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ABSTRACT:  In this paper we consider the forecasting performance of a range of semi- and non-
parametric methods applied to high frequency electricity price data. Electricity price time-series data 
tend to be highly seasonal, mean reverting with price jumps/spikes and time- and price-dependent 
volatility. The typical approach in this area has been to use a range of tools that have proven popular in the 
financial econometrics literature, where volatility clustering is common. However, electricity time 
series tend to exhibit higher volatility on a daily basis, but within a mean reverting framework, 
albeit with occasional large ’spikes’. In this paper we compare the existing forecasting performance 
of some popular parametric methods, notably GARCH AR-MAX, with approaches that are new to 
this area of applied econometrics, in particular, Artificial Neural Networks (ANN); Linear 
Regression Trees, Local Regressions and Generalised Additive Models. Section 2 presents the 
properties and definitions of the models to be compared and Section 3 the characteristics of the data 
used which in this case are spot electricity prices from the Californian market 07/1999-12/2000. This 
period includes the ’crisis’ months of May-August 2000 where extreme volatility was observed. 
Section 4 presents the results and ranking of methods on the basis of forecasting performance. 
Section 5 concludes. 
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2 SOME NEW APPROACHES TO FORECASTING THE PRICE OF ELECTRICITY

1. INTRODUCTION

Concerns over climate change, spiralling crude oil prices and security of electricity supply,
have led to a resurgence of interest in energy-related issues. Electricity market modelling and
forecasting has been given a particular boost following deregulation in many countries and the
highly publicised Californian experiences of 2000 and more locally, the effects of two dry years
in New Zealand, 2001 and 2003 and the Auckland cable failures of 1998 see, Weron (2006).
Analysis of the electricity market has been facilitated by accessibility to high frequency load
and price data which, in the case of New Zealand and Australia, is available at intervals as
frequent as every 5 minutes.

Research into the operations and characteristics of electricity markets can be categorised into
four main areas. Firstly, the modelling and forecasting of electricity load. This area has been
predominately the domain of electrical or systems engineers concerned to minimise risks to
supply. Modelling and forecasting here has involved both parametric, often simple multivari-
ate regression, ARIMA time series approaches and smoothing methods see eg., and semi/non-
parametric neural networks see eg., Hippert, Pedreira, and Souza (2001). Much of this lit-
erature has been published in electrical engineering outlets and has generally not entered the
mainstream economics/econometrics literature. Secondly, there has been growing interest in
forecasting spot and forward electricity prices. This interest has been fuelled by both the needs
of a deregulated market to understand ’how the market works’ and how best (most profitably) to
respond to any systematic, forecastable events. Californian experiences, including widespread
bankruptcy of some of the players see eg., Knittel and Roberts (2005), has added extra im-
petus. This area of research has typically been the realm of economists and econometricians
who have used parametric time series tools from financial econometrics, and applied them to
electricity data see eg., Worthington, Kay-Spratley, and Higgs (2005), Misiorek, Trueck, and
Weron (2006), Conejo, Contreras, Espı́nola, and Plazas (2005), and Escribano, Peña, and Vil-
laplana (2002). These methods typically comprise simple ARIMA or GARCH models whereas
others have attempted to model some of the specific characteristics of electricity data. In par-
ticular, electricity price time series data tend to be highly seasonal, mean reverting with price
jumps/spikes and time- and price-dependent volatility see Weron and Przybylowicz (2000),
Huisman and Mathieu (2003), Goto and Karolyi (2003). Furthermore, as noted by Knittel
and Roberts (2005) the data tend to exhibit large values of higher order moments relative to
a Gaussian distribution which render models based on normality and log-normality of limited
use. Mount, Ning, and Cai (2006) explain why price spikes are a typical feature of a deregulated
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market for electricity and argue in favour of a regime-switching model. Papers that have specif-
ically considered the modelling of non-linearities and/or spikes include Huisman and Mathieu
(2003) who argue that a regime jump process performs better in modelling jumps in combi-
nation with mean-reversion than a stochastic jump model. Moral-Carcedo and Vicens-Otero
(2005) model the non-linearity of the response of demand to temperature using Smooth Transi-
tion (STR), Threshold Regression (TR) and Switching Regression (SR) models. They conclude
that the Logistic Smooth Transition (LTSR) offers advantages over other models and is their
model of choice when applied to Spanish electricity data.

The third level of interest in electricity markets has come from those interested in modelling
the behaviour of firms within a newly deregulated market. Here game theory and operations
control methods have been applied with or without empirical validation see eg. Batstone (2000),
Wolfram (1999), Newberry (1998) and Harvey and Hogan (2000).

Finally, there has been significant discussion of the legal and political implications of the
consequences of deregulation particularly related to market power, volatile prices and security
of supply see eg., Barton (2003).

In this paper we will present a comparison of the forecasting performance of a range of para-
metric and semi/non-parametric models as applied to spot electricity prices using data from the
Californian market from 07/1999 to 12/2000. Results for the parametric models are taken from
Misiorek, Trueck, and Weron (2006), where they found that including a GARCH component
did not improve the forecast performance of the ’best’ model – an autoregressive model for-
mulated with exogenous variables. Here we take the ARX formulation as the best parametric
specification for the California CalPX market clearing prices

The motivation for the paper comes from several sources. The first is to increase our under-
standing of the drivers and sources of predictability in electricity markets. The second is as a
response to the current perceptions regarding the applicability of non-parametric methods to the
forecasting of electricity prices. Misiorek, Trueck, and Weron (2006) state that:

”AI-based models tend to be flexible and can handle complexity and non-linearity.
This makes them promising (emphasis added) for short term predictions.”

However, they then present a somewhat sceptical view on such methods when stating:

”We have to note, however, that the advocated models have generally been com-
pared only to other AI-based techniques or simple statistical methods (emphasis
added). . . The results of Conejo, Contreras, Espı́nola, and Plazas (2005), com-
pared three time series specifications; a wavelet multivariate regression tech-
nique, and a multilayer perceptron with one hidden layer. . . . the ANN technique
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was the worst of the five tested models. . . .It would be interesting to evaluate rep-
resentatives from both statistical and AI-based models. However, a comprehen-
sive comparison of models, even from one class is a laborious task.” (Misiorek,
Trueck, and Weron 2006).

These same authors support regime switching models, which, ”by construction should be
well suited for modelling the non-linear nature of electricity prices” (Misiorek, Trueck, and
Weron 2006).In this paper we seek to test whether this assumed inferiority of these techniques
is supported by the data. We will compare the ’best; models for Misiorek, Trueck, and Weron
(2006) with a range of semi- and non-parametric approaches discussed in section 2. however, it
is worth stressing at this point that the tournament, as it stands, should favor existing approaches
as the ’best’ parametric models were constructed to be just that. Here we are not attempting to
create the (potentially) ’best’ non-parametric alternative, but to take the covariates (and lags)
found optimal for the parametric approach and find the best subset for each non-parametric
formulation.

The plan of the paper is as follows. In section 2 we outline the types of models that will be
used to compare their ability to forecast (Californian) electricity price data. The specific models
under scrutiny include a range of parametric models; ARIMA, and multiple regime (STAR)and
non(semi)-parametric approaches including Artificial Neural Networks; Local regression; Lin-
ear Regression Trees and Generalised Additive Models. Section 3 describes the data, while
section 4 presents the empirical results. Section 5 concludes.

2. MODELS

In this sectoin we briefly describe the parametric and the non(semi)-parametric models used
in this work to forecast electricity price in the Californian Market. We present also some refer-
ences on each model.

For all models we assume that yt is the outcome and xt = [x1t, x2t, . . . , xpt]
′ is the vector

of regressors. Note that xit can be either a exogenous variable (e.g. weather), a deterministic
function (e.g. trend or dummy variables) or lags of yt. We also define x̃t = (1,x′t)

′.

2.1. Parametric Models.

2.1.1. AR(I)MA(X)-type Models. The Autoregressive (Integrated) Moving Average (with eX-
ogenous) variables -type models are probably the most applied type of model to forecast elec-
tricity prices. Cuaresma, Hlouskova, Kossmeier, and Obersteiner (2004) applied linear autore-
gressive models to short-term price forecasting in the German market, Contreras, Espı́nola,
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Nogales, and A.J. (2003) and Nogales, Contreras, Conejo, and Espinola (2002) provide a strat-
egy to build ARIMA models to forecast next-day electricity prices and provide an application to
the Spanish and Californian markets, Misiorek, Trueck, and Weron (2006) used various autore-
gressive schemes to forecast prices in the Californian market, and Haldrup and Nielsen (2006)
studied the Nordic marked and adjusted a ARFIMA to short term price forecasting.

In the ARMA(p,q) model, the dependent variable is expressed as a linear linear combination
of its past values (autoregressive part) and in terms of previous values of the noise (moving
average part):

(1) Φ(B)yt = Θ(B)εt,

where B is the lag operator, i.e. Bjpt = pt−j , Φ(B) = 1 − φ1B − φ2B
2 − . . . − φpB

p and
Θ(B) = 1+θ1B+θ2B

2 + . . .+θqB
q are polynomials in B. A straightforward generalization is

alow some coefficients be zero, in this case we do not have a complete p- or q-order polynomial.
Moreover, if q = 0 we have a autoregressive model.

The ARMA modeling approach assumes that the time series is (weakly) stationary. If not,
we can difference the time series (Box and Jenkins 1976) leading to the ARIMA model. If we
also include differences of lag order larger than one, we have the Seasonal ARIMA model.

