left Vertical Boundary - Type I BCs 
        iqx = q; 
        jqx = q; 
        iqy = q; 
        jqy = q;  
        sqx = 1; 
        sqy = 1; 
         
        iRHS = q; 
        jRHS = 1; 
        sRHSx = uamp0; 
        sRHSy = vamp0; 
         
        iRHSsparse(RHScount,1) = iRHS; 
        jRHSsparse(RHScount,1) = jRHS; 
        sRHSsparsex(RHScount,1) = sRHSx; 
        sRHSsparsey(RHScount,1) = sRHSy; 
         
        iXBC(SXBCcount,1) = iqx; 
        iYBC(SYBCcount,1) = iqy; 
        jXBC(SXBCcount,1) = jqx; 
        jYBC(SYBCcount,1) = jqy; 
        sXBC(SXBCcount,1) = sqx; 
        sYBC(SYBCcount,1) = sqy; 
         
        RHScount = RHScount + 1; 
        SXBCcount = SXBCcount + 1; 
        SYBCcount = SYBCcount + 1; 
         
    elseif j == nj  % Right Vertical Boundary - Type II BCs 
         
        if i == 1   % Bottom Right Corner Node - Type II BCs 
             
            % Theta X Equation 
            iqx = ones(3,1)*q; 
            jqx = [q q-1 q-2]'; 
            sqx = [3*(2*G1+gamma1) -4*(2*G1+gamma1) 1*(2*G1+gamma1)]'; 
            iqCx = ones(3,1)*q; 
            jqCx = [q q+ni q+2*ni]; 
            sqCx = [-3*gamma1 4*gamma1 -1*gamma1]'; 
             
            % Shear Stress Equation 
            iqy = ones(3,1)*q; 
            jqy = [q q-1 q-2]';    
            sqy = [3 -4 1]'; 
            iqCy = ones(3,1)*q; 
            jqCy = [q q+ni q+2*ni]'; 
            sqCy = [-3 4 -1]';  



Appendix A A-25 

            iXBC(SXBCcount:SXBCcount+2,1) = iqx; 
            jXBC(SXBCcount:SXBCcount+2,1) = jqx; 
            sXBC(SXBCcount:SXBCcount+2,1) = sqx; 
         
            iYBC(SYBCcount:SYBCcount+2,1) = iqy; 
            jYBC(SYBCcount:SYBCcount+2,1) = jqy; 
            sYBC(SYBCcount:SYBCcount+2,1) = sqy; 
         
            iCXsparse(CXcount:CXcount+2,1) = iqCx; 
            jCXsparse(CXcount:CXcount+2,1) = jqCx; 
            sCXsparse(CXcount:CXcount+2,1) = sqCx; 
         
            iCYsparse(CYcount:CYcount+2,1) = iqCy; 
            jCYsparse(CYcount:CYcount+2,1) = jqCy; 
            sCYsparse(CYcount:CYcount+2,1) = sqCy; 
          
            SXBCcount = SXBCcount + 3; 
            SYBCcount = SYBCcount + 3; 
            CXcount = CXcount + 3; 
            CYcount = CYcount + 3; 
             
        elseif i == ni  % Top Right Corner Node - Type II BCs 
             
            % Theta X Equation 
            iqx = ones(3,1)*q; 
            jqx = [q q-1 q-2]'; 
            sqx = [3*(2*G1+gamma1) -4*(2*G1+gamma1) 1*(2*G1+gamma1)]'; 
            iqCx = ones(3,1)*q; 
            jqCx = [q q-ni q-2*ni]; 
            sqCx = [3*gamma1 -4*gamma1 1*gamma1]'; 
             
            % Shear Stress Equation 
            iqy = ones(3,1)*q; 
            jqy = [q q-1 q-2]';    
            sqy = [3 -4 1]'; 
            iqCy = ones(3,1)*q; 
            jqCy = [q q-ni q-2*ni]'; 
            sqCy = [3 -4 1]';  
             
            iXBC(SXBCcount:SXBCcount+2,1) = iqx; 
            jXBC(SXBCcount:SXBCcount+2,1) = jqx; 
            sXBC(SXBCcount:SXBCcount+2,1) = sqx; 
         
            iYBC(SYBCcount:SYBCcount+2,1) = iqy; 
            jYBC(SYBCcount:SYBCcount+2,1) = jqy; 
            sYBC(SYBCcount:SYBCcount+2,1) = sqy; 
         
            iCXsparse(CXcount:CXcount+2,1) = iqCx; 
            jCXsparse(CXcount:CXcount+2,1) = jqCx; 
            sCXsparse(CXcount:CXcount+2,1) = sqCx; 
            iCYsparse(CYcount:CYcount+2,1) = iqCy; 
            jCYsparse(CYcount:CYcount+2,1) = jqCy; 
            sCYsparse(CYcount:CYcount+2,1) = sqCy; 
          
            SXBCcount = SXBCcount + 3; 
            SYBCcount = SYBCcount + 3; 
            CXcount = CXcount + 3; 
            CYcount = CYcount + 3; 
             
        else 
         
            % Theta X Equation 
            iqx = ones(3,1)*q; 
            jqx = [q q-1 q-2]'; 
            sqx = [3*(2*G1+gamma1) -4*(2*G1+gamma1) 1*(2*G1+gamma1)]'; 
            iqCx = ones(2,1)*q; 
            jqCx = [q-ni q+ni]; 
            sqCx = [-gamma1 gamma1]'; 



Appendix A A-26 

            % Shear Stress Equation 
            iqy = ones(3,1)*q; 
            jqy = [q q-1 q-2]';    
            sqy = [3 -4 1]'; 
            iqCy = ones(2,1)*q; 
            jqCy = [q-ni q+ni]'; 
            sqCy = [-1 1]'; 
             
            iXBC(SXBCcount:SXBCcount+2,1) = iqx; 
            jXBC(SXBCcount:SXBCcount+2,1) = jqx; 
            sXBC(SXBCcount:SXBCcount+2,1) = sqx; 
         
            iYBC(SYBCcount:SYBCcount+2,1) = iqy; 
            jYBC(SYBCcount:SYBCcount+2,1) = jqy; 
            sYBC(SYBCcount:SYBCcount+2,1) = sqy; 
         
            iCXsparse(CXcount:CXcount+1,1) = iqCx; 
            jCXsparse(CXcount:CXcount+1,1) = jqCx; 
            sCXsparse(CXcount:CXcount+1,1) = sqCx; 
         
            iCYsparse(CYcount:CYcount+1,1) = iqCy; 
            jCYsparse(CYcount:CYcount+1,1) = jqCy; 
            sCYsparse(CYcount:CYcount+1,1) = sqCy; 
          
            SXBCcount = SXBCcount + 3; 
            SYBCcount = SYBCcount + 3; 
            CXcount = CXcount + 2; 
            CYcount = CYcount + 2; 
        end 
         
    elseif i == 1   % Bottom Horizontal Boundary - Type II BCs 
         
        % Shear Stress Equation 
        iqx = ones(3,1)*q; 
        jqx = [q q+ni q+2*ni]'; 
        sqx = [-3 4 -1]'; 
        iqCx = ones(2,1)*q; 
        jqCx = [q-1 q+1]'; 
        sqCx = [-1 1]'; 
         
        % Theta Y Equation 
        iqy = ones(3,1)*q; 
        jqy = [q q+ni q+2*ni]';    
        sqy = [-3*cc1 4*cc1 -cc1]'; 
        iqCy = ones(2,1)*q; 
        jqCy = [q-1 q+1]'; 
        sqCy = [-gamma1 gamma1]'; 
         
        iXBC(SXBCcount:SXBCcount+2,1) = iqx; 
        jXBC(SXBCcount:SXBCcount+2,1) = jqx; 
        sXBC(SXBCcount:SXBCcount+2,1) = sqx; 
         
        iYBC(SYBCcount:SYBCcount+2,1) = iqy; 
        jYBC(SYBCcount:SYBCcount+2,1) = jqy; 
        sYBC(SYBCcount:SYBCcount+2,1) = sqy; 
         
        iCXsparse(CXcount:CXcount+1,1) = iqCx; 
        jCXsparse(CXcount:CXcount+1,1) = jqCx; 
        sCXsparse(CXcount:CXcount+1,1) = sqCx; 
         
        iCYsparse(CYcount:CYcount+1,1) = iqCy; 
        jCYsparse(CYcount:CYcount+1,1) = jqCy; 
        sCYsparse(CYcount:CYcount+1,1) = sqCy; 
          
        SXBCcount = SXBCcount + 3; 
        SYBCcount = SYBCcount + 3; 
        CXcount = CXcount + 2; 
        CYcount = CYcount + 2; 



Appendix A A-27 

    elseif i == ni  % Top Horizontal Boundary - Type II BCs 
         
        % Shear Stress Equation 
        iqx = ones(3,1)*q; 
        jqx = [q q-ni q-2*ni]'; 
        sqx = [3 -4 1]'; 
        iqCx = ones(2,1)*q; 
        jqCx = [q-1 q+1]'; 
        sqCx = [-1 1]'; 
         
        % Theta Y Equation 
        iqy = ones(3,1)*q; 
        jqy = [q q-ni q-2*ni]';    
        sqy = [3*cc1 -4*cc1 cc1]'; 
        iqCy = ones(2,1)*q; 
        jqCy = [q-1 q+1]'; 
        sqCy = [-gamma1 gamma1]'; 
         
        iXBC(SXBCcount:SXBCcount+2,1) = iqx; 
        jXBC(SXBCcount:SXBCcount+2,1) = jqx; 
        sXBC(SXBCcount:SXBCcount+2,1) = sqx; 
         
        iYBC(SYBCcount:SYBCcount+2,1) = iqy; 
        jYBC(SYBCcount:SYBCcount+2,1) = jqy; 
        sYBC(SYBCcount:SYBCcount+2,1) = sqy; 
         
        iCXsparse(CXcount:CXcount+1,1) = iqCx; 
        jCXsparse(CXcount:CXcount+1,1) = jqCx; 
        sCXsparse(CXcount:CXcount+1,1) = sqCx; 
         
        iCYsparse(CYcount:CYcount+1,1) = iqCy; 
        jCYsparse(CYcount:CYcount+1,1) = jqCy; 
        sCYsparse(CYcount:CYcount+1,1) = sqCy; 
          
        SXBCcount = SXBCcount + 3; 
        SYBCcount = SYBCcount + 3; 
        CXcount = CXcount + 2; 
        CYcount = CYcount + 2; 
         
        % Apply Stress Continuity Equations to Stiffness Boundary --------- 
    
    elseif q == Tqcorner1 
         
        % Equation 1 
        iqx = ones(5,1)*q; 
        jqx = [q-2 q-1 q q+1 q+2]'; 
        sqx = [cc1 -4*cc1 3*(cc1+cc2) -4*cc2 cc2]'; 
         
        iqCx = ones(5,1)*q; 
        jqCx = [q-2*ni q-ni q q+ni q+2*ni]'; 
        sqCx = [gamma1 -4*gamma1 3*(gamma1+gamma2) -4*gamma2 gamma2]'; 
         
        % Equation2 
        iqy = ones(5,1)*q; 
        jqy = [q-2*ni q-ni q q+ni q+2*ni]'; 
        sqy = [cc1 -4*cc1 3*(cc1+cc2) -4*cc2 cc2]'; 
         
        iqCy = ones(5,1)*q; 
        jqCy = [q-2 q-1 q q+1 q+2]'; 
        sqCy = [gamma1 -4*gamma1 3*(gamma1+gamma2) -4*gamma2 gamma2]'; 
         
        % Add terms to vectors 
        iXBC(SXBCcount:SXBCcount+4,1) = iqx; 
        jXBC(SXBCcount:SXBCcount+4,1) = jqx; 
        sXBC(SXBCcount:SXBCcount+4,1) = sqx; 
         
        iYBC(SYBCcount:SYBCcount+4,1) = iqy; 
        jYBC(SYBCcount:SYBCcount+4,1) = jqy; 



Appendix A A-28 

        sYBC(SYBCcount:SYBCcount+4,1) = sqy; 
         
        SXBCcount = SXBCcount + 5; 
        SYBCcount = SYBCcount + 5; 
         
        iCXsparse(CXcount:CXcount+4,1) = iqCx; 
        jCXsparse(CXcount:CXcount+4,1) = jqCx; 
        sCXsparse(CXcount:CXcount+4,1) = sqCx; 
         
        iCYsparse(CYcount:CYcount+4,1) = iqCy; 
        jCYsparse(CYcount:CYcount+4,1) = jqCy; 
        sCYsparse(CYcount:CYcount+4,1) = sqCy; 
         
        CXcount = CXcount + 5; 
        CYcount = CYcount + 5; 
         
    elseif q == Tqcorner2 
         
        % Equation 1 
        iqx = ones(5,1)*q; 
        jqx = [q-2 q-1 q q+1 q+2]'; 
        sqx = [cc2 -4*cc2 3*(cc2+cc1) -4*cc1 cc1]'; 
         
        iqCx = ones(5,1)*q; 
        jqCx = [q-2*ni q-ni q q+ni q+2*ni]'; 
        sqCx = [gamma1 -4*gamma1 3*(gamma1+gamma2) -4*gamma2 gamma2]'; 
         
