The use of ontologies in ITS domain knowledge
authoring

Pramuditha Suraweera, Antonija Mitrovic and Brent Martin

Intelligent Computer Tutoring Group
Department of Computer Science, University of Canterbury
Private Bag 4800, Christchurch, New Zealand
{psu16,tanja,brent}@cosc.canterbury.ac.nz

Abstract. Acquiring the domain knowledge is a task that requires a
major portion of the time and effort when building an ITS. Researchers
have been exploring ways of automating the knowledge acquisition pro-
cess since the inception of ITSs with limited success. All past research
attempts have focussed on acquiring knowledge for procedural domains.
Our goal is to develop an authoring system that acquires knowledge
for procedural as well as non-procedural domains. We propose a four
phase approach: composing an ontology of the domain, extracting syn-
tax constraint from it, learning semantic constraints from the examples
provided by the domain expert and finally verifying the generated con-
straints. This paper presents an overview of the knowledge acquisition
system for acquiring knowledge for constraint-based tutors. It mainly fo-
cusses on composing the ontology and acquiring syntax constraints from
it. Further work on this project will focus on learning from examples and
validating the generated constraints.

1 Introduction

Acquiring domain knowledge is a major hurdle in building Intelligent Tutoring
Systems (ITS) [1]. Although there have been several attempts to ease the burden
on ITS developers by automating the process, they have met with limited success.
All previous attempts have focussed on acquiring knowledge required for teaching
procedural tasks. Our goal is to drastically reduce the time and effort required for
acquiring domain knowledge by automating knowledge acquisition for intelligent
tutors for both procedural and non-procedural domains.

Constraint based modelling (CBM) [2] is a student modelling approach that
somewhat eases the knowledge acquisition bottleneck by using a more abstract
representation of the domain compared to other commonly used approaches [3].
CBM is based on Ohlsson’s theory of learning from performance errors. It focuses
on correct knowledge rather than describing the student exactly as with model
tracing. However, building a complete constraint base still remains a major chal-
lenge. Mitrovic reported that she took just over an hour to produce a constraint
for SQL-Tutor [4], which currently contains more than 650 constraints. There-
fore, the task of composing the knowledge base of SQL-Tutor would have taken

over 4 months to complete. Our goal is to dramatically reduce the time and
effort required for composing the knowledge base required for constraint base
tutors by automating the knowledge acquisition process.

We envisage ontologies to play a central role in the whole knowledge acqui-
sition process. A preliminary study conducted to evaluate the role of ontologies
in manually composing a constraint base showed that constructing a domain
ontology indeed assisted the composition of constraints [5]. The study showed
that ontologies can be used to organise the constraint base into meaningful cat-
egories. This enabled the author to visualise the constraint set and to reflect on
the domain assisting them to create more complete constraint bases.

The remainder of the paper is organised into five sections. The next section
presents a brief description on related automatic knowledge acquisition systems.
Section 3 gives an overview of our project. Details on developing the ontology is
given in Section 4. Section 5 discusses the process of acquiring syntax constraints
from the ontology. Conclusions and future work are presented in the final section.

2 Related work

Past research on acquiring knowledge for ITSs have solely focused on acquiring
knowledge for teaching procedural tasks such as tasks in simulated environ-
ments and solving mathematical algebraic problems. The knowledge acquisition
systems that acquire domain knowledge as a runnable model for evaluating stu-
dent solutions include KnoMic [6], Disciple [7] and Demonstr8 [8]. All these
systems acquire knowledge by observing the domain expert performing a task
and generalising it to be applicable for other problems.

KnoMic is a learning-by-observation system for acquiring procedural knowl-
edge in a simulated environment. The system observes and records the procedure
taken by the domain expert in performing a task within the simulated environ-
ment. While performing the task the expert has to annotate the points where
he/she had changed goals because it was either achieved or abandoned. The
resulting set of observation traces are generalised by the system to learn the
conditions of actions, goals and operators. During an evaluation to test the ac-
curacy of the procedural knowledge learnt in an air combat simulator, KnoMic
acquired 140 productions. Out of the total 140 created, 101 were fully correct
and 29 of the remainder were functionally correct [6]. Although the results are
encouraging KnoMic’s applicability is limited to only simulated environments.

