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SUMMARY 

This thesis describes the development and testing of two apparatuses; a 

vibrating wire viscometer to measure the viscosity of fluids over a wide 

range of temperature and pressure; and a microwave cavity resonator to 

measure dew points, gas phase densities, and liquid drop out volumes.  

Viscosity and density of downhole fluids are very important properties as 

their values can determine the economic viability of a petroleum reservoir. 

A vibrating wire viscometer has been developed with an electrically 

insulating tensioning mechanism. It has been used with two wires, of 

diameters (0.05 and 0.150) mm, to measure the viscosity of methylbenzene 

and two reference fluids with viscosities of (10 and 100) mPa·s at T = 298 

K and p = 0.1 MPa, at temperatures in the range (298 to 373) K and 

pressures up to 40 MPa, where the viscosity covers the range (0.3 to 100) 

mPa·s, with a standard uncertainty < 0.6 %.  The results differ from 

literature values by < ± 1 %. The results demonstrate that increasing the 

wire diameter increases the upper operating viscosity range of the vibrating 

wire viscometer, a result anticipated from the working equations. 

For the microwave cavity resonator, the method is based on the 

measurements of the resonance frequency of the lowest order inductive-

capacitance mode. The apparatus is capable of operating at temperatures 

up to 473 K and pressures below 20 MPa.  This instrument has been used 



to measure the dew pressures of {0.4026CH4 + 0.5974C3H8} at a 

temperature range from 315 K up to the cricondentherm ≈ 340 K.  The 

measured dew pressures differ by less than 0.5 % from values obtained by 

interpolation of those reported in the literature, which were determined 

from measurements with experimental techniques that have quite different 

potential sources of systematic error than the radio-frequency resonator 

used here.  Dew pressures estimated from both NIST 14 and the Peng-

Robinson equation of state lie within < ± 1 % of the present results at 

temperature between (315 and 337) K while predictions obtained from the 

Soave-Redlich-Kwong cubic equation of state deviate from our results by 

0.4 % at T = 315 K and these differences increase smoothly with 

increasing temperature to be –2.4 % at T = 337 K. 

Densities derived from dielectric permittivity measurements in the gas 

phase lie within < 0.6 % of the values calculated from the Soave-Redlich-

Kwong cubic equation of state and about 1 % from values obtained with 

the Harvey and Prausnitz correlation based on a mixture reduced density. 

The calculations with Kiselev and Ely parametric crossover equation of 

state (based on Patel-Teja EOS) gave deviations < 0.7 %. 

Liquid volume fractions, in the 2-phase region, were measured from (0.5 to 

7) cm3 in a total volume of about 50 cm3 at different isochors.  The 

measured liquid volume fractions differ from values obtained with the 

Soave-Redlich-Kwong cubic equation of state by between 0 and 3 % at T < 



326 K and about 8 % on approach to the critical region. The large 

deviations observed in the critical region were anticipated because of the 

known poor performance of the cubic equations of state with regard to the 

calculation of the liquid density in the vicinity of the critical temperature. 
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C h a p t e r  1  

GENERAL INTRODUCTION 

1 Chapter 1: General Introduction 

1.1 Thesis layout: 

For the sake of clarity, this thesis has been ordered in three discrete parts: 

(I), is specific to the vibrating wire viscometer; (II), is specific to the cavity 

resonator; and (III), includes conclusions and recommendations, references 

and bibliography, and published papers on this work. Chapter 1 gives a 

general introduction and a brief history to the project. References for the 

cavity resonator were kept in a contiguous order, starting from ref [93]. 

1.2 Aim and a brief history: 

This thesis describes the development of two novel instruments; a vibrating 

wire viscometer, and a microwave cavity resonator. The vibrating wire 

viscometer developed in this project was used to measure the viscosity of 

methylbenzene and two standard fluids at η up to 200 mPa·s at temperature 

between (298 to 373) K and pressure up to 40 MPa, while the microwave 

cavity resonator was used to measure the dew points, dielectric 

permittivity, gas phase density, and liquid volume fractions for a methane 

+ propane mixture at temperature between (315 to 345) K and pressure up 

to 7 MPa. 
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This project was first started, in 2000, with the idea of applying these 

devices to measurements on hydrofluorocarbon refrigerants (HFC) and 

their compatible lubricants. The limited solubility of the HFC refrigerants 

in mineral oils, traditionally used with chlorofluorocarbons (CFC), has led 

to the introduction of new synthetic lubricants for refrigeration use; hence, 

it was deemed essential to obtain data on those replacement refrigerants 

and their recently developed synthetic lubricants oils. Therefore, the 

International Union of Pure and Applied Chemistry (IUPAC) 

Thermodynamics Commission Task Group and the Thermophysical 

Properties Division of NIST had identified that the properties of mixtures 

of lubricants with replacement HFC refrigerants should be a high priority 

research area, and that there was a need to develop methods to predict 

compatibility regimes and properties. It was planned to use the apparatus to 

study the separation of the oils from the (HFC refrigerant + mineral oil) 

mixture under evaporator conditions. If the oil migrates in small quantities 

from the compressor reservoir to the condenser then to the evaporator, 

where it could separate and accumulate, the compressor becomes starved 

for oil and a break down is possible. The use of synthetic oils has solved 

this problem because they are more soluble in HFC, but they create other 

serious problems because, as explained in details by Kandil and Marsh [1], 

most of them are hygroscopic and, besides, their cost is high compared to 

mineral oils. In particular, the measurement of the liquid drop out volume 

was expected to provide accurate data for the separation behaviour, in 
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addition to the measurements of density, dew points, and relative 

permittivity. Moreover, the vibrating wire viscometer was expected to be 

suitable for obtaining high quality data over a wide range of temperature 

and pressure for synthetic oils and their mixtures with HFC’s. 

The study of these refrigeration fluids extended for almost one year and a 

thorough literature review [1] was published on this subject. However, the 

project moved in a different direction when sponsorship was received from 

Schlumberger and measurements were conducted on (methane + propane), 

methylbenzene, and two certified reference materials for viscosity. Two 

papers have been published on these fluids [2, 3] and one more paper is 

under preparation as discussed in the conclusions chapter. 

1.3 Viscosity measurements: 

1.3.1 Methods of measurements: 

There are numerous methods by which viscosity can be measured, and 

these have been reviewed in detail in ref [4] where they are grouped into 4 

types: capillary, falling body, oscillating body, and vibrating viscometers. 

Most viscometers of the first two types, capillary and falling body 

viscometers, are considered ‘absolute’ viscometers, which mean they rely 

on rigorous working equations. However, they still require calibration with 

a fluid with known viscosity at a specified temperature and pressure in 

order to determine correction factors included in the equations. These 

factors correct for effects that could contribute systematic errors to the 
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measurements. These include the kinetic energy effect and the end effect in 

the capillary viscometers, and also wall effects in falling body viscometers. 

This limits their accuracy in absolute viscosity measurements (if no 

calibration made) to ±3 %, however, they can provide considerably more 

accurate measurements when suitably calibrated. Capillary viscometers are 

the most used type due to their simple design and operation.  

On the other hand, oscillating body and vibrating object viscometers do not 

require correction factors because under specific restraints the working 

equations are complete. A measurement in vacuum is used to determine the 

‘self’ damping of these viscometers. As shown in Table 1.1, the oscillating 

body and vibrating object viscometers can also, simultaneously, measure 

density. Indeed, these devices have simple electrical circuits and are easy 

to automate. 

Table 1.1: Qualities of the main absolute viscometer types. CP = capillary, 

FB = falling body, OB = oscillating body, VV= vibrating viscometers. 

Criterion CP FB OB VV 
suitable for gases yes no yes yes 
measure density no no yes yes 
correction factors yes yes no no 
calibration fluid yes yes no† no†

design simple complex complex simple 
equation simple simple complex simple 
automation complex complex simple simple 
sample size larger larger smaller smaller 
 

† require a measurement in vacuum to determine the self damping. 
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Vibrating wires are of simple construction and have working equations that 

are relatively simpler than those for oscillating body viscometers. They 

also require a significantly smaller fluid volume than traditional methods, 

and do not require bulk motion of the fluid, and hence they are compact. 

The well-founded underlying equations with clear practical constraints 

hold up the vibrating wire as a primary viscometer providing 

measurements with an uncertainty ‘claimed’ as less than 0.3 %. 

Vibrating wire viscometers have been used for measurements on a wide 

range of fluids over an extended range of temperature and pressure. As 

shown in Table 2.1, vibrating wire viscometers have been used to measure 

viscosities ranging from (0.009 to 200) mPa·s in both liquids and gases 

over a temperature range from 1.1 K [57] up to 455 K [16], and at 

pressures up to 1 GPa [50]. 

1.3.2 Concept of Viscosity: 

 

 
 

Figure 1.1: Sketch showing the velocity gradient in a fluid contained 

between one stationary plate and another moving plate with velocity v0.   
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Viscosity describes the extent to which the relative motion of adjacent fluid 

layers are retarded in response to deformation of the fluid. It represents the 

dissipative (irreversible) portion of the dynamic response, unlike Young’s 

modulus which represents the elastic or recoverable part of the response. 

The viscosity can be demonstrated by suspending two horizontal, parallel 

plates A and B, as shown in Figure 1.1, in a liquid so that they are 

separated by a very small distance y0. If the lower plate is kept stationary 

while the upper plate is moved in the x-direction with velocity v0 the layer 

of liquid next to this plate will also start to move. At steady-state 

conditions, as shown in Figure 1.1, the velocity of the fluid layer in contact 

with the stationary plate A will also be zero, while the uppermost layer, in 

contact with the moving plate B, will be moving with velocity v0. The 

velocity distribution across the intermediate fluid layers changes linearly 

with the distance y from the stationary plate according to: 

.
0

0 y
yvv =  (1.1) 

The shear stress τy,x obtained by dividing the horizontal force (applied in 

the opposite direction to maintain the lower plate stationary) by the surface 

area of the plate, is proportional to the velocity of the upper plate, and 

inversely proportional to the distance between the two plates, and is given 

by: 
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,, dy
dvx

xy ητ −=  (1.2) 

which is known as Newton’s Law of viscosity. The subscript y on the shear 

stress denotes the area over which the shear stress acts (an area 

perpendicular to the y-axis and at a distance y from the origin); the second 

subscript x represents the direction in which the shear stress acts. The 

negative sign expresses the fact that the shear stress is applied from a 

region of higher velocity to a lower one. 

By dividing and multiplying the second term of eq 1.2 by the fluid density 

ρ gives: 

 ,, ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−=

dy
dvx

xy
ρ

ρ
ητ  (1.3) 

and for incompressible fluid flow: 

,, ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−=

dy
vd x

xy
ρ

ρ
ητ  (1.4) 

which shows momentum flux is proportional to the negative value of the 

gradient of mass flux, 

 ,, ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−=

dy
vd x

xy
ρντ  (1.5) 
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where ν = η/ρ is the kinematic viscosity that, by analogy, can be referred to 

as the momentum diffusivity of the fluid, i.e. the ability of the fluid to 

transport momentum. 

Thus, viscosity is the principal factor resisting motion in laminar flow. 

However, when the velocity is increased to a turbulent flow regime, 

pressure differences resulting from eddy currents rather than viscosity 

provide the major resistance to motion. Fluids that perform in this manner, 

called non-Newtonian fluids, are not considered further in this study and 

details can be found in Holland and Bragg [5]. 

1.3.3 Viscosity correlation for methylbenzene: 

Methylbenzene was used in this project because it is widely accepted as an 

alternative reference liquid to water. Its wide temperature range in the 

liquid phase (178 to 384) K makes it an ideal reference liquid for viscosity 

calibration purposes. The International Association for Transport 

Properties (IATP) has recommended the use of methylbenzene as a 

reference fluid in viscosity measurements. It has also been used widely by 

different research groups, and a reference correlation for viscosity and 

density was reported by Assael et al. [23]. This correlation covers the 

temperature range from (213 to 373) K at pressures up to 250 MPa 

encompassing the ranges used in this project. 
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Since the viscosity of methylbenzene is a function of density, a Tait-type 

equation was used from [23] to correlate the density as: 

,
/MPa
/MPalog1

1

0
100

−

⎭
⎬
⎫

⎩
⎨
⎧

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+
+

−=
pB
pBCρρ

 (1.6) 

where p0 = 0.1 MPa, C is a constant, and ρ0 and B are given by: 

( ) ,
2

0
0

i
i

i
Ta

=
∑=ρ  (1.7) 

and 

,
3

0

i
i

i
b Θ∑=

=
B  (1.8) 

where Θ = 1- (T/Tc), and Tc = 591.8 K is the critical temperature of 

methylbenzene [23]. The viscosity correlation reported by Assael et al [23] 

is an optimised version of a hard-sphere equation developed by Assael et 

al. and reported in a series of 5 papers [6, 7, 8, 9, 10], where the viscosity 

coefficient η is given by: 

( ){ } 15.03/2810035.6*
−−⋅= MRTVηη  (1.9) 

where V is the molar volume, M is the molar mass (M = 0.09214 kg·mol-1), 

R the gas constant (R = 0.831447 MPa·cm3·mol-1·K-1), and η* is a 

dimensionless viscosity given by: 
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∑
=

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

3

0 0

,
*

1
i

i

i V
Vd

η
 (1.10) 

In eq 1.10, the characteristic molar volume V0 is given as function of 

temperature T by: 

.10
3

0

6
0 ∑

=

=⋅
i

i
iTeV   (1.11) 

The parameters of eqs 1.6 to 1.11 are given in Table 1.2. 

Table 1.2: Parameters for methylbenzene equations of density and viscosity 

 parameters value 
a0/ kg·m-3 1188.631 
a2/ kg·m-3·K-1 -1.49777 
a2/ kg·m-3·K-2 0.002158 
a3/ kg·m-3·K-3 -2.69·10-6

b0 -4.1 
b1 82.4043 
b2 198.1896 
b3 -6.61293 
b4 307.6237 
C 0.216 
d0 0.524367 
d1 -1.34765 
d2 1.081113 
d3 -0.25609 
e0/ m3·mol-1 129.770 
e1/ m3·mol-1·K-1 -0.2793623 
e2/ m3·mol-1·K-2 6.7699·10-4

e3/ m3·mol-1·K-3 -6.36347·10-7
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1.4 VLE measurements: 

The optimal recovery of naturally occurring hydrocarbons mixtures 

depends on a knowledge of the physical properties of the porous media and 

the fluid contained within, including its phase boundaries, density, and 

viscosity. Dew and bubble temperatures can be determined experimentally 

or estimated with an equation of state; the latter requiring as input 

temperature, pressure and chemical composition, which may be obtained 

from gas chromatography coupled to a mass spectrometer. For retrograde 

condensates (or natural gas) the dew temperature curve and ratio of liquid-

to-gas volumes within the (liquid + gas) two-phase region, often referred to 

as the quality line, are the most significant thermodynamic properties for 

the exploitation of natural hydrocarbons. For multi-component mixtures, 

predicted dew pressures near the critical region are often considered 

unreliable and need to be measured. In this project, the dew points, density 

of gas phase, and liquid volume fractions of (gas + liquid) phase, were 

measured for the mixture {0.4026CH4 + 0.5974C3H8}. The range of 

measurements extended to temperatures close to the cricondentherm and 

the results have been compared with different equations of state (EOS). 

1.4.1 General methods of measurements: 

Experimentally, dew curves are often determined by visual observation of 

the first onset of liquid condesation. Often, but not always, the techniques 

used by industry to determine dew points have volumes of about 1 L. 
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Although the results obtained from visual methods are known to suffer 

systematic errors that arise from blind regions and dead volumes, and these 

sources of error have, to a lesser or greater extent, been reduced by 

refinements to the method, the visual method remains the most prevalent in 

the petroleum industry. Non-visual methods, that require small (<100 cm3) 

samples and are particularly suited to automation, have been developed to 

determine the presence of a phase transition. These include measurements 

of refractive index by employing fibre-optic cables [93], evanescent waves 

at GHz frequencies [94], and relative permittivity [95,96,97,98]. The latter, 

determined with a radio frequency (RF) cavity resonator, was previously 

used by Goodwin et al. [98] to determine phase behaviour and is the 

subject of this work. 

The most important features of this technique are: (1) on-line 

measurements can be made; (2) microwaves can penetrate all fluids 

(depending on their electrical conductivity) giving representation to the 

volume not only the surface; (3) it provides higher resolution and 

sensitivity with temperature changes compared to other techniques. 

However, calibration with a reference material is necessary to compensate 

for changes in dimensions of the cavity with pressure and temperature. 

1.4.2  RF/microwave resonator: 

The term Radio Frequency (RF) refers to a wide portion of the 

electromagnetic radiation spectrum that extends from about 9 kHz to about 
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300 GHz and includes different frequency bands, and, as shown in Figure 

1.2, the portion of the RF Spectrum that starts at 100 MHz is referred to as 

the microwave spectrum. The resonator developed in this project has a 

fundamental resonant frequency ≈ 350 MHz, hence its designation as a 

‘microwave’ cavity resonator. 

 
 

Figure 1.2: RF electromagnetic spectrum 

1.4.3 Concept of resonators:    

A resonator is a structure that can store energy such that it is continuously 

converted with a specific rate between two kinds of energy. When the 

resonator oscillates, energy is converted from one kind to another and 

back. If more energy is fed to the resonator at the same frequency and in 

phase with the oscillations, energy will be absorbed and stored in the 

oscillator. If energy is continuously fed into a resonator, the amount of 

energy stored will grow until energy is dissipated with the same rate as 

new energy is stored. If the excitation of a resonator stops, the amplitude of 

oscillation will decrease exponentially at a rate determined by the quality 

factor 1/Q. 

In a microwave resonator, used in this work and shown schematically in 

Figure 1.3, electromagnetic waves travel back and forth between reflecting 
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points resulting in a standing wave pattern, where the energy pulsates 

between electric and magnetic energy. 

V1 V2 

L1 L2 

L 

C 

R 

Equivalent LCR circuit 

 
 
 

Figure 1.3: Sketch for the microwave cavity resonator developed in this 

work, showing the coupling loops at the top, drainage valve at the bottom, 

and analogous LC circuit to the left.  

The field in the resonator is excited by the external circuit by means of a 

coupling structure, which radiates the wave into the resonator, and can be, 

for example, an aperture (small hole), a coupling probe, or a coupling loop, 

as in this work. The resonant frequency is mainly determined from the size 

and shape of the structure and the dielectric properties of the medium 

where the microwaves propagate. Thus, the dielectric properties (relative 

permittivity) of a medium within a resonator can be determined from the 

measurements of the resonant frequency. In Chapter 7, Theory and 

Working Equations, a discussion is included on how the relative 

permittivity can be determined from the measurement of resonant 

frequency, and how the density can be determined from the relative 

permittivity. 
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1.4.4 VLE prediction and EOS: 

Among many equations proposed for predicting phase behaviour such as 

cubic, virial, and empirical equations of state, the cubic equations of state 

(CEOS) have been widely used because of their simplicity, accuracy, 

applicability over a wide range of pressures and temperatures, and most 

importantly its capability of describing substances in both liquid and 

vapour phases. Among cubic equations of state, Peng-Robinson (PR) [105] 

and Soave-Redlich-Kwong (SRK) [106] are the most widely used in the 

refinery and gas processing industries for the prediction of vapour-liquid 

equilibria (VLE) for systems containing non-polar components. The SRK 

EOS has been very successful in extending the applicability of CEOS to 

systems that contain non-polar and slightly polar components, as used in 

this work. In this work, the PR and SRK EOS have been used as reference 

correlations to compare with the experimental results. A comprehensive 

review on the SRK EOS can be found in ref [107], and extensive details of 

other EOS are found in ref [108], while only a summary of PR and SRK 

formulations is given in this section. 

A generalised CEOS can be described by: 

22
)(

wbubvv
Ta

bv
RTp

++
−

−
=   (1.12) 

where R is the gas constant, v is the molar volume, and the parameters u, w, 

b and α(T) are listed in Table 1.3 [108].  
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Table 1.3: Parameters for PR and SRK EOS 
 

PR SRK 
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where ω is the Pitzer acentric factor [109], a substance-specific constant 

that reflects the geometry and polarity of a molecule and is defined as: 

7.0
sat
r r

)log(1 =−−= Tpω  (1.13) 

where 
c

sat
sat
r p

pp =  is the vapour pressure reduced by pc, the critical 

pressure, and 
c

r T
TT =  is the reduced temperature where Tc is the critical 

temperature. 

While this work investigates the performance of the microwave resonator, 

it also examines the applicability of these two equations of state to systems 

that contain non-polar and slightly polar components and may provide 

insight to one of the most frequently asked questions by engineers: “which 
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equation of state, PR or SRK, should be selected for VLE prediction for 

petroleum fluids?” 
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Part I 
 

The Vibrating Wire Viscometer 
 

Nomenclature: 
 
A Area 

B Magnetic field strength 

c Speed of sound 

cp Specific heat 

D Diameter; Drag force 

E Young’s modulus of elasticity 

F Force 

f Frequency 

G Shear modulus of elasticity  

g Gravitational acceleration; Half width of resonance curve 

I Current 

Ia Area moment of inertia 

J Mass moment of inertia 

K0, K1 Modified Bessel functions  

L Length 

m Mass 

M Bending moment 

Ma Mach number 

p Pressure 

Q Quality factor of resonance curve 

r Radius 

R Radius; Resistance 

Re Reynolds number 

T Temperature; Tension 
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t Time 

u Deflection of the wire in the lateral direction (y) 

V Volume; Shear force; Voltage 

v Velocity 

x, y, z Rectangular co-ordinates  

r, θ, z Cylinderical co-ordinates 

 

 

Greek Symbols: 

β Dimensionless added mass due to fluid displaced by the wire 

β'  Dimensionless damping due to fluid viscosity 

γ Shear angle (loss of φ due to shear effect) 

∆0 Self damping of the wire (measured in vacuum) 

ε Dimensionless displacement 

η Viscosity 

κs, κT Isentropic and Isothermal compressibility of the fluid 

λ Coefficient of heat transfer 

Λ Amplitude in eq 3.55 

ν Kinematic viscosity 

ρ Density 

σ Dimensionless radial coordinate 

σ* Dimensionless radius of container 

τ Shear stress 

τ Dimensionless time 

φ Angle of rotation around x-direction 

Ф Dimensionless stream function 

χ Shape factor of wire cross section 

ψ Stream function 

ω Angular frequency 

Ω Dimensionless quantity closely related to Reynold’s number 
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Definition of subscripts 

 

0 In vacuum 

B Magnetic field 

c Container; Critical 

calc Calculated 

exp Experimental 

f Fluid 

r Resonance 

s Solid wire 

x, y, z In direction of rectangular co-ordinates 

r, θ, z In direction of cylindrical co-ordinates 

 

Boldface denotes a vector quantity. 
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C h a p t e r  2  

LITERATURE REVIEW 

2 Literature Review 

The motion of an oscillating wire in a dense fluid was first described in 

1828 by Bessel [11] when he noted the need for an added mass correction 

to the motion of pendulum in air. This added mass effect had been 

discovered independently by Du Buat [12] in 1786, but it was not until 

after the appearance of Bessel’s memoir that Du Buat’s work attracted 

attention. In 1850, Stokes [13] derived the dependence of the added mass 

on the viscosity of the surrounding fluid. The practical and theoretical 

development of the use of the vibrating wire in viscosity measurements is 

summarized in Table 2.1. The first to use the vibrating wire to measure the 

viscosity of fluid, to the author’s knowledge, are Tough et al. [58] in early 

1960. Since then, vibrating wire viscometers were developed widely with 

different wire materials, diameters, lengths, clamping devices, and with 

forced or transient modes of oscillation. 

As shown in Table 2.1, the vibrating wires have been fabricated from 

tungsten, stainless steel, chromel, and NbZr alloy. Tungsten is the preferred 

material because both its Young’s modulus and density are high relative to 

those of other materials, providing a stable resonance and sensitivity with 

respect to the fluid surrounding it. Further details on the design are 

discussed in Chapter 4. 
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Table 2.1 also shows that different wire diameters D of a range from (0.007 

to 0.3) mm have been used depending on the measured viscosity range. 

Smaller diameters are normally used for gases and low viscosity liquids 

and larger diameters are used for more viscous fluids. Different wire 

lengths have also been used, in order to satisfy the ratio between the 

length L and the radius R as L/R >> 1. The working equations are 

discussed in details in Chapter 3. 

Different methods for clamping the vibrating wire have been included in 

Table 2.1. Wires with a single clamp at one end and a buoyant mass at the 

other end (BM) have been used where the density and viscosity are 

simultaneously measured as the tension on the wire changes with buoyancy 

changes. Wires with two clamps at both ends (2C) have been used where 

only viscosity is measured. Another clamp type with constant tensioning 

system (CTS) has been used to minimise the changes in the wire tension 

resulting from the changes in the temperature in the wires using the two 

clamps (2C) design. 

