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Abstract

This thesis is split into two parts: first a statistical analysis of multi-hop MIMO

relay networks, followed by a simulation of the perfomance of a P25 SISO multi-hop

relay network. The basis of the MIMO section is the developement of an end to end

statistical model of the multiple relay channel. This end to end model simplifies the

statistics involved, making the analysis of systems with large numbers of relays and

antennas more practical. A partial system model is obtained. This is exact for a

multiple input single output network and can be used to describe the received signal

at a single antenna in a multiple output system. We go on to look at the relationship

between end to end system parameters and the paramters of individual inter-relay

channels. The SISO section contains a characterisation of BER for P25 relay chains.

The effect of the SNR at each relay node, the nature of the channel and the number

of relay hops on the BER is determined. Furthermore, the performance trends are

compared for a range of common relaying protocols, including amplify and forward

and two types of decode and forward.
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Chapter 1

Introduction

When building a communications network, an important consideration is that of

topology [1]. That is, which parts of the network will interact. Two obvious ar-

rangements are centrally routed networks and networks using direct connections.

In a centrally routed network terminal nodes communicate via a single interchange

node. In a network using direct connections terminal nodes communicate directly

with each other. In practice most networks will fall somewhere between these two

extremes. For example, in a cell phone network [2] users communicate via a single

base station within a given area or cell. Users in different cells communicate with

their respective base stations which will transfer the information between them. The

internet works in a similar manner, albeit with a larger hierarchy. Here a user will

connect to an internet service provider, which in turn may connect to a nationwide

exchange and then an intercontinental router. On the other end of the spectrum,

citizen band (CB) radio [3] is an example of a network utilizing direct connections

between users. As may be apparent from the above examples, different topologies

are more appropriate for different types of network.

A centrally routed network is more suited to dealing with a high user density and

can help centralize the cost of establishing a network, that is the capital investment

is primarily in the base stations as opposed to being split evenly between all radio

nodes. In this context, high user density refers to a situation where it can be

expected that a large proportion of the available bandwidth of the network will be

1
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required simultaneously, by a large number of users. This would typically require

bandwidth to be allocated to users dynamically and reassigned with a low latency

[2]. A centrally routed network simplifies this task as, if all communications are

transferred via one node, then the allocation of bandwidth can be managed by this

node alone. This task is referred to as media access control (MAC) [1]. The fact

that MAC can be dealt with solely in the central node allows the majority of the

complexity and therefore the cost of network hardware to reside in this node. The

result of this is the opportunity to produce low cost terminal nodes which, combined

with the centrally routed system’s suitability to high user densities, means that a

network of this style has an easily scalable number of users. In a network with direct

routing all the terminals need to be capable of any MAC the network implements.

This limits the practical user density of a network of this type to the complexity

that can be included in the terminal nodes. As such the investment per user in the

network is higher than a centrally routed scheme but as no additional infrastructure

is required the network can be ad hoc in nature. Systems providing scope for direct

communications between users typically provide more geographical scalability than

centrally routed networks while providing less scope for high user densities. This

is not fundamentally the case but rather arises from the typical implementation of

these network types.

Current radio products are predominantly of two types, privately owned radio

terminals utilizing direct communications on public frequencies and commercial ra-

dio networks [4]. The commercial networks are typically centrally routed, with fixed

high power central nodes. This is the context for the work in this thesis. The key

question is whether some of the flexibility advantages of direct point to point com-

munications can be utilized in radio networks built around expensive fixed base

stations. In particular this work looks at using the concept of relays [5] to provide

this flexibility. A relay in this context is considered to be a network node which

immediately retransmits what it receives, possibly with some intermediary process-

ing. The purpose of the relay node is to extend the range over which other nodes

in the network can communicate, or reduce the transmission power required by the
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nodes to communicate within a given area. It should also remain as transparent as

possible [6]. By transparent we mean that communication between users should be

equivalent to the case where they are in a range where the relay is not needed. That

is the performance and operation of the system should be virtualy the same as in

the case where the relay is not used.

The concept of using relays for communication is not new, in fact it could be

considered as the basis of some of the earliest communication networks. From

semaphore chains to smoke signals to wolf howls, relaying signals provided a simple

means of long distance communication. Modern examples of relays augmenting a

larger network include; relays for cell phone signals located inside large buildings,

which have poor reception from the nearest base station. This relay may be con-

nected to an aerial external to the building, where the signal to the rest of the

network is stronger. A very crude relay is the leaky feeder [7], a length of coaxial

cable which runs along the length of a tunnel and is connected to an aerial out-

side the tunnel. This allows radio signals to propagate inside the tunnel. Here we

consider the possibility of a more extensive augmentation of existing networks with

the relay concept, or even stand alone relay based networks. These could be of use

in areas of low user density, where the full sophistication of a base station is not

required. The key requirement of a relay for this purpose is to be of low cost, so as

to provide a useful alternative to installing a base station. Another desirable prop-

erty is to possess a low power requirement. This will allow the possibility of being

battery powered and portable. A product of this nature would provide a low cost,

easily scalable and portable network infrastructure. Situations where this could be

of commercial value include:

• Areas with very low user density, such as rural areas, where little MAC is re-

quired. Here the sophistication of a typical base station is unnecessary so a relay

system could provide the same coverage at a much lower cost.

• Temporary networks to provide coverage in remote areas, such as that required

by emergency services. Here the potential portability of relays could be utilized

to drop them into a location, or mount them in a vehicle, allowing coverage to
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be relocated as required.

• Extension of existing networks into areas of low user density. These areas may

not prove economic to cover with a base station, but could be serviced by relaying

signals to an existing base station adjacent to the area [8]. This is outlined in

Fig. 1.1.

A

B

Figure 1.1: Coverage for area B with low user density is provided by relaying signals
between B and the high density area A

• Extending or establishing new networks in heavily shadowed areas, such as val-

leys, tunnels, buildings etc. Shadowing [9] refers to the situation where large

objects block the path of radio propagation, hills and buildings would be typical

examples. These objects drastically weaken the signal in their path. In areas

with heavy shadowing the use of single high power transmitters is inefficient,

as most of the transmit power is not received. A solution is to use a sequence

of lower power transmitters to relay the signal around the shadowing objects.

Figure 1.2 is an example of this scenario.

Of course an obvious question relating to a relay system of this nature is: how

big can a network based on this concept become? There are two ways to increase

the network coverage, increasing transmit power and adding more relying nodes [5].

Increasing transmit power removes some of the advantages of the relay concept so is

not necessarily desirable. Hence, network expansion would ideally be performed via

increasing the number of relays used. The issue then becomes how many relays can
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A

B

Figure 1.2: A connection between areas A and B is provided by a relay chain through
the shadowing object between them

a signal pass through while retaining an acceptable number of errors. Anyone who

has played the game Chinese whispers will identify the problem that if each relay has

the potential to introduce errors into communication, the combination of multiple

relays increases the probability of errors. To allow the use of chains of relays it is

important to investigate what can be done within the relay node to mitigate this

problem and to establish what kinds of conditions these relay networks can operate

in. This work focuses on the effect of increasing the number of relay nodes in the

communication path, with a variety of relay types and radio environments.

Also under consideration is the use of MIMO transmission with relay networks

[10]. MIMO stands for multiple input multiple output and refers to the use of

antenna arrays for both transmission and reception of information. For example a

single transmitter could use multiple antennas to transmit to a receiver with multiple

antennas. Alternatively a set of transmitters with single antennas could transmit

cooperatively to a set of receivers with single antennas. The advantage of multiple

antennas is that it provides spatial diversity. This effect can provide more reliable

transmission or can be used to increase the potential capacity of a wireless channel.

Due to local scattering effects the strength of a radio signal at separate antennas even

if they are located close to each other can vary drastically. Hence the use of multiple

antennas gives a higher probability of receiving a strong signal at one of the antennas.

Thus, if the same information is transmitted on each antenna the error probability



Chapter 1. Introduction 6

of the channel drops. Furthermore, if the channel properties between each antenna

pair can be tracked by the receiver it is possible to transmit independent information

on each antenna. Antenna arrays at a single node provide this spatial diversity on

a scale of the order of the wavelength of the signal, providing robustness to local

scattering effects. In contrast an array of separate nodes provide a similar effect on a

larger spatial scale. This arrangement can provide redundancy against shadowing as

well as local scattering. The downside to this arrangement is that the geographically

separated nodes need a reliable connection with low delays in order to communicate

cooperatively. This would normally involve a wired connection.

The current knowledge of relay chains can be split into two broad areas: re-

lays using MIMO techniques and those using traditional single antenna systems,

referred to as single input single output (SISO) systems. For MIMO systems, the

results available relating to relay performance are limited but, as with other areas of

MIMO communications, it is an active area of research [11]. Furthermore, multi-hop

relaying using MIMO techniques is in its infancy in terms of performance analysis.

Some results for capacities in relation to numbers of relay nodes and antennas are

available [12, 13]. Optimal relaying techniques and coding structures are developed

in [14] assuming full channel state information (CSI) at each relay. An asymptotic

performance analysis is presented for this system in [14].

Research into SISO communications is more developed, as would be expected

due to its much longer history. It is important to note that these single antenna

systems can still benefit from spatial diversity when multiple relay nodes are used

for signal transmission. As multiple nodes are transmitting the same information in

a multi-hop relay system, a receiver capable of combining signals from all transmis-

sion sources can benefit from this diversity. General results for multi-hop relaying

have still proved difficult to obtain though, an overview of available results is given

in [15]. The system performance is dependent on the type of relay processing per-

formed which complicates a summary of the available knowledge. Introducing the

concepts of analogue and digital relaying make this summary easier. Here, an ana-

logue relay is one that amplifies the received signal without performing any other
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processing, while a digital relay performs some degree of demodulation and decod-

ing before regenerating and retransmitting the signal. With an arbitrary hop length

[16] and [17] give upper bounds on errors for digital relays and analogue relays us-

ing a specific amplification factor. [16] contains an analysis for systems using the

diversity offered by multiple relays and [17] performs a similar analysis for systems

without this diversity. An approximate expression for error rates is developed in

[18] which applies to analogue relays of arbitrary hop length and includes diversity.

The instantaneous end to end SNR is found in [19] for multi-hop analogue relaying

with diversity. The system error rate is found in [20] for digital relays.

1.1 Goals

The available results for multi-hop MIMO relay systems are limited as a result

of the highly complex statistics of the resulting propagation channel. Currently,

the systems are modeled via a combination of the existing models for the channel

between two radio nodes. The result is a model where the degrees of freedom are

proportional to the number of relay nodes and the square of the antenna numbers.

The motivation of the work presented in Chap. 3 is to develop a model which

describes the statistics of the end to end channel directly, ideally massively reducing

the degrees of freedom of the model. This may lead to an easier analysis of the

performance of the system. For example, error rates and end to end signal to

noise ratios for multi-hop MIMO relay channels are not currently available. An

understanding of the statistics of the complete channel may lead to these expressions.

Parallel to this investigation, Chapter 4 looks at performance metrics of a SISO

system using the P25 protocol.

1.2 Contributions

The thesis makes contributions in both areas of interest, namely in the analysis of

MIMO relay channels and in the evaluation of various SISO relay implementations.

Firstly a partial end to end channel model is developed in Chap. 3 for analogue
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relays. Using this model we go on to develop expressions for moments of the elements

of the end to end transfer function, probability densities for the single relay case

and expressions for the end to end signal to noise ratios in the system. We go on

to look at the effects the relay amplification and a capacity analysis based on the

eigenvalues of the transfer matrix.

The analysis of the SISO system, while providing results for the specific modula-

tion scheme outlined in the P25 specification, also addresses some general questions

arising in the literature. The majority of work done in relation to multi-hop re-

lays focuses on flat fading channels. The SISO simulations presented in Chapter

4 include the error rate trends for multipath channels with a variety of common

relaying protocols. This introduces the problem of inter-symbol interference (ISI),

which proves to be significant and in some cases the dominant cause of errors.

1.3 Thesis Organization

Chapter 2 outlines the existing system models based on single hop transmission and

shows how these can be cascaded to describe a multi-hop system. The description

of the model is split into that relevant to MIMO communications, followed by that

applicable to SISO communications. The description of the system model is further

split into four components, the source signals, the propagation channel, the relaying

protocol and the noise components. These are all described separately for MIMO

and SISO communications.

Chapter 3 develops the statistics of the end to end signal model and presents

the results relevant to performance that can be obtained from this model. A look at

the dependence structure in the end to end transfer function of the channel is given

is presented first, the raw moments of elements of the system model follow. End to

end signal to noise ratio distributions are presented next including their moments.

The effects of the linear amplifiers are considered. The penultimate section contains

an empirical analysis of the eigenvalues with an explanation of how these can be

related to capacity. Finally we look at channel model approximations.

Chapter 4 presents the results of the simulations of a P25 SISO multi-hop relay
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channel. The simulated results are presented in such a way as to isolate the effects

of individual degrading channel properties. First we demonstrate the effect of slow

fading on the communication scheme across a range of relaying protocols and identify

the cause for the discrepancies in the relay protocols. The results of fast fading are

covered next. Both these sections look at relay protocols ability to mitigate the

effects of frequency selective channels. The complete system model is considered

next. This section looks at conditions in which a desired error rate can be maintained

and is intended to aid system design. The final section looks at requirements for

maintaining block error rates using error correcting codes.

Finally, Chapter 5 presents some conclusions and directions for future work.
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Chapter 2

System Model

Transmitter

s1
r1

n1

Channel

H1
Relay 1

Receiver

sL
rL

Channel

HL

nL

Relay L-1

rL-1

Figure 2.1: System diagram for a relay chain with L hops

The work in Chaps. 3 and 4 is split into an analytical component involving

MIMO techniques and simulation work based on SISO transmission. As the nature

of many system components is different for these two scenarios, the system model

for each part will be described separately. Given that a SISO communication sys-

tem is a special case of the more general MIMO model, the MIMO section will be

described first in, Sec. 2.3, with the SISO specific model following in Sec. 2.4. As

a preliminary, some notation, performance metrics and system parameters will be

defined. Despite the differences between the two scenarios the common structure of

a typical L-hop relay chain can be identified in Fig. 2.1.

To describe the general system in Fig. 2.1 we need to define the signal vectors

s1, s2, . . . , sL, r1, r2, . . . , rL and noise vectors n1,n2, . . . ,nL. The originally trans-

11
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mitted signal, s1, passes through the first channel, which has transfer function H1.