Disciple is a shell for developing personal agents. It relies on a semantic net-
work of the domain that describes the domain, which can be either composed
by the author or imported from a repository. Initially the shell has to be cus-
tomised to the domain by building a domain-specific interface, which gives a
natural way of solving problems for the domain expert. Disciple also requires a
problem solver for the domain. The domain expert has to initiate the knowledge
elicitation process by providing problem-solving examples. The agent generalises
the provided example using a generalisation algorithm with the assistance of the
domain expert. The generalised example is refined by requesting the expert to

validate the examples generated by the system. As Disciple depends on prob-
lem solving instances provided by the domain expert, they should be carefully
selected to reflect significant problem states. The task of selecting significant
problem states requires expertise in knowledge engineering which is scarce. Fur-
thermore, building a problem solver for some domains is extremely difficult, if
not impossible.

Demonstr8 is an authoring tool for building model-tracing tutors for arith-
metic. It relies on the domain expert to specify all the algebraic functions that
can be used and their outcomes in the form of a table. It uses programming
by demonstration to reduce the authoring effort. The system provides a draw-
ing tool like interface for building the student interface of the ITS. The system
automatically defines each GUI element as a working memory element (WME),
while WMESs involving more than a single GUI element must be defined manu-
ally. The system generates production rules by observing problems being solved
by an expert. Demonstr8 performs an exhaustive search in order to determine
the problem-solving procedure used to obtain the solution. If more than one such
procedure exists, then the user would have to select the correct one.

3 Automatic Constraint Acquisition

Existing approaches to knowledge acquisition for ITSs acquire procedural knowl-
edge by recording the domain expert’s actions and generalising recorded traces
using machine learning algorithms. Even though these systems are well suited
to simulated environments where goals are achieved by performing a set of steps
in a specific order, they fail to acquire knowledge for non-procedural domains.
Our goal is to develop an authoring system that can acquire procedural as well
as declarative knowledge.

The authoring system will be an extension of WETAS [9], a web-based tu-
toring shell that facilitates building constraint-based tutors. WETAS provides
all the domain-independent components for a text-based ITS, including the user
interface, pedagogical module and student modeler. The pedagogical module
makes decisions based on the student model regarding problem/feedback gener-
ation and the student modeler evaluates student solutions by comparing them
to the domain model and updates the student model. The main limitation of
WETAS is its lack of support for authoring the domain model.

The domain model for CBM tutors consists of a set of constraints, which are
used to identify errors in student solutions. CBM focuses on correct knowledge
of the domain rather than describing the student problem solving procedure [3].
As the space of false knowledge is much grater than correct knowledge, in CBM
knowledge is modelled by a set of constraints that identify the set of correct solu-
tions from the set of all possible student inputs. CBM represents knowledge as a
set of ordered pairs of relevance and satisfaction conditions. The relevance condi-
tion identifies the states in which the constraint is relevant, while the satisfaction
condition identifies the subset of the relevant states in which the constraint is
satisfied.

As WETAS does not provide any assistance for developing the knowledge
base, typically a knowledge base is composed using a text editor. Although the
flexibility of a text editor may be adequate for knowledge engineers, novices tend
to be overwhelmed by the task. Our goal is to reduce the time and effort required
for building a constraint base by adding support for automatic constraint acqui-
sition to WETAS. We propose a four-stage process initiated by modelling the
domain as an ontology. The ontology would be composed by a domain expert
using the ontology modelling tool. Once the ontology is completed, the system
would analyse the ontology and extract syntax constraints directly from the com-
pleted ontology. During the third phase, the system would acquire constraints
by analysing sample solutions provided by the expert. Finally the constraint set
is validated with the assistance of the domain expert, where the expert would
label the system generated examples as correct or incorrect.

Ontology Problem/solution
workspace interface
— : e |
Ontology - Problem/solution Probl ems and
checker +—> Ontologies L—, manager solutions
Syntax Semantic
constrains constrains
generator generator
Syntax Semantic
constraints constraints

Constraints
validation system

Fig. 1. Interface of WETAS front end

The architecture of the knowledge acquisition system for CBM consists of
an ontology workspace, ontology checker, problem/solution manager and syntax
and semantic constraint generators, as depicted in Figure 1. During the initial
phase the domain expert models an ontology of the domain in the ontology
workspace. The ontology checker validates the ontology during the ontology
composition state. The completed ontology is stored in the ontology repository.