Two modes of oscillations, shown in Table 2.1, have been used in driving 

the vibrating wire: the forced mode (FR) and the transient mode (TR). The 

forced mode operates in the frequency domain where a constant ac current 

drives the wire over a frequency range covering its first harmonic and 

viscosity is calculated from the width of the resonance signal. The transient 

mode takes place in the time domain where the wire is driven for a short 
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time at a frequency near to its resonance then the driving current is 

switched off and the viscosity is calculated from the decay time. The 

forced mode requires a simple electronic setup; however, care should be 

taken to keep the frequency sweep time as short as possible to avoid any 

rise in the wire temperature. 

To the author’s knowledge, all but three of the instruments included in 

Table 2.1 have been used to measure viscosity in the range from (0.008 to 

6) mPa·s. The three exceptions are as follows: Charles et al. [48] reported 

measurements of the viscosity of glycol at about 53 mPa·s; Gourgouillon et 

al. [34] measured supercritical fluid-saturated polymer (PEG 400) with a 

viscosity of about 20 mPa·s; and Caetano et al. [27] in 2004 reported 

measurements of diisodecylphthalate with a viscosity up to 120 mPa·s. In 

this research, a vibrating wire viscometer has been developed to measure 

viscosities for standard reference fluids at viscosity up to about 200 

mPa·s. The wire is clamped at both ends, with an electrically insulating 

mechanism. The novel features of this rugged instrument are: the internal 

volume is small, only 10 cm3, obtained by reducing the separation 

between the magnets; the magnets are located within the fluid and, 

therefore, the dimensions of the magnets required for providing a 

particular flux at the wire is small. This ultimately reduces the diameter 

of the complete instrument. This vibrating wire viscometer is considered 

one of the smallest of its kind as described with more details in Chapter 4. 
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This viscometer has been used to measure the viscosity of methylbenzene 

and two reference fluids with nominal viscosities of (14 and 232) mPa·s at 

T = 298 K and p = 0.1 MPa at temperatures in the range from (298 to 373) 

K at pressure below 40 MPa. The measured viscosities range from (0.3 to 

100) mPa·s. The results obtained differ from literature values by less than 1 

%, and measurements show that, as anticipated from the working 

equations, increasing the wire diameter to 0.150 mm allows the 

measurements to be performed with fluids of viscosities up to 200 mPa·s 

with values within 2 % of the reference values. This difference is within 

the uncertainty of the measurement, which, at that viscosity, was estimated 

as 3 %. Results are discussed in more details in Chapter 5. 
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Table 2.1: Review of the literature reporting the development of a vibrating wire to determine fluid viscosity η along with 

maximum pressures p, temperature range T, estimated uncertainty u, wire material S, wire diameter D, wire length L, 

clamped at one end with a buoyant mass (BM), clamped at both ends (2C), clamped with a constant tension system (CTS), 

and operated in either forced (FR) or transient (TR) mode. 

ref 
Tmin – Tmax

K 
p 

MPa 
fluid 

η min to ηmax

mPa·s 
±100u  S

D 
µm 

L 
mm

clamp mode  comments

14            theory
15       

     

        
        

            

     theory
16 240 to 455 165 natural gas mixtures 0.009 to 0.02 1 W 7   TR  
17 210 to 370 0.1 methylbenzene 0.3 to 2.7 0.5 W   BM TR  
18 210 to 370 30 methylbenzene 0.3 to 2.7 0.5 W 100 56 BM TR  
19 303 to 348 250 heptane 0.2 to 2 3 W 100 56 BM TR  
20 303 to 348 300 heptane 0.2 to 2 3 3 W 100 56 BM TR  
21 298 70 hexane 0.3 to 0.53 0.5 W 100 54 CTS TR  
22 303 to 323 80 Benzene, methylbenzene, m-xylene  0.42 to 0.89 0.5 W 100 54 CTS TR  
23 213 to 373 250 methylbenzene  2.5      ref. correlation 
24
25

1,1,1,2-tetrafluoroethane (R134a)      IUPAC Round 
Robin Project 

26 303 and 323 70 Methylbenzene, heptane 0.42 to 0.89 0.5 W 100 54 CTS TR
27 288 to 308 0.1 diisodecylphthalate 120 1 W 60200 2C TR
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Table 2.1 continued 

ref 
Tmin – Tmax

K 
p 

MPa 
fluid 

η min to ηmax

mPa·s 
±100u  S

D 
µm 

L 
mm

clamp mode  comments

28 213 to 298 20 methylbenzene 0.55 to 3.3 1.5 W 100 40 CTS TR  
29 298 to 473 200 dodecane, octadecane         0.22 to 6.7 2 W 100 32 BM FR
30 298 to 393 75 mixture of methane and decane 0.08 to 1.65 3 W 100 28 BM FR  
31 303 to 423 50 mixture of hexane and 1-hexanol 0.2 to 6.7 4 W 100 28 BM FR  
32 298 to 383 100 pentane 0.1 to 0.43 2.5 W 100 28 BM FR  
33 222 to 348 80 methylbenzene 0.3 to 2.2 3 W 100 40 BM FR  
34 313 to 348 25 supercritical CO2-saturated PEG 20 4 W 100 40 BM FR  
35 198 to 348 100 2,2,4-trimethylpentane (isooctane)       

        
      

     

            

0.29 to 6 3 W 100 40 BM FR 
36 199 to 298 100 1,1,1,2-tetrafluoroethane (R134a) 0.2 to 0.8 2.5 W 100 40 BM FR  
37 197 to 348 40 cyclohexane, 1,1,1,2-tetrafluoroethane, 

2,2,4-trimethylpentane 
0.2 to 3 2 W 100 40 BM FR  

38 260 to 300 100 CO2(l) 0.06 to 0.24 0.5 W 100 56 FRBM
39      theory
40 298 and 323 10 methylbenzene 0.422 to 0.6 0.4 FR 

0.8 TR 
W 100 40 BM FR

& TR 
 

41 231 to 343 5.1 R32, R125 0.06 to 0.25 1 W 7.5 140 BM TR  
42 223 to 343 4.8 R134a, R32, R125 0.01 to 0.015 2 W 7.5 140 BM TR  
43 303 to 348 250 methylbenzene, pentane, hexane, 

octane, and decane 
0.18 to 5.9 0.5 W 100 56 BM TR  

44 235 to 343 50 R134a 0.11 to 0.24 0.6 W 100 56 BM TR  
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Table 2.1 continued 

ref 
Tmin – Tmax

K 
p 

MPa 
fluid 

η min to ηmax

mPa·s 
±100u  S

D 
µm 

L 
mm

clamp mode  comments

45 298 to 423 20 C3H4 (g) 0.008 to 0.07 3  25 90 BM TR chromel wire 
46 298 to 423 20 Ar, Kr, C3H8 0.022 to 0.04 3  25 90 BM TR chromel wire 
47 298 to 500 40   0.2      theory 
48 80 to 323  H2O, glycol, CS2, O2(l), Ar(g) 0.024 to 53 0.13 W 100 50 2C TR  
49 223 to 323 779 Ar 0.11 to 0.33  W 50 20 2C TR  
50 273 

       
        

      
      

      

      
      

          

1000 CH4 0.01 to 0.415  W 50 20 2C TR  
51 220 to 280 450 CO2(l) 0.5 0.5 W 50 20 TR2C
52 174.45 470 Ar 0.61 2.5 W 50 15 2C TR 
53 243 to 393 3.5 1,1-difluoroethane (R152a) 0.012 to 0.34 2.8 W 50 15 2C TR  
54      theory
55      theory
56 174   471 Ar         
57 2.18 to 1.1  3He (l) 0.026 5 W 25 50 2C TR  
58      theory
59 1.8 to 3.2 2.5 4He 0.023 to 0.07  SS 80 50 2C TR  
60      theory
61      theory
62 0.0013 3He 300   NbZr wire
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C h a p t e r  3  

THEORY AND WORKING EQUATIONS 

3 Theory and Working Equations 

The complete theory of a viscometer based on measurements of the resonance 

frequency of a circular section rod performing steady transverse oscillations in 

the fluid has been presented by Retsina et al. [14, 15]. This theory was 

established as a result of a detailed analysis of the fluid flow around the rod, as 

well as the mechanical motion of the rod. The theory is valid over a range of 

conditions that includes those used for the vibrating wire viscometer developed 

in this research. This chapter contains, in addition to the working equations, an 

overview of the theory with emphasis on the constraints and limitations over 

which the working equations are valid. 

The equations in this chapter are grouped into three main categories: (1) the 

mechanical motion of the wire; (2) the motion of the fluid surrounding the 

wire; and (3) the equations relating the viscosity of the fluid to the 

measurement of the induced electromotive force (emf) arising from the motion 

of the wire with an applied current within a magnetic field.  

3.1 The mechanical motion of a wire: 

The mathematical model of the motion of the wire is based on the elastic beam 

theory with the following assumptions for the beam: 
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(1) is essentially an elastic solid in which one dimension is predominant 

over the others, i.e. its length is much longer than its thickness, 

(2) is prismatic, i.e. the cross sections are the same, 

(3) is homogeneous, i.e. with constant material characteristics, 

(4) is straight, i.e. its axis is a part of a straight line, 

(5) and is untwisted, that is the principle axes of elasticity of all sections are 

equally directed in space. 

The simplest and best-known models for straight, prismatic beams are: the 

Euler-Bernoulli theory, also called classical beam theory [63], which is based 

on the added assumptions that both shear deformation and rotational inertia of 

the cross sections are negligible if compared with bending deformation and 

translational inertia; and the Timoshenko beam theory [64] which incorporates 

a correction for transverse shear effects and rotational inertia of the cross 

sections, usually referred to as the ‘Timoshenko Beam’. 

3.1.1 Simple lateral vibration of the wire: 

As illustrated in Figure 3.1 (a), the lateral vibration of the wire in the yz plane 

when the deflection u(z, t) is assumed due to the bending moment only, as the 
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Euler-Bernoulli beam, the displacement u in the y direction and the rotation φ 

around the x direction are linked with the relation: 

,
z
u

x ∂
∂

=ϕ  (3.1) 

φa) 

 
 

Figure 3.1: Flexural behaviour of a straight beam in the yz plane. 

and the dynamic force equation on the element shown in Figure 3.1 (b) is: 

2

2s
u Vm z V z

t z
∂ ∂⎛ ⎞ V∂ = − + ∂ +⎜ ⎟∂ ∂⎝ ⎠

, (3.2) 

i.e the inertia force equation is. 

z

z

b) 

at time t

at time = 0

M

V

M+dM

V+dV

u(z,t)

y 

φ

x 
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2

2s
um

t z
V∂ ∂

= −
∂ ∂

. (3.3) 

where ms is the mass per unit length and V is the shear force, and by summing 

the moments M about any point on the right surface of the element (at z + dz) 

gives: 

0=−
∂

∂ Vdzdz
z

M , (3.4) 

i.e. 

M V
z

∂
=

∂
, (3.5)    

Substituting for V in eq 3.3, gives: 

(
2 2

2 2s
um

t z
∂ ∂

= −
∂ ∂

)M , (3.6) 

from elementary strength of materials, the wire curvature and the moment M 

are related by: 

2

2a
uEI

z
∂ M=
∂

, (3.7) 

where E represents the extensional Young’s modulus of elasticity for the rod 

material, Ia is the second moment of inertia, then substituting in eq 3.6 
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2 2 2

2 2s
um EI

t z z
⎛ ⎞∂ ∂ ∂

= − ⎜∂ ∂ ∂⎝ ⎠
2a
u

⎟ , (3.8) 

if the product EIa which represents the flexural stiffness of the wire is constant, 

then the equation reduces to : 

2 4

2 4 0s a
u um EI

t z
∂ ∂

+ =
∂ ∂

. (3.9) 

The above equations are based on the assumption of negligible shear 

deformation and rotary inertia and do not include the effect of axial tension 

force which is calculated in the following section. 

3.1.2 Effect of axial force loading: 

The vibrating wire under the effect of an axial tension force T oscillates in a 

fashion very similar to a taut string. In Figure 3.2 (a) the lateral, sometimes 

called transverse, deflection u is a function of position z and time t, and by 

applying Newton’s second law on the element shown in Figure 3.2 (b), 

assuming small deflection u and φ, the equation of motion is: 

2

2s
um dz T dz T

t z
ϕϕ ϕ∂ ∂⎛ ⎞= + −⎜ ⎟∂ ∂⎝ ⎠

, (3.10) 

since the flexural stiffness in the wire cannot be ignored, as in the case of the 

string model, additional inertia forces from eq 3.3 to eq 3.10 to give: 

 



 33

2

2s
um dz T dz T V dz V

t z z
ϕϕ ϕ∂ ∂ ∂⎛ ⎞ ⎛ ⎞= + − − + +⎜ ⎟ ⎜ ⎟∂ ∂ ∂⎝ ⎠ ⎝ ⎠

V , (3.11) 

or 

2 2

2 2s
u um T

t z
V
z

∂ ∂ ∂
= −

∂ ∂ ∂
, (3.12) 

 

φ 

φ +(dφ/dz)dz 

T 

T 
dz 

u 

z 

T T dz 
R 

½ L½ L

b) 

a) 

 
 

Figure 3.2: Lateral vibration of the wire with axial tension T 

 
substituting eqs 3.5 and 3.7 in eq 3.12, we obtain: 

 
2 2 2

2 2 2 (s
u um T EI

t z z z

2

2 )a
u∂ ∂ ∂ ∂

= −
∂ ∂ ∂ ∂

, (3.13) 

Since the bending stiffness of the wire EIa is constant, then  
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4 2 2

2 2 2 0a s
u u uEI T m

z z t
∂ ∂ ∂

− + =
∂ ∂ ∂

. (3.14) 

which is the vibrating wire equation under the effect of the axial tension 

loading with the assumption of ignoring the effect of rotary inertia and shear 

deformation which is discussed in the following section . 

3.1.3 Effect of rotary inertia and shear deformation  

By including the effect of the shear deformation, as in Timoshenko beam, the 

slope of the centre line of the wire will diminish by the shear angle γ, hence eq 

3.1 yields: 

u
z

ϕ γ∂
= −

∂
, (3.15) 

with φ is the slope due to the bending and γ is the loss of that slope due to the 

shear effect calculated as: 

V
AG

γ
χ

= , (3.16) 

where A is the cross sectional area, G the modulus of elasticity in shear, and χ 

is a shape factor of the cross section, for a circular beam a value of 0.9 was 

reported by Cowper [65] and the wire  curvature 
z∂

∂ϕ can be expressed as:  
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a

M
z EI
ϕ∂

=
∂

, (3.17) 

by adding the rotary inertia, a dynamic moment equation is introduced in 

addition to the dynamic force eq 3.12 as:  

2 2

2 2s
u um T

t z
∂ ∂ ∂

= −
∂ ∂

V
z∂

,   and   
2

2

MJ
t z
ϕ∂ ∂ V= −

∂ ∂
, (3.18) 

where J is the mass rotary inertia per unit length of the wire in the yz plane, 

which has an effect equivalent to an increase in the mass, hence decreasing the 

natural frequency of the wire. This effect has more influence at the higher 

frequencies and on the higher modes of oscillations. 

 

δu/δz 
angle due to 

moment 

z z+dz 

M 

V 

M+dM 

V+dV 

φ 

shear angle 
γ 

 
Figure 3.3: lateral vibration of the wire with rotary inertia and shear 

deformation. 

 
Combining eq 3.15 to 3.18 gives the equilibrium equation for the translation 

motion in the y direction, and the rotation around the x axis: 
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4 2 2 4 4

4 2 2 2 2 4( )a s s
a s

EI m Jmu u u u uEI T m J
z z t AG z t AG tχ χ

∂ ∂ ∂ ∂ ∂
− + − + + =

∂ ∂ ∂ ∂ ∂ ∂
0 . (3.19) 

Substituting for s sm Aρ= , and sJ Iρ=  where ρs is the wire density gives: 

24 2 2 4 4

4 2 2 2 2 4(1 ) 0s
a s s a

Iu u u E u uEI T m I
z z t G z t G t

ρρ
χ χ

∂ ∂ ∂ ∂ ∂
− + − + + =

∂ ∂ ∂ ∂ ∂ ∂
. (3.20) 

The last two terms in the above equation are due to the effect of the shear 

deformation and the rotary inertia and if the wire undergoes a periodic 

transverse oscillation under the influence of an applied force per unit 

length, i( , )e tF z t ω , where ω is the angular frequency of oscillation, then eq 3.20 

becomes: 

24 2 2 4 4
i

4 2 2 2 2 4(1 ) ( , )e ts
a s s a

Iu u u E u uEI T m I F z t
z z t G z t G t

ωρρ
χ χ

∂ ∂ ∂ ∂ ∂
− + − + + =

∂ ∂ ∂ ∂ ∂ ∂
.(3.21) 

3.1.4 The effect of the surrounding fluid: 

The presence of the fluid around the wire modifies its natural frequency of 

oscillation observed in vacuum, as well as the width of resonance peak during 

its course of forced oscillation. The modification of the resonance frequency is 

attributed to the fluid density, which presents as the added mass mf in the 

equation of motion of the wire. While the modification of the width of the 

resonance peak is attributed to the fluid viscosity as an added additional drag 
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force Df to the internal damping of the wire material D0 which is proportional 

to the velocity of the wire. Hence, the most general form of the differential 

equation governing the motion of the wire surrounded by the fluid is: 

24 2 2 4 4
i

04 2 2 2 2 4( ) ( ) (1 ) ( , ) ts
a s f f s a

Iu u u u E u uEI T m m D D I F z t
z z t t G z t G t

eωρρ
χ χ

∂ ∂ ∂ ∂ ∂ ∂
− + + + + − + + =

∂ ∂ ∂ ∂ ∂ ∂ ∂
 (3.22) 

Providing that the displacement of the wire u is very small compared to its 

radius R, and the length of the wire L is much larger than its radius, then the 

distortion arising from the shear deformation has negligible effect on the wire 

motion, and eq 3.22 reduces to:    

4 2 2
i

04 2 2( ) ( ) ( , ) t
a f s f

y y y yEI T m m D D F z t
z z t t

e ω∂ ∂ ∂ ∂
− + + + + =

∂ ∂ ∂ ∂
, (3.23) 

with the second moment of area given by: 

41
2aI Rπ= , 

the wire mass per unit length by: 

2
s sm Rρ π= , 

the added mass due to the surrounding fluid by: 
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2
fm Rρπ= k , 

the coefficient of internal damping of the wire material by: 

2
0 02 sD Rρ π ω= ∆ , 

and the added damping due to surrounding fluid by: 

2
fD R kρπ ω ′= . 

The parameter ∆0 is the damping coefficient of the wire determined from 

measurements in vacuum, and the parameters k, and k’ are determined from 

the fluid mechanics as functions of the frequency of oscillation, as discussed in 

the following section.  

3.2 Analysis of the fluid mechanics: 

Since the problem of the fluid mechanics around the vibrating wire has been 

reported in detail with a complete derivation in [14, 15], only the main 

equations are included in this section with a focus on the constraints and the 

assumptions used in the derivation.     

As shown in Figure 3.4, the motion of the fluid is contained in a container with 

a circular cross section, of radius Rc, coincident with the initial position of the 

wire at rest. From the previous assumption that the wire is infinitely long (L >> 
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R), and since the wire ends are clamped, hence no motion, the effect of the end 

clamps on the fluid is negligible, and consequently, the only significant motion 

of the fluid occurs in the r-θ plane. 

 
 

εReiωt

R
 

θ
 

  

Rc

r
vr
τrr

vθ
τrθ

 
 
Figure 3.4: Vibrating wire with radius R contained within a cylindrical 

container surface of radius Rc coincident with the wire position at rest. 

The effect of the fluid compressibility is also ignored in this analysis; therefore 

another limitation is that the fluid is assumed to be an incompressible 

Newtonian fluid, thus introducing the following constraint on the Mach 

number: 

1RMa
c

ωε
= << , (3.24) 
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where c is the speed of sound in the fluid, and ε = u/R is a dimensionless 

amplitude of oscillation where u and R are the wire displacement and radius 

respectively. 

In that case, after combining the gravitational effects into the pressure p, the 

mass conservation equation becomes: 

1 1( )r
vrv

r r r
θ

θ
0∂∂

+ =
∂ ∂

, (3.25) 

and the radial momentum (r-momentum) conservation equation is:  

( ) ,211
22

2

2

2

⎥
⎦

⎤
⎢
⎣

⎡
∂
∂

−
∂
∂

+⎟
⎠
⎞

⎜
⎝
⎛

∂
∂

∂
∂

+
∂
∂−

=⎥
⎦

⎤
⎢
⎣

⎡
−

∂
∂

+
∂
∂

+
∂

∂

θθ
η

θ
ρ θθ

rr
r

rr
r

r

v
r

v
r

rv
rrrr

p

r
vv

r
v

r
vv

t
v

 (3.26) 

and the angular momentum (θ-momentum) conservation equation is: 

( ) ,2111
22

2

2 ⎥
⎦

⎤
⎢
⎣

⎡
∂
∂

−
∂
∂

+⎟
⎠
⎞

⎜
⎝
⎛

∂
∂

∂
∂

+
∂
∂−

=⎥⎦
⎤

⎢⎣
⎡ −

∂
∂

+
∂
∂

+
∂

∂

θθ
η

θ

θ
ρ

θ
θ

θθθθ

r

r
r

r

v
r

v
r

rv
rrr

p
r

r
vvv

r
v

r
vv

t
v

 (3.27) 

where vr and vθ are the components of the fluid velocity in the radial and 

angular directions respectively and equals:  

 



 41

ii e cost
rv R ωωε= θ , (3.28) 

and 

ii e sintv R ω
θ ωε= − θ , (3.29) 

at 

i 2 2e cos 1 e sintr R Rω i t 2ωε θ ε= + − θ

c

, (3.30)  

which represents the position of the vibrating wire, as shown in Figure 3.4, and  

0 atrv v r Rθ= = = , (3.31) 

representing vr and vθ in terms of the stream function Ψ: 

1 ,rv v
r rθθ

1
r

∂Ψ −
= =

∂Ψ
∂ ∂

. (3.32)  

Combining eqs 3.26 and 3.27 can give a single equation for Ψ by cross 

differentiation and elimination of p. Introducing the dimensionless parameters:  
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.~: timeand

,:container  theof radiusfor 

,:coordinate radialfor 

,R: on basedfrequency for 

, :function streamfor 

2

c*

2

2

R
t
R
R

R
r

R

ρ
ητ

σ

σ

η
ρωρ

εω

=

=

=

=Ω

Ψ
=Φ

 (3.33) 

a single equation is obtained as:  

3 2 3 3 2

2 2 2 2 3

3 2 3 3 2

2 3 3 2

4 3 4 3

2 2 2 2 2 3 4 3

2

1 1[

1 1 1

1 2 2 1] 2

1

σ ε
σ θ τ σ τ σ τ σ θ σ θ σ θ θ

σ σ θ σ σ θ σ θ σ σ σ θ σ θ σ

σ

2

2

4

4

2

σ θ σ σ θ σ σ σ θ σ θ σ σ

σ σ

∂ Φ ∂ Φ ∂ Φ ∂Φ ∂ Φ ∂ Φ ∂Φ
+ + + Ω −

∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂
∂Φ ∂ Φ ∂ Φ ∂Φ ∂Φ ∂ Φ ∂Φ ∂ Φ ∂Φ ∂ Φ

− − + − +
∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂
∂Φ ∂Φ ∂ Φ ∂ Φ ∂ Φ ∂ Φ ∂ Φ

− = − + + +
∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂

∂ Φ
−

∂

% % %

2

2 2 3 2

1 4
σ σ σ θ

∂Φ ∂ Φ
+ +

∂ ∂

  (3.34) 

Since the Reynold’s number, defined as the ratio of inertial to viscous forces, 

Re = ρωεR2/η, the dimensionless quantity Ω in eq 3.33 can equal Ω = Re/ε , or 

Re = εΩ, and because this Reynolds number, which is based on the wire 

displacement, is small, since ε << 1, then the inertial terms in eq 3.34 which 

are nonlinear in Ф (inside the square brackets) may be neglected. However, Ω 

should not be so small in order to retain the viscous and the linear inertial 

effects, therefore, the solution is only valid by the restriction that: 
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1Re and 1 <<≈≈Ω ε ,  (3.35) 

so that eq 3.34 reduces to:  

3 2 3 4 3

2 2 2 2 2 2

3 4 2 2

3 4 2 2 3 2

1 2 2

1 1 42

σ
4

3 4

1
σ θ τ σ τ σ τ σ θ σ σ σ θ σ θ

σ
σ σ σ σ σ σ σ θ

∂ Φ ∂ Φ ∂ Φ ∂ Φ ∂ Φ ∂ Φ
+ + = − +

∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂
∂ Φ ∂ Φ ∂ Φ ∂Φ ∂ Φ

+ + − + +
∂ ∂ ∂ ∂ ∂

% % %  (3.36) 

with the boundary conditions: 

iie cos , ie sin 1i τ τσ θ θ σ
θ σ

σ σ

Ω Ω∂Φ ∂Φ
= =

∂ ∂
Φ

% %

*

at

and  = 0 at =

=
  (3.37) 

Motivated by the boundary conditions, a solution for eq 3.36 is assumed of the 

form: 

ie ( )sinfτ σ θΩΦ = % , (3.38) 

substituting eq 3.37 into eq 3.36 gives: 

2 2

2 2 2 2

1 1 1 1i 0d d d f df f
d d d dσ σ σ σ σ σ σ σ

⎛ ⎞⎛
+ − − Ω + − =⎜ ⎟⎜

⎝ ⎠⎝

⎞
⎟
⎠

, (3.39) 

with boundary conditions: 

*i i 1, 0dff
d

fσ σ σ
σ

= = = =and at and at = , (3.40) 
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and the solution to eq 3.39 becomes: 

( )1i iAf D K σ
σ

= − Ω . (3.41) 

In eq 3.41, K1 is the modified Bessel function of the second kind, with the 

parameters A and D determined from the boundary conditions eq 3.40: 

( )
( ) ( )

1

0 0

2 i 2i 1 ,
i i i i

K
A D

K K

⎡ ⎤Ω −⎢ ⎥= + =
⎢ ⎥Ω Ω Ω⎣ ⎦ Ω

}

. (3.42) 

In order to evaluate the added mass and drag force (represented later by the 

parameters k and k’) introduced in the wire mechanical motion, the force per 

unit length F̃ that the wire exerts on the fluid can be written as: 

( ){2

0
cos sinrr r r RF p rd

π

θτ θ τ θ θ == − − + −∫%  , (3.43) 

where p is given by eq 3.27 and the radial normal and shear stress components 

τrr and τrθ are given by: 

.1and

,2

⎥
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⎤
⎢
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⎡
∂
∂

+⎟
⎠
⎞

⎜
⎝
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∂
∂

=

∂
∂

=

θ
ητ

ητ

θ
θ

r
r

r
rr

v
rr

v
r

r

r
v

 (3.44) 

The F̃ in eq 3.43 can be written as: 
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( )ie 1 2itF R ωηωε π= Ω +% A , (3.45) 

and also expressed in the form: 

( )2 2 i ie i et tF R R k Rωρπ ω ε ωε kω ′= − +% , (3.46) 

where the term (–ω2εReiωt) represents the acceleration and the term (iωεReiωt) 

represents the velocity. By eq 3.45 to eq 3.46, the parameters k and k’ can be 

found as: 

1 2 ( ) , 2 ( )k A k A′= − + ℑ = ℜ . (3.47) 

where the symbols ℜ and ℑ  represent the real and imaginary components of A 

respectively, which can be found from eq 3.42. 

