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ABSTRACT: An improved ground motion seismic hazard model for use in performance based 
earthquake engineering is presented.  The model is an improved approximation of the so-called 'power 
law' model, which is linear in log-log space.  The mathematics of the model and uncertainty 
incorporation is briefly discussed.  Various means of fitting the approximation to 'exact' hazard curves 
developed by seismologists are discussed, including the limitations of the model.  Based on 'exact' 
hazard data for major centers in New Zealand, the parameters for the proposed model are calibrated.  
To illustrate the significance of the proposed model, a simplified performance-based assessment is 
conducted on a typical bridge pier.  The new hazard model is compared to the current power law 
relationship to illustrate its effects on the loss estimation assessment.  The propagation of seismic 
hazard uncertainty to drift hazard is also considered. 

1 INTRODUCTION 

Certain applications of Performance Based Earthquake Engineering (PBEE) require a relationship 
describing the occurrence over time of a given ground motion intensity measure.  This relation, 
commonly in the form of a ground motion intensity measure and annual rate of exceedance, is 
typically obtained by conducting Probabilistic Seismic Hazard Analysis (PSHA).  A relationship is 
then required to represent this so-called ‘seismic hazard curve’ so that PBEE assessments can be made 
using closed form solutions or numerical integration techniques. 

Luco and Cornell (1998) proposed the following power law expression for the relationship between 
annual rate of exceedance and ground motion intensity: 

kIMkIMv −= 0)(  (1) 

Where IM = ground motion intensity; v(IM) = annual rate of exceedance of a ground motion of 
intensity IM; and k0 and k are empirical constants.  As seismic hazard curves are typically plotted on a 
log-log scale, Equation 1 is linear in log-log space.  This form of parametric equation - primarily used 
when combined with similar power laws relating seismic intensity to demand and seismic demand to 
loss - permits closed form PBEE solutions to be obtained.  It was proposed that the curve be fitted 
through the seismic hazard curve at the Design Basis Earthquake (DBE) and Maximum Considered 
Earthquake (MCE) intensity levels which have a 10% and 2% probability of exceedance in 50 years, 
respectively.  Constraining the curve to pass through these points yields the following parameter 
values: 
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where IMDBE, IMMCE, vDBE, vMCE are the ground motion intensities and annual rates of exceedance at the 
DBE and MCE intensity levels; and ln() is the natural logarithm.  A typical comparison of a seismic 
hazard curve for a Wellington (NZ) site obtained by performing PSHA and Equation 1 is given in 
Figure 1.  It can be seen that due to the 'concave from below' shape of the hazard curve that the 
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approximation of Equation 1 significantly over estimates and under estimates the hazard for ground 
motion intensities below the DBE and above the MCE intensity levels, respectively.  Equation 1 also 
slightly underestimates the hazard for intensities between the DBE and MCE levels.  Hence, while the 
power law is an adequate local approximation to the hazard curve in the vicinity of the DBE and MCE 
, over several orders of magnitude the rate of exceedance, v , is poorly approximated (i.e. from v = 100-
10-6).  Previous researchers (Solberg et al., 2007) have tried to alleviate this inaccuracy for the more 
frequent earthquake events by only considering rates of exceedance up to a certain threshold value 
when using the power law model.  The value of this threshold is arbitrary (and consequently not 
applicable in general) and in order to accurately conduct a probabilistic financial risk assessment, 
ground motions of all intensities are required to be considered.  Hence, the use of Equation 1 is 
unsuitable. 

 
Figure 1:  Comparison on hazard data from PSHA fitted by Equation 1 

While it is possible to perform PBEE calculations using the raw data from the seismic hazard curve 
directly, in order to consider the propagation of uncertainty in the ground motion seismic hazard a 
parametric relationship is required.  Therefore it can be seen that a parametric curve which is non-
linear in log-log space is required.  This paper aims to develop improved seismic hazard curves based 
on the above objectives. 

