Department of Computer Science and Software Engineering

University of Canterbury
NP

UNIVERSITY OF
CANTERBURY

Te Whare Wananga o Waitaha
May 2011 CHRISTCHURCH r\ng ZEALAND

Improving Object Oriented Software
Contracts

A thesis submitted in partial fulfilment of the requirements
for the Degree of Master of Science in Computer Science
in the University of Canterbury by

Janina Voigt

Supervisor: Dr. Warwick Irwin
Associate Supervisor: Dr. Neville Churcher

Abstract

Industrial-scale software is commonly very large and complex, making it difficult and
time-consuming to develop. In order to manage complexity in software, developers
break systems into smaller components which can be developed independently.

Software contracts were first proposed several decades ago; they are used to ex-
plicitly specify the interfaces between software components to ensure that they work
together correctly. Software contracts specify both the responsibility of a client using a
service and of the component providing the service. The advantage of contracts is that
they formalise what constitutes correct interactions between software components. In
addition, they serve as documentation, as well as a basis for test cases, and help clarify
correct use of inheritance. However, despite their usefulness, software contracts are still
not widely used in mainstream software engineering.

In this work, we aim to develop a new software contract tool which we hope will
help increase the use of software contracts. We start our work by evaluating existing
software contract technologies and uncover a range of inconsistencies and shortcom-
ings. We find that there are disagreements surrounding even some of the most basic
aspects of software contracts. Using the lessons learned from our analysis of existing
tools, we design a new contract tool, PACT. We describe in detail the formal semantics
and typing of PACT and develop a first implementation of our tool. Finally, we discuss
the advantages of PACT over existing tools, including its rigorous separation of inter-
faces and implementations, its rich inheritance semantics, and its support for flexible

and expressive definition of contracts.

Contents

[Abstract

[List of Figures|
[List of Tables|

[List of Program Listings|

[Acknowledgements|

[Chapter 1 Introduction|

[Chapter 2 Background
2.1 Object Oriented Programming|
2.2 Software Quality| o o
2.3 Encapsulation| o o

2.4 Software Design|. o

[2.5.2 Software Contracts and Testing|.

[2.5.3 Advantages of Software Contracts|

[2.6 Separation of Types and Implementations|

[2.7.1 Multiple Inheritance|
[2.7.2° Subtyping versus Implementation Inheritance|

i1

vi

vii

viii

Contents iii

[Chapter 3 Survey of Existing Software Contract Technologies| 38
(3.1 Early Specification Languages| 40
B2 EiTell. . . o o oo e e 42

[3.2.1 The Eiffel Programming Language 42
B2Z2Z Cdd o 44
323 AutoTestl 44
3.3 NET Contract Tools| 45
............................... 45
332 CodeContracts| 50
B33TPexl . o oo 52
B4 JavaContractTools 54
BATTIMD oo e e e 54
342 iContrac] 59
343 ContractJaval o 60
B.44 Handshakel 61
BAST TJass . . oo 63
[3.4.6 jContractor] 64
3477 JMSASssertl. 66
[3.5 Object Constraint Language]. 68
(3.6 Comparison of Contract Technologies| 69
[3.6.1 Core Contract Support| 70
[3.6.2 Special Operators and Quantifiers| 71
3.6.3 Variables and Contract Structures| 72
[3.6.4 The Contract Language| 72
[3.6.5 Integration of Contracts into Source Code| 73
[3.6.6 Side Effects in Contracts| 74
[3.6.7 Precondition Visibility| o000 75
[3.6.8 Checking of Class Invariants| 75
[3.6.9 Inheritance of Contracts| 77
13.6.10 Conversion of Contracts into Runtime Checks| 78
[3.6.11 Supporting Tools| 79

(3.7 Summary| 79

Contents iv
[Chapter 4 PACT - Design for a new Contract Framework| 83
M1 CoreConcepts|. v v v v i it e 84
@.1.1 Separation of Types and Implementations in PACT| 84

4.1.2 Encapsulationin PACT|. 86

#.1.3 Dafferent Types of Inheritance in PACT| 86

4.2 Type Specifications in PACT|o o000 98
421 TypeHeader. 98

42,2 Methods and Constructors| 101

423 Typelnvariants|, 102

“4.2.4 Contract Specifications| 103

4.2.5 Concrete Type Methods|. 105

42.6 Subtyping| 106

@4.2’7 Type Derivation| L 107

428 Restrictionl. L 107

4.3 Implementations in PACT| 108
4.3.1 Implementation Headery 110

“.3.2 Methods and Constructors| 110

#4.3.3 Implementation Dertvation| 111

4.3.4 Contracts in Implementations|. 112

M4 Constructors| L 113
M5 Summary| e e 114
[Chapter 5 Formal Description of PACT Syntax and Typing Rules| 116
[5.1 Syntax Definition|, 116
5.2 TypmngRules] 118
[5.2.1 Introduction to Object Calculyf 119

5.2.2 ExtensionofOb;.|. 125

523 Conventions and Nofationl 128

B.24 PACT TypingRules| 128

[5.2.5 Applying the Typing Rules in Practice| 134

0.3 Summary| 141
(Chapter 6 Implementation of PACT] 142
6.1 Descripttonof PACT 1.0 142
[6.1.1 Parsingl 143

Contents v

[6.1.2 Building a Model of the Program|. 145

[6.1.3 Exporting the Model into C# 146

6.2 Limitations and Future Extensionsl 158
[Chapter 7 Discussion| 163
[/.1 Full Separation of Types and Implementations| 164
[/.2 Separation of Subtyping and Derivation| 165
[£.3 Restrictionl 167

[/.4 Multiple Inheritance|. L. 168
[/.5 Expressiveness of Contracts|. 169
[/.6 Concrete Type Methods| 171
[7.7 Static versus Dynamic Contract Checking| 173
[/.8 Case Study: Singly-Linked and Doubly-Linked Nodes| 175
(7.9 Summary| 177
[Chapter 8 Conclusions and Future Work| 180
8.1 FmalWordsl 183
[References| 184
[Appendix A ENASE Paper| 206
[Appendix B Formal Syntax for PACT] 217
(B.1 EBNFSyntax| 217

B DES| .+ e e e e e e e e e e e e 217

[B.1.2 Implementations| 220

[B.2 References to the C# Syntax| 222
[B.3 Modification to the C# Syntax| 223

[Appendix C Stack Example Program after Translation into C# with |
[PACT 1.0l 224

List of Figures

2.1 TDD development stages| 23
[2.2 Covariance and contravariance example: displaying a list of items| . . . 34
(3.1 Ownershipin SPECH 47
2 Archi re of the SPEC# static verifier] 49
[3.3 Pex test report for the Clockclass| 54
4.1 A solution to the Stack and NoNullStack example in PACT| 90
4.2 Customers and Accounts in a banking system| 93
4.3 NoPushStack, a common interface for Stack and NoNullStack| 95
4.4 Arestriction hierarchy of stacks| 96
ML inheritance notation|o 98
4.6 PACT mberitance notation| 98
[4./ PeekOnlyStack, arestriction of NoNullStackl 108
6.1 A simple Stackexample| 0oL 147
(6.2 UML class diagram of the Stack example after processing| 147
[6.3 Flowcharts showing the merging of results in preconditions and post-

[conditions] 154
[6.4 Diagram of the extended Stack example| 155
6.5 UML class diagram of the extended Stack example after processing| . . 156
6.6 UML class diagram of PACT 1.0/. 162
[/.1 Diagramofacirclesector]. 170
[/.2 Stack and PeekOnlyStackexample| 173
[/.3 Singly-linked and doubly-linkednodes| 177

vi

List of Tables

4.1 Overview of PACT 1nheritance relationships|.

[B.1 Mapping of PACT non-terminals to C# non-terminals|

vii

List of Program Listings

21

Pseudocode software contracts for a ssmple Stack class|.

[2.2 Covariance and contravariance example: the ItemDisplay type]

35

[2.3 Covariance and contravariance example: the ScrollableItemDisplay

.........................
[3.1 Example of software contracts for a simple Stackclass|

10 _Part of th k contractin JASS|
11 P f th k contract in NTRACTOR| . . .
3.12 Part of the Stack contractin IMSASSERT]
13 _Anin nt for th k_contract in L....
[3.14 Preconditions and postconditions for the push method in OCL)}
4.1 Pseudocode contracts for the Stack and NoNullStack types|
4.2 Pseudocode contracts for the NoPushStack type|. .
4.3 TheCircletypemn PACT|
4.4 The NoNullStack typein PACT|.
4.5 The precondition of displayPollResultsin PACT|
4.6 The PeekOnlyStack type in PACT|
./ The CircleImpl implementation in PACT|
[5.1 Pseudocode for the Stack and StringStack types|

viil

Acknowledgements iX

[5.2 Pseudocode for the revised Stack and StringStack types| 136
[5.3 Pseudocode contracts for the Stack and NoNullStack types| 138
6.1 PACT code for Stack and StackImpl|. 148
[6.2 The pop method 1n the exported C# program|. 151
(6.3 The precondition and postcondition method for the pop method 1n the |
[exported C# program| 152
[6.4 A single return statement for checking contract conditions| 153
[6.5 A contract that cannot be converted into a single statement| 153
[7.1 A simple postcondition written without the use of local variables| 170
[7.2 A simple postcondition written with the use of local variables|. 170
[7.3 A simple postcondition written with the use of a for-loop| 171
[7.4 A Circle type with a concrete type method, 172
[/.5 The SinglyLinkedNode typel. oo oo vt oo 175
[/.6 The DoublyLinkedNode typel. v v v v v v i v v v .. 175
[C.1 The public interface and contract of the Stack example| 224
[C.2 The private interface, invariant class and private contract of the Stack |

example| L. 225

C3

The implementation class of the Stack example| 227

Acknowledgements

At the end of the day, it is the author who gets all the credit for a thesis like this. However, this
does not reflect how many different people contributed in one way or another.

My greatest thanks goes to my two supervisors, without whose constant help, support and
encouragement this project would not have been possible, particularly in light of the difficult
circumstances caused by the two Christchurch earthquakes which interrupted all our lives and
work. Thank you to Warwick Irwin for countless discussions and white-boarding sessions in
and outside of the computer science department; in the midst of personal tragedy, earthquake
repair work, insurance battles and your sabbatical, you still somehow found time and energy to
support me in countless ways. Thank you to Neville Churcher for sharing your expertise and
always challenging me to think about issues I would have never considered otherwise. I don’t
know what I would have done without both of your guidance.

The positive working environment of the Department of Computer Science and Software
Engineering was certainly an important factor in completing this thesis. I would particularly
like to thank all staff and students of the department for their encouragement as well as the
many interesting conversations and discussions. Special thanks goes to Richard Lobb, Yalini,
Alex, Gillian and the programmers, as well as my fellow students Heidi, Myse, Amali, Sagaya
and Tipawan.

I would also like to thank the University of Canterbury for the generous financial support
they provided through the UC Master’s scholarship for the duration of this project.

Last, but certainly not least, special thanks goes to my friends and family for putting up
with occasional lows and constant stress levels. Thank you to Liz Irwin for great company and
relaxing evenings (and not to mention letting me borrow your husband, even on weekends); to
my friend Natasha for welcome distractions and amazing hairdos; to my partner Sebastian for
your constant encouragement and making me laugh, even when I didn’t feel like it. Finally, a

great thank you to my mother Angelica for 24 years of never ending patience, support and love.

Introduction

When writing software, we aim to create programs which not only work correctly, but
are also reliable and easy to use, understand and maintain. These and other factors
combine to determine the level of quality in software.

Developing high quality software is a difficult, complex and time-consuming task.
The complexity and sheer size of software contribute to these difficulties; it is not un-
usual for a single program to contain millions of lines of code, far too much for one per-
son to understand. Developers break large systems into many small components, which
are then developed independently. This helps manage the complexity of the software,
because a developer working on one component does not need to know the internal de-
tails of other components of the system; he or she only needs to understand the other
components’ interfaces in order to use their services.

Software contracts (a subfield of formal specifications) are used to explicitly define
the interfaces of software components, specifying the responsibilities of both the client
using a service and the supplier of the service. This formalises the interactions between
components of the software and ensures that two components interact correctly [[147]].

When software contracts are not used, clients of a service usually have access to
information about the service’s interface, including method signatures, as well as, op-
tionally, documentation about how to use the service. Software contracts elaborate on
this by formally specifying protocols of interaction which otherwise may have remained
implicit. Consequently, we regard contracts as a natural extension of explicit type sys-

tems; they specify interfaces more fully than simple method signatures.