The equations used to calculate the viscosity from the measurement of the 

induced voltage signal are discussed in the next section.  

3.3 The working equations:   

The wire is clamped under tension between two fixed supports and placed in a 

magnetic field (assumed uniform), while driven in steady state transverse 

oscillations by passing through it an alternating current. In that case, the 

complex voltage V across the wire is given by: 

1 2= +V V V , (3.48) 
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where V1 is the voltage arising from the electrical impedance of the effectively 

stationary wire and V2 represents the motional emf. V1 is represented 

empirically by: 

1 i ia b cf= + +V , (3.49) 

where f is the frequency at which the wire is driven and a, b, and c account for 

the electrical impedance of the wire and absorb the offset used in the lock-in 

amplifier to ensure that the voltage signal is detected in the most sensitive 

range. a, b, and c are adjustable parameters determined by regression. 

The complex induced voltage V2 is proportional to the velocity of the wire v 

and magnetic field strength B from Faraday’s Law of induction and can be 

averaged along the length of the wire as: 

2
0

2 L

Bvdz
L

≈ ∫V . (3.50) 

In eq 3.50, B is the magnetic flux and v the velocity of the wire which is given 

in refs [14, 15] as: 

( )
B

2 2 2 2 2
0 0

i
(1 ) 2 is

fFv
R f fπ ρ β β

=
′ f⎡ ⎤− + + + ∆⎣ ⎦

, (3.51) 
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where FB is the magnetic force per unit length FB ≈ BI assumed to be uniform 

and distributed evenly along the wire length, and I is the amplitude of the 

current. Substituting eq 3.51 into eq 3.50 gives V2 as: 

( ) ( )[ ]

( ) ( ) ,
i21

i
or

,
i21

i2

2
0

22
0

2

2
0

22
0

23

2

2

fff
f

fffR
fILB

s

∆+′++−
Λ

=

∆+′++−
=

ββ

ββρπ

V

V

 (3.52) 

 where Λ = 2ILB2/π3ρsR, corresponds to the amplitude, f0 the resonance 

frequency in vacuum, ∆0 the internal damping of the wire, β the added mass 

arising from the fluid displaced by the wire, and β ' the damping due to the 

fluid viscosity. The added mass and damping have been calculated in eq 3.23 

as (mf, and Df ) but β and β ' are rendered dimensionless here as: 

s s

k kρ ρβ β
ρ ρ

′ ′= =and , (3.53) 

where k and k ' are given as function of Ω in eq 3.47, where Ω is related to the 

viscosity from the relation: 

22 f Rπ ρ
η

Ω = , (3.54) 
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and the equation of the total voltage replicating the measured voltage can be 

given as: 

( )2 2 2
0 0

i i i
(1 ) 2 i

f cf b c
f f fβ β

Λ
=

′− + + + ∆
V + + + . (3.55) 
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C h a p t e r  4  

APPARATUS AND EXPERIMENTAL PROCEDURE 

4 Experimental Design and Procedure  

The general design and the construction of the apparatus, developed in this 

project, are described in this chapter. The calibration methods for pressure and 

temperature measurements are also reported here with more details included in 

the appendix. The data acquisition system and the measurement procedure are 

described at the end of this chapter. 

4.1 Design limitations:  

The design of this instrument is based on the limitations discussed in the 

previous chapter. These limitations and assumptions are: (1), the radius of the 

wire R must be small in comparison with the length L of the wire, in our case 

this ratio (R/L) = 0.0006 for the 0.05 mm diameter wire and 0.0018 for the 0.15 

mm diameter wire; (2), the compressibility of the fluid is negligible with Ma 

<< 1, in our case Ma ≈ 7·10-5 based on measurements of sound speed in 

methylbenzene reported in ref [66], however, this can not be considered a 

practical constraint as this method can also be applied to gases where Ma ≈ 

50·10-7; (3), the inner radius of the body containing the fluid Rc is large in 

comparison to that of the wire R (in our case Rc/R = 150 for the 0.05 mm 

diameter wire and 50 for the 0.15 mm diameter wire). A detailed treatment [15, 
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67, 68] revealed that the uncertainty in the viscosity arising from the location 

of the boundary relative to the wire is less than 0.5 % for Rc/R = 33; and (4), 

the relative amplitude of oscillation ε << 1, in our case ε is estimated to be < 

0.03. A maximum value of 0.08 was allowed by Mostert et al. [55].  All of 

these conditions must be satisfied in the design and in the remainder of this 

chapter it will be shown that these are satisfied for the viscometer described 

here. 

4.2 The vibrating wire assembly: 

4.2.1 The vibrating wire:  

As mentioned earlier, two vibrating wires were constructed in this research, 

with nominal diameters (0.05 and 0.15) mm, and both are of nominal length 40 

mm. A cross section schematic is illustrated in Figure 4.1. 

Ceramic tube  

Tungsten wire

Magnets Assembly  

Fasteners 
machine screws 

Clamp assembly  
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Figure 4.1: Schematic cross section of the vibrating wire viscometer showing 

the holder tube, magnet blocks, and the nonmagnetic wire clamps. 

The wires used were tungsten that, despite its surface roughness, is the 

preferred material because both Young’s modulus E ≈ 411 GPa and density ρs 

≈ 19300 kg·m-3 [69] are high relative to other materials.  The former provides a 

stable resonance while the latter provides sensitivity to the fluid around it, 

through the ratio ρ/ρs in eq 3.51.  The effect of surface roughness is negligible 

provided the amplitude of vibration is small and Reynolds number less than 

100 as reported by Wilhelm et al. [47]. The wires used in this experiment were 

obtained from Goodfellow™, Cambridge, UK, with a mass fraction purity > 

99.95 %.  The wire was cold drawn and, consequently, the cross-section had 

elliptical rather than circular symmetry, which results in the resonance 

 was reduced by tuning the magnetic field 

as discussed next.   

appearing as a doublet but that effect

4.2.2 The end clamps: 

The position at which the wire is clamped needed to be geometrically well-

defined because rotation can give rise to additional resonance frequencies.  

Therefore, clamps were used that restrict, as much as possible, motion to one 

plane that is perpendicular to the magnetic field.  Each clamp, shown in Figure 

4.2, was fabricated from austenitic stainless steel grade 316 as two pieces, one 

semi-cylindrical with a diameter of 8 mm and a height of 8 mm, and the other 
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a flat plate.  Both clamping surfaces were polished.  To restrict the motion to 

one plane the wire was clamped within a slot.  The magnetic field was then 

aligned so as to both preferentially excite one of the two components arising 

from non-circular symmetry and to vibrate the wire in a plan perpendicular to 

the slot. 

 
 

semi-cylinder front view 

semi-cylinder top view 

Flat plate  
 

austenitic stainless steel type 316. 

 removed.  The selection of tension 

Figure 4.2: Schematic of the two clamp parts fabricated from non-magnetic 

The wire was clamped between the two plates at one end with two stainless 

steel screws M1.5. The other end of the wire passed through the second open 

clamp and was attached to a mass for about 24 h after which time the lower 

clamp was carefully tightened and the mass
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mass was based on the desired fundamental resonance frequency f  neglecting 

the wire stiffness, that was estimated from: 

r

2

1
2r

s

mg
L Rρ π

f ≈ . (4.1) 

where m is the mass, g the local acceleration of free fall and L the wire length. 

The tension mass was selected to both determine the fundamental resonance 

frequency and maintain the tension between (20 and 50) % of its tensile yield 

stress, ≈ 720 MPa, in order to preserve the consistency of the physical 

t  The resonance frequency was estimated to be about 

4.2.3 The holding tube: 

The two clamps were separated from each other by a tube fabricated from 

Macor  (a machinable glass ceramic) obtained from Wesgo™ Ceramics, 

Hayward, US.  The electrical resistivity of this material is > 10  Ω·m and the 

linear thermal expansion coefficient was 13·10 K  which is about 4 times that 

of tungsten at T = 298 K.  Two tubes were fabricated both with an outer 

diameter of 10 mm, one with an inner diameter of 5 mm that was used with the 

0.05 mm diameter wire, and the other an internal diameter of 7.5 mm that was 

used with the 0.150 mm diameter wire to maintain adherence to assumption 

(3).  A step was machined at each end of the tube, as shown in Figure 4.1, to 

proper ies of the wire [19].

1.5 kHz from eq 4.1 for m ≈ 500 g and tungsten wire diameter of 0.15 mm. 

®

16

-6 -1
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locate and retain the wire clamp, beside a cut at the bottom corner to allow 

4.2.4 The magnet assembly    

A magnetic field of 0.3 T was provided by two rectangular magnets, each with 

a length LB = 31 mm located symmetrically along the wire of length L so that 

the ratio L/L  = 1.3 was sufficient to suppress the second and third harmonics 

as reported by Wilhelm et al. [47].  The magnets were supplied by Magnet 

Sales & Services™, UK, fabricated from Sm2(Co, Fe, Cu, Zr, Hf)17 (known 

commonly as Sm2Co17 or 2:17) for which the Curie temperature is about 

1098 K and the maximum operating temperature about 623 K with a very low 

reversible temperature coefficient of induction ≈ -0.0004 K  [70]. Thus, 

compared with other magnets materials, both the upper operating temperature 

is higher (by about 100 K) and the rate at which the field decreases with 

increasing temperature is lower. 

access to fasten the machine screws of the clamps. 

B

-1

 
grub screw 
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Figure 4.3: Schematic cross section of the rare earth permanent magnet 

envelop, constructed from type 413 stainless steel, consisting of one centre 

end rings to secure it with the tube. 

The magnet blocks were

piece with a rectangular cutaway to accommodate the magnet blocks and two 

 encapsulated in an envelope assembly constructed 

from three martensitic stainless steel (grade 413) rings. As shown in Figure 

 

temperature, in air, then any superimposed peaks can be eliminated by rotating 

the tube, while located inside the magnet assembly, until having a single 

smooth resonance peak, usually the highest one, as shown in Figure 4.4, then 

fixing the tube in position using a grub screw located on one of the outer rings. 

4.3, these consists of one centre-piece, with a rectangular cut-away, to 

accommodate the two magnet blocks, and two end rings that clamp it to both 

the tube and wire holder. 

To tune the vibrating wire with the magnetic field, frequency is swept at room

 
Figure 4.4: (a) signal before tuning; (b) signal after tuning. 
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4.3 Experimental setup: 

As shown in Figure 4.5, the assembled vibrating wire was placed in a pressure 

vessel, fabricated from non-magnetic austenitic stainless steel grade 316, with 

a maximum operating pressure of up to 60 MPa at the highest operating 

temperature. The fluid flowed into and out of the apparatus through two ports 

located at the bottom and top of the vessel, respectively. The vessel was placed 

in an oil-filled stirred bath whose temperature was controlled with a precision 

of ± 0.01 K. The electrical connection through the pressure vessel to the 

vibrating wire was made with a Conax Buffalo™ electrical feedthrough shown 

in Figure 4.6. More details on vessel design equations and guidelines are 

included in ref [142]. 
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Figure 4.5: Experimental setup for viscosity measurements, including a high 

pressure densimeter for potential simultaneou
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 sealant bodyfollower cap 

 
 

Figure 4.6: Schematic cross section of the high pressure sealing gland used for 

4.3.1 Temperature measurement: 

The temperature of the pressure vessel was determined with a 4-wire industrial 

25 Ω platinum resistance thermometer inserted in a well located in the pressure 

vessel. This thermometer had been calibra

electrical feedthrough of the pressure vessel. 

ted against a 25 Ω standard platinum 

resistance thermometer made by Sensing Devices™ Ltd., UK that had been 

calibrated on ITS-90 by the Measu ent Standard Laboratory of New 

Zealand in 2000. The resistance at the triple point of water R(273.15 K) of this 

standard thermometer was determined using a water triple point cell described 

by Goodwin et al. [71], as shown in Figure 4.7. More details on the calibration 

parameters are included in the appendix. 

 
 

rem
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Figure 4.7: The cell used for calibrating the standard thermometer at the triple 

point of water. 

The resistance of the measuring thermometer was determined with a digital 

multimeter Agilent™ 34401A, as shown in Figure 4.5, and converted to 

temperature with an uncertainty, including the calibration, δT ≈ ± 0.01 K.  

4.3.2 Pressure measurement: 

Pressure was generated with a hydraulic pump, as shown in Figure 4.5, and 

measured in the range (0.1 to 40) MPa, with a transducer that was calibrated 

against a force balance dead weight gauge (Desgranges et Huot™ model 

21000). The uncertainty of pressure measurements has been determined as δp 

≈ ± 0.05 MPa. 
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4.4 Fluid samples:  

Three fluids were used for the measurements. Methylbenzene from Merck 

BDH™ Ltd had a mass fraction, determined by gas chromatography using 

both thermal conductivity and flame ionization detectors, of > 0.99917. There 

were two major impurities, benzene of mass fraction of 0.00031 and water of 

mass fraction 0.00023. Two certified reference materials for viscosity, N10 

and N100 (nominal viscosities of (14 and 240) mPa·s at T = 298 K and p = 0.1 

MPa) were obtained from Paragon Scientific™ Ltd U.K. with assigned lot 

numbers 531606 and 131202, respectively. The supplier measured the 

kinematic viscosity for both N10 and N100 at temperatures between (293 and 

373) K using long-capillary Master viscometers according to ASTM D 2164. 

The supplier also provided density values at all temperatures measured in 

accordance with ASTM D 1480. The uncertainty in the kinematic viscosity 

 % relative to water and the uncertainty in the density was ± 0.02 %. 

 

was ± 0.25

4.5 Data acquisition and measurement procedure: 
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Figure 4.8: Electrical connection circuit of the vibrating wire to the lock-in 

amplifier. 

The signal of the induced voltage was measured with a lock-in ampli

 

 

fier 

(PerkinElmer™ model 7265), as shown Figure 4.8, connected to a computer 

equipped with a general purpose interface board (GPIB) controlled by Agilent 

Vee™ data acquisition software. 

t uses a technique known as phase sensitive detection PSD to separate 

the components of the signal at a specific reference frequency and phase. 

Noise signals at frequencies other than the reference frequency are rejected and 

do not affect the measurements. A sinusoidal voltage generated by the lock-in 

amplifier’s internal oscillator through the connector OSC, as shown in Figure 

The lock-in amplifier can detect and measure very small ac signals down to a 

few nanovolts and accurate measurements may be made even when the signal 

is obscured by noise sources a few thousand times larger than the measured 

signal. I
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4.8, with a maximum output of 5 V ac, was passed through a variable 

resistance of about 1 kΩ connected in series to the tungsten wire so as to 

provide a constant current source. The induced ac voltage of the wire was 

measured as float through the connectors A and B on the lock-in amplifier. 

The GPIB was also connected to the digital multimeter (Agilent™ 34401A) to 

measure the resistance of the 4-wire platinum thermometer and convert it to 

temperature via the computer software. The conversion equation and 

calibration parameters are included in the appendix. The pressure 

measurements were entered manually in the software as there was no 

convenient computer interface available to the Desgranges et Huot pressure 

gauge. 

4.5.1 Frequency sweep: 

the resonance frequency of the wire, and the in-phase and quadrature voltages 

V that included the motional emf V  were determined with the lock-in 

width at a frequency 0.707 times that of the maximum amplitude. The 

frequency sweep started at (f  - 5g) with positive frequency steps to (  + 5g) 

and then with negative increments back to (fr - 5g). It took about 200 s to finish 

this (forward and backward) sweep. Prior to acquiring V, the majority of the 

The frequency generated by the lock-in amplifier synthesizer was stepped over 

2

amplifier over the frequency range (fr ± 5g), where g is half the resonance peak 

r fr

 



 62

contribution arising from drive voltage V1 was removed by setting the lock-in 

The lock-in amplifier can resolve frequencies to 0.01 Hz, but that would 

require increasing the delay after each step to around 10 s, hence increasing the 

sweep time which was not recommended in this experiment. However, the 

program was designed to perform frequency sweeps with a variable frequency 

ements in the region of the 

The voltage was varied between (0.005 and 2000) mV and the resistance was 

varied between (0.1 and 5) kΩ to maintain the amplitude of the wire motion, 

estimated from the applied force and viscosity, to be less than 10 % of its 

radius. Thus, for a wire with a diameter of 0.15 mm in vacuum a driving 

current of 5 µA was used where 0.1 mA current was required when immersed 

in methylbenzene; 0.5 mA, when immersed in N10; and 3 mA, when 

amplifier offset voltage at f < (fr - 5g). The temperature was measured at each 

acquisition frequency and then averaged at the end of each forward and 

backward scan. The resonance peak was found with a quick sweep over a wide 

range, and then with a finer sweep over the selected range. 

step and delay in order to produce faster measur

signal tails, and intense data in the region around the peak. A ‘normalized’ 

Lorentzian type equation [72] was used to calculate the expected amplitude of 

displacement, fr, and g, hence determine the appropriate sweep width (5g). 

4.5.2 Driving current: 
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immersed in N100. For the 0.05 mm diameter wire immersed in 

methylbenzene, a driving current of 0.4 mA was used. 

 regression: 

tion of the variation of the 

gradient of the errors with respect to the variables to be solved. More details on 

this regression technique can be found in ref [73]. 

4.5.4 Measurements in vacuum: 

The vibrating wire viscometer is, in principle, an absolute device that, in 

theory, requires no calibration. However, in practice, the wire radius R and 

internal damping ∆0 cannot be determined to sufficient accuracy by 

4.5.3 Calculation of viscosity from

For each fluid temperature and pressure, the viscosity was obtained from a 

regression analysis for the measured complex voltage sampled by the lock-in 

amplifier using eq 3.55, where V was replicated, in real and imaginary 

components, by adjusting the parameters Λ, f0, a, b, and c. The parameter Λ 

represented the amplitude which absorbed the magnetic field strength and the 

wire length. The parameters a, b, and c accounted for the electrical impedance 

of the wire and absorbed the offset used in the lock-in amplifier and the 

parameter f0 represented the resonance frequency in vacuum. The reason why 

f0 was chosen to be a float parameter is discussed in the next chapter. The 

regression technique used was the Levenberg-Marquardt nonlinear error 

minimising method which is based on the estima

 



 64

independent methods; hence ermined by calibration. A 

measurement of the resonance bandwidth in vacuum was used to obtain the 

internal damping ∆0 while a measurement on methylbenzene at a temperature 

0.1 MPa was used with the viscosity and density 

0

0

 they are det

of 298.15 K and a pressure of 

values of methylbenzene obtained from Assael et al. [23] to calibrate the wire 

radius R. These measurements gave R = 0.0246 mm and ∆  = 4.9·10-5 for the 

wire with nominal diameter 0.05 mm, whereas for the 0.15 mm nominal 

diameter wire, R = 0.0746 mm and ∆  = 12.2·10-5. 
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C h a p t e r  5  

RESULTS AND DISCUSSION 

Results and Discussion 

T  res quen asu ir  

methylbenzene at temperatures of (298, 323, and K; for the 0.05 mm 

d re, the measurements were performed at pressures in the range 

fr o  mm d er wire mea ents 

we e in the range from (0.11 to 40) MPa. Over these 

tem ure a ure rang e resonan ency increased with 

inc ng tem  decr ith increasing pressure to nge 

 diamet and a rang (0.80 

 1.55) kHz for the 0.15 mm diameter wire. 

5 

he complex onance fre cy w s mea red with the w

 348) 

e inimmersed 

iameter wi

om (0.1 to 11) MPa, while f r the 0.15 iamet surem

re made at pressur

perat nd press es, th ce frequ

reasi perature and eased w span a ra

from (1.85 to 2.41) kHz for the 0.05 mm er wire e from 

to

5.1 Error Sensitivity Analysis: 

The sensitivity analysis in this section gives a quantitative answer on how 

much the viscosity would deviate as a response to the variation, or the 

uncertainty, in the other input parameters. As shown in Table 5.1, the 

uncertainty in temperature measurements of ± 0.01 K gave < 0.1 % in the 

viscosity over the whole range of measurements and an uncertainty of ± 0.05 

MPa in pressure gave < ± 0.01 % in the viscosity of methylbenzene resulting 

from the error in calculating the density, while an uncertainty of ± 0.1 % in the 

 



 66

estimation of density gave a variation of less than ± 0.1 % in the measured 

viscosity. 

Table 5.1: Sensitivity of the viscosity to the key parameters. 
  

value 
on 

± 
Sensitivity % 

at η ≈ 0.5 
Sensitivity % 

 at η ≈ 200 
Parameter Nominal Variati

mPa·s mPa·s 
Measurement parameters  

  T  0.01 K 0.002 0.1 
  p  0.05 MPa 
  ρ

† 0.06 -- 

0.09 0.02 

Design parameters 

-3 -3

‡  0.1 % 

R 0.075 mm 1 % 1.9 1.9 
L 40 mm 1 % < 1·10 < 1·10
ρs 19300 kg·m-3 0.1 % 0.17 0.12 
∆0   12·10-5 1 % 0.05 < 1·10-3

B 0.3 T 10 % < 1·10-3 < 1·10-3

† included only in methylbenzene measurements. 
‡ calculated with correlation in ref [23] 
 
The wire radius seemed to be the most significant design parameter, adding 

about ± 2 % to the uncertainty in the viscosity from only a variation of ± 1 %. 

This sensitivity to the wire radius was the same at η ≈ 0.5 mPa·s and at η ≈ 200 

mPa·s supporting the assumption that the wire radius is independent of the 

yielded a variation of about ± 0.05 % at η ≈ 0.5 mPa·s and less than ± 0.001 % 

viscosity of the fluid used for its calibration. The effect of the uncertainty of 

the wire density if taken as ± 0.1 % leads to an uncertainty of less than ± 0.2 % 

in the viscosity, while a variation of 1 % in the internal damping coefficient ∆0 

at η ≈ 200 mPa·s which is expected as the contribution from the self damping 
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becomes insignificant compared to viscous damping at higher viscosities. The 

effect from the above tolerances in the magnetic field B and the wire length L 

is negligible as the variation in viscosity was < 0.001 %. 