The syntax constraints generator analyses the completed ontology and gen-
erates syntax constraints from it. The generated syntax constraints are stored in

the syntax constraints repository. The generation of constraints from a domain
ontology is discussed further in Section 5.

The domain expert has to specify the representation for solutions prior to
entering problems and sample solutions. The solution representation is a de-
composition of the solution into components consisting of a list of instances of
concepts. For example, a sentence in English consists of a list of words and a list
of punctuation marks.

The domain expert has to enter sample problems and their solutions during
the third phase of knowledge acquisition. The problems/solution interface assists
the user by providing a dynamic form that consists of input boxes for populating
each property of the concept instance. The expert is requested to provide differ-
ent solutions that depict different ways of solving the same problem. While the
expert enters in an alternative correct solution, the system attempts to match
each component of the solution to components of the initial solution. These
matches are later used to compose a set of semantic constraints that compare
the student’s solution against the system’s ideal solution. The expert is also en-
couraged to supply solutions containing typical errors made by students. The
system would use these erroneous solutions to identify typical errors in stu-
dent solutions and provide more detailed assistance. The system also verifies the
solutions provided by the expert using the generated syntax constraints. If a
discrepancy is identified, the user is alerted and the solution may be modified to
comply with the ontology or vice versa.

The final phase involves ensuring the validity of each and every constraint.
During this phase the domain expert may wish to investigate the complete set
of constraints to identify redundancies or erroneous constraints. The erroneous
constraints can be either directly modified by expert users or the user may opt
to provide new examples to illustrate why the constraint is invalid.

4 Developing the ontology

As discussed earlier, we envision the knowledge authoring process to be initiated
by developing the domain ontology. The ontology will be later used to generate
constraints automatically. An ontology describes the domain, by identifying all
the important domain concepts and various relationships between them. The on-
tology workspace provides an environment for composing the domain ontology in
terms of concepts and their sub concepts as shown in Figure 2. All concepts are
represented using rectangles and they are related to their sub concepts using ar-
rows. The interface has no restrictions in placing concepts within the workspace.
The user can position the concepts to display a hierarchical structure. The com-
pleted ontology is saved on a central server in XML format.

The ontology displayed in Figure 2 represents the concepts of ER modelling, a
popular database modelling technique. The ER model describes data as entities,
attributes and relationships. An entity is the basic object represented in the ER
model, which is a ‘thing’ in the real world with an independent existence. Each

entity has particular properties, called attributes, that describe it. A relationship
is an association between two or more entities.

The ER ontology depicted in Figure 2 contains Construct as the most gen-
eral concept. Relationship, Entity, Attribute are sub-concepts of Construct. Re-
lationship is specialised into Regular and Identifying, which are the two types
of relationships and FEntity is specialised, according to its types, as Regular and
Weak. Subclasses of Attribute are Simple or Composite attributes and Simple
attributes are further specialised into five categories namely Key, Partial key,
Single, Derived and Multi-valued.

&

Ontology view |
=N |

[|
o

Relationship

Attribute

Wealk entity i Simple attribute [Composite attrily =

i Reguar relationship H Ielertifying relationship]

Regular ertity

|ve regular

]gﬂlnary Regular relatl:}gshlp } { Recursive identifying\{} M-ary ldentifying relationship H ey }[Partial ey H Single]{ Derived H Tutti-wal,
t M-ary Regular relationship } + Binary ldentifying relationship +

* Details

Abstract [‘Name Binary ldentifying relationship
Description |BinanfIdentifyrelationship |

-Ijrupe_riius
Mame Type Idin Max |
(5) Tag Siring =
(8)|Narne String
identified-participation String total total
owner-paticipation Symbol
identified-cardinality String 1 1 =
| Add | | Moty | | Remive