Chapter 1. Introduction 2

We believe that software contracts can mitigate some of the problems surrounding
large scale software development. They not only improve the correctness of software by
explicitly specifying interaction protocols, but also serve as documentation and clarify
the correct use of inheritance [[147]. In addition, formal specifications such as software
contracts represent a useful basis for test cases. They describe valid inputs and outputs
to methods; this information can be used by automatic testing tools to find valid test
inputs and decide if particular test outputs are correct [48; 148]].

Despite the fact that the main ideas of software contracts were proposed several
decades ago, they are still not commonly used in mainstream software development.

Meyer remarks that:-

In relations between people and companies, a contract is a written document
that serves to clarify the terms of a relationship. It is really surprising that in
software, where precision is so important and ambiguity so risky, this idea

has taken so long to impose itself. [[147, page 342]

In recent years several different technologies supporting software contracts have
been developed, including tools for mainstream programming platforms such as Java
and .NET. Along with these technologies, a number of supporting tools are emerging.
Testing tools such as AutoTest for Eiffel [148] and Pex for .NET [13;192]] automatically
extract unit tests from contracts without the need for input from developers. Static
analysers such as Boogie for the .NET contract language Spec# [10] and ESC/Java for
the Java contract language JML [78] attempt to prove the correctness of software at
compile-time.

In this work, we evaluate existing software contract technologies, identifying sev-
eral limitations and shortcomings. This leads us to propose and develop a new contract
tool, PACT, which provides a number of advantages over existing technologies. PACT
rigorously separates public interfaces from private implementation details, increasing
the abstraction, encapsulation and maintainability of software. It separates various or-
thogonal dimensions of inheritance, which in most mainstream programming languages
are combined into a single relationship, making it easy for developers to misuse inher-
itance. PACT further supports the flexible and expressive definition of contracts and

includes features to lessen the effort associated with contract specification.

Chapter 1. Introduction 3

1.1 Thesis Outline

The remainder of this thesis outlines the background of software contracts and the de-
sign, formal description and implementation of our contract tool PACT. It is structured

as follows:-

e In Chapter 2] we describe the background of this project, including software con-

tracts, object oriented (OO) programming, software design and inheritance.

e In Chapter [3) we present the results of our analysis of existing software contract
tools, highlighting inconsistencies and shortcomings; we first describe each of the
eleven technologies we studied before discussing the similarities and differences

between them.

e In Chapter 4 we present our design for a new contract framework, PACT. We
base our design on the lessons learnt from our previous survey of existing contract

technologies.

e In Chapter [5| we formalise PACT’s syntax and typing rules, with a particular

focus on the rules and semantics surrounding subtyping.

e In Chapter [6] we present the first version of our implementation of PACT. Our
tool, PACT 1.0, translates PACT code into C# and handles the majority of
PACT’s semantics.

e In Chapter [/}, we discuss the advantages of PACT over standard programming
languages and other contract technologies. We particularly focus on its rigorous
separation of public interfaces and private implementations, the expressiveness of

PACT contracts and its separation of different dimensions of inheritance.

e In Chapter 8, we present our final conclusions, reiterate the contributions of this

work and describe future work to be done in the area.

e Appendix [A] presents the paper entitled “A Critical Comparison of Existing Soft-
ware Contract Tools” which describes the results of our survey of existing soft-
ware contract technologies. This paper will be published in ENASE 2011 (6th
International Conference on Novel Approaches to Software Engineering). Parts

of this thesis are based on this paper.

Chapter 1. Introduction 4

e Appendix B|presents PACT’s syntax rules.

e Appendix [C] shows the result of translating a PACT example program into C#
using our PACT tool, PACT 1.0.

Background

2.1 Object Oriented Programming

OO programming, today’s dominant programming paradigm, models software using
objects. An object represents a particular domain concept or entity and has state (data)
and behaviour (operations). Classes are used to describe a particular object type, in-
cluding the state and behaviour of instances of this class. Objects exist only at runtime;
classes contain all the code of the software and exist before the program is executed.

Today, most popular programming languages support OO programming, including
Java [8], C++ [181], C# [97] and Python [50]. According to the Tiobe Programming
Community Index of programming languages, nine of the ten most popular program-
ming languages in May 2011 included support for OO [[193]. Only C [1135], the second
most popular language behind Java, did not support OO programming.

The first traces of OO can be found in Sketchpad, a computer program designed by
Ivan Sutherland in 1963 to support interactive computer graphics [183]]. In Sketchpad,
master drawings can be used to create instance drawings. This is analogous to classes
and objects in OO programming.

The first programming language to use objects as programming entities was Simula-
67, which is often cited as the first OO programming language. The developers of
Simula-67, Dahl, Myhrhaug and Nygaard state that:-

The central concept in SIMULA 67 is the object. An object is a self-

contained program, (block instance), having its own local data and actions

5

Chapter 2. Background 6

defined by a class declaration. The class declaration defines a program
(data and action) pattern, and objects conforming to that pattern are said to

“belong to the same class” [63]].

In 1970, a team at Xerox Parc lead by Alan Kay started work on a programming
language called Smalltalk, which was inspired by the concepts in Sketchpad and Simula
[87; 114]]. However, unlike Simula and Sketchpad, Smalltalk was exclusively based on
the concept of objects and is thus recognised as the first pure OO language. In describing
the inception and development of Smalltalk, Alan Kay states that a central idea is that

everything in software can be described as an object:-

Smalltalk’s design — and existence — is due to the insight that everything
we can describe can be represented by the recursive composition of a single
kind of behavioral building block that hides its combination of state and
process inside itself and can be dealt with only through the exchange of

messages [114, page 512].

Alan Kay also emphasizes that although Smalltalk derived inspiration from previous

technologies, it was the first to fully support the OO programming paradigm:-

Smalltalk’s contribution is a new design paradigm — which I called object-
oriented — for attacking large problems of the professional programmer, and
making small ones possible for the novice user. Object-oriented design is a
successful attempt to qualitatively improve the efficiency of modelling the
ever more complex dynamic systems and user relationships made possible

by the silicon explosion [114, page 513].

Although Smalltalk (and with it OO programming) was developed and released in
the 1970s, it was not until the 1990s that OO programming started to become a main-
stream programming paradigm. C++, developed by Bjarne Stroustrup and first released
in 1983, added the concepts of classes and objects to the popular procedural program-
ming language C [180]]. C++ became a very popular programming language and in this
way popularised OO programming. However, Stroustrup emphasizes that C++ did not
take the concepts of OO programming from Smalltalk but from Simula-67, which he
had used extensively during work on his PhD thesis at Cambridge University [180]:-

Chapter 2. Background 7

C++ got the key notions of classes, derived classes, virtual functions (in
other words, the notions of encapsulation, inheritance and polymorphism)
from Simula just like Smalltalk did. In terms of family relationships, C++
and Smalltalk are siblings [182].

Stroustrup’s main aim in developing C++ was to combine “Simula’s facilities for
program organisation together with C’s efficiency and flexibility for systems program-
ming” [180] because he had seen the advantages of using classes and objects when

working with Simula for his PhD:-

The class concept allowed me to map my application concepts into the lan-
guage constructs in a direct way that made my code more readable than I

had seen in any other language [180].

This benefit of OO programming is also recognised by others, who suggest that
the biggest advantage of OO programming is that it allows developers to more closely
model the real world, making software easier to write and understand [26; [172]. Riel
claims that, in addition, OO programming tends to create a decentralised architecture
with low coupling between parts of the software [172]. This makes it easier for one part
of the software to be changed without affecting the rest of the system, thus improving
maintainability.

Kay suggests that the benefits of OO programming are even more far-reaching than
this:-

[OO] was the big hit, and I have not been the same since. I think the reason
the hit had such impact was that I had seen the idea enough times in enough
different forms that the final recognition was in such general terms to have
the quality of an epiphany. ... For the first time I thought of the whole as
the entire computer and wondered why anyone would want to divide it up
into weaker things called data structures and procedures. Why not divide it
up into little computers, as time-sharing was starting to? But not in dozens.
Why not thousands of them, each simulating a useful structure? [[114, page
516]

In computer terms, Smalltalk is a recursion on the notion of computer it-

self. Instead of dividing “computer stuff” into things each less strong than

Chapter 2. Background 8

the whole — such as data structures, procedures, and functions that are the
usual paraphernalia of programming languages — each Smalltalk object is a
recursion of the entire possibilities of the computer. Thus its semantics are
a bit like having thousands and thousands of computers all hooked together

by a very fast network [[114, page 513].

2.2 Software Quality

“The purpose of software engineering is to find ways of building quality software” [147,
page 19]. Software needs to be of high quality to be attractive to customers; thus “soft-
ware quality can determine the success or failure of a software product in today’s com-
petitive market” [191]. Moreover, high quality software is critical in many application
areas, such as hospitals or the military, where software failures have the potential to
cause enormous costs or even loss of life. A famous example of software failure is the
1996 crash of the Ariane 5 rocket 40 seconds after takeoff, which was caused by a sim-
ple bug in a piece of software that was not even needed. The crash caused $500 million
in damages [110].

Even in non-critical applications, the cost of low quality software is high; bugs alone
were estimated to cost end users and software development companies US$60 billion a
year in the US in 2002 [189]]. However, despite the fact that much work has been done
over the last three decades to help improve software quality, most software today is still
released with many errors and quality problems [164]].

In his 1980 Turing Award lecture entitled The Emperor’s Old Clothes, Tony Hoare
describes software quality as being “measured by a number of totally incompatible cri-
teria, which must be carefully balanced in the design and implementation of every pro-
gram” [100]]. These different quality factors or criteria may be both functional and
non-functional, internal and external [[171]. Internal factors, such as maintainability and
code readability, are visible only when looking at the code and will not be apparent to
software users. On the other hand, external factors, such as usability and reliability, can
be detected by the user.

A definition of software quality by McCall, Richards and Walters, attempts to divide
eleven software quality factors into three categories: product revision, product operation

and product transition [[142]]. Product revision concerns the software’s ability to undergo

Chapter 2. Background 9

change; product operation looks at the software’s operational characteristics; product
transition describes how well the software adapts to a new environment.

Boehm et al. identify 15 simple quality indicators and organise them into a tree-like
structure with higher and lower level criteria [24]. This definition is somewhat similar
to the approach used by McCall et al. because atomic quality factors are aggregated into
larger categories. The quality indicators proposed by both studies are broadly similar,
although Boehm et al. propose a number of subfactors for maintainability.

An official, and slightly simpler, definition of software quality was first published as
part of the ISO 9126 standard in 1991 [[104] and further developed in the ISO/IEC 25030
standard in 2007 [[105]]. This standard defines software quality as “the totality of features
and characteristics of a product or service that bears on its ability to satisfy given needs”
[2]. It identifies six key quality indicators: functionality, reliability, usability, efficiency,
maintainability and portability.

An interesting approach to defining software quality is taken by Meyer, who sug-
gests that because users notice only external properties of software, only these factors
matter in determining the overall quality of software [147]. Therefore, Meyer includes
only external factors in his definition software quality; in particular, he identifies cor-
rectness as the primary concern in software development and argues that it is essential
in encouraging software reuse [145]. However, he also reminds developers that internal
factors greatly influence external factors, and are thus indirectly important in achieving
software quality.

While much effort has been put into defining software quality, many quality factors
are difficult to measure accurately and objectively [74]. In addition, it is impossible to
combine measurements of single quality factors into an overall software quality measure
because quality factors are sometimes conflicting and the relative importance of the

different quality factors varies with the needs of the prospective user [24]].

2.3 Encapsulation

Unfortunately, the size and complexity of software make producing high quality soft-
ware difficult, time-consuming and error prone, with many development projects not
meeting their specifications or failing completely. In his 1980 Turing Award lecture,

Tony Hoare called the inherent complexity in software an overwhelming problem:-

Chapter 2. Background 10

Programmers are always surrounded by complexity; we cannot avoid it.
Our applications are complex because we are ambitious to use our com-
puters in ever more sophisticated ways. Programming is complex because
of the large number of conflicting objectives for each of our programming

projects [100].

In addition to being extremely complex, software is often far too large for a single
person to comprehend. Combined, the complexity and sheer size of software make it
difficult to understand and visualise, and therefore to develop.