In the ARIMA model, the output only depends on its past values; however, in a number of
situations we may want to add exogenous variables to the model. This new class of model is
called ARMAX model. The ARMAX(p, q, r1, . . . , rk) can be compactly written as:

(2) Φ(B)yt = Θ(B)εt +
k∑

i=1

Ψi(B)νit,

where r1, . . . , rk are the orders of the exogenous factors ν1, . . . , νk and Ψi(B) is a ri-th order
polynomial in B. Note that like Θ(·) and Φ(·), Ψi(·) has not to be a complete polynomial.

Misiorek, Trueck, and Weron (2006) found that a large moving average part Θ(B)εt typically
decreases the performance of the estimator. Then, we just consider here the ARX-type model,
which can be consistently estimated by least squares.

2.2. Non(Semi)-Parametric Models.

2.2.1. Artificial Neural Networks. The Artificial Neural Networks (ANN) term comprises a
large number of classes of models and learning techniques. Although many people regard ANN
as something mysterious they are in fact just nonlinear statistical models with the ability of ap-
proximate any Borel-measurable function under mild regularity conditions. This ability has led
to their use in many fields including economics, finance and electricity load forecasting. Kuan
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and White (1994) surveyed the use of ANN in economics, and several financial applications in
a special issue of the IEEE Transactions on Neural Networks (Abu-Mostafa, Atiya, Magdon-
Ismail, and White 2001). Hippert, Pedreira, and Souza (2001) also presented a comprehensive
review of ANN models applied to short-term electricity load forecasting.

The application of ANN models to forecast spot-prices in the energy market is a natural
evolution of what has been done in finance and electricity load forecasting. In particular, Wang
and Ramsey (1998) proposed a two-stage model to forecast weekend and holidays energy spot-
price, using data from the England-Wales market. Szkuta, Sanabria, and Dillon (1999) also used
a ANN model to predict half-hourly prices, presenting results from the Victorian electricity
market in Australia. Finally, Conejo, Contreras, Espı́nola, and Plazas (2005) compared the
efficiency of some models, including a heuristically built neural network, for the day ahead
hourly energy prices in the Spanish and Californian markets.

The most common ANN model, usually just called a Neural Network, is the single layer
perceptron network. The ANN can be interpreted as a stepwise constant function with smooth
transition. This transition is given by a nonlinear function, often called an activation function,
of the inputs.

(3) yt =
H∑

i=1

λif(ω′
ixt − βi) + εt

with f(ω′
ixt − βi) = (1 + e−(ω′

ixt−βi))−1. These nonlinear functions together comprise the
hidden layer, which in this case has H hidden units. In this example, the activation function is
the logistic function; however other activation functions are also considered in the literature; e.g.
see Chen, Racine, and Swanson (2001). The usual estimation algorithm is the backpropagation
algorithm, which aims to minimize the mean square error, between the actual and the forecasted
data, iteratively.

Here we consider a definition of ANN called an Autoregressive Neural Networks (AR-NN)
due to Medeiros, Teräsvirta, and Rech (2006). The AR-NN is defined as

(4) yt = G(x,ψ) = α′x̃t +
H∑

i=1

λif(ω′
ixt − βi) + εt

where εt is a sequence of independently normally distributed random variable with zero mean
and variance σ2.

This model is a semi-parametric nonlinear model and, under certain constraints, is simi-
lar to other nonlinear models such as the (multiple) logistic smooth transition autoregressive
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((M)LSTAR) and the self-exciting threshold autoregressive (SETAR). The main difference be-
tween this model and the usual ANN models previously used to forecast spot-price of electricity
is the building strategy, where in the later case a statistical approach is considered to specify and
estimate the model.

Here we summarize the building strategy proposed in Medeiros, Teräsvirta, and Rech (2006).
First the potential variables (and lags) are selected, then linearity is tested against a single hidden
unit using a Lagrange-Multipliers type test with a significance level α. If the hypothesis is not
rejected, the model with one hidden unit is estimated and tested against the model with two
hidden units with a level of significance α = ρα, 0 < ρ < 1. This procedure continues until the
first non-rejection of the null hypothesis. In this building strategy, all the hidden units contains
the variables that were originally selected in the AR-NN model.

2.2.2. Kernel Regression. Kernel estimators are a nonparametric technique where the condi-
tional outcome y|x is forecast by a weighted average of its neighbors. This technique was first
proposed by Nadaraya (1964) and Watson (1964) and has been studied and applied to both
cross-sectional and time series data. A clear advantage of the kernel regression is its simplicity
and flexibility. A good review and selection of references can be found in Hardle (1990), Hastie,
Tibshirani, and Friedman (2001) and Hastie and Tibshirani (1990).

The main idea behind kernel estimation is to evaluate the value of yt = f(xt) using a
weighted average of the past values of yt around xt, capturing any nonlinear relations within
the data. These weights are given by a kernel K(·) which integrates to unity.

(5) ŷt = f̂(xt) =
1

λk

∑
(yi,xi)∈Qt

K

(
‖xt − xi‖

λ

)
yi =

1

k

k∑
i=1

wiyi,

where Qt is a neighborhood of xt with k elements and wi = K (‖xt − xi‖/λ) /λ. The pa-
rameter λ is called the bandwidth or smoothing parameter and it controls the smoothing of
the fitted curve. As data points are typically evenly spaced, we can just divide (5) by the sum
of the weights. This estimator is called the Nadaraya-Watson estimator and provides a better
approximation results, i.e. reduce the mean square error.

(6) ŷt =

∑k
i=1 wiyi∑k
i=1 wi

.

Three key issues to consider when using kernel methods are (i) the choice of the kernel
Kxt(xi) = K(‖xt − xi‖/λ), (ii) the smoothing parameter λ and (iii) the Markov coefficient
k. For kernel regressions, one of the most popular choices for the kernel is the Gaussian kernel



8 SOME NEW APPROACHES TO FORECASTING THE PRICE OF ELECTRICITY

defined below.

(7) K(xi, λ;xt, Σ) = (2π)k/2e
1
2λ

(xi−xt)′Σ−1(xi−xt),

where Σ is the estimated covariance matrix of x.
The choice of k is important because a large k can reduce the rate of convergence, while a

small k can lead to the lose of some information about the past of the series. The choice of λ

can be complicated: a large bandwidth implies a lower variance and a higher bias while a small
bandwidth implies a higher variance, but smaller bias. We follow Matzner-Løber, Gannoun,
and Gooijer (1998) to select the values of k and λ. It is worth mentioning that λ is usually
estimated using cross-validation (see Matzner-Løber, Gannoun, and Gooijer (1998), Hastie,
Tibshirani, and Friedman (2001), and Faraway (2006)). For as extensive discussion on choosing
the smoothing parameter, see chapter 5 and 7 of Hardle (1990).

Some problems may arise when using locally weighted averages, as the estimator is biased
on the boundaries of the domain. The same problem may occur if the the data is evenly spread.
Fitting a local linear model instead of a local constant model solves this problem (Hastie, Tib-
shirani, and Friedman 2001). In this work, we are considering the multiple regression case.

(8) f̂(xt) = x̃′t (X′
kWk(xt)X

′
k)
−1

X′
kWk(xt)Yk,

where x̃t = (1,x′t)
′, Xk = [(1,x′(i1))

′, . . . , (1,x′(ik))
′]′ is the regression matrix of all xi ∈ Qt,

Wk(xt) is a k × k diagonal matrix of the weights with the diagonal members given by Kxt(xi)

and Yk = [yi1 , . . . , yik ]
′ for yi ∈ Qt. It is straightforward for the linear parameters to be

estimated by weighted least squares.

2.2.3. Linear Regression Trees. Regression trees are now a well established non parametric
modeling tool. Apart from having the advantage of being non parametric, the Regression Tree
is competitive when compared to linear regression, where it often gives a better performance
when faced with non linear problems, while it has a tendency to underperform in the presence
of a good linear structure. The tree structure may also reveal patterns in the analysis that would
not be so obvious with linear regression.

The tree-structured methods are based on recursive partitioning of the covariate space. The
Regression Tree is a tree-based method where the response y is given by a local model fitted for
each partition. Once the split is hard (as opposed to smooth) we can write the response y as a
sum of the local models, weighted by a binary variable Ii(x) = {1 : x ∈ Xi}, where X is the
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ith partition of the space.

(9) yt =
k∑

i=1

Ii(xt)β
′xt + εt,

andβi is the linear parameter vector for the regime i and εt is independent and identically dis-
tributed with zero mean and variance σ2. The most relevant reference in regression tree models
is the Classification and Regression Tree (CART) approach of Breiman, Friedman, Olshen, and
Stone (1984). In this case, the local models are just constants.

The growing algorithm is based on recursive partitioning of the space and evaluation of the
new estimated model using mean squared error (MSE)1. For each value of each regressor, we
divide the space into two partitions, estimate the parameters using least squares and calculate
the MSE of the model. Then, the smallest MSE of the tree model is compared with the MSE
of the linear model, and if the difference is smaller than a threshold we keep growing the tree,
otherwise the linear model is the best model. For any tree with k partitions, we estimate all
possible trees with k + 1 partitions by splitting each one into two. This model is then estimated
and evaluated using MSE. The tree keeps growing in the direction of the split which minimizes
de MSE. The procedure stops when the MSE stops decreasing against given a threshold.