2 HYPERBOLIC MODEL IN LOG-LOG SPACE 

2.1 Model Development 

As the shape of the hazard curves typically have a 'concave from below' global shape then it would 
seem reasonable to approximate the curve with a hyperbola of the form y=α/x.  Figure 2 illustrates the 
use of a reference origin that can be used to envisage how the hyperbola can be expressed in the v–IM 
plane.  The parametric curve has both vertical and horizontal asymptotes and is given by: 
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Where vasy and IMasy are the horizontal and vertical asymptotes, respectively; α is constant; and ε = a 
random variable representing uncertainty with mean zero and standard deviation βH.  Hence by 
rearranging, Equation 3 can be expressed as either a function of v or IM, the expected values of which 
are given in Equation 4.  The three unknown parameters vasy, IMasy, and α can then be determined 
using data fitting techniques as described in the following section. 
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Figure 2: Concept of hyperbolic curve fitted to hazard data 

2.2 Methods of fitting to SHA data 

The parametric equation can be fitted to hazard data using several techniques.  The first and most 
likely used technique is that of (non-linear) least-squares regression.  The hyperbolic model is used 
with v the dependent variable, so that errors are measured as deviations of v between the data and the 
model.  As the overall shape of the hazard curve is of interest then is it is desired to minimise the 
relative error between the data and the proposed curve and not the absolute error.  The later would lead 
to very accurate prediction of the data with large values of v, but poor prediction of small values.  As 
an alternative, it is typical to minimise the logarithms of the error; that is the least squares problem 
becomes: 
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where vi = data points obtained via PSHA; v(IMi) = value of v obtained from parametric equation; and 
ri = the least square residual for each data point.  A second fitting method is that of Maximum 
Likelihood Estimation (MLE) (Kay, 1993), which determines the parameters of the underlying 
distribution (Eq 4a), which are most likely to have produced the data observed.  Both the above two 
methods produce similar curves to fit the data. 

2.3 Probability of occurrence  

PSHA gives the annual rate of exceedance of an event of specific intensity; however the probability of 
exceedance is typically more insightful.  The probability of occurrence of a given earthquake event 
over a specific period in time can be obtained based on the Poisson assumption.  For a Poisson random 
variable, the probability of x occurrences is given by: 
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where λ = mean rate of occurrence.  Hence the probability of occurrence (i.e. x ≥ 1) over t years can be 
obtained as unity minus the probability of no occurrence over t years.  That is: 

 3



( ) ( ) .......
62

1)0(1
32

−+−=−==−= − ttteXPP t
occurrence

νννν  (7) 

where v = the annual rate of occurrence.  The same statements can be made for relating rate of 
exceedance and probability of exceedance.  The final part of the equation is obtained via the Taylor 
series expansion of the exponential term.  For small values of vt, the higher order terms are 
insignificant and the rate and probability of exceedance are numerically very similar, however for 
larger values of vt there is a significant difference. 

2.4 Incorporation of uncertainty 

There are several sources of uncertainty in the seismic hazard model.  These can be grouped into 
uncertainty associated with obtaining the data points and the additional uncertainty introduced by 
fitting the curves parametrically.  Firstly, the (aleatoric) uncertainty in approximating the hazard data 
with a parametric curve can be obtained from the least squares regression.  As in general, it is assumed 
that the uncertainty can be represented by a lognormal random variable, ε with a mean of zero and 
constant dispersion (lognormal standard deviation) of βU.  The value of β can be obtained by 
determining the standard deviation of the residuals ri.  The (epistemic) uncertainty in obtaining the 
seismic hazard data points, βR, via PSHA arises from several assumptions (such as the use of the 
truncated Gutenberg-Richter law) is far more difficult to quantify and is typically done via logic tree 
weightings of different attenuation models.  The two uncertainties can be combined to give the total 
uncertainty associated with the seismic hazard curve (Kennedy et al., 1980): 