This is received, along with additive Gaussian noise, n1, at the first relay. The

received signal, r1, is given as r1 = H1

⊗
s1 + n1, with

⊗
being the convolution

operator. The dimension of the vector s1 is given by the number of transmit an-

tennas which in this work will be referred to as N1. The dimension of r1 and n1

is the number of receive antennas, denoted by M1. The received signal, r1, is pro-

cessed by the relay, producing the signal transmitted by the first relay, referred to

as s2. The relationship between r1 and s2 depends on the type of relay protocol

being employed. r2 is then H2

⊗
s2 + n2 and rL = HL

⊗
sL + nL. The number

of receive antennas at the lth relay and the dimension of the vectors nl and rl is

denoted Ml. The number of transmit antennas at the lth relay and the dimension of

sl+1 is denoted Nl. Given these definitions, the transfer function between the lth and

(l−1)th relays has Nl−1 inputs and ML outputs. In general these equations require a

convolution of the signal with the channel transfer function. If this transfer function

is an impulse, then this reduces to a multiplication. In practice, this represents a

channel which does not spread a signal in time. As an approximation to a physical

system this is valid provided the difference in propagation delay across all possible

paths is less than the symbol period. Channels of this type are referred to as flat

fading channels, as the attenuation of the channel is independent of frequency. For

the MIMO system in Chap. 3 a channel model of this form is used. This chapter

looks to provide an expression for the end to end transfer function of the relay link,

that is to specify the signal at the final receiver directly in terms of the originally

transmitted signal. This will be an equation of the form r = Heq

⊗
s1 + neq, with

Heq being the equivalent transfer function between the transmitted signal and the

information carrying component of the received signal. The noise terms, neq, repre-

sents the cumulative noise received through the relay link. It is now left to define

the channel transfer functions {H1,H2, . . . }, the nature of the transmitted signal s1

and the noises {n1,n2, . . . } in terms of the relaying techniques used.
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2.1 Notation

Matrices

• Matrices are represented by bold capital letters such as H.

• Hmn refers to the element from the mth row of the nth column of H.

• Hm refers to the mth row of H.

• Hn refers to the nth column of H.

• Some equations will use specific indices, such as H1, to denote either the

first column or row of H. Whether this refers to the row or column will be

apparent from the context.

• Equations will also use notation such as Hl to denote a single matrix from a

set of matrices Hl, l ∈ {1, 2, . . . , L}. Once again, the fact that this is a full

matrix rather than a row or column vector will be apparent by context. To

refer to an element of such a matrix the notation (Hl)mn is used to represent

the element from the mth row of the nth column of Hl. Similarly the mth

row of Hl is denoted (Hl)m and nth column, (Hl)n.

Vectors

• Vectors are represented by bold lower case letters such as s.

• sm refers to the mth element of s.

• sk refers to the kth vector in the set sk, k ∈ {1, 2, . . . , L}, skm refers to the

mth element of this vector.

Products

Empty product expressions are considered to be equal to one. For example,∏L
l=L+1Hl = 1.

Random Variables

The system models make considerable use of zero mean circularly symmetric
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complex Gaussian variables (ZMCSCG), which are of the form z1 + jz2 where

z1, z2 are i.i.d real zero mean Gaussian variables. We also define CN(0, 1) to be

the distribution of a ZMCSCG variable with unit variance.

Complex Variables

Complex conjugates and Hermitian transposes will be denoted by the symbol

†. That is, a scalar x has complex conjugate x†, a vector, s, has Hermitian

transpose s† and a matrix, H, has Hermitian transpose H†.

2.2 Metrics and System Parameters

When quantifying the performance of communication systems, a variety of metrics

can be used. The metrics used in this work are:

Capacity This is a measure based on information theory giving an upper bound

on the rate of the communication system that can be maintained while retaining

no transmission errors.

Bit Error Rate (BER) This metric gives the number of bit discrepancies between

the transmitted and received message as a fraction of the total number of bits

contained in the message. The ratio given is normally an average with the

message size tending to infinity as the number of bit errors for any given message

will vary.

Block Error Rate (BLER) Similar to BER the BLER is often applied to trans-

mission schemes that send data in discrete, finite blocks. Here the ratio of blocks

containing one or more errors to the total number of blocks transmitted is given.

Fundamentally, all performance measures of a communication system are depen-

dent on the ratio of the received signal power to the received noise power. Let r be

the scalar received signal at a single antenna and n be the scalar noise at the same

single receive antenna. The signal to noise ratio (SNR) is defined as E[|r|2]
E[|n|2] giving

the average received signal to noise power ratio.
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2.3 Multi-hop MIMO Relayed Communications

Relay Relay Relay

Hk Hk+1

(sk+1)1

(sk+1)M

(rk+1)1

(rk+1)M

(sk)1

(sk)M

(rk)1

(rk)M

Figure 2.2: System diagram for a partial section of a MIMO multi-hop relay link

For the MIMO system we will focus on flat fading channels. As the transfer

function of this channel is an impulse, the effect of the channel in the system model

reduces to a multiplication. A partial multi-hop MIMO link is shown in Fig. 2.2.

We can define the received signal at the first relay as r1 = H1s1 +n1. This received

signal is then processed by the relay to give s2, the signal transmitted by the first

relay. In general the received signal at the lth relay is given by rl = Hlsl + nl.

2.3.1 Channel Model

For the MIMO relays the standard Rayleigh scattering model of wireless propagation

is used. Here the gain between any transmit/receive antenna pair is given by a

variable distributed as a ZMCSCG variable. The model represents propagation

scenarios in which there is no line of sight (LOS) path present and it assumes a

large degree of scattering of the signal at the receiver. It can be shown in this

situation that the attenuation between an antenna pair is Rayleigh distributed [9].

Hence the PDF of the channel attenuation is given in [21] Chap. 18 Sec. 10.2 as

p(x) =
x

σ2
exp

(
−x2

2σ2

)
, x ≥ 0

where σ is the distribution scale parameter, which in this case specifies the average

channel attenuation. The phase shift of the channel is uniformly distributed between

−π and π.

In a MIMO system [22] the gains between each antenna pair can be represented

in a matrix structure such as
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H =


H1,1 · · · H1,N

...
. . .

...

HM,1 · · · HM,N

 ,

for a MIMO system with N transmit antennas and M receive antennas. Such a

system will be referred to as M×N MIMO. Each element, Hm,n, in H is distributed

as an i.i.d ZMCSCG variable. H is referred to as the channel matrix. If s is an N×1

vector representing the signals at the N transmitters then the signals received at the

M receivers are given as r = Hs. In the presence of noise this becomes r = Hs+ n

where n is an M × 1 vector of i.i.d complex Gaussian variables.

The Rayleigh model represents local scattering of the signal at the receiver. To

account for shadowing between transmit and receive antennas an additional log-

normal scaling parameter is normally used, while free space path loss is represented

by another parameter. The work in Chaps. 3 and 4 does not focus on a specific

physical system so a distance or antenna coefficient for the free space path loss

cannot be specified. Shadowing is also a constant scaling parameter for a given

inter node channel. Hence we remove both of these components from our channel

model and instead we simply specify the SNR at the receiver. This is justified based

on the fact that for a physical radio link the degree of shadowing experienced will

remain relatively constant over the period of transmission. Hence from the point

of view of system design it is just as useful to evaluate the links performance at a

given average SNR.

Time Varying Channels

The channel model described here is based on the idea of a large number of scattered

signal paths combining randomly at the receiver to produce the received signal. This

suggests that the received signal will vary in space. Hence a moving receiver will

experience a time dependent channel. Similarly, if an object around the receiver

that is affecting the scattered signal is moving, then even a stationary receiver

will experience a channel that varies over time [9]. The effect is the same if the

transmitter is moving in space so the relative motion between transmitter, receiver
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and objects in the propagation environment dictates the extent of this effect. For

the purpose of analysis in wireless communications, the rate of change of the channel

is broken into two categories, these being fast and slow fading channels. In a slow

fading channel the rate of change of the channel is considered to be of an order such

that over a symbol period of the modulation scheme the channel can be considered

to be static. In this situation the performance of the communication scheme is not

affected directly by the changing channel, but the average performance of the system

will be dependent on how the channel properties change over time. In a fast fading

environment the channel properties are assumed to change significantly within a

symbol period and will potentially affect the demodulated signal.

We use a model of fast fading based on the Jakes Doppler spectrum [9]. With

this model the change over time can be defined by an autocorrelation function

R(τ) = J0(2πfdτ) where J0 is the zeroth-order Bessel function of the first kind, fd is

the maximum doppler shift and τ is the time between two channel instances. R(τ) is

the autocorrelation function of an element of the channel matrix,H. For the complex

element, Hmn, the autocorrelation function is defined as R(τ) = E[(Hmn)
†
t(Hmn)t+τ ],

where the subscript refers to the time at which Hmn is observed. The maximum

doppler shift is defined as fd = vfc
c

where fc is the carrier frequency and v is the

relative velocity of the transmitter and receiver or the scattering objects. Figure

2.3 is a plot of the normalized auto correlation and gives a measure of the expected

commonality between two instances of the channel with a separation in time given

by τ
fd
.

The effect of a time varying channel on the received signal depends on the type

of modulation employed by the communication system. When using a constant

envelope, non-coherent modulation such as DPSK the change in channel properties

across adjacent symbols introduces errors in the received signal. When designing a

system to operate in these conditions the autocorrelation function of the channel can

be used to give an indication of acceptable symbol rates for a given error margin.

It can be seen from Fig. 2.3 that the higher the symbol frequency the greater

correlation between the channel conditions at a adjacent symbol times. With DPSK
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Figure 2.3: Fast fading autocorrelation function

modulation a change in the channel phase shift between sample times will introduce

an error in the demodulated signal. Hence, a higher correlation between channel

properties at adjacent sample times results in a lower error probability. Figure 2.3

also suggests that there is a lower limit to symbol frequency for a practical DPSK

system giving by the first zero crossing of the channel autocorrelation function.

At this point the channel properties are not reliably correlated between adjacent

samples.

2.3.2 Source Signals

The source signals, s1, are N1 × 1 vectors drawn from a random sequence at a rate

given by the sample frequency of the communication protocol. The samples drawn

from the sequence are assumed to be uncorrelated. Furthermore E[s†1s1] is assumed

to be equal to one.

2.3.3 Relay Protocols

The types of relaying considered are split into two general categories. In the lit-

erature these are often referred to as linear relaying and decoded relaying [10] and
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correspond to the use of analogue or digital relays respectively. In decoded relaying

the message is estimated at each relay and regenerated. As a result, the end to end

channel properties are not important and each hop in the relay link can be con-

sidered independently. The problem in evaluating the performance with decoded

relaying becomes one of describing error propagation as decision errors from one

relay will be transmitted to the next. Chapter 3 does not look at this issue and

the analytical work focuses on linear relaying. Relays of this type retransmit the

received signal with some form of linear transformation, α, hence the transmitted

signal for relay one is given by s2 = α1r1 where

s2 = α1(H1s1 + n1).

This pattern can be continued to give the signals throughout the relay chain.

Let the received signal at the lth relay be rl, the signal transmitted from the lth relay

be sl+1, the channel transfer function between the (l− 1)th and lth relays be Hl and

the received noise at the lth relay be nl. With these definitions

rl = Hlsl + nl,

sl+1 = αlrl,

sl+1 = αl(Hlsl + nl). (2.1)

Expanding (2.1) recursively we can define the signal at the final receiver, rL,

in terms of the signal at the original transmitter, s1, giving an end to end system

equation. This is shown in Sec. 3.1.

The general form for αl is an Ml×Nl complex matrix. This allows the possibility

of the output at each antenna on the transmit side of the relay being a linear

combination of the inputs at each antenna on the receive side. An important special

case of this general form is a diagonal αl matrix. Here, the signal received at each

antenna is scaled to give the output at a transmit antenna. Hence there is no

combining of signals, simply a scaling. A further simplification is the reduction of

αl to a scalar, where there is once again no combining of signals and only a simple

scaling factor is used.
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2.3.4 Noise

The system model includes additive Gaussian noise at each receive antenna. Com-

plex Gaussian noise is assumed. Hence the noise, n, is given by
√

N0

2
(nr+jni) where

nr and ni are i.i.d real Gaussian variables and N0/2 is the power spectral density of

the noise.

2.3.5 Signal Power

To provide a general model for the relay system it is desirable to normalize the

signal powers in the system model. To achieve this the various parts of the system

can be redefined as follows. Let the physical signal at the first relay be defined by

s̃2 = α̃(H̃1s̃1 + ñ1). (2.2)

We will write (2.2) in terms of a set of signals with unit power scaled by the

power of the signals in the actual physical system.

√
Ps2s2 = α̃(

√
PHH1

√
Ps1s1 +

√
Pnn̂1) (2.3)

Here, H1 is the normalized channel matrix where E[|(H1)mn|2] = 1, s1, s2

and n̂1 are normalized transmit signals and noise vectors in the same fashion.

Ps2 = E[s̃†2s̃2], Ps1 = E[s̃†1s̃1], PH = E[|(H̃1)mn|2], Pn = E[|ñ1,m|2]. Dividing (2.3)

by
√
PHPs1 we have

√
Ps2√

PHPs1

s2 = α̃(H1s1 +

√
Pn√

PHPs1

n̂1),

s2 =

√
PHPs1√
Ps2

α̃(H1s1 +

√
Pn√

PHPs1

n̂1).

If we then define a normalized amplification factor, α, as

α =

√
PHPs1√
Ps2

α̃,

and another noise term, n1, where
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E[n1n
†
1] =

Pn

PHPs1

I,

then we have the normalized system model

s2 = α(H1s1 + n1).

Since α is still an arbitrary scaling variable we can represent the various signal

powers in the system by the variance of n1 alone. Furthermore, Pn

PHPs1
is equal to

the inverse of the signal to noise ratio, 1
SNR

, and the model can be defined directly

by this parameter. Hence in system modeling it is sufficient to define the SNR and

use unit power channels and signals.

2.4 Multi-hop SISO Relayed Communications

When using SISO communications the system model becomes scalar, but here we

allow the possibility of the radio channel spreading the signal in time. This requires

a convolution in the system equations. The received signal at the first relay, r1, is

given by h1

⊗
s1+n1. In SISO systems the possibility of non linear relay processing

is considered, so an end to end system equation is not necessarily obtainable. The

signals at the lth relay can still be defined as rl, sl+1 and nl with the transfer function

between the lth and (l − 1)th relay being hl. The received signals are defined by

rl = hl

⊗
sl + nl.

The relationship between rl and sl+1 depends on the relay protocol employed

and is covered in Sec. 2.4.5.

2.4.1 Channel Model

Here we use the flat Rayleigh channel as a reference to which the more complex

propagation models can be compared. In the results presented, the flat Rayleigh

channel shows the effects of the fading channel in isolation which allows the effect of
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the other channel distortions to be assessed by comparison. The other channel mod-

els used here are extensions of the Rayleigh propagation concept, which allow the

inclusion of phenomena such as ISI and the time varying channel causing distortion

of the demodulated signal. These extended models will be described here.