5.2 Upper limit of measurement: 

As the fluid viscosity increases, the resonance quality factor Q {= f/(2g)} 

decreases and the signal becomes flatter and eventually the resonance width 

representing the viscosity cannot be resolved. 

For the 0.05 mm diameter wire, Q varied from 23 at η (298 K, 10 MPa) ≈ 0.6 

mPa·s to 37 at η (348 K, 0.1 MPa) ≈ 0.33 mPa.s, whereas for the 0.15 mm 

diameter wire Q varied from 41 at η (298 K, 40 MPa) ≈ 0.75 mPa·s to 90 at η 

(348 K, 0.1 MPa) ≈ 0.33 mPa·s. The value of Q obtained from the 0.15 mm 

diameter wire was always larger than that of the 0.05 mm diameter wire. 

Solely on the basis of these values of Q, it is suggested that the upper operating 

viscosity of the 0.15 mm diameter wire is greater than that of the 0.05 mm 

diameter wire.  

measurements were performed at a pressure of 0.1 MPa and at temperatures 

Measurements were made with the 0.15 mm wire to determine its upper limit 

of viscosity measurements using both standard fluids N10 and N100. These 

corresponding to the temperatures at which the density and viscosity were 

provided by the supplier. As shown in Figure 5.1, for N10 and N100, Q 
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decreased from 36, with N10 at 373 K and η (373 K, 0.1 MPa) ≈ 2 mPa·s, to 

3.2, with N100 at η (313 K, 0.1 MPa) ≈ 99 mPa·s. Measurements were also 

performed with N100, where η (305.8 K, 0.1 MPa) ≈ 149 mPa·s and Q was 

found to be 2.3 and η (305 K, 0.1 MPa) ≈ 200 mPa·s and Q was found to be 

1.9.  

0
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Figure 5.1: Quality factor Q decreases exponentially from (35 to 2) and 

becomes almost flat, as the viscosity increases from (2 to 200) mPa·s measured 

with 0.15 mm wire at: , T = (373 to 298) K for fluid N10; , T = (373 to 

These results demonstrate that increasing the wire diameter to 0.

313) K for fluid N100; , T = (313 to 301) K for fluid N100.  

15 mm 

allowed the measurements to be performed with fluids of viscosities up to 200 

 



 69

mPa·s with results within 2 % of the reference value. This difference was 

5.3 Effect of sweep time and driving current: 

When using this forced mode of oscillation, careful attention was given to the 

frequency sweep time and the driving current in order to keep the dissipated 

electrical energy as minimal as possible, thus avoiding a temperature rise in the 

fluid. For the W wire {cp(W, 298 K) ≈ 133 J·kg-1·K-1 and ρ(W, 298 K) ≈ 19300 

kg·m-3}, where cp is the specific heat. A W wire of diameter 0.15 mm and mass 

14·10-6 kg has a resistance of order 1 Ω, and in vacuum, a current of 5 µA 

results in a temperature increase of < 3 µK over the 200 s data acquisition time. 

When the 0.15 mm diameter wire was immersed in N100 {cp(298 K) ≈ 2 

kJ·kg-1·K-1, ρ(298 K) ≈ 840 kg·m-3, and λ ≈ 120 mW·m-1·K-1}, where λ is the 

coefficient of heat transfer, with the highest current of 3 mA, over the 200 s 

acquisition time, the estimated fluid temperature rise would be 0.7 mK 

{assuming that all electrical energy is dissipated into the fluid volume enclosed 

by the wire holder (about 1.8·10-6 m3)}, and the resulting error in viscosity at T 

= 313 K, where η ≈ 100 mPa·s and dη/dT ≈ - 3.8 mPa·s·K-1, would be ≈ 0.003 

ys negligible. 

within the uncertainty of the measurement, which, at η ≈ 200, increased to 3 %. 

%. For both the other fluids and the 0.05 mm diameter wire, the estimated 

error in viscosity arising from self-heating is << 0.003 %. The temperature rise 

resulting from the wire motion within the fluid was alwa
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5.4 Measurements in vacuum (∆0 and f0) 

Although values of f0 and ∆0 were determined experimentally, it was found that 

f0 should not be given a fixed value, as will be explained next, hence was 

allowed to be a float parameter in the regression to eq 3.55. Had f0 been fixed 

in the analysis to a value determined at p = 0 for each temperature as shown in 

Figure 5.2, the viscosities determined would have deviated from the literature 

values by up to 50 %. 
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Figure 5.2: Change in vacuum resonance frequency f0 with respect to T, using 

the 0.15 mm wire: , experimental f0 measured in vacuum; , calculated f0 as 

a float parameter from regression to eq 3.55.  
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The values of f0, the vacuum frequency of the wire determined from the 

regression analysis to eq 3.55, varied linearly with temperature for the 0.15 

mm diameter wire of (∂f0/∂T)p ≈ 4 Hz·K-1 , whereas for the 0.05 mm diameter 

wire we observed (∂f0/∂T)p ≈ 9 Hz·K-1 . These values are about a factor of 2 

less than the result anticipated solely from the variation in the wire tension that 

would arise from the difference in linear thermal expansion coefficients 

between tungsten and Macor® mentioned in Chapter 4. 
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fr with pressure at different 

m e: , 348 K; , 323 K; , 298 K; and 

Figure 5.3: Change in resonance frequency 

isother s measured in methylbenzen

corresponding vacuum resonance frequencies f0 obtained from regression as 

float parameters at the same isotherms, , 348 K; , 323 K; , 298 K.   
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The calculated values of f0 decreased with increasing pressure with (∂f0/∂p)T  ≈ 

-11 Hz·MPa-1 maintaining its difference from the resonance frequency almost 

constant as shown in Figure 5.3. No experiments were performed to identify 

the source of this observed variation; plausible sources include the rotation of 

one wire clamp relative to the other. Clearly, allowing f0 to float in the 

regression is important for the accurate determination of viscosity and was 

included in our analysis. 

shown as deviations from the correlation of Assael et al. [23] in Figure 5.4. 

5.5 Results for Methylbenzene:  

The viscosities of methylbenzene obtained with both the (0.05 and 0.15) mm 

diameter wires are listed in Table 5.2 and Table 5.3, respectively, and are 

These results lie within ± 1 % of the values in ref 23. Figure 5.5 shows the 

same deviations for all of the literature values listed in Table 5.4. The literature 

values that were obtained with experimental techniques that utilized different 

principles and lie within ± 4 % of the values reported in ref [23]. Comparison 

with recent (2003) data from Avelino et al. [33] gave also good agreement, as 

shown in Figure 5.6. 

5.6 Results for standard fluids: 

For the two standard fluids, N10 and N100, a nominal wire diameter of 0.15 

mm was used, and the results obtained with these fluids are listed in Table 5.5 
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along with the relative differences from the manufacturer’s values, shown in 

Figure 5.7, that never exceeded ± 1 % for viscosities up to 100 mPa·s. The 

viscosities were obtained using R = 0.0747 mm determined from 

measurements with the standard fluid N10 73 K ≈ 2 mPa·s. 

This value was 0.1 µm greater than that deter enzene, and 

had we used the lower value, the viscosities would have differed by < 0.7 % 

from those reported in Table 5.5. The rements N100 at a 

temperature of T 301 K g  204.2  which % above the 

value cited by the supplier, whereas at T = 305.8 K the vibrating wire gave η ≈ 

146.5 mPa·s, which lies 2.2 % below a val polated he supplier’s 

values. These differences are within the uncertainty of easurements, 

which, at these viscosities, was estimated to be 3 %. These results were used to 

determine the upper operating viscosity and are not reported in Table 5.5 or 

shown in Figure 5.7. 

 at T = 3  where η 

mined with methylb

measu  with 

= ave η ≈ mPa·s, is 1.9 

ue inter  from t

the m
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Table 5.2: Viscosity η of methylbenzene measured with the 0.05 mm diameter 

vibrating wire as a function of temperature T and pressure p along with values 

of density ρ determined from the correlation of Assael et al. [23] 

T  /K p/MPa ρ/kg·m-3 η/mPa·s
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 a calibration point. 
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Table 5.3: Viscosity η of methylbenzene measured with a 0.15 mm diameter 

vibrating wire as a function of temperature T and pressure p along with values 

of density ρ determined from the correlation of Assael et al. [23] 

T/K p/MPa ρ/kg·m-3 η/mPa·s 
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40 

815.2 
825.2 
834.4 
842.7 
850.7 

0.329 
0.358 
0.388 
0.417 
0.448 

 
 a calibration point. 
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Table 5.4: Measurements of the viscosity ηexptl of methylbenzene reported in 

the literature and obtained with a vibrating wire (VW), oscillating disk (OD), 

falling body (FB), surface light scattering (SLS), rolling ball (RB), capillary 

(CP), and torsional vibrating crystal (TVC) viscometer over a temperature 

range T at maximum pressures p with estimated uncertainty u along with the 

source of the density and the maximum deviations (∆η = ηexptl - ηcalcd) of ηexptl 

from the viscosity calculated with the correlation reported in ref [23]. ηcalcd at 

temperatures T between (298 and 348) K and pressure p < 40 MPa that cover 

this work. 

re
f 

Tmin to Tmax

K 
p 

MPa 
100∆ η 
ηcalc

±100u1 method Density obtained from 

33 222 to 348 80 1.1 3 VW measured simultaneously 
with buoyant mass 

17 201 to 370 0.1 0.64 0.5 VW ref 74
18 210 to 370 30 1.12 0.5 VW ref 23 

86 298 to 323 500 1.29 5 FB ref 85 

ycnometer 
f 23 

4 298 to 348 40 0.74 0.6 VW ref 23 

28 213 to 298 20 0.71 1.5 VW ref 23 
22 303 and 323 70 0.52 0.5 VW ref 75
43 303 to 348 250 2.34 0.5 VW ref 75 
76 298 to 373 200 2 0.5 TVC ref 75 
77 298 to 348 110 2 2 TVC ref 77 
78 298 and 323 375 0.65 2 FB ref 78 
79 298 to 423 30 0.66 0.5 OD ref 75 
80 263 to 383 0.1 0.57 1 SLS ref 81
82 255 to 323 400 0.26 1 FB pycnometer 
83 298 to 368 0.1 1.19 0.5 CP pycnometer 
84 288 to 373 0.1 0.69 0.5 CP pycnometer and volumeter 
85 298 to 373 500 0.91 4 FB ref 85 

87 298 to 363 100 3.49 1 FB Anton Paar densimeter 
88 298 to 348 0.1 0.92 0.5 CP ref 75 
89 218 to 378 0.1 0.48 1.4 CP ref 23 
90 298 to 373 200 0.99 0.5 TVC ref 75 
91 303 to 333 0.1 3.51 -- CP pycnometer 
92 293 to 353 0.1 0.51 0.2 CP p
3 298 to 348 40 0.69 0.6 VW re

                                                 
1 uncertainties (u) cited by authors of the original work,  
2 only smoothing equation provided, 
3 this work 0.05 mm wire, 
4 this work 0.15 mm wire. 
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Figure 5.5: Fractional deviation ∆η/η = (η  - η )/η  of the viscosity η  

3]; , ref [78]; 

◊, ref [79]; ♦, ref [80]; gray filled diamond with black outline, ref [82]; gray 

filled diamond, ref [83]; , ref [84]; , ref [85]; gray filled square with black 

 [86]; , ref [87]; gray filled square containing cross, ref [88]; gray 

filled square containing x , ref [89]; cross, ref [90]; x, ref [91]; +, ref [92]. The 

mated uncertainty of ref [23].  

exptl calc calc exptl

for methylbenzene from the correlation reported by Assael et al. [23] ηcalc, at T 

from (298 to 348) K and p from (0.1 to 40) MPa, as a function of density ρ. , 

our results with wire diameter ≈ 0.15 mm; , our results with wire diameter ≈ 

0.05 mm; gray filled circle with black outline, ref [33]; , ref [18]; , ref 

[28]; ▲, ref [22]; gray filled triangle with black outline, ref [4

outline, ref

dashed lines are the esti
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Figure 5.6: Viscosity η as a function of density ρ for methylbenzene.  , This 

work, 298.15 K; , Avelino et al. [33] at T = 298.15 K; , this work 

T = 323.15 K; , Avelino et al. [33] at T = 323.15 K; , this work 

T = 358.15 K; , Avelino et al. [33] at T = 358.25 K; and the lines ──, 

calculated from the correlation reported by Assael et al. [23].  
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Table 5.5: Experimental viscosity ηexptl of two standard fluids N10 and N100 

determined with a vibrating wire viscometer with wire of nominal diameter of 

0.15 mm, at p = 0.1 MPa along with fractional deviations 100(ηexptl - ηcalc)/ηcalc 

from the manufacturer’s values ηcalc as a function of temperature 

Fluid T/K ηexptl/mPa·s 100∆η/ηcalc

 
N10 
 
 
 
 
N100 
 
 
 

373.15 
323.15 
313.15 
298.15 

 
373.15 
333.15 
323.15 
313.15 

2.088 
6.13 
8.25 
14.1 

 
10.5 
38.8 
60.7 
99.0 

0.000a

0.459 
0.258 
0.531 

 
-0.694 
0.036 
0.878 
0.013 

 a calibration point. 
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Part II 
 

vity Resonator 

 

′, C″ Capacitances associated with fringing fields at the upper and 

f the annular gap section  

ncy 

 curve 

 

 

 resonance curve  

utput reflection coefficients 

e and Forward transmission coefficients  

′, Z″ Impedances associated with the radial current flow in the upper 

f the inductive section. 

 

The Microwave Ca
 

Nomenclature: 

 

C Capacitance 

C

lower ends o

f Freque

g Half width of resonance

kB Boltzmann’s constant 

kij Binary interaction parameter 

L Length; Inductance 

NA Avogadro’s constant

p,  pd Pressure; Dew pressure

Q Quality factor of

R Resistance 

S11, S22 Microwave Input and O

S12, S21 Microwave Revers

T, Td  Temperature; Dew temperature 

V Volume  

x Mole fraction 

Z Impedance 

Z

and the lower surface o
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Greek symbols: 

 

β1, β2 Coupling co

ε Relative permittivity 

of ε representing the liquid volume fraction 

nt 

efficients 

Є A function 

µ Dipole mome

℘ Molar polarizability 

ω Angular frequency 

 

Definition of subscripts: 

0 In vacuum 

00 In vacuum at an arbitrary room temperature  

c Critical; Capacitive 

calc Calculated 

expt Experimental 

g Gas 

i, j Components i and j 

ρ Density 

 

c1, c2 T-equivalent parameters of wave guide for capacitive section 

l Liquid; Inductive 

mix Mixture 

tot Total cavity volume 

r Resonance, Reduced 

t Toroidal section 

t1, t2 T-equivalent parameters of wave guide for toroidal section 

 

Boldface denotes a vector quantity. 
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C h a p t e r  6  

6 Literature Review 

6.1 Previous designs: 

The non-visual methods used to determine phase behaviour and that are 

particularly suited to automation and require small sample volumes (<100 

cm

LITERATURE REVIEW 

 relative permittivity was independent of frequency. 

The basic single-lobe design by Goodwin et al. has been used with remarkable 

success for the measurements of phase boundaries [98] and the measurements 

of dipole moments [102] and its appli ation has been extended to determine 

en used to measure the liquid volume fractions in the 

3), are: measurements of the refractive index with fibre-optic cables [93], 

evanescent waves at GHz frequencies [94], and relative permittivity [95,96, 

97,98] determined with a microwave cavity resonator. The latter method, the 

cavity resonator, has been used since Goodwin et al. [98] developed a rigorous 

model that relates the geometry of the cavity and the dielectric properties to the 

resonance frequency. The application of this method has been extended to 

electrically conducting liquids, such as water, using a two-lobe design [99,100] 

and a three-lobe design [101]. The multi-lobe design was primarily used to 

ensure that the measured

c

the density [103] in the single phase region. Prior to the start of this study, the 

method had not be
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coexisting gas-liquid phase region and its use has been limited to isochoric 

measurements. Recently, a modified version of the cavity resonator with a 

variable volume, capable of isothermal and isobaric measurements in addition 

to isochoric measurements, was developed by May et al. [104]. This apparatus 

was optimised to measure small liquid volume fractions in the coexisting gas-

liquid phase. It was equipped with a post of 2 mm diameter protruding down 

from the tip of the bulb, into a well of 6 mm diameter centered on the bottom 

of the outer cylinder. The post terminated 0.2 mm above the bottom of the 

well. That ‘mini’ chamber was introduced to perform as a cylindrical capacitor 

sensitive to liquid volumes that build up at the bottom of the cavity. This 

apparatus was successful in the isothermal mode in providing fast 

measurements for the phase boundary and liquid volume compared to the 

‘relatively slow’ isochoric mode. However, it suffered from problems with 

excessive liquid hold-up and deficiencies in drainage due to inadequate design 

of the re-circulation pump, resulting in the introduction of errors in liquid 

volume measurements. 

 

 
 

Figure 6.1: Schematic for the extra capacitor section developed at the cavity 

bottom in ref [104] as shown to the right, while the original design [98] is 

shown to the left.   
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The vity resonator, developed in this ca project, has also been used to measure 

Two main CEOS were used in this project to compare with the experimental 

results, Peng-Robinson (PR) [105] and Soave-Redlich-Kwong (SRK) [106] 

equations of state. These were selected because they are the most widely used 

cubic equations of state in the refinery and gas processing industries for the 

prediction of vapour-liquid equilibria. A recent review of advanced cubic 

equations of state, with emphasis on the strengths and limitations, given by 

senior developers from Aspen Technology, can be found in ref [107]. 

Parameters of PR and SRK equations of state (eq 1.12) were obtained from 

refs [108, 109] and are listed in Table 1.3. 

the liquid volume fractions, in the coexisting gas-liquid phase, but without 

introducing any extra capacitors to the design originated by Goodwin et al. 

[98]. The capacitor formed from the lower gap section located between the 

bulbous bottom surface and the outer cylinder, with a clearance of 5 mm, was 

found to provide sufficient information on the liquid volume fractions 

accumulated in the bottom of the cavity. The clearance of this capacitance was 

modified to 0.5 mm in May et al. [104], as shown in Figure 6.1 . The original 

design, with simple adaptation to the drainage system, has provided accurate 

measurements for small liquid volume fractions as discussed in Chapter 9. 
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6.2 Previous experimental results 

The operation of the cavity resonator, developed in this project, was 

demonstrated with measurements of the dew pressures, gas phase densities, 

and liquid volume fractions in the coexisting vapour-liquid phase, for 

{0.4026CH4 + 0.5974C3H8} at temperatures in the range (315 to 340) K. There 

are eight publications, to the author’s knowledge,  [104, 110, 111, 112, 113, 

114, 115, 116] that report the phase behaviour of {(1-x)CH4 + xC3H8} at 

temperatures in the range (273 to 363) K. References [111-116] report results 

obtained from (p, V, T, x) measurements, while reference [110] reports dew 

pressures obtained with a dual-sinker densimeter, and reference [104] used the 

cavity modified to optimise the determination of liquid drop-out-volume by 

May et al. [104]. The experimental data obtained from this work and those 

from previous work (at T > 273.15 K) have been plotted on the same chart 

shown in Figure 6.2 to demonstrate the covered range of measurements.   
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Figure 6.2:  Dew pressure pd for {(1 - x)CH4 + xC3H8} as a function of (1 – x). 

ve resonator; , [110] dual sinker densimeter 

at T = 284.6 K;  ( gray outline), [110] dual sinker densimeter at T = 272.9 K; 

, [111] T = 293.15 K; , [111]

328.15 K; , [111] T = 343.15 K; ▲, [111] T = 353.15 K; , [111] T = 

[112] T = 344.26 K; , [112] T = 327.59 K;  ( gray outline), [112] T = 

─ ─, [111] critical data; ──, [112] critical data; ─ ٠ ─, [111] cricondentherm.  

0 0.2 0.4 0.6

X, this work; , [104] microwa

 T = 313.15 K;  ( gray outline), [111] T = 

363.15 K; , [112] T = 277.59 K; ◊ ( gray outline), [112] T = 310.93 K ; , 

360.93 K; ◊, [112] T = 294.26 K; , [113] T = 283.15 K; +, [116] T = 273.15; 
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C h a p t e r  7  

THEORY AND WORKING EQUATIONS 

7 Theory and Working Equations 

This chapter includes the working equations used to determine the relative 

ory is presented in detail in refs 

[117,118]. 

7.1 Simple LC oscillator model 

From the analysis of the resonance LCR circuit, the resonance frequency fr can 

be given as a function of inductance L and capacitance C as: 

electric permittivity (dielectric constant, or relative permittivity) of a fluid 

within a microwave resonator from the measurements of the resonant 

frequency, and the equations relating the relative permittivity to 

thermodynamic properties. Dielectric the

LCf /12 r =π , (7.1) 

and a quality factor Q given by: 

. (7.2) RLfQ /2 rπ=

where R is the electrical resistance. When the re-entrant resonator is filled with 

an electrically non-conducting fluid of relative permittivity ε, it becomes 
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electrically equivalent to an LCR network with a resonance frequency fr and 

half-width g given approximately by: 

R
LLC

g
2

i11)ir
−

−≈
ε

, (7.3) f(2 −π

where R is an equivalent series resistance ≈ 0.040 Ω. The inductance L is 

determined from the toroidal volume denoted as Lt and the capacitance C is 

determined from the narrow annular gap denoted as C1 since they have the 

largest LC product as shown in Figure 7.1. 

 

Toroidal section

Ct = 0.58 pF 

L2 = 0.18 nH 
C1 = 23.7 pF 

5 mm gap
C2 = 1.7 pF 

Lt  
C1  

C2   
 
Figure 7.1: Schematic cross-section through the resonator represented as 

inductance toroidal volume L

Lt = 6 nH 

1 mm annular gap

e of determining phase 

boundaries from the change in the resonance frequency. However, for the 

calculation of density, the complete model developed by Goodwin et al. [98] 

t; annular gap section capacitance C1, lower 

capacitance C2. 

This simple LCR model suffices for the purpos
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can be used to calculate accurate values for relative permittivity as discussed in 

the following section.  

7.2 Wave guide model 

7.2.1 Distributed-parameters model 

The rigorous theoretical model, based on coaxial waveguide theory and 

developed by Goodwin et al. [98], accounted for all of the products LiCi 

including additional contributions from fringing fields, induction effects for the 

capacitors, and capacitive effects for the inductors, and contribution from the 5 

mm gap at the bottom of the cavity. The cavity resonator was modelled as two 

sections of coaxial waveguide terminated at the lower end by a cylindrical 

capacitor illustrated Figure 7.2. The T-equivalent parameters Zt1 and Zt2 

represent the toroidal section, and the parameters Zc1 and Zc2 represent the 

ive section C′ is calculated from Marcuwitz [119]. The 

terminal capacitance C  is the sum of a similar fringing term C′′ and the 

capacitance C  of the cylindrical capacitor at the bottom of the resonator. The 

impedances Z′ and Z′′ are associated with radial current flow in the upper and 

lower surfaces of the inductive section, respectively. 

capacitive section. The capacitance associated with fringing fields at the upper 

ends of the capacit

e

2
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wave guide model. 

Figure 7.2: Schematic representation for the circuit parameters based on the 

The inductance and capacitance of each section are calculated from the 

resonator dimensions using formulas from reference [98] as function of 

relative permittivity ε, and the condition of resonance is calculated from: 

⎟⎟
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where C4 = C1+C′+C′′+C2, which predicted a resonant frequency of 360 MHz 

in vacuum, very close to the experimental value of 350 MHz.  

recommended by NIST investigators where careful measurements for the 

7.2.2 Lumped-parameter model 

Instead of using the distributed-parameter model shown above, a lumped-

parameter model, developed by Hamelin et al. [120, 121] has been used as 

cavity dimensions are no more required. Providing no corrections required for 

the effect of external coupling, due to the very weak coupling employed in this 

resonator, the relative permittivity is calculated as: 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+−+
+−+

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+

+
= −

−

1
0

12

00

)1(1
)1(1i
Q
Q

gf
gf

i
i

ir

ε  (7.5) 

where the quality factor Q = f/2g, and the subscript ‘0’ 

condition. This equation can be applied to directly determine the relative 

permittivity from  fr, g, f0, and g0 measurements, as long as external coupling is 

sufficiently weak, fluid electrical conductivity is small, and Q is sufficiently 

large so that terms in Q-2 are negligible. 

lent™ vector network analyser (VNA) was used to measure the 

complex transmission of the cavity resonator by sampling the incident signal, 

denotes the vacuum 

7.3 Measurement of the resonant frequency: 

An Agi
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separating the transmitted and reflected waves, and then performing ratios that 

are directly related to the reflection and 

sweeping the frequency to rapidly obtain real and imaginary components over 

the band of frequency of interest. The resonant frequency is related to the 

complex forward transmission coefficient known as S21, defined as the 

complex ratio of the voltage transmitted through the cavity to the voltage 

real  and imaginary 

the transmission coefficients while 

incident on it, for the lowest order non-degenerate LC mode. The measured 

ℜ ℑ  components were fit, using the least squares error 

method, to the theoretical expression for the resonance [122] of the cavity 

given by: 

.
2)1(

2
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,
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 (7.6)  

where f  is the resonance frequency of the LC mode, Q {= f /2g} is the quality 

factor, g is half the resonance line-width, and ∆f = f - fr where f is a frequency 

near fr. 