        % Equation 2 
        iqy = ones(5,1)*q; 
        jqy = [q-2*ni q-ni q q+ni q+2*ni]'; 
        sqy = [cc1 -4*cc1 3*(cc1+cc2) -4*cc2 cc2]'; 
         
        iqCy = ones(5,1)*q; 
        jqCy = [q-2 q-1 q q+1 q+2]'; 
        sqCy = [gamma2 -4*gamma2 3*(gamma2+gamma1) -4*gamma1 gamma1]'; 
         
        % Add terms to vectors 
        iXBC(SXBCcount:SXBCcount+4,1) = iqx; 
        jXBC(SXBCcount:SXBCcount+4,1) = jqx; 
        sXBC(SXBCcount:SXBCcount+4,1) = sqx; 
         
        iYBC(SYBCcount:SYBCcount+4,1) = iqy; 
        jYBC(SYBCcount:SYBCcount+4,1) = jqy; 
        sYBC(SYBCcount:SYBCcount+4,1) = sqy; 
         
        SXBCcount = SXBCcount + 5; 
        SYBCcount = SYBCcount + 5; 
         
        iCXsparse(CXcount:CXcount+4,1) = iqCx; 
        jCXsparse(CXcount:CXcount+4,1) = jqCx; 
        sCXsparse(CXcount:CXcount+4,1) = sqCx; 
         
        iCYsparse(CYcount:CYcount+4,1) = iqCy; 
        jCYsparse(CYcount:CYcount+4,1) = jqCy; 
        sCYsparse(CYcount:CYcount+4,1) = sqCy; 
         
        CXcount = CXcount + 5; 
        CYcount = CYcount + 5; 
         
         
    elseif q == Tqcorner3 
       
        % Equation 1 
        iqx = ones(5,1)*q; 
        jqx = [q-2 q-1 q q+1 q+2]'; 
        sqx = [cc2 -4*cc2 3*(cc2+cc1) -4*cc1 cc1]'; 
         
        iqCx = ones(5,1)*q; 



Appendix A A-29 

        jqCx = [q-2*ni q-ni q q+ni q+2*ni]'; 
        sqCx = [gamma2 -4*gamma2 3*(gamma2+gamma1) -4*gamma1 gamma1]'; 
         
        % Equation2 
        iqy = ones(5,1)*q; 
        jqy = [q-2*ni q-ni q q+ni q+2*ni]'; 
        sqy = [cc2 -4*cc2 3*(cc2+cc1) -4*cc1 cc1]'; 
         
        iqCy = ones(5,1)*q; 
        jqCy = [q-2 q-1 q q+1 q+2]'; 
        sqCy = [gamma2 -4*gamma2 3*(gamma2+gamma1) -4*gamma1 gamma1]'; 
         
        % Add terms to vectors 
        iXBC(SXBCcount:SXBCcount+4,1) = iqx; 
        jXBC(SXBCcount:SXBCcount+4,1) = jqx; 
        sXBC(SXBCcount:SXBCcount+4,1) = sqx; 
         
        iYBC(SYBCcount:SYBCcount+4,1) = iqy; 
        jYBC(SYBCcount:SYBCcount+4,1) = jqy; 
        sYBC(SYBCcount:SYBCcount+4,1) = sqy; 
         
        SXBCcount = SXBCcount + 5; 
        SYBCcount = SYBCcount + 5; 
         
        iCXsparse(CXcount:CXcount+4,1) = iqCx; 
        jCXsparse(CXcount:CXcount+4,1) = jqCx; 
        sCXsparse(CXcount:CXcount+4,1) = sqCx; 
         
        iCYsparse(CYcount:CYcount+4,1) = iqCy; 
        jCYsparse(CYcount:CYcount+4,1) = jqCy; 
        sCYsparse(CYcount:CYcount+4,1) = sqCy; 
         
        CXcount = CXcount + 5; 
        CYcount = CYcount + 5; 
         
    elseif q == Tqcorner4 
         
        % Equation 1 
        iqx = ones(5,1)*q; 
        jqx = [q-2 q-1 q q+1 q+2]'; 
        sqx = [cc1 -4*cc1 3*(cc1+cc2) -4*cc2 cc2]'; 
         
        iqCx = ones(5,1)*q; 
        jqCx = [q-2*ni q-ni q q+ni q+2*ni]'; 
        sqCx = [gamma2 -4*gamma2 3*(gamma2+gamma1) -4*gamma1 gamma1]'; 
         
        % Equation2 
        iqy = ones(5,1)*q; 
        jqy = [q-2*ni q-ni q q+ni q+2*ni]'; 
        sqy = [cc2 -4*cc2 3*(cc2+cc1) -4*cc1 cc1]'; 
         
        iqCy = ones(5,1)*q; 
        jqCy = [q-2 q-1 q q+1 q+2]'; 
        sqCy = [gamma1 -4*gamma1 3*(gamma1+gamma2) -4*gamma2 gamma2]'; 
         
        % Add terms to vectors 
        iXBC(SXBCcount:SXBCcount+4,1) = iqx; 
        jXBC(SXBCcount:SXBCcount+4,1) = jqx; 
        sXBC(SXBCcount:SXBCcount+4,1) = sqx; 
         
        iYBC(SYBCcount:SYBCcount+4,1) = iqy; 
        jYBC(SYBCcount:SYBCcount+4,1) = jqy; 
        sYBC(SYBCcount:SYBCcount+4,1) = sqy; 
         
        SXBCcount = SXBCcount + 5; 
        SYBCcount = SYBCcount + 5; 
         
        iCXsparse(CXcount:CXcount+4,1) = iqCx; 



Appendix A A-30 

        jCXsparse(CXcount:CXcount+4,1) = jqCx; 
        sCXsparse(CXcount:CXcount+4,1) = sqCx; 
         
        iCYsparse(CYcount:CYcount+4,1) = iqCy; 
        jCYsparse(CYcount:CYcount+4,1) = jqCy; 
        sCYsparse(CYcount:CYcount+4,1) = sqCy; 
         
        CXcount = CXcount + 5; 
        CYcount = CYcount + 5; 
            
    elseif q == Tqtophoriedge(tophoricount) 
                 
        % Shear Stress Continuity Equation 
        iqx = ones(5,1)*q; 
        jqx = [q-2*ni q-ni q q+ni q+2*ni]'; 
        sqx = [G1 -4*G1 3*(G1+G2) -4*G2 G2]'; 
         
        iqCx = ones(2,1)*q; 
        jqCx = [q-1 q+1]'; 
        sqCx = [(-G1+G2) (G1-G2)]'; 
         
        % Normal Stress Continuity Equation 
        iqy = ones(5,1)*q; 
        jqy = [q-2*ni q-ni q q+ni q+2*ni]'; 
        sqy = [cc1 -4*cc1 3*(cc1+cc2) -4*cc2 cc2]'; 
         
        iqCy = ones(2,1)*q; 
        jqCy = [q-1 q+1]'; 
        sqCy = [(-gamma1+gamma2) (gamma1-gamma2)]'; 
         
        % Add terms to vectors 
        iXBC(SXBCcount:SXBCcount+4,1) = iqx; 
        jXBC(SXBCcount:SXBCcount+4,1) = jqx; 
        sXBC(SXBCcount:SXBCcount+4,1) = sqx; 
         
        iYBC(SYBCcount:SYBCcount+4,1) = iqy; 
        jYBC(SYBCcount:SYBCcount+4,1) = jqy; 
        sYBC(SYBCcount:SYBCcount+4,1) = sqy; 
         
        SXBCcount = SXBCcount + 5; 
        SYBCcount = SYBCcount + 5; 
         
        iCXsparse(CXcount:CXcount+1,1) = iqCx; 
        jCXsparse(CXcount:CXcount+1,1) = jqCx; 
        sCXsparse(CXcount:CXcount+1,1) = sqCx; 
         
        iCYsparse(CYcount:CYcount+1,1) = iqCy; 
        jCYsparse(CYcount:CYcount+1,1) = jqCy; 
        sCYsparse(CYcount:CYcount+1,1) = sqCy; 
         
        CXcount = CXcount + 2; 
        CYcount = CYcount + 2; 
         
        if tophoricount == length(Tqtophoriedge) 
        else 
            tophoricount = tophoricount + 1; 
        end 
  
    elseif q == Tqbothoriedge(bothoricount) 
                 
        % Shear Stress Continuity Equation 
        iqx = ones(5,1)*q; 
        jqx = [q-2*ni q-ni q q+ni q+2*ni]'; 
        sqx = [G2 -4*G2 3*(G2+G1) -4*G1 G1]'; 
         
        iqCx = ones(2,1)*q; 
        jqCx = [q-1 q+1]'; 
        sqCx = [(-G2+G1) (G2-G1)]'; 



Appendix A A-31 

        % Normal Stress Contniuity Equation 
        iqy = ones(5,1)*q; 
        jqy = [q-2*ni q-ni q q+ni q+2*ni]'; 
        sqy = [cc2 -4*cc2 3*(cc2+cc1) -4*cc1 cc1]'; 
         
        iqCy = ones(2,1)*q; 
        jqCy = [q-1 q+1]'; 
        sqCy = [(-gamma2+gamma1) (gamma2-gamma1)]'; 
         
        % Add terms to vectors 
        iXBC(SXBCcount:SXBCcount+4,1) = iqx; 
        jXBC(SXBCcount:SXBCcount+4,1) = jqx; 
        sXBC(SXBCcount:SXBCcount+4,1) = sqx; 
         
        iYBC(SYBCcount:SYBCcount+4,1) = iqy; 
        jYBC(SYBCcount:SYBCcount+4,1) = jqy; 
        sYBC(SYBCcount:SYBCcount+4,1) = sqy; 
         
        SXBCcount = SXBCcount + 5; 
        SYBCcount = SYBCcount + 5; 
         
        iCXsparse(CXcount:CXcount+1,1) = iqCx; 
        jCXsparse(CXcount:CXcount+1,1) = jqCx; 
        sCXsparse(CXcount:CXcount+1,1) = sqCx; 
         
        iCYsparse(CYcount:CYcount+1,1) = iqCy; 
        jCYsparse(CYcount:CYcount+1,1) = jqCy; 
        sCYsparse(CYcount:CYcount+1,1) = sqCy; 
         
        CXcount = CXcount + 2; 
        CYcount = CYcount + 2; 
         
        if bothoricount == length(Tqbothoriedge) 
        else 
            bothoricount = bothoricount + 1; 
        end 
         
    elseif q == Tqleftvertedge(leftvertcount) 
         
        % Normal Stress Continuity Equation 
        iqx = ones(5,1)*q; 
        jqx = [q-2 q-1 q q+1 q+2]'; 
        sqx = [cc1 -4*cc1 3*(cc1+cc2) -4*cc2 cc2]'; 
         
        iqCx = ones(2,1)*q; 
        jqCx = [q-ni q+ni]'; 
        sqCx = [(-gamma1+gamma2) (gamma1-gamma2)]'; 
        % Shear Stress Continuity Equation 
        iqy = ones(5,1)*q; 
        jqy = [q-2 q-1 q q+1 q+2]'; 
        sqy = [G1 -4*G1 3*(G1+G2) -4*G2 G2]'; 
         
        iqCy = ones(2,1)*q; 
        jqCy = [q-ni q+ni]'; 
        sqCy = [(-G1+G2) (G1-G2)]'; 
         
        % Add terms to vectors 
        iXBC(SXBCcount:SXBCcount+4,1) = iqx; 
        jXBC(SXBCcount:SXBCcount+4,1) = jqx; 
        sXBC(SXBCcount:SXBCcount+4,1) = sqx; 
         
        iYBC(SYBCcount:SYBCcount+4,1) = iqy; 
        jYBC(SYBCcount:SYBCcount+4,1) = jqy; 
        sYBC(SYBCcount:SYBCcount+4,1) = sqy; 
         
        SXBCcount = SXBCcount + 5; 
        SYBCcount = SYBCcount + 5; 
         



Appendix A A-32 

        iCXsparse(CXcount:CXcount+1,1) = iqCx; 
        jCXsparse(CXcount:CXcount+1,1) = jqCx; 
        sCXsparse(CXcount:CXcount+1,1) = sqCx; 
         
        iCYsparse(CYcount:CYcount+1,1) = iqCy; 
        jCYsparse(CYcount:CYcount+1,1) = jqCy; 
        sCYsparse(CYcount:CYcount+1,1) = sqCy; 
         
        CXcount = CXcount + 2; 
        CYcount = CYcount + 2; 
         
        if leftvertcount == length(Tqleftvertedge) 
        else 
            leftvertcount = leftvertcount + 1; 
        end 
     
    elseif q == Tqrighvertedge(righvertcount) 
         
        % Normal Stress Continuity Equation 
        iqx = ones(5,1)*q; 
        jqx = [q-2 q-1 q q+1 q+2]'; 
        sqx = [cc2 -4*cc2 3*(cc2+cc1) -4*cc1 cc1]'; 
         
        iqCx = ones(2,1)*q; 
        jqCx = [q-ni q+ni]'; 
        sqCx = [(-gamma2+gamma1) (gamma2-gamma1)]'; 
         
        % Shear Stress Continuity Equation 
        iqy = ones(5,1)*q; 
        jqy = [q-2 q-1 q q+1 q+2]'; 
        sqy = [G2 -4*G2 3*(G2+G1) -4*G1 G1]'; 
         
        iqCy = ones(2,1)*q; 
        jqCy = [q-ni q+ni]'; 
        sqCy = [(-G2+G1) (G2-G1)]'; 
         