While the Rayleigh model accounts for the local scattering of the received signal

it does not allow for a LOS signal from the transmitter. The model can be extended

to allow a non zero mean amplitude representing the presence of a LOS path. This

is referred to as a Rician channel [9], where the channel attenuation distribution is

defined by the PDF [21] Chap. 18 Sec. 10.7

p(x) =
x

σ2
exp

(
−(x2 + µ2)

2σ2

)
I0

(xµ
σ2

)
, x ≥ 0 (2.4)

and I0(x) is the first order Bessel function of the second kind. In (2.4), µ is a

location parameter and represents the attenuation of the LOS path, while σ2 is a

scale parameter. The average channel attenuation is given by 2σ2 + µ2. The phase

shift is once again uniformly distributed between −π and π.

Relay zN1

st+N1

z-1

st-1

n

s

Relay
r

H

z-N2

st-N2

Figure 2.4: Multi-path channel model

The Rician/Rayleigh model accounts for local scattering of the signal at the

receiver but, as the possible phase shift is limited to the range [−π, π), it does not

include the effects of ISI. More complex propagation models can account for received

signals with varying amounts of delay by including additional paths with delayed

versions of the transmitted signal. This model can now reproduce the effects of

ISI where the received signal at a given time is dependent on multiple transmit
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symbols. The properties of a variety of radio environments can be represented

using combinations of path delays and expected attenuations. If the individual

path gains are considered to be uncorrelated, the baseband signal can be described

mathematically using a finite impulse response (FIR) structure

rt =

N2∑
n=−N1

hn exp(θn)st−n,

where hn and exp(θn) make up the complex weights of the FIR filter. Details of

how the weights are obtained are given in Sec. (4.2).

2.4.2 Radio Environments

The environment models used are taken from [23]. These specify power delay pro-

files based on measured data in a set of European locations designed to replicate

the nature of propagation in general locations of a similar nature. The environ-

ments modeled are rural, urban, hilly rural and hilly urban scenarios. As a point of

reference, a flat Rayleigh environment has also been simulated. The environment

models are defined in Table 2.1. In the simulations the expected channel gains are

normalized to unity. The models define a delay and a gain for each path with the

shortest path assigned a delay of 0s and the strongest path a gain of 0dB. The sam-

ple period of the modulated signal is 21µs. The rural environment is the simplest

radio environment with a small delay spread and half the signal power existing in

a line of sight (LOS) path. This is representative of a high site situation where

the relay nodes could be located on adjacent hilltops for example. The hilly rural

environment has no LOS path and a much larger delay spread, 17µs at -12dB as

opposed to 0.5µs at -20dB. This is representative of a situation such as a series

of relays placed along the length of a valley. The urban environment includes a

longest delay of 5µs at -10dB and the strongest path delayed by 0.2µs. The hilly

urban environment has a sightly longer maximum delay of 6.6µs with the signal

power more evenly distributed across the delay spread. It is important to consider

a range of radio environments as different systems may be better suited to different

environments.
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Table 2.1: Delay spread parameters for radio models, delay in µs and power in dB
Tap Rural Urban Hilly Urban Hilly Rural

Delay Power Delay Power Delay Power Delay Power
1 0 0 0 -3 0 -3 0 0
2 0.1 -4 0.2 0 0.4 0 0.2 -2
3 0.2 -8 0.6 -2 1.0 -3 0.4 -4
4 0.3 -12 1.6 -6 1.6 -5 0.6 -7
5 0.4 -16 2.4 -8 5.0 -2 15 -6
6 0.5 -20 5.0 -10 6.6 -4 17.2 -12

Considering the effect of multiple relay nodes on the end to end radio channel

makes the propagation channel much more complex. To get a feel for the resulting

channel, consider a SISO system with linear relays in the absence of noise. Starting

with the flat Rayleigh case, when a set of these channels are combined in series the

output becomes

rt =
∏
n

hnst.

If we define the channel gain, hn, in polar form, that is hn = An exp(jθn), the

total phase change of the channel becomes
∑

n θn. The combined amplitude is∏
n An. Since

∑
n θn is the sum of N circularly symmetric, independent, uniformly

distributed random variables it is also distributed uniformly in the interval [−π, π).

The combined amplitude is distributed as a product of Rayleigh variables.

Next we consider the multi-path channel model where

rt =

N2∑
n=−N1

hn exp(θn)st−n.

The combination of these channels becomes more cumbersome to describe math-

ematically. To circumvent this, first we define ϕd as a shift operator such that

ϕd(st) = st−d and ϕd1(s)ϕd2(s) = ϕd1+d2(s). With this notation, the output can then

be given as

rt =
L∏

k=1

[
N2∑

n=−N1

hn exp(θn)ϕdkn(st)

]
.

The received signal is made up of the sum of all the possible products of L of
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the original paths. Considering one of these path combinations, the amplitude is

again distributed as a product of Rayleigh variables and the phase is uniform on

the interval [−π, π). Finally, the delay is the sum of the delays of the individual

paths that make up the end to end paths. To assess the nature of the end to end

channel it is useful to consider the power delay profile. That is the expected signal

power at the receiver over time corresponding to an instance of a transmitted signal.

For example, the power delay profile of the urban channel as defined in Table 2.1 is

given in Fig. 2.5.

0 1 2 3 4 5 6
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

Delay (µs)

F
ra

ct
io

n 
of

 T
ot

al
 C

ha
nn

el
 P

ow
er

Figure 2.5: Power delay profile for urban environment

As these profiles define the transfer function of the channel the profile for multi-

hop channels can be obtained by the convolution of the transfer functions. Figure

2.6 shows how the distribution of signal power in time is affected by multiple relay

nodes.

As the number of hops increases, the dispersion of the signal in time increases.

Without a receiver with the ability to equalize the channel, not only will the received

power decrease as the transmitted power is spread outside the sample period, but

this proportion of the transmitted power will also interfere with adjacent symbols.

Furthermore issue can be exacerbated by non-coherent modulation schemes, as the
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sample time at the receiver will not necessarily be aligned with the peak received

power.

2.4.3 P25 Communications

We give special attention in this work to the P25 communication protocol. This

uses a non-coherent frequency/differential phase modulation. The protocol maps 2

bits per symbol. While the P25 specification [24] allows some variation in the details

of implementation, our system uses differential phase shift modulation. Here, the

signal is represented by the change in phase between successive sample periods. The

message bits are grey coded to symbols as given by the signal constellation in Table

2.2. The signal to be transmitted, s, is given by

Table 2.2: P25 signalling constellation
Bits Phase Change
10 -135
00 -45
01 45
11 135

st = st−1 exp(iθt),

where the subscript t gives the sample time and θ is the message symbol.

P25 communications have several advantages for wireless propagation. The con-

stant envelope frequency/differential phase modulation is not susceptible to distor-

tion due to a constant complex gain in the propagation path. Though the demodu-

lated signal is affected by a time varying phase change in the propagation path, the

extent of this effect is proportional to the rate of change of the channel phase and

the symbol rate chosen for modulation. The protocol, being non-coherent and not

taking advantage of any channel state information, will not provide a high band-

width efficiency in challenging propagation environments. The payoff for this is low

complexity radio hardware.

The symbol frequency is 4.8kHz, the modulation frequency 48kHz. The modula-

tion frequency is higher than the symbol frequency as a higher modulation frequency
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offers a higher level of robustness in fast fading channels. Conversely, the symbol

frequency is lower than the modulation frequency, as this reduces susceptibility to

ISI. The carrier frequency is 800MHz. To demodulate the received signal, the phase

difference between successive samples is calculated and the result mapped back to

the appropriate bits.

The receiver works as follows. The phase change between samples, θ̂, is obtained

as,

θ̂ = arg(rtr
†
t−1). (2.5)

This phase change is then mapped to the closest valid symbol, that is the value of

m′ ∈ {−3,−1, 1, 3} that minimizes∣∣∣∣arg(ritr∗i(t−1) exp

(
−jπm′

4

))∣∣∣∣ .
The protocol also specifies a forward error correcting (FEC) scheme based on a

convolution code. The code is based on a 96 symbol block and has a 1
2
data rate. The

symbols to be transmitted are interleaved before passing through the convolutional

encoder and modulated as above. At the decoder, demodulation is performed as

normal then a Viterbi decoder is used to estimate the interleaved symbols. These

are then deinterleaved to recover the original symbol sequence.

2.4.4 Noise

The system is modeled using complex Gaussian noise. This is of the same form as

used in the MIMO model. Hence the noise, n, is given by
√

N0

2
(nr + jni), where

nr and ni are i.i.d real zero mean Gaussian variables and N0 is the average noise

power.

2.4.5 Relaying Protocol

The primary requirements of the relays are for them to be of low cost and power.

This is the advantage it offers over a centrally routed (ie. base station) network.

To achieve this goal the complexity of the relay nodes must remain low. Obviously,
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maintaining a reasonable capacity over the link is also a requirement and this can

become challenging as the number of relay nodes increase. To produce a practical

communication system, the relay nodes must control the cumulative negative effects

of the multi-hop propagation environment.

The simplest form of relay is a fixed gain amplifying relay in which sl+1 = αlrl,

where αl is a constant scalar. In this type of system, the amplification factor, αl,

can be designed to control the expected transmit power, E[|sl+1|2]. To maintain

a constant value for E[|sl|2], l ∈ 1, 2, . . . , L, the amplification factor can be set as

αl =
√

1
E[|hl|2]+N0

. This scheme will require expensive linear amplifiers. It also

will prove unstable for channels with a large variance as there is no control over

the instantaneous transmit powers, s2l+1. The scheme requires knowledge of the

expected channel attenuations, E[|hl|2], and expected noise power at the receiver,

N0.

If the relay is capable of tracking channel state information, a better system

would use an adaptive gain, where αl =
√

1
|hl|2+N0

. A special case of this scheme

can be applied to constant envelope modulation schemes. If no information is carried

in the amplitude, the relay node can simply take the phase of the received signal

and retransmit this at the desired power. Mathematically, this is equivalent to an

amplification factor, αl =
√

1
|rl|2

, and requires no knowledge of the channel state or

received noise power. The fact the transmission power can be controlled precisely

means the maximum power of information carrying signal can be transmitted at any

given instance. Constant transmit power also allows the use of simple and cheap

non-linear amplifiers.

Looking at decoding relays, the simplest relaying protocol detects message sym-

bols then regenerates the estimated signal for transmission. This protocol requires a

digital relay. In these relays the signal is shifted from pass band to base band and a

differential detector is used to estimate the transmitted message symbols as per the

P25 protocol. Differential modulation is then used to produce the signal imposed

on the carrier signal for transmission. This also allows the transmit power to be

precisely controlled. Hence this approach offers the same advantages of maximizing
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the information carrying signal power and allowing the use of simple, non-linear

amplifiers. There are other significant advantages to the decoding and regenera-

tion of the message at each relay. It removes the effects of the multi-hop channel,

only suffering from the results of channel distortion between each relay pair. The

downside of this scheme is that any decoding errors at the relays will be propagated

through to the final receiver.

The simulation work undertaken investigates four options for relaying protocols.

These are referred to as Amplify and Forward (AF) [25], Phase Forwarding (PF),

Detect and Regenerate (DetR) [26] and Decode and Regenerate (DecR). The AF

protocol use the fixed amplification scheme giving a constant expected transmit

power across all the relay nodes. PF relays use the phase only transmission scheme,

providing constant power transmission. The DetR protocol is the basic digital relay,

demodulating the input signal to perform symbol estimation before regenerating the

signal for transmission. This protocol also allows constant power transmission. The

DecR protocol is based on the trellis coded modulation (TCM) scheme of the P25

specification. In this case the relay nodes perform symbol detection in the same way

as for DetR. Then, the most likely transmitted data sequence is estimated from the

received symbols using a Viterbi algorithm. This estimate of the transmitted signal

is then resent using the same convolutional code.
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Figure 2.6: Power delay profile for urban multi-hop channels, the two hop profile is
given in (a), 8 hop in (b), 16 hop in (c).



Chapter 3

Statistical Properties of Multi-hop

Relay Chains

This analysis of relay chains focuses on the use of linear relays in flat Rayleigh

radio environments. The flat Rayleigh model is used as this is the most important

baseline case and leads to a multiplicative channel model, as opposed to requiring

a convolution operation which results from the use of a multi-path model. As the

statistics of the flat Rayleigh case are already highly complex, the multi-path case

has been left to be considered in future work. Detect and regenerate relays are

also not considered in this section. The reason for this is that in decoding relays

the message is regenerated at each relay and so the problem becomes one of error

propagation and the propagation channel between each relay pair can be handled

independently. To recap the system model presented in Sec. 2.3, the communication

system is represented at the lth relay by

sl+1 = αlrl

= αl(Hlsl + nl).

In Secs. 3.3-3.5 the linear amplification term, α, is left arbitrary. To give explicit

results in these sections we assume that it is a constant.

The focus of this section is the development of an end to end system model, of

the form rL = Heqs1+neq. Ideally this will prove useful in analysis of properties such

as end to end capacity and BER. An end to end model is found for a multiple input

31
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single output (MISO) system. We use this to characterise end to end properties

including noise to signal ratios and the moments of elements of the channel matrix

and noise vector. Additionally, the dependence structure in the end to end model

is established for MIMO systems. Finally, a characterisation of the eigenvalues of a

MIMO system is presented.

3.1 Equivalent Channel Matrices

Transmitter Relay

Receiver

H1 h2

s2,1

s2,2

r2

s1,1

s1,2

r1,1

r1,2

Figure 3.1: Example of a simple MISO system

Here we construct an end to end model for a MISO system. This can also be

applied to a MIMO system to give properties relating to a single receive antenna.

Consider a MISO system in the context of a relay chain. Here, arrays of antennas at

the source and relays transmit to arrays of receive antennas, with the constraint that

the final receiver has only one antenna. This reduces the channel matrix between

the final relay and receiver to a vector. We will look at a specific case of this type

of system to illustrate the method of obtaining the equivalent model. Consider a

system using a 2 × 2 MIMO link followed by a single antenna receiver, as in Fig.

3.1, with a flat Rayleigh channel and linear relaying. For this example we have the

channel model,

r2 =
[
h2,1 h2,2

]
α1

(H1)1,1 (H1)1,2

(H1)2,1 (H1)2,2

s1,1
s1,2

+

n1,1

n1,2

+ n2. (3.1)

This can be written as
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r2 = α1

[
h2,1(H1)1,1 + h2,2(H1)2,1 h2,1(H1)1,2 + h2,2(H1)2,2

]s1,1
s1,2


+α1

[
h2,1n1,1 + h2,2n1,2

]
+ n2

(3.2)

It is well known [21, Chap. 13, Sec. 3] that a linear combination of ZMCSCG

variables is equivalent to a single ZMCSCG variable. In particular, for a linear

combination of two ZMCSCG variables we have

az1 + bz2 =
(√

|a|2 + |b|2
)
z3,

where z1, z2, z3 are i.i.d CN(0, 1). Hence, conditioning on h2,1 and h2,2, r2 can be

rewritten as

r2 = α1

[√
|h2,1|2 + |h2,2|2z1

√
|h2,1|2 + |h2,2|2z2

]s1,1
s1,2

+α1

√
|h2,1|2 + |h2,2|2z3+n2.