22
RUH βββ +=  (8) 

APPLICATION TO SEISMICITY DATA 

To illustrate the applicability of the proposed hyperbolic model, seismic hazard curve data for the 
main centres in New Zealand was obtained from Stirling et al. (2002).  When the least squares fits are 
performed for both peak ground acceleration (PGA) and spectral acceleration at a period of 1.5 
seconds then Figures 3 and 4 result.  It can be seen that the accuracy of the hyperbolic model is 
maintained over the full range of data for both high seismic regions which have hazard curves with 
large 'curvature' and for low seismic regions with smaller 'curvature', where curvature refers to the 
second derivative of the curve in log-log space.  Only the PGA seismic hazard curve for Dunedin is 
poorly fitted by the parametric curve due to its large 'curvature' for large IM values and then smaller 
curvature at lower IM values.  In this case it was selected to fit the data best for the higher values of 
IM, and hence the first three data points were removed from the least-squares regression.  The values 
of the three parameters for each of the PGA seismic hazard curves in Figure 3 and the associated 
dispersions are presented in Table 1. 

Table 1: Hazard curve parameters for various regions to be used in Equation 4 for PGA 

Region vasy IMasy α βU

Auckland 98450 126 121.6 0.12 

Wellington 6617 81.7 75.9 0.20 

Christchurch 1221 29.8 62.2 0.06 

Otira 9.95 10.5 20.5 0.14 

Dunedin 1.8 10.3 26.3 0.13 
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Figure 3: Seismic hazard data for PGA fitted using Equation 4 

 
Figure 4: Seismic hazard data for Sa (T=1.5 s) fitted using Equation 4 

3 LIMITATIONS OF THE PARAMETRIC EQUATION 

As with any curve fitting of data the primary limitation of the parametric curve given by Equation 4 is 
its use in extrapolation.  Asymptotes on the maximum rate of exceedance and ground motion intensity 
are requirements based on physical principles.  The parametric relationship proposed has both 
horizontal and vertical asymptotes.  However, because the parameters of the relationship are 
determined based on the data points within a specific range, the values of the asymptotes may not be 
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consistent with those of different regions.  Overall the range of hazard up to return periods of one 
million years (v = 1x10-6) would be considered as a relatively large upper value to use for the 
assessment integration, and therefore in the opinion of the authors no extrapolation of the parametric 
curve is required to obtain suitably accurate results when conducting performance based assessments. 

4 APPLICATION TO PERFORMANCE BASED RISK ASSESSMENTS 

In this section the propagation of the effects of the seismic hazard curve is investigated by computing 
the displacement hazard curve for a typical bridge pier designed to New Zealand standards. 

The prototype bridge pier is 7m high and taken from a typical ‘long’ multi-span highway bridge on 
firm soil with 40m longitudinal spans and a 10m transverse width.  The seismic weight of the 
superstructure was calculated to be 7000 kN.  Further design details and experimental modelling of the 
pier can be found elsewhere (Mashiko, 2006). 

The bridge was assumed to be located in Wellington, New Zealand, The fundamental period of the 
pier was 0.6 seconds, and hence the seismic hazard data for a spectral acceleration of 0.6 seconds was 
used, as it typically gives rise to the least dispersion in the structural demand-response assessment.  
Damping was assumed to be 5% of critical.  From the hazard data, both power law (Equation 1) and 
hyperbolic (Equation 4) parametric equations were fitted to the data, as shown in Figure 5a. 

By conducting Incremental Dynamic Analysis (IDA) (Vamvatsikos and Cornell, 2002) using the 
spectral acceleration at the fundamental period of vibration as the intensity measure (IM), and the deck 
drift as the engineering demand parameter (EDP) the following IDA data shown in Figure 5b was 
obtained using ground motion records from the SAC project (SAC, 1995).  The conditional IM-EDP 
relationship was then parameterised using Equation 9 developed by Jayaler (2002), which is based on 
separating the mutually exclusive and collectively exhaustive cases of structural collapse and non-
collapse: 

[ ] )()(1),()( IMCPIMCPNCIMedpEDPPIMedpEDPP +−>=>  (9) 

where P(C) = the probability of collapse; and P(EDP>edp|IM,NC) = { }( )[ ]s
baIMedp β/lnln −Φ , 

where aIMb = median response, βs = logarithmic standard deviation, and Φ[] = standard normal 
Cumulative Distribution Function.  The 10th, 50th and 90th percentile curves are shown on Figure 5b. 