2.2.4. Generalized Additive Models. The Generalized Additive Models (GAM) introduced by
Hastie and Tibshirani (1990), extends the concept of linear regression, allowing the predictors
to vary nonlinearly. This non/semi-parametric class of models captures the nonlinear relations
between predictor and outcome with a nonparametric approach to capture the unknown nonlin-
ear relation. The approach has been widely used in several areas including medicine, biological
sciences, ecology and economics. For a comprehensive review of GAM see Hastie and Tib-
shirani (1990) and Hastie, Tibshirani, and Friedman (2001). Also see Faraway (2006) for a
discussion of how to use GAM with the R package.

Generalized Additive Model is a non/semi-parametric and flexible class of models used to
characterize and identify nonlinearity effects in regressions. The general model is given by the
following:

(10) yt = α + f1(x1t) + f2(x2,t) + . . . + fp(xpt) + εt

where xit for i = 1, . . . , p are the predictors, yt the outcome, fi’s are unspecified smooth func-
tions and εt is an independent and identically distributed error with zero mean. Note that not all

1MSE =
∑

t

(
yt −

∑
i Ii(xt)β′

ixt

)2
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the functions fi must be non-parametric, in this case the GAM can be seen as a semi-parametric
model.

There are two very common was to define the functional form of fi. The first one is to evalu-
ate the model with nonparametric functions, and if a line fits between the confidence interval of
the estimated function, then fi = βi is constant; otherwise, fi is estimated non-parametrically.
The second way is to use an information criteria like Akaike Information Criteria (AIC), Cor-
rected AIC (AICc) or Generalized Cross-Validation (GCV). For a reference on these subjects
see Hastie and Tibshirani (1990) and Eubank (1988).

In a more general framework, we can relate a function g(·) of the conditional mean (µ(xt))
of yt given xt = [x1t, . . . , xpt]

′ with an additive function of the free variables:

(11) g(µ(xt)) = α +

p∑
i=1

fi(xit).

The functions fi are estimated in a flexible way using a scatterplot smoother2 as a building
block, more specifically a cubic spline. A simple iterative procedure to estimate the model is
the backfitting algorithm. First we set α̂ = T−1

∑
t yt, then we apply the cubic spline smoother

Sk to the targets
{

yt − α̂ −
∑

i6=k f̂i(xit)
}T

t=1
, as a function of xkt, to obtain a new estimate

f̂k. This procedure is done for each f̂i, i = 1, . . . , p, using the current estimates of the other
functions until the algorithm converges, i.e. the changes in each f̂i is smaller than a threshold.

3. CALIFORNIAN MARKET AND DATA

The California market was deregulated in 1998 and opened April 1st 1998. By May 1 2000
the market was in crisis which ended August 31, 2000. By that time Pacific Gas and Electric
had gone bankrupt; the other two major power companies had amassed huge debts. Why did
this happen? When the market was initially designed, two rules were put in place that left the
utility companies unable to hedge against volatility. They were not permitted to sign long term
contracts for wholesale electricity; retail rates were largely fixed and hence the companies were
unable to pass-on any wholesale price increase onto customers.

Knittel and Roberts (2005) fit a range of traditional models to an hourly time series of real-
time Californian electricity prices and find that the forecasting performance of traditional mod-
els is ’poor’ and can be improved when they address ”the unique features of electricity data in
particular, volatility clustering and higher order autocorrelation”. Contreras, Espı́nola, Nogales,

2A scatterplot smoother is defined to be a function of x in y whose result is a function s with the same domain as
the values in x : S(y|x)
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and A.J. (2003) utilise an ARIMA model to forecast Californian next-day electricity prices for
the week of April 3, 2000, being the week is prior to the beginning of the dramatic price volatil-
ity period that took place May-August 2000. Their preferred ARIMA model predicts price
better before the May-August crisis and only requires the previous 2 hours of data and three
differentiations. Average errors in the pre-crisis period were around 5%, whereas they jump to
11% when this volatile period is included. For more on the California market, see also Moulton
(2005) and Weron (2006).

In this study we forecast the day-ahead and week-ahead hourly Californian market clearing
prices from the period preceding and including the market crisis cited above. We split the
dataset into estimation and evaluation sets. The estimation set comprises the period from July
5, 1999 to April 2, 2000; the day before starting the crisis. Consequently, the period from April
3, 2000 to December 3, 2000 is used for evaluation purposes. The test scheme is the same used
by Misiorek, Trueck, and Weron (2006) for the linear model; however, we specify the models
weekly to capture changes in the model specification, i.e. a new regime.

The variable set used to forecast the prices is: last two days log-price (pt−24 and pt−48),
last week log-price (pt−168), dummy variable for Saturday (dSat), Sunday (dSun) and Monday
(dMon), the logarithm transformation of the next day forecasted load (lt) and the minimum of
previous day’s 24 hourly log-prices (mpt). The logarithm transformation of price and load is
used to attain more stable variances.

We forecast the clearing price in a day-based framework (24 hours of the day in a turn)
and we re-estimate the models every day, re-specifying3 the models every week. Note that we
use the model estimated on Sunday to forecast the whole week to evaluate the week-ahead
performance.

As noticed by Misiorek, Trueck, and Weron (2006) and Cuaresma, Hlouskova, Kossmeier,
and Obersteiner (2004), modeling each hour of the day separately performs better than one
specification for whole day. Then, we decide to model each hour of the day separately for all
classes of models.

The variable selection procedure4 used for the parametric models consist in select the subset
of variables which minimizes the Bayesian Information Criteria (BIC). For the linear and tree-
based models, the selected set contains all the variables. For the non-linear models with smooth
transition (i.e. Multiple STAR and Artificial Neural Networks) we select the variables using
a technique proposed by Rech, Teräsvirta, and Tschernig (2001). The idea is to approximate

3In re-specify the model we mean grow the model when it is needed, e.g. number of regimes in a multiple regime
models.
4All the model/variable selection procedures were carried out using only the in-sample observations.
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the non-linear model by a polynomial of sufficient high order and then apply some well-know
variable selection technique to this approximation. We select all variables as they are significant
for most models.

For the local regression and GAM we choose a subset of real-valued variables, which seems
to present a non-linear relationship with pt or a local behavior, to model non-parametrically. The
selection of these variables is carried out using the an information criteria (Hastie, Tibshirani,
and Friedman 2001, Hastie and Tibshirani 1990, Eubank 1988), where the effective number
of parameters is given by the trace of the hat matrix5. We choose the Corrected AIC (AICc)
(Hurvich, Simonoff, and Tsai 1998) which are not affected by significant problems of over-
fitting (Manzan 2004). The AICc is shown below.

(12) AICc = log SSE +
N + df

N − df − 2
,

where SSE is the sum of squared errors, N is the sample size and df = Tr(H) is the effective
number of parameters.

For both GAM and local regression, we calculated the AICc of a number of models and select
the one which minimizes the information criteria. The estimated models were the following:
the dummy variables modeled linearly and all the models with 1, 2, . . . , 5 non-parametric
responses. In the GAM selected all five real-valued variables are modeled non-parametrically.
For the local regression model the selected variables were only pt−24, pt−168 and lt.

Following Misiorek, Trueck, and Weron (2006) and Conejo, Contreras, Espı́nola, and Plazas
(2005), we use the naive method as a benchmark for all models. The naive method can be
described as follows: the price on hour t on Sundays, Mondays and Saturdays are equal to the
same hour of the previous week; the price on hour t on Tuesdays to Fridays are equal to the
same hour of the previous day. For the week-ahead forecast, the price is the same as last week.
The naive test is passed if the errors for the model are smaller than the errors obtained for the
naive method.

4. RESULTS

To assess the forecasting performance of each model, we use different statistical measures.
This performance can be evaluated once the true market prices are available. For every day
and all the weeks three types of average prediction errors (typically used in the electricity price
forecasting literature, see e.g. Weron (2006)) were computed: one corresponding to the 24
hours of each day and two to the 168 hours of each week.

5The hat matrix H is defined as ŷ = Hy, where ŷ is the forecasted outcome and y the actual outcome.
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The Mean Daily Error (MDE) is computed as

(13) MDE =
1

24

24∑
h=1

|ph − p̂h|
p̄24

,

where ph and p̂h are respectively the actual price and the forecasted price for hour h and p̄24 is
the mean hourly price for a given day. The use of p̄24 avoid the adverse effect of prices close to
zero.

Analogous to the MDE, the Mean Weekly Error (MWE) is computed as:

(14) MWE =
1

168

168∑
h=1

|ph − p̂h|
p̄168

,

where ph and p̂h are respectively the actual price and the forecasted price for hour h in the week
and p̄168 is the mean hourly price for a given week. Additionally, we compute the Weekly Root
Mean Square error (WRMSE). The WRMSE is calculated as the square root of the 168 square
differences between the actual and forecasted price:

(15) MDE =

√√√√ 1

168

168∑
h=1

(ph − p̂h)2.

The WRMSE puts more weight to differences in the high-price range than MDE and MWE.
Such measures are important because price spikes may lead to financial losses in electricity
trading. However, both measures are not robust against outliers.

4.1. Forecast Results. Tables 4, 5, 6 (Appendix) and table 1 below, refer to the daily forecasts
presented as a weekly measure. The entry ”Linear” refers to the preferred model from Misiorek,
Trueck, and Weron (2006) and entries for this model in Tables 4, 5 and 6 replicate his results
for this approach and likewise for ”Naı̈ve”. The other entries (GAM; Local Regression; ANN
and Tree) presented below and in the Appendix are new. Table 1, below, summarises the results
and demonstrate the following; for the MWE both GAM and Local Regression dominate Linear
with Naı̈ve fourth. For WRMSE GAM followed by Local Regression with Linear and Naı̈ve
joint third. Looking at the ’calm’ (weeks 1-10) versus ’volatile periods’ (weeks 11-35); Linear
seems to forecast better in the early periods, less so in the more volatile episodes.