In eq 7.6, β1 and β2 are coupling factors given by: 

r r
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,

,

D

2

2

s

2Rn
=β1

R
Rm

R

=β
 (7.7) 

The S21 model, shown in eq 7.6, is different from what had been used before in 

previous work [98, 99, 100, 101, 102, 103] in which the constants are not 

presented as relevant physical parameters such as β1 and β2 in eq 7.6. Different 

methods [123, 124, 125, 126, 127, 128] ca

resonance frequency and the quality factor, however, the method used above 

the sim nd most

The values of fr and g can be substituted in eq 7.5 to obtain the relative 

permittivity ε, but in order to use f0 and g0, calibration with a reference fluid is 

necessary to correct for the dilation of the dimensions of the cavity due to the 

where R is the resistance of the resonator, RS the resistance of the source, RD 

the resistance of the detector and n and m are the effective turns ratio of the 

source and detector, respectively. The resonator is under coupled if β < 1, 

critically coupled if β = 1, and over coupled if β > 1. In this work, β1 and β2 are 

<< 1. 

n also be used to obtain the 

was found to be plest a  reliable, with a typical fractional 

uncertainty of resonant frequency fr and in line-width g about 2·10-7 and 4·10-4 

respectively. 
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changes in T and p. The next section explains how f0 and g0 can be obtained 

from the cavity calibration. 

7.4 Correction for dilation effects 

The dimensions of the cavity are influenced by dilation due to the thermal 

expansion and the pressure of the fluid within the cavity; hence, a correction is 

required to account for the change in the spatial distribution of the 

electromagnetic field within the cavity bet

conditions. These effects can be fully accounted for by measuring the resonant 

pff

ween evacuated and filled 

frequency of the cavity filled with a reference fluid over the range of operating 

temperatures and pressures. Thus, the expression for f0 and g0 becomes: 

,
and

000

000

gg =

),1)(1( +−= γθα
 (7.8) 

where the terms )1( θα−  and )1( pγ+  are correction factors for thermal 

expansion, and geometric dilation, and α is the volumetric coefficient of 

thermal expansion f r ss st take -6 K-1 [129], γ is 

a parameter signify lastic pr ies of the tor, p the absolute 

pressure, f00 the vacuum resonance frequency at an arbitrary room temperature 

ture and that obtained from 

o  stainle eel type 316 n as 15.9·10

ing the e opert  resona

(289.95 K) and θ = (T/K - 289.95), obtained by forcing agreement between the 

relative permittivity calculated from litera
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expe ental data of calibration with methane. The metharim ne used had a mass 

999 with a mole fraction impurity of < 0.0001 

MPa. Th rmittivity ε was calculated from the equation: 

fraction purity quoted as 0.9

ethane. The resonant frequencies were measured on an isotherm at a 

temperature of 50 °C, in order to use the data at the same temperature from 

Moldover and Buckley [130], at six pressures distributed equally from (3 to 9) 

e relative pe

( )2

2
1 ρρρ

ε
ε

εεε CBA ++=
+
− , (7.9) 

with dielectric virial coefficients A  = 6.5468 cm3·mol-1, B  = 7.33 cm6·mol-2, 

Cε = -124 cm9·mol-3 taken from [130] at t = 50 °C, and densities taken from 

NIST REFPROP database [131] that uses the corr

Wagner [132]. The parameters for eq 7.8, determined from least-squares fits, 

of the vacuum and methane data, are given in Table 7.1. 

8 deter

and methane resonant frequencies 

ε ε

elation of Setzmann and 

Table 7.1: Parameters for eq 7. mined by least-squares fits of vacuum 

f00/MHz 106 γ/MPa-1 g00/MHz 

344.553 104 0.585 
 

Based on this calibration, the fractional uncertainty in the relative permittivity 

δε <measurements was estimated as  1·10-4.    
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7.5 Correlation of density with relative permittivity 

7.5.1 For the pure fluids: 

ed to the 

density of non-polar fluids with the Clausius-Mossotti equation which relates 

the relative permittivity ε to the molar density ρ and the 

Measurements of the relative permittivity of a fluid can be relat

molar polarizability 

),( Tp℘ as follows: 

,1
2 ρ
1),(

ε
ε

+
−

=℘ Tp  (7.10) 

pansion oand the ex f the molar polarizability as a function of density is: 

...),1(),( 2 +++=℘ ρρε cbATp  (7.11) 

where A , b, c are the first, second, and thir ents 

us-Mossotti relation is useful for non-polar fl

ε d dielectric virial coeffici

respectively. The Clausi uids, 

when the molar polarizability ),( Tp℘  has a slight dependency on density, 

temperature, and frequency. For e , for methane, xample ),( Tp℘  changed by 

mol·cm-3 at temperatures between (100 to 300) K, and pressures p from (2 to 

35) MPa [133  

The molar rizab T

only 0.7 % when the amount of substance density varied from (0.002 to 0.03) 

].

 pola ility ( p ),℘  has been ed idt and 

Moldover [134] for methane, and fit with a four-parameter expression [132]: 

measur by Schm
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)1
16.273

()1(),( = 2
273, −+++℘

K
TAcbA τε ρρ

4CH . (7.12) Tp

For propane, the experimental data from [135] were represented by: 

⎟⎟
⎞

⎜
⎛

⎠
⎜
⎝

++=℘
Tk

bATp
B0

K 273,HC 9
)1(),(

83 ε
ρε

ε,273 K

, such as propane, 

N 2
A µ

. (7.13) 

with two adjustable parameters A  and b.  

Polar fluids ),( Tρ℘  depends on density and temperature and 

the term ⎟
⎠

⎜
⎝ TkB09ε

 represents the dipolar contribution to the polarizability. In 

eq 7.13, A

⎟
⎞

⎜
⎛ NA

2µ

vogadro’s constant NA = 6.0221367·1023 mol-1, permanent dipole 

moment of propane µ = 2.82859·10-31 C·m {= 0.0848 D} from [136], 

permittivity of free space ε0 = 8.8541878·10-12 J-1·C2

kB = 1.380658·10-23 J·mol-1·K-1, and the parameters Aε,273 K, Aτ, b, and c are 

given in Table 7.2. 

: Fitting parameters for eqs 7.12 and 7.13 determined for CH4 from 

[132] and for C3H8 from [135] 

·m-1, Boltzmann’s constant 

Table 7.2

 Aε,273 K

cm3·mol-1
b 

cm3·mol-1
C 

cm6·mol-2
Aτ

cm3·mol-1

CH4 6.54467 1.250 -44.7 0.00622 

C3H8 15.8527 6.27   
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7.5.2 For the mixture 

Arranging eq 7.10, and taking the expression {(ε -1)/(ε + 2)} = CM (for 

Clausius-Mossotti), the density for a mixture ρmix(p,T) can be expressed as : 

),( Tp
CM

mix
mix ℘

),( Tp =ρ  , (7.14) 

where CM  = {(ε -1)/(ε + 2)} is determined from measurements of the relative 

permittivity ε of the mixture, and ),( Tpmix℘  is the molar polarizability for the 

mixture. 

Molar polarizability of liquid mixtures can be calculated with Oster’s rule 

[137] as: 

),(),(
1

TpxTp i

n

i
imix ℘∑=℘

=
, (7.15) 

where xi is the mole fraction of species i, and ),( Tpi℘  is the molar 

polarizability for pure component i at T and p and subscript mix refers to the 

mixture. 

Assuming the same rul  appliese  to gases, with zero volume change upon 

mixing, the molar polarizability of the mixture in this work {0.4026CH4 + 

0.5974C3H8} can be calculated from: 
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{ }),(5974.0),(4026.0),( TpTp
4CHmix Tp

83HC℘+℘=℘ , (7.16) 

with ),( Tp
4CH℘  and ),( Tp

83HC℘  are obtained from eqs 7.12 and 7.13. 

A large volume change upon mixing can lead to significant errors. Thus, 

Harvey and Prausnitz [138] reported a mixing rule in which pure components 

are mixed isothermally at a constant temperature and a constant reduced 

density instead of a constant temperature and a constant pressure. This method 

can be used for either gases or liquids [139], and calculates the mixture relative 

permittivity as a function of temperature, com

Owing to the increasing demand for dielectric correlation for fluid mixture, the 

de alculated from the Harvey and 

position and reduced density. 

Harvey and Prausnitz rule [138] has been re-introduced in a recent paper by 

Harvey and Lemmon [140] with more details concerning the method of  

calculation. 

The nsity of the mixture cannot be directly c

Prausnitz rule [138] because, while this method is mainly designed to calculate 

the dielectric relative permittivity, it requires the calculation of the 

dimensionless mixture reduced density ρr,mix which itself is calculated from the 

mixture molar density ρmix using: 

⎟
⎟
⎠

⎞⎛ 1n

⎜
⎜
⎝

= ∑
= ic,

mixmixr, ρ
ρρ

1
i

i

x , (7.17) 
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where ρc,i is critical density for the component i.  

An initial value for the density of the mixture can be used to accurately 

With the Harvey and Prausnitz rule [138], the expression CM is often replaced 

with KW for polar fluids, following the expression of Kirkwood and Onsager 

] given by: 

determine the density by minimizing the difference between the calculated and 

the measured relative permittivity using a least squares technique. 

[141

ε
εε

9
)12)(1( +−

=KW  (7.18) 

The difference between the two terms CM and KW only differ ‘considerably’ 

for ε > 2 [137]. In this work, the difference was < 5·10-3 where the maximum 

relative permittivity measured was ε < 1.5.  

7.6 Calculation of liquid volume fraction 

The liquid volume fraction was calculated in the 2-phase region (liquid + gas) 

from the relation with a normalised function Є = [ε – ε(g)]/[ε(l) – ε(g)] where ε 

is the measured relative permittivity for the mixture, ε(g) is the relative 

permittivity of saturated gas, and ε(l) is the relative permittivity of saturated 

liquid at the same temperature. The values of ε(g) and ε(l) can be determined 
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from the measurements or calc arvey and Prausnitz [138] or 

obtained from NIST REFPROP database [131] version 8. 

The relationship between the function Є and the liquid volume fractions was 

 

ulated from the H

determined at different liquid levels in the cavity resonator by calibration with 

a reference fluid. The details of the calibration and the results of ε(g) and ε(l) 

and the liquid volume fractions are discussed collectively in Chapter 9. 
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C h a p t e r  8  

EXPERIMENTAL DESIGN AND PROCEDURE 

8 Experimental Design and Procedure 

As shown in Figure 8.1, the overall experimental setup includes the microwave 

cavity resonator, a magnetically activated circulation pump, and a differential 

pressure gauge all of which are mounted within a circulated air thermostat and 

the temperature controlled to < ± 10 mK. 

Figure 8.1: Schematic for the apparatus including microwave resonator, 

  Exhaust 

 

magnetically activated circulation pump, and differential pressure gauge all 

mounted within a circulated air-bath. 
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8.1 Cavity resonator assembly: 

 
 
 

 
 

 
Figure 8.2: Cross-section through the microwave cavity resonator machined 

from type 316 stainless steel in two parts that were aligned at an interlocking 

The cavity resonator, shown in Figure 8.2, was designed to be both the 

geometry required to form the LC resonator and to act as a pressure vessel 

capable of operating at temperatures up to 470 K and pressures below 20 MPa. 

The resonator, with the dimensions shown in Figure 8.3, was fabricated in two 

parts from a single cylindrical billet of {0.6585Fe + 0.0008C + 0.02Mn + 

0.00045P + 0.0003S + 0.01Si + 0.17Cr + 0.12Ni + 0.02Mo}, commonly 

known as 316 austenitic stainless steel. 

step and sealed with an Au o-ring. 
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Figure 8.3: Schematic cross-section through the resonator with the dimensions 

 

e length of 20 mm. When assembled, the resonator had 

3

in Figure 8.2, the toroidal section of the cavity acted as an inductance L and the 

 

r1 = 6 mm, r2 = 24 mm, r3 = 25 mm, r4 = 45 mm, z1 = 20 mm, z2 = 23.5 mm, z3 

= 20 mm, and z4 = 5 mm. 

The lower part, shown in Figure 8.3, formed a hollow canister with an inner 

diameter of 50 mm and wall thickness of 20 mm at least 48.5 mm deep. The 

upper part, with dimensions provided in Figure 8.3, served as a lid with a 

bulbous coaxial extension into the cavity supported from the lid by an 

extension of diameter 12 mm and length 20 mm. The bulbous portion had a

diamet r of 48 mm and a 

an internal volume of about 60 cm  and an annular gap (r3 – r2) of about 1 mm 

separated the bulbous extension and the inner surface of the canister. As shown 
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gap between the canister and bulbous portion acted as a capacitor C. All 

internal surfaces exposed to fluid were machined and polished to a mirror 

surface finish so that the surface defects were < 1 µm; an average surface 

roughness of 0.25 µm was achieved. The two parts were bolted together with 

ight stainless steel bolts 6 mm diameter by 40 mm long. The bolts were 

designed to be as close as possible to the sealing surface and on the smallest 

practical bolt circle. This improved both the reliability and pressure rating of 

the seal. Details of the design rules and equations for the cavity resonator, as a 

pressure vessel, are included in ref [142], and for the bolted joints in ref [143]. 

The lower surfaces of both the canister and bulbous portion were angled to 

enhance drainage when orientated in a gravitational field; the surfaces also 

ve was open, exited through the base. When the metering valve 

8.1.1 Sealing element: 

The lid was machined with an interlocking step, shown in Figure 8.2, about 2 

mm across and 5 mm deep, and the step served to ensure concentric alignment 

e

acted as a parallel plate capacitor that served in the determination of the liquid 

volume fractions. Sample entered the cavity through the lid and, when the 

metering val

was closed, the valve stem was flush with the inner surface. A platinum 

resistance thermometer (PRT) was placed inside the bulbous portion so that the 

sensing element was within the centre of the toroidal inductor. 
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at the urface where the tws o parts contacted. The cavity was sealed, at the 

8.1.2 Needle valve 

 
 

interlocking step, with a gold o-ring with a cross-sectional diameter of 1 mm. 

 
 

 
Figure 8.4: A sketch for the needle valve used to seal the outlet port of the 

cavity using a vernier handle to ensure a reproducible needle position after re-

mixing. 

To ensure that the fluid phase transition only occurred within the LC cavity, a 

needle valve was used to seal the cavity outlet such that the valve stem tip was 

needle valve was equipped with a vernier handle, as shown in Figure 8.4, to 

ensure a reproducible needle position after mixing. 

almost flush with the internal surface so as to minimize dead volume. This 
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8.1.3 Sample inlet valve: 

The upper cavity inlet was sealed with a three-port air-operated bellows valve 

Nupro™ HB-series which can withstand 24 MPa and 477 K, and was 

equipped with VCR® face metal seal fittings. 

8.1.4 Coupling loops: 

 

 
 

Figure 8.5: A sketch show
 

ing the coaxial cable central conductor passing 

through the lid as an inductive coupling loop connected to the resonator wall 

forming an electrical short, while the outer conductor is electrically connected 

to the vessel wall. 

The electromagnetic energy is magnetically coupled into and out of the cavity 

by two coupling loops (antennae) located in the inductor section. The outer 

conductor of the microwave co-axial cable was attached to the outer surface of 

the cavity while the central conductor passed through the lid. The feedthrough 

within the lid was formed from a Swagelok™ compression fitting that fit the 
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outer diameter of the 50 Ω stainless steel PTFE insulated semi-rigid 

This scheme, shown in Figure 8.5, allowed the 0.51 mm diameter central 

conductor of the cable to be fed through the lid and be bent into a semicircular 

loop, of diameter about 5 mm, with its end connected to the inner surface of 

the lid. Contact was made by spot welding using a capacitor electrical 

discharge. This method proved more reliable and simpler than earlier designs 

that used glass-to-metal seal assemblies, eliminating the need for the difficult 

lid re-surfacing process usually required to remove the carbon-rich layer 

created during the glass melting process, which significantly decreases the 

corrosion resistance of the stainless steel and increases the resistance of the 

skin layer of the cavity lid. 

microwave cable Micro-coax™, part number UT-85-SS. 

The loop was orientated so that it was at an angle < π/2 with respect to the 

magnetic lines thus reducing the coupling, which can otherwise contribute to 

the resonance line width, without significant reduction in the signal-to-noise 

ratio. This antennae setup, located at an azimuth angle π apart, survived a 

pressure test of 60 MPa. The mechanical geometry and arrangement of the 

fluid inlet port was identical with that used for the antenna so that the antennae 

could be placed in different locations and thus allowing a future study of the 

effect of coupling. 
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8.2 Vector network analyser 

A microwave vector network analyser (Agilent™, model 8753ES) was used to 

excite the resonator through one antenna and the complex forward scattering 

transmission fraction S21 was measured using the second antenna. The vector 

network analyzer, or VNA, is an instrument which measures the complex 

transmission and reflection characteristics of two-port devices in the frequency 

domain. It does this by sampling the incident signal, separating the transmitted 

and reflected waves, and then performing ratios that are directly related to the 

reflection and transmission coefficients of the two-port. The frequency is 

swept to rapidly obtain amplitude and phase information over the band of 

frequencies of interest. The S-parameter representation is the most common 

format used to represent VNA measurements; S11 and S21 are the input 

reflection coefficient and forward transfer coefficient (gain or loss) 

respectively, and, S22 and S12, are the output reflection coefficient and reverse 

transfer coefficient (gain or loss) respectively. Calibration of the VNA is 

necessary, as will be discussed, to correct for cable losses and to establish a 

phase reference plane. The signal was passed to and from the resonator within 

two Sucoflex™ flexible microwave cables, manufactured by Huber and 

Suhner AG, Switzerland. Each cable was fitted with a 7 mm connector at one 

end and an N-type at the other; this arrangement eliminated the need for 

additional adaptors. Prior to the start of each measurement, the network 

analyser and cables were calibrated over the frequency range of the 
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measurements in order to eliminate uncertainties arising from reflections and 

attenuation in both the cables and the connectors. The calibration was 

performed using a calibration kit model HP85032 that contains a precision 50 

Ω load, a short circuit, and an open circuit. The resonance frequency fr of the 

lowest order non-degenerate LC mode was determined from measurements at 

201 frequencies spanning fr ± 2g, where g is half the resonance line-width at 

0.707 times the maximum amplitude. At each frequency, the network analyser 

averaged the signal determined in 50 measurements prior to the calculation of 

the transmission coefficient S21 to obtain the resonance frequency fr and line-

width g. 

8.3 Circulation pump: 

The circulation pump, shown in Figure 8.1, was used to re-mix the mixture 

into one phase when a new phase was introduced after reaching the dew point. 

The pump draws the fluid from the bottom of the cavity and pushes it through 

achined from non-

agnetic 316 stainless steel to have an outer diameter of 14.5 mm and an inner 

diameter of 9 mm with a smooth internal surface, while the piston was formed 

the differential pressure gauge to the inlet within the top of the cavity. The 

design of this circulating gas pump was based on those used for similar 

purpose and reported in [144,145,146,147,148]. The circulating pump, shown 

in Figure 8.6, was formed from a cylinder and piston and was capable of 

operating at a pressure up to 40 MPa. The cylinder was m

m
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from {0.8478Fe + 0.0015C + 0.01Mn + 0.0004P + 0.0003S + 0.01Si + 

0.13Cr} commonly known as type 420 martensitic stainless steel. 

 

 
 

Figure 8.6: Schematic cross section through the magnetically activated 

with a piston fitted with a check-valve to promote flow in the upward direction. 

The piston was fabricated from 420 series magnetic stainless steel and forced 

to move by a samarium-cobalt ring-magnet mounted outside the cylinder that 

 

circulation pump used to re-mix the fluid. The pump is formed from a cylinder 

was fabricated from type 316 stainless steel. 
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A check valve was formed atop the piston from a thin sheet of stainless steel 

type 316 and secured in place with a pin. A ball of PTFE was placed at the 

bottom of the piston to act as a non-return valve. The piston was moved up and 

down by means of a samarium-cobalt three-ring magnet of internal diameter 

15 mm attached to a variable speed electric motor placed atop but outside the 

thermostat. The magnet material could withstand temperatures up to 473 K 

 

about 30 cm ·min . 

SPRT), which had been calibrated on ITS-90 by the 

Measurement Standards Laboratory of New Zealand. The triple point of the 

SPRT was updated by measuring its resistance in the triple point cell as shown 

in Figure 4.7. The uncertainty in the temperature measurements was 

determined as < ± 0.01 K.  The PRT was located in a blind hole drilled within 

the bulbous portion of the lid so that the sensing element was within the centre 

of the toroidal inductor. The dc resistance of the PRT was determined with a 4-

without significant loss of field strength. The optimal volume flow-rate was

3 -1

8.4 Temperature measurement 

The temperature was measured with a Class A platinum resistance 

thermometer (PRT) with a nominal resistance of 50 Ω which provided less 

self-heating than a 25 Ω PRT and a better resolution than a 100 Ω PRT. This 

thermometer was calibrated against a standard 25 Ω platinum resistance 

thermometer (
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wire ohm measurement (Agilent 34401A). More details on the thermometer 

calibration parameters are included in the appendix. 

nitrogen line, as shown in Figure 8.1. The DPT used (Sensotec™ model HL-

kPa, and an uncertainty ± (0.0025p/MPa + 0.00075). A voltage source of 10 V 

(gas or liquid) that could be used to a maximum line pressure of 17 MPa. The 

magnetic pump in order to flush any dead volume could be created within its 

internal space. 

8.5 Pressure Measurements 

A differential pressure gauge (DPT) was used to measure the difference 

between the fluid pressure within the cavity and the pressure of a reference 

Z/6917-02ZD-03) had a full scale differential pressure 0.3 MPa, resolution 0.1 

dc was used for excitation, and an amplifier unit was used to amplify the 

output from about 2 mV to about 2 V. This DPT was a high line wet/wet type 

DPT was located within the thermostat and placed directly on the top of the 

The pressure of the reference nitrogen line was measured with a Digiquartz™ 

Intelligent Transmitter having a resonating quartz pressure transducer 

Paroscientific™ model 1000-2K and a digital interface board equipped with a 

microprocessor-controlled counter and RS-232 serial communication port. The 

pressure transducer has an absolute pressure range (0 to 13.8) MPa, and an 

uncertainty ± 0.0014 MPa. This pressure transducer provided two continuous 
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frequency output signals: one corresponding to the pressure and the other one 

to its internal temperature. The digital board uses these two signals to 

temperature-compensate the pressure measurements. The pressure calibration 

was performed using a liquid lubricated piston/cylinder (LLPC) dead-weight 

pressure gauge Desgranges et Huot Instruments, model DH-21000, with an 

uncertainty ± (0.0001p/MPa + 0.0005). The pressure was calibrated in the 

range (0.1 to 9) MPa, at temperature range (298 to 350) K to compensate for 

the temperature effects on the DPT, and also to offset and adjust the span of 

the nitrogen line pressure transmitter. Results of this calibration gave an 

uncertainty ± 0.001 MPa. Calibration parameters were obtained from linear 

regression with a least square method; details are included in the appendix. At 

the commencement of each isochore, the nitrogen line pressure was adjusted to 

be at the same pressure as that in the cavity so that the DPT output was null.  

At each step along the isochore, the pressure was calculated by adding the 

DPT reading to the nitrogen line pressure. 

8.6 Fluid sample 

he {(1 – x)CH4 + xC3H8} was prepared gravimetrically from methane and 

ith mass 

fraction impurities of 0.0009 for ethane, 0.00057 for 2-methylpropane, 

0.00003 for butane, and 0.00001 for propylene while for methane the mass 

T

propane supplied by BOC™ Gases, New Zealand, Limited.  The supplier 

stated the propane minimum mass fraction purity was 0.9985 w
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fraction purity was quoted as 0.9999 with a mole fraction impurity of < 0.0001 

ethane. A standard Peng-Robinson equation of state was used to estimate the 

phase diagram of {(1 – x)CH4 + xC3H8} at x ≈ 0.6 as well as the mass of the 

components required to fill the total apparatus volume of 88 cm3. 