(3.3)

Equation (3.3) can be simplified by using the result that a sum of squares of real

Gaussian variables is distributed as a chi square random variable with the degrees

of freedom given by the number of Gaussian variables in the sum [21, Chap. 18].

Hence, the term |h2,1|2+|h2,2|2 in (3.3) is distributed as a chi square random variable.

Both |h2,1|2 and |h2,1|2 are distributed as the sum of two real Gaussian variables,

with variance of a half, squared. This means that |h2,1|2 + |h2,2|2 is distributed as

half of a chi square variable, X1, with four degrees of freedom. Therefore, r2 has

the representation,

r2 = α1

[√
X1

2
z1

√
X1

2
z2

]s1,1
s1,2

+ α1

√
X1

2
z3 + n2,

= α1

√
X1

2

[z1 z2

]s1,1
s1,2

+ z3

+ n2.

(3.4)

This approach can be extended to three hops. The full channel model for this

system is,



Chapter 3. Statistical Properties of Multi-hop Relay Chains 34

r2 =
[
h3,1 h3,2

]
α2

×

(H2)1,1 (H2)1,2

(H2)2,1 (H2)2,2

α1

(H1)1,1 (H1)1,2

(H1)2,1 (H1)2,2

s1,1
s1,2

+

n1,1

n1,2

+

n2,1

n2,2


+n3

(3.5)

Let,

v1
v2

 = α1

(H1)1,1 (H1)1,2

(H1)2,1 (H1)2,2

s1,1
s1,2

+

n1,1

n1,2

 ,

then substituting this into (3.5) gives

r2 =
[
h3,1 h3,2

]
α2

(H2)1,1 (H2)1,2

(H2)2,1 (H2)2,2

v1
v2

+

n2,1

n2,2

+ n3. (3.6)

Equation (3.6) is of the same form as (3.1). Hence, using the same argument as

above, this can be reduced to,

r2 = α2

√
X2

2

[z1 z2

]v1
v2

+ z3

+ n3, (3.7)

where X2 = 2(|h3,1|2 + |h3,2|2). Substituting,v1
v2

 = α1

(H1)1,1 (H1)1,2

(H1)2,1 (H1)2,2

s1,1
s1,2

+

n1,1

n1,2

 ,

back into (3.7), gives

r2 = α2

√
X2

2

[z1 z2

]
α1

(H1)1,1 (H1)1,2

(H1)2,1 (H1)2,2

s1,1
s1,2

+

n1,1

n1,2

+ z3

+ n3.

Now the term given by

[z1 z2

]
α1

(H1)1,1 (H1)1,2

(H1)2,1 (H1)2,2

s1,1
s1,2

+

n1,1

n1,2

+ z3

 ,
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is of the same form as (3.1). Therefore, this can again be reduced to

r2 = α2

√
X2

2

α1

√
X1

2

[z4 z5

]s1,1
s1,2

+ z6

+ z3

+ n3, (3.8)

where X1 = 2(|z1|2 + |z2|2).

To extend this argument to an arbitrary number of hops we first express the

channel model in a form more conducive to arbitrary hop lengths. To do this, the

signal and noise components of the channel are separated as follows. For the two

hop case,

r2 = h2α1(H1s1 + n1) + n2

= α1h2H1s1 + α1h2n1 + n2

=
∏1

l=1 αl

∏2
l=1Hls1 +

∑2
l=1

∏1
k=l αk

∏2
k=l+1Hknl,

where it is understood that H2 = h2 and
∏2

l=1Hl = H2H1 = h2H1. With similar

notation for three hops we have,

r3 = h3α2(H2α1(H1s1 + n1) + n2) + n3

= α2α1h3H2H1s1 + α2α1h3H2n1 + α2h3n2 + n3

=
∏2

l=1 αl

∏3
l=1Hls1 +

∑3
l=1

∏2
k=l αk

∏3
k=l+1Hknl.

Finally with L hops,

rL =
L−1∏
l=1

αl

L∏
l=1

Hls1 +
L∑
l=1

L−1∏
k=l

αk

L∏
k=l+1

Hknl. (3.9)

To reduce this to the simplified model, as in (3.4) and (3.8), we expand this expres-

sion as follows,

rL = hLαL−1

×(HL−1αL−2(
∏L−3

l=1 αl

∏L−2
l=1 Hls1 +

∑L−2
l=1

∏L−3
k=l αk

∏L−2
k=l+1Hknl) + nL−1)

+nL

(3.10)

Let
∏L−3

l=1 αl

∏L−2
l=1 Hls1 +

∑L−2
l=1

∏L−3
k=l αk

∏L−2
k=l+1Hknl = vL−2, then
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rL = hLαL−1(HL−1αL−2vL−2 + nL−1) + nL.

This is of the same form as (3.1) and following the same argument as above can be

expressed as

rL = αL−1

√
XL

2
(zL−1αL−2vL−2 + nL−1) + nL.

Repeating this process we can write,

rL = αL−1

√
XL

2
(zL−1αL−2(HL−2αL−3vL−3 + nL−2) + nL−1) + nL

= αL−1

√
XL

2
(αL−2

√
XL−1

2
(zL−2αL−3vL−3 + nL−2) + nL−1) + nL

=
∏L

l=2 αl−1

√
Xl

2
z1s1 +

∑L
l=1

∏L
k=l+1 αk−1

√
Xk

2
nl.

(3.11)

From (3.11) we can now define expressions for the equivalent channel matrix and

noise terms. These are given by,

heq =
L∏
l=2

αl−1

√
Xl

2
z1,

neq =
L∑
l=1

L∏
k=l+1

αk−1

√
Xk

2
nl.

The expression for neq can be further simplified by combining the N i.i.d ZMC-

SCG noise variables, nl, l ∈ {1, 2, . . . , N}, into a single ZMCSCG variable with

an equivalent distribution. Its variance, given by the sum of the variances of

nl, l ∈ {1, 2, . . . , N}, is
∑L

l=1

∏L
k=l+1 α

2
k−1

Xk

2
. Hence,

neq =


√√√√ L∑

l=1

L∏
k=l+1

α2
k−1

Xk

2

 z,

where z is an independent ZMCSCG variable.

Unfortunately, this approach can not be applied quite so effectively to a MIMO

or SIMO system. With multiple outputs the channel matrix develops a complex

dependence structure that cannot be reproduced using the chi square model. In a

SIMO system we can look at the information carrying component of the received

signal in isolation. The equivalent channel can be expressed in a similar way as



Chapter 3. Statistical Properties of Multi-hop Relay Chains 37

heq =
L∏
l=2

αl−1Hlh1.

Using a similar approach to the MISO case we let ∥h1∥2 = X1

2
and substitute H2h1

with the equivalent distribution z2

√
X1

2
giving,

heq =
L∏
l=3

αl−1Hlz2α1

√
X1

2
.

Repeating this procedure gives the general expression

heq = zL

L−1∏
l=1

αl

√
Xl

2
.

Hence, heq has a simple form but the problem arises with the noise component of

the equivalent channel model. For the equivalent noise, we can write

neq =
L∑
l=1

L−1∏
k=l

L∏
k=l+1

Hknl, (3.12)

From (3.12) we observe that the noise terms do not involve the vector channel h1,

which is essential in simplifying the structure of the equivalent channel vector.

The same problem arises in a full MIMO system. In this case, some properties

of the channel can be obtained by considering a single receiver in isolation. The

model is then equivalent to the single output case. In an M × N MIMO system

with L hops, the received signal is given by,

rL =
L−1∏
l=1

αl

L∏
l=1

Hls1 +
L∑
l=1

L−1∏
k=l

αk

L∏
k=l+1

Hknl.

Hence the signal at the mth receive antenna is given by,

(rL)m = (HL)mαL−1

(∏L−2
l=1 αl

∏L−1
l=1 Hls1 +

∑L−1
l=1

∏L−2
k=1 αk

∏L−1
k=l+1Hknl

)
+ nL

= (HL)mαL−1×(
HL−1αL−2

(∏L−3
l=1 αl

∏L−2
l=1 Hls1 +

∑L−w
l=1

∏L−3
k=l αk

∏L−2
k=l+1Hknl

)
+ nL−1

)
+nL.

(3.13)
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Equation (3.13) is of the same structure as (3.10) so can be written as

(rL)m =
L∏
l=2

αl−1

√
Xl

2
z1s1 +


√√√√ L∑

l=1

L∏
k=l+1

α2
k−1

Xk

2

n. (3.14)

This expression will allow the statistics of a single row of the equivalent channel and

noise component to be calculated.

In summary, (3.11) gives an end to end system model for a MISO system. The

same system model can also be applied when considering a single receive antenna

in a MIMO system. For this case the end to end model is given by (3.14).

3.2 Dependence Structure of the End to End Sys-

tem

In this section we establish the dependence between components of the system model

for a MIMO relay chain. First we will look at the correlation of elements of Heq. For

this analysis we will limit ourselves to linear relays that only posses knowledge of

the channel properties before them in the relay chain. That is, αl is only dependent

on Hk, k < l. Consider the element (Heq)mn given by

(Heq)mn = (HL)m(
∏L−1

l=1 αlHl)n

=
∑M

u=1(HL)mu(
∏L−1

l+1 αlHl)un.

With this representation, consider the correlation

E[(Heq)mn(Heq)
†
uv] = E[

(∑M
a=1(HL)ma(

∏L−1
l+1 αlHl)an

)(∑M
b=1(HL)ub(

∏L−1
l+1 αlHl)bv

)†
]

= E[
∑M

a,b=1(HL)ma(HL)
†
ub(
∏L−1

l+1 αlHl)an(
∏L−1

l+1 αlHl)
†
bv]

=
∑M

a,b=1E[(HL)ma]E[(HL)
†
ub]E[(

∏L−1
l+1 αlHl)an(

∏L−1
l+1 αlHl)

†
bv].

Since (HL)ma is a ZMCSCG variable with E[(HL)ma] = 0, we have

E[(Heq)mn(Heq)
†
uv] = 0.

While the components of the channel matrix are uncorrelated they are not neces-

sarily independent. For the two hop case, where (Heq)ij = (H2)i(H1)j, components
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from the same column of Heq will depend on the same column of H1. Components

from the same row of Heq will depend on the same row of H2. In a system with L

hops, (Heq)ij = (HL)i
∏L−1

l=2 Hl(H1)j. Hence all components of Heq will be depen-

dent on
∏L−1

l=2 Hl. This complex dependence structure, without correlation, makes

it difficult to develop a direct representation for Heq in the multiple output case. In

the single output case, the dependence is represented by the product of chi square

variables.

In the multiple output case the equivalent noise term is a vector, as opposed to

the scalar term in the single output system. The same questions about correlation

and dependence within the noise vector can also be asked. To investigate this issue

we consider

E[neq,un
†
eq,v]

= E[
(
nL,u +

∑L−1
k=1 (HL)u(

∏L−1
l=k+1 αlHlnk)

)(
nL,v +

∑L−1
k=1 (HL)v(

∏L−1
l=k+1 αlHlnk)

†
)
]

= E[
∑L−1

a,b=1(HL)u(
∏L−1

l=a+1 αlHlna)(
∏L−1

l=b+1 αlHlnb)
†(HL)

†
v

+
∑L−1

b=1 nL,u(
∏L−1

l=b+1 αlHlnb)
†(HL)

†
v

+
∑L−1

a=1 n
†
L,v(HL)u(

∏L−1
l=a+1 αlHlna) + nL,un

†
L,v]

=
∑L−1

a,b=1E[(HL)u(
∏L−1

l=a+1 αlHlna)(
∏L−1

l=b+1 αlHlnb)
†(HL)

†
v]

+
∑L−1

b=1 E[nL,u(
∏L−1

l=b+1 αlHlnb)
†(HL)

†
v]

+
∑L−1

a=1 E[n†
L,v(HL)u(

∏L−1
l=a+1 αlHlna)] + E[nL,un

†
L,v].

(3.15)

Separating each of the three expectations in (3.15) we have

E[(HL)u(
∏L−1

l=a+1 αlHlna)(
∏L−1

l=b+1 αlHlnb)
†(HL)

†
v]

= E[
∑M

k=1(HL)uk(
∏L−1

l=a+1 αlHlna)k(
∏L−1

l=b+1 αlHlnb)
†
k(HL)

†
vk]

=
∑M

k=1E[(HL)uk(HL)
†
vk(
∏L−1

l=a+1 αlHlna)k(
∏L−1

l=b+1 αlHlnb)
†
k]

=
∑M

k=1E[(HL)uk]E[(HL)
†
vk]E[(

∏L−1
l=a+1 αlHlna)k(

∏L−1
l=b+1 αlHlnb)

†
k]

when u ̸= v. As (HL)uk is a ZMCSCG variable E[(HL)uk] = 0 and

E[(HL)u(
L−1∏
l=a+1

αlHlna)(
L−1∏
l=b+1

αlHlnb)
†(HL)

†
v] = 0, u ̸= v.
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Next

E[nL,u(
L−1∏
l=b+1

αlHlnb)
†(HL)

†
v] = 0

as nL,u is an independent ZMCSCG variable.

Finally,

E[nL,un
†
L,v] = 0, u ̸= v,

as nL,u and nL,v are independent ZMCSCG variables, when u ̸= v. Hence E[neq,un
†
eq,v] =

0, u ̸= v.

As for dependence, from the above equations we can see that all components of

the noise vector contain the terms Hl, l ∈ {2, 3, . . . , L− 1}. Hence they will exhibit

some degree of dependence. More importantly, this also demonstrates a dependence

between Heq and neq.

In summary, while the elements of Heq are uncorrelated they are dependent on

one another. Similarly neq also contains uncorrelated yet dependent elements. In

addition, the channel matrix, Heq, and noise vector, neq, are also dependent.

3.3 Moments of equivalent noise and channel ma-

trices

Here we develop an expression for the moments of elements of the equivalent channel

matrix and noise vector. First, we will look at E[|(Heq)mn|r], for a system with L

relay hops, M receive antennas and N transmit antennas, with r ∈ Z+. Using (3.14)

we can write

(Heq)mn =
L∏
l=2

αl

√
Xl

2
zn,

where Xl, l ∈ {2, 3, . . . , L} are i.i.d chi square random variables with 2N degrees of

freedom and zn is a ZMCSCG variable. With these properties
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E[|(Heq)mn|r] =
L∏
l=2

αr
lE

[(
Xl

2

) r
2

]
E[|zn|r].

