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• To develop a machine learning using EQC's insurance building claim data from the 2010-2011 Canterbury Earthquake Sequence.
• To find critical features that influenced building loss during the 2010-2011 Canterbury Earthquake Sequence.
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• The primary database from the Earthquake Commission (EQC) contains property information 
and insurance claim data for residential buildings.

• This project merged additionnal information from private and open-source databases on 
top of EQC's claim database:
• Building characteristics from RiskScape
• Liquefaction occurrence from the New Zealand Geotechnical database
• Peak Ground Acceleration (PGA) from GeoNet
• Soil conditions Land Resource Information Systems (LRIS)

• The data integration was challenging due to the non-presence of a common feature between 
EQC and RiskScape. The merging was performed using the building location. Nevertheless, 
the merging process entailed limitations which led to the loss of instances[4].

INTRODUCTION
In 2010-2011, New Zealand experienced the most damaging earthquakes in its history, 
known as the Canterbury Earthquake sequence (CES). The CES led to extensive damage 
to Christchurch buildings, infrastructure and its surroundings, affecting commercial and 
residential buildings. The total economic losses of more than NZ$40 billion[1] accounted for 20% 
of New Zealand's GDP[2].Owing to New Zealand’s particular insurance structure, the insurance 
sector contributed to over 80% of losses for a total of more than NZ$31 billion[1-3]. Losses 
from residential building accounted for 50% of the total economic losses[2]. The residential 
building losses were covered either partially or entirely from the NZ government backed 
Earthquake Commission (EQC) cover insurance scheme. Following the CES, EQC collected 
detailed financial loss data and building characteristics for more than 500,000 claims[2].

DATA PRE-PROCESSING

• Machine learning requires complete and clean data.
• Key building characteristics are missing in the initial EQC claim database.
• Need for a unique building identifier to facilitate the merging of information.
• Once developped, a machine learning pipeline can easily be retrained. This facilitates  future 

studies employing different combinations of building parameters.
• Taking into account apportionment[6] would provide a more accurate allocation of loss to 

each event and enable to capture more details about over cap instances. 
• For each event, segregating the data by geographical area where the majority of damage 

occured might lead to a "cleaner" train set and thus might led to more accurate predicitions.
• The introduction of additionnal parameters related to properties and social factors might 

deliver an improved model accuracy as well as new insights.
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Figure 1: Graphical overview of the raw data in the EQC claim database for the Canterbury earthquake sequence. 
Each column is an attribute and each row is an instance.

DATA MERGING

CURRENT CHALLENGES/FUTURE WORK

EQC DATA
• EQC claim data set is a wide dataset with 62 features.
• For some of the attributes (e.g. construction year, primary construction material, number 

of stories), more than 80% of the data points was not collected as it was not necessary for 
settlement purposes.

Figure 3: Schematic overview of the merging of information on top of EQC claim database

Figure 2: Number of claims and property for events in the CES with more than 1,000 in-
stances and ClaimStatus=ClaimPaymentsComplete

• The first step of data cleasning 
consisted of selecting claims where 
the payment is complete.

• After the claim status selection, 
four earthquake events remain with 
enough instances to apply machine 
learning:
• 4 September 2010 event
• 22 February 2011 event
• 13 June 2011 event
• 23 December 2011 event

• Even if the claims are related to one 
event, the amounts paid or repaired 
may represent damage from multiple 
events (due to the short time between 
events resulting in ambiguity about 
which event caused the damage).

• In the original EQC claim data set ‘Building Paid’ is a numerical attribute.
• Prediction for a regression machine learning model using ‘BuildingPaid’ as a numerical 

target variable did not deliverd satisfactory outputs.
• Data pre-processing included the transformation of ‘Building Paid’ from a numerical attribute 

to categories.
• Thresholds for the cut-off were chosen according to the EQC definitions related to the 

cash settlement of the claim, the Canterbury Home Repair Programme, and the maximum 
coverage provided[5].

CONCLUSION

OBJECTIVES

• The availability of the target and observation makes this project a supervised learning 
problem for classification

• Four algorithms were trialled: logistic regression, decision trees, SVM and random forest
• Random forest is the best performing algorithm

Figure 6: Overview of the use of the training, validation, and test sets

Figure 4: Schematic overview of the thresholds for the transformation of Building Paid from a categorical to a numerical attribute

Figure 5: Number of instances in Building Paid categorical

4 September 2010

22 February 2011

• 4 September 2010:
• 59.3% of the claims were low
• 35.7% of the claims were medium 
• 5.0% of the claims reached the maximum cap

• 22 February 2011:
• 44.5% of the claims were medium 
• 30.3% of the claims were low
• 25.2% of the claims reached the maximum cap

DATA PREPARATION

• Unlike a ‘traditional approach’ where the test set is held out from the same data as the 
training and validation set, the test set here employed comes from another earthquake.

• Testing the model using data from another earthquake in the CES (pre-processed in the 
same way as the training and validation set) enables to evaluate the model capacity to 
generalise to other events and find the model which works the best for the entire CES.

• Before starting training a machine learning 
model, it is necessary to split the data 
into distinct sets known as the training, 
validation (or development), and test set.

MACHINE LEARNING

INSIGHTS

Figure 7: Confusion matrix for the random forest algorithm for (a) 4Sep2010 model tested on 4Sep2010, (b) 4Sep2010 model tested on 22Feb2011,  
(c) 22Feb2011 model tested on 4Sep2010, (d) 22Feb2011 model tested on 22Feb2011

• The SHapley Additive exPlanations (SHAP) post-hoc method was applied on the Random 
Forest models.

• PGA stands out as being the most important feature for all events.
• The liquefaction occurrence is second for 22 February 2011 model and fourth for 4 September 

2010 model confirming the influence of liquefaction on the building damage/loss.
• The construction year and the floor area of the building appear in the top five most important 

features, however at a different position depending on the event.

Figure 8: SHAP feature importance for (a) 4Sep2010 random forest model (b) 22Feb2011 random forest model

This poster presented the development of a seismic loss prediction model using insurance 
claims data from EQC collected following the 2010-2011 Canterbury Earthquake Sequence. 
The lack of structural building information in the original EQC dataset led to the need for the 
merging of building characteristics from RiskScape. Before the application of machine learning 
algorithms, the data was pre-processed and the target variable transformed into categories. 
Supervised models were trained. Random forest delivered the best accuracy. The SHAP post-
hoc methodology highlighted the importance of PGA, liquefaction, year of construction, floor 
area of the building, and soil conditions, thus delivering key insights related to building damage.

TARGET ATTRIBUTE

Development of a Seismic Loss Prediction Model for Residential 
Buildings - Christchurch, New Zealand