Encapsulation is one of the most fundamental tools developers have at their disposal
for managing complexity in software. When we encapsulate, we break software up into
many smaller components which can be developed independently. At the same time we
hide internal details — particularly data representations — inside each component so that
they cannot be accessed and modified from the outside [179]. In this way, encapsulation
supports the principle of information hiding [55;[163].

The careful application of encapsulation leads to a modularised system where each
software component is in full control of its internal details. Since no other parts of
the system can access a component’s internal data, it cannot be unexpectedly modified
from the outside, making bugs easier to trace. Furthermore, the various components
are only loosely coupled to each other [205] and the internal data representation of
one component can be changed without affecting the rest of the system. In this way,
encapsulation leads to software which is easier to develop and maintain [55;[179].

In previous work, we have identified two distinct encapsulation policies: class en-
capsulation and object encapsulation [196; 197].

Class encapsulation is used in many mainstream OO languages, including Java, C#
and C++. When using this encapsulation policy, private data is accessible only from
within the class in which it is declared; instances of the same class can access each
other’s private data, but no accesses are allowed from parts of the same object declared
in subclasses.

Smalltalk [87] and Ruby, on the other hand, are examples of languages that support
object encapsulation, where data is private to an object. Private data can thus be accessed
from anywhere within the object, but two objects can never access each other’s private
data. Our own observations about encapsulation boundaries are backed up by Bruce,

who notes that private can mean either private to an object or private to a class [33]].

Chapter 2. Background 11

We have previously shown that there is a significant level of confusion among devel-
opers about encapsulation mechanisms provided by programming languages and that in
practice encapsulation in software is often weak and inconsistent [196; [197]]. This is
concerning because, without adequate use of encapsulation, software will inevitably be

complex, and therefore difficult to develop, understand and maintain.

2.4 Software Design

Good software design is essential to developing high quality software; a good design
makes software easier to understand, maintain and ultimately develop. Although soft-
ware design is an internal quality factor, it has a direct impact on external software
quality.

Several studies have been conducted which confirm that software design quality has
a direct impact on the overall quality of software. In particular, empirical evidence
suggests that appropriately using language mechanisms such as inheritance, polymor-
phism and encapsulation, and avoiding coupling can increase software quality. Brito
e Abreu conducted a study of defect density and maintenance time in several OO sys-
tem and concluded that both were directly correlated with OO design characteristics
such as inheritance, polymorphism and coupling [31]]. As expected, tight coupling in-
creased defect density and maintenance time; inheritance and polymorphism decreased
defect density and rework time, but only if used sparingly. A later study by Briand et
al. confirmed some of these results, including the negative impact of coupling on soft-
ware quality [30]]. It also confirmed that the use of inheritance has an impact on quality,
showing that deep inheritance structures can decrease software quality.

Software design is a difficult task and there are often many solutions to one problem.
There are no absolute rules designers can follow to find the optimal solution and it can
even be difficult to determine which of several options is preferable. Designers usually
follow their intuition and try to balance various design forces to arrive at a design that
provides the most advantages for a given situation [54]].

Design heuristics are an attempt to capture the knowledge of experienced software
designers and make it more widely available. Heuristics are by definition inexact; they
must be applied to the specific situation and weighed up against other, potentially con-
flicting heuristics. This means that it is likely they will be applied differently by different
people.

Chapter 2. Background 12

Many heuristics have been proposed, for example by Arthur Riel [172], John Lakos
[119], and Ralph Johnson and Brian Foote [111].

An interesting set of design heuristics called code smells was proposed by Mar-
tin Fowler and Kent Beck [81]; the name code smells further emphasises their inexact
nature and subjectivity. Examples of code smells include the Long Method Smell, Du-
plicated Code Smell and Shotgun Surgery Smell, which indicates that code is difficult
to change and maintain. According to Fowler and Beck, the name code smell comes
from Beck’s grandmother, who used to say “If it stinks, change it” [81, page 75]. When
developers detect code smells, the authors suggest specific refactorings — changes to the
design of the software that do not impact functionality — to remove the code smells.

Whether it is called heuristics or code smells, design advice occurs at different
scales. There is a large number of specific rules such as “Keep related data and be-
haviour together” [172] and the Liskov Substitution Principle [132; 141] which for-
malises the correct use of inheritance. On the other hand, there are several general
principles, which apply at all times. This category includes the Information Hiding
principle [163] and Design by Contract, which is discussed in detail in Section [2.5]

In some cases, the same design problems recur in different contexts and designs.
Design patterns are intended to be solutions to such frequent and difficult design prob-
lems.

Design patterns were first proposed by Christopher Alexander for the domain of
architecture in the 1970s [4] and were adapted to software design by Peter Coad [53]]. In
1995, the “Gang of Four” (Gamma, Helm, Johnson and Vlissides) published a collection
of 23 design patterns [[84]]. Since then, many other types of patterns have been proposed,
including architectural patterns by Buschmann et al. [37], analysis patterns by Fowler
[80]], and AntiPatterns by Brown et al. [32].

2.5 Software Contracts

Software contracts are used to explicitly define the interfaces of software components,
specifying the responsibilities of both the client using a service and the supplier of the
service. This serves to improve software correctness and makes programs easier to
understand and verify [147].

Betrand Meyer’s Design by Contract’™ (DBC) [[143] is perhaps the best known

contract technology. However, the use of contracts (a subfield of formal specifications)

Chapter 2. Background 13

in software can be traced back as far as Turing, who first presented the idea of assertions
to check program correctness in 1949 [194]:-

How can one check a large routine in the sense of making sure that it’s
right? In order that the man who checks may not have too difficult a task,
the programmer should make a number of definite assertions which can be
checked individually, and from which the correctness of the whole program
easily follows [194].

In the 1960s, John McCarthy started work on the idea of program proofs; that is
proving the equivalence and correctness of algorithms [143]. He also worked on proving
the correctness of compilers [144]].

In 1966 and 1967, Naur and Floyd independently developed techniques for correct-
ness proofs in programs [79; [158]. Although their ideas are similar to that of Turing,
there is no indication that they were influenced by his earlier work [[154]].

Naur proposed proving the correctness of algorithms by using general snapshots,
which are very similar in character to the assertions proposed by Turing. “By a General
Snapshot I shall mean a snapshot of a dynamic process which is associated with one
particular point in the actual program text, and which is valid every time that point is
reached in the execution of the process.” [158]].

Floyd also proposed a “... rigorous standard ... for proofs about computer programs,
including proofs of correctness, equivalence and termination” [79]. Like Naur, he pro-
posed associating conditions with particular program statements to guarantee that if the
statement is entered correctly, it will also be exited correctly.

In 1969, Hoare introduced the eponymous Hoare triples. He used the notation
P{Q}R to mean that “if the assertion P is true before initiation of a program Q, then
the assertion R will be true on its completion” [98]; P is commonly called the precondi-
tion, while R is the postcondition. Three years later, Hoare also presented the concept of
class invariants, a logical predicate I where “each operation (except initialisation) may
assume / is true when it is first entered; and each operation must in return ensure that it
is true on completion” [99]. The concepts of preconditions, postconditions and invari-
ants as part of proofs of correctness and termination were further extended by Dijkstra
in 1976 [68].

In the 1980s, Meyer first proposed DBC, which implicitly built on previous research,
particularly the work done by Hoare. In fact, Bolstad claims that DBC is simply “a

Chapter 2. Background 14

method of implementing a Hoare triple in software” [25]. As part of his work on DBC,
Meyer introduced the term contract and developed the programming language Eiffel
which helped to further publicise and formalise the idea of contracts in software. Al-
though some authors credit Meyer with the invention of executable contracts which can
be used to enforce program correctness at runtime, other programming languages con-
tained executable assertions and contracts as early as the 1970s. For example, Euclid,
developed in the late 1970s, allows developers to specify preconditions, postconditions,
invariants and other assertions as boolean expressions which are checked at runtime and
terminate the program if they are violated [121].

Meyer describes software contracts as “viewing the relationship between a class
and its clients as a formal agreement, expressing each party’s rights and obligations.
Only through such a precise definition of every module’s claims and responsibilities
can we hope to attain a significant degree of trust in large software systems” [[147, page
331]. Meyer believes that contracts are central to achieving properties such as reliability,
reusability and maintainability in large software systems.

There are several different kinds of software contracts; Beugnard et al. identify four
different contract levels in their work [19]. Basic or syntactic contracts describe the type
system of a program. Behavioural contracts specify the expected semantic behaviour
of software parts. Synchronisation contracts define how software parts interact in the
context of concurrency. Finally, quality-of-service contracts describe non-functional
properties such as reliability, precision or performance. Meyer’s DBC describes how
software components interact and what services they can expect from each other and it
thus operates at the behavioural contract level [19]; similarly, we focus exclusively on
behavioural software contracts in this work.

A software contract between a client and a server contains three important speci-
fications: Preconditions are predicates the client must ensure are true before calling a
method in the server; in return, the server guarantees that the postconditions will be true
when it returns control to the client; object or class invariants are constraints that must
be satisfied in all visible states of a class or object.

Program Listing 2.1 shows pseudocode for contracts for a simple Stack class with
the three standard methods push, peek and pop.

Our Stack class uses a simple Object array to store its values. It keeps track of its

current size and also knows the maximum number of items it can store.

Chapter 2. Background 15

Program Listing 2.1 Pseudocode software contracts for a simple Stack class

class Stack {
private Object[] stack;
private static final int MAX_SIZE = 100;
private int size;
Invariant: size >= 0 && size <= MAX_SIZE;
public Stack() {

stack = new Object [MAX_ SIZE];
size = 0;

Precondition: !isFull()

Postcondition: peek() == obj && size == old size + 1
public void push (Object obj) {
stack[sizet++] = obj;

Precondition: !isEmpty ()
Postcondition: size == old size
public Object peek() {

return stack[size-1];

Precondition: !isEmpty ()
Postcondition: size == old size - 1
public Object pop() {

return stack[--size];

public boolean isFull () {
return size >= MAX_SIZE;

}

public boolean isEmpty () {
return size == 0;

Chapter 2. Background 16

We have defined preconditions and postconditions for push, pop and peek. The
preconditions for pop and peek ensure that the methods are not called when the Stack
is empty; the precondition for push makes sure the method is not called if the Stack is
already full.

The postconditions of the three methods check that the size of the Stack has
changed in the correct way by comparing it to the o1d size of the Stack; that is, the
size of the Stack before the method’s execution. Calling the push method increases
the size of the Stack by one; calling pop decreases it by one; calling peek has no
effect on the size.

In addition to preconditions and postconditions, we have defined an invariant to
ensure that the Stack’s size never drops below zero or exceeds the array’s capacity.

The following sections explain in more detail the history, use and advantages of
software contracts. Chapter [3] will look in detail at contract support in various program-
ming languages and analyse the strengths and weaknesses of current software contract

technologies.

2.5.1 Software Contract Detail

“No software element is correct or incorrect per se; it is correct or incorrect concerning
a particular specification, or statement of its purpose” [[145]. Therefore, a clear specifi-
cation of purpose, or a contract, is essential to verifying software.

Just like legal contracts, software contracts exist between two parties, which we will
call the client and supplier. Each of the parties incurs obligations through the contract
but also receives benefits [[145]].

The following sections elaborate on how software contracts work and what happens

when contracts are violated.

Preconditions and Postconditions

Method contracts, specifying the behaviour and correct usage of methods, form a cen-
tral part of software contracts and are made up of two parts: preconditions and post-
conditions. The precondition specifies what the client has to ensure before calling the
supplier; that is, the obligations of the client and the benefits to the supplier. The post-
condition describes what the supplier has to achieve in return before returning to the

Chapter 2. Background 17

client; that is, the benefits to the client and the obligations of the supplier. Both precon-
ditions and postconditions are simply boolean expressions [[145].

Since preconditions are the client’s responsibility, they should be defined in such
a way that the client can check them before calling a method; that is, their definition

should include only methods and data which are accessible to the client [[72;145]].

Class Invariants

A class invariant describes “a consistency constraint that applies to all instances of the
class” [145]. The term object invariant is used interchangeably with class invariant. In
this work, we use the more traditional term class invariant.

The class invariant must be satisfied in all “observable states” [145] of every instance
of a class. This is different from saying that a class invariant must be true at all times.

Specifically, the class invariant must be true:-
o After the constructor has finished constructing a class instance;

e Before and after every call to an exported method of the class; that is a method

accessible from outside the class.

This implies that while methods of the class are executing, they may violate the class
invariant. This is acceptable, as long as the class invariant is again satisfied when the
method returns [147].