Fig. 2. Ontology workspace interface

Each concept has a set of properties that describes itself. The property ad-
dition interface shown in Figure 3 allows the specification of the property’s type
(integer, float, boolean, string or symbol) and restrictions on its domain. The
range of values that the property may hold can be specified in terms of min-
imum and maximum values or as a set of distinct values. Other restrictions
include specifying that the value of a property is unique, optional or can contain
multiple values.

iz Property de=cp oo e

Hame] oOptional
Type Integer ¥ at least D
Domain [l Multiple
Min at most D
Max [Unigue

Add

Fig. 3. Concept property interface

An identifying relationship in ER modelling relates a regular entity type (the
owner) to a weak entity type. It is necessary to specify the participation of the
owner and the weak entity type in the relationship.

The properties of the Binary identifying relationship concept are shown in
Figure 2. Its properties include name, identified participation, owner participa-
tion and identified cardinality. Most properties are of type ‘string’ except owner
participation and owner cardinality are of type ‘symbol’. The value of identified
participation property is always ‘total’ and the value of identified cardinality is
always 1.

Figure 4 illustrates an interface for specifying relationships between two or
more concepts. The number of concept instances that participate in the rela-
tionship can be restricted by specifying a minimum and maximum cardinality.

5 Relationship o688 |
Name |Aﬁributes |
Related to Cardinality
[Muttiple Min
| attribute - -

Add

Fig. 4. Concept relationship interface

The relationships that are involved with Binary identifying relationship con-
cept are detailed in Figure 5. They include attributes, owner and identified entity.
The attributes relationship is a relationship between Binary identifying relation-
ship and Attribute with no restrictions on the cardinality. The owner relation-
ship with Regular entity has a minimum cardinality of 1 and the identified entity
relationship with Weak entity has a minimum and maximum cardinality of 1.

Relationships
Relationshig name Caoncept Cardinality-Min | Cardinality-Max
(s)|attributes Attribute
awher Regular entity 1
identified-entity ‘Wealk entity 1 1

| aou || modity || Remove

Fig. 5. Relationships for ‘Binary identifying Entity’ concept

During the task of composing an ontology, the domain experts may add
relationships that are too general. Since constraints are composed directly from
the relationships found in the ontology, it is imperative that the relationships
are valid. In order to ensure that all added relationships are completely accurate,
the system engages the user in a dialog. During this dialog the user is presented
with lists of specialisations of concepts involved in the relationship and is asked
to label the specialisations that violate the principles of the domain. As an
example consider the relationship between Binary identifying relationship and
Attribute. As shown in Figure 5 the initial question posed asks whether each of
the specialisations of attribute (key, partial key, single-valued etc) are applicable
to the attributes relationship. The user would indicate that key or partial key
attributes cannot be used instead of attribute in the attributes relationship.
The system replaces the original relationship with a more specific one at the
completion of the dialog.

& Relationships validator frame ‘m O6 6
In the Attributes relationship, which of the following concepts cannot be used as
Aftribute?
Aftribute s - "ldentifying relationship may have Simple attribute”

Relationship In walid|
Key attribute [wl
Partial key attribute v
Single-valued simple attribute [
Derived attribute [
hulti-valued atribute [

0K

Fig. 6. Relationship validate dialog for ‘Entity has attribute’ relationship

The specialisations of the relationship that are labelled as invalid by the
user are later used by the constraint generator to generate syntax constraints.

The specialisations marked as invalid by the user in Figure 6 would be used
to generate two constraints: Binary identifying relationship cannot have a key
attribute and Binary identifying relationship cannot have a partial key attribute.

5 Acquiring Syntax Constraints from the Domain
Ontology

An ontology contains a lot of information about the domain and is much easier
to create than the final domain model. The restrictions on attributes and re-
lationships specified in the ontology can be directly translated into constraints
that deal with the syntax of the domain. As an example, consider the owner
relationship of Binary identifying relationship: it has a minimum cardinality of
1. This restriction specifies that each Binary identifying relationship has to have
at least one Regular entity participating as the owner. It can be translated to a
constraint that asserts that an Identifying relationship has to have at least one
Regular entity as its owner.