        % Add terms to vectors 
        iXBC(SXBCcount:SXBCcount+4,1) = iqx; 
        jXBC(SXBCcount:SXBCcount+4,1) = jqx; 
        sXBC(SXBCcount:SXBCcount+4,1) = sqx; 
         
        iYBC(SYBCcount:SYBCcount+4,1) = iqy; 
        jYBC(SYBCcount:SYBCcount+4,1) = jqy; 
        sYBC(SYBCcount:SYBCcount+4,1) = sqy; 
         
        SXBCcount = SXBCcount + 5; 
        SYBCcount = SYBCcount + 5; 
        iCXsparse(CXcount:CXcount+1,1) = iqCx; 
        jCXsparse(CXcount:CXcount+1,1) = jqCx; 
        sCXsparse(CXcount:CXcount+1,1) = sqCx; 
         
        iCYsparse(CYcount:CYcount+1,1) = iqCy; 
        jCYsparse(CYcount:CYcount+1,1) = jqCy; 
        sCYsparse(CYcount:CYcount+1,1) = sqCy; 
         
        CXcount = CXcount + 2; 
        CYcount = CYcount + 2; 
         
        if righvertcount == length(Tqrighvertedge) 
        else 
            righvertcount = righvertcount + 1; 
        end 
         
    elseif q == Tqcentre(centrecount) 
         
 
 
 



Appendix A A-33 

        % Apply Finite Differnce Approximations to Centre Carcinoma Nodes - 
         
        % Suxx1/Svyy1 ----------------------------------------------------- 
         
        iqSuxx1 = ones(3,1)*q; 
        jqSuxx1 = [q-1 q q+1]'; 
        sqSuxx1 = [(gamma2+2*G2)/nterm/h^2 -2*(gamma2+2*G2)/nterm/h^2 
(gamma2+2*G2)/nterm/h^2]'; 
         
        jqSvyy1 = [q-ni q q+ni]'; 
         
        iSuxx1(Suxx1count:Suxx1count+2,1) = iqSuxx1; 
        jSuxx1(Suxx1count:Suxx1count+2,1) = jqSuxx1; 
        sSuxx1(Suxx1count:Suxx1count+2,1) = sqSuxx1; 
         
        jSvyy1(Suxx1count:Suxx1count+2,1) = jqSvyy1; 
         
        Suxx1count = Suxx1count + 3; 
         
        % Suyy1/Svxx1 ----------------------------------------------------- 
         
        iqSuyy1 = ones(3,1)*q; 
        jqSuyy1 = [q-ni q q+ni]'; 
        sqSuyy1 = [G2/nterm/h^2 -2*G2/nterm/h^2 G2/nterm/h^2]'; 
         
        jqSvxx1 = [q-1 q q+1]'; 
         
        iSuyy1(Suyy1count:Suyy1count+2,1) = iqSuyy1; 
        jSuyy1(Suyy1count:Suyy1count+2,1) = jqSuyy1; 
        sSuyy1(Suyy1count:Suyy1count+2,1) = sqSuyy1; 
         
        jSvxx1(Suyy1count:Suyy1count+2,1) = jqSvxx1; 
         
        Suyy1count = Suyy1count + 3; 
         
        % Sufreq ---------------------------------------------------------- 
        iqSufreq = q; 
        jqSufreq = q; 
        sqSufreq = rho*omega^2/nterm; 
         
        iSufreq(Sufreqcount,1) = iqSufreq; 
        jSufreq(Sufreqcount,1) = jqSufreq; 
        sSufreq(Sufreqcount,1) = sqSufreq; 
         
        Sufreqcount = Sufreqcount + 1; 
         
        % Cross-Over Terms------------------------------------------------- 
         
        iq = ones(4,1)*q; 
        jq = [(q-ni-1) (q-ni+1) (q+ni-1) (q+ni+1)]'; 
        sq = [Tcuv5 -Tcuv5 -Tcuv5 Tcuv5]'; 
         
        iCXsparse(CXcount:CXcount+3,1) = iq; 
        jCXsparse(CXcount:CXcount+3,1) = jq; 
        sCXsparse(CXcount:CXcount+3,1) = sq; 
        iCYsparse(CYcount:CYcount+3,1) = iq; 
        jCYsparse(CYcount:CYcount+3,1) = jq; 
        sCYsparse(CYcount:CYcount+3,1) = sq; 
         
        CXcount = CXcount + 4; 
        CYcount = CYcount + 4; 
         
        if centrecount == length(Tqcentre) 
        else 
            centrecount = centrecount + 1; 
        end 
         
    else 



Appendix A A-34 

        % Apply Finite Differnce Approximations to Centre Healthy Nodes --- 
         
        % Suxx1/Svyy1 ----------------------------------------------------- 
         
        iqSuxx1 = ones(3,1)*q; 
        jqSuxx1 = [q-1 q q+1]'; 
        sqSuxx1 = [(gamma1+2*G1)/nterm/h^2 -2*(gamma1+2*G1)/nterm/h^2 
(gamma1+2*G1)/nterm/h^2]'; 
         
        jqSvyy1 = [q-ni q q+ni]'; 
         
        iSuxx1(Suxx1count:Suxx1count+2,1) = iqSuxx1; 
        jSuxx1(Suxx1count:Suxx1count+2,1) = jqSuxx1; 
        sSuxx1(Suxx1count:Suxx1count+2,1) = sqSuxx1; 
         
        jSvyy1(Suxx1count:Suxx1count+2,1) = jqSvyy1; 
         
        Suxx1count = Suxx1count + 3; 
         
        % Suyy1/Svxx1 ----------------------------------------------------- 
         
        iqSuyy1 = ones(3,1)*q; 
        jqSuyy1 = [q-ni q q+ni]'; 
        sqSuyy1 = [G1/nterm/h^2 -2*G1/nterm/h^2 G1/nterm/h^2]'; 
         
        jqSvxx1 = [q-1 q q+1]'; 
         
        iSuyy1(Suyy1count:Suyy1count+2,1) = iqSuyy1; 
        jSuyy1(Suyy1count:Suyy1count+2,1) = jqSuyy1; 
        sSuyy1(Suyy1count:Suyy1count+2,1) = sqSuyy1; 
         
        jSvxx1(Suyy1count:Suyy1count+2,1) = jqSvxx1; 
         
        Suyy1count = Suyy1count + 3; 
         
        % Sufreq ---------------------------------------------------------- 
        iqSufreq = q; 
        jqSufreq = q; 
        sqSufreq = rho*omega^2/nterm; 
         
        iSufreq(Sufreqcount,1) = iqSufreq; 
        jSufreq(Sufreqcount,1) = jqSufreq; 
        sSufreq(Sufreqcount,1) = sqSufreq; 
         
        Sufreqcount = Sufreqcount + 1; 
         
        % Cross-Over Terms------------------------------------------------- 
         
        iq = ones(4,1)*q; 
        jq = [(q-ni-1) (q-ni+1) (q+ni-1) (q+ni+1)]'; 
        sq = [Hcuv5 -Hcuv5 -Hcuv5 Hcuv5]'; 
         
        iCXsparse(CXcount:CXcount+3,1) = iq; 
        jCXsparse(CXcount:CXcount+3,1) = jq; 
        sCXsparse(CXcount:CXcount+3,1) = sq; 
        iCYsparse(CYcount:CYcount+3,1) = iq; 
        jCYsparse(CYcount:CYcount+3,1) = jq; 
        sCYsparse(CYcount:CYcount+3,1) = sq; 
         
        CXcount = CXcount + 4; 
        CYcount = CYcount + 4; 
               
    end 
end 
  
iSuxx1 = iSuxx1(find(iSuxx1)); 
iSuyy1 = iSuyy1(find(iSuyy1)); 
iSufreq = iSufreq(find(iSufreq)); 



Appendix A A-35 

iXBC = iXBC(find(iXBC)); 
iYBC = iYBC(find(iYBC)); 
  
jSuxx1 = jSuxx1(find(jSuxx1)); 
jSuyy1 = jSuyy1(find(jSuyy1)); 
jSvyy1 = jSvyy1(find(jSvyy1)); 
jSvxx1 = jSvxx1(find(jSvxx1)); 
jSufreq = jSufreq(find(iSufreq)); 
jXBC = jXBC(find(jXBC)); 
jYBC = jYBC(find(jYBC)); 
  
sSuxx1 = sSuxx1(find(sSuxx1)); 
sSuyy1 = sSuyy1(find(sSuyy1)); 
sSufreq = sSufreq(find(sSufreq)); 
sXBC = sXBC(find(iXBC)); 
sYBC = sYBC(find(iYBC)); 
  
% Convert i, j and s Vectors to Sparse Matrix Format ---------------------- 
  
Suxx1 = sparse(iSuxx1,jSuxx1,sSuxx1,ni*nj,ni*nj); 
Suyy1 = sparse(iSuyy1,jSuyy1,sSuyy1,ni*nj,ni*nj); 
  
Svyy1 = sparse(iSuxx1,jSvyy1,sSuxx1,ni*nj,ni*nj); 
Svxx1 = sparse(iSuyy1,jSvxx1,sSuyy1,ni*nj,ni*nj); 
  
Sufreq = sparse(iSufreq,jSufreq,sSufreq,ni*nj,ni*nj); 
SXBC = sparse(iXBC,jXBC,sXBC,ni*nj,ni*nj); 
SYBC = sparse(iYBC,jYBC,sYBC,ni*nj,ni*nj); 
  
Sx = (Suxx1+Suyy1+Sufreq+SXBC); 
Sy = (Svyy1+Svxx1+Sufreq+SYBC); 
  
iRHSsparse = [iRHSsparse; iRHSsparse+totaln]; 
jRHSsparse = [jRHSsparse; jRHSsparse]; 
sRHSsparse = [sRHSsparsex; sRHSsparsey]; 
  
Srhs = sparse(iRHSsparse,jRHSsparse,sRHSsparse,2*ni*nj,1); 
  
iCXsparse = iCXsparse(find(iCXsparse)); 
jCXsparse = jCXsparse(find(jCXsparse)); 
sCXsparse = sCXsparse(find(iCXsparse)); 
  
Scx = sparse(iCXsparse,jCXsparse,sCXsparse,ni*nj,ni*nj); 
  
iCYsparse = iCYsparse(find(iCYsparse)); 
jCYsparse = jCYsparse(find(jCYsparse)); 
sCYsparse = sCYsparse(find(iCYsparse)); 
  
Scy = sparse(iCYsparse,jCYsparse,sCYsparse,ni*nj,ni*nj); 
% Clear Unnecessary Variables --------------------------------------------- 
  
clear Svxx1 Svyy1 Suyy1 Suxx1 Sufreq SXBC SYBC 
  
clear sCXsparse jCXsparse iCXsparse  
clear sCYsparse jCYsparse iCYsparse 
clear iSXBC iSYBC jSXBC jSYBC sSXBC sSYBC 
clear iSuxx1 jSuxx1 sSuxx1 
clear iSuyy1 jSuyy1 sSuyy1 
clear iSvxx1 jSvxx1 sSvxx1 
clear iSvyy1 jSvyy1 sSvyy1 
clear iSufreq jSufreq sSufreq 
  
% Combine Matrices & Solve System of Equations----------------------------- 
  
Sfull = [Sx Scx; Scy Sy]; 
  
clear Sx Scx Scy Sy 
  



Appendix A A-36 

a0 = Sfull\Srhs; 
a1 = full(a0); 
  
% Post-Processing ========================================================= 
  
u1 = a1(1:totaln); 
v1 = a1(totaln+1:2*totaln); 
  
U0 = []; 
V0 = []; 
  
for i = 1:nj    
    U0 = [U0; u1(1:ni)']; 
    V0 = [V0; v1(1:ni)']; 
     
    u1 = u1((ni+1):length(u1)); 
    v1 = v1((ni+1):length(v1));     
end 
  
xx1 = (0:h:sampi); 
yy1 = (0:k:sampj)'; 
[X,Y] = meshgrid(xx1,yy1); 
xcount = 1; 
ycount = 1; 
[eX1,eY1] = meshgrid(xeqnbound,yeqnbound); 
  
% 2D Dot Plot 
figure(1) 
clf 
hold on 
for i = 1:length(xx1)     
        plot(X(:,i)+U0(:,i),Y(:,i) + V0(:,i),'b.'); 
end 
  
  
% 2D Dot Plot to include Carcinoma Position in RED 
% figure(1) 
% clf 
% hold on 
% for i = 1:length(xx1) 
%     for j = 1:length(yy1) 
%          
%         if i == xeqnbound(xcount) 
%                  
%             if j == yeqnbound(ycount) 
%                 plot(X(j,i)+U0(j,i),Y(j,i) + V0(j,i),'r.'); 
%                 ycount = ycount + 1; 
%             else 
%                 plot(X(j,i)+U0(j,i),Y(j,i) + V0(j,i),'b.'); 
%             end 
%          
%         else 
%             plot(X(j,i)+U0(j,i),Y(j,i) + V0(j,i),'b.'); 
%         end 
%          
%         if ycount > length(yeqnbound) 
%             ycount = 1; 
%             xcount = xcount + 1; 
%         end 
%          
%         if xcount > length(xeqnbound) 
%             xcount = 1; 
%         end 
%          
%     end 
% end 
  