Class invariants as well as preconditions and postconditions can call other methods
in their definitions. However, any methods called from within contracts should be free
of side effects, since calling methods which cause side effects from contracts can lead
to difficult to find bugs [146].

Contracts in the Presence of Inheritance

Contract theory can easily be extended to encompass inheritance through the concept of
“subcontracting” [[147]. In subcontracting, the original contractor engages a subcontrac-
tor for part of or all of the work. For subcontracting to work, the subcontractor “must be
willing to do the job originally requested, or better than requested, but not less” [147,
page 576].

In the presence of inheritance a client may not know whether it is working with

a direct instance of the class or an instance of the subclass as its supplier. Therefore,

Chapter 2. Background 18

for the contracting to continue to work, the methods in the subclass must adhere to
the contract specified by the overridden methods in the superclass [[145]; that is all
preconditions, postconditions and class invariants specified in the superclass still apply

in the subclass. Specifically, this means that:-

e Preconditions must be equal or weaker than in the superclass. The subclass cannot

expect more of the client, although it may expect less;

e Postconditions must be equal or stronger than in the superclass. The client expects
certain results which must be delivered by the subclass. In addition, the subclass

may choose to deliver more than promised by the superclass;

e (lass invariants are inherited from the superclass and do not need to be repeated

in the subclass. The subclass may however add its own class invariants [147]].

Meyer claims that software contracts provide “a better understanding and control of
the fundamental object-oriented notion of inheritance and of the key associated tech-
niques: redeclaration, polymorphism, and dynamic binding” [146]. In fact, software
contracts are closely related to the Liskov Substitution Principle (LSP) which defines
the valid use of inheritance [[132; 141]].

The LSP essentially states that an object of the subclass must be substitutable for
an object of the superclass without affecting the correctness of the system. This is
important, because a lot of times clients will not know whether they are dealing with
an instance of the subclass or superclass. If contracts are applied incorrectly in the
subclass, a subclass object can no longer be substituted for a superclass object; thus
the LSP is violated. Therefore, if preconditions are strengthened or postconditions are
weakened in the subclass, the LSP is violated [3]]. This shows that contracts are closely
related to the LSP.

Checking the Class Invariant

As we explained above, the class invariant must be satisfied in all observable states
of instances of a class. Meyer argues that class invariants could therefore in theory
be added to all preconditions and postconditions of methods, and to postconditions of
constructors, since they must always be satisfied at those points in the execution of a

program [145].

Chapter 2. Background 19

However, Barnett et al. disagree with this and argue that seeing the class invariant

as an addition to each method’s precondition raises a new problem:-

The object invariant of class T is a condition on the internal representation
of T objects, the details of which should be of no concern to a client of
T, the party responsible for establishing the precondition. Making clients
responsible for establishing the consistency of the internal representation is

a breach of good information hiding practices. [12, page 30]

We agree that maintaining the class invariant is the responsibility of the class itself,
not the client. Further, we argue that seeing the class invariant as part of preconditions
causes problems in the presence of inheritance. Class invariants may be strengthened by
subclasses. Making them part of the preconditions thus implies a potential strengthening

of preconditions, which violates the principles of contract inheritance.

Contract Violations

There are two ways in which a contract may be violated: the precondition may be
violated by the client or the postcondition may be violated by the supplier. Each contract

violation is the result of a bug in the software:-

e “A precondition violation indicates a bug in the client ... The caller did not observe

the conditions imposed on correct calls.

e A postcondition violation is a bug in the supplier ... The routine failed to deliver

on its promises.” [146]]

A precondition violation voids the contract between client and supplier before the
supplier has even started its work [145]. Although a contract specifies the obligations
of a supplier, these only apply if the client has first met its own obligations and fulfilled
all preconditions. This implies that if the preconditions are not met by the client, the
behaviour of the supplier is undefined and it could in theory return a random value,
crash execution or even loop indefinitely.

A postcondition violation occurs when the client fails to achieve what it promised.
This could be due to a bug in the supplier or an external event, such as a hardware
failure. Meyer proposes three alternatives courses of action for the supplier in case of a

postcondition violation [[145]:-

Chapter 2. Background 20

e Resumption: Try a different strategy to fulfill the contract;
e Organised panic: Give up and notify the client of the failure;

e False alarm: If the problem has disappeared, take corrective action if necessary

and continue normally.

With each option, it is important to ensure objects are returned to a consistent state
to satisfy the class invariants before returning to the client. It is also vital to the integrity
of the software that in the case of a failure the supplier notifies the client rather than just

trying to conceal the problem [1435]].

Software Contracts and Redundant Checking

Defensive programming is a programming practice which is often considered to improve
the reliability of a system [145]. Programming defensively means always checking
invariants and the inputs a method receives. According to Liskov et al., programmers
should always “assume that your program will be called with incorrect inputs, that files
that are supposed to be open may be closed, that files that are supposed to be closed
may be open, and so forth” [133] page 182].

Meyer argues that defensive programming is made unnecessary by software con-
tracts and that it is in fact “a dangerous practice that defeats the very purpose it tries to
achieve. To program defensively is one of the worst pieces of advice that can be given
to a programmer” [145]]. He believes that programmers add redundant checks “just in
case” [[145] because the contract is unclear and it is therefore not specified whether the
client or the supplier should check for possible error conditions.

Adding redundant checks is problematic because of the added complexity and per-
formance penalty redundant checks entail [[147]]. Meyer is particularly concerned about
the added complexity, which is “the single, worst enemy of software reliability. The
more redundant checks, the more complex the software becomes, and the greater the
risk of introducing new errors” [145]. Therefore, he proposes the Non-Redundancy
Principle which states that a supplier should never test for preconditions because they
are already guaranteed by the client [147].

This principle creates two distinct options for the developer. A demanding method
has strong preconditions, forcing clients to perform many checks; a tolerant method has

weak preconditions or none at all and does most of the checking itself [[145].

Chapter 2. Background 21

Meyer states that from his experience strong preconditions are more useful: they
are good for reuse because a method does not try to be all things to all clients; in addi-
tion, clients often know better how to deal with precondition problems than the supplier
[147]. However, he also argues that there is a case for more tolerant methods close to

the uncontrolled end-user of software [[145]].

2.5.2 Software Contracts and Testing

Testing is an essential part of the software development cycle; its main goal is to improve
the correctness of software by discovering and removing defects. However, testing is
time-consuming and it is very difficult or impossible to test every possible path through
the software and every combination of states and inputs.

Software contracts have often been used to support testing. In the following section
we first look at how they can help automate and improve unit testing, before considering
the relationship between software contracts and the popular agile development method
of Test Driven Development (TDD).

Contracts and Unit Testing

Unit testing refers to the practice of verifying small parts of the software separately.
The two stages of unit testing which take up most of the time include the preparation of
test cases (choosing the input values) and the creation of test oracles (determining the
correct output for each test) [[148]. Leitner et al. conducted a survey amongst students
and concluded that “the time and effort involved in writing and maintaining unit tests
are the most often occurring causes for the developers’ dislike of unit testing” [[130]].

Much work has been done to try to automate testing, particularly unit testing. Au-
tomated testing tools include DSD-crasher [62] and DART [86], which detects crashes
and assertion violations during random testing. FindBugs [101] tries to prevent bugs
by identifying possible errors using bug patterns. However, such testing tools lack the
insight of human testers regarding program semantics and cannot distinguish between
meaningful and meaningless input [[130].

“Formal specifications of complex systems represent a significant opportunity for
testing because they precisely describe what functions the software is supposed to pro-
vide in a form that can easily be manipulated” [160]. A formal specification, for exam-

ple a software contract or formal documentation, describes the valid input and output

Chapter 2. Background 22

for each method; it describes the general case of what it means for a method to work
correctly, while unit tests check specific cases. This makes formal specification such as
software contracts very useful for automated unit test generation.

When generating tests from software contracts preconditions serve for selecting ap-
propriate test cases; all test cases must satisfy the preconditions of the tested method.
A violated precondition indicates an invalid method call and thus an invalid test case
[148]]. Postconditions are used to create test oracles; the result of the method call must
satisfy the postconditions [48]]. A violated postcondition indicates a bug [[148]].

Peters et al. generate tests from documentation accompanying each method [165].
Several tools which use software contracts to automatically generate unit tests have
also been developed, including Cdd [[130], AutoTest [515148;1149] and Pex [[150;192].
These tools are described in more detail in Chapter 3]

Liu et al. conducted a study to validate the usefulness of unit tests generated from
software contracts using the testing tool AutoTest. They found that this technique helped
find more bugs and achieved better code coverage than standard black-box testing, al-

though the results were not significant due to the small size of the study [134].

Contracts and Test Driven Development

Test Driven Development (TDD) is a software development technique which reverses
the usual order of coding and testing. In classic software development, testing is always
done after parts of the program have been completed. In TDD however, unit tests are
written first followed by the actual code. Kent Beck originally publicised TDD in his
book “Test Driven Development by Example” and states that the main goal of TDD is
“clean code that works” [[18) page ix].

There are only two simple rules to follow when using TDD:-

e Developers are only allowed to write code if a test fails; and

e Duplication must be eliminated.

More specifically, Beck calls out three distinct TDD development stages: “Red /
green / refactor” [18, page x]. A diagram of the TDD development process and stages
is shown in Figure [2.1]

Development starts off in the Red stage, where developers write a test for function-

ality that has not yet been implemented. Of course this test will fail or may not even

Chapter 2. Background 23

Design
problem found

Test fails

All tests pass

Refactoring:
Eliminate design problems

Green:
Make tests pass

Red:
Write tests

Design problem
fixed

Figure 2.1: TDD development stages

compile, giving developers a reason to move to the green stage where they are allowed
to develop the actual software.

In the Green stage developers write code to make the test pass. They do this as
quickly as possible and “committing whatever sins necessary in the process” [18, page
x]. This means that if the simplest way to get the test to work is to add a public field or
a hard-coded constant, this is exactly what developers should do, even if this is usually
considered bad practice. As soon as the test passes, developers have to stop implement-
ing new functionality, but may now move on to the Refactoring stage or return to the
Red stage.

In the Refactoring stage, developers eliminate the design problems they created in
the Green stage and improve the quality of their code. It is however important that
refactorings do not change the semantics of the program; that is, after the refactoring
stage all tests should still work as before.

TDD is a very influential development technique, particularly in the agile devel-
opment community. Feldman argues that software contracts are synergistic with agile
development methods such as Extreme Programming which use TDD, because of the
usefulness of contracts in automating and improving unit tests and identifying possi-
ble refactorings [73]. Traditionally, however, use of software contracts has been seen
as a rather formal approach which is therefore mostly limited to the formal methods

community. This view is reinforced by Meyer, who states that:-

If it’s a matter of gut feeling, then mine is that the two approaches, Test
First and Design by Contract, are the absolute extreme opposites with no
combination possible or desirable. It’s nice once in a while to see a real

irreconcilable opposition [161]].

Ostroff et al., however, disagree and propose a development method called Spec-

ification Driven Development, where both TDD unit tests and contracts are seen as

Chapter 2. Background 24

specifications with different strengths: “TDD is superior for capturing complex emer-
gent behaviour (e.g., trace behaviour) that cannot easily be expressed statically with

contracts; DBC is superior for completely specifying behaviour” [161].

2.5.3 Advantages of Software Contracts

According to Meyer, there are a number of benefits to be gained through the use of

software contracts [[147]:-

e Program correctness: Software contracts specify the contract between client and

supplier, making misuse and misunderstandings less likely;

e Program understanding: Software contracts force developers to think in de-
tail about the responsibilities and purposes of different software parts, leading to

greater understanding of the program;

e Program design: By thinking in detail about the contract specifications before

coding, developers are more likely to develop a good software design;

e Documentation: Contracts are formal specifications which document the respon-
sibilities and purposes of different software parts. This makes them ideally suited

as program documentation; and

e Testing and Debugging: Preconditions and postconditions can be used to auto-
matically generate unit tests. Assertion violations during debugging indicate the
presence of bugs, making them easier to identify.

The benefits of software contracts are particularly pronounced in the development
of large software systems. Such systems are typically broken up into many smaller
components which are developed by different parts of the development team. Having a
formal way of defining the interfaces of such components is essential when software is
developed by large teams of software engineers.

A common criticism of contracts is that they are difficult and time-consuming to
write. However, as we stated in Section [2.5.2] writing contracts is not so different
from writing unit tests which is already common practice in the software development
industry. Contracts simply express the general case, while unit tests check specific

cases. For this reason, contracts form an ideal basis for automatically generating unit

Chapter 2. Background 25

tests. This means that if developers put effort into writing software contracts rather than
unit tests, much of the unit testing could be automated.