Using both the ground motion seismic hazard and IDA parametric curves the displacement hazard of 
the pier can be obtained using the convolution integral presented by Deierlein et al. (2003): 

∑ Δ>= )()|()( IMIMedpEDPPEDP νν  (10) 

where the summation is over a range of IM values which have significant influence on the solution. 

Equation 10 is then computed using standard numerical integration, the results of which are presented 
in Figure 6.  It can be seen that in the immediate region surrounding the DBE and MCE levels the drift 
hazard is relatively similar.  This is as to be expected considering the power law curve is fitted through 
the DBE and MCE data points.  However, as expected the power law relationship significantly over-
predicts the drift hazard in the region of v > v(DBE).  While the power law relationship also over-
predicts the EDP for larger earthquake events (v < 5x10-4), it is not as significant as would be expected 
based on the shape of the seismic hazard curves.  The reason for this can be attributed to the fact that 
for these larger earthquakes, the onset of structural collapse is occurring, which is illustrated by the 
fattening of the drift hazard curves around v ~ 2x10-4.  Therefore it can be said that the over-prediction 
of the power law relationship in the region of large ground motion IM's is a function of the seismic 
capacity of the structure. 
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Figure 5: Hazard model and IDA curves 

 

The mean annual drift (MAD) can be determined by first converting the annual rate of drift 
exceedance (Figure 6a) to annual probability of drift exceedance via the Poisson assumption (Equation 
7), then by integrating the area below the resulting curve.  The result is not that meaningful in terms of 
the drift hazard curve as the values are typically very small.  This is far more insightful when losses 
are considered in the performance-based assessment, in which case the Expected Annual Loss (EAL) 
is obtained.  In this study, the MAD is computed for the purpose of quantifying the over-prediction of 
the power law model.  Using the power law model gives a MAD of 0.16% while using the hyperbolic 
model gives 0.05%, a 69% reduction. 

As mentioned in Section 2.4 uncertainty can also be incorporated into the seismic hazard model.  It 
was assumed that the uncertainty in the values of the SHA data points was βR = 0.2.  The additional 
(epistemic) uncertainty due to fitting the data parametrically (Figure 5a) was βU = 0.16, giving a total 
dispersion of βH = 0.26 (Equation 8).  By then using the 16th, 50th, and 84th percentile seismic hazard 
curves (84th and 16th percentiles are ± one standard deviation), the corresponding drift hazard curves 
shown in Figure 6b are obtained.  Although the uncertainty appears insignificant, note that the curves 
are plotted in log-log space.  For example, at the DBE intensity level, the 16th percentile response is 
0.88% while the 84th percentile is 1% drift.  Correspondingly at the MCE intensity levels the values 
are 1.5% and 1.8% at the 16th and 84th percentile levels, respectively.  The most noticeable effect of 
the uncertainty is the occurrence probability at which collapse occurs.  This value is approximately v ~ 
8x10-5 (12500 year return period) for the 16th percentile, but only v ~ 1.5x10-4 (6670 year return 
period) for the 84th percentile.  This is a difference of almost two-fold. 

5 CONCLUSIONS 

Based on the findings of this research the following conclusions can be drawn: 

1. A novel parametric hazard model was developed which is non-linear in log-log space.  The 
model was fitted to seismic hazard data via least squares regression, and allows for the 
incorporation of uncertainty. 

2. The applicability of the model to seismic hazard data in New Zealand was illustrated for both 
PGA and Spectral acceleration and results for PGA were tabulated. 

3. Propagation of the effects of the hyperbolic model were investigated via a performance based 

 7



assessment of a bridge pier designed to New Zealand standards, indicating the over-
approximation of the power law hazard model in computing the drift hazard. 

   
 (b) Effect of hazard model uncertainty on drift hazard (a) Using different hazard models 

Figure 6: Drift hazard curves  
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