% Surface Plots of x & y Displacement Amplitudes 



Appendix A A-37 

figure(2) 
subplot(1,2,1) 
title('Displacement in X direction'); 
surf(X,Y,U0) 
shading interp 
subplot(1,2,2) 
title('Displacement in Y direction'); 
surf(X,Y,V0) 
shading interp 
  
%-------------------------------------------------------------------------- 
  
% save Phantom50Hz-200-2323T U0 V0 omega 
  
tt1 = cputime - tt0 
  
%-------------------------------------------------------------------------- 

 

A7: 2D Homogeneous Inverse Algorithm – Initial Method 

 

%========================================================================== 
  
% 2D HOMOGENEOUS INVERSE ALGORITHM -INITIAL METHOD 
% By Samuel J. Houghton 
% 2006 
  
% This inverse algorithm determines the Young's Modulus of 2D plain strain  
% homogeneous elastic medium using an Origin Base Point Double Integral 
% method 
  
%========================================================================== 
  
clear all 
close all 
clc 
  
load BoxShake100Hz-700-homo 
  
% Define Parameters ======================================================= 
  
samp = 0.1;                 % Size of Global Domain 
mu = 0.49;                  % Poisson's Ratio 
rho = 1020;                 % Density (kg/m3) 
sU0 = size(U0); 
h_old = samp/(sU0(1)-1); 
  
ip = 200;                   % No. of Integration Points 
noeqn = 10;                 % No. of Equations for Each Navier's Equation 
  
h = samp/(ip);              % Step Size 
gr = ip; 
  
a1 = mu/((1+mu)*(1-2*mu)) + 1/(1+mu); 
b1 = 1/(2+2*mu); 
c1 = mu/((1+mu)*(1-2*mu)) + 1/(2+2*mu); 
  
[X Y] = meshgrid(0:h:samp); 
  
% Interpolate Dataset to Required Data Resolution 
[XI YI] = meshgrid(0:h_old:samp); 
  
U1 = interp2(XI,YI,U0,X,Y,'cubic'); 
V1 = interp2(XI,YI,V0,X,Y,'cubic'); 



Appendix A A-38 

clear XI YI U0 V0 
  
% NOISE GENERATOR ========================================================= 
  
% Rearranging Terms for Noise Calculations 
u1 = zeros((gr+1)^2,1); 
v1 = zeros((gr+1)^2,1); 
  
for i = 1:gr+1 
     
    u1((i-1)*(gr+1)+1:i*(gr+1),1) = U1(i,:)'; 
    v1((i-1)*(gr+1)+1:i*(gr+1),1) = V1(i,:)'; 
     
end 
  
% Calulating Geometric Mean 
sortu = sort(abs(u1)); 
sortv = sort(abs(v1)); 
percentilenoise = 50;   %Percentile of Absolute Data (Median - 50%) 
propu = sortu(ceil(length(u1)*percentilenoise/100)); 
propv = sortv(ceil(length(v1)*percentilenoise/100)); 
  
% Defining Percentage Noise 
perror = 20; 
f1 = length(u1); 
rand1 = rand(f1,1) <= 0.5; 
rand2 = rand(f1,1) <= 0.5; 
  
% Geometric Mean (Median) Absolute Noise 
uN1 = (-1).^rand1*(perror/100)*propu; 
uN2 = rand(f1,1); 
uN3 = uN1.*uN2; 
u1  = u1 + uN3; 
vN1 = (-1).^rand1*(perror/100)*propv; 
vN2 = rand(f1,1); 
vN3 = vN1.*vN2; 
v1  = v1 + vN3; 
  
%========================================================================== 
  
% Rearranging Terms for Inverse Algorithm 
nU0 = []; 
nV0 = []; 
  
for i = 1:gr+1 
     
    nU0 = [nU0; u1(1:gr+1)']; 
    nV0 = [nV0; v1(1:gr+1)']; 
    u1 = u1((gr+2):length(u1)); 
    v1 = v1((gr+2):length(v1));   
     
end 
  
U = nU0; 
V = nV0; 
  
clear uN1 uN2 uN3 vN1 vN2 vN3 v1 u1 rand1 rand2 nV0 nU0 
  
  
% Formulate System of Equations =========================================== 
  
% menu1 = menu('Method of Domain Selection','Origin BP','Centred BP') 
% BP stands for 'Base Point' 
menu1 = 2; 
  
% Loop for Each Equation -------------------------------------------------- 
  
for j = 1:noeqn 



Appendix A A-39 

    ex0 = j*gr/noeqn + 1; 
    ey0 = j*gr/noeqn + 1; 
     
    x0 = j*h*gr/noeqn; 
    y0 = j*h*gr/noeqn; 
     
    % Determination of Local Domain --------------------------------------- 
     
    if menu1 == 1 
     
    Ua = U(1:ey0,1:ex0); 
    Va = V(1:ey0,1:ex0); 
     
    elseif menu1 == 2 
     
    cen = (gr/2)+1; 
         
    Ua = U(cen-(ey0-1)/2:cen+(ey0-1)/2,cen-(ex0-1)/2:cen+(ex0-1)/2); 
    Va = V(cen-(ey0-1)/2:cen+(ey0-1)/2,cen-(ex0-1)/2:cen+(ex0-1)/2); 
       
    end 
         
    % CALCULATE U INTEGRAL TERMS ========================================== 
         
    %  Uxx - Double Integral Term 
     
    uF1int1 = trapz(cumtrapz(Ua(:,ex0) - Ua(:,1)))*h^2; 
    Ux1 = (-3*Ua(:,1) + 4*Ua(:,2) - Ua(:,3))/(2*h); 
    uF2int1 = trapz(cumtrapz(Ux1))*h^2; 
     
    intUxx = uF1int1 - x0*uF2int1; 
     
    % Uyy - Double Integral Term 
     
    uG1int1 = trapz(cumtrapz(Ua(ey0,:) - Ua(1,:)))*h^2; 
    Uy1 = (-3*Ua(1,:) + 4*Ua(2,:) - Ua(3,:))/(2*h); 
    uG2int1 = trapz(cumtrapz(Uy1))*h^2; 
     
    intUyy = uG1int1 - y0*uG2int1; 
     
    % Vxy - Double Integral Term 
     
    uH1int1 = trapz(trapz(Va))*h^2; 
    uH2int1 = x0*trapz(Va(:,1))*h; 
    uH3int1 = y0*trapz(Va(1,:))*h; 
    uH4int1 = x0*y0*Va(1,1); 
     
    intVxy = uH1int1 - uH2int1 - uH3int1 + uH4int1; 
     
    % U - Double Integral Term 
     
    uI1int1 = cumtrapz(Ua)*h; 
    uI1int2 = trapz(uI1int1)*h; 
    uI1int3 = cumtrapz(uI1int2)*h; 
    intU = trapz(uI1int3)*h; 
  
    % CALCULATE V INTEGRAL TERMS ========================================== 
     
    %  Vxx - Double Integral Term 
     
    vF1int1 = trapz(cumtrapz(Va(:,ex0) - Va(:,1)))*h^2; 
    Vx1 = (-3*Va(:,1) + 4*Va(:,2) - Va(:,3))/(2*h); 
    vF2int1 = trapz(cumtrapz(Vx1))*h^2; 
     
    intVxx = vF1int1 - x0*vF2int1; 
     
    % Vyy - Double Integral Term 
     



Appendix A A-40 

    vG1int1 = trapz(cumtrapz(Va(ey0,:) - Va(1,:)))*h^2; 
    Vy1 = (-3*Va(1,:) + 4*Va(2,:) - Va(3,:))/(2*h); 
    vG2int1 = trapz(cumtrapz(Vy1))*h^2; 
     
    intVyy = vG1int1 - y0*vG2int1; 
     
    % Uxy - Double Integral Term 
     
    vH1int1 = trapz(trapz(Ua))*h^2; 
    vH2int1 = x0*trapz(Ua(:,1))*h;  
    vH3int1 = y0*trapz(Ua(1,:))*h; 
    vH4int1 = x0*y0*Ua(1,1); 
     
    intUxy = vH1int1 - vH2int1 - vH3int1 + vH4int1; 
     
    % V - Double Integral Term 
     
    vI1int1 = cumtrapz(Va)*h; 
    vI1int2 = trapz(vI1int1)*h; 
    vI1int3 = cumtrapz(vI1int2)*h; 
    intV = trapz(vI1int3)*h; 
     
    % Save Parameters ===================================================== 
     
    ULHS(j,1) = (a1*intUxx + b1*intUyy + c1*intVxy); 
    VLHS(j,1) = (b1*intVxx + a1*intVyy + c1*intUxy); 
    URHS(j,1) = -rho*omega^2*intU; 
    VRHS(j,1) = -rho*omega^2*intV; 
     
end 
  
% SOLVE INTEGRAL EQUATION ================================================= 
  
LHS = [ULHS; VLHS]; 
RHS = [URHS; VRHS]; 
  
E1 = lsqlin(LHS,RHS) 
  
E2 = RHS./LHS 
  
percentageerror = abs(30000-E1)/30000*100 
  
% ------------------------------------------------------------------------- 

 

A8: 2D Homogeneous Inverse Algorithm – Centred Base Point 

Method 

 

%========================================================================== 
  
% 2D HOMOGENEOUS INVERSE ALGORITHM -CENTRED BASE POINT METHOD 
% By Samuel J. Houghton 
% 2006 
  
% This inverse algorithm determines the Young's Modulus of 2D plain strain  
% homogeneous elastic medium using an Centred Base Point Double Integral 
% method which uses innovative integration limits to eliminate derivative 
% terms. 
  
%========================================================================== 
  
clear all 
close all 



Appendix A A-41 

clc 
  
load BoxShake100Hz-700-homo 
  
% Interpolate to Desired Data Resolution  ================================= 
  
samp = 0.1;                 % Size of Global Domain 
mu = 0.49;                  % Poisson's Ratio 
rho = 1020;                 % Density (kg/m3) 
sU0 = size(U0); 
h_old = samp/(sU0(1)-1); 
  
ip = 200;                   % No. of Integration Points 
noeqn = 10;                 % No. of Equations for Each Navier's Equation 
  
h = samp/(ip);              % Step Size 
gr = samp/h; 
  
a1 = mu/((1+mu)*(1-2*mu)) + 1/(1+mu); 
b1 = 1/(2+2*mu); 
c1 = mu/((1+mu)*(1-2*mu)) + 1/(2+2*mu); 
  
[X Y] = meshgrid(0:h:samp); 
  
% Interpolate Dataset to Required Data Resolution 
[XI YI] = meshgrid(0:h_old:samp); 
  
U1 = interp2(XI,YI,U0,X,Y,'cubic'); 
V1 = interp2(XI,YI,V0,X,Y,'cubic'); 
  
clear XI YI U0 V0 
  
% NOISE GENERATOR ========================================================= 
  
% Rearranging Terms for Noise Calculations 
u1 = zeros((gr+1)^2,1); 
v1 = zeros((gr+1)^2,1); 
  
for i = 1:gr+1 
     
    u1((i-1)*(gr+1)+1:i*(gr+1),1) = U1(i,:)'; 
    v1((i-1)*(gr+1)+1:i*(gr+1),1) = V1(i,:)'; 
     
end 
  
% Calulating Geometric Mean 
sortu = sort(abs(u1)); 
sortv = sort(abs(v1)); 
percentilenoise = 50;   %Percentile of Absolute Data (Median - 50%) 
propu = sortu(ceil(length(u1)*percentilenoise/100)); 
propv = sortv(ceil(length(v1)*percentilenoise/100)); 
  
% Defining Percentage Noise 
perror = 0; 
f1 = length(u1); 
rand1 = rand(f1,1) <= 0.5; 
rand2 = rand(f1,1) <= 0.5; 
  
% Geometric Mean (Median) Absolute Noise 
uN1 = (-1).^rand1*(perror/100)*propu; 
uN2 = rand(f1,1); 
uN3 = uN1.*uN2; 
u1  = u1 + uN3; 
vN1 = (-1).^rand1*(perror/100)*propv; 
vN2 = rand(f1,1); 
vN3 = vN1.*vN2; 
v1  = v1 + vN3; 
  



Appendix A A-42 

%========================================================================== 
  
% Rearranging Terms for Inverse Algorithm 
nU0 = []; 
nV0 = []; 
  
for i = 1:gr+1 
     
    nU0 = [nU0; u1(1:gr+1)']; 
    nV0 = [nV0; v1(1:gr+1)']; 
     
    u1 = u1((gr+2):length(u1)); 
    v1 = v1((gr+2):length(v1));   
     
end 
  
U = nU0; 
V = nV0; 
  
clear uN1 uN2 uN3 vN1 vN2 vN3 v1 u1 rand1 rand2 nV0 nU0 
  
  
% Formulate System of Equations =========================================== 
  
% Loop for Each Equation -------------------------------------------------- 
  
for j = 1:noeqn 
         
    ex0 = j*gr/noeqn + 1; 
    ey0 = j*gr/noeqn + 1; 
     
    x0 = j*h*gr/noeqn; 
    y0 = j*h*gr/noeqn; 
     
    % Determination of Local Domain --------------------------------------- 
     
    Ua = U(1:ey0,1:ex0); 
    Va = V(1:ey0,1:ex0); 
     