While the benefits of software contracts have been described extensively in litera-
ture, little empirical work has been done to validate these claims [[187]]. Blom et al. con-
ducted a small-scale study with students, where half the class used DBC for program
development [23]]. They found that students using DBC spent more time on system
design, specifying the exact contracts, but needed less time later in the development cy-
cle. This result was backed up by a study performed by Tantivongsathaporn et al., who
found that the use of software contracts reduced time spent on testing and time spent
in meetings [[187]. However, Blom et al. found that while DBC reduced effort in some
development stages, it did not significantly decrease the overall development time.

Blom et al. also discovered that work satisfaction was slightly, but not significantly,
higher in teams that used DBC [23]]. However, DBC had no detectable effect on the
overall quality of the developed software [23]].

Miiller et al. produced slightly different results in an experiment involving univer-
sity students [[157]. They concluded that, while the use of software contracts reduced
programming effort for software extension and maintenance, it increased development
time for new code. This result lead them to question Meyer’s claim that software con-
tracts increase developers’ understanding of software and they argue that had that been
the case, development time should have decreased. This, however, is a questionable
conclusion, since an increase in programming effort does not necessarily imply worse
understanding of the software. Like the work conducted by Blom et al., this study also
found that there was no significant difference in program quality when using software
contracts; however, program quality appeared to be higher directly following the imple-

mentation stage; that is, before the testing stage.

2.6 Separation of Types and Implementations

In many modern OO programming languages, including Java and C#, a class defines
both a type (a set of values and the operations that can be defined on them) and provides
the corresponding implementation. However, much research has shown that separating
types from their implementations has the potential to provide many benefits, including

improved encapsulation and flexibility.

Chapter 2. Background 26

A type is a declaration of external behaviour, including method declarations [7; 49].
This type definition should include only information relevant to clients. It deliberately
excludes private and internal details that clients do not need and should not know about
[33; 385 1139]. An implementation, on the other hand, contains the code to implement a
particular type and includes all the internal details omitted from the type [49].

In this thesis, we use the terms type and implementation to distinguish between these
two concepts. Elsewhere, type is sometimes referred to as interface, abstract data type
or contract; implementation may also be called class.

Separating types and implementations provides a number of benefits [33; 38} 1315
139; [179]. It allows for the more flexible combination of types and implementations.
For example, it allows the definition of multiple implementations for the same type as
well as similar implementations for different types, something that is not possible when
types and implementations are combined [38}; 1315 139].

In addition to increasing flexibility, defining types and implementations separately
increases abstraction and reusability [33; 138} [1315(139]. Types are completely indepen-
dent from the underlying implementations and can be used by clients without requiring
any knowledge of internal details. A different implementation of the same type can
easily be substituted without affecting clients [131; [139]. Incidentally, this improves
encapsulation because clients do not need to and in fact cannot know about internal
implementation details [38;179].

Given the tangible benefits that can be achieved by separating types and imple-
mentations, a number of languages supporting and enforcing this separation have been
developed, including Emerald [20; 22; [131]], Lagoona [83; [131], POOL-I [6; [7] and
Trellis/Owl [176].

On the other hand, many mainstream OO languages have limited or no support
for separating types and implementations. Java and C# provide inferfaces which can
be used to specify types without implementations. In addition to interfaces, C++ also
allows developers to specify types in header files. However, none of these languages
enforce a separation between the two concepts.

A number of proposals have been made to further support and enforce the separa-
tion of types and implementations in C++ [49; 139} [17]. Cho et al. propose a formal
separation model for C++, where a type is defined in a C++ interface. Each type can be

implemented by any number of different implementations. Most code should refer only

Chapter 2. Background 27

to the interfaces rather than the specific implementations; however, the implementation
must be referred to directly when constructing an object [49].

Martin presents a C++ programming style with similar aims. C++ interfaces are
used to declare types; they are only allowed to contain virtual functions without imple-
mentations. Implementations are declared in C++ classes and their code should refer
only to interfaces where possible. However, when constructing new objects, the partic-
ular implementation to be used needs to be named [[139]].

Baumgartner et al. propose specifying types in C++ using so-called signatures,
which contain function definitions but no implementations. Signatures cannot con-
tain fields or constructors and cannot use any visibility specifiers such as private or

public, since all functions defined in the signature are implicitly public [17].

2.7 Inheritance

Inheritance is a fundamental mechanism in OO programming that has received much
attention in research. It is used by programmers to structure their programs hierarchi-
cally, enabling code reuse and abstraction. For example, if we have a class Vehicle, we
could define two new classes Car and Ship that inherit from vehicle. In Java and many
other mainstream OO languages this would allow us to reuse the code we already wrote
for the Vehicle class in the Car and Ship classes. It would also make Car and Ship
substitutable for Vehicle, meaning that we can use a Car or Ship object wherever a
Vehicle object is expected.

Inheritance is seen by many as the central feature of OO programming which pro-
vides a solution to many of the problems hampering software development [39; 61} 169;
14775 11'78; 1835]]. Meyer calls it “a central and fascinating component of object technol-
ogy” [1477, page 459], while Dodani et al. describe it as “‘the most important contribution
of the OO paradigm” and say that it is the basis for many advantages and the popular-
ity of OO [69]. Cardelli even suggests that inheritance is “the only notion critically
associated with object-oriented programming” [39]; America, however, disagrees with
this and claims that while inheritance is very important in OO programming, there are
several other important OO concepts [6]].

Many advantages have been attributed to inheritance; Meyer, for example, claims
that it is “a key technique for both reusability and extendibility” [[147, page 517]. This

is backed up by Taivalsaari, who suggests that inheritance improves conceptual mod-

Chapter 2. Background 28

elling and reusability [185]. On the other hand, others note that unrestricted use of
inheritance can be dangerous and causes many problems. Sakkinen, for example, states
that inheritance is overused by many developers and that programmers sometimes apply
it when simple aggregation would be better [174]. This point of view is also expressed
by the well-known design principle telling developers to “favour composition over in-
heritance” [[111]].

Inheritance was first introduced by Simula-67 in the late 1960s and was subse-
quently adapted by Smalltalk [6; 39]. Today, more than 40 years later, inheritance
remains an inadequately understood mechanism that causes much disagreement, despite
the large amount of research done in the area and its importance to OO programming
[118; 1625 [185]. A thorough treatment of inheritance and the various issues and de-
bates surrounding it can be found in [118]]. In the next sections, we further describe
some of the contentious issues surrounding inheritance. We explore the advantages and
disadvantages of multiple inheritance, present research suggesting that there are two
separate dimensions of inheritance that need to be differentiated, and look at the issue

of covariance versus contravariance.

2.7.1 Multiple Inheritance

Inheritance can be classified as single or multiple inheritance, depending on from how
many classes a subclass can inherit. In single inheritance, a class can have only a single
superclass; in multiple inheritance any number of superclasses are allowed. When single
inheritance is used, the resulting inheritance hierarchy forms a tree, with each class
having a unique superclass [39;[178]]. Multiple inheritance, on the other hand, results in
a directed acyclic graph, where each class can have any number of superclasses [179].
Multiple inheritance is often seen as more flexible and elegant, allowing a more
natural definition of the relationships between classes [39;147;178]. Meyer claims that
itis frequently needed and is especially useful when developing reusable libraries [[147]].
An important problem of single inheritance, easily overcome by allowing multiple
inheritance, occurs when a class is a combination of several abstractions of equal im-
portance [185]]. Single inheritance forces the programmer to make an arbitrary decision
about which should become the single superclass. This situation often makes it neces-

sary to duplicate code and makes it more difficult to reuse predefined classes [[1785195].

Chapter 2. Background 29

Despite the advantages of multiple inheritance, single inheritance is still prevalent
in many programming languages today. One of the main arguments against multiple in-
heritance is its inherent complexity, particularly surrounding its implementation in pro-
gramming languages [39;178]]. Some argue that the complexity of multiple inheritance
can result in poor OO designs and that any design which requires multiple inheritance
could easily be modelled using single inheritance [178].

The complexity of multiple inheritance has been a major motivation for many OO
programming languages to support only single inheritance. C++ and Eiffel support
multiple inheritance, but Smalltalk, Java and C# allow only single inheritance between
classes [8;97]]. Java and C# do, however, support multiple inheritance of interfaces, but
since no implementation code can be placed in interfaces, it is still not possible for a
class to inherit implementation details from multiple sources.

The specific complexities surrounding multiple inheritance have been researched
thoroughly and documented widely, including by [[7; 415 [116; 1205 (1475 1785 [185]].

The most frequently cited problem with multiple inheritance is that of name clashes,
where a class inherits two fields or methods of the same name from different parents
[75 1165 147; 1785 [185]]. This results in an ambiguity, which can often not be resolved
automatically [178} [185]].

Name clashes are a complex and widely researched issue. Essentially, there are two
types of name collision [116]: casual name collision, where two conceptually unrelated
superclasses accidentally contain fields or methods of the same name [[178; [185], and
intended name collision, where two different fields or methods with the same name de-
scribe the same semantic concept [116]]. One common cause of intended name collision
is that one method or field is inherited from multiple ancestors through different paths
of the inheritance graph [178]].

Several specific solutions to the problem of name clashes have been proposed in
literature [415178;(179]]. These solutions are explained below and include dealing with
the duplication in the inheritance graph directly, flattening the inheritance graph into a
linear inheritance chain or converting the graph into an inheritance tree.

Trellis/Owl is an example of a language that models inheritance as a graph and
resolves conflicts as they arise [27]. In this model, if a class inherits more than one
method or field with the same name this conflict must be resolved by the software de-
veloper [178;1179]. A conflict in the name of a field requires a name change to resolve

it; a method name conflict requires the conflicting method to be overridden in the sub-

Chapter 2. Background 30

class, which may then, for example, invoke the conflicting parent methods and combine
their results [[120; [179]].

A second strategy for implementing multiple inheritance is to convert the inheritance
graph into a linear chain and then treat it as single inheritance [178}; [179]. However,
this strategy causes a number of problems. It may result in the insertion of unrelated
classes into the inheritance hierarchy between a class and its parent. This means that
the developer writing a particular class may have had no knowledge of the class which
in the end becomes the class’ effective parent. Furthermore, if duplicate operations
exist, a class no longer gets all versions of the operation, but only one, depending on
the structure of the inheritance chain. The choice of which operation a class inherits is
arbitrary and is made without the awareness or input of the programmer [179].

A third solution was proposed by Snyder to overcome the limitations of the previous
two strategies [179]. He suggests that, rather than converting the inheritance graph into
a linear chain, it should be transformed into an inheritance tree. Common nodes that can
be reached by more than one path are duplicated, resulting in an inheritance tree where
each class has a single superclass. However, this approach again causes problems with
name collisions [[178]].

Although the complexities of multiple inheritance have been thoroughly docu-

mented, some continue to disagree; Meyer for example, insists that:-

In spite of the elegance, necessity and fundamental simplicity of multiple
inheritance, obvious to anyone who cares to study the concepts, this facility
has sometimes been presented (often, as one later finds out, based solely
on experience with languages or environments that cannot deal with it) as
complex, mysterious, error-prone — as the object-oriented method’s own
“goto” [147, page 521].

Many researchers acknowledge the complexities surrounding multiple inheritance
but argue that it remains a vital modelling tool for software developers. For example,
Singh calls multiple inheritance “an important pillar of the object oriented paradigm”

[178], while Lieberman insists that it “is absolutely essential” [S7].

2.7.2 Subtyping versus Implementation Inheritance

One pivotal issue surrounding inheritance is the distinction between its two separate

dimensions: subtyping and implementation inheritance.

Chapter 2. Background 31

There are two main usages associated with inheritance [132]]. Firstly, it is a mecha-
nism for code reuse, where one class inherits from an existing, similar class [132]]. Such
reuse decreases the amount of code that needs to be written and avoids code duplica-
tion. According to Dodani et al., this was the only use of inheritance when it was first
introduced [69]]. Secondly, inheritance is used to reuse behaviour by creating a hierar-
chy of subtypes and supertypes. According to Liskov, “the intuitive idea of a subtype
is one whose objects provide all the behavior of objects of another type (the supertype)
plus something extra” [[132]. Therefore, a subtype object can be used wherever a su-
pertype object is expected by clients; we say that the subtype is substitutable for the
supertype. This provides reusability for clients of a class. The distinction between these
two dimensions of inheritance was first noted be Brachman, who worked in the area of
semantic networks [29].