The problem is now one of establishing the value of E[
(
Xl

2

) r
2 ] and E[|zn|r]. The

result for E[|zn|r] is readily available in standard statistics references [21, Chap. 13,

Sec. 3] as below

E[|zn|r] = 0, for odd r

= r!, for even r.

Given this result,

E[|(Heq)mn|r] = 0, for odd r,

and we need only consider E[
(
Xl

2

)r
]. The moments for a standard chi square variable

are given in [21, Chap. 18, Sec. 3] as

E[Xr
l ] = 2r

(N + r − 1)!

(N − 1)!
.

Since

E

[(
Xl

2

)r]
=

(
1

2

)r

E[Xr
l ],

it follows that

E

[(
Xl

2

)r]
=

(N + r − 1)!

(N − 1)!
.

Using these results we can now write

E[|(Heq)mn|2r] =
[∏L

l=2 α
2r
l

(
(N+r−1)!
(N−1)!

)]
r!

=
[∏L

l=2 α
2r
l

]
r!
(

(N+r−1)!
(N−1)!

)L−1

.
(3.16)

The moments of the equivalent noise term are more complicated due to the sums

of products involved. Taking the representation for neq,m in (3.14), two simpler

results can be obtained first:

E[|neq,m|r] = E


√√√√ L∑

l=1

L∏
k=l+1

α2
k−1

Xk

2

rE[N0|zu|r],
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which is zero for odd r, as E[|zu|r] = 0 for odd r. The second of these results is the

second moment which can be found as follows.

E[|neq,m|2] = E
[∑L

l=1

∏L
k=l+1 α

2
k−1

Xk

2

]
E[N0|zu|2]

=
[∑L

l=1E
[∏L

k=l+1 α
2
k−1

Xk

2

]]
E[N0|zu|2]

= N0

∑L
l=1

(∏L
k=l+1 α

2
k−1E

[
Xk

2

])
= N0

∑L
l=1

(∏L
k=l+1 α

2
k−1

)(
(N+r−1)!
(N−1)!

)L−l

.

To find moments greater then the second, we need to evaluateE
[(∑L

l=1

∏L
k=l+1 α

2
k−1

Xk

2

)r]
.

To simplify notation, the multinomial conventions will be used to expand this ex-

pression.

The multinomial notation is an extension of the binomial convention to systems

of multiple variables. An example of its use would be the expansion of a power of a

sum, such as (
∑

i vi)
R, to

(∑
i

vi

)R

=
∑
|r|=R

R

r

 L∏
i=1

vrii ,

where L is the dimension of v =
(
v1 v2 . . . vL

)
and r =

(
r1 r2 . . . rL

)
.

The multinomial coefficient

R

r

 is defined as R!∏L
i=1 ri!

. The sum is taken over all

permutations of the vector r such that |r| = R.

Using the notation Xpk =
∏L

l=k α
2
l−1

Xl

2
, combined with the multinomial notation

we can write

(
L∑
l=1

L∏
k=l+1

α2
k−1X

2
k

)r

=
∑
|k|=r

r

k

 L∏
i=1

Xpkii+1.

The need now is to establish the value of E[
∏L

i=1Xpkii+1]. From the definition of Xpi

it follows that
∏L

i=1(Xpi+1)
ki =

∏L+1
i=2

(
α2
i−1

Xi

2

)∑L−1
j=L+1−i kj . Hence,

E[
∏L

i=1Xpkii+1] =
∏L+1

i=2 α
2
∑L−1

j=L+1−i kj
i−1 E[

(
Xi

2

)∑L−1
j=L+1−i kj ]

=

[∏L+1
i=2 α

2
∑L−1

j=L+1−i kj
i−1

]
(N+

∑L−1
j=L+1−i kj−1)!

(N−1)!
.
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Finally, the complete expression for the moments of the components of the equivalent

noise term are

E[n2r
eq,m] = N0r!

∑
|k|=r

r

k

[(L+1∏
i=2

α
2
∑L−1

j=L+1−i kj
i−1

)
(N +

∑L−1
j=L+1−i kj − 1)!

(N − 1)!

]
. (3.17)

To conclude, we have obtained the raw moments of the amplitude of elements

of the equivalent channel matrix, (3.16), and the elements of the equivalent noise

vector, (3.17).

3.4 Equivalent Channel Matrix Distributions

Deriving the exact distribution for the components of the equivalent channel matrix

with an arbitrary number of hops has not proven possible. An explicit expression

does exist, based on the representation (3.14), but the resulting integral appears

extremely complex to solve.

We can make some progress in deriving the distribution as follows. Let Y =

(Heq)mn and αp =
∏L−1

l=1 αl, then

pY (u) =

∞∫
0

pY |X(u)px(x)dx,

whereX =
[
X2 X3 . . . XL

]
and x =

[
x2 x3 . . . xL

]
. Using the substitution,

w =
∏L

l=2Xl, pY |X(u) is the density of a ZMCSCG variable with variance
α2
pw

2L−1 and

is given by [21] as
2L−1

πα2
pw

exp

(
−2L−1|u|2

α2
pw

)
.

It can be seen that the probability density of (Heq)mn only depends on its amplitude.

This means that the phase of this variable is uniformly distributed, as is the case in

a SISO or single hop system. px(x) is the joint distribution of a set of i.i.d standard

chi square variables with 2N degrees of freedom, Xl, l ∈ {2, 3, . . . , L}. The density

of a chi-square variable with 2N degrees of freedom is given by [21, Chap. 18] as

pXl
(x) = xN−1

2N (N−1)!
exp

(−x
2

)
. Hence
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pY (u) =
∞∫
0

2L−1

πα2
pw

exp
(

−2L−1|u|2
α2
pw

)∏L−1
k=1

xN−1
k

2N (N−1)!
exp

(−xk

2

)
dx,

=
∞∫
0

2L−1

πα2
pw

exp
(

−2L−1|u|2
α2
pw

)
wN−1

(2N (N−1)!)L−1 exp
(

−
∑L

2 xk

2

)
dω.

While this general form for the PDF has not been solved, a solution is obtainable

for the two hop case. Here, the integral becomes

pY (u) =
∞∫
0

2
πα2

1x2
exp

(
−2|u|2
α2
1x2

)
xN−1
2

2N (N−1)!
exp

(−x2

2

)
dx2

= 2
πα2

12
N (N−1)!

∞∫
0

xN−2
2 exp(−2|u|2

α2
1x2

) exp
(−x2

2

)
dx2.

A result for this integral is available [27] in the form

∞∫
0

xα−1 exp

(
−β

x

)
exp (−γx) = 2

(
β

γ

)α
2

Kα(2
√

γβ). (3.18)

In our integral, α = N − 1, β = 2|u|2
α2
1

and γ = 1
2
. Hence

pY (u) = 2
πα2

12
N (N−1)!

2(2β)
N−1

2 KN−1(2
√

β
2
)

= 2
πα2

12
N (N−1)!

2
N+1

2

(
2|u|2
α2
1

)N−1
2

KN−1

(
2
√

|u|2
α2
1

)
= 2

πα2
12

N (N−1)!
2N
(

|u|2
α2
1

)N−1
2

KN−1

(
2
√

|u|2
α2
1

)
= 2

παN+1
1 (N−1)!

|u|N−1KN−1

(
2|u|
α1

)
.

(3.19)

In (3.19) Y takes complex values so this distribution is in fact two dimensional. As

the probability depends only on the amplitude of this complex variable, we can use

a variable transformation to give a one dimensional probability distribution based

on the amplitude. The polar transform of the real and imaginary parts of u will

give the desired result. Let

u = a+ jb,

r =
√
a2 + b2,

a = rcosθ,

b = rsinθ.

With these definitions we use standard transform theory to give
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p|Y |(r) =
π∫

−π

2
π(N−1)!

(
r
α1

)N−1

KN−1

(
2r
α1

)
rdθ

= 4

αN+1
1 (N−1)!

rNKN−1

(
2r
α1

)
.

(3.20)

In the two hop case, joint distributions of the components from a single row of

the equivalent channel matrix can also be obtained. For the single output case this

means that the joint distribution of the whole equivalent channel vector is available.

Let (Heq)m = u and (Heq)mn = un, n ∈ {1, 2, . . . , N}, then the joint PDF of the

equivalent channel vector is given by

p(Heq)i(u) =
∞∫
0

∏N
n=1 pzn|X2(un)px2(x2)dw

=
∞∫
0

∏N
n=1

2
πα2

1x2
exp

(
−2|un|2
α2
1x2

)
xN−1
2

2N (N−1)!
exp

(−x2

2

)
dx2

=
∞∫
0

2N

πNα2N
1 xN

2 2N (N−1)!
exp

(
−2

∑N
j=1 |uj |2

α2
1x2

)
wN−1 exp

(−x2

2

)
dx2

= 2N

πNα2N
1 2N (N−1)!

∞∫
0

exp

(
−2

∑N
j=1 |uj |2

αN
1 x2

)
w−1 exp

(−x2

2

)
dx2.

Using (3.18) with α = 0, β =
2
∑N

j=1 |uj |2

α2
1

and γ = 1
2
gives

p(Heq)i(u) = 2
πNα2N

1 2N (N−1)!
2
(
22∥u∥2

α2
1

) 0
2
K0

(
2
√

∥u∥2
α2
1

)
= 4

πNα2N
1 2N (N−1)!

K0

(
2∥u∥
α1

)
.

(3.21)

Once again, this density depends only on the amplitudes of the complex variables

uj, j ∈ 1, 2, . . . , N . Furthermore, it depends on the sum of these amplitudes squared,

or the 2-norm of u. From this, we can obtain the distribution of the envelope of

the received signal through a variable transformation. This is the hyper-spherical

transform, when considering the components of the row of interest as the basis for

a cartesian coordinate system. The transform is as follows:
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r =
√∑N

n=1(Heq)mn(Heq)
†
mn

=
√∑N

n=1 |(Heq)mn|2

(Heq)m,1 = r sin θ1

(Heq)m,2 = r cos θ1 sin θ2

(Heq)m,3 = r cos θ1 cos θ2 sin θ3
...

(Heq)m,N = r
∏N−1

k=1 cos θk

p∥(Heq)i∥(r) =
4

π2Nα2N
1 (N − 1)!

K0

(
2r

α1

)
det

∣∣∣∣ δ(u)δ(r, θ)

∣∣∣∣ dθ. (3.22)

Here det
∣∣∣ δ(u)
δ(r,θ)

∣∣∣ is the determinant of the Jacobian matrix of the hyper-spherical

transform.

In summary, we have obtained a distribution for the elements of Heq in the

two hop case, given by (3.19). The distribution of the amplitude of these complex

elements is given by (3.20). For the two hop case, a joint distribution of a row of

Heq is also derived, the result given by (3.21). Finally (3.22) gives the distribution

of the 2-norm of a row of Heq.

3.5 SNR Distributions

The SNR is a very commonly used parameter for evaluation of system performance.

To allow similar evaluation in our system it would be desirable to define an end

to end SNR for relay chains. If we consider one receive antenna in isolation, rL,m,

the channel model can be written in the more familiar form of a simple Rayleigh

channel, that is

r = hs+ vn. (3.23)

Equating (3.23) to our expression for (rL)m in (3.14), we have h = z1 and

v =

[√
N0

∑L
l=1

∏L
k=l+1 α

2
k−1

Xk

2

]
∏L

l=2 αl−1

√
Xl

2

.
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Now, the SNR in a Rayleigh channel is defined as E[s†s]
v2

. Hence, in our system we

can define an equivalent end to end SNR (SNReq) as

SNReq =
∏L

l=2 α
2
l−1

Xl
2

N0

[∑L
l=1

∏L
k=l+1 α

2
k−1

Xk
2

] .

The sum in the denominator of this expression makes it difficult to deal with alge-

braically. To avoid this problem, the inverse of this ratio will be looked at instead.

This is the equivalent end to end noise to signal ratio (NSReq) and it can still be

used for evaluation of system performance in place of the standard SNR. The NSReq

is defined by

NSReq =
N0

[∑L
l=1

∏L
k=l+1 α

2
k−1

Xk
2

]
∏L

l=2 α
2
l−1

Xl
2

= N0

∑L
l=1

[∏L
k=l+1 α

2
k−1

Xk
2∏L

l=2 α
2
l−1

Xl
2

]
= N0

∑L
l=1

[
1∏L

k=l+1 α
2
k−1

Xk
2

]
.

As the terms in the sum of the expression for NSR are separable, we can define

moments for this ratio. For example the mean is given by

E[NSReq] = E

[
N0

∑L
l=1

[
1∏L

k=l+1 α
2
k−1

Xk
2

]]
= N0

∑L
l=1E

[(
1∏L

k=l+1 α
2
k−1

Xk
2

)]
.

(3.24)

It is left to establish the expected value of products of the form
∏

l
2
Xl
. Let wl =

Xl, l ∈ {2, 3, . . . , L},

E[
∏

l
2
Xl
] =

∞∫
0

∏
l

2
wl

∏
l

wN−1
l

2N (N−1)!
exp

(−wl

2

)
dw

=
∏

l

∞∫
0

wN−2
l

2N−1(N−1)!
exp

(−wl

2

)
dw.

A result for this integral is given in [27] in the form
∞∫
0

xα exp(−βx) = α!β−α−1.

Here, α = N − 2 and β = 1
2
, so that

E[
∏

1
X2

l
] =

∏
l

1
2N−1(N−1)!

(N − 2)!
(
1
2

)−(N−2)−1

=
∏

l
1

2N−1(N−1)!
(N − 2)!2N−1

=
∏

l
1

N−1
.
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Substituting this result into (3.24) gives

E[NSReq] = N0

L∑
l=1

L−1∏
k=l

1

α2
k

(
1

N − 1

)l−1

.

We show the effect of α on NSReq in Fig. 3.2.
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Figure 3.2: E[NSReq] for different values of α, N=4, L=4

The expressions for higher order moments become more complex. Again we will

use the multinomial notation as in Sec. 3.3. Let Xpi =
∏L

l=i+1 α
2
l−1

Xl

2
then,

E[NSRr
eq] = E

[
N0

(∑L
l=1

[
1∏L

k=l+1 α
2
k−1

Xk
2

])r]
= N0

∑
|k|=r

r

k

E

[∏L
i=1

1

Xp
ki
i

]
.

Using the fact that
∏L

i=1 Xpkii+1 =
∏L+1

i=2

(
αi−1

Xi

2

)∑L−1
j=L+1−i kj gives,

E[NSRr
eq] = N0

∑
|k|=r

r

k

 L+1∏
i=2

E

 1(
αi−1

Xi

2

)∑L−1
j=L+1−i kj

 .