Tables 7, 8, 9 (Appendix) and table 2 below, refer to week ahead forecasts. These are new
including the columns headed ”Linear” and ”Naı̈ve”. Table 2 below summarise these results
and shows that Local Regression and GAM dominate all other approaches for both MWE and
WRMSE. Also new are Tables 10, 11 – 17 and Table 3 which relate to day-ahead forecasts
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TABLE 1. WEEKLY BEST MODEL SUMMARY - DAY AHEAD FORECAST

This table contains the weekly ’best model’
(model with smallest error) summary in
a Day-Ahead forecasting framework. For
each model we show how many times it
was be best model in each error measure
(MWE and WRMSE), where ’GAM’ aims
for the Generalised Additive Model, ’ANN’
for the Artificial Neural Networks, ’Naive’
the Naive method for week ahead forecast,
’Local Regression’ for Local Regression
Model, ’Tree’ the Linear Regression Tree
model and ’Linear’ the ARX model.

Model MWE WRMSE
Local Regression 8 10

GAM 9 7
ANN 1 2
Naive 6 6

Tree 4 4
Linear 7 6

where the day of the week effect is reported explicitly. Table 3 shows the models with smaller
MDE sorted by day of week. The naive method is the best ”forecasting method” in a day ahead
forecast, followed by GAM and Local Regression. The linear, ANN and linear regression tree
models have the worst performance.

5. CONCLUSION

Interest in modelling and in particular, forecasting, electricity prices is growing globally.
Much interest has been focussed on modelling a small number of key markets including CalPX
and NordPool, with British, Spanish and Australasian markets being included as high frequency
data becomes available.

In this study we have analysed the CalPX data as a precursor to a more wide-ranging testing
programme. In particular, we have sought to formally investigate the potential for using a range
of non- (semi-) parametric methods that have proven useful in other areas of applied statistics.
The particular nature of the electricity data eg., highly seasonal, mean reverting with occasional
jumps/spikes and time- and price-dependant volatility, appears on the face of it to be a prima
facie case for using a range of parametric methods developed for financial data. Weron et. al.
(various) have demonstrated with the CalPX data the apparent dominance of linear ARX and
’Naı̈ve’ forecasting methods. Incorporating GARCH-type effects apparently does not enhance
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TABLE 2. WEEKLY BEST MODEL SUMMARY - WEEK AHEAD FORECAST

This table contains the weekly ’best model’
(model with smallest error) model sum-
mary in a Week-Ahead forecasting frame-
work. For each model we show how many
times it was be best model in each er-
ror measure (MWE and WRMSE), where
’GAM’ aims for the Generalised Additive
Model, ’ANN’ for the Artificial Neural
Networks, ’Naive’ the Naive method for
week ahead forecast, ’Local Regression’
for Local Regression Model, ’Tree’ the Lin-
ear Regression Tree model and ’Linear’ the
ARX model.

Model MWE WRMSE
Local Regression 14 16

GAM 19 16
ANN 2 2
Naive 0 1

Tree 0 0
Linear 0 0

TABLE 3. DAILY BEST MODEL - DAY-AHEAD FORECAST

This table contains summary of the models with smallest MDE in each day of week. ’GAM’ aims for the Generalised
Additive Model, ’ANN’ for the Artificial Neural Networks, ’Naive’ the Naive method for week ahead forecast, ’Local
Regression’ for Local Regression Model, ’Tree’ the Linear Regression Tree model and ’Linear’ the ARX model.

WEEK Monday6 Tuesday Wednesday Thursday Friday Saturday Sunday Total
Local Regression 4 6 11 6 9 8 7 20.8%

GAM 10 2 6 10 7 9 9 21.6%
ANN 10 3 3 1 3 5 3 11.4%

NAIVE 8 18 11 11 9 5 9 29.0%
TREE 3 3 3 3 3 4 2 8.6%

LINEAR 0 3 1 4 4 4 5 8.6%

the performance of these simple methods (see Weron (2006)) although these results relate to a
small range of cases and would appear to contrast with those of ? who used both CalPX and
Spanish data.

In this study we have contributed to the literature by formally testing the proposition on page
4 that casts doubt on the assumed poor performance of AI-based techniques. Our results fall
into two groups. For the experiments undertaken by Weron; daily forecasts - weekly measure -
the Linear (ARX) model performs well, but is dominated by Local Regression and GAM. ANN



16 SOME NEW APPROACHES TO FORECASTING THE PRICE OF ELECTRICITY

does not perform well, as postulated by Misiorek, Trueck, and Weron (2006), nor do Trees.
However, ’Naı̈ve’ works very well - the simplest and often ’best’ way to forecast electricity
prices is to assume your forecast tomorrow is simply informed by the same hour of the previous
day (or week for Saturday, Sunday and Monday)! New results presented here, however, are
somewhat more encouraging for the benefits of using non-parametric methods. Week ahead
forecasts are dominated by Local Regression and GAM formulations and day ahead forecasts
show a strong role for these two approaches and also the ANN. Linear models have somewhat
less success. In addition it must be stressed that these comparisons were made within the con-
straints of the best linear model formulation where the covariates were chosen to maximise the
performance of that formulation.

Future work in this area will involve; application of the parametric and non- (semi-) paramet-
ric methods to a range of alternate data sets and to include a number of other co-variates, i.e.,
NordPool and New Zealand data sets and the inclusion of weather and hydrological data.
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TABLE 4. MEAN WEEKLY ERROR - DAY-AHEAD FORECAST

This table contains the Mean Weekly Error (MDWE) for each model. We also show the median
of the MWE for the calm (weeks 1-10) and volatile (weeks 11-35) periods. ’GAM’ aims for
the Generalised Additive Model, ’ANN’ for the Artificial Neural Networks, ’Naive’ the Naive
method for week ahead forecast, ’Local Regression’ for Local Regression Model, ’Tree’ the
Linear Regression Tree model and ’Linear’ the ARX model.

Week Linear GAM Local Regression ANN Tree Naive
1 3.756% 5.625% 4.574% 3.777% 4.470% 5.004%
2 5.190% 5.409% 6.941% 5.324% 5.510% 8.619%
3 8.550% 9.298% 8.924% 8.635% 9.380% 9.736%
4 13.374% 13.193% 11.842% 13.782% 14.770% 17.139%
5 17.311% 17.631% 17.837% 17.074% 17.070% 19.307%
6 8.193% 8.050% 7.628% 8.248% 9.200% 14.698%
7 9.811% 9.449% 9.379% 9.834% 9.900% 12.558%
8 47.290% 41.551% 1544900.000% 42.837% 48.270% 62.970%
9 13.772% 14.224% 15.754% 13.975% 13.650% 33.220%

10 7.633% 8.428% 7.185% 7.611% 7.980% 16.228%
11 44.227% 38.256% 546.460% 45.853% 41.580% 35.587%
12 19.789% 19.984% 33.079% 20.009% 20.000% 19.407%
13 44.880% 38.517% 33.513% 47.244% 41.550% 23.306%
14 27.588% 25.208% 31.844% 28.431% 24.440% 49.471%
15 11.881% 15.152% 13.758% 11.932% 15.210% 22.374%
16 24.567% 18.823% 19.998% 24.727% 21.430% 32.347%
17 23.605% 19.240% 20.483% 25.008% 20.620% 27.742%
18 12.948% 25.264% 16.182% 13.156% 12.370% 15.004%
19 13.849% 13.174% 13.883% 13.896% 13.930% 30.420%
20 8.638% 16.497% 14.584% 8.642% 11.390% 8.602%
21 16.062% 20.597% 19.645% 16.652% 17.280% 18.223%
22 19.991% 18.745% 23.554% 20.115% 21.430% 50.328%
23 22.799% 23.438% 21.327% 22.593% 22.440% 44.169%
24 14.259% 15.362% 15.198% 14.187% 15.320% 22.861%
25 16.999% 22.400% 21.162% 17.027% 19.380% 27.895%
26 15.044% 14.320% 14.846% 14.999% 15.960% 24.696%
27 12.991% 12.146% 11.635% 12.996% 14.270% 16.660%
28 11.717% 10.361% 9.794% 11.794% 13.120% 20.226%
29 11.515% 9.882% 10.947% 11.646% 12.410% 14.817%
30 14.008% 11.467% 10.331% 14.103% 14.450% 12.407%
31 13.853% 11.173% 11.276% 13.895% 14.140% 12.200%
32 13.690% 11.882% 12.753% 13.871% 14.620% 16.534%
33 16.280% 16.992% 15.253% 16.804% 16.740% 26.987%
34 15.465% 14.816% 11.033% 15.981% 15.710% 7.631%
35 9.720% 9.279% 6.245% 9.986% 10.910% 6.177%

Calm 9.181% 9.373% 9.152% 9.235% 9.640% 15.463%
Volatile 15.044% 16.497% 15.198% 14.999% 15.710% 22.374%
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TABLE 5. WEEKLY ROOT MEAN ERROR - DAILY FORECAST

This table contains the Weekly Root Mean Square Error (WRMSE) for each model. We
also show the median of the WRMSE for the calm (weeks 1-10) and volatile (weeks 11-
35) periods. ’GAM’ aims for the Generalised Additive Model, ’ANN’ for the Artificial
Neural Networks, ’Naive’ the Naive method for week ahead forecast, ’Local Regression’
for Local Regression Model, ’Tree’ the Linear Regression Tree model and ’Linear’ the
ARX model.