It has long been argued that these two uses represent distinct dimensions of inheri-
tance and should be separated [6} [17; 38, 140; 49; 160; (1185 11205 (1745 185]]. This separa-
tion is loosely connected to the separation of types and implementations: subtyping is
a relationship between types while implementation derivation is a relationship between
implementations [[7]].

There is a wide range of terminology used to describe these two different types of in-
heritance. Reuse of behaviour is often referred to as subtyping or interface inheritance.
Reuse of code may be called implementation inheritance, representation inheritance,
class inheritance, subclassing or simply inheritance. Subsequently, we will use the
terms subtyping and implementation derivation to describe the two distinctive dimen-
sions; we use the term inheritance to mean either of the two.

Subtyping occurs when a software developer uses inheritance to reuse behaviour: a
subclass is created, which adds behaviour to a superclass while remaining substitutable.

This use of inheritance is described by the influential Liskov Substitution Principle:-

If for each object ol of type S there is an object 02 of type T such that for
all programs P defined in terms of T, the behavior of P is unchanged when
ol is substituted for 02, then S is a subtype of T [[132]].

The idea here is that of substitutability: one type can never truly be a subtype of an-
other unless its external behaviour is the same as what the client would expect from the
supertype [38;118]. This is equivalent to saying that any methods of the subtype should

expect no more and deliver no less than those of the supertype; that is, preconditions for

Chapter 2. Background 32

subtype methods can only be weakened and postconditions can only be strengthened.
Since clients can use subtype objects as if they were supertype objects, it is said that
subtyping supports reusability for the client [[118} 140].

Implementation derivation, on the other hand, supports reusability for the implemen-
tor, allowing software developers to reuse an existing piece of code [118]. Behaviour
may be added or modified in the new implementation in such a way that substitutabil-
ity is not maintained; in other words the new type is no longer a direct subtype of the
original type. Thus, implementation derivation is purely the reuse of code for the con-
venience of the implementor [[118]. Taivalsaari summarises implementation derivation
as a situation “in which inheritance is used not because the abstractions to be inherited
are ideal from the conceptual point of view, but simply because they happen to contain
appropriate properties for the new abstraction that is under construction. In implemen-
tation inheritance, theoretical and conceptual issues such as behavior compatibility are
ignored, and pragmatic reasons such as potential savings in coding effort, storage space
or execution speed are emphasized instead” [[183]].

Implementation derivation has been widely criticised, including in [6} [174]]. Critics
of implementation derivation contend that it is unnecessary, since the same reuse can be
achieved through simple delegation, where an object delegates responsibility to another
object it contains [69].

Although subtyping and implementation derivation are seen as the two main di-
mensions of inheritance, some researchers identify further kinds of inheritance. Kurtev
identifies type inheritance, where an interface or type definition including method def-
initions are inherited, but no implementation is reused. This is similar to subtyping in
that the subtype becomes substitutable for the supertype. Kurtev contends that such a
form of inheritance is particularly useful in interface definition languages [118].

Canning et al. describe another type of inheritance which they call object inheri-
tance, where a new object is created from an existing object or prototype by specifying
how the two objects differ [38]].

In many modern programming languages, subtyping and implementation derivation
are conflated into a single inheritance mechanism. This means that one cannot be used
without entailing the other [118]. The problem is that this forces the subtyping hierarchy
to be the same as the implementation derivation hierarchy, which may not always be
desirable or even possible [6; [17; 49; [120]. Smalltalk, for example, combines both
subtyping and implementation derivation. Cook analysed the Smalltalk-80 collections

Chapter 2. Background 33

hierarchy and found that in many cases implementation derivation was used despite the

fact that no subtyping relationship existed [59]. Similarly, America notes that:-

It may well be that in many cases the hierarchical relationships induced by
inheritance and by subtyping coincide, but this is certainly not always the
case: On the one hand, it is very well possible in many cases to define a
class that really specialises the behaviour of another class, but employing
a totally different structure of variables and having different code even for
methods with the same name (so we have subtyping without inheritance).
On the other hand, it is also possible that, by simply adding some methods
to an existing class, the behaviour even of the old methods is changed in an
essential way ... In the latter case, the new class cannot be said to give rise

to a subtype to the old one, so we have inheritance without subtyping [6].

Decoupling the two concepts and making them independent of each other allows
them to be used independently [[120]]. Despite the advantages this presents, some re-
searchers continue to argue that programmers should strive to make the two hierarchies
coincide [162].

Many OO programming languages including C++ [181]], Java [8]], C# [97], Simula
[63]] and Eiffel [[145] continue to combine the concepts of subtyping and implementa-
tion derivation into a single relationship despite the large amount of research showing
the benefits of a separation [49; 60; [118; [185]. However, a number of programming
languages have been developed that cleanly separate the two dimensions of inheritance.
Examples of such languages include BeCecil [45} 131]], POOL-I [6; 7] and Eiffel’s suc-
cessor, Sather [[131; [184]. In addition, there are a number of programming languages
that completely disallow implementation derivation and provide only a mechanism for
subtyping. Such languages include Emerald [20; 22 [131]], Lagoona [83;131]] and Trel-
lis/Owl [[17;[176]].

For those languages that consider subtyping separately from implementation deriva-
tion, there are two possible implementations of subtyping: named and structural sub-
typing [118]. In languages which use named subtyping, the programmer specifies the
subtype relationship explicitly; with structural subtyping, the subtype relationship is au-
tomatically checked and inferred by the compiler [118]]. Structural subtyping is arguably
more flexible but also less transparent to the developer, who cannot easily find the super-

type of a particular type [21]]. Furthermore, structural subtyping can lead to accidental

Chapter 2. Background 34

conformance, where a type unintentionally and without the developer’s knowledge be-
comes a subtype of another [[162]]. Emerald, for example, uses structural subtyping,

while Trellis/Owl uses named subtyping [49].

2.7.3 Covariance and Contravariance

Disagreement around basic inheritance concepts is particularly evident when looking at
the concepts of covariance and contravariance. This issue has been widely acknowl-
edged in literature, for example in [[7;134;138;43;167;96; 118]], and a number of different
views on the topic have been presented.

Covariance and contravariance refer to the way parameter and return types can be
changed when a method is overridden. Let us look at a simple example; we have a hier-
archy of three collection types: Collection, List and ArrayList. We want to display
the items in a collection in a graphical user interface and for this purpose we make the
ItemDisplay type, which displays all items in a List. We subtype ItemDisplay to
further add scrolling functionality, creating a ScrollableItemDisplay type. A UML

class diagram of this example can be seen in Figure [2.2]

Collection
ItemDisplay F------------- > List
ScrollableltemDisplay ArrayList

Figure 2.2: Covariance and contravariance example: displaying a list of items

In type ItemDisplay we write a method displayItems which takes a parameter of
type List. This means, that an ITtemDisplay can display items from both a List and
an ArrayList. Pseudocode for this can be seen in Program Listing 2.2.

We now want to override the displayItems method in the subclass
ScrollableItemDisplay. There are several possibilities: we might override

displayItems, keeping the parameter type exactly the same; this is invariant over-

Chapter 2. Background 35

Program Listing 2.2 Covariance and contravariance example: the ItemDisplay type
type ItemDisplay {

public void displayItems (List items) {

riding. We might override displayItems and change the parameter type to a sub-
class of the original type List; that is, we change displayItems’s parameter type to
ArrayList; this is covariant overriding. Lastly, we might override displayItems and
change the parameter type to Collection, a supertype of the original parameter type
List; this is contravariant overriding. Pseudocode for these three options can be seen

in Program Listing 2.3.

Program Listing 2.3 Covariance and contravariance example: the
ScrollableItemDisplay type

type ScrollableltemDisplay subtypes ItemDisplay {

//invariant overriding
public void displayItems(List items) {

//covariant overriding
public void displayItems (ArrayList items) {

//contravariant overriding
public void displayItems(Collection items) {

This example shows that covariance describes the situation where the new return and
parameter types vary in the same direction as the inheritance relationship; contravari-

ance describes the variance of types in the opposite direction [28} 965 [118]].

Chapter 2. Background 36

The question arises whether covariance or contravariance should be used when over-
riding methods. In order to get a type-safe system, parameter types must be overridden
contravariantly and return types covariantly [[7; 3843 167;96; [118]]. The reasoning be-
hind this becomes clear when we apply the rules of software contracts: postconditions
can be strengthened in subclasses but preconditions can only be weakened [162]. The
parameter types of a method define what inputs the method expects and are therefore
analogous to preconditions; the return type specifies what the method provides in return
and is analogous to postconditions. Therefore, parameter types may only be weakened
and return types may only be strengthened; that is, parameter types need to be overrid-
den contravariantly and return types covariantly. Overriding parameter types covariantly
is unsound and results in a loss of type safety [43} [118]].

From our example above, it is easy to see that parameter types need to be overridden
contravariantly. If a client uses an object of type ItemDisplay, it will not know if this
objectis an ItemDisplay ora ScrollableItemDisplay. The client expects to be able
to call the displayItems method and pass in a List object. Therefore, changing the
parameter type covariantly to ArrayList in ScrollableItemDisplay does not work.
If we did that, ScrollableItemDisplay would not accept a List, only an ArrayList
and would no longer be substitutable for its supertype. However, contravariant overrid-
ing is type-safe. If ScrollableItemDisplay can display items from any Collection,
the client can safely give it a List as it expects.

More generally, the correct use of variance depends on whether a construct is used
as input or output [33]. A value which is used as output, such as a method’s return
type, must vary covariantly; inputs such as parameter types must vary contravariantly.
Instance variables or fields may be used as both input or output and must therefore be
covariant and contravariant at the same time; this is possible only if their types do not
vary at all; that is, field types are invariant.

Despite the fact that covariant overriding of parameter types compromises type
safety, many researchers prefer covariant overriding, arguing that contravariance is un-
intuitive, awkward [43]; 96} [162]] and makes reuse more difficult [[L18]]. The unintu-
itiveness of contravariant overriding is illustrated by Ghelli, who remarks that covariant
overriding of parameters is much more common in practice [85]. Overall, Castagna
concludes that “one has to use contravariance when static type safety is required, but

otherwise covariance is more natural, flexible, and expressive.” [43]]

Chapter 2. Background 37

Although systems which use covariant parameter overriding are not statically type-
safe and can therefore not be completely checked for type safety at compile-time, their
soundness can be checked at runtime if the compiler inserts appropriate runtime checks
into the code [162]]. This approach is taken by Eiffel, which allows covariant overriding
of parameter types, making its type system potentially unsafe [34} |58 67; [118; [177].
Eiffel uses the additional “system validity” check to detect type errors caused by covari-
ant overriding of parameter types at runtime [28]].

A few languages enforce contravariant overriding of parameters to ensure type
safety. These languages include Trellis/fOwl, POOL-I and Eiffel’s successor Sather
[39; [177].

Other languages, including C++ [[181], C# [97], Java [8] and Modula-3 avoid the
issue altogether, by allowing neither covariance nor contravariance of parameter and
return types [190]. Thus, in these languages parameter and return types have to be
exactly the same as in the superclass.

Java allows a certain amount of covariance and contravariance: throws clauses
declaring which exceptions a method may throw are contravariant so that a method
must declare the same or a subset of exceptions declared in the throws clause of its
parent [190]; array types are covariant so that an array of type A is the subtype of an
array of type B if A is a subtype of B. Bruce points out that, since arrays can act as both
inputs and outputs, their types should be invariant and thus this approach is not type-safe
[33]]. Pierce explains the reason and consequences of allowing covariance in the case of

arrays in Java:-

This feature was originally introduced to compensate for the lack of para-
metric polymorphism in the typing of some basic operations such as copy-
ing parts of arrays, but is now generally considered a flaw in the language
design, since it seriously affects the performance of programs involving ar-
rays. The reason is that the unsound subtyping rule must be compensated
with a runtime check on every assignment to any array, to make sure the
value being written belongs to (a subtype of) the actual type of the elements
of the array [166, page 198].

Survey of Existing Software Contract
Technologies

Software contracts and their benefits have been researched for several decades. Con-
sequently, a number of languages which natively support software contracts have been
developed, as well as a multitude of tools adding contract support to popular, exist-
ing programming languages. These technologies are sometimes accompanied by static
verifiers, runtime checkers and testing tools.