( )

Heating jacket Temperature
control 

Heat trace for 

outflow of the 
cavity 

supply line and 

(a
)

b  

 

jacket; and b) interconnecting tubing were trace heated to T > 373 K. 

cylinder, Whitey™ model Dot-3A 5000, of internal volume 500 cm3.  An 

 

Figure 8.7: A photo showing: a) storage vessel kept in a controlled heating 

The mixture was prepared from fluids transferred by mass into a stainless steel 
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electronic top-loading pan-balance Mettler Toledo™ model PE11, with a 

maximum operating mass of 11 kg and an uncertainty of ± 0.1 g, was used to 

give x = 0.5974 with an uncertainty calculated as ± 0.0013. Stainless steel 

spheres were placed within the sample preparation cylinder, which when 

shaken acted as mechanically agitators to achieve the compositional 

homogeneity. Also, in order to eliminate phase separation during the mixture 

preparation, both the storage vessel and interconnecting tubing were trace 

heated to T > 373 K as shown in Figure 8.7. 

8.7 Data acquisition and measurement procedure: 

A computer equipped with a general purpose interface board GPIB was 

connected to the network analyser, the Agilent 34401A multimeter used for 

To obtain a phase boundary, the following procedure was adopted: (1), the 

apparatus was baked at T > 373 K under vacuum; (2), the homogeneous 

measuring the 4-wire resistance of the PRT, and the Agilent 34401A 

multimeter used for measuring the voltage output of the Sensotec differential 

pressure transducer. The Paroscientific pressure gauges were connected to the 

two serial ports of the computer. The control software has been developed in 

Agilent Vee™ platform. Data arrays were saved in files then analysed and 

solved using MathCAD™ software. 

sample was expanded from the valve atop the heat bath, in the resonator, 
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through tubing trace-heated to T > 373 K; (3), when the desired upper pressure 

was attained in the resonator, any condensed fluid resulting from expansion 

cooling, was re-combined to a compositionally homogeneous single phase 

with the aid of the circulation pump; (4), the apparatus was cooled to T ≈ 5 K 

higher than the expected dew temperature and then the temperature was 

decreased in steps of about 0.25 K and allowed to equilibrate for about 5 h to 

attain thermal and hydrostatic equilibrium as indicated by measurements of T, 

p, and fr that were fractionally consistent within their respective precision for 

more than 3 consecutive measurements; (5), the temperature, pressure and 

resonance frequency were measured and (6), steps (4) and (5) were repeated 

until the phase boundary was determined. 

During circulation, the fluid exiting the resonator was heated to a temperature 

of about 393 K by trace heating elements that were attached to the outer 

surface of the tube between the resonator and pump. The circulation pump was 

operated for a total of 2.5 h in 0.25 h increments. The mixture was left 

overnight before reducing the pressure. When the sample was homogeneous, 

as indicated by measurements of T, p, and fr, a small quantity of fluid was 

expanded out of the apparatus and measurements along the lower density 

isochore commenced. 

Density and liquid volume fractions were calculated from the relative 

permittivity which was determined, with an uncertainty of δε = 1·10-4, from the 
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measurements of the resonant frequency. The resolution and accuracy with 

which temperature, pressure and frequency were measured far exceeded the 

uncertainty in the mole fraction of the mixtures (δx = 13·10-4), which 

m determined (p,T) phase boundary as will be do inated the error in the 

discussed in the results.    
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C h a p t e r  9  

RESULTS AND DISCUSSION 

9 Results and Discussion 

9.1 Dew points results: 

9.1.1 Determination of dew points from resonance frequencies: 

As stated before, the measurement of the relative permittivity is not necessary 

for determining the dew points, where the measurements of the resonance 

frequencies suffice. At each temperature, the resonance frequency, 

temperature, and pressure were measured. It was anticipated when dew forms 

in the cavity, liquid will collect at the base of the bulbous portion and, at the 

same time, the average density of the remaining sample, including that in the 

concentric cylinder, decreases and, because of the relationship between ε and 

ρ, results in a decrease in the capacitance with a resulting increase in the 

resonance frequency. These expectations were observed experimentally and 

are shown in the top of Figure 9.1 for the isochore with dew temperature, 

determined from our measurements, of Td = (333.83 ± 0.23) K, listed in Table 

9.1, and indicated with the vertical dashed line. In the single gas phase region, 

shown at temperatures to the right of the vertical dashed line in the bottom of 

Figure 9.1, df(gas)/dT lies between (-0.020 and 0.008) MHz·K-1 and is almost a 

linear function of temperature. 
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Figure 9.1: TOP: Frequency f as a function of temperature T obtained for the 

___ _ ___

to the left of the vertical dashed line, illustrates the linear fit to the 

both figures indicates the dew temperature of Td = (333.83 ± 0.23) K. 

 

isochore with a dew temperature, determined from these measurements, of 

Td = (333.83 ± 0.23) K. BOTTOM:  The derivative df/dT as a function of 

temperature T for the measurements shown atop where the line , shown 

measurements obtained in the two phase region.  The vertical dashed line in 
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In the presence of both liquid and gaseous phases, at temperature to the left of 

the vertical dashed line, df(gas+liquid)/dT decreases from -(0.040 to 0.4) 

MHz·K-1 with decreasing temperature. At the dew point a distinct discontinuity 

9.1.2 Resolution and uncertainty of measurements: 

Because df/dT was nearly linear on either side of the discontinuity the dew 

temperature could be d in a fraction of the 0.25 K temperature 

step, from the intersect r fits, sho .1 by the dash-

dot-dash line for df(gas the left of the vertical dashed line and 

df(gas)/dT ≈ 0. The unc dew temp mated to be ≈ 

0.06 K, which is 0.2 .25 K s corresponding 

uncertainty in the phase sure was  be 0.25 times 

p/dT with dT = 0.25 K and this contributed < 0.005 MPa to the estimated 

in df/dT, shown in the bottom of Figure 9.1, was observed. 

etermined, with

ion of two linea wn in Figure 9

+liquid)/dT to 

ertainty in the erature was esti

5 times the 0 tep size. The 

 boundary pres  also assumed to

d

uncertainty in the dew pressure. 

The uncertainties, listed in Table 9.1, for the measured gas to liquid phase 

boundary (p, T) of {0.4026CH4 + 0.5974C3H8} are at a confidence of 0.995 (k 

= 2), for the phase boundary temperature and pressure were obtained by 

combining in quadrature uncertainties arising from the determination of the 

phase boundary location (that is 0.25 times the step size) with uncertainties 
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arising from dT/dx, dp/dx, dpd/dT, and the individual measurements of 

temperature, pressure and frequency. 

d d

{0.4026CH

Table 9.1: Experimentally determined dew pressure p  at temperature T  for 

p/MPa 

4 + 0.5974C3H8} with expanded uncertainties (k = 2).  

 

T/K 

340.38 ± 0.27 
337.06 ± 0.23 

329.11 ± 0.24 

320.95 ± 0.24 

6.826 ± 0.036 
5.573 ± 0.027 

4.214 ± 0.028 

3.332 ± 0.029 

335.69 ± 0.24 
333.83 ± 0.23 
331.38 ± 0.23 

325.99 ± 0.25 
324.16 ± 0.24 

315.53 ± 0.23 

5.268 ± 0.028 
4.892 ± 0.026 
4.521 ± 0.026 

3.856 ± 0.030 
3.642 ± 0.028 

2.871 ± 0.026 
 
 
The contribution to the uncertainty arising from the uncertainty in composition 

was estimated from the phase boundary measurements reported by Reamer et 

al. [112] that give dT/dx ≈ -81 K while dp/dx ≈ 8.4 MPa. For the mole fraction 

uncertainty δx = 0.0013, the former gives δT ≈ 0.1 K (≈ 0.2 K at k = 2) while 

the latter gives δp ≈ 0.01 MPa (≈ 0.022 MPa at k = 2) to the uncertainties listed 

in Table 9.1. Clearly, the δx = 0.0013 is the major source of uncertainty in this 

experiment. The next most significant contribution to δp arises from dpd/dT, 

the slope of the dew-curve, which was estimated from a preliminary analysis 
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of our results. At T = 330 K our results gave dpd/dT ≈ 0.15 MPa·K-1 and this 

resulted in an additional contribution to the uncertainty δp between (0.0065 

and 0.012) MPa {for k = 2 (0.013 and 0.024) MPa} that was also included in 

the uncertainty listed in Table 9.1; at T ≈ 320 K and x ≈ 0.4 the results reported 

in [112] gave dpd/dT ≈ 0.10 MPa·K-1 while at T ≈ 339 K it was estimated from 

an equation of state dpd/dT ≈ 0.30 MPa·K-1. 

9.1.3 Comparison with EOS: 

The dew pressures were estimated for {0.4026CH4 + 0.5974C3H8}, with a 

molar mass M = 0.032802 kg·mol-1, from a combination of the composition 

and temperature with 3 equations of state: (1), National Institute of Standards 

and Technology, Standard Reference Database 14 (NIST 14) version 4 [149]

(2), the Peng-Robinson PR cubic equation of state; and (3), the Soave–

Engineering at the Danish Technical University (www.ivc-sep.kt.dtu.dk) and a 

; 

Redlich–Kwong SRK cubic equation of state. For both (2) and (3) the 

predictions were obtained from two equation of state packages: the Separation 

and Phase Equilibrium Calculations program SPECS, developed at the Centre 

for Phase Equilibria and Separation Processes in the Department of Chemical 

commercially available program HYSYS marketed by Hyprotech, recently, 

acquired by Aspen Technology (www.aspentech.com). 
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Figure 9.2: Phase envelope for {0.4026CH  + 0.5974C H }, pressure as a 

function of temperature T  calculated with: , Peng-Robinson as implemented 

in HYSYS; , REFPROP [131]; , Soave-Redlich- Kwong equation of state 

K;  horizontal dashed line, the cricondenbar at 8.002 MPa; +,  critical point; , 

this work.  

5/M

ic
r

4 3 8

as implemented in HYSYS; vertical dashed line, the cricondentherm at 340.35 

To estimate the thermodynamic properties of mixtures, NIST 14 uses a 

Helmholtz function for each pure component and a generalized mixture 

function with three parameters adjusted to represent the properties of a 

particular binary mixture [150]. For methane the equation of state reported by 
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Setzmann and Wagner [132] was used while for propane the model of the 

thermodynamic properties reported by Miyamoto and Watanabe [151] was 

used. Unfortunately, NIST 14 failed to converge and, therefore, provide a dew 

pressure at T ≥ 339 K. The dew pressures estimated from the computer 

packages SPECS and HYSYS for both the PR and RKS equations of state 

differed only in the values of the binary interaction parameter: for HYSYS kij = 

0.012 while within SPECS kij = 0. The dew pressure calculations performed 

with SPECS failed to provide a dew pressure at T > 339.2 K for both PR and 

RK, while for HYSYS the highest temperature at which a dew-point could be 

d

ts the critical point.  

S

determined with PR was 339.32 K and for SRK 340.35 K, which is just 0.03 K 

below our highest temperature, and according to HYSYS, SRK this value is 

the cricondentherm; HYSYS PR gave an estimated cricondentherm of 339.32 

K. The dew pressure estimated from HYSYS with SRK at T = 340.35 K was 

6.69 MPa as shown in Figure 9.2. This estimate is lower than the value listed 

in Table 9.1, at T = 340.38 K, by 0.14 MPa (about 2 %) and about a factor of 4 

greater than the estimated expanded uncertainty in our measurement; this 

difference is greater, by about a factor of 14, than can be accounted for with δT 

= 0.03 K and dp /dT ≈ 0.3 MPa·K-1. The cricondentherm shown as a vertical 

dashed line in Figure 9.2 is 340.35 K and the cricondenbar shown as horizontal 

dashed line is 8.002 MPa while the symbol (+) represen
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Figure 9.3: Fractional deviations ∆

/

 
pd/ pd = {pd(expt.) - pd(calc.)}/pd of the 

experimentally determined dew pressure pd from that calculated with the Peng-

d within the software 

to estimate a dew pressure at T  = 340.38 K and so no comparison could be 

Reference Data 14; , Peng-Robinson equation of state with binary 

______

Redlich-Kwong equation of state with binary interaction parameter kij = 0.012 

 

Robinson equation of state with kij = 0 as implemente

package SPECS V5.0 at T < 338 K.  None of the equations of state were able 
d

made with the measurement at that temperature. , This work, where the error 

bars illustrate the expanded uncertainties (k = 2) listed in Table 9.1 for pressure 

while those for temperature are about the symbol size; - - - , NIST Standard 
____ _ _ ____

interaction parameter kij = 0.012 as implemented within the software package 

HYSYS;  ____ _ ____, Soave-Redlich-Kwong equation of state with kij = 0 as 

implemented within the software package SPECS V5.; and ,  Soave-

as implemented within the software package HYSYS.  
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The remaining 9 points of pd listed in Table 9.1, at temperatures in the range 

(315 and 337) K, are shown in Figure 9.3 as relative deviations from, 

arbitrarily, the pd estimated with PR SPECS, SRK SPECS, PR HYSYS, SRK 

HYSYS, and with NIST 14. The PR HYSYS estimates, shown in Figure 9.3, 

all lie within the estimated expanded uncertainty of our measurements. The pd 

predicted by NIST 14 differ from PR SPECS by between (0.67 and 0.96) % 

while both SRK estimates lie 0.4 % above at T = 315 K and these differences 

diverge from PR SPECS and these results to be -2.5 % at T = 337 K. This 

difference is about a factor of 5 greater than the estimated expanded 

uncertainty of these measurements.  

9.1.4 Comparison with previous experimental data:  

There are eight known publications [104, 110 - 116] that report the dew 

pressure of {(1 - x)CH4 + xC3H8} as a function of (1 - x) at temperatures in the 

range (273 to 363) K and all are shown in Figure 6.2, along with those values 

sted in Table 9.1. The results reported by May et al. [104] with a version of 

 - x) > 0.75 and cannot be 

li

the re-entrant cavity optimised to determine ratio of the gas-to-liquid volume 

within the two-phase region, and those of May et al. [110], from measurements 

with a dual-sinker densimeter, are both for (1

compared directly with our results. Similarly, the majority of the results 

obtained by (p, V, T, x) methods [111 - 116] differ considerably from our mole 

fraction and hence cannot be compared directly with our results. However, 
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linear interpolation of pd(x, T) results reported in [112] to our T(p, x) gave a 

difference less than 0.02 MPa at T = 329.11 K, 331.38 K, and 333.83 K, all 

well within the uncertainty cited in Table 9.1. This agreement is quite 

remarkable as shown in Figure 9.4.  

340.38 K

331.38 K
329.11 K

335.69 K
333.83 K

337.06 K
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4
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6
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0.2 0.3 0.4 0.5 0.6
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p
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Figure 9.4: Lines of dew pressures interpolated from Reamer et al. [112] for 

{(1 - x)CH4 + xC3H8} as function of (1-x); , experimental dew points at (1-x) 

= 0.4026 showing a remarkable agreement at lower temperatures, while the 

deviation increases as the temperature increases. 

The difference increases as the tempera ses from 335.69 K to 340.38 

his is perhaps 

ture increa

K where interpolation gave a dew-pressure 0.58 MPa below our result (≈ 10 

%) which is about 15 times the uncertainty given in Table 9.1. T
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not a surprising result because the pd values reported in [112] were detected 

from discontinuities in the slope of isochoric (p,T) data that vanish at the 

cricondentherm and are small in the vicinity of it and near to criticality. Our 

results depend on discontinuities in the gradient of isochoric (ρ, T), which are 

increasingly easy to detect in the region of phase space near the 

cricondentherm as shown in Figure 9.2. 

 

9.2 Density results: 
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Figure 9.5: Graph showing the points at which the density was measured in the 

single phase (gas) region shown as circles (
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There are ten points at which the density was calculated, as shown in Figure 

9.5. The points were selected on each isochore about 3 K above the dew point. 

The experimental density, included in Table 9.2, was inferred, as discussed in 

Section 7.5, by two methods: 1) based on the Oster mixing rule [137], with 

polarizability calculations for pure CH4 and C3H8 reported by Schmidt and 

Moldover [134]; 2) from the relative permittivity correlation reported by 

Harvey and Prausnitz [138]. Densities for pure CH4 and C3H8 were determined 

with REFPROP [131], based on the equation of state reported by Setzmann 

and Wagner [132] for CH4, and the correlation reported by Miyamoto and 

Watanabe [151] for C3H8.  

Table 9.2: Experimental density of single gas phase points shown in Figure 9.5 

T/K p/MPa 
†ρ (expt.)  

mol·cm-3

§ρ(expt.) 

mol·cm-3

343.48 7.025 0.004518 0.004428 
340.07 5.706 0.003271 0.003224 
338.64 5.386 0.003006 0.002967 
336.73 4.995 0.002710 0.002679 
334.27 4.614 0.002442 0.002416 
332.18 4.303 0.002235 0.002214 
329.11 3.937 0.002004 0.001987 
325.96 3.686 0.001870 0.001856 
323.9 3.399 0.001688 0.001676 
318.4 2.925 0.001433 0.001425 

 

† inferred from Schmidt and Moldover [134] based on Oster mixing rule [137]. 
§ inferred from Harvey and Prausnitz [138]. 
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ted with: , the Peng-Robinson 

equation of state with kij = 0 as implemented within the software package 

th kij = 0.012 as implemented 

within the software package HYSYS; , NIST standard reference database 

quation of state with kij = 0 as 

on Harvey and Prausnitz mixing rule [138]; X, generalized corresponding state 

4113 as reported by 

Kiselev [152].  

HYSYS; , Peng-Robinson equation of state wi

REFPROP [131]; ▲, Soave-Redlich-Kwong e

implemented within the software package HYSYS; , Soave-Redlich-Kwong 

equation of state with kij = 0.012 ; , correlation with dielectric constant based 

model based on the crossover cubic (Patel-Teja) EOS with kij = -0.03606 as 

reported by Kiselev [152]; +, generalized corresponding state model based on 

the crossover cubic (Patel-Teja) EOS with kij = -0.0
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As shown in Figure 9.6, the fractional deviation from the EOS increases as 

temperature increases from (318 to 343) K. Densities calculated from the PR 

EOS with the binary interaction parameter kij = 0, as implemented within the 

software package HYSYS, gave the largest deviations from the experimental 

results which extended from (-2.7 to -6) %. The NIST standard database 

REFPROP [131] gave a smaller deviation (-1 to -3) % and the Harvey and 

Prausnitz correlation [138] gave (0.6 to 2) %. The Soave-Redlich-Kwong 

equation of state with kij = 0 or 0.012 gave deviations less than 0.6 %.  

as also calculated with the generalized 

corresponding state model, based on the crossover cubic (Patel-Teja) equation 

of state by Kiselev et al. [152, 153, 154], with binary interaction parameter kij 

= - 0.04113 and the deviations were < 0.7 % for all the points except at T = 

343 K, where the deviation was about - 3 %. 

9.3 Liquid volume fraction (LVF) results: 

9.3.1 Cavity calibration for liquid volumes: 

The liquid volume fraction was determined for 16 points in the 2-phase region 

(liquid + gas) from the knowledge of the normalised function Є = [ε – 

ε(g)]/[ε(l) – ε(g)] where ε was the measured relative permittivity for the 

The density for these points w

mixture, ε(g) the relative permittivity at saturated gas, and ε(l) the relative 

permittivity at saturated liquid at the same temperature. 
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Figure 9.7: Liquid volumes Vl and corresponding liquid volume fractions Vl/Vtot 

at different sections in the cavity.  
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Figure 9.8: Calibration for liquid volume fractions inside the cavity using 
 

liquid octane for range Vl/Vtot = (0 to 1) shown in Figure 9.7, with lower 

capacitance section enlarged in Figure 9.9 with data fit to best trend lines. 
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The relationship between the function Є and the liquid volume fractions was 

determined from calibration with pure liquid octane at room temperature 

taking ε(g) for air = 1.0008, and ε(l) for liquid C8H18 = 1.9476 from ref [155], 

where the change in the relative permittivity was measured at different octane 

liquid level in the cavity as shown in Figure 9.8. 

 =
 0

.0
80

 -8.9018 Є  + 2.3542 Є
(V l/V tot) =

2
(V l/V tot) =

0.10

0.20

0.25

V
V

to
t

Є
 0.5426 Є + 0.0879

0.00

0.05

0.15

l/

section with range Vl/Vtot = (0 to 0.212) shown in Figure 9.7, divided into 2 

The rate of change of the function Є in the lower capacitance section has been 

enlarged in the close up Figure 9.9, and has been divided into 2 different trends 

0.00 0.05 0.10 0.15 0.20 0.25

Є = (ε exp-ε air)/(ε (l)octane - ε air)
 

 
Figure 9.9: Calibration for liquid volume fractions in the lower capacitance 

data sets to obtain a better fit.   
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to allow the determination of Vl/Vtot from the best fit with calibration data of 

octane. Thus, as shown in Figure 9.9, Vl/Vtot =  -8.9018 Є2 + 2.3542 Є, for Є < 

0.08; and Vl/Vtot =  0.5426 Є + 0.0879, for Є ≥ 0.08. 

A discontinuity that starts at Vl/Vtot ≈ 0.015 and stops at Vl/Vtot ≈ 0.066 was 

noticed as shown in Figure 9.9. This discontinuity was observed in four 

different repeated calibrations. That persistent behaviour is postulated to be 

attributed to the surface tension effect at the contact point between the liquid 

and the tip of the bulb, which can occur when the fluid drains into the bottom 

of the cavity. That effect starts when the liquid level = 3 mm (Vl/Vtot ≈ 0.015) 

i.e. very close to the tip, and stops at a liquid level = 5 mm (Vl/Vtot ≈ 0.066) i.e. 

when the liquid becomes in contact touching with the tip of the bulb as shown 

in Figure 9.7.  

9.3.2 The selection of the points: 

Owing to the isochoric nature of this experiment, isotherms were plotted, as 

shown in Figure 9.10, and the selected points were located at the intersection

, a correlation was used to calculate 

ε(l), while ε(g) was obtained from the measured relative permittivity at the dew 

points except for the two points, shown in Figure 9.10 at (311.21 and 316.46) 

 

with the isochore lines. However, the number of the points on each isotherm is 

not sufficient to use one of the points to correct ε(l) for the rest of the points on 

the same isotherm (only 2 points). Thus
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K, ε(g) was calculated using the Harvey and Prausnitz correlation [138,139]. 

No points could be selected at a temperature higher than the critical 

temperature (336.3 K) where saturated liquid data cannot be determined. 
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Figure 9.10: Graph showing the selected points for which the dew points were 
 

measured, hence, its corresponding relative permittivity was determined at, ─ ٠ 

─, saturated gas line, ──, isochore lines; , selected points; vertical dashed 

lines: isotherms at dew temperatures. 
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Figure 9.11: Graph showing the points at which the liquid volume fraction was 

determined in the co-existing phase region (gas + liquid) shown as circles ( ); 

+, critical point.  

9.3.3 Values of ε(l) and ε(g) 

The relative permittivity of saturated liquid state ε(l) was calculated using two 

38 K,

 Prausnitz [138]. However, there was good 

agreement between ε(g) calculated with REFPROP [131] and that calculated 

from Harvey and Prausnitz [138] and with the measured values as shown in 

methods; REFPROP [131]; and the correlations of Harvey and Prausnitz [138]. 

As shown in Figure 9.12, REFPROP [131] failed to calculate ε(l) at 335.69 K 

and 331.  and for the rest of the points, it gave values less than that 

calculated with Harvey and
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Figure 9.12. Relative deviations of ε(g) increase from 0.1 to 1 % as the 

temperature increases to the critical region as shown in Figure 9.13. 
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Figure 9.12: Relative permittivity at saturated gas ε(g), and saturated liquid 

experimentally in this work.  

 

 

ε(l): ▲, ε(l) calculated with equations from [138]; , ε(l) calculated with 

REFPROP [131] (failed at 331.38 and 335.69 K); , ε(g) calculated with 

[138]; , ε(g) calculated with REFPROP [131]; , ε(g) measured 
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Figure 9.13: Fractional deviations between experimental and calculated ∆ε(g)/ 

ε(g)calc with {∆ε(g) = ε g)(

ments 

of the relative permittivity and compared with that calculated from the Peng-

Robinson equation of state and Soave-Redlich-Kwong equation of state. As 

shown in Figure 9.14, the deviations increase from (0 to 8) % as the 

temperature increases from (331 to 335) K, the deviations from Soave-

Redlich-Kwong equation of state are less than those from the Peng-Robinson 

equation of state. 

calc - ε(g)exp} for: , calculated with [138]; , 

calculated with REFPROP [131].  