Week Linear GAM Local Regression ANN Tree Naive
1 1.474 2.001 1.771 1.482 1.721 2.930
2 1.704 1.719 2.197 1.740 1.776 3.196
3 2.534 2.704 2.853 2.543 2.812 5.588
4 4.427 4.565 4.052 4.521 4.822 8.551
5 7.296 8.157 7.454 7.288 7.399 6.150
6 3.434 3.463 3.145 3.462 3.815 6.410
7 4.808 4.743 4.669 4.805 4.891 97.979
8 84.138 79.527 17360000.000 82.174 84.992 30.346
9 10.049 10.168 11.544 10.139 9.977 12.953

10 5.383 5.653 5.187 5.386 5.743 99.880
11 121.360 103.688 10041.000 127.490 113.715 27.660
12 25.511 24.981 70.172 25.532 25.321 93.168
13 151.210 131.456 144.680 161.500 139.370 37.344
14 20.247 19.216 24.676 20.401 16.915 18.582
15 8.990 12.555 10.888 8.992 12.210 69.832
16 63.201 47.435 52.007 63.680 55.849 96.727
17 76.115 58.926 64.318 79.421 65.353 61.971
18 42.497 115.285 63.640 43.438 41.270 70.626
19 25.722 26.829 26.416 25.661 25.918 16.703
20 18.027 33.695 28.558 18.025 21.534 45.096
21 36.080 45.047 44.611 37.146 38.901 77.402
22 30.735 27.650 34.805 30.769 31.481 60.336
23 29.832 30.198 29.884 29.710 29.333 41.541
24 28.209 28.061 28.150 28.153 28.004 50.209
25 31.353 44.218 39.889 31.262 34.295 36.646
26 23.110 21.884 23.567 23.056 25.153 24.138
27 18.327 17.881 17.463 18.335 19.972 26.058
28 13.760 12.429 11.934 13.811 15.235 18.684
29 14.786 12.374 13.967 14.908 16.129 15.609
30 17.103 13.887 13.001 17.201 17.406 14.583
31 18.146 14.753 14.018 18.199 18.733 26.558
32 23.378 20.498 19.809 23.613 24.567 64.918
33 37.499 39.101 34.470 38.297 39.494 21.522
34 40.260 38.889 31.061 41.585 40.076 24.890
35 27.226 25.464 21.669 27.855 31.299 26.841

Calm 4.618 4.654 4.361 4.663 4.857 7.481
Volatile 27.226 27.650 28.558 27.855 28.004 36.646
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TABLE 6. WEEKLY BEST MODEL - DAY AHEAD FORECAST

This table contains the weekly ’best model’ (model with
smallest error) in a Day-Ahead forecasting framework.
For each week, we show the best model for each er-
ror measure (MWE and WRMSE) where ’GAM’ aims
for the Generalised Additive Model, ’ANN’ for the
Artificial Neural Networks, ’Naive’ the Naive method
for week ahead forecast, ’Local Regression’ for Local
Regression Model, ’Tree’ the Linear Regression Tree
model and ’Linear’ the ARX model.
Week MWE WRMSE

1 ’Linear’ ’Linear’
2 ’Tree’ ’Tree’
3 ’Linear’ ’Linear’
4 ’Local Regression’ ’Local Regression’
5 ’Tree’ ’Tree’
6 ’Local Regression’ ’Local Regression’
7 ’Local Regression’ ’Local Regression’
8 ’GAM’ ’Naive’
9 ’Linear’ ’Linear’

10 ’Local Regression’ ’Local Regression’
11 ’Naive’ ’Naive’
12 ’Naive’ ’GAM’
13 ’Naive’ ’Naive’
14 ’Tree’ ’Tree’
15 ’Linear’ ’Linear’
16 ’GAM’ ’GAM’
17 ’GAM’ ’GAM’
18 ’Linear’ ’Linear’
19 ’GAM’ ’Naive’
20 ’Naive’ ’ANN’
21 ’Linear’ ’Linear’
22 ’GAM’ ’GAM’
23 ’Tree’ ’Tree’
24 ’ANN’ ’GAM’
25 ’Linear’ ’ANN’
26 ’GAM’ ’GAM’
27 ’GAM’ ’Local Regression’
28 ’Local Regression’ ’Local Regression’
29 ’Local Regression’ ’GAM’
30 ’Local Regression’ ’Local Regression’
31 ’GAM’ ’Local Regression’
32 ’GAM’ ’Local Regression’
33 ’Local Regression’ ’Naive’
34 ’Naive’ ’Naive’
35 ’Naive’ ’Local Regression’
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TABLE 7. MEAN WEEKLY ERROR - WEEK-AHEAD FORECAST

This table contains the Mean Weekly Error (MWE) for each model. We also show the median
of the MWE for the calm (weeks 1-10) and volatile (weeks 11-35) periods. ’GAM’ aims for
the Generalised Additive Model, ’ANN’ for the Artificial Neural Networks, ’Naive’ the Naive
method for week ahead forecast, ’Local Regression’ for Local Regression Model, ’Tree’ the Linear
Regression Tree model and ’Linear’ the ARX model.

Week Linear GAM Local Regression ANN Tree Naive
1 7.220% 4.290% 5.370% 6.590% 7.830% 7.010%
2 19.610% 5.680% 7.440% 17.220% 22.300% 15.690%
3 21.880% 9.540% 10.090% 20.190% 23.410% 11.010%
4 12.890% 13.090% 12.770% 12.080% 13.330% 16.500%
5 21.220% 17.940% 18.550% 21.080% Inf 22.170%
6 14.020% 9.150% 7.220% 12.470% 15.500% 24.060%
7 17.400% 9.940% 9.540% 16.590% 17.960% 14.030%
8 57.880% 39.530% 969.770% 57.120% 58.370% 58.220%
9 24.040% 15.850% 17.340% 24.020% 23.960% 90.640%

10 11.200% 7.490% 8.090% 11.660% 11.840% 20.620%
11 73.090% 41.200% 132.720% 75.520% 72.890% 68.380%
12 29.720% 17.690% 83.330% 33.920% 32.350% 132.720%
13 75.890% 42.030% 80.980% 80.630% 74.750% 67.670%
14 91.460% 22.920% 58.430% 130.940% 75.610% 360.160%
15 29.740% 15.410% 12.920% 31.320% 24.200% 32.900%
16 51.260% 18.200% 30.860% 55.080% 39.280% 49.150%
17 57.040% 21.100% 25.090% 59.630% 50.300% 44.290%
18 33.140% 25.230% 18.530% 35.450% 29.710% 30.020%
19 20.960% 20.860% 18.730% 30.460% 69.550% 86.740%
20 25.760% 16.780% 17.120% 29.920% 21.140% 16.860%
21 37.870% 24.920% 15.590% 41.340% 30.710% 22.790%
22 49.010% 20.030% 24.770% 59.070% 104.300% 74.090%
23 32.770% 22.320% 22.680% 29.720% 37.350% 66.140%
24 32.740% 14.280% 17.930% 33.280% 26.190% 33.700%
25 25.190% 22.000% 21.890% 23.030% 36.590% 39.470%
26 19.930% 14.600% 14.710% 21.830% 32.810% 45.070%
27 19.940% 12.350% 13.950% 19.780% 22.790% 21.420%
28 15.130% 10.690% 9.150% 14.240% 20.620% 27.180%
29 17.040% 10.630% 10.030% 19.320% 16.270% 11.920%
30 16.150% 11.670% 9.320% 14.680% 16.130% 11.920%
31 10.860% 11.960% 11.090% 10.700% 13.460% 11.930%
32 20.090% 13.250% 9.930% 21.720% 17.040% 19.160%
33 36.670% 24.890% 13.900% 40.500% 34.170% 36.810%
34 22.790% 28.960% 10.090% 25.810% 18.450% 16.040%
35 15.260% 16.230% 7.180% 18.320% 12.120% 10.690%

Calm 18.505% 9.740% 9.815% 16.905% 17.960% 18.560%
Volatile 29.720% 18.200% 17.120% 30.460% 30.710% 33.700%
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TABLE 8. WEEKLY ROOT MEAN ERROR - WEEKLY FORECAST

This table contains the Weekly Root Mean Square Error (WRMSE) for each model. We
also show the median of the WRMSE for the calm (weeks 1-10) and volatile (weeks 11-
35) periods. ’GAM’ aims for the Generalised Additive Model, ’ANN’ for the Artificial
Neural Networks, ’Naive’ the Naive method for week ahead forecast, ’Local Regression’
for Local Regression Model, ’Tree’ the Linear Regression Tree model and ’Linear’ the
ARX model.