While much research effort has been put into developing new technologies, this
work has been done relatively independently and there has been little evaluation and
comparison of existing tools. As more technologies supporting software contracts
emerge and their usage becomes more common, it is important for us to take stock
of current developments and uncover any issues and areas of disagreement which need
to be addressed in the future. This is what we attempt to do here.

In this chapter, we investigate eleven existing software contract technologies, high-
lighting similarities, differences and shortcomings we uncover. In later chapters we
develop our own contract tool, PACT, which aims to address these issues.

The large number of existing software contract tools made it impractical to consider
all of them and we therefore focused our investigation on tools which add contract sup-
port to the popular programming platforms Java and .NET. The technologies discussed

here include:-
e EIFFEL [145;[146}147];

38

Chapter 3. Survey of Existing Software Contract Technologies 39

e NET contract technologies, including

— SPEC# [14:[128]; and

— CODE CONTRACTS [72;[151]].

e Java contract tools, including

JAVA MODELING LANGUAGE (JML) [[123; 11255 126];

ICONTRACT [L17]];

CONTRACT JAVA [75];

HANDSHAKE [70];

JASS [16];

JCONTRACTOR [112;[113]]; and

JMSASSERT [137].

e OBJECT CONSTRAINT LANGUAGE (OCL) [[159;[194]].

In this chapter, we first introduce some of the earliest programming languages to
natively support specifications such as assertions, preconditions, postconditions and in-
variants in Section [3.1] including GYPSY, ALPHARD and EUCLID. In Section[3.2] we
look at the EIFFEL language developed by Bertrand Meyer as part of his work on DBC.
We also present contract tools developed for two popular programming frameworks:
NET (in Section [3.3)) and Java (in Section [3.4). We further look at the OBJECT CON-
STRAINT LANGUAGE in Section which is used to augment UML diagrams with
constraints, including preconditions, postconditions and invariants. Finally, we com-
pare and contrast the technologies in Section 3.6

Although we focus our attention on contract tools for .NET and Java in this report,
contract support has also been developed for many other programming languages, in-
cluding C [[173], C++ [90; 91} 136} [169]], Smalltalk [42], Python [167; [168] and Ada
(1355 [175]. Particularly notable is the Larch family of specification languages, first
described in 1983, which consists of specification languages for a wide range of pro-
gramming languages including Ada [89], C [93]], C++ [122;124;200], CLU [199], ML
[201]], Modula-3 [93]] and Smalltalk [47]].

In this chapter, we continue to use the example of a simple Stack class similar

to that introduced in Chapter [2] to show how contracts are defined using the different

Chapter 3. Survey of Existing Software Contract Technologies 40

technologies. This version of the Stack class differs slightly from the previous one in
that it does not accept null objects; pseudocode for this is shown in Program Listing
3.1.

A paper entitled A Critical Comparison of Existing Software Contract Tools detail-
ing the results of this survey of contract technologies has been accepted to ENASE 2011
(6th International Conference on Novel Approaches to Software Engineering). A copy

of the paper can be found in Appendix [A} Parts of this section also appear in the paper.

3.1 Early Specification Languages

Since the 1970s, several programming languages have been developed which allow
developers to augment programs with software specifications; such languages include
GYPSY, ALPHARD and EUCLID.

The GYPSY programming language was designed for “verification by run time val-
idation as well as by formal proof” [5]. Released in 1976, it was the first programming
language that allowed developers to not only express a program’s semantics but to also
define formal specifications as an integral part of the program [14]. GYPSY’s syntax is
based on Pascal and also includes support for writing concurrent programs [5; [88]]. It
includes a verification condition generator, algebraic simplifier and interactive theorem
prover, allowing for thorough program verification [88]].

The ALPHARD programming language was designed around the same time as
GYPSY and aimed to support well-structured programming and formal verification. It
offers an abstraction mechanism called a form, derived from Simula classes [204]. A
form consists of three parts: the specification, representation (definition of data) and
implementation (definition of behaviour). The specification may contain an invariant
clause, a requires clause to define any assumptions and an initially clause to spec-
ify the initial values of data. For each method, the form also defines preconditions and
postconditions using the pre and post clauses.

EUCLID, an extension of Pascal, was designed in the late 1970s [170]. It introduces
a number of assertion types to Pascal including simple assertions, as well as invariants
for modules and preconditions and postconditions for routines [202; 203]. All of these
assertions may be written as comments in the code, which are ignored by the compiler
but may be used by a verifier to prove the correctness of a program. Alternatively,

assertions may be compiled into runtime checks and evaluated at runtime [121].

Chapter 3. Survey of Existing Software Contract Technologies

Program Listing 3.1 Example of software contracts for a simple Stack class

class Stack {
private Object[] stack;
private static final int MAX_SIZE = 100;
private int size;

Invariant: size >= 0 && size <= MAX SIZE;

public Stack() {
stack = new Object[MAX_ SIZE];

size = 0;
}
Precondition: !isFull() && obj != null
Postcondition: peek() == obj && size == old size + 1
public void push (Object obj) {

stack[sizet+] = ob7j;

Precondition: !isEmpty ()
Postcondition: size == old size && result != null
public Object peek() {

return stack[size-1];

Precondition: !isEmpty ()
Postcondition: size == old size - 1 && result != null
public Object pop() {

return stack[--size];

public boolean isFull () {
return size >= MAX_ SIZE;

}

public boolean isEmpty () {
return size == 0;

Chapter 3. Survey of Existing Software Contract Technologies 42

3.2 Eiffel

EIFFEL is an OO programming language designed by Meyer in the late 1980s to support

DBC, including preconditions, postconditions and class invariants. Meyer claims that:-

My aim in designing Eiffel was to produce a major programming language
for the 1990s, catering to the needs of those software engineers willing to
do what it takes to produce high-quality software. A key aspect of Eiffel,
which makes it original in the world of object-oriented languages, and in
the world of programming languages at large, is its strong emphasis on

techniques that help produce highly reliable software [[1435]].

Since developing EIFFEL, Meyer has also developed testing tools which take ad-
vantage of method contracts to automatically generate test cases. In this section, we
first describe the Eiffel programming language, before looking at two such testing tools,
AutoTest and Cdd.

3.2.1 The Eiffel Programming Language

In EIFFEL, preconditions are defined in the require clause; postconditions are specified
in the ensure clause [[147]. The contract of the push method of our Stack class written

in EIFFEL is shown in Program Listing 3.2.

Program Listing 3.2 Part of the Stack contract in EIFFEL

push (0bj:0BJECT) is
require
isFull () = False;
obj /= Void
do

ensure
peek () = obj;

size = old size + 1
end

Class invariants, which must be satisfied by each instance of a class, can be specified
using the invariant keyword [146]. They are checked at runtime at the start and end

of exported routines; that is, any routine visible from outside the class [[112].

Chapter 3. Survey of Existing Software Contract Technologies 43

Postconditions have access to the result keyword which represents the return value
of a function and the old keyword which refers to the value of a variable before the
function was executed [145; 146].

EIFFEL supports inheritance, including multiple inheritance. Method contracts and
invariants are always inherited. Preconditions may only be weakened in subclasses;
postconditions and invariants may only be strengthened [[145]. Eiffel’s contract defini-
tion syntax makes this weakening and strengthening of conditions clear: method con-
tracts in subclasses are specified using the ensure else and require then clauses.
In this way, a method requires the inherited preconditions or else a new precondition
specified in the subclass. Similarly, it ensures the inherited postconditions and then any
other postcondition it specifies itself [[146].

In EIFFEL, the types of method parameters, return types and instance variables are
allowed to be modified covariantly by subclasses. While such a change is safe in the
case of return types, allowing covariant changes to instance variables and parameter

types is not type-safe [33]]. According to Bruce:-

This type insecurity of Eiffel has been known since the late 1980’s.
Bertrand Meyer, the designer of Eiffel, has made various responses to these
problems over time. He has consistently claimed that the insecurity is in-
consequential because FEiffel users do not write code that would result in
this error. That is, while they use features like these, they automatically use

them correctly. [33, page 67]

We find Meyer’s response to this issue unconvincing and think that any language
should be as type-safe as possible to assist software developers.

EIFFEL has an extensive exception framework. When an exception occurs, a func-
tion has two options: give up or retry. If the function has a rescue clause, this clause
is executed; otherwise the function fails and raises an exception in its caller [145]. The
rescue clause may try to resolve the problem that occurred and then re-execute the
function using the ret ry command. If this strategy fails and execution reaches the end
of the rescue clause, the function fails and propagates the exception [145].

EIFFEL also includes a documentation tool called short which automatically creates

documentation from contracts [[145]].

Chapter 3. Survey of Existing Software Contract Technologies 44

3.2.2 Cdd

Cdd is an automated testing tool for EIFFEL developed by Leitner et al. [130]. It auto-
matically extracts test cases by observing a program when it is executed, for example
when developers run the software informally for testing purposes. Whenever a failure
occurs, Cdd takes a snapshot of the current state so that it can later replicate the same
failure [[130].

When recreating a previously observed failure, Cdd first recreates the context in
which the failure was observed. It then checks the invariants of the current object and
the method’s precondition. If either of the two is not satisfied at that point, the test case
is invalid and should not be considered. Otherwise, Cdd executes the method and tests
the postcondition. If the postcondition is satisfied, the test has passed; otherwise Cdd
reports the failure to the developer [130].

An advantage of Cdd is that it records all failures so that they can be replicated
later. Often, when running a program informally, any failures are difficult to record and
replicate so that the developer needs to fix the problem immediately or ignore it. When
using Cdd, a developer can rely on the fact that the same failure can be repeated at a
later time [130].

In our view, Cdd is limited by the fact that it relies on the developers to run the
program to create failures, which are then turned into test cases. In order to generate a
sufficient number of test cases, the developer must run the program a large number of
times. This is very time-consuming and therefore fully automated test case generation

would be preferable.

3.2.3 AutoTest

AutoTest is a unit testing framework for EIFFEL programs [149]. It allows users to select
the amount of time to be allocated for testing and then runs automatically, generating
and executing unit tests [S1;148]].

AutoTest starts by creating objects to be used for the purposes of testing. Every time
an object of a particular type is needed, it is created using random input values. It is
then added to the object pool to be reused later. At random intervals the existing object
pool is diversified by adding new random objects or by modifying existing ones [148].

For each test, an object is selected from the object pool, along with any arguments

needed for the particular method to be tested [[148]]. If the precondition of the method to

Chapter 3. Survey of Existing Software Contract Technologies 45

be tested is violated, the test inputs are discarded, since they are invalid. Otherwise, the
test is executed and the postcondition and invariants are used to assess the outcome of
the test. A violated postcondition or invariant signifies a test failure; any exception that
occurred during the execution of the test also represents a test failure [134]. AutoTest
records all test failures and reports them to the user along with a witness, a particular
test scenario which triggered the failure [148]].

AutoTest was run on several Eiffel libraries which had previously been thoroughly
tested. Nevertheless, the tool discovered a number of bugs, including some serious
issues [51]].

We believe that AutoTest is a significant improvement over Cdd, because it runs

automatically and does not rely on developers to produce failure scenarios.

3.3 .NET Contract Tools

3.3.1 Spec #

SPEC# is a .NET programming system which provides software contract support. It
includes the SPEC# programming language, a compiler, a runtime library and a static
program verifier and is fully integrated into Microsoft Visual Studio [14]].

SPEC# aims to make it easier for developers to record their design decisions as
contracts and ensures that these decisions are reinforced by tools, even in the presence of
callbacks and threading. Its development was influenced by a number of other contract
technologies, including AsmL [92], JML (see Section3.4.1|) and EIFFEL [153]].

The SPEC# programming language is an extension of C# and adds support for non-
null types, checked exceptions, method contracts and class invariants [129]. It is a strict
superset of C# and is thus backwards compatible; that is, any valid C# program is also
a valid SPEC# program [107; [128]. Part of a SPEC# implementation of our Stack class
can be seen in Program Listing 3.3.

SPEC# allows programmers to specify method contracts, including preconditions
and postconditions. These are specified using the keywords requires and ensures
respectively, and are placed directly between the method header and the method body
[128]. Exceptional postconditions, which need to be satisfied if the method terminates

with an exception, can also be defined.