    % CALCULATE U INTEGRAL TERMS ========================================== 
         
    %  Uxx - Double Integral Term 
     
    uF1int1 = Ua(:,1) - 2*Ua(:,ceil(ex0/2)) + Ua(:,ex0); 
       
    uF2int1 = flipud(uF1int1(1:ceil(ex0/2))); 
    uF2int2 = cumtrapz(uF2int1)*h; 
     
    uF3int1 = uF1int1(ceil(ex0/2):ex0); 
    uF3int2 = cumtrapz(uF3int1)*h; 
     
    uF4int1 = uF3int2 + uF2int2; 
    intUxx = trapz(uF4int1)*h; 
     
    % Uyy - Double Integral Term 
     
    uG1int1 = Ua(1,:) - 2*Ua(ceil(ey0/2),:) + Ua(ey0,:); 
       
    uG2int1 = fliplr(uG1int1(1:ceil(ey0/2))); 
    uG2int2 = cumtrapz(uG2int1)*h; 
     
    uG3int1 = uG1int1(ceil(ey0/2):ey0); 
    uG3int2 = cumtrapz(uG3int1)*h; 
     
    uG4int1 = uG3int2 + uG2int2; 
    intUyy = trapz(uG4int1)*h; 
     
    % Vxy - Double Integral Term 



Appendix A A-43 

    uH1int1 = Va(ceil(ey0/2):ey0,ceil(ex0/2):ex0); 
    uH1int2 = Va(1:ceil(ey0/2),ceil(ex0/2):ex0); 
    uH1int3 = Va(ceil(ey0/2):ey0,1:ceil(ex0/2)); 
    uH1int4 = Va(1:ceil(ey0/2),1:ceil(ex0/2)); 
     
    uH2int1 = uH1int1 - uH1int2 - uH1int3 + uH1int4; 
    uH2int2 = trapz(uH2int1)*h;  
    intVxy = trapz(uH2int2)*h; 
     
    % U - Double Integral Term 
     
    uI1int1 = flipud(Ua(1:ceil(ey0/2),:)); 
    uI1int2 = Ua(ceil(ey0/2):ey0,:); 
     
    uI2int1 = cumtrapz(uI1int1)*h; 
    uI2int2 = cumtrapz(uI1int2)*h; 
     
    uI3int1 = trapz(uI2int1+uI2int2)*h; 
     
    uI4int1 = fliplr(uI3int1(1:ceil(ex0/2))); 
    uI4int2 = uI3int1(ceil(ex0/2):ex0); 
     
    uI5int1 = cumtrapz(uI4int1)*h; 
    uI5int2 = cumtrapz(uI4int2)*h; 
     
    intU = trapz(uI5int1+uI5int2)*h; 
  
    % CALCULATE V INTEGRAL TERMS ========================================== 
     
    %  Vxx - Double Integral Term 
     
    vF1int1 = Va(:,1) - 2*Va(:,ceil(ex0/2)) + Va(:,ex0); 
       
    vF2int1 = flipud(vF1int1(1:ceil(ex0/2))); 
    vF2int2 = cumtrapz(vF2int1)*h; 
     
    vF3int1 = vF1int1(ceil(ex0/2):ex0); 
    vF3int2 = cumtrapz(vF3int1)*h; 
     
    vF4int1 = vF3int2 + vF2int2; 
    intVxx = trapz(vF4int1)*h; 
     
    % Vyy - Double Integral Term 
     
    vG1int1 = Va(1,:) - 2*Va(ceil(ey0/2),:) + Va(ey0,:); 
       
    vG2int1 = fliplr(vG1int1(1:ceil(ey0/2))); 
    vG2int2 = cumtrapz(vG2int1)*h; 
     
    vG3int1 = vG1int1(ceil(ey0/2):ey0); 
    vG3int2 = cumtrapz(vG3int1)*h; 
     
    vG4int1 = vG3int2 + vG2int2; 
    intVyy = trapz(vG4int1)*h; 
     
    % Uxy - Double Integral Term 
     
    vH1int1 = Ua(ceil(ey0/2):ey0,ceil(ex0/2):ex0); 
    vH1int2 = Ua(1:ceil(ey0/2),ceil(ex0/2):ex0); 
    vH1int3 = Ua(ceil(ey0/2):ey0,1:ceil(ex0/2)); 
    vH1int4 = Ua(1:ceil(ey0/2),1:ceil(ex0/2)); 
     
    vH2int1 = vH1int1 - vH1int2 - vH1int3 + vH1int4; 
    vH2int2 = trapz(vH2int1)*h;  
    intUxy = trapz(vH2int2)*h; 
     
    % V - Double Integral Term 
     



Appendix A A-44 

    vI1int1 = flipud(Va(1:ceil(ey0/2),:)); 
    vI1int2 = Va(ceil(ey0/2):ey0,:); 
     
    vI2int1 = cumtrapz(vI1int1)*h; 
    vI2int2 = cumtrapz(vI1int2)*h; 
     
    vI3int1 = trapz(vI2int1+vI2int2)*h; 
     
    vI4int1 = fliplr(vI3int1(1:ceil(ex0/2))); 
    vI4int2 = vI3int1(ceil(ex0/2):ex0); 
     
    vI5int1 = cumtrapz(vI4int1)*h; 
    vI5int2 = cumtrapz(vI4int2)*h; 
     
    intV = trapz(vI5int1+vI5int2)*h; 
     
    % Save Parameters 
     
    ULHS(j,1) = (a1*intUxx + b1*intUyy + c1*intVxy); 
    VLHS(j,1) = (b1*intVxx + a1*intVyy + c1*intUxy); 
    URHS(j,1) = -rho*omega^2*intU; 
    VRHS(j,1) = -rho*omega^2*intV; 
     
end 
  
% SOLVE INTEGRAL EQUATION ================================================= 
  
LHS = [ULHS; VLHS]; 
RHS = [URHS; VRHS]; 
  
E1 = lsqlin(LHS,RHS) 
  
E2 = RHS./LHS 
  
percentageerror = abs(30000-E1)/30000*100 
  
% ------------------------------------------------------------------------- 

 

A9: 2D Non-Homogeneous Inverse Algorithm with Constraint Model 

 

%========================================================================== 
  
% 2D NON-HOMOGENOUS INVERSE ALGORITHM with CONSTRAINT MODEL 
% By Samuel J. Houghton 
% 2006 
  
% This inverse algorithm determines the Young's Modulus of 2D plain strain 
% elastic medium with a piecewise constant stiffness distribution.  It 
% adopts a 2x2 stencil that is fitted across the global domain to form a 
% system of over-determined equations that solve for the Young's Modulus of 
% each discretized area element. 
  
% A relatively simple constraint model is also introduced that uses the 
% shear stress equations to provide ratios of stiffness between adjacent 
% elements, which in turn are used to formulate a representative stiffness 
% ratio for each element compared with an arbitrary stiffness.  It works 
% for a 1x1 size carcinoma only. 
  
%========================================================================== 
  
clear all 
close all 
clc 



Appendix A A-45 

  
tt1 = cputime; 
  
load Phantom100Hz-700-6789T.mat      % Load Forward Simulation Data 
  
% Define Parameters ======================================================= 
  
samp = 0.1;                 % Size of Global Domain 
mu = 0.49;                  % Poisson's Ratio 
rho = 1020;                 % Density (kg/m3) 
sU0 = size(U0); 
h_old = samp/(sU0(1)-1); 
  
ip = 200;                   % No. of Integration Points 
noeqn = 10;                 % No. of Equations for Each Navier's Equation 
  
constraintmodel = 0;        % Perform constraint model if equal to 1 
  
nb = 10;                    % nb x nb discrete stiffness elements 
h = samp/(ip*nb);           % Step Size 
gr = samp/h; 
  
a1 = mu/((1+mu)*(1-2*mu)) + 1/(1+mu); 
b1 = 1/(2+2*mu); 
c1 = mu/((1+mu)*(1-2*mu)) + 1/(2+2*mu); 
d1 = mu/((1+mu)*(1-2*mu)); 
  
% Contraint Model Parameters ---------------------------------------------- 
  
sizetol = 0.04; 
tol2 = 0.2; 
cutoff = 3; 
  
% Phantom     50Hz sizetol=0.04, tol2=0.3, cutoff=4 
% Edge Effect 50Hz sizetol=0.04, tol2=0.2, cutoff=3 
% Box Shake   50Hz sizetol=0.02, tol2=0.2, cutoff=3 
  
% Low Pass Filter Design -------------------------------------------------- 
  
 
% % Low Pass Data Filter 
% [bfilt,afilt]=butter(4,0.2,'low'); 
% U = filtfilt(bfilt,afilt,U); 
% V = filtfilt(bfilt,afilt,V); 
  
% Interpolate Dataset to Required Data Resolution ------------------------- 
  
[X Y] = meshgrid(0:h:samp); 
[XI YI] = meshgrid(0:h_old:samp); 
  
U1 = interp2(XI,YI,U0,X,Y,'cubic'); 
V1 = interp2(XI,YI,V0,X,Y,'cubic'); 
  
clear XI YI U0 V0 
  
% NOISE GENERATOR ========================================================= 
  
% Rearranging Terms for Noise Calculations 
u1 = zeros((gr+1)^2,1); 
v1 = zeros((gr+1)^2,1); 
  
for i = 1:gr+1 
     
    u1((i-1)*(gr+1)+1:i*(gr+1),1) = U1(i,:)'; 
    v1((i-1)*(gr+1)+1:i*(gr+1),1) = V1(i,:)'; 
     
end 
  



Appendix A A-46 

% Calulating Geometric Mean 
sortu = sort(abs(u1)); 
sortv = sort(abs(v1)); 
percentilenoise = 50;   %Percentile of Absolute Data (Median - 50%) 
propu = sortu(ceil(length(u1)*percentilenoise/100)); 
propv = sortv(ceil(length(v1)*percentilenoise/100)); 
  
% Defining Percentage Noise 
perror = 0; 
f1 = length(u1); 
rand1 = rand(f1,1) <= 0.5; 
rand2 = rand(f1,1) <= 0.5; 
  
% Geometric Mean (Median) Absolute Noise 
uN1 = (-1).^rand1*(perror/100)*propu; 
uN2 = rand(f1,1); 
uN3 = uN1.*uN2; 
u1  = u1 + uN3; 
vN1 = (-1).^rand1*(perror/100)*propv; 
vN2 = rand(f1,1); 
vN3 = vN1.*vN2; 
v1  = v1 + vN3; 
  
%========================================================================== 
  
% Rearranging Terms for Inverse Algorithm 
nU0 = []; 
nV0 = []; 
  
for i = 1:gr+1 
     
    nU0 = [nU0; u1(1:gr+1)']; 
    nV0 = [nV0; v1(1:gr+1)']; 
     
    u1 = u1((gr+2):length(u1)); 
    v1 = v1((gr+2):length(v1));   
     
end 
  
U = nU0; 
V = nV0; 
clear uN1 uN2 uN3 vN1 vN2 vN3 v1 u1 rand1 rand2 nV0 nU0 U1 V1 
  
% CALCULATE COEFFICIENT TERMS ============================================= 
  
% 2x2 Global Integration Terms ============================================ 
  
% Area Integral Terms ----------------------------------------------------- 
  
count = 1; 
cu5 = zeros(nb*nb,1); 
cv5 = zeros(nb*nb,1); 
  
for j = 1:nb 
    for i = 1:nb 
         
        Uij = U((j-1)*gr/nb+1:j*gr/nb+1,(i-1)*gr/nb+1:i*gr/nb+1); 
        Vij = V((j-1)*gr/nb+1:j*gr/nb+1,(i-1)*gr/nb+1:i*gr/nb+1); 
         
        cu5ij = (h^2)*trapz(trapz(Uij)); 
        cv5ij = (h^2)*trapz(trapz(Vij)); 
         
        cu5(count,1) = cu5ij; 
        cv5(count,1) = cv5ij; 
         
        count = count + 1;         
    end 
end 



Appendix A A-47 

  
cu5 = cu5*c1; 
cv5 = cv5*c1; 
  
% Single Integral Line Terms - Vertical ----------------------------------- 
  
count = 1; 
cu4 = zeros(nb*(nb-1),1); 
cv4 = zeros(nb*(nb-1),1); 
  
for j = 1:nb 
    for i = 1:(nb-1) 
         
        Uij = U((j-1)*gr/nb+1:j*gr/nb+1,i*gr/nb+1); 
        Vij = V((j-1)*gr/nb+1:j*gr/nb+1,i*gr/nb+1); 
         
        cu4ij = h*trapz(Uij); 
        cv4ij = h*trapz(Vij); 
         
        cu4(count,1) = cu4ij; 
        cv4(count,1) = cv4ij; 
         
        count = count + 1; 
         
    end 
end 
  
cu4 = cu4*d1*samp/nb; 
cv4 = cv4*b1*samp/nb; 
  
% Single Integral Line Terms - Horizontal --------------------------------- 
         
count = 1; 
cu3 = zeros(nb*(nb-1),1); 
cv3 = zeros(nb*(nb-1),1); 
  
for j = 1:(nb-1) 
    for i = 1:nb 
         
        Uij = U(j*gr/nb+1,(i-1)*gr/nb+1:i*gr/nb+1); 
        Vij = V(j*gr/nb+1,(i-1)*gr/nb+1:i*gr/nb+1); 
         
        cu3ij = h*trapz(Uij); 
        cv3ij = h*trapz(Vij); 
         
        cu3(count,1) = cu3ij; 
        cv3(count,1) = cv3ij; 
         
        count = count + 1; 
         
    end 
end 
  
cu3 = cu3*b1*samp/nb; 
cv3 = cv3*d1*samp/nb; 
  