Week Linear GAM Local Regression ANN Tree Naive
1 3.022 1.601 2.099 2.610 3.171 2.544
2 6.035 1.862 2.403 5.085 6.692 4.502
3 6.855 2.779 3.185 6.292 7.262 3.374
4 4.551 4.700 4.370 4.115 4.375 5.618
5 8.756 8.162 7.611 8.613 Inf 9.995
6 6.140 3.688 3.049 5.500 6.603 9.965
7 7.538 4.871 4.703 7.276 7.748 6.549
8 102.420 78.867 6511.948 102.509 103.214 105.560
9 17.133 11.133 14.857 17.319 17.531 96.302

10 7.605 5.471 5.275 7.873 8.144 14.479
11 207.039 116.364 600.404 211.359 207.039 197.744
12 38.689 20.958 273.017 42.425 44.399 167.634
13 281.364 151.745 405.989 291.956 276.734 251.960
14 55.359 16.744 73.578 89.766 42.992 286.497
15 20.187 11.655 10.433 21.878 17.129 22.699
16 112.116 44.963 71.019 118.130 86.082 108.487
17 157.512 63.862 84.135 162.811 137.402 138.460
18 108.362 105.821 69.834 115.294 96.649 103.757
19 40.224 43.708 36.727 64.748 165.084 160.564
20 44.804 34.806 34.290 52.286 37.412 34.019
21 76.271 53.359 35.366 85.905 65.515 52.304
22 68.285 28.928 38.752 85.351 177.265 102.240
23 40.791 29.624 30.604 38.131 47.877 81.267
24 59.800 26.465 34.246 62.390 46.561 55.935
25 41.932 43.067 38.361 39.289 70.980 63.820
26 26.946 22.277 20.520 28.711 48.064 58.566
27 27.919 17.973 23.334 28.408 32.764 29.610
28 17.697 12.486 10.858 16.968 26.873 32.271
29 21.870 13.041 13.348 24.502 21.308 15.941
30 18.398 14.082 11.857 16.989 19.422 14.538
31 12.789 15.609 13.054 12.664 16.306 14.424
32 30.534 22.643 15.874 34.133 26.883 28.418
33 78.023 52.698 31.884 85.296 73.751 75.385
34 55.537 69.473 28.783 64.333 46.986 42.380
35 42.255 43.280 23.105 50.962 35.738 34.754

Calm 7.196 4.785 4.536 6.784 7.262 8.257
Volatile 42.255 29.624 34.246 52.286 46.986 58.566
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TABLE 9. WEEKLY BEST MODEL - WEEK AHEAD FORECAST

This table contains the weekly ’best model’ (model with
smallest error) in a Week-Ahead forecasting framework.
For each week, we show the best model for each error
measure where ’GAM’ aims for the Generalised Addi-
tive Model, ’ANN’ for the Artificial Neural Networks,
’Naive’ the Naive method for week ahead forecast and
’Local Regression’ for Local Regression Model.
Week MWE WRMSE

1 ’GAM’ ’GAM’
2 ’GAM’ ’GAM’
3 ’GAM’ ’GAM’
4 ’ANN’ ’ANN’
5 ’GAM’ ’Local Regression’
6 ’Local Regression’ ’Local Regression’
7 ’Local Regression’ ’Local Regression’
8 ’GAM’ ’GAM’
9 ’GAM’ ’GAM’

10 ’GAM’ ’Local Regression’
11 ’GAM’ ’GAM’
12 ’GAM’ ’GAM’
13 ’GAM’ ’GAM’
14 ’GAM’ ’GAM’
15 ’Local Regression’ ’Local Regression’
16 ’GAM’ ’GAM’
17 ’GAM’ ’GAM’
18 ’Local Regression’ ’Local Regression’
19 ’Local Regression’ ’Local Regression’
20 ’GAM’ ’Naive’
21 ’Local Regression’ ’Local Regression’
22 ’GAM’ ’GAM’
23 ’GAM’ ’GAM’
24 ’GAM’ ’GAM’
25 ’Local Regression’ ’Local Regression’
26 ’GAM’ ’Local Regression’
27 ’GAM’ ’GAM’
28 ’Local Regression’ ’Local Regression’
29 ’Local Regression’ ’GAM’
30 ’Local Regression’ ’Local Regression’
31 ’ANN’ ’ANN’
32 ’Local Regression’ ’Local Regression’
33 ’Local Regression’ ’Local Regression’
34 ’Local Regression’ ’Local Regression’
35 ’Local Regression’ ’Local Regression’
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TABLE 11. MEAN DAILY ERROR - MONDAY

This table contains the Mean Daily Error (MDE) on all Mondays for each model. We also show
the mean of the MDE for the calm (weeks 1-10) and volatile (weeks 11-35) periods. ’GAM’
aims for the Generalised Additive Model, ’ANN’ for the Artificial Neural Networks, ’Naive’ the
Naive method for week ahead forecast, ’Local Regression’ for Local Regression Model, ’Tree’
the Linear Regression Tree model and ’Linear’ the ARX model.

Week Linear GAM Local Regression ANN Tree Naive
1 5.130% 8.430% 8.890% 5.130% 6.260% 5.680%
2 6.480% 3.270% 3.800% 6.480% 6.010% 16.910%
3 8.280% 9.570% 8.890% 8.280% 11.240% 9.800%
4 10.640% 9.880% 9.980% 10.640% 12.180% 10.910%
5 23.890% 25.640% 26.210% 23.890% 22.550% 34.810%
6 5.820% 5.940% 6.300% 5.820% 7.300% 25.720%
7 10.050% 7.810% 9.850% 10.050% 9.580% 8.250%
8 57.500% 56.790% 58.680% 57.500% 56.940% 69.900%
9 9.740% 17.340% 20.420% 9.740% 11.090% 120.050%

10 6.850% 10.260% 6.940% 6.850% 8.670% 20.660%
11 31.920% 27.210% 36.740% 31.920% 30.510% 25.480%
12 12.200% 11.510% 14.710% 12.200% 10.240% 20.990%
13 50.170% 42.700% 48.090% 50.170% 47.210% 48.520%
14 21.600% 25.480% 26.310% 21.600% 24.370% 70.280%
15 12.380% 12.630% 15.700% 12.380% 15.210% 47.770%
16 15.300% 16.620% 20.050% 15.300% 12.020% 36.700%
17 47.060% 27.020% 28.550% 47.060% 38.420% 61.680%
18 17.450% 28.690% 13.230% 17.450% 15.490% 22.400%
19 10.740% 21.980% 11.050% 10.740% 16.210% 78.360%
20 13.200% 16.110% 13.020% 13.200% 13.400% 5.430%
21 21.840% 23.300% 28.440% 21.840% 19.340% 9.030%
22 10.430% 10.710% 15.090% 10.430% 12.790% 18.480%
23 29.520% 20.270% 11.980% 29.520% 24.210% 194.710%
24 13.140% 10.140% 15.760% 13.140% 17.630% 47.270%
25 11.320% 20.190% 12.450% 11.320% 13.540% 27.820%
26 14.590% 8.410% 6.810% 14.590% 15.140% 73.000%
27 19.140% 21.120% 20.860% 19.140% 19.780% 16.640%
28 13.010% 11.110% 15.730% 13.010% 14.600% 11.190%
29 16.540% 12.960% 17.560% 16.540% 17.870% 14.390%
30 10.400% 7.860% 10.960% 10.400% 11.510% 8.650%
31 6.010% 5.390% 4.930% 6.010% 5.630% 8.240%
32 11.430% 8.630% 12.550% 11.430% 12.530% 6.380%
33 21.040% 21.510% 20.630% 21.040% 22.260% 15.030%
34 13.490% 11.170% 13.740% 13.490% 14.310% 9.710%
35 12.080% 10.990% 6.940% 12.080% 13.780% 4.250%

Calm 14.438% 15.493% 15.996% 14.438% 15.182% 32.269%
Volatile 18.240% 17.348% 17.675% 18.240% 18.320% 35.296%
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TABLE 12. MEAN DAILY ERROR - TUESDAY

This table contains the Mean Daily Error (MDE) on all Tuesdays for each model. We also show
the mean of the MDE for the calm (weeks 1-10) and volatile (weeks 11-35) periods. ’GAM’
aims for the Generalised Additive Model, ’ANN’ for the Artificial Neural Networks, ’Naive’
the Naive method for week ahead forecast, ’Local Regression’ for Local Regression Model,
’Tree’ the Linear Regression Tree model and ’Linear’ the ARX model.

Week Linear GAM Local Regression ANN Tree Naive
1 2.670% 5.090% 2.870% 2.680% 3.480% 3.770%
2 4.790% 7.770% 4.660% 4.800% 5.080% 4.180%
3 7.550% 8.300% 2.670% 7.620% 8.570% 4.390%
4 12.580% 11.300% 6.020% 12.770% 13.990% 9.180%
5 18.390% 22.270% 12.960% 18.880% 18.740% 8.990%
6 10.120% 9.080% 9.100% 10.140% 10.960% 8.670%
7 22.750% 23.200% 18.610% 22.720% 22.650% 18.440%
8 66.470% 64.460% 70.970% 67.160% 65.990% 55.490%
9 14.150% 13.950% 23.010% 14.520% 14.040% 13.030%