It remains to evaluate the expected values E

[
1

(Xi
2 )

∑L−1
j=L+1−i

kj

]
. Again, let wl =

Xl, l ∈ {2, 3, . . . , L},
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E

[(
2
Xl

)k]
=

∞∫
0

(
2
wl

)k
wN−1

l

2N (N−1)!
exp

(−wl

2

)
dwl

=
∞∫
0

wN−1−k
l

2N−k(N−1)!
exp

(−wl

2

)
dwl

= 1
2N−k(N−1)!

(N − 1− k)!
(
1
2

)−(N−1−k)−1

= (N−1−k)!
(N−1)!

.

Finally, we have the general moments as

E[NSRr
eq] = N0

∑
|k|=r

r!∏L
l=1 kl!

(∏L+1
i=2 α

∑L−1
j=L+1−i kj

i−1

)
(N−1−

∑L−1
j=L+1−i kj)!

(N−1)!

= N0r!
∑

|k|=r

(∏L+1
i=2 α

∑L−1
j=L+1−i kj

i−1

)
(N−1−

∑L−1
j=L+1−i kj)!

ki−1!(N−1)!
.

(3.25)

This section defines an end to end SNR, SNReq, in a similar fashion to standard

fading channels. We go on to derive the moments of the inverse of SNReq, defined

as NSReq. The expression for these moments is given by (3.25).

3.6 Relay Amplification

So far the amplification factors, αl, 1 < l < L− 1, have been left arbitrary. Here we

consider a specific relaying scheme, defining the values of the amplification factors,

and present some properties of the resulting end to end channel.

3.6.1 Fixed Relay Amplification

In a general system it would seem appropriate that E[s†l+1sl+1] ≃ E[s†l sl], l ∈

{1, 2, . . . , L}. Consider a system with M transmit antennas. Here, the expected

received power can be given by

E[|rlm|2] = E[|((Hl)msl + nl,m|2]

= E[
(∑M

n=1 |(Hl)mn|2|sl,n|2
)
+ (Hl)msln

†
l,m + (Hl)

†
ms

†
lnl,m + |nl,m|2]

=
(∑M

n=1E[|(Hl)mn|2]E[|sl,n|2]
)
+ E[(Hl)msln

†
l,m]

+E[(Hl)
†
ms

†
1nl,m] + E[|nl,m|2].
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As nlm is an independent Gaussian variable, E[(H1)ms1nlm] = 0,

E[|rlm|2] =
∑M

n=1 E[|sl,n|2] +N0

= E[s†l sl] +N0.

Let E[s†l+1sl+1] = E[s†l sl], then it follows, as E[s†l+1sl+1] = Mα2E[|rlm|2], so that

α =

√
E[s†l+1sl+1]

M(E[[s†l sl]]+N0)

=
√

1
M(1+N0)

.

Using this value for αl as a constant across all receive antennas and relay nodes,

the system has the following properties:

Heq =

√
1

M(1 +N0)

L−1 L∏
l=1

Hl,

neq =
L∑
l=1

√
1

M(1 +N0)

L−l L∏
k=l+1

Hknl.

These results lead to the follow simplified distributions as in Sec. 3.1,

(Heq)m =

√
1

M(1 +N0)

L−1 L∏
l=2

√
Xl

2
z1,

neq,m =
∑L

l=1

(√
1

M(1+N0)

)L−l∏L
k=l+1

√
Xk

2
ñl

=

[√∑L
l=1

(
1

M(1+N0)

)L−l∏L
k=l+1

Xk

2

]
n.

The moments become,

E[|(Heq)mn|2r] =
[∏L

l=2 α
2r
l

]
r!
(

(M+r−1)!
(M−1)!

)L−1

= r!
(

(M+r−1)!
(M(1+N0))r(M−1)!

)L−1

,
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E[|neq,m|2r] = N0r!
∑

|k|=r

r

k

[∏L+1
i=2 α

2
∑L−1

j=L+1−i kj
i−1

(
(M+

∑L−1
j=L+1−i kj−1)!

(M−1)!

)]

= N0r!
∑

|k|=r

r

k

[∏L+1
i=2

(
1

M(1+N0)

)∑L−1
j=L+1−i kj

(
(M+

∑L−1
j=L+1−i kj−1)!

(M−1)!

)]

= N0r!
∑

|k|=r

r

k

( 1
M(1+N0)

)∑L
j=2(j−1)kj

[∏L+1
i=2

M+
∑L−1

j=L+1−i kj−1)!

(M−1)!

]
.

With the amplification factors now defined, we can plot the moments for various

system sizes. Figure 3.3 shows the variance of a component of the equivalent channel

matrix. As the expected value of this variable is zero, the variance is the second

moment, given by

E[|(Heq)mn|2] =
(

1
M(1+N0)

)(
M !

(M−1)!

)L−1

=
(

1
1+N0

)L−1

.
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Figure 3.3: Variance of an element of Heq for a M ×M MIMO system

Figure 3.4 shows the variance of a component of the equivalent noise vector, given

by
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E[|neq,m|2] = N0

∑L
l=1

(
1

M(1+N0)

)L−l (
M !

(M−1)!

)L−l

= N0

∑L
l=1

(
1

1+N0

)L−l

.

Note that E[|neq,m|2] is strictly increasing and converges to 1 +N0 as L → ∞.
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Figure 3.4: Variance of an element of neq for a M ×M MIMO system

The distributions of elements of the equivalent channel matrix for a two hop system

are:

p(Heq)mn(u) = 2

παM+1
1 (M−1)!

|u|M−1KM−1

(
2|u|
α1

)
= 2(M+N0)

M+1
2

π(M−1)!
|u|M−1KM−1

(
2
√
M +N0|u|

)
,

p∥(Heq)mn∥(r) = 4

αM+1
1 (M−1)!

rMKM−1

(
2r
α1

)
= 4(M(1+N0))

M+1
2

(M−1)!
rMKM−1

(
2
√

M(1 +N0)r
)
.

Figure 3.5 shows the probability density of ∥(Heq)mn∥ for a range of antenna num-

bers, M .

Relating the system to a single flat Rayleigh channel, E[NSReq] becomes

E[NSReq] = N0

L∑
l=1

(
M(1 +N0)

M − 1

)l−1

.

Values for E[NSReq] are plotted in Figs. 3.6, 3.7 and 3.8 for a range of system sizes.

Figures 3.9 and 3.10 show the cumulative density of NSReq for a SNR of 20dB.
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Figure 3.5: Probability density function of |(Heq)mn| with N0 = 0

3.7 Eigenvalues

The eigenvalues of the channel matrix are essential indicators of many measures of

system performance, including the capacity of a communication system. For the

multi-hop relay system the channel matrix is too complex for the distribution of its

eigenvalues to be calculated analytically. Therefore, we characterize the distribution

of the eigenvalues empirically. As the eigenvalues give the scaling factor that the

channel applies to an eigenvector, they provide a relationship between transmitted

and received power.

3.7.1 Eigenvalue Decomposition

Any matrix M can be represented by its singular value decomposition (SVD) as

M = UΛV†. Here, U and V are unitary matrices and Λ is a diagonal matrix whose

entries are the eigenvalues of M†M. The SVD is defined such that MVn = ΛnnUn.

Using this, we can define the information carrying part of the received signal, r̂L, as

UΛV†s1,
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Figure 3.6: Plot of expected end to end noise to signal ratios with a SNR of 102

where Heq = UΛV†. The power of the information carrying component of the

received signal can then be given by

E[r̂†Lr̂L] = E[s†1VΛ†U†UΛV†s1]

= E[s†1VΛ†ΛV†s1].
(3.26)

As Λ is a diagonal matrix, (3.26) can be rearranged to give

N∑
n=1

|λn|2(s†1V)n(V
†s1)n.

Also, as V is an orthonormal basis for CN

E[s†1s1] =
N∑

n=1

(s†1V)n(V
†s1)n.

We can now establish a bound on E[r̂†Lr̂L] given by

min{|λn|2}E[s21] ≤ E[r̂†Lr̂L] ≤ max{|λn|2}E[s21], n ∈ {1, 2, . . . , N}.

Here we look at the eigenvalues of multi-hop amplify and forward relay links in

flat Rayleigh environments. That is the eigenvalues of products of complex Gaussian

matrices with a scaling factor applied,
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Figure 3.7: Plot of expected end to end noise to signal ratios for a 4 × 4 MIMO
system

L∏
l=1

αHl,

where Hl, l ∈ 1, 2, . . . , L is a N × N matrix of i.i.d CN(0, 1) variables with zero

mean and unit variance, α =
√

1
N
. The channel matrix, being of rank N , will have

N eigenvalues. Figure 3.11 shows the average eigenvalue for all N eigenvectors, for

different values of N and the number of hops.

We can see that the average magnitude of the eigenvalues decreases as the number of

relay nodes increases, implying a drop in capacity with an increasing number of hops

as would be expected. Less intuitive is the fact that the eigenvalues become smaller

as the dimension of the antenna array, M , is increased also. This trend suggests

that the fixed gain relays are not optimal for this system which is no surprise. To

further investigate what is happening as the system dimension increases we can look

at the average values of individual eigenvalues. Figure 3.12 shows these values for a

system with 8 hops.

In Fig 3.12 the individual eigenvalues are arranged along the x axis from smallest

to largest. When considering the area under the curves it is apparent the average

magnitude of all of the eigenvalues decreases. This is consistent with Fig. 3.11. With
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Figure 3.8: Plot of expected end to end noise to signal ratios for a four hop system

the received power bounded by the maximum and minimum eigenvalues it can be

seen, for signals carried on the weaker eigenchannels, that the received power could

tend to zero as the dimension increases. However, if the transmitter has knowledge

of the channel eigenvectors the potential capacity of the channel could be retained

with the maximum eigenvalue, by using this eigenvector to carry the transmission

symbol.

3.8 Channel Approximations

Here we consider approximations to the distributions in the system. Note that one

needs to be careful in considering the use of such approximations, as the dependen-

cies in the system cannot be ignored. Assuming αl =
1

M(1+N0)
, first we will look at the

distribution of (Heq)mn using the representation given by
∏L

l=2

√
1

M(1+N0)
Xl

2
z. From

this representation, we can see that (Heq)mn is distributed as a CN(0,
∏L

l=2
1

M(1+N0)
Xl

2
)

variable. Hence, the phase of (Heq)mn is uniformly distributed on the interval

[−π, π). Figure 3.13 shows the results of fitting some standard distributions to

the distribution of |(Heq)mn|. Two distributions, the Gamma ([21] Chap. 17) and

Generalized Extreme Value (GEV) ([21] Chap. 22), were found to give a close fit.

A Rayleigh distribution is also shown, to illustrate how the distribution differs from
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Figure 3.9: Cumulative density of NSReq for a four hop system with a SNR of 10−2

a ZMCSCG.

Next consider neq,m, which has the same distribution as
√∑L

l=1

∏L
k=l+1

1
M(1+N0)

Xk

2
n.

From this representation, we can see that neq,m is distributed as

CN(0,
L∑
l=1

L∏
k=l+1

1

M(1 +N0)

Xk

2
),

hence the phase of neq,m is uniformly distributed on the interval [−π, π). Figure

3.14 shows the results of fitting some standard distributions to the distribution of

|neq,mn|. The GEV distribution was found to give a close fit. A Rayleigh distribution

is also shown, to illustrate how the distribution differs from a ZMCSCG.

Finally we look at the distribution of NSReq. Figure 3.15 shows a possible

approximation, the GEV distribution. Once again a Rayleigh distribution is shown

for reference.
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Figure 3.10: Cumulative density of NSReq for a 4 × 4 MIMO system with a SNR
of 10−2
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Figure 3.11: Magnitude of the average eigenvalue
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Figure 3.12: Magnitude of the individual eigenvalues for an 8 hop system.
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Figure 3.13: PDF of |(Heq)mn|, for a system where H = L = 4 and N0 = 10−2
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Figure 3.14: PDF of |neq,mn|, for a system where H = L = 4 and N0 = 10−2
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Figure 3.15: PDF of |NSReq|, for a system where H = L = 4 and N0 = 10−2



Chapter 4

P25 SISO Simulations

These simulations of a P25 relay chain are intended to facilitate informed system

design decisions. We aim to provide as complete an understanding as is possible of

the effects of multiple relay hops on the P25 communication protocol. To facilitate

this, simulations are run to isolate each cause of communication error, establishing

how their effect varies with the number of relays in the link. The simulations include

the effects of slow and fast fading (Secs. 4.3 & 4.4), ISI and additive noise. The

impact on communication performance by each of these factors is considered before

the criterion for the complete system to maintain a given BLER/BER is established

(Secs. 4.5 & 4.6).

4.1 Simulation Methodology

This work uses the baseband simulation methodology. This approach ignores the

passband phase of the physical system, where the transmitted message is imposed

on the carrier signal. The result of this simplification is the assumption of perfect

synchronization of the carrier at the transmitter and receiver as well as perfect

channel filters isolating the baseband. Also ignored is the analogue nature of a

physical system. This means that issues such as sampling jitter, quantization error,

amplifier distortion and internal electrical distortions are not accounted for. As a

result, the results give an upper bound on what is physically realizable.

61
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As we are simulating a system modeled using random processes, the desired

result is the expected performance over an extended period of time. This is not

the same as the performance at a given instance. Obtaining these expected values

from the simulations requires a different approach depending on which parts of the

model are considered to be variable in a given scenario. In slow fading conditions, the

change in the channel properties does not disturb the relationship between adjacent

symbols, but does vary the received power over the duration of transmission. Thus,

to give a representation of average performance in the presence of slow fading a large

number of channel realizations need to be simulated. The performance metrics from

each realization are averaged to give the final result. To account for fast fading

conditions the possibility of errors generated from the channel varying between

adjacent symbols needs to be considered. Obtaining the average performance in

this situation requires a long sequence of symbols to be simulated, with a correlated

random process representing the channel.

4.2 Implementation Details

For the source signal, random integers are generated between zero and three. This

sequence is up sampled by a factor of ten to account for the difference between

the 4.8kHz symbol frequency and the 48kHz integrator used for DPSK modulation.

The integers are then mapped to the appropriate symbol in the signal constellation

as described in Chap. 2. These symbols then dictate the phase change between

samples in the baseband signal. The modulated signal is then upsampled again by

a factor of ten to allow more accurate modeling of the effects of the propagation

channel. If the simulations use the convolution codes, the transmitted message is

encoded from the 4.8kHz sample stream before upsampling and modulation. The

power of the transmitted signal, E[|s1|2], is normalised to be equal to one.