% Horizontal Double Integral Line Terms - x0-x ---------------------------- 
  
count = 1; 
Ncu2 = zeros(nb*nb-1,1); 
Ncv2 = zeros(nb*nb-1,1); 
  
for j = 1:nb+1 
    for i = 1:nb-1 
         
        Uij = U((j-1)*gr/nb+1,(i-1)*gr/nb+1:i*gr/nb+1); 
        Vij = V((j-1)*gr/nb+1,(i-1)*gr/nb+1:i*gr/nb+1); 
         



Appendix A A-48 

        Ncu2ij = (h^2)*trapz(cumtrapz(fliplr(Uij))); 
        Ncv2ij = (h^2)*trapz(cumtrapz(fliplr(Vij))); 
         
        Ncu2(count,1) = Ncu2ij; 
        Ncv2(count,1) = Ncv2ij; 
         
        count = count + 1;  
    end 
end 
  
Ncu2 = Ncu2*b1; 
Ncv2 = Ncv2*a1; 
  
% Horizontal Double Integral Line Terms - x0+x ---------------------------- 
  
count = 1; 
Pcu2 = zeros(nb*nb-1,1); 
Pcv2 = zeros(nb*nb-1,1); 
  
for j = 1:nb+1 
    for i = 1:nb-1 
         
        Uij = U((j-1)*gr/nb+1,i*gr/nb+1:(i+1)*gr/nb+1); 
        Vij = V((j-1)*gr/nb+1,i*gr/nb+1:(i+1)*gr/nb+1); 
         
        Pcu2ij = (h^2)*trapz(cumtrapz(Uij)); 
        Pcv2ij = (h^2)*trapz(cumtrapz(Vij)); 
         
        Pcu2(count,1) = Pcu2ij; 
        Pcv2(count,1) = Pcv2ij; 
         
        count = count + 1;  
    end 
end 
  
Pcu2 = Pcu2*b1; 
Pcv2 = Pcv2*a1; 
  
 
 
% Vertical Double Integral Line Terms - y0-y ------------------------------ 
  
count = 1; 
Ncu1 = zeros(nb*nb-1,1); 
Ncv1 = zeros(nb*nb-1,1); 
  
for j = 1:nb-1 
    for i = 1:nb+1 
         
        Uij = U((j-1)*gr/nb+1:j*gr/nb+1,(i-1)*gr/nb+1); 
        Vij = V((j-1)*gr/nb+1:j*gr/nb+1,(i-1)*gr/nb+1); 
         
        Ncu1ij = (h^2)*trapz(cumtrapz(flipud(Uij))); 
        Ncv1ij = (h^2)*trapz(cumtrapz(flipud(Vij))); 
         
        Ncu1(count,1) = Ncu1ij; 
        Ncv1(count,1) = Ncv1ij; 
         
        count = count + 1;  
    end 
end 
  
Ncu1 = Ncu1*a1; 
Ncv1 = Ncv1*b1; 
  
% Vertical Double Integral Line Terms - y0+y ------------------------------ 
  
count = 1; 



Appendix A A-49 

Pcu1 = zeros(nb*nb-1,1); 
Pcv1 = zeros(nb*nb-1,1); 
  
for j = 1:nb-1 
    for i = 1:nb+1 
         
        Uij = U(j*gr/nb+1:(j+1)*gr/nb+1,(i-1)*gr/nb+1); 
        Vij = V(j*gr/nb+1:(j+1)*gr/nb+1,(i-1)*gr/nb+1); 
         
        Pcu1ij = (h^2)*trapz(cumtrapz(Uij)); 
        Pcv1ij = (h^2)*trapz(cumtrapz(Vij)); 
         
        Pcu1(count,1) = Pcu1ij; 
        Pcv1(count,1) = Pcv1ij; 
         
        count = count + 1; 
         
    end 
end 
  
Pcu1 = Pcu1*a1; 
Pcv1 = Pcv1*b1; 
  
% RHS Area Integral Terms ------------------------------------------------- 
  
count = 1; 
cuRHS = zeros((nb-1)^2,1); 
cvRHs = zeros((nb-1)^2,1); 
  
ex0 = 2*gr/nb+1; 
ey0 = 2*gr/nb+1; 
  
for j = 1:(nb-1) 
    for i = 1:(nb-1) 
         
        Uij = U((j-1)*gr/nb+1:(j+1)*gr/nb+1,(i-1)*gr/nb+1:(i+1)*gr/nb+1); 
        Vij = V((j-1)*gr/nb+1:(j+1)*gr/nb+1,(i-1)*gr/nb+1:(i+1)*gr/nb+1); 
         
        u1a = flipud(Uij(1:ceil(ey0/2),:)); 
        u1b = Uij(ceil(ey0/2):ey0,:); 
        u2a = cumtrapz(u1a)*h; 
        u2b = cumtrapz(u1b)*h; 
        u3a = trapz(u2a+u2b)*h; 
        u4a = fliplr(u3a(1:ceil(ex0/2))); 
        u4b = u3a(ceil(ex0/2):ex0); 
        u5a = cumtrapz(u4a)*h; 
        u5b = cumtrapz(u4b)*h; 
        cuRHSij = trapz(u5a+u5b)*h; 
         
        v1a = flipud(Vij(1:ceil(ey0/2),:)); 
        v1b = Vij(ceil(ey0/2):ey0,:); 
        v2a = cumtrapz(v1a)*h; 
        v2b = cumtrapz(v1b)*h; 
        v3a = trapz(v2a+v2b)*h; 
        v4a = fliplr(v3a(1:ceil(ex0/2))); 
        v4b = v3a(ceil(ex0/2):ex0); 
        v5a = cumtrapz(v4a)*h; 
        v5b = cumtrapz(v4b)*h; 
        cvRHSij = trapz(v5a+v5b)*h; 
         
        cuRHS(count,1) = cuRHSij; 
        cvRHS(count,1) = cvRHSij; 
         
        count = count + 1; 
         
    end 
end 
  



Appendix A A-50 

% Stress Conitinuity Terms ================================================ 
  
if constraintmodel == 1 
  
% Vertical Boundary Shear Stress Continuity Terms ------------------------- 
  
i = 1; 
j = 1; 
countnb = 1; 
counteqn = 1; 
check1 = 1; 
SSvertcomp = zeros(nb*(nb-1),1); 
  
xx0 = 0:h:samp/nb; 
yy0 = 0:h:samp/nb; 
  
ey0 = gr/nb+1; 
  
for count = 1:nb*(nb-1) 
     
    countSS = 1; 
    SSvert1 = []; 
     
    for count2 = 1:gr/nb+1    
     
        Vleft      = V(count2+(j-1)*gr/nb,(i-1)*gr/nb+1:i*gr/nb+1); 
        Vleftpoly  = polyfit(xx0,Vleft,3); 
        Vxleftij   = 3*Vleftpoly(1)*xx0(end)^2 + 2*Vleftpoly(2)*xx0(end)... 
            + Vleftpoly(3); 
         
        Vright     = V(count2+(j-1)*gr/nb,i*gr/nb+1:(i+1)*gr/nb+1); 
        Vrightpoly = polyfit(xx0,Vright,3); 
        Vxrightij  = Vrightpoly(3); 
         
        if j == 1      
            if count2 < gr/nb/2+1 
                Uij = U((j-1)*gr/nb+1:j*gr/nb+1,i*gr/nb+1)'; 
                Upoly = polyfit(yy0,Uij,3); 
                Uycentreij = 3*Upoly(1)*yy0(count2)^2+2*Upoly(2)... 
                    *yy0(count2)+Upoly(3); 
            else 
                Uij = U((j-1)*gr/nb-gr/nb/2+count2:j*gr/nb-gr/nb/... 
                    2+count2,i*gr/nb+1)'; 
                Upoly = polyfit(yy0,Uij,3); 
                Uycentreij = 3*Upoly(1)*yy0(ceil(ey0/2))^2+2*Upoly(2)... 
                    *yy0(ceil(ey0/2))+Upoly(3); 
            end   
        elseif j == nb 
            if count2 > gr/nb/2 
                Uij = U((j-1)*gr/nb+1:j*gr/nb+1,i*gr/nb+1)'; 
                Upoly = polyfit(yy0,Uij,3); 
                Uycentreij = 3*Upoly(1)*yy0(count2)^2+2*Upoly(2)... 
                    *yy0(count2)+Upoly(3); 
            else 
                Uij = U((j-1)*gr/nb-gr/nb/2+count2:j*gr/nb-gr/nb/2+... 
                    count2,i*gr/nb+1)'; 
                Upoly = polyfit(yy0,Uij,3); 
                Uycentreij = 3*Upoly(1)*yy0(ceil(ey0/2))^2+2*Upoly(2)... 
                    *yy0(ceil(ey0/2))+Upoly(3); 
            end      
        else    
            Uij = U((j-1)*gr/nb-gr/nb/2+count2:j*gr/nb-gr/nb/2+count2,i... 
                *gr/nb+1)'; 
            Upoly = polyfit(yy0,Uij,3); 
            Uycentreij = 3*Upoly(1)*yy0(ceil(ey0/2))^2 + 2*Upoly(2)... 
                *yy0(ceil(ey0/2)) + Upoly(3); 
        end 
         



Appendix A A-51 

        SScoeff1 = Uycentreij + Vxleftij; 
        SScoeff2 = Uycentreij + Vxrightij; 
        SSvert0  = SScoeff1/SScoeff2; 
         
        SSvert0_a(count2,count)  = SScoeff1/SScoeff2; 
        Uycentre_a(count2,count) = Uycentreij; 
        Vxleft_a(count2,count)   = Vxleftij; 
        Vxright_a(count2,count)  = Vxrightij; 
         
        if abs(Vxleftij/-Uycentreij)>1-tol2 & abs(Vxleftij/-Uycentreij)... 
                <1+tol2        
        elseif abs(Vxrightij/-Uycentreij)>1-tol2 & abs(Vxrightij/... 
                -Uycentreij)<1+tol2 
        elseif SSvert0<0 
        elseif abs(Uycentreij)<sizetol  
            if abs(Vxleftij)<sizetol & abs(Vxrightij)<sizetol 
            else 
                SSvert1(countSS) = SSvert0; 
                countSS = countSS + 1; 
            end 
        else 
            SSvert1(countSS) = SSvert0; 
            countSS = countSS + 1; 
        end 
    end 
     
    if length(SSvert1) < cutoff 
        SSvert1 = []; 
    end 
     
    if isempty(SSvert1) == 0 
         
        SSvertcomp(count,1) = mean(SSvert1); 
        vertcheck(count,1:2) = [count length(SSvert1)]; 
         
        counteqn = counteqn + 2; 
    end 
     
    if count == check1*(nb-1) 
        j = j + 1; 
        i = 1; 
        countnb = countnb + 2; 
        check1 = check1 + 1; 
    else 
        i = i + 1; 
        countnb = countnb + 1; 
    end  
end 
  
sSSvert = size(SSvertcomp) 
SSvertRHS = zeros(sSSvert(1),1)*100; 
  
% Horizontal Boundary Shear Stress Continuity Terms ----------------------- 
  
i = 1; 
j = 1; 
countnb = 1; 
counteqn = 1; 
check1 = 1; 
SShoricomp = zeros(nb*(nb-1),1); 
  
xx0 = 0:h:samp/nb; 
yy0 = 0:h:samp/nb; 
  
ex0 = gr/nb+1; 
  
for count = 1:nb*(nb-1) 
     



Appendix A A-52 

    countSS = 1; 
    SShori1 = []; 
     
    for count2 = 1:gr/nb+1    
     
        Ubot     = U((j-1)*gr/nb+1:j*gr/nb+1,count2+(i-1)*gr/nb)'; 
        Ubotpoly = polyfit(yy0,Ubot,3); 
        Uybotij  = 3*Ubotpoly(1)*yy0(end)^2 + 2*Ubotpoly(2)*yy0(end)... 
            + Ubotpoly(3); 
         