10 4.220% 7.260% 6.690% 4.170% 4.660% 7.040%
11 21.590% 31.880% 31.020% 21.950% 20.350% 24.770%
12 29.000% 48.050% 41.420% 28.710% 37.410% 20.580%
13 50.560% 40.510% 29.590% 50.580% 46.250% 46.170%
14 85.080% 75.470% 71.970% 83.120% 62.770% 92.700%
15 16.530% 16.840% 16.380% 16.530% 14.710% 19.760%
16 10.470% 11.620% 14.120% 10.360% 16.480% 11.720%
17 20.580% 8.110% 22.500% 21.410% 13.360% 8.780%
18 9.310% 47.160% 27.950% 10.070% 14.030% 5.270%
19 5.710% 7.300% 7.640% 5.660% 4.970% 3.390%
20 7.070% 23.240% 20.450% 6.870% 12.830% 5.700%
21 16.950% 24.360% 19.540% 17.210% 17.610% 12.590%
22 7.390% 10.330% 12.440% 7.510% 7.580% 3.880%
23 7.660% 8.480% 9.470% 7.860% 7.950% 12.090%
24 8.550% 12.660% 12.740% 8.590% 12.540% 11.000%
25 9.000% 29.710% 23.870% 9.090% 14.520% 7.830%
26 7.100% 11.920% 10.650% 7.060% 8.060% 8.850%
27 8.250% 5.770% 4.930% 8.190% 6.870% 14.790%
28 6.530% 5.840% 7.540% 6.680% 9.320% 6.950%
29 7.640% 7.040% 8.280% 7.830% 8.380% 5.300%
30 13.860% 11.100% 12.830% 13.960% 14.820% 9.750%
31 4.840% 5.270% 4.730% 4.820% 6.080% 7.170%
32 5.140% 6.270% 5.070% 5.180% 6.670% 8.970%
33 11.970% 15.110% 11.760% 12.270% 12.880% 5.800%
34 13.750% 13.040% 9.210% 13.950% 14.940% 7.850%
35 8.390% 9.890% 7.140% 8.450% 10.040% 4.650%

Calm 16.369% 17.268% 15.756% 16.546% 16.816% 13.318%
Volatile 15.717% 19.479% 17.730% 15.756% 16.057% 14.652%
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TABLE 13. MEAN DAILY ERROR - WEDNESDAY

This table contains the Mean Daily Error (MDE) on all Wednesdays for each model. We also
show the mean of the MDE for the calm (weeks 1-10) and volatile (weeks 11-35) periods.
’GAM’ aims for the Generalised Additive Model, ’ANN’ for the Artificial Neural Networks,
’Naive’ the Naive method for week ahead forecast, ’Local Regression’ for Local Regression
Model, ’Tree’ the Linear Regression Tree model and ’Linear’ the ARX model.

Week Linear GAM Local Regression ANN Tree Naive
1 2.710% 4.570% 1.880% 2.740% 3.330% 2.190%
2 7.540% 5.440% 11.540% 7.700% 6.220% 5.990%
3 4.960% 7.000% 3.210% 5.300% 6.870% 3.230%
4 16.520% 17.900% 12.210% 17.020% 17.260% 15.080%
5 23.910% 28.030% 19.740% 24.660% 24.620% 16.560%
6 12.540% 14.730% 8.920% 12.710% 13.560% 14.630%
7 6.450% 6.470% 4.150% 6.430% 6.260% 3.430%
8 44.190% 27.340% 9170640.770% 17.630% 51.250% 119.850%
9 9.160% 9.670% 8.980% 10.090% 7.450% 9.710%

10 9.680% 7.920% 7.210% 9.600% 9.290% 5.930%
11 68.770% 59.860% 63.780% 69.170% 67.270% 66.920%
12 18.170% 17.900% 15.720% 18.650% 16.230% 16.980%
13 46.040% 34.790% 17.560% 48.930% 42.130% 29.910%
14 17.550% 16.730% 39.260% 18.380% 16.340% 19.540%
15 15.270% 28.130% 21.890% 15.150% 27.210% 9.640%
16 13.430% 6.730% 10.990% 13.420% 10.080% 13.650%
17 13.460% 11.930% 20.500% 14.150% 11.840% 21.210%
18 13.500% 29.510% 12.910% 14.520% 14.540% 5.770%
19 16.680% 7.480% 14.130% 16.930% 14.490% 16.940%
20 12.440% 22.550% 18.120% 12.560% 15.660% 9.910%
21 15.850% 22.700% 17.150% 16.540% 15.310% 9.630%
22 30.050% 27.760% 34.320% 29.480% 30.240% 38.980%
23 26.230% 28.770% 30.940% 25.810% 26.530% 29.830%
24 30.100% 21.660% 24.520% 30.110% 25.950% 30.880%
25 7.310% 15.840% 9.780% 7.540% 10.450% 5.330%
26 10.220% 14.070% 14.360% 10.080% 11.630% 11.900%
27 15.360% 14.680% 10.780% 15.480% 17.930% 11.290%
28 6.930% 5.800% 4.260% 6.990% 11.030% 26.910%
29 13.510% 10.990% 8.950% 13.690% 16.290% 8.950%
30 9.790% 8.470% 7.380% 9.870% 12.250% 8.880%
31 15.760% 11.890% 11.960% 15.750% 17.850% 9.180%
32 22.700% 19.200% 17.500% 22.740% 24.790% 16.510%
33 30.120% 31.610% 23.140% 30.350% 32.010% 38.500%
34 4.440% 6.180% 6.420% 4.700% 7.060% 12.840%
35 14.060% 11.680% 5.230% 14.190% 16.840% 17.150%

Calm 13.766% 12.907% 917071.861% 11.388% 14.611% 19.660%
Volatile 19.510% 19.476% 18.462% 19.807% 20.478% 19.489%



SOME NEW APPROACHES TO FORECASTING THE PRICE OF ELECTRICITY 29

TABLE 14. MEAN DAILY ERROR - THURSDAY

This table contains the Mean Daily Error (MDE) on all Thursdays for each model. We also
show the mean of the MDE for the calm (weeks 1-10) and volatile (weeks 11-35) periods.
’GAM’ aims for the Generalised Additive Model, ’ANN’ for the Artificial Neural Networks,
’Naive’ the Naive method for week ahead forecast, ’Local Regression’ for Local Regression
Model, ’Tree’ the Linear Regression Tree model and ’Linear’ the ARX model.

Week Linear GAM Local Regression ANN Tree Naive
1 1.770% 3.340% 2.260% 1.770% 1.830% 2.970%
2 3.490% 5.370% 5.020% 3.750% 3.990% 1.480%
3 5.770% 6.790% 5.500% 6.020% 5.670% 4.650%
4 18.330% 20.460% 13.680% 19.480% 18.680% 12.390%
5 22.920% 14.570% 30.610% 21.260% 22.640% 40.700%
6 6.550% 7.160% 6.560% 6.650% 7.420% 4.610%
7 5.140% 4.130% 5.410% 5.110% 5.430% 6.410%
8 42.910% 15.900% 48.760% 45.240% 39.490% 96.840%
9 4.050% 6.230% 8.720% 4.020% 5.670% 6.060%

10 11.840% 7.960% 9.580% 11.900% 11.720% 3.400%
11 42.800% 20.830% 1748.880% 46.980% 37.230% 21.880%
12 32.400% 21.520% 30.560% 34.320% 31.630% 36.700%
13 36.090% 31.370% 44.210% 42.500% 33.340% 11.090%
14 41.090% 17.480% 46.540% 47.220% 35.970% 10.860%
15 4.950% 10.460% 8.670% 5.110% 14.410% 2.940%
16 55.690% 40.710% 45.530% 55.790% 49.920% 57.720%
17 12.050% 10.840% 15.350% 13.350% 9.040% 9.580%
18 9.820% 10.370% 13.450% 10.270% 9.030% 7.190%
19 31.580% 30.910% 28.840% 32.680% 32.600% 27.630%
20 6.210% 13.240% 15.760% 6.300% 9.580% 6.250%
21 10.940% 14.610% 9.900% 10.730% 14.040% 10.390%
22 62.320% 51.220% 55.610% 62.700% 60.350% 73.500%
23 26.550% 26.320% 26.510% 26.560% 24.090% 24.420%
24 12.710% 11.420% 9.120% 13.070% 11.300% 13.240%
25 41.820% 34.550% 41.750% 41.340% 41.940% 48.020%
26 13.970% 9.390% 13.300% 13.960% 11.450% 22.540%
27 8.740% 9.860% 13.180% 9.010% 8.250% 29.800%
28 16.220% 17.230% 8.220% 16.070% 14.380% 48.420%
29 6.600% 5.620% 11.710% 6.880% 5.990% 21.760%
30 5.970% 7.880% 3.770% 6.030% 6.130% 14.680%
31 20.520% 22.550% 14.370% 20.390% 19.430% 17.830%
32 7.820% 8.370% 15.730% 8.020% 8.310% 30.750%
33 21.180% 22.120% 22.810% 21.860% 21.980% 47.000%
34 25.330% 23.860% 17.900% 25.740% 24.330% 6.100%
35 4.460% 5.310% 3.750% 4.670% 6.120% 5.170%

Calm 12.277% 9.191% 13.610% 12.520% 12.254% 17.951%
Volatile 22.313% 19.122% 90.617% 23.262% 21.634% 24.218%
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TABLE 15. MEAN DAILY ERROR - FRIDAY

This table contains the Mean Daily Error (MDE) on all Fridays for each model. We also show
the mean of the MDE for the calm (weeks 1-10) and volatile (weeks 11-35) periods. ’GAM’
aims for the Generalised Additive Model, ’ANN’ for the Artificial Neural Networks, ’Naive’
the Naive method for week ahead forecast, ’Local Regression’ for Local Regression Model,
’Tree’ the Linear Regression Tree model and ’Linear’ the ARX model.