9.3.4 Deviation of liquid volume fractions from EOS: 

The liquid volume fractions were determined from experimental measure
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Figure 9.14: Deviation between experimental liquid volume fraction ∆Vl/Vtot = 

{Vl(expt.) – Vl(EOS)}/Vtot (as a function of temperature) from calculated with: 

, Peng-Robinson EOS (kij = 0.0) as implemented within the software 

package HYSYS; , Soave-Redlich-Kwong EOS (kij = 0.0) as implemented 

within the software package HYSYS; ──, mean deviations with Peng-

ve-Redlich-Kwong EOS. Robinson EOS; ─ ─, mean deviation with Soa

Results are also shown on Figure 9.15, as function of {ε – ε(g)} which indicate 

how far the points are from the saturated gas line. As shown in Figure 9.15, the 

deviation increases as one moves further from the saturated gas line and gets 

closer to the saturated liquid line, i.e., as the liquid volume increases. 
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Figure 9.15: Deviation between experimental liquid volume fraction ∆Vl/Vtot = 

{Vl(expt.) – Vl(EOS)}/Vtot as a function of {ε – ε(g)}, calculated with Peng-

Robinson EOS with kij = 0.00 as implemented within the software package 

HYSYS, X, 311.21 K; +, 316.46 K; ▲, 320.95 K; , 324.16 K; , 325.99 K; 

◊, 329.11 K; , 331.38 K; , 333.83 K; , 335.69 K.  

9.3.5 Minimum detectable liquid volume: 

A liquid volume increment of 0.1 cm3 was used during the calibration of the 

cavity with liquid octane which is equivalent to a liquid volume fraction of 

Vl/Vtot = 0.002 (that is 0.2 %), however, the cavity resonator is sensitive to 

liquid fractions less than that amount. The minimum detectable liquid volume

 between two points at the 

 

fraction (detection threshold) can be determined from the resolution of the 

resonance frequency that is required to distinguish
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onset of condensation, or more precisely, the uncertainty of the measurements 

of the resonance frequency fr at these point. At the start of the liquid volume 

formation in the lower section in the cavity, the gradient dVl/dfr ≈ 0.6, as 

shown in Figure 9.16, and is almost a linear function of fr where the liquid 

volume increased to about 0.5 cm3. The uncertainty in the resonance frequency 

was estimated as δfr < 0.005 MHz (k = 2), hence, the minimum volume that 

can be detected is ≈ 0.003 cm3 for which the detectable liquid volume fraction 

Vl/Vtot is better than 1·10-4 (that is 0.01 %). 

y = -0.6425x + 221.25
R2 = 0.9976
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Figure 9.16: Liquid volume as function of resonance frequency measured at 

the first five points in the calibration with octane.  
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At this minimum liquid volume, the liquid level in the cavity was estimated as 

0.5 mm which is about 500 times the surface roughness of the cavity. That 

ensures that there will be no effect from an uneven distribution of the liquid 

that wo hness. 

Furthermore, reduces the 

possibility of inclusion of any gases that could be trapped within micro well 

constructions introduced in other cavities. 

uld occur if the liquid level approaches the height of surface roug

the open conical space at the bottom of the cavity 
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C h a p t e r  1 0  

CONCLUSIONS AND RECOMMENDATIONS 

10 Conclusions and Recommendations 

The vibrating wire viscometer and the microwave resonator, developed in this 

work, have been proven to provide accurate measurements of viscosity, phase 

boundaries, gas phase density, and volume of liquid formed in the two phase 

envelope. 

The vibrating wire viscometer can operate remotely and is of a robust 

construction. The size of the wire assembly is small relative to most other 

vibrating wire viscometers which allow the study of high value fluids with 

minimal cost. The material used in making the wire holding tube was Macor® 

which has a linear thermal expansion coefficient about 4 times that of tungsten 

at T = 298 K. However, using a material with a thermal expansion coefficient 

similar to tungsten, such as Shapal-M®, will decrease the uncertainty in 

viscosity measurements (δη = ± 1 %) resulting from the change in the wire 

tension. 

The well-defined working equations for the vibrating wire viscometer are the 

basis for the accurate measurements with this apparatus. We found allowing f0, 

the resonance frequency in vacuum, to float in the regression is important for 
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the accurate determination of viscosity and was included in the analysis of this 

work. 

The wire radius was the most significant design parameter, adding about ± 2 % 

to the uncertainty in the viscosity from only a variation of ± 1 % in the wire 

radius. This sensitivity of viscosity to the uncertainty in the wire radius was the 

same at η ≈ 0.5 mPa·s and at η ≈ 200 mPa·s supporting the assumption that the 

Results obtained with the 0.15 mm diameter vibrating wire for viscosities 

covered the range from (0.3 to 100) mPa·s with an uncertainty of < 0.6 % and 

differed from literature values by < 1 %. As anticipated from the working 

equations, measurements showed that increasing the wire diameter to 0.150 

mm allowed the measurements to be performed with fluids of viscosities up to 

With the 0.15 mm diameter wire, a quality factor Q ≈ 2 was observed at η ≈ 

During the course of this work, a wire of diameter 0.2 mm was tried, but with 

wire radius is independent of the viscosity of the fluid used for its calibration. 

200 mPa·s with values within 2 % of the reference values. This difference is 

within the uncertainty of the measurement, which, at η ≈ 200 mPa·s, was 

estimated as about 3 %. A recommended limit for this viscometer is 150 mPa·s 

with an estimated uncertainty of about 2 %. 

200 mPa·s. Higher quality factor can be obtained by increasing the diameter of 

the wire providing the radius to the length ratio is maintained at R/L ≈ 0.001. 
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the same length of 40 mm. This wire gave a quality factor of 2.7 at η ≈ 250 

mPa·s. In order to increase the upper limit of viscosity measurements, while 

maintaining an acceptable uncertainty of < ± 2 %, the length of the wire and 

the length of magnet blocks, and, consequently, the container diameter must be 

increased. This is a subject for future study with a vibrating wire of diameter, 

perhaps, 1 mm, and possibly with different surface roughness. 

gnetic pump and its location inside 

the heat bath significantly reduced dead volumes within the system, and 

provided smooth and reliable fluid circulation and mixing. 

Accurate measurements on {0.4026CH4 + 0.5974C3H8} were obtained and 

compared with experimental data from literature and values calculated with 

The microwave cavity resonator, similar to a design reported in the literature, 

provided accurate measurements of the dew points, gas phase density and, in 

particular, has been shown to be sensitive enough to measure liquid drop out 

volumes accurately. The design of the ma

The model proposed and used to determine the resonance frequency from the 

measurements of the microwave forward transmission coefficient S21 is 

simpler, and more accurate than previous models. The relative permittivity was 

determined, with a relative uncertainty of about ± 0.01 % (δε ≈ ± 1·10-4), from 

the measurements of the resonance frequency. 
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different CEOS using different software packages. Generally, the deviations 

increase as the temperature approaches the critical region. 

d

d

The dew pressures p  at the temperature range (315 and 337) K, calculated 

with Peng-Robinson cubic equation of state (using both SPECS and HYSYS), 

all lie within the estimated expanded uncertainty of the experimental 

measurements between (0.5 and 0.9) %. The p  predicted (in the same 

temperature range) by NIST 14 differ from PR SPECS by between (0.67 and 

0.96) %, while the Soave Redlich Kwong equation of state provides SRK 

estimates (using both SPECS and HYSYS) that differ from PR SPECS by 0.4 

The dew pressure calculations performed with SPECS failed to provide a dew 

pressure at T > 339.2 K for both PR and SRK, while for HYSYS the highest 

temperature at which a dew-point could be determined was 340.35 K with 

SRK, which is just 0.03 K below our highest temperature. According to SRK 

HYSYS, this value is the cricondentherm. However, the dew pressure 

estimated at this point (T = 340.35 K ) from SRK HYSYS, was 6.69 MPa 

which is lower than the experimental value (where T = 340.38 K) by 0.14 MPa 

(≈ 2 %) which is about a factor of 4 greater than the estimated expanded 

% at T = 315 K, and -2.5 % at T = 337 K. 

uncertainty of measurements at that point ( ≈ 0.5 %). 
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The pd measured at T = (329.11, 331.38 K, and 333.83 K) differed by less than 

0.5 % from other experimental values reported in the literature, all within the 

uncertainty of measurements. However, the difference increases to ≈ 10 % as 

the temperature approaches the critical region at T ≈ 340 K. This is perhaps 

because the pd values reported in the literature were detected from 

discontinuities in the slope of isochoric (p,T) data that vanish at the 

cricondentherm and are small in the vicinity of it and near to criticality. Our 

results depended on discontinuities in the gradient of isochoric (ρ, T), which 

are increasingly easy to detect in the region near the cricondentherm. 

Densities were inferred from relative permittivity measurements in the gas 

phase at the temperature range (318 to 343) K. Calculation with the PR gave 

the largest deviations from the experimental results from (-2.7 to -6) %, the 

NIST standard database gave deviations of from (-1 to -3) %, and the SRK 

gave deviations of less than 0.6 %. The calculations with the Harvey and 

Prausnitz correlation (based on a mixture reduced density) gave deviations of 

from (0.6 to 2) %. Density was also calculated with Kiselev and Ely parametric 

crossover equation of state (based on Patel-Teja EOS) with deviations of < 0.7 

% for all the points except at T = 343 K, where the deviation was about -3 %. 

Liquid volume fractions (Vl/Vtot) in the 2-phase region were measured from Vl 

≈ (0.5 to 7) cm3 in a total volume of Vtot ≈ 50 cm3 at different isochors. The 

experimental measurements differ from values obtained with the SRK by 
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between 0 and 3 % at T < 326 K, and about 8 % on approach to the critical 

region. The large deviations observed in the critical region were anticipated 

because of the known poor performance of the cubic equations of state with 

uid density in the vicinity of the critical 

10-4) dominated 

balance with an uncertainty of ± 0.01 g should be 

regard to the calculation of the liq

temperature. 

Liquid volume measurements also demonstrated the need for accurate data for 

relative permittivity along the saturated liquid line ε(l) especially near the 

critical region. This could be a subject for future study on liquid mixtures near 

the critical region. 

The uncertainty in the mole fraction of the mixtures (δx = ± 13·

the error in the determined (p, T) phase boundary. To decrease the uncertainty 

in the mole fraction either a 

used or a larger amount of mixture should be prepared. 

 



 153

C h a p t e r  1 1   

FERENCES AND BIBLIOGRAPHY RE

11 References and Bibliography 

                                                 
1

2

ids with Nominal Viscosities at T = 298 K and p = 0.01 MPa of (14 

3

691. 

 Publications for IUPAC, 

 

 and 

daki, M.; Patterson, P. M. Correlation and 

. J.; Dymond, J. H.; Papadaki, M.; Patterson, P. M. Correlation and 

 Kandil, M. E.; Marsh, K., N. Review of thermodynamic properties of 
refrigerants + lubricant oils, Fluid Phase Equilib., 199 (2002) 319–334. 

 Kandil, M. E.; Marsh, K. N.; Goodwin, A. R. H., Vibrating Wire Viscometer 
with Wire Diameters of (0.05 and 0.15) mm: Results for Methylbenzene and 
Two Flu
and 232) mPa·s at Temperatures between (298 and 373) K and Pressures 
below 40 MPa, J. Chem. Eng. Data, 50 (2005) 647-655. 

 Kandil, M. E.; Marsh, K. N.; Goodwin, A. R. H. A re-entrant resonator for 
the measurement of phase boundaries: dew points for {0.4026CH4 + 
0.5974C3H8}, J. Chem. Thermodyn., 37 (2005) 684–

4 Wakeham, W. A.; Nagashima, A.; Sengers, J. V., Eds. Measurement of the 
Transport Properties of Fluids, Blackwell Scientific
Oxford, U.K. (1991) 8-110. 

5 Holland F. A., Bragg R. Fluid Flow for Chemical Engineers, 2nd ed., Edward
Arnold, London (1995) 48-55.  

6 Assael, M. J.; Dymond J. H.; Papadaki, M.; Patterson, P. M. Correlation
prediction of dense fluid transport coefficients I. n-Alkanes, Int. J. 
Thermophys., 13 (1992) 269-281.  

7 Assael, M. J.; Dymond, J. H.; Papa
prediction of dense fluid transport coefficients. II. Simple molecular fluids. 
Fluid Phase Equilib., 75 (1992) 245-55. 

8 Assael, M
prediction of dense fluid transport coefficients. III. n-Alkane mixtures. Int. J. 
Thermophys., 13 (1992) 659-684. 

 



 154

                                                                                                                              

 Du Buat., P. L. G. Principes d'hydraulique, Paris: L'imprimerie de monsieur 

bridge University 
Press: Cambridge, U.K. (1901). 

 Retsina, T.; Richardson, S. M.; Wakeham, W. A. The theory of a vibrating-

y of natural gas 
mixtures: measurements and prediction. Int. J. Thermophys., 22 (2001) 61-71. 

21 (2000) 291-299. 

 Assael, M. J.; Oliveira, C. P.; Papadaki, M.; Wakeham, W. A. Vibrating-

20 Assael, M. J.; Wakeham, W. A. Vibrating-wire viscometery on liquids at 

9 Assael, M. J.; Dymond, J. H.; Patterson, P. M. Correlation and prediction of 
dense fluid transport coefficients. IV. A note on diffusion. Int. J. Thermophys., 
13 (1992) 729-733. 

10 Assael, M. J.; Dymond J. H.; Patterson, P. M. Correlation and prediction of 
dense fluid transport coefficients. V. Aromatic hydrocarbons, Int. J. 
Thermophys., 13 (1992) 895-905.  

11 Bessel, F. W. Untersuchungen über die Länge des einfachen 
Secundenpendels. Abh. Königliche Akad. Wiss. Berlin (1828). 

12

(1779). 

13 Stokes, G. G. Mathematical and Physical Papers; Cam

14 Retsina, T.; Richardson, S. M.; Wakeham, W. A. The theory of a vibrating-
rod densimeter. Appl. Sci. Res., 43 (1986) 127-158. 

15

rod viscometer. Appl. Sci. Res., 43 (1987) 325-346. 

16 Assael, M. J.; Dalaouti, N. K.; Vesovic, V. Viscosit

17 Assael, M. J.; Dalaouti, N. K.; Dymond, J. H. The viscosity of toluene in the 
temperature range 210 to 370 K. Int. J. Thermophys., 

18 Assael, M. J.; Dalaouti, N. K.; Polimatidou, S. The viscosity of toluene in 
the temperature range from 210 to 370 K at pressures up to 30 MPa. Int. J. 
Thermophys., 20 (1999) 1367-1377. 

19

wire viscometers for liquids at high pressures. Int. J. Thermophys., 13 (1992) 
593-615. 

high pressure. Fluid Phase Equilib., 75 (1992) 269-285. 

 



 155

                                                                                                                              

., 12 (1991) 231-244. 

Pa. Int. J. Thermophys., 22 (2001) 789-799. 

). Int. J. Thermophys., 21 (2000) 1-22. 

 Caetano, F. J. P.; Fareleira, J. M. N. A.; Oliveira, C. M. B. P.; Wakeham, W. 

.; Correia da Mata, J. L.; Fareleira, J. M. N. A.; Oliveira, C. 
M. B. P.; Wakeham, W. A. Viscosity measurements of liquid toluene at low 

res up to 473 K. Int. J. Thermophys., 25 (2004) 1353-1366. 

21 Assael, M. J.; Papadaki, M.; Dix, M.; Richardson, S. M.; Wakeham, W. A. 
An absolute vibrating-wire viscometer for liquids at high pressures. Int. J. 
Thermophys

22 Assael, M. J.; Papadaki, M.; Wakeham, W. A. Measurements of the 
viscosity of benzene, toluene, and m-xylene at pressure up to 80 MPa. Int. J. 
Thermophys., 12 (1991) 449-457. 

23 Assael, M. J.; Avelino, H. M. T.; Dalaouti, N. K.; Fareleira, J. M. N. A.; 
Harris, K. R. Reference Correlation for the Viscosity of Liquid Toluene from 
213 to 373 K at Pressures to 250 M

24 Assael, M. J.; Nagasaka, Y.; Nieto de Castro, C. A.; Perkins, R. A.; Strom, 
K.; Vogel, E.; Wakeham, W. A. Status of the round-robin on the transport 
properties of R134a. Int. J. Thermophys., 16 (1995) 63-78. 

25 Assael, M. J.; Leipertz, A.; MacPherson, E.; Nagasaka, Y.; Nieto de Castro, 
C. A.; Perkins, R. A.; Strom, K.; Vogel, E.; Wakeham, W. A. Transport 
property measurements on the IUPAC sample of 1,1,1,2-tetrafluoroethane 
(R134a

26 Assael, M. J.; Papadaki, M.; Richardson, S. M.; Oliveira, C. M. B. P.; 
Wakeham, W. A. Vibrating-wire viscometery on liquid hydrocarbons at high 
pressure. High Temp. - High Pressures,  23 (1991) 561-568. 

27

A. The viscosity of Diisodecylphthalate, a potential standard of moderate 
viscosity. Int. J. Thermophys., 25 (2004) 1311-1322. 

28 Caetano, F. J. P

temperatures using a dual vibrating-wire technique. Int. J. Thermophys., 25 
(2004) 1-11. 

29 Caudwell, D. R.; Trusler, J. P. M.; Vesovic, V.; Wakeham, W. A. The 
viscosity and density of n-dodecane and n-octadecane at pressures up to 200 
MPa, and temperatu

30 Audonnet, F.; Padua, A. A. H. Viscosity and density of mixtures of methane 
and n-decane from 298 to 393 K and up to 75 MPa. Fluid Phase Equilib., 216 
(2004) 235-244. 

 



 156

                                                                                                                              

 Thermophys., 23 (2002) 
1537-1550. 

surement of density and 
viscosity of n-pentane from 298 to 383 K and up to 100 MPa using a vibrating-

elino, H. M. T.; Fareleira, J. M. N. A.; Wakeham, W. A. Simultaneous 
measurement of the density and viscosity of compressed liquid toluene. Int. J. 

 Gourgouillon, D.; Avelino, H. M. N. T.; Fareleira, J. M. N. A.; Nunes da 

ids, 13 (1998) 177-185. 

ane) 
from 198 K to 348 K and up to 100 MPa. J. Chem. Eng. Data, 41 (1996) 1488-

 Padua, A. A. H.; Fareleira, J. M. N. A.; Calado, J. C. G.; Wakeham, W. A. 

 ranges of temperature and pressure. Int. J. Thermophys., 17 
(1996) 781-802. 

rbon 
dioxide. Int. J. Thermophys., 15 (1994) 767-777. 

.; Calado, J. C. G.; Wakeham, W. A. 
Electromechanical model for vibrating-wire instruments. Rev. Sci. Instrum., 69 

 Correia da Mata, J. L. G.; Fareleira, J. M. N. A.; Oliveira, C. M. B. P.; 

ibrating-wire 
technique. High Temp. - High Pressures, 33 (2001) 669-676. 

31 Audonnet, F.; Padua, A. A. H. Density and viscosity of mixtures of n-hexane 
and 1-hexanol from 303 to 423 K up to 50 MPa. Int. J.

32 Audonnet, F.; Padua, A. A. H. Simultaneous mea

wire instrument. Fluid Phase Equilib., 181 (2001) 147-161. 

33 Av

Thermophys., 24 (2003) 323-336. 

34

Ponte, M. Simultaneous viscosity and density measurement of supercritical 
CO2-saturated PEG 400. J. Supercrit. Flu

35 Padua, A. A. H.; Fareleira, J. M. N. A.; Calado, J. C. G.; Wakeham, W. A. 
Density and viscosity measurements of 2,2,4-trimethylpentane (isooct

1494. 

36

Density and viscosity measurements of 1,1,1,2-tetrafluoroethane (HFC-134a) 
from 199 K to 298 K and up to 100 MPa. J. Chem. Eng. Data, 41 (1996) 731-
735. 

37 Padua, A. A. H.; Fareleira, J. M. N. A.; Calado, J. C. G.; Wakeham, W. A. 
Validation of an accurate vibrating-wire densimeter: density and viscosity of 
liquids over wide

38 Padua, A.; Wakeham, W. A.; Wilhelm, J. The viscosity of liquid ca

39 Padua, A. A. H.; Fareleira, J. M. N. A

(1998) 2392-2399. 

40

Caetano, F. J. P.; Wakeham, W. A. A new instrument to perform simultaneous 
measurements of density and viscosity of fluids by a dual v

 



 157

                                                                                                                              

f R134a, R32, and R125 
at saturation. Int. J. Thermophys. 20 (1999) 365-373. 

liquid 
hydrocarbons at pressures up to 250 MPa. Int. J. Thermophys. 13 (1992) 773-

veira, C. M. B. P.; Wakeham, W. A. The viscosity of liquid R134a. Int. J. 
Thermophys., 14 (1993) 33-44. 

y Measurements on Gaseous Propane. J. 
Chem. Eng. Data, 46 (2001) 1467-1471. 

urements on gaseous argon, krypton, 
and propane. Int. J. Thermophys., 21 (2000) 301-310. 

mann, J. K.; Wakeham, W. A. A vibrating-wire 
viscometer for dilute and dense gases. Int. J. Thermophys., 19 (1998) 391-401. 

lbrunot, P. The use of a 
vibrating wire viscometer in liquids. J. Phys. E: Sci. Instrum., 12 (1980) 829-

 Trappeniers, N. J.; Van Der Gulik, P. S.; Van Den Hoof, H. The viscosity of 

 Van Der Gulik, P. S.; Mostert, R.; Van Den Berg, H. R. The viscosity of 

 Van Der Gulik, P. S.; El Kharraz, M. The viscosity of liquid carbon dioxide. 

 Van Der Gulik, P. S.; Trappeniers, N. J. The viscosity of argon at high 

 Van Der Gulik, P. S. The viscosity of the refrigerant 1,1-difluoroethane 
along the saturation line. Int. J. Thermophys., 14 (1993) 851-864. 

41 Oliveira, C. M. B. P.; Wakeham, W. A. The viscosity of R32 and R125 at 
saturation. Int. J. Thermophys., 14 (1993) 1131-1143. 

42 Oliveira, C. M. B. P.; Wakeham, W. A. Viscosity o

43 Oliveira, C. M. B. P.; Wakeham, W. A. The viscosity of five 

790. 

44 Oli

45 Wilhelm, J.; Vogel, E. Viscosit

46 Wilhelm, J.; Vogel, E. Viscosity meas

47 Wilhelm, J.; Vogel, E.; Leh

48 Charles, E.; Molenat, J.; Abachi, H.; Michel, J.; Ma

835. 

49

argon at very high pressure, up to the melting line. Chem. Phys. Lett., 70 
(1980) 438-443. 

50

methane at 273 K up to 1 GPa. Fluid Phase Equilib., 79 (1992) 301-311. 

51

Int. J. Thermophys., 16 (1995) 145-153. 

52

densities. Physica A, 135 (1986) 1-20. 

53

 



 158

                                                                                                                              

 A., Sengers, J. V., Eds.; Blackwell Scientific 
Publications for IUPAC: Oxford, U.K. (1991) 79-88. 

rating wire viscometer. Physica A, 156 (1989) 909-920. 

gon at high densities. Physica A, 156 (1989) 921-
923. 

57 Tough, J. T.; McCormick, W. D.; Dash, J. D. Viscosity of Liquid He II. 

 Goodwin, J. M. The viscosity of pressurised 4He above the transition. 

elevated 
pressures. J. Phys. E: Sci. Instrum., 6 (1973) 452-456. 

e viscometer. Rev. Sci. Instrum., 46 
(1975) 1560-1568. 

 the viscosity and density of the normal component of 
superfluid 3He at the melting curve. Phys. Rev. Lett., 32 (1974) 981-985. 

54 Van Der Gulik, P. S. Vibrating-Wire Viscometers. In Experimental 
Thermodynamics, Measurement of the Transport Properties of Fluids; 
Wakeham, W. A., Nagashima,

55 Mostert, R.; Van Der Gulik, P. S.; Van Den Berg, H. R. The working 
equation of a vib

56 Mostert, R.; Van Der Gulik, P. S.; Van Den Berg, H. R. Comment on the 
experimental viscosity of ar

Phys. Rev., 132 (1963) 2373-2378. 

58 Tough, J. T.; McCormick, W. D.; Dash, J. D. Vibrating wire viscometer. 
Rev. Sci. Instrum., 35 (1964) 1345-1348. 

59

Physica, 76 (1974) 177-180. 

60 Goodwin, J. M. A vibrating wire viscometer for measurements at 

61 Bruschi, L.; Santini, M. Vibrating wir

62 Alvesalo, T. A.; Collan, H. K.; Loponen, M. T.; Veuro, M. C. Experimental 
determination of

63 Genta, G. Vibration of Structures and Machines, 2nd ed. Springer-Verlag, 
N.Y. (1992) 82-86.  

64 Timoshenko, S.; Young, D. H.; Weaver, W. Vibration Problems in 
Engineering, 3rd ed., Chapter 5, D. Van Nostrand, N.Y. (1955) 324-345. 