        Utop     = U(j*gr/nb+1:(j+1)*gr/nb+1,count2+(i-1)*gr/nb)'; 
        Utoppoly = polyfit(yy0,Utop,3); 
        Uytopij  = Utoppoly(3); 
         
        if i == 1      
            if count2 < gr/nb/2+1 
                Vij = V(j*gr/nb+1,(i-1)*gr/nb+1:i*gr/nb+1); 
                Vpoly = polyfit(xx0,Vij,3); 
                Vxcentreij = 3*Vpoly(1)*xx0(count2)^2+2*Vpoly(2)... 
                    *xx0(count2)+Vpoly(3); 
            else 
                Vij = V(j*gr/nb+1,(i-1)*gr/nb-gr/nb/2+count2:i*gr/nb-gr/... 
                    nb/2+count2); 
                Vpoly = polyfit(xx0,Vij,3); 
                Vxcentreij = 3*Vpoly(1)*xx0(ceil(ex0/2))^2+2*Vpoly(2)... 
                    *xx0(ceil(ex0/2))+Vpoly(3); 
            end   
        elseif i == nb  
            if count2 > gr/nb/2 
                Vij = V(j*gr/nb+1,(i-1)*gr/nb+1:i*gr/nb+1); 
                Vpoly = polyfit(xx0,Vij,3); 
                Vxcentreij = 3*Vpoly(1)*xx0(count2)^2+2*Vpoly(2)... 
                    *xx0(count2)+Vpoly(3); 
            else 
                Vij = V(j*gr/nb+1,(i-1)*gr/nb-gr/nb/2+count2:i*gr/nb-gr... 
                    /nb/2+count2); 
                Vpoly = polyfit(xx0,Vij,3); 
                Vxcentreij = 3*Vpoly(1)*xx0(ceil(ex0/2))^2+2*Vpoly(2)... 
                    *xx0(ceil(ex0/2))+Vpoly(3); 
            end 
        else    
            Vij = V(j*gr/nb+1,(i-1)*gr/nb-gr/nb/2+count2:i*gr/nb-gr/nb... 
                /2+count2); 
            Vpoly = polyfit(xx0,Vij,3); 
            Vxcentreij = 3*Vpoly(1)*xx0(ceil(ex0/2))^2+2*Vpoly(2)... 
                *xx0(ceil(ex0/2))+Vpoly(3); 
        end 
         
        SScoeff1 = Vxcentreij + Uybotij; 
        SScoeff2 = Vxcentreij + Uytopij; 
        SShori0  = SScoeff1/SScoeff2; 
         
        SShori0_a(count2,count)  = SShori0; 
        Vxcentre_a(count2,count) = Vxcentreij; 
        Uybot_a(count2,count)    = Uybotij; 
        Uytop_a(count2,count)    = Uytopij; 
         
        if abs(Uybotij/-Vxcentreij)>1-tol2 & abs(Uybotij/-Vxcentreij)... 
                <1+tol2        
        elseif abs(Uytopij/-Vxcentreij)>1-tol2 & abs(Uytopij... 
                /-Vxcentreij)<1+tol2 
        elseif SShori0<0 
        elseif abs(Vxcentreij)<sizetol  
            if abs(Uybotij)<sizetol & abs(Uytopij)<sizetol 
            else 
                SShori1(countSS) = SShori0; 
                countSS = countSS + 1; 
            end 



Appendix A A-53 

        else 
            SShori1(countSS) = SShori0; 
            countSS = countSS + 1; 
        end 
    end 
     
    if length(SShori1) < cutoff 
        SShori1 = []; 
    end 
     
    if isempty(SShori1) == 0 
         
        SShoricomp(count,1) = mean(SShori1); 
        horicheck(count,1:2) = [count length(SShori1)]; 
         
        counteqn = counteqn + 2; 
    end 
     
    if count == check1*nb 
        j = j + 1; 
        i = 1; 
        countnb = countnb + 1; 
        check1 = check1 + 1; 
    else 
        i = i + 1; 
        countnb = countnb + 1; 
    end  
end 
  
sSShori = size(SShoricomp) 
SShoriRHS = zeros(sSShori(1),1); 
  
% Creating Equality Matrix Based Upon Averaging Techniques ---------------- 
  
avgval = zeros(1,100); 
  
countbot = 1; 
counttop = 1; 
countleft  = 1; 
countright = 1; 
counteqn = 1; 
countvert = 0; 
checkvert = 1; 
  
indexbot = 2:nb-1; 
indextop = (2:nb-1)+(nb-1)*nb; 
indexleft = (nb+1):nb:(nb-2)*nb+1; 
indexright = 2*nb:nb:(nb-1)*nb; 
  
for i = 1:nb^2 
    if i == 1 
         
        q0 = [SSvertcomp(1) SShoricomp(1)]; 
        findq0 = find(q0); 
         
        if any(q0) == 1  
            q1 = [1/SSvertcomp(1) 1/SShoricomp(1)]; 
            q1 = q1(findq0); 
            avgval(counteqn,i)   = 1; 
            avgvalcomp(counteqn) = mean(q1); 
            counteqn = counteqn + 1; 
        end 
         
    elseif i == indexbot(countbot) 
         
        q0 = [SSvertcomp(i-1) SSvertcomp(i) SShoricomp(i)]; 
        findq0 = find(q0); 
         



Appendix A A-54 

        if any(q0) == 1 
            q1 = [SSvertcomp(i-1) 1/SSvertcomp(i) 1/SShoricomp(i)]; 
            q1 = q1(findq0); 
            avgval(counteqn,i)   = 1; 
            avgvalcomp(counteqn) = mean(q1); 
            counteqn = counteqn + 1; 
        end 
         
        if countbot == length(indexbot) 
        else 
            countbot = countbot + 1; 
        end 
         
    elseif i == nb 
         
        q0 = [SSvertcomp(nb-1) SShoricomp(nb)]; 
        findq0 = find(q0); 
         
        if any(q0) == 1  
            q1 = [SSvertcomp(nb-1) 1/SShoricomp(nb)]; 
            q1 = q1(findq0); 
            avgval(counteqn,i)   = 1; 
            avgvalcomp(counteqn) = mean(q1); 
            counteqn = counteqn + 1; 
        end 
          
    elseif i == indexleft(countleft) 
         
        q0 = [SSvertcomp(i-countleft) SShoricomp(i-nb) SShoricomp(i)]; 
        findq0 = find(q0); 
         
        if any(q0) == 1 
            q1 = [1/SSvertcomp(i-countleft) SShoricomp(i-nb)... 
                1/SShoricomp(i)]; 
            q1 = q1(findq0); 
            avgval(counteqn,i)   = 1; 
            avgvalcomp(counteqn) = mean(q1); 
            counteqn = counteqn + 1; 
        end 
         
        if countleft == length(indexleft) 
        else 
            countleft = countleft + 1; 
        end 
         
    elseif i == indexright(countright) 
         
        q0 = [SSvertcomp(i-countright-1) SShoricomp(i-nb) SShoricomp(i)]; 
        findq0 = find(q0); 
         
        if any(q0) == 1 
            q1 = [SSvertcomp(i-countright-1) SShoricomp(i-nb)... 
                1/SShoricomp(i)]; 
            q1 = q1(findq0); 
            avgval(counteqn,i)   = 1; 
            avgvalcomp(counteqn) = mean(q1); 
            counteqn = counteqn + 1; 
        end 
         
        if countright == length(indexright) 
        else 
            countright = countright + 1; 
        end 
         
    elseif i == nb*(nb-1)+1 
         
        q0 = [SSvertcomp((nb-1)^2+1) SShoricomp((nb-1)^2)]; 
        findq0 = find(q0); 



Appendix A A-55 

         
        if any(q0) == 1  
            q1 = [1/SSvertcomp((nb-1)^2+1) SShoricomp((nb-1)^2)]; 
            q1 = q1(findq0); 
            avgval(counteqn,i)   = 1; 
            avgvalcomp(counteqn) = mean(q1); 
            counteqn = counteqn + 1; 
        end 
         
    elseif i == indextop(counttop) 
         
        q0 = [SSvertcomp(i-nb) SSvertcomp(i-nb+1) SShoricomp(i-nb)]; 
        findq0 = find(q0); 
         
        if any(q0) == 1 
            q1 = [SSvertcomp(i-nb) 1/SSvertcomp(i-nb+1) SShoricomp(i-nb)]; 
            q1 = q1(findq0); 
            avgval(counteqn,i)   = 1; 
            avgvalcomp(counteqn) = mean(q1); 
            counteqn = counteqn + 1; 
        end 
         
        if counttop == length(indextop) 
        else 
            counttop = counttop + 1; 
        end 
         
    elseif i == nb^2 
         
        q0 = [SSvertcomp((nb-1)*nb) SShoricomp((nb-1)*nb)]; 
        findq0 = find(q0); 
         
        if any(q0) == 1  
            q1 = [SSvertcomp((nb-1)*nb) SShoricomp((nb-1)*nb)]; 
            q1 = q1(findq0); 
            avgval(counteqn,i)   = 1; 
            avgvalcomp(counteqn) = mean(q1); 
            counteqn = counteqn + 1; 
        end 
         
    else 
         
        q0 = [SSvertcomp(i-countvert-1) SSvertcomp(i-countvert)... 
            SShoricomp(i-nb) SShoricomp(i)]; 
        findq0 = find(q0); 
         
        if any(q0) == 1 
            q1 = [SSvertcomp(i-countvert-1) 1/SSvertcomp(i-countvert)... 
                SShoricomp(i-nb) 1/SShoricomp(i)]; 
            q1 = q1(findq0); 
            avgval(counteqn,i)   = 1; 
            avgvalcomp(counteqn) = mean(q1); 
            counteqn = counteqn + 1; 
        end 
         
        if i == check1*(nb-1) 
            countvert = countvert+1; 
            check1 = check1 + 1; 
        end 
         
    end 
end 
  
avgval = [avgval -avgvalcomp']; 
  
savgval = size(avgval); 
avgvalRHS = zeros(savgval(1),1); 
  



Appendix A A-56 

end 
  
% 1cm x 1cm Local Integration Terms ======================================= 
  
% Area Integral Terms ----------------------------------------------------- 
  
count = 1; 
lcu3 = zeros(4*nb*nb,1); 
lcv3 = zeros(4*nb*nb,1); 
  
for j = 1:2*nb 
    for i = 1:2*nb 
         
        Uij = U((j-1)*gr/nb/2+1:j*gr/nb/2+1,(i-1)*gr/nb/2+1:i*gr/nb/2+1); 
        Vij = V((j-1)*gr/nb/2+1:j*gr/nb/2+1,(i-1)*gr/nb/2+1:i*gr/nb/2+1); 
         
        lcu3ij = (h^2)*trapz(trapz(Uij)); 
        lcv3ij = (h^2)*trapz(trapz(Vij)); 
         
        lcu3(count,1) = lcu3ij; 
        lcv3(count,1) = lcv3ij; 
         
        count = count + 1; 
    end 
end 
  
lcu3 = lcu3*c1; 
lcv3 = lcv3*c1; 
  
% Horizontal Double Integral Terms ---------------------------------------- 
  
count = 1; 
lcu2 = zeros(2*nb^2+nb,1); 
lcv2 = zeros(2*nb^2+nb,1); 
  
ex0 = gr/nb+1; 
ey0 = gr/nb+1; 
  
for j = 1:2*nb+1 
    for i = 1:nb 
        Uij = U((j-1)*gr/nb/2+1,(i-1)*gr/nb+1:i*gr/nb+1); 
        Vij = V((j-1)*gr/nb/2+1,(i-1)*gr/nb+1:i*gr/nb+1); 
         
        u1a = fliplr(Uij(1:ceil(ex0/2))); 
        u1b = Uij(ceil(ex0/2):ex0); 
        u2a = cumtrapz(u1a)*h; 
        u2b = cumtrapz(u1b)*h; 
        lcu2ij = trapz(u2a+u2b)*h; 
         
        v1a = fliplr(Vij(1:ceil(ex0/2))); 
        v1b = Vij(ceil(ex0/2):ex0); 
        v2a = cumtrapz(v1a)*h; 
        v2b = cumtrapz(v1b)*h; 
        lcv2ij = trapz(v2a+v2b)*h;  
         
        lcu2(count,1) = lcu2ij; 
        lcv2(count,1) = lcv2ij; 
         
        count = count + 1; 
    end 
end 
  
lcu2 = lcu2*b1; 
lcv2 = lcv2*a1; 
          
% Vertical Double Integral Terms ------------------------------------------ 
  
count = 1; 



Appendix A A-57 

lcu1 = zeros(2*nb^2+nb,1); 
lcv1 = zeros(2*nb^2+nb,1); 
  
for j = 1:nb 
    for i = 1:2*nb+1 
         
        Uij = U((j-1)*gr/nb+1:j*gr/nb+1,(i-1)*gr/nb/2+1); 
        Vij = V((j-1)*gr/nb+1:j*gr/nb+1,(i-1)*gr/nb/2+1); 
         
        u1a = flipud(Uij(1:ceil(ey0/2))); 
        u1b = Uij(ceil(ey0/2):ey0); 
        u2a = cumtrapz(u1a)*h; 
        u2b = cumtrapz(u1b)*h; 
        lcu1ij = trapz(u2a+u2b)*h; 
         
        v1a = flipud(Vij(1:ceil(ey0/2))); 
        v1b = Vij(ceil(ey0/2):ey0); 
        v2a = cumtrapz(v1a)*h; 
        v2b = cumtrapz(v1b)*h; 
        lcv1ij = trapz(v2a+v2b)*h; 
         
        lcu1(count,1) = lcu1ij; 
        lcv1(count,1) = lcv1ij; 
         
        count = count + 1; 
    end 
end 
  
lcu1 = lcu1*a1; 
lcv1 = lcv1*b1; 
  