The system generated six constraints from the restrictions specified in the
Binary identifying relationship;

— Binary identify relationship must have at least 1 Regular entity as the owner

— Binary identify relationship must have exactly 1 Weak entity as the identified
entity

— The identified participation property of Binary identify relationship must be
total

— The identified cardinality property of Binary identify relationship must be 1

— The name property of Relationship type has to be unique

— Relationship type must have exactly 1 name

The syntax constraints generator produced a total of 48 syntax constraints
from the ontology for ER modelling, depicted in Figure 2. The generated set
of constraints covered all syntax constraints that existed in KERMIT [10], a
CBM based ITS developed for ER modelling. Although the initial results are
derived from only a single domain, we believe that the system would be able
to successfully handle most non-procedural domains. The ontology workspace
would be enhanced to handle procedural domains by adding further constructs.

6 Conclusions and Future Work

We provided a brief overview of our main research objective: automatically ac-
quire domain knowledge required for constraint-based tutors. We propose a four
phase process, initiated by modelling a domain ontology. The system then anal-
yses the completed ontology and extracts syntax constraints from it. During the
third phase, the expert provides problems and their solutions and the system
generates semantic constraints by analysing the solutions. Finally, the induced
constraint set is validated with the assistance of the user.

10

The paper included a detailed description of the first two phases: modelling
the ontology and extracting constraints from it. The initial tests conducted on
acquiring constraints from an ontology composed for ER modelling produced
encouraging results. The system generated the complete set of syntax constraints
found in KERMIT, a constraint based tutor developed for the same domain.

Currently we are working on acquiring semantic constraints from examples
provided by the domain expert. We will be exploring machine learning algorithms
such as learning from examples and learning from analogy for automatically
acquiring semantic constraints. The ontology workspace will also be enhanced to
handle procedural domains. Several new constructs would have to be introduced
to the workspace to cater for procedural domains.

Finally the system will be thoroughly evaluated to test its effectiveness. Most
importantly, the quality and the correctness of the knowledge base generated by
the system have to be evaluated. Since this research aims to produce a system
that is capable of acquiring knowledge for a vast range of domains not restricting
itself to a particular set, it will be tested in different domains. The usability of
the system will also be tested.

Acknowledgements The work reported here has been supported by the Uni-
versity of Canterbury Grant U6532.

References

1. Murray, T.: Expanding the knowledge acquisition bottleneck for intelligent tutoring
systems. IJAIED 8 (1997) 222-232

2. Ohlsson, S.: Constraint-based student modelling. In: Student Modelling: the Key to
Individualized Knowledge-based Instruction, Berlin, Springer-Verlag (1994) 167—
189

3. Mitrovic, A., Koedinger, K., Martin, B.: A comparative analysis of cognitive tu-
toring and constraint-based modeling. In Brusilovsky, P., Corbett, A., Rosis, F.d.,
eds.: UM2003, Pittsburgh, USA, Springer-Verlag (2003) 313-322

4. Mitrovic, A.: Experiences in implementing constraint-based modelling in sql-tutor.
In Goettl, B.P., Halff, H.M., Redfield, C.L., Shute, V.J., eds.: ITS 98, San Antonio
(1998) 414-423

5. Suraweera, P., Mitrovic, A., Martin, B.: The role of domain ontology in knowledge
acquisition for ITSs. In: ITS 2004. (2004) to appear

6. van Lent, M., Laird, J.E.: Learning procedural knowledge through observation.
In: International conference on Knowledge capture, Victoria, British Columbia,
Canada, ACM Press (2001) 179-186

7. Tecuci, G.: Building Intelligent Agents: An Apprenticeship Multistrategy Learning
Theory, Methodology, Tool and Case Studies. Academic press (1998)

8. Blessing, S.B.: A programming by demonstration authoring tool for model-tracing
tutors. IJAIED 8 (1997) 233-261

9. Martin, B., Mitrovic, A.: Domain modeling: Art or science? In U. Hoppe, F.V..J.K.,
ed.: AIED 2003, I0S Press (2003) 183-190

10. Suraweera, P., Mitrovic, A.: Kermit: a constraint-based tutor for database model-
ing. In Cerri, S., Gouarderes, G., Paraguacu, F., eds.: ITS 2002, Biarritz, France
(2002) 377-387