65 Cowper, G.R., The shear coefficient in Timoshenko’s beam theory, J. Appl. 
Mech., 33 (1966) 335-340. 

 



 159

                                                                                                                              

 663-670.  

991). 

 Magnet Sales & Services Ltd, UK, http://www.magnetsales.co.uk. 

m, W. A., Measurements of 
the Thermodynamic Properties of Single Phases, Experimental 

 An equation developed by Professor ten Seldam, private communications 

 Bevington, P. R., Data Reduction and Error Analysis for the Physical 

Pa. J. Chem. Eng. Data, 41 
(1996) 900-905. 

Thermal 
conductivity and density of toluene in the temperature range 273-373 K at 

. – High Pressures, 25 (1993) 465-469. 

2) 289-305. 

66 Vyas, V.; Nautiyal, T. Excess molar volumes and isentropic 
compressibilities of binary liquid mixtures containing n-alkanes at 298.15 K. 
Pramana, 59 (2002)

67 Oliveira, C. M. B. P. Viscosity of liquid hydrocarbons at high pressure. 
Ph.D. Thesis, Imperial College of Science and Technology and Medicine, 
London (1

68 Chen, S. S.; Wambsganss, M. W.; Jendrzejczyk, J. A. Trans. ASME: J. Appl. 
Mech., 43 (1976) 325-329. 

69 ASM Metals Handbook, 8th ed., American Society for Metals, vol. 1 (1961).  

70

71 Goodwin, A. R. H.; Marsh, K. N.; and Wakeha

Thermodynamics, vol. VI, Elsevier, Amsterdam (2003) pp 13.         

72

with Dr. Peter S. van der Gulik, Van der Waals-Zeeman Institute, University 
of Amsterdam, Valckenierstr. 67, 1018 XE Amsterdam, Netherlands.  

73

Sciences, McGraw-Hill, London (1992). 

74 Magee, J. W.; Bruno, T. J. Isochoric (p, r, T) Measurements for liquid 
toluene from 180 K to 400 K at pressures to 35 M

75 Kashiwagi, H.; Hashimoto, T.; Tanaka, Y.; Kubota, H.; Makita, T. 

pressures up to 250 MPa. Int. J. Thermophys., 3 (1982) 201-2015. 

76 Santos, F. J. V.; Nieto de Castro, C. A. New accurate data on the viscosity of 
toluene under high pressure. High Temp

77 Kashiwagi, H.; Makita, T. Viscosity of twelve hydrocarbon liquids in the 
temperature range 298-348 K at pressures up to 110 MPa. Int. J. Thermophys., 
3 (198

 



 160

                                                                                                                              

. 

7 (1992) 
349-355. 

hys., 22 (2001) 41-59. 

 Harris, K. R. Temperature and Density Dependence of the viscosity of 

 F. Viscosities of Pure Polyaromatic 
Hydrocarbons. J. Chem. Eng. Data, 32 (1987) 344-348. 

 VI. viscosimetric study of binary mixtures of hexafluorobenzene 
with aromatic hydrocarbons. Int. J. Thermophys., 6 (1985) 21-41. 

 liquid mixtures. VIII. Viscosity coefficients for toluene and 
for three mixtures of toluene + hexane from 25 to 100 °C at pressures up to 

 Dymond, J. H.; Glen, N. F.; Isdale, J. D.; Pyda, M. The viscosity of liquid 

ydrocarbons and mixtures involving hydrocarbons versus 
temperature and pressure. A critical study of some representative models. Int. 

, J. V.; Kestin, J. Viscosity of liquid 
toluene in the temperature range 25-75 °C. Int. J. Thermophys., 8 (1987) 641-

78 Harris, K. R.; Malhotra, R.; Woolf, L. A. Temperature and density 
dependence of the viscosity of octane and toluene. J. Chem. Eng. Data, 42 
(1997) 1254-1260

79 Krall, A. H.; Sengers, J. V. Viscosity of liquid toluene at temperatures from 
25 to 150 °C and at Pressures up to 30 MPa. J. Chem. Eng. Data, 3

80 Froba, A. P.; Leipertz, A. Viscosity and surface tension of saturated toluene 
from surface light scattering (SLS). Int. J. Thermop

81 Goodwin, R. D. Toluene thermophysical properties from 178 to 800 K at 
pressures to 1000 bar. J. Phys. Chem. Ref. Data, 18 (1989) 1565-1636. 

82

toluene. J. Chem. Eng. Data, 45 (2000) 893-897. 

83 Byers, C. H.; Williams, D.

84 Dymond, J. H.; Robertson, J. Transport properties of nonelectrolyte liquid 
mixtures -

85 Dymond, J. H.; Awan, M. A.; Glen, N. F.; Isdale, J. D. Transport properties 
of nonelectrolyte

500 MPa. Int. J. Thermophys., 12 (1991) 275-287. 

86

toluene at elevated pressures. Int. J. Thermophys., 16 (1995) 877-882. 

87 Et-Tahir, A.; Bond, C.; Lagourette, B.; Xans, P. Determination of the 
viscosity of various h

J. Thermophys., 16 (1995) 1309-1334. 

88 Goncalves, F. A.; Hamano, K.; Sengers

647. 

 



 161

                                                                                                                              

 Singh, R. P.; Sinha, C. P. Viscosities and activation energies of viscous flow 

 Hammond, L. W.; Howard, K. S.; McAllister, R. A. Viscosities and 

dekar, A. Y.; Stenby, E. H. Measurement of phase boundaries of 
hydrocarbon mixtures using fibre optical detection techniques. Ind. Eng. 

ints:  Results for complex mixtures. J. Chem. Thermodyn., 23 (1991) 
713–715. 

uereca, R. A. Vapour-liquid equilibria 
and dielectric constants for the helium-carbon dioxide system. AIChE J., 16 

 Chan, M; Ryschkewitsch, H. P.; Meyer, H. The dielectric constant in liquid 

Bose, T. K.; Okambawa, R.; Ingrain, D. Application of the 
dielectric constant measurements to study the influence of the small quantities 

 Hamelin, J.; Mehl, J. B.; Moldover, M. R. Resonators for accurate dielectric 
measurements in conducting liquids. Rev. Sci. Instrum., 69 (1998) 255–260. 

89 Kaiser, B.; Laesecke, A.; Stelbrink, M. Measurements of the viscosity of 
liquid toluene in the temperature range 218-378 K. Int. J. Thermophys., 12 
(1991) 289-306. 

90 Vieira dos Santos, F. J.; Nieto de Castro, C. A. Viscosity of toluene and 
benzene under high pressure. Int. J. Thermophys., 18 (1997) 367-378. 

91

of the binary mixtures of n-hexane with toluene, chlorobenzene, and 1-
hexanol. J. Chem. Eng. Data, 29 (1984) 132- 135. 

92

densities of methanol-toluene solutions up to their normal boiling points. J. 
Phys. Chem., 62 (1958) 637-639. 

93 Dan

Chem. Res., 39 (2000) 2586–2591. 

94 Goodwin, A. R. H.; Froerup, M. D.; Stenby, E. H. Microwave detection of 
dew po

95 Burfield, D. W.; Richardson, H. P.; G

(1970) 97–100. 

96

and solid 4He. J. Low Temp. Phys., 26 (1977) 211–228. 

97 St-Arnaud, J. M.; 

of water vapour on the compressibility factor of methane. Int. J. Thermophys., 
13 (1992) 685–697. 

98 Goodwin, A. R. H.; Mehl, J. B.; Moldover, M. R. Reentrant radio-frequency 
resonator for automated phase-equilibria and dielectric measurements in fluids. 
Rev. Sci. Instrum., 67 (1996) 4294–4304. 

99

 



 162

                                                                                                                              

frequency resonator. J. Chem. Eng. Data, 45 (2000) 549-554. 

ys., 18 (1997) 795-806.   

easurements. J. Chem. Thermodyn. 29 (1997) 1481–
1494. 

e, and dielectric constant measurements in a vapour mixture of methane 
+ propane using a microwave apparatus. Int. J. Thermophys., 24 (2003) 1509–

 B. A New Two-constant Equation of State. Ind. 
Eng. Chem. Fundam., 15 (1976) 59-64. 

g 
Equation of State. Chem. Eng. Sci., 27 (1972) 1197-1203. 

e, V. Getting a Handle on Advanced 
Cubic Equations of State. Measurement & Control, Aspen Technology Inc. 

 Reid, R. C.; Prausnitz, J. M.; Poling, P. E. The Properties of Gases and 

 Pitzer, K. S.; Lippmann, D. Z.; Curl, R.F.; Huggins, C. M.; Petersen, D. E. 

3. 

100 Hamelin, J.; Mehl, J. B.; Moldover, M. R. The static dielectric constant of 
liquid water between 274 and 418 K near the saturated vapour pressure. Int. J. 
Thermophys., 19 (1998) 1359-1380.  

101 Anderson, G. S.; Miller, R. C.; Goodwin, A. R. H. Static dielectric 
constants for liquid water from 300 K to 350 K at pressures to 13 MPa using a 
new radio-

102 Goodwin, A. R. H.; Mehl, J. B. Measurements of the dipole moments of 
seven partially fluorinated hydrocarbons with a radiofrequency re-entrant 
cavity resonator, Int. J. Thermoph

103 Goodwin, A. R. H.; Moldover, M. R. Phase border and density 
determinations in critical region of (carbon dioxide + ethane) determined from 
dielectric permittivity m

104 May, E. F.; Edwards, T. J.; Mann, A. G.; Edwards, C. Dew point, liquid 
volum

1525. 

105 Peng, D-Y.; Robinson, D.

106 Soave, G. Equilibrium Constants from a Modified Redlich-Kwon

107 Twu, C. H.; Sim, W. D.; and Tasson

Nov. (2002) 58-65. 

108

Liquids, 4th ed., McGraw-Hill, N.Y. (1986).  

109

The Volumetric and Thermodynamic Properties of Fluids. II. Compressibility 
Factor, Vapor Pressure and Entropy of Vaporization. J. Am. Chem. Soc., 77 
(1955) 343

 



 163

                                                                                                                              

(2001) 1160–1166. 

carbon systems: II. methane-propane system. Ind. Eng. Chem., 26 (1934) 
214–217. 

n hydrocarbon 
systems: volumetric and phase behaviour of the methane-propane system. Ind. 

id equilibrium 
in light hydrocarbon mixtures: methane-ethane-propane system. J. Chem. Eng. 

J. G.; Baron, J. D. Critical loci of binary mixtures of propane with 
methane, carbon dioxide, and nitrogen. J. Chem. Eng. Data, 12 (1967) 292–

 Wiese, H. C.; Reamer, H. H.; Sage, B. H. Phase equilibria in hydrocarbon 

 Akers, W. W.; Burns, J. F.; Fairchild, W. K. Low-temperature phase 

 Fröhlich, H., Theory of Dielectrics: dielectric constant and dielectric loss, 

 Böttcher, C. J. F. Theory of electric polarization, vol. 1, 2nd ed., Elsevier, 

dbook, McGraw-Hill, N.Y. (1951) Sec. 
5.27. 

8) 
255-260. 

110 May, E. F.; Miller, R. C.; Shan, Z. Densities and dew points of vapour 
mixtures of methane + propane and methane + propane + hexane using a dual-
Sinker densimeter. J. Chem. Eng. Data, 46 

111 Sage, B. H.; Lacey, W. N.; Schaafsma, J. G. Phase equilibria in 
hydro

112 Reamer, H. H.; Sage, B. H.; Lacey, W. N. Phase equilibria i

Eng. Chem., 42 (1950) 534–539. 

113 Price, A. R.; Kobayashi, R. K. Low temperature vapour-liqu

Data, 4 (1959) 40–49. 

114 Roof, 

293. 

115

systems: phase behaviour in the methane-propane-n-decane system. J. Chem. 
Eng. Data, 15 (1970) 75–82. 

116

equilibria: methane-propane system. Ind. Eng. Chem. 46 (1954) 2531–2535. 

117

2nd ed., Clarendon Press, Oxford (1958). 

118

N.Y. (1973).   

119 Marcuwitz, N. Waveguide Han

120 Hamelin, J.; Mehl, J. B.; Moldover, M. R. Resonators for Accurate 
Dielectric Measurements in Conducting Liquids. Rev. Sci. Instrum., 69 (199

 



 164

                                                                                                                              

tween 274 and 418 K Near the Saturated Vapour Pressure. 
Int. J. Thermophys., 19 (1998) 1359-1370. 

77–
491. 

using 
scattering parameters. Rev. Sci. Instrum., 67 (1996) 2179-2181. 

ified and simplified 
treatment of techniques for characterising transmission, reflection or 

 Sanchez, M. C.; Martin, E.; Zamarro, J. M. New vectorial automation 

2 (1984) 666-670.  

 Determined with a Cross Capacitor. Int. 
J. Thermophys. 22 (2001) 859-885. 

er, M. L. Reference Fluid 
Thermodynamic and Transport Properties. NIST Standard Reference Database 

e and Tables of 
Thermodynamic Properties for Methane Covering the Range from the Melting 

121 Hamelin, J. O.; Mehl, J. B.; Moldover, M. R. The Static Dielectric Constant 
of Liquid Water Be

122 Luiten, A. N. Wiley Encyclopaedia Elec. Electron. Eng. 17 (1999) 4

123 Dae-Hyun, H.; Young-Soo, K. Two port cavity Q measurement 

124 Sanchez, M. C.; Martin, E.; and Zamarro, J. M. Un

absorption resonators. IEEE Proceedings, 137 (1990) 209-212.  

125

technique for characterisation of resonators. IEEE Proceedings, 137 (1989) 
147-150. 

126 Frait, Z.; Patton, C. E. Simple method for microwave cavity Q 
determination. Rev. Sci. Instrum., 51(1980) 1092-1094.  

127 McKinstry, K. D.; Patton, C. E. Methods of determination of microwave 
cavity quality factors from equivalent electronic circuit models. Rev. Sci. 
Instrum., 60 (1989) 439-443. 

128 Kajfez, D.; Hwan, E. J. Q-factor measurements with a network analyser, 
IEEE Trans. on Microwave Theory and Techniques MTT, 3

129 Bauccio, M., Ed. ASM Metals Reference Book, ASM International, Ohio 
(1993) pp 155. 

130 Moldover, M. R.; Buckley, T. J. Reference Values of the Dielectric 
Constant of Natural Gas Components

131 Lemmon, E. W.; McLinden, M. O.; Hub

23, Version 7.0, Nat. Inst. Stands. Technol., Gaithersburg, Maryland (2002). 

132 Setzmann, U.; Wagner, W. A New Equation of Stat

 



 165

                                                                                                                              

 Schmidt, J. W.; Moldover, M. R. Dielectric permittivity of eight gases 

s propane determined from the 
speed of sound. Int. J. Thermophys., 18 (1997) 635-654.  

ents 
by microwave spectroscopy. J. Chem. Phys., 45 (1966) 855-858. 

. 

 Personal communication, Dr. Allan H. Harvey, Physical and Chemical 

5).   

 Kirkwood, J.G. The Dielectric Polarization of Polar Liquids. J. Chem. 

. Pressure vessel handbook, 13  ed., Pressure Vessel 
Publishing Inc., Tulsa, Okla. (2004). 

l Dekker, NY (1998) 121- 423. 

-range temperature and 
pressure operation. Rev. Sci. Instrum., 46 (1975) 1350–1351. 

Line to 625 K at Pressures up to 1000 MPa. J. Phys. Chem. Ref. Data, 20 
(1991) 1061-1151. 

133 Straty, G. C.; Goodwin, R. D. Dielectric constant and polarizability of 
saturated and compressed fluid methane. Cryogenics, 13 (1973) 712-715. 

134

measured with cross capacitors. Int. J. Thermophys., 24 (2003) 375-403. 

135 Trusler, J. P. M. Equation of state for gaseou

136 Muenter, J. S.; Laurie, V. W. Isotope effects on molecular dipole mom

137 Oster, G., The dielectric properties of liquid mixtures. J. Am. Chem. Soc., 
68 (1946) 2036-2041

138 Harvey, A. H.; Prausnitz, J. M. Dielectric constant of fluid mixtures over a 
wide range of temperature and density. J. Solution Chem., 16 (1987) 857-869. 

139

Properties Division, National Institute of Standards and Technology, 325 
Broadway, Boulder, Colorado 80305-3328, USA, (July 200

140 Harvey, A. H.; Lemmon, E. W. Methods for the dielectric constant of 
natural gas mixtures. Int. J. Thermophys., 26 (2005) 31-46. 

141

Phys., 7 (1939) 911-919. 

142 Megyesy, E. F th

143 Bickford, J. H.; Nassar, S., Eds., Handbook of bolts and bolted joints, Parts 
III and IV, Marce

144 Mansoorian, H.; Capps, E. F.; Gielen, H. L.; Eubank, P. T.; Hall, K. R. 
Compact, magnetic recirculating pump for wide

 



 

 

166

                                                                                                                              
TP

145
PT Ziger, D. H.; Eckert, C. A. Simple high-pressure magnetic pump. Rev. Sci. 

Instrum., 53 (1982) 1296–1297. 

TP

146
PT Ruska, W. E. A.; Hurt, L. J.; Kobayashi, R. Circulating pump for high 

pressure and -200 to + 400 °C application. Rev. Sci. Instrum., 41 (1970) 1444–
1446. 

TP

147
PT Roger, W. J.; Fontalba, F.; Capps, E. F.; Holste, J. C.; Marsh, K. N.; Hall, 

K. R. Magnetic circulating pumps for use over wide ranges of temperature and 
pressure. Rev. Sci. Instrum., 59 (1988) 193–94. 

TP

148
PT Hiza, M. J.; Duncan, A. G. A simple gas recirculation pump for low flow 

and high pressure applications. Rev. Sci. Instrum., 63 (1992) 5802–5803. 

TP

149
PT Standard Reference Data Program, Fluid Mixtures Data Centre, 

Thermophysics Division, National Institute of Standards and Technology, 
Boulder, CO 80303. 

TP

150
PT Lemmon, E. W.; Jacobsen, R. T. A generalized model for the 

thermodynamic properties of mixtures. Int. J. Thermophys., 20 (1999) 825–
835. 

TP

151
PT Miyamoto, H.; Watanabe, K. A thermodynamic property model for fluid-

phase propane. Int. J. Thermophys., 21 (2000) 1045–1072. 

TP

152
PT Personal communication, Dr. Sergei Kiselev, Research Associate Professor, 

Chemical Engineering Department, Colorado School of Mines, (November 
2004). 

TP

153
PT Kiselev, S. B.; Ely, J. F. Generalized corresponding state model for bulk 

and interfacial properties in pure fluids and fluid mixtures. J. Chem. Phys., 119 
(2003) 8645-8662.  

TP

154
PT Kiselev, S. B.; Rainwater, J. C. Extended law of corresponding states and 

thermodynamic properties of binary mixtures in beyond the critical region. 141 
(1997) 129-154. 

TP

155
PT Maryott, A. A.; Smith, E. R. Table of Dielectric Constants of Pure Liquids. 

National Bureau of Standards Circular, 514 (1951).  



 166

A p p e n d i x  A  

CALIBRATION DATA 

A. Appendix B 

A.1 Temperature calibration: 

The temperature of the viscometer and the microwave cavity resonator was 

determined with two 4-wire industrial platinum resistance thermometers (PRT) 

of 25 Ω and 50 Ω respectively. These thermometers were calibrated against a 

25 Ω standard platinum resistance thermometer (SPRT) made by Sensing 

Devices™ Ltd. UK. This SPRT had been calibrated, in 2000, on ITS-90 by the 

Measurement Standard Laboratory of New Zealand. The resistance of this 

SPRT at the triple point of water R (273.16 K) was re-determined, in 2002, as: 

R (273.16 K) = (25.3928 ± 0.0003) Ω. 

The temperature of the SPRT (T90/K) was calculated based on its resistance R 

(273.16 K) and other fixed points included in its calibration certificate. Further 

information on the ITS-90 can be found in the reference: Preston-Tomas, H. 

Metrologia, 27 (1990) 3-10. 

The three thermometers were inserted in an aluminium block, as shown in 

Figure A.1, to ensure stable and constant temperature during calibration. This 

block was placed in a calibration heat bath, controlled to 0.01 °C, and a 
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correlation was made between the actual temperature measured by the SPRT 

and the resistances of the thermometers under calibration at different 

temperatures in the range (0 to 170) °C. The data were fit to eq A.1 where the 

temperature t/°C was calculated from the measured resistance R/Ω as: 

t = a0 + a1 R + a2 R2  (A.1) 

Parameters of eq A.1 are included in Table A.1 and were optimised for a 

temperature range of t ≈ (0 to 150) °C. Deviations between the temperature 

measured with the standard platinum thermometer and that calculated with eq 

A.1 are shown in Figure A.2 and Figure A.3. 

 

 
 

Figure A.1: Photo for the aluminium block with the SPRT (in the middle), the 

PRT used with the viscometer (to the right), and the PRT used with the cavity 

resonator (to the left).  
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Table A.1: Parameters for eq A.1 determined by least-squares for PRT# 1 

(used with the viscometer) and PRT# 2 (used with the cavity resonator).   

PRT# a0/°C a1/°C·Ω-1 a2/°C·Ω-2 δt/°C 

1 -240.9 8.9895 0.0156 ± 0.01 

2 -246.505 4.7125 0.0042 ± 0.01 
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Figure A.2: Deviations between the temperature measured with the standard 

platinum thermometer and that calculated using eq A.1 with parameters from 

Table A.1 for the PRT#1 used with the viscometer. 
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Figure A.3: Deviations between the temperature measured with the standard 

platinum thermometer and that calculated using eq A.1 with parameters from 

Table A.1 for the PRT#2 used with the microwave cavity resonator. 
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A.2 Pressure Calibration: 

A differential pressure gauge (DPT), model Sensotec™ HL-Z/6917-02ZD-03, 

was used to measure the difference between the fluid pressure within the cavity 

and the pressure of a reference nitrogen line. The pressure of the reference 

nitrogen line was measured with a pressure transmitter, model Digiquartz™ 

1000-2K, with an absolute pressure range (0 to 13.8) MPa, and an uncertainty 

± 0.0014 MPa. The absolute pressure in the cavity resonator was calculated by 

adding the Sensotec DPT reading to the Digiquartz pressure reading.  

The pressure calibration was performed using a liquid lubricated piston-

cylinder (LLPC) dead-weight pressure gauge Desgranges et Huot Instruments, 

model DH-21000, with an uncertainty ± (0.0001p/MPa + 0.0005). The 

pressure was calibrated in the range (0.1 to 9) MPa, at temperature range (298 

to 350) K to compensate for the temperature effects on the DPT, and also to 

offset and adjust the span of the nitrogen line pressure transmitter. Calibration 

parameters were obtained from a linear regression using a least square method. 

A.2.1 Sensotec differential pressure calibration (DPT): 

The dc output of the Sensotec DPT was measured over a differential pressure 

range from ∆p ≈ (-3 to 3) MPa. A voltage source of 10 V dc was used for 

excitation, and an amplifier unit was used to amplify the output from about 2 

mV to about 2 V. The data were fit to the following equation where the 
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differential pressure ∆p/MPa was calculated from the measured output voltage 

V/V: 

∆p = a1 V + a0 (A.2) 

Parameters of eq A.2 are included in Table A.12 and were optimised for a 

differential pressure range of p(differential) ≈ (-1 to 1) MPa. Deviations between 

the differential pressure measured with the standard pressure gauge and that 

calculated with eq A.2 are shown in Figure A.4.  

Table A.2: Calibration parameters for the Sensotec 
differential pressure gauge included in eq A.2 

 
a0/MPa a1/MPa·V-1 δp(differential)/MPa 

0.0257 0.1229 ± 0.003 
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Figure A.4: Deviations between the pressure measured with the Sensotec 

differential pressure gauge and that calculated using eq A.2 with parameters 

from Table A.2. 
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A.2.2 Digiquartz pressure transmitter calibration: 

The offset and the span of the Digiquartz pressure transmitter were adjusted 

after calibration over a pressure range of p ≈ (0.1 to 12) MPa. The pressure p 

(calculated with the original calibration coefficients) was adjusted using the 

pressure adder PA and multiplier PM obtained from best fit to eq A.3, and 

were entered in the Digiquartz software program. The values of the parameters 

PA and PM are included in Table A.3. 

(p/MPa)adjusted = PM ( p/MPa + PA), (A.3) 

Table A.3: Calibration parameters for the Digiquartz 
pressure transmitter included in eq A.3 

 
PA PM δp/MPa 

-0.26692 1.00026 ± 0.0005 
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Figure A.5: Deviations between the pressure measured with the standard 

pressure gauge and that calculated using eq A.3 with parameters from Table 

A.3 for the Nitrogen line Digiquartz pressure gauge. 
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