For slow fading simulations, the Rayleigh channel is given by 1√
2
(x+ jy), where

x, y are pseudo random real Gaussian variables. In the simulation of a Rayleigh

channel for fast fading environments we assume the power spectral density of the

channel to be that of the Jakes Doppler spectrum. This is given by
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S(v) =
1

πfd

√
1−

(
v
fd

)2 , v ∈ [−fd, fd],

where v is the frequency shift relative to the carrier frequency. For values of v

outside the interval [−fd, fd], S(v) is considered to be zero. To generate a sequence

of channel path gains the following steps are taken:

1. A complex, uncorrelated (white) Gaussian process, with zero mean and unit

variance is generated in discrete time.

2. This Gaussian process is filtered by a doppler filter with the response, H(v) =√
S(v), to give the complex random process zk.

3. The filter process is interpolated, by a combination of linear and polyphase

techniques, to give a sample period consistent with the input signal.

4. Finally zk is scaled to match the average power of the channel path, giving the

sequence of complex path gains, ak. This scaling is performed differently for

Rayleigh and Rician paths.

Rayleigh Fading:

ak =
√

E[|ak|2]zk.

Rician Fading:

ak =
√

E[|ak|2]

[
zk√

Krk + 1
+

√
Krk

Krk + 1
exp(j(2πfd,LOS,kt+ θLOS,k))

]
.

Krk is the Rician K-factor of the kth path, fd,LOS,k is the Doppler shift of

the LOS component of the kth path and θLOS,k is the initial phase of the

LOS component of the kth path.

To implement the multi-path model the output is given by

rt =

N2∑
n=−N1

gnst−n,

where {gn} is a set of weights given by
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gn =
K∑
k=1

aksinc

(
τk
Ts

− n

)
, −N1 ≤ n ≤ N2. (4.1)

In (4.1), Ts is the sample period of the input. τk, 1 ≤ k ≤ K is the set of path

delays, K being the number of paths in the channel model and ak, 1 ≤ k ≤ K are

the set of time dependent complex path gains of the model. These path gains are

uncorrelated. N1 and N2 are chosen such that |gn| is small when n is outside the

interval [−N1, N2]. The path gains, ak, are generated as outlined above for either

the slow or fast fading case.

Relaying is performed in one of the following ways depending on the specific

protocol being modeled. In these descriptions, the subscript l refers to the signal

corresponding to the lth relay.

Amplify and Forward (AF) The received signal, rl, is multiplied by a constant

real scalar to give the transmitted signal, sl+1. The scaling factor, αl, is√
1

E[|sl|2]E[|h|2] +N0

, as this results in the average transmit power for all relays being equal to the

originally transmitted power. As E[|sl|2] = 1 and E[|h|2] = 1, αl =
√

1
1+N0

.

Phase Forward (PF) The amplitude of the received signal, rl, is set to one to

give the transmitted signal, sl+1. This is achieved by taking the phase from

rl and regenerating a complex signal of amplitude one with the same phase,

sl+1 = exp(arg(rl)).

Detect and Regenerate (DetR) Symbol estimation is performed at each relay

and the transmitted signal is generated from these estimates. The symbol esti-

mates are obtained by first demodulating the received signal, rl. This is done

by taking the phase difference between two consecutive samples mt = rltr
†
lt−1,

where mt is the demodulated signal at sample time t and rlt is the received signal

at sample time t. Due to channel distortion, the demodulated signal does not

necessarily correspond to a valid symbol. To obtain the most likely transmitted

symbol from the noisy signal received, each sample of mt can be mapped to the
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valid symbol with the smallest phase difference. The symbol estimates, m̃t, are

the values of m′ ∈ {−3,−1, 1, 3} that minimize∣∣∣∣arg(ritr†i(t−1) exp

(
−jπm′

4

))∣∣∣∣ .
Decode and Regenerate (DecR) This protocol applies to transmitted signals in

which the information has been encoded using the interleaving and convolution

codes described in the P25 specification [24]. Symbol estimation on the received

signal is performed as for the DetR protocol. Then the symbol estimates, m̃,

are deinterleaved and used to estimate the original message bits via a Viterbi

algorithm. Once a message estimate has been obtained it is interleaved and

encoded again, giving the transmitted signal, sl+1. For full details of the coding

algorithms see Chap. 6.

The noise is simulated using the same pseudo random Gaussian generator as used

for the flat Rayleigh channel. Two Gaussian numbers are used to model complex

noise in the form nr + jni. This noise term is scaled to give the desired average

SNR. As E[|s1|2] = 1, the appropriate scaling term is
√

2
SNR

.

The signal is demodulated at the receiver by mapping the change in phase of

the received signal between samples to the symbol constellation as given in Chap.

2. Before demodulation, the received signal is downsampled by a factor of ten, to

a sample rate of 48kHz. After the signal is demodulated it is downsampled by a

further factor of ten to a 4.8kHz sample rate. This is the estimate of the transmitted

message. If the message has been encoded, it is decoded using a Viterbi algorithm.

4.3 Slow Fading Relay Channels

The first set of simulations looks at the effects of slow fading environments. In this

case the Doppler spread in the channel models is set to zero. The physical situa-

tion this would approximate is an environment where there is very little movement

of radio nodes or surrounding scattering objects. In these simulations, errors are

introduced from additive noise and ISI. Average BER rates are presented based on
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a large number of random channel realizations. Enough realizations were included

to provide smooth results. This set of simulations is run with a number of hops

varying between 2 and 16 and the average received SNR is constant across all radio

nodes at 30dB. There is no particular reason this value is chosen and Figs. 4.6 -

4.8 look at how BER changes with SNR. In the results presented, the flat Rayleigh

channel shows the effects of the fading channel alone while the other environments

introduce errors from ISI as well. In addition, the rural environment includes the

effects of a LOS path.
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Figure 4.1: BER vs the number of hops for stationary AF relay chains at 30dB
SNR. Transmission distance increases with the number of hops.

Results for the AF protocol are shown in Fig. 4.1. Here, the radio environment

makes little difference to the results, suggesting that the errors are primarily a

result of periods of low instantaneous SNR due to the fading channel. As noise

is accumulated per relay node with the same SNR at each node, the total noise

power introduced to the system increases linearly with the number of hops. To see

how this relates to the SNR at the final receiver we can look at the distributions

of signal and noise powers. Figure 4.2 shows the distribution of SNReq at the final

receiver, for systems with various numbers of hops in a flat Rayleigh environment.

This distribution can be obtained by taking the ratio of the squares of the signal
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and noise components across all the channel realizations, given by:

α2L
∏L

l=1 h
2
l(∑L

l=1

∏L
k=l+1 αhknl

)2 .
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Figure 4.2: CDF of SNReq for AF relays in flat Rayleigh fading environments

The probability of low SNR increases with the number of hops. In addition to the

mean SNReq decreasing due to increasing total system noise the variance increases,

also causing a higher BER. The AF protocol, as used here, would be inappropriate

for use in a multi-hop relay system, as clearly its efficiency would be very low.

Figure 4.3 shows that the PF protocol provides substantially improved perfor-

mance over AF in the rural and flat Rayleigh environments. Note that the rural

environment has a narrow delay power profile and LOS. These two environments

show how the PF protocol begins to control the fading effects in the presence of

multiple relays. Looking at SNReq for this protocol in the flat Rayleigh environ-

ment, Fig. (4.4), it can be seen the variance of the channel is better managed. This

provides a smaller variance in SNReq.

In the other three environments, those with significant delay spreads and the

correspondingly higher degree of ISI, the performance is considerably lower. As

discussed in Chap. 2, it would be expected for performance to drop in this manner,

as the power of the signal is spread in time with increasing relaying hops. PF still



Chapter 4. P25 SISO Simulations 68

2 4 6 8 10 12 14 16
10

−3

10
−2

10
−1

10
0

Number of Hops

B
E

R

Flat Rayleigh
Rural
Urban
Hilly Urban
Hilly Rural

Figure 4.3: BER vs the number of hops for stationary PF relay chains at 30dB SNR.
Transmission distance increases with the number of hops.

outperforms AF in these environments, due to its better control of the variance in the

fading channel. As this protocol also offers the advantage of easier implementation

over AF it would be the obvious choice of the two for a practical system.

In Fig. 4.5 the DetR protocol is considered. The BER performance is consis-

tent in all the modeled radio environments, outperforming PF significantly in the

presence of delay spread. This approach degrades more slowly with the number of

hops than both AF and PF. The fact that the performance in all the environments

is similar suggests that BER is limited chiefly by SNR with this protocol. As the

DetR protocol performs symbol estimation and regenerates the signal at each relay,

the cascaded effects of the propagation channel are no longer relevant. Each hop in

the link can be considered in isolation, albeit with the problem of error propagation

now arising. As a result, demodulation does not have to be performed under the

severe temporal dispersion conditions experienced at the final receiver when using

analogue relaying. It can be seen that this gives a significant advantage over PF

relays in reducing ISI. The relevant received SNRs for these relays correspond to

only one hop. The distribution of instantaneous SNR in this case is the same as that

of single hop systems. As symbol estimation is performed at each relay, it would be
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Figure 4.4: CDF of SNReq for PF relays in flat Rayleigh fading environments

expected that the BER will increase roughly linearly with the number of hops when

the BER is low.

4.3.1 SNR Effect on BER

To see how the performance of the system changes with varying noise levels in a

slow fading environment, the simulation is repeated. This time, the number of hops

is fixed at four and the value of the average SNR at each relay node is varied from

0-50dB.

Comparing Fig. 4.6 with Fig. 4.7 when using AF relays, the BER decreases

only slowly with increasing SNR, compared to a system using PF relays. The large

amount of variance in received power that occurs when using AF relays means that

even as the SNR increases there will be periods of low instantaneous end to end SNR.

These will result in a relatively large number of errors. We can see that, contrary to

the other results presented, the radio environments with wider power delay profiles

provide better BER results than those with narrower power delay profiles at high

SNR. This can be attributed to the fact that the environments which spread the

signal power over a larger number of paths reduce the probability of periods of deep

fades in received power, as this would require all the signal paths to be in a state of
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Figure 4.5: BER vs the number of hops for stationary DetR relay chains at 30dB
SNR. Transmission distance increases with the number of hops.

deep fade.

The results for the PF protocol are given in Fig. 4.7. As mentioned above,

the BER using PF relays improves much faster with increasing SNR than with

AF relays, as the likelihood of periods of low instantaneous end to end SNR are

reduced. With the PF protocol, increasing SNR shifts the cause of the majority of

errors from the fading effect to errors caused by ISI. Hence, unlike the AF protocol,

environments with wide power-delay profiles give higher error rates than those with

narrower power delay profiles at high SNR. Looking at the Hilly Urban environment,

there are similar results for both the AF and PF relays. This suggests that a wide

power-delay profile can have as strong an effect on reducing fading errors as relay

amplification, at the expense of introducing the ISI problem.

Figure 4.8 shows the results for DetR relays. Here, the decrease in BER with

SNR is similar, while being slightly lower, to the flat Rayleigh environment with PF

relays. This rate of decrease is retained in all the radio environments modeled, due

to the reduction in ISI errors. At high SNR the DetR protocol starts to significantly

outperform PF relays in a flat Rayleigh environment. This shows that although the

use of PF relays reduces the variance in received power across multiple hops, it still
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Figure 4.6: BER vs SNR for AF relays

results in a higher channel variance than a single hop.

4.4 Fast Fading Relay Channels

To assess the effects of fast fading channels, relay links were also simulated without

added noise. The level of error introduced by the fading channel due to phase

distortion in the demodulated signal is therefore established. These simulations use

a Doppler spread, fd, of 78Hz. This is based on a carrier frequency of 800MHz and a

100km/h relative velocity of radio nodes. As the 78Hz doppler spread is applied to

each hop in the simulation it does not represent a physically consistent scenario as

this would involve all the relay nodes diverging from one another in space. Rather, it

is intended to identify the effect of the cascaded channel in fast fading environments.

Once again, the flat Rayleigh environment provides a result purely due to the fading

channel, while the other environments suffer from multi-path effects. Results for the

AF protocol are not presented here, as with no additive noise the amplitude of the

signals does not effect the demodulated message. Because the amplitude has no

effect, any relay protocols that simply amplifies the signal will be equivalent. This

means that the AF and PF protocols will give the same results in these simulations.



Chapter 4. P25 SISO Simulations 72

0 10 20 30 40 50
10

−4

10
−3

10
−2

10
−1

10
0

SNR (dB)

B
E

R

 

 

Flat Rayleigh
Rural
Urban
Hilly Urban
Hilly Rural

Figure 4.7: BER vs SNR for PF relays

In the absence of noise, the magnitude of the channel gains have no effect on

the communication system and any errors introduced are the result of the time

varying component of the channel phase and inter symbol interference (ISI). As the

transmission system uses differential modulation, errors introduced due to the time

varying channel will be related to the ratio of the modulated sample period, 21µs,

and the rate of change of the channel gain. It is shown in Chap. 2 that the correlation

between successive channel gains can be approximated by J0(2π × 78× 21× 10−6),

which equals 0.99997. With this high degree of correlation between the channel

gains, errors due to phase distortion in the channel should prove to be a relatively

minor concern. Results for this scenario using PF relays are given in Fig. 4.9.

Since the flat Rayleigh environment has only one path it does not introduce any

ISI. Any errors result reflects the effect of the time varying channel only. The rural

environment has a LOS path, which is unaffected by fading. It also has little ISI and

so produces very low error rates. The other three environments produce significantly

higher error rates as the number of hops increase. This demonstrates that ISI due

to delay spread is a much greater concern in PF relay systems than the time varying

nature of the channel when large numbers of relays are employed in a P25 system.

Figure 4.10 shows again the advantage of performing symbol estimation at each

relay. With DetR relays, the environments with larger delay spreads do not cause a
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Figure 4.8: BER vs SNR for DetR relays

significant additional increase in BER as the number of relay nodes increases. This

suggests that the effects of ISI over a single hop are relatively minor. Again, we

would expect the BER to increase roughly linearly with the number of hops while

error rate are low. The LOS path in the rural environment once again results in

a lower BER. Looking at these results we can see that the limit to the number of

relay hops that can be tolerated is much higher than when using analogue relays.

Given a high enough SNR, DetR relays could support an extremely large number

of relay nodes when using the P25 protocol in these conditions.

4.4.1 The Effect of Doppler Spread on BER

Here we look at the effect of different Doppler spread values on the BER of the

system. Figure 4.11 shows the relationship for PF relays in a system consisting of

four hops.

As is expected, the BER increases with a higher Doppler spread in the propaga-

tion channel. The difference in BER across the radio environments can be attributed

to the differing degrees of ISI in the various environments.

The results for a similar system using DetR relays is given in Fig. 4.12. Here

we can see, with the lesser degradation due to ISI, that the majority of radio en-
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Figure 4.9: BER for PF relays with a fading speed of 100km/h in each link and no
additive noise.

vironments produce the same BER. The exception is the rural environment, where

the LOS path provides a proportion of the received signal power unaffected by the

channel spreading.