Chapter 3. Survey of Existing Software Contract Technologies 46

Program Listing 3.3 Part of the Stack contract in SPEC#

invariant size >= 0 && size <= MAX_SIZE;

public void push (object obj)
requires !isFull();

requires obj !'= null;
modifies stack, size;
ensures peek () == obj;
ensures size == old(size) + 1;

expose (this) {
stack[size++]= obj;

Other methods may be called from inside SPEC# contracts, but all such methods
must be pure; that is, they cannot have any side effects and must be annotated with the
[Pure] attribute. This is different from the approach chosen by EIFFEL, where it is only
recommended, but not enforced, that all methods called from within contracts are pure.

In addition to the usual C# operators, a range of other operators such as the quanti-
fiers forall and exists and the counting functions sum and count are also available
for use in contracts. Like EIFFEL, SPEC# provides two additional keywords for use in
postconditions: old and result.

In addition to preconditions and postconditions, contracts may also include frame
conditions to specify which parts of the memory a method is allowed to modify. This
ensures that a method does not unexpectedly change the value of data it should not be
allowed to modify. Frame conditions are specified using the modifies keyword, as can
be seen in our example above [[14;[128]].

The specification of class invariants is somewhat more complex in SPEC# than in
other technologies because SPEC# aims to guarantee the integrity of invariants even in
the presence of concurrency and reentrancy.

SPEC# introduces a special boolean field inv, which is true whenever the class
invariant is satisfied. It disallows modifications of any fields (which could break the
class invariant) outside of expose blocks. Whenever an expose block is entered, inv
is set to false and the object is exposed, making it modifiable. Its fields can now be

modified. At the end of the expose block, the class invariant is checked and if it is

Chapter 3. Survey of Existing Software Contract Technologies 47

satisfied inv is set back to t rue; otherwise an exception is thrown. The expose block
can be entered only when inv is true, thus solving the reentrancy problem by ensuring
that only one thread of execution can modify the object at any one time [[107]].

This technique of enforcing invariants is further extended through the notion of own-
ership; one object may own other objects (which are then called its components) but
each object is owned by at most one other. Any property of an owned object may be
used in the class invariant definition of the owner. An object is in a valid state (with inv
set to true) only if all of the objects it owns are also valid [128]]. The concept of owner-
ship avoids the situation where one of the components is changed and as a consequence
the class invariant of the owner is violated. In the presence of ownership, an object can
be exposed (and its fields modified) only if its owner is also exposed.

The concept of ownership is demonstrated in Figure[3.1] In this example, Object A
owns Object Bwhichin turnowns Object C. Atthe start, Object A isnotexposed but
since it has no owner, it may be exposed at any time. Objects B and Object C cannot
be exposed since their owners are not currently exposed; we say they are committed.
When Object A is exposed, Object B becomes exposable while Object C remains

committed. Object C can be exposed only once its direct owner, Object B, has been

exposed.

Object A exposable - exposed . exposed . exposed
J o Joms o pwns

@e@ committed Object B exposable . exposed - exposed
_jowns _iowns _jowns _jowns

Object C| committed Object C| committed Object C exposable - exposed

Expose Object A Expose Object B Expose Object C

Figure 3.1: Ownership in SPEC#

Class invariants also complicate inheritance in SPEC#: a superclass field may be
used to specify a class invariant in a subclass and it is therefore necessary for the sub-
class to be exposed whenever the superclass is exposed. This avoids the problem of the

superclass field being modified (and the subclass’ invariant broken) while the subclass

Chapter 3. Survey of Existing Software Contract Technologies 48

is not aware of it. A proper order of exposing in the presence of inheritance is enforced
through the concept of frames. Each object is made up of a number of frames, with
each frame representing the part of the object defined in one specific class. Thus, a sub-
class object is made up of a subclass frame as well as a superclass frame. The subclass
frame owns the superclass frame and must therefore be exposed before any parts of the
superclass frame can be modified [[128]. Consequently, some parts of an object may be
exposed, while others are still committed [103]].

One of the big achievements of SPEC# is that it maintains contracts and class invari-
ants even in the presence of concurrency and threading. It does this by further extending
the concept of ownership to threads. A thread can only expose and modify an object
which it owns (and transitively any other object owned by that object). A thread can get
ownership of an object which has no current owner by calling BeginAcquire, and later
release the object by calling EndAcquire [107]. An object can be released only if it is
consistent; that is, when its invariant is satisfied [108]. Since only one thread can own
an object at any one time, an object can never be modified by two threads concurrently.

Attempting to dereference a null object is the source of many errors and program
failures [128]]. Therefore, SPEC# supports non-null types; that is, types that can never
have a null value [14]. If T is a normal type, then T! is the corresponding non-null
type. SPEC# uses data flow analysis to ensure at compile-time that non-null types are
not given a null value [11].

The SPEC# compiler compiles the SPEC# program into Microsoft Intermediate Lan-
guage (MSIL) and is responsible for statically enforcing non-null types and emitting
code to enable the runtime checking of method contracts and class invariants [[107};|128]].
Preconditions, postconditions and invariants are turned into inline code which throws
appropriate exceptions [14].

The SPEC# environment also includes a powerful static verifier called Boogie [10]
which uses an automatic theorem prover to prove the correctness of a program at
compile-time. The architecture of the static verifier is shown in Figure [3.2]

To verify a program, the SPEC# code is first compiled into MSIL by the SPEC#
compiler and is subsequently translated into the intermediate language Boogie PL by
a translator [64]. Inside the static verifier an inference engine analyses the Boogie PL
code and attempts to extract verification conditions. These verification conditions are

passed to the automatic theorem prover, Z3 [[1555 156], which uses them to try to prove

Chapter 3. Survey of Existing Software Contract Technologies 49

Spec# / Spec# Code Error List
Compiler N N\
User Mapping
MSIL onto Code

Inference Feedback
Veriﬁcation; 73 Automatic
Conditions 7 |Theorem Prover

Boogie Boogie ;
Translator PL

Verification Con
dition Generator

Boogie

Figure 3.2: Architecture of the SPEC# static verifier

the correctness of the program. Finally, the feedback generated by Z3 is mapped back
onto the original SPEC# source code and returned to the user [14]].

SPEC#’s static verifier will flag an error not only when a mistake in the program
is found but also when there is not enough information available to prove correctness.
Thus, not only incorrect but also incomplete contracts are considered errors [107]]. Such
errors can be fixed by the software developer by adding extra contracts or invariants.
The verifier does not attempt to verify termination conditions and temporal properties
and does not check for arithmetic overflows [[128]].

Although SPEC#’s static verifier is very powerful, we feel that it can also be very
restrictive due to the fact that it reports errors not only when a mistake is found but also
when it does not have enough information to prove correctness. This forces developers
to work on fully proving their software, which can be very time-consuming.

Overall, SPEC# is a very powerful but also very complex tool. We believe that one
of the advantages of SPEC#’s approach is that it extends a well-known and very popular
programming language. This makes it relatively easy for software developers to learn.
Additionally, SPEC# is integrated into Microsoft Visual Studio, allowing developers to
take advantage of existing IDE tools.

However, the approach chosen by SPEC#, particularly its implementation of class
invariants, is very complex and requires rigorous programming. This may be an ad-

vantage because it forces developers to think very carefully about the order in which

Chapter 3. Survey of Existing Software Contract Technologies 50

objects are exposed and about the relationship between different objects. However, we
suggest that it is rather distracting and inconvenient, further complicating the already
complex task of software development. This complexity could further slow the uptake

of software contracts by mainstream software engineers.

3.3.2 Code Contracts

CODE CONTRACTS is a spin-off from the SPEC# project and attempts to learn from the
problems and complexity encountered in SPEC# [152]]. As a result, it is a much sim-
pler but also less powerful tool for specifying contracts in .NET. It is language agnostic,
meaning that it can be used with any .NET language, rather than just C# [152]]. Like
SPEC#, CODE CONTRACTS is integrated into Microsoft Visual Studio, giving develop-
ers access to existing IDE tools [72].

Unlike SPEC#, CODE CONTRACTS does not attempt to work in the context of con-
currency and multithreading. However, in many applications, support for concurrency
is not vital. The more extensive functionality of SPEC# becomes necessary only for
more complex software development projects.

Part of a C# implementation of our Stack class augmented with CODE CONTRACTS
specifications can be seen in Program Listing 3.4.

Program Listing 3.4 Part of the Stack contract in CODE CONTRACTS

public object pop() {
Contract.Requires (!isEmpty());
Contract.Ensures(size == Contract.0OldValue<int>(size) - 1);
Contract.Ensures (Contract.Result<object>() !'= null);
return stack[--size];

[ContractInvariantMethod]

private void ObjectInvariant () {
Contract.Invariant (size >= 0);
Contract.Invariant (size <= MAX_SIZE);

Method contracts are defined in the first part of the method body [72]], as can be seen
in our example. This is different from SPEC#, where contracts are defined before the

start of the method body. In our view, CODE CONTRACT’s failure to cleanly separate

Chapter 3. Survey of Existing Software Contract Technologies 51

contracts from method implementations is a problem as contracts should be part of the
external interface visible to clients rather than mixed in with the private implementation
details.

CODE CONTRACTS’ preconditions and postconditions are specified by calling the
static methods Requires and Ensures of the Contract class. Exceptional postcondi-
tions, which specify what postconditions apply if an exception is thrown, can also be
defined [[151]].

When defining preconditions, all methods and fields mentioned must be at least as
accessible as the method itself to ensure that clients can check the precondition before
calling the method [72; [151].

The Contract class provides a Result and 0ldValue method, similar to the
result and old operators in other tools. Quantifiers including for all and exists
are also available. In addition, CODE CONTRACTS allows specifications to declare their
own local variables and use standard programming language control structures such as
if-statements and loops [151].

Specifying class invariants is much simpler in CODE CONTRACTS than in SPEC#:
they are simply defined in an invariant method by calling the Invariant method of
the Contract class. Any number of invariant methods may be specified for one class,
all of which are called automatically at the end of each public method of the class
[151]. Because of the simplicity of this approach, invariants are not guaranteed to be
maintained in the presence of concurrency and reentrancy.

In the presence of inheritance, contracts, including preconditions, postconditions
and class invariants, are inherited from the superclass. A subclass may add postcon-
ditions and class invariants, but preconditions need to be fully defined by the method
in the superclass and cannot be weakened by the subclass [151]. We argue that this is
unnecessarily restrictive.

CODE CONTRACTS comes with a static contract checker called Clousot which tries
to prove all explicit constraints defined in a program. It is a much simpler and faster
verifier than the SPEC# static verifier; the main difference between the two tools is that
Clousot emits warnings when it is unable to prove correctness, rather than giving an
error for each incomplete specification [151].

CODE CONTRACTS also includes a documentation generator called ccdocgen. This
tool generates documentation about contracts and in this way records design decisions

made by developers [[151]].

Chapter 3. Survey of Existing Software Contract Technologies 52

Overall, CODE CONTRACTS is a much simpler tool than SPEC# and is relatively
easy to learn and use. Augmenting source code with contracts does not create such a
significant cognitive overhead and we therefore believe that developers are much more

likely to adopt CODE CONTRACTS than the more complex SPEC#.

3.3.3 Pex

Pex is an automated whitebox testing framework for .NET. It works by analysing a
program, identifying conditional statements (such as if-statements) and selecting test
inputs to exercise each path through the program [150]].

Finding all reachable statements in a program is an undecidable problem. Therefore,
Pex simply tries to find as many as possible in a given amount of time [[192]]. In this
way, it usually achieves a high level of code coverage [150]].

Any contracts written using CODE CONTRACTS can be turned into runtime checks,
allowing Pex to use them to select test cases [150]. In particular, “preconditions allow
pruning of irrelevant test inputs, and postconditions guide test generation and allow
detecting bugs; class invariants serve both purposes” [13]].

To show how Pex works in the presence of contracts, we introduce a simple Clock
class. The Clock records the current minute and has an AddMinutes method which
allows time to be incremented by a certain number of minutes. We use CODE CON-
TRACTS to define preconditions, postconditions and invariants, as can be seen in Pro-
gram Listing 3.5.

Clearly, our implementation of Clock is far from perfect. Firstly, the AddMinutes
method is unnecessarily complex; we introduced the if-else statement here to demon-
strate how Pex chooses test cases that follow different paths through the program. Sec-
ondly, we have introduced an error: in the if-block of AddMinutes we calculate the
remainder when dividing by 100 rather than 60. We want to see if Pex will discover this
problem.

Figure [3.3[shows the result of running Pex on the Clock class. From the test report,
we can see that Pex first constructs a Clock and calls AddMinutes with an argument of
0. Since this test fails the precondition, Pex discards it. It then tries again, this time with
a minutesToAdd value of 1. This test case succeeds® because the