Week Linear GAM Local Regression ANN Tree Naive
1 3.290% 5.320% 2.660% 3.330% 4.110% 2.890%
2 2.810% 4.960% 4.520% 2.990% 5.440% 1.270%
3 4.290% 3.430% 8.280% 4.410% 3.610% 7.190%
4 13.340% 9.250% 16.880% 12.400% 12.330% 25.560%
5 7.290% 5.520% 7.980% 6.410% 5.610% 11.290%
6 9.350% 8.060% 9.290% 9.450% 10.470% 4.390%
7 6.600% 7.600% 6.110% 6.700% 6.170% 6.070%
8 8.460% 11.760% 3.130% 3.340% 10.630% 10.960%
9 23.530% 22.720% 20.500% 23.290% 22.470% 20.580%

10 5.170% 9.260% 6.870% 4.960% 4.600% 13.310%
11 24.110% 42.610% 42.410% 32.990% 25.100% 30.480%
12 17.270% 23.560% 90.850% 17.000% 18.670% 11.200%
13 28.030% 36.170% 29.060% 37.200% 28.130% 9.660%
14 13.080% 17.770% 18.190% 12.410% 15.030% 21.960%
15 5.170% 5.890% 5.860% 5.270% 6.330% 3.990%
16 17.320% 12.290% 13.010% 18.530% 14.930% 13.400%
17 17.090% 14.360% 11.450% 19.480% 14.830% 5.890%
18 14.160% 24.540% 6.740% 14.560% 11.620% 14.730%
19 20.790% 13.200% 19.940% 19.520% 16.790% 27.810%
20 4.280% 11.820% 10.780% 4.260% 9.660% 5.670%
21 16.150% 18.740% 14.010% 17.050% 16.230% 10.190%
22 21.400% 19.550% 13.820% 23.570% 20.500% 19.340%
23 26.980% 26.720% 20.630% 26.780% 29.630% 32.140%
24 10.080% 20.910% 13.880% 9.330% 15.960% 14.670%
25 27.420% 16.950% 23.330% 27.810% 25.370% 36.660%
26 7.740% 8.160% 8.050% 7.730% 7.500% 9.590%
27 14.040% 12.090% 6.090% 13.620% 13.930% 18.540%
28 7.990% 14.440% 7.000% 7.930% 7.740% 31.960%
29 6.820% 8.110% 7.980% 6.600% 6.370% 19.470%
30 13.400% 14.260% 7.320% 13.260% 12.520% 16.480%
31 13.350% 10.310% 17.650% 13.390% 13.820% 15.590%
32 5.090% 6.380% 10.030% 5.250% 6.450% 20.570%
33 6.920% 7.850% 8.520% 7.230% 7.140% 44.070%
34 6.400% 6.580% 14.120% 6.480% 8.390% 8.830%
35 9.560% 11.220% 4.280% 10.000% 11.680% 3.000%

Calm 8.413% 8.788% 8.622% 7.728% 8.544% 10.351%
Volatile 14.186% 16.179% 17.000% 15.090% 14.573% 17.836%
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TABLE 16. MEAN DAILY ERROR - SATURDAY

This table contains the Mean Daily Error (MDE) on all Saturdays for each model. We also show the
mean of the MDE for the calm (weeks 1-10) and volatile (weeks 11-35) periods. ’GAM’ aims for the
Generalised Additive Model, ’ANN’ for the Artificial Neural Networks, ’Naive’ the Naive method for
week ahead forecast, ’Local Regression’ for Local Regression Model, ’Tree’ the Linear Regression
Tree model and ’Linear’ the ARX model.

Week Linear GAM Local Regression ANN Tree Naive
1 4.140% 4.900% 9.340% 4.140% 5.380% 8.720%
2 5.800% 5.860% 12.180% 6.090% 6.180% 14.410%
3 21.010% 22.510% 28.730% 20.610% 20.780% 27.770%
4 6.900% 6.300% 8.030% 7.720% 12.250% 22.650%
5 8.740% 7.810% 13.680% 7.950% 7.500% 5.380%
6 6.250% 4.520% 6.180% 6.200% 7.630% 29.420%
7 5.980% 5.560% 6.730% 5.960% 6.360% 14.930%
8 5.190% 5.770% 9.550% 4.960% 6.730% 9.640%
9 20.650% 18.310% 17.170% 20.670% 20.130% 37.220%

10 8.670% 5.920% 5.480% 8.770% 9.160% 32.840%
11 99.050% 60.960% 109.050% 72.650% 85.560% 39.250%
12 17.170% 11.070% 5.600% 15.710% 13.850% 14.410%
13 157.180% 105.800% 78.450% 120.890% 133.240% 13.770%
14 18.830% 17.440% 23.250% 21.710% 11.050% 84.470%
15 12.400% 13.040% 9.480% 12.470% 12.470% 35.650%
16 17.410% 8.960% 9.120% 15.540% 12.170% 41.830%
17 17.070% 24.870% 10.040% 19.650% 22.630% 33.240%
18 17.380% 12.190% 30.250% 15.960% 9.650% 20.260%
19 7.930% 8.620% 14.180% 8.170% 7.690% 30.900%
20 8.570% 13.260% 12.230% 8.430% 8.840% 14.690%
21 22.980% 26.770% 28.130% 24.250% 27.700% 40.440%
22 10.300% 7.840% 16.520% 11.190% 18.890% 229.290%
23 13.270% 19.810% 10.000% 12.280% 13.850% 37.000%
24 10.580% 12.700% 13.370% 10.240% 10.850% 31.590%
25 7.960% 11.650% 10.760% 8.300% 9.190% 67.300%
26 13.410% 11.910% 10.570% 13.390% 14.820% 16.610%
27 11.800% 8.340% 9.650% 11.780% 16.360% 11.150%
28 9.280% 6.570% 7.880% 9.420% 11.120% 8.580%
29 6.580% 10.830% 7.230% 6.780% 9.110% 23.570%
30 16.420% 10.180% 11.130% 16.520% 16.370% 11.500%
31 13.410% 8.070% 11.540% 13.490% 14.120% 11.740%
32 10.970% 7.870% 7.010% 11.310% 11.560% 13.340%
33 6.350% 9.610% 9.760% 7.200% 5.750% 18.900%
34 22.870% 26.090% 9.420% 23.800% 22.250% 6.880%
35 6.610% 5.790% 9.630% 7.030% 8.730% 5.140%

Calm 9.333% 8.746% 11.707% 9.307% 10.210% 20.298%
Volatile 22.231% 18.410% 18.970% 19.926% 21.113% 34.460%
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TABLE 17. MEAN DAILY ERROR - SUNDAY

This table contains the Mean Daily Error (MDE) on all Sundays for each model. We also show
the mean of the MDE for the calm (weeks 1-10) and volatile (weeks 11-35) periods. ’GAM’
aims for the Generalised Additive Model, ’ANN’ for the Artificial Neural Networks, ’Naive’ the
Naive method for week ahead forecast, ’Local Regression’ for Local Regression Model, ’Tree’
the Linear Regression Tree model and ’Linear’ the ARX model.

Week Linear GAM Local Regression ANN Tree Naive
1 7.110% 7.850% 4.650% 7.180% 7.390% 10.110%
2 5.570% 5.190% 8.020% 5.620% 5.790% 18.420%
3 12.640% 11.800% 12.300% 12.700% 13.050% 19.230%
4 12.580% 13.640% 14.750% 13.530% 14.760% 25.310%
5 5.930% 6.800% 8.070% 5.600% 7.480% 12.190%
6 5.790% 5.780% 6.610% 5.790% 6.060% 19.030%
7 12.170% 11.410% 15.010% 12.310% 13.160% 29.030%
8 15.980% 15.750% 16.930% 15.650% 17.180% 13.700%
9 11.120% 9.560% 11.450% 11.540% 11.200% 34.180%

10 6.410% 10.460% 7.200% 6.420% 7.190% 35.550%
11 7.500% 14.120% 6.940% 6.850% 10.660% 17.010%
12 5.860% 6.890% 5.360% 6.260% 7.180% 7.460%
13 14.660% 15.670% 8.670% 12.210% 20.570% 9.650%
14 7.930% 10.290% 6.560% 7.730% 10.220% 40.680%
15 15.750% 18.460% 18.200% 15.890% 16.390% 38.140%
16 13.450% 16.630% 7.710% 14.300% 9.740% 36.310%
17 32.950% 37.550% 30.310% 35.380% 32.000% 50.630%
18 9.520% 11.020% 10.810% 8.230% 9.370% 51.360%
19 8.000% 4.870% 4.910% 8.480% 8.940% 21.700%
20 8.530% 13.650% 9.710% 8.700% 8.240% 15.550%
21 7.370% 13.150% 21.800% 8.440% 9.760% 34.180%
22 20.520% 18.520% 34.290% 19.540% 24.610% 123.950%
23 24.140% 25.600% 29.480% 24.140% 23.770% 35.940%
24 11.400% 15.880% 17.320% 11.550% 11.560% 16.430%
25 25.370% 23.030% 32.870% 25.010% 28.970% 44.760%
26 35.660% 32.880% 36.380% 35.580% 39.670% 30.750%
27 13.070% 11.480% 14.670% 13.190% 17.510% 11.600%
28 22.740% 12.470% 17.350% 23.130% 23.730% 10.900%
29 23.930% 14.680% 14.760% 24.250% 24.130% 11.010%
30 27.760% 20.150% 18.320% 28.190% 27.020% 17.040%
31 22.560% 15.590% 13.560% 22.840% 21.500% 15.870%
32 29.300% 23.790% 19.280% 29.730% 28.890% 17.550%
33 16.050% 10.750% 9.100% 17.290% 14.750% 6.180%
34 18.990% 14.060% 6.030% 20.530% 16.420% 2.650%
35 12.770% 9.850% 6.820% 13.400% 8.950% 4.080%

Calm 9.530% 9.824% 10.499% 9.634% 10.326% 21.675%
Volatile 17.431% 16.441% 16.048% 17.634% 18.182% 26.855%
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