% RHS Area Intergal Terms ------------------------------------------------- 
  
count = 1; 
lcuRHS = zeros(nb^2,1); 
lcvRHs = zeros(nb^2,1); 
  
for j = 1:nb 
    for i = 1:nb 
         
        Uij = U((j-1)*gr/nb+1:j*gr/nb+1,(i-1)*gr/nb+1:i*gr/nb+1); 
        Vij = V((j-1)*gr/nb+1:j*gr/nb+1,(i-1)*gr/nb+1:i*gr/nb+1); 
         
        u1a = flipud(Uij(1:ceil(ey0/2),:)); 
        u1b = Uij(ceil(ey0/2):ey0,:); 
        u2a = cumtrapz(u1a)*h; 
        u2b = cumtrapz(u1b)*h; 
        u3a = trapz(u2a+u2b)*h; 
        u4a = fliplr(u3a(1:ceil(ex0/2))); 
        u4b = u3a(ceil(ex0/2):ex0); 
        u5a = cumtrapz(u4a)*h; 
        u5b = cumtrapz(u4b)*h; 
        lcuRHSij = trapz(u5a+u5b)*h; 
         
        v1a = flipud(Vij(1:ceil(ey0/2),:)); 
        v1b = Vij(ceil(ey0/2):ey0,:); 
        v2a = cumtrapz(v1a)*h; 
        v2b = cumtrapz(v1b)*h; 
        v3a = trapz(v2a+v2b)*h; 
        v4a = fliplr(v3a(1:ceil(ex0/2))); 
        v4b = v3a(ceil(ex0/2):ex0); 
        v5a = cumtrapz(v4a)*h; 
        v5b = cumtrapz(v4b)*h; 
        lcvRHSij = trapz(v5a+v5b)*h; 
         
        lcuRHS(count,1) = lcuRHSij; 
        lcvRHS(count,1) = lcvRHSij; 
         



Appendix A A-58 

        count = count + 1; 
         
    end 
end 
  
% Clear Unnecessary Variables --------------------------------------------- 
  
clear cu5ij cv5ij cu4ij cv4ij cu3ij cv3ij Ncu2ij Ncv2ij Pcu2ij Pcv2ij ... 
    Ncu1ij Ncv1ij Pcu1ij Pcv1ij cuRHSij cvRHSij 
  
clear lcu3ij lcv3ij lcu2ij lcv2ij lcu1ij lcv1ij lcuRHSij lcvRHSij 
  
clear u1a u1b u2a u2b u3a u4a u4b u5a u5b 
clear v1a v1b v2a v2b v3a v4a v4b v5a v5b 
  
% DEFINE SYSTEM OF EQUATIONS ============================================== 
  
% 1x1 Squares ============================================================= 
  
Au1 = zeros(nb^2,nb^2); 
Av1 = zeros(nb^2,nb^2); 
  
count1 = 1; 
count2 = 1; 
count3 = 1; 
check1 = 1; 
  
for i = 1:nb^2 
     
    if i == check1*nb 
         
        Ucoeff1 = lcu1(count1)-2*lcu1(count1+1)+lcu1(count1+2)... 
            + lcu2(count2)-2*lcu2(count2+nb)+lcu2(count2+2*nb)... 
            + lcv3(2*count3-1)-lcv3(2*count3)-lcv3(2*(count3+nb)-1)... 
            +lcv3(2*(count3+nb)); 
        Vcoeff1 = lcv1(count1)-2*lcv1(count1+1)+lcv1(count1+2)... 
            + lcv2(count2)-2*lcv2(count2+nb)+lcv2(count2+2*nb)... 
            + lcu3(2*count3-1)-lcu3(2*count3)-lcu3(2*(count3+nb)-1)... 
            +lcu3(2*(count3+nb)); 
         
        Au1(i,i) = Ucoeff1; 
        Av1(i,i) = Vcoeff1; 
         
        count1 = count1 + 3; 
        count2 = count2 + nb + 1; 
        count3 = count3 + nb + 1; 
        check1 = check1 + 1; 
     
    else 
         
        Ucoeff1 = lcu1(count1)-2*lcu1(count1+1)+lcu1(count1+2)... 
            + lcu2(count2)-2*lcu2(count2+nb)+lcu2(count2+2*nb)... 
            + lcv3(2*count3-1)-lcv3(2*count3)-lcv3(2*(count3+nb)-1)... 
            +lcv3(2*(count3+nb)); 
        Vcoeff1 = lcv1(count1)-2*lcv1(count1+1)+lcv1(count1+2)... 
            + lcv2(count2)-2*lcv2(count2+nb)+lcv2(count2+2*nb)... 
            + lcu3(2*count3-1)-lcu3(2*count3)-lcu3(2*(count3+nb)-1)... 
            +lcu3(2*(count3+nb)); 
         
        Au1(i,i) = Ucoeff1; 
        Av1(i,i) = Vcoeff1; 
         
        count1 = count1 + 2; 
        count2 = count2 + 1; 
        count3 = count3 + 1; 
         
    end 
end 



Appendix A A-59 

  
% 2x2 Squares ============================================================= 
  
% Fundamental Equations --------------------------------------------------- 
  
Au2 = zeros((nb-1)^2,nb^2); 
Av2 = zeros((nb-1)^2,nb^2); 
  
count2 = 1; 
count3 = 1; 
check1 = 1; 
  
for i = 1:(nb-1)^2 
     
    if i == check1*(nb - 1) 
     
        Ucoeff1 = Ncu1(count3)   - Ncu1(count3+1) + Ncu2(i)       ... 
            - Ncu2(nb-1+i) - cv3(count2)   - cv4(i)      + cv5(count2); 
        Ucoeff2 = Ncu1(count3+2) - Ncu1(count3+1) + Pcu2(i)       ... 
            - Pcu2(nb-1+i) + cv3(count2+1) + cv4(i)      - cv5(count2+1); 
        Ucoeff3 = Pcu1(count3)   - Pcu1(count3+1) + Ncu2(2*nb-2+i)... 
            - Ncu2(nb-1+i) + cv3(count2)   + cv4(nb-1+i) - cv5(count2+nb); 
        Ucoeff4 = Pcu1(count3+2) - Pcu1(count3+1) + Pcu2(2*nb-2+i)... 
            - Pcu2(nb-1+i) - cv3(count2+1) - cv4(nb-1+i) + cv5(count2+nb+1); 
     
        Vcoeff1 = Ncv1(count3)   - Ncv1(count3+1) + Ncv2(i)       ... 
            - Ncv2(nb-1+i) - cu3(count2)   - cu4(i)      + cu5(count2); 
        Vcoeff2 = Ncv1(count3+2) - Ncv1(count3+1) + Pcv2(i)       ... 
            - Pcv2(nb-1+i) + cu3(count2+1) + cu4(i)      - cu5(count2+1); 
        Vcoeff3 = Pcv1(count3)   - Pcv1(count3+1) + Ncv2(2*nb-2+i)... 
            - Ncv2(nb-1+i) + cu3(count2)   + cu4(nb-1+i) - cu5(count2+nb); 
        Vcoeff4 = Pcv1(count3+2) - Pcv1(count3+1) + Pcv2(2*nb-2+i)... 
            - Pcv2(nb-1+i) - cu3(count2+1) - cu4(nb-1+i) + cu5(count2+nb+1); 
         
        Au2(i,count2:count2+1) = [Ucoeff1 Ucoeff2]; 
        Au2(i,count2+nb:count2+nb+1) = [Ucoeff3 Ucoeff4]; 
        Av2(i,count2:count2+1) = [Vcoeff1 Vcoeff2]; 
        Av2(i,count2+nb:count2+nb+1) = [Vcoeff3 Vcoeff4]; 
         
        count2 = count2 + 2; 
        count3 = count3 + 3; 
         
        check1 = check1 + 1; 
         
    else 
         
        Ucoeff1 = Ncu1(count3)   - Ncu1(count3+1) + Ncu2(i)       ... 
            - Ncu2(nb-1+i) - cv3(count2)   - cv4(i)      + cv5(count2); 
        Ucoeff2 = Ncu1(count3+2) - Ncu1(count3+1) + Pcu2(i)       ... 
            - Pcu2(nb-1+i) + cv3(count2+1) + cv4(i)      - cv5(count2+1); 
        Ucoeff3 = Pcu1(count3)   - Pcu1(count3+1) + Ncu2(2*nb-2+i)... 
        - Ncu2(nb-1+i) + cv3(count2)   + cv4(nb-1+i) - cv5(count2+nb); 
        Ucoeff4 = Pcu1(count3+2) - Pcu1(count3+1) + Pcu2(2*nb-2+i)... 
        - Pcu2(nb-1+i) - cv3(count2+1) - cv4(nb-1+i) + cv5(count2+nb+1); 
     
        Vcoeff1 = Ncv1(count3)   - Ncv1(count3+1) + Ncv2(i)       ... 
            - Ncv2(nb-1+i) - cu3(count2)   - cu4(i)      + cu5(count2); 
        Vcoeff2 = Ncv1(count3+2) - Ncv1(count3+1) + Pcv2(i)       ... 
            - Pcv2(nb-1+i) + cu3(count2+1) + cu4(i)      - cu5(count2+1); 
        Vcoeff3 = Pcv1(count3)   - Pcv1(count3+1) + Ncv2(2*nb-2+i)... 
            - Ncv2(nb-1+i) + cu3(count2)   + cu4(nb-1+i) - cu5(count2+nb); 
        Vcoeff4 = Pcv1(count3+2) - Pcv1(count3+1) + Pcv2(2*nb-2+i)... 
            - Pcv2(nb-1+i) - cu3(count2+1) - cu4(nb-1+i) + cu5(count2+nb+1); 
         
        Au2(i,count2:count2+1) = [Ucoeff1 Ucoeff2]; 
        Au2(i,count2+nb:count2+nb+1) = [Ucoeff3 Ucoeff4]; 
        Av2(i,count2:count2+1) = [Vcoeff1 Vcoeff2]; 
        Av2(i,count2+nb:count2+nb+1) = [Vcoeff3 Vcoeff4]; 



Appendix A A-60 

         
        count2 = count2 + 1; 
        count3 = count3 + 1; 
         
    end 
end 
  
% Solve System of Equations Using Linear Least Squares ==================== 
  
rhsscale = (-rho*omega^2); 
x = ones(nb^2,1)*30000; 
  
% 1x1 --------------------------------------------------------------------- 
  
A1 = [Au1;Av1]; 
A1 = A1./rhsscale; 
bb1 = [lcuRHS;lcvRHS]; 
qq1 = sum(A1,2); 
% E1 = bb1./qq1; 
E1 = lsqlin(A1,bb1); 
  
check3 = norm(A1*x-bb1); 
  
% 2x2 --------------------------------------------------------------------- 
  
A2 = [Au1;Av1;Au2;Av2]; 
A2 = A2./(-rho*omega^2); 
bb2 = [lcuRHS;lcvRHS;cuRHS;cvRHS]; 
lb = zeros(nb^2,1); 
  
E2 = lsqlin(A2,bb2,[],[],[],[],[],[]); 
  
% Post-Processing ========================================================= 
  
% Comparative Line Plot --------------------------------------------------- 
  
figure(1) 
plot(E2) 
hold on 
  
% check2 = A2*x-bb2; 
qq2 = sum(A2,2); 
  
xx=0:h:0.02; 
qq = 1:(nb-1)^2; 
  
if constraintmodel == 1 
  
CC = [Au2./rhsscale;Av2./rhsscale]; 
dd = [cuRHS;cvRHS]; 
  
sCC = size(CC); 
CC = [CC zeros(sCC(1),1)]; 
  
% Aineq = [SSvert;SShori]; 
% bineq = [SSvertRHS;SShoriRHS]; 
  
lbc = zeros(nb^2+1,1); 
  
E2SS = lsqlin(CC,dd,[],[],avgval,avgvalRHS,[],[]); 
  
figure(1) 
plot(E2SS,'r') 
hold off 
  
end 
  
% Colour Patch Plot Setup ------------------------------------------------- 



Appendix A A-61 

  
e1 = E2; 
E1 = []; 
  
for i = 1:nb    
    E1 = [E1; e1(1:nb)']; 
    e1 = e1((nb+1):length(e1));   
end 
  
pfactor = 50; 
  
for j = 1:nb 
    for i = 1:nb     
        E1long((1:pfactor)+pfactor*(j-1),(1:pfactor)+pfactor*(i-1))... 
            = E1(j,i); 
    end 
end 
  
xi = samp/nb/pfactor:samp/nb/pfactor:samp; 
yi = samp/nb/pfactor:samp/nb/pfactor:samp; 
  
[X Y] = meshgrid(xi,yi); 
  
Cmin = 2.0*10^4; 
Cmax = 3.3*10^5; 
load MyColourmaps 
  
% Plot Colour Patch - 2x2 ------------------------------------------------- 
figure(2) 
surf(X,Y,0*E1long,E1long,'CDataMapping','scaled') 
title('Unconstrained Model') 
colormap(lump) 
caxis([Cmin Cmax]) 
view([0 90]) 
shading flat 
colorbar 
  
% Plot Colour Patch - 2x2 Model with Constraint Model --------------------- 
if constraintmodel == 1 
  
e0 = E2SS; 
E0 = []; 
  
for i = 1:nb    
    E0 = [E0; e0(1:nb)']; 
    e0 = e0((nb+1):length(e0));  
end 
  
pfactor = 50; 
  
for j = 1:nb 
    for i = 1:nb     
        E0long((1:pfactor)+pfactor*(j-1),(1:pfactor)+pfactor*(i-1))... 
            = E0(j,i); 
    end 
end 
  
figure(3) 
surf(X,Y,0*E0long,E0long,'CDataMapping','scaled') 
title('Constrained Model') 
colormap(lump) 
caxis([Cmin Cmax]) 
view([0 90]) 
shading flat 
colorbar 
  
end 
  



Appendix A A-62 

tt2 = cputime-tt1 
  
%-------------------------------------------------------------------------- 