4.5 BER Limit

While Secs. 4.3 and 4.4 attempt to isolate the various channel properties, quantify-

ing their individual effects on system performance, we will now look at results for a

model of an actual system scenario. The system envisioned consists of two mobile

radio nodes, communicating via a series of fixed relay nodes. In terms of our model,

slow fading channels are used between relay nodes, with fast fading channels be-

tween the transmitter and first relay and the last relay and receiver. The maximum

number of relay nodes in a link maintaining a 2% BER is calculated for a range

of SNR values. In this simulation the relative speed between transmitter/receiver

and the relay nodes is 100km/h, with an 800Mhz carrier frequency. The SNR is

the same at each relay, so this simulation represents a transmission distance which

increases linearly with the number of hops.
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Figure 4.10: BER for DetR relays with a fading speed of 100km/h in each link and
no additive noise.

As would be expected, given the results shown in Fig. 4.1, Fig. 4.13 shows that

AF relays are not appropriate for multi-hop transmissions. Very high SNR values

are required to support reliable transmission with multiple relay nodes. This makes

the AF approach especially inappropriate for a low power transmission system.

The PF results, shown in Fig. 4.14, are much more promising. In the ru-

ral environment, performance can be maintained through multiple relays, without

drastically increasing SNR requirements. The other environments prove a problem

though. Referring to Fig. 4.9, we can see the reason why the required SNR increases

asymptotically with the number of hops. At a certain number of hops, errors due

to ISI reach levels near 2%, independently of the received SNR. While this problem

could be mitigated using channel equalizers at the receive terminal or relays, the

complexity of equalizing relays would be such that any cost and power saving over a

digital relay would most likely be undermined. Given these considerations, it would

seem that analogue relays should be limited to links with a small number of relays,

in anything but rural environments.

As has been seen in Fig. 4.10 and Fig. 4.8, with sufficiently high SNR the DetR

protocol should support reliable performance using large numbers of relay nodes.
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Figure 4.11: BER vs Doppler Spread for a 4 hop link with PF relays

This can be seen in Fig. 4.15 where the number of hops that can be tolerated

increases from 2 at an SNR of approximately 23dB to 16 at 32dB.

4.6 Block Error Rates

This simulation is similar to the BER limit simulation, with the addition of a convo-

lutional encoder at the original transmitter and Viterbi decoder at the final receiver.

The encoding/decoding scheme used is the same as that of the DecR relaying pro-

tocol described in Sec. 4.2. The first and last links are again faded at a 100km/h

effective velocity with a 800MHz carrier. The encoded blocks consist of 196 bits

with the last two symbols always being zero. With a half rate code this results in 96

bits of information per block. The SNR is the same at each node so the simulation

again represents a transmission distance which increases linearly with the number

of hops.

Figures 4.16 and 4.17 show the results. It is interesting to note that the DecR

relays do not significantly outperform the DetR relays. This could be attributed

to the fact that, at this low error rate, performance is most likely dominated by a

single bad link. In this situation, the decoder at the final receiver can be as effective



Chapter 4. P25 SISO Simulations 77

0 100 200 300 400 500 600
10

−5

10
−4

10
−3

10
−2

10
−1

f
d

B
E

R

 

 

Flat Rayleigh
Rural
Urban
Hilly Urban
Hilly Rural

Figure 4.12: BER vs Doppler spread for a 4 hop link with DetR relays

as having a decoder in the relay receiving the weak signal. To further investigate

this, we will look at the requirements for maintaining a 5% BLER, shown in Figs.

4.19 and 4.20. With PF relaying the results show similar trends to the BER results

in Fig. 4.14. As is the case with transmission without FEC, the PF relays cause

the effects of ISI to compound with number of hops.

At a 5% BLER the DecR and DetR protocols still provide similar results as

shown in Figs. 4.19 and 4.20. This suggests that DecR relays are unnecessary for

the network scenarios considered here. In order to see what advantages the FEC

could provide, Figs. 4.21 and 4.22 show BER for a range of SNR values for a 4 hop

relay link. We can see, when comparing to Fig. 4.8, that while the FEC provides

an improvement in BER, the use of DecR relays does not significantly increase this

advantage.
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Figure 4.13: 2% BER contours for AF relays with 100km/h faded first and last
links.
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Figure 4.14: 2% BER contours for PF relays with 100km/h faded first and last links.
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Figure 4.15: 2% BER contours for DetR relays with 100km/h faded first and last
links.

2 4 6 8 10 12 14 16
20

25

30

35

40

45

50

55

60

Number of Hops

S
N

R

Flat Rayleigh
Rural
Urban
Hilly Urban
Hilly Rural

Figure 4.16: 1% block error rate contours for DecR relays with half rate coding.
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Figure 4.17: 1% block error rate contours for DetR relays with half rate coding.
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Figure 4.18: 1% block error rate contours for PF relays with half rate coding.



Chapter 4. P25 SISO Simulations 81

2 4 6 8 10 12 14 16
20

25

30

35

40

45

50

55

60

Number of Hops

S
N

R

 

 
Flat Rayleigh
Rural
Urban
Hilly Urban
Hilly Rural

Figure 4.19: 5% block error rate contours for DecR relays with half rate coding.
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Figure 4.20: 5% block error rate contours for DetR relays with half rate coding.
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Figure 4.21: BER vs SNR for DecR relays with half rate coding.
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Figure 4.22: BER vs SNR for DetR relays with half rate coding.
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Chapter 5

Conclusions and Future Work

In Chap. 3 we began the original work in the thesis by developing an end to end

statistical model for the multi-hop MIMO relay channel. Unfortunately, a full rep-

resentation of the statistics of the system has proved difficult to obtain and our

end to end model is unable to simply model the dependence between the signals

at separate receiver antennas. While this problem has so far proved persistent, the

current model is an exact description of the statistics of the signal at a single receive

antenna. This is of particular relevance to a multiple input single output system,

for which it is a complete statistical model. It can also be used to explore properties

of a full MIMO system. Presented in Chap. 3 are expressions for the moments of

the channel statistics. Included are moments of elements of the equivalent channel

matrix and noise vector. We also find an expression for the moments of the instanta-

neous noise to signal ratio at each receive antenna. The approach taken is applicable

to all linear relaying protocols but for protocols in which the relay transfer matrix

is a function of the channel properties it may not be tractable. An important case

in which the relay matrices are independent of the channel is that of a fixed gain

relay. For this system, we show that the expected received signal power decreases

exponentially with the number of hops and the expected noise power increases as the

sum of an exponentially decreasing sequence. It was found that the end to end SNR

decreased exponentially with an increasing number of hops, when this number is

large. The rate of this decrease drops with increasing antenna numbers. Looking at

85
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the eigenvalues of the equivalent channel matrix establishes bounds on the recevied

power of the eigenchannels. Here, we see that as the number of antennas increases,

the received power of the weaker eigenchannels tends to zero while the power of the

dominant eigenchannel increases. We also see that the average eigenvalue decreases

showing that the full diversity gains offered by the increased antenna numbers are

not being realised. Finally, we have shown that the equivalent noise term can be

approximated by an independent complex Gaussian distribution, with the resulting

system model providing a useful upper bound on BER.

With P25 relay chains, the most significant channel properties are the instanta-

neous channel gains and power delay profile. The time varying phase component of

the channel has a lesser effect on BER, for the modulation rate and carrier frequen-

cies used, at the expected relative radio node speeds. The result of multiple relay

hops on each of these channel properties depends on the relaying protocol used.

With amplify and forward relays, the degradation due to channel gain and ISI is

compounded with increasing hops. This results in poor performance, irrespective of

the radio environment. Using AF relays, the instantaneous channel gains dominate

BER results. PF relays can better control the variance in channel gains over multi-

ple hops and outperform the AF protocol in all environments. With PF relays, ISI

dominates BER with increasing relay nodes, as this effect still increases with the

number of hops. Phase forwarding could be appropriate in environments with low

delay spreads, for example high-site networks, but is significantly outperformed by

DetR relays if this is not the case. DetR relays prevent ISI from increasing with

the number of hops and outperforms both AF and PF relays in all of the environ-

ments considered. For data transmission, where block error rates are a concern, the

DetR and DecR results are similar across all of the environments considered. This

suggests that DecR relays are unnecessary for the senarios considered.

There are numerous gaps in this analysis that warrant further investigation.

Firstly, an end to end reduced statistical model that retains the dependence between

the signals at the receive antennas would be desirable. It should be noted that the

possibility of finding such a model does not look promising at this stage. More
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fruitful directions of research may be the pursuit of BER expressions for a single

output system, although obtaining such a result would still apear to be difficult. A

wider range of relaying protocols need to be considered, including optimal diagonal

and full linear relays. These protocols that rely on channel state information at the

relays could result in much simpler models as the end to end system becomes more

deterministic.
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Chapter 6

Appendix

6.1 FEC Algorithms

%Function to perform encoding of signals using the half rate code

function y = enc_intrleave1_2(x)

InterleavingTable = [0 1 8 9 16 17 24 25 32 33 40 41....
48 49 56 57 64 65 72 73 80 81 88 89 96 97....

2 3 10 11 18 19 26 27 34 35 42 43....
50 51 58 59 66 67 74 75 82 83 90 91....
4 5 12 13 20 21 28 29 36 37 44 45....
52 53 60 61 68 69 76 77 84 85 92 93....
6 7 14 15 22 23 30 31 38 39 46 47....
54 55 62 63 70 71 78 79 86 87 94 95];

signalP = [0 2;
2 2;
1 3;
3 3;
3 2;
1 2;
2 3;
0 3;
3 1;
1 1;
2 0;
0 0;
0 1;
2 1;
1 0;
3 0];

halfRateStateMachine = [ 0 15 12 3; % [state][input] % Remember rows are indexed first in Matlab
4 11 8 7; % Refer TIA/EIA 102.BAAA Table 7-2
13 2 1 14; % Note: This table is used to index the constellation requirement
9 6 5 10 ];

invHalfRateLevelsConstellation = [8 3 4 15; % This matrix has been calculated based upon the invHalfRateLevels
11 0 7 12; % being used to index the constellations given in Table7-3 of TIA/EIA
6 13 10 1; % 102.BAAA. The important thing to remember is that in the c code, the
5 14 9 2];

currentState = 0;
enc_x = [];
%Encoding Loop
for encIndx = 1:length(x)

enc_x = [enc_x signalP(halfRateStateMachine(currentState+1, x(encIndx)+1)+1, :)];
currentState = x(encIndx);

end

%Interleaving Loop
for intlevIndx = 1:length(InterleavingTable)

y(intlevIndx) = enc_x(InterleavingTable(intlevIndx)+1);
end

Published with MATLAB® 7.10

1
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%Function to perform decoding of signals using the half rate code

function y = deinterleave_decode1_2(x)

InterleavingTable = [0 1 8 9 16 17 24 25 32 33 40 41....
48 49 56 57 64 65 72 73 80 81 88 89 96 97....

2 3 10 11 18 19 26 27 34 35 42 43....
50 51 58 59 66 67 74 75 82 83 90 91....
4 5 12 13 20 21 28 29 36 37 44 45....
52 53 60 61 68 69 76 77 84 85 92 93....
6 7 14 15 22 23 30 31 38 39 46 47....
54 55 62 63 70 71 78 79 86 87 94 95];

% The New State
% 0 1 2 3
% ----------

invHalfRateTrellis = [1 1 1 1; % | 0 0 0 0
2 2 2 2; % | 1 1 1 1 The matrix describing the trellis
3 3 3 3; % | 2 2 2 2
4 4 4 4 ]; % | 3 3 3 3

invHalfRateLevelsConstellation = [8 3 4 15; % This matrix has been calculated based upon the invHalfRateLevels
11 0 7 12; % being used to index the constellations given in Table7-3 of TIA/EIA
6 13 10 1; % 102.BAAA. The important thing to remember is that in the c code, the
5 14 9 2]; % following symbol table applied LSB->MSB 01 3, 00 1, 10 -1 and 11 3. In Matlab

% this is turned around MSB<-LSB so 10 3, 00 1,10 -1 and 11 3. For example
% position 3 along and 2 down, of invHalfRateLevels = 8. This is used to index
% table 7-3 = symbols -3,
% +3 which is 1110 which is 7

de2biLUT = [0 0 0 0;
1 0 0 0;
0 1 0 0;
1 1 0 0;
0 0 1 0;
1 0 1 0;
0 1 1 0;
1 1 1 0;
0 0 0 1;
1 0 0 1;
0 1 0 1;
1 1 0 1;
0 0 1 1;
1 0 1 1;
0 1 1 1;
1 1 1 1];

for deInterleaveIndex = 1:length(InterleavingTable)
deintleaved_x(InterleavingTable(deInterleaveIndex)+1) = x(deInterleaveIndex);

end

encodedMessageSize = length(deintleaved_x)/2;
for indx = 1:encodedMessageSize

x_pairs(indx) = deintleaved_x(2*indx-1) + 4*deintleaved_x(2*indx);
end

survivingPaths = [0;0;0;0];

NewSurvivingPath1 = zeros(1,encodedMessageSize);
NewSurvivingPath2 = zeros(1,encodedMessageSize);
NewSurvivingPath3 = zeros(1,encodedMessageSize);
NewSurvivingPath4 = zeros(1,encodedMessageSize);
Metrics = 100*ones(1,4); % The current metric for each of the four surviving paths
Metrics(1) = 0;

1
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for index = 1:encodedMessageSize
x_pair = x_pairs(index);
CompareMetrics = []; % Clear the compare metric matrix each time we do a new calculation
for i = 1:4 % ROW % For Each new state calculate the metric for all of the possible predecessors

for j = 1:4 % COLUMN
hammingDistance = sum( xor( de2biLUT(invHalfRateLevelsConstellation(i,j)+1,:),de2biLUT(x_pair+1,:)));
CompareMetrics(i,j) = Metrics(i) + hammingDistance;

end
end
CompareMetrics;

[minValue minCol] = min(CompareMetrics); % Do the compare for each state to identify the most likely predecessor

[C,D] = size(survivingPaths);

NewSurvivingPath1 = [survivingPaths(invHalfRateTrellis(minCol(1),1),1:D) 0];
NewSurvivingPath2 = [survivingPaths(invHalfRateTrellis(minCol(2),2),1:D) 1];
NewSurvivingPath3 = [survivingPaths(invHalfRateTrellis(minCol(3),3),1:D) 2];
NewSurvivingPath4 = [survivingPaths(invHalfRateTrellis(minCol(4),4),1:D) 3];

survivingPaths = [];
survivingPaths = [NewSurvivingPath1;NewSurvivingPath2;NewSurvivingPath3;NewSurvivingPath4];

Metrics = minValue;
end

y = survivingPaths(1,1:D);

Published with MATLAB® 7.10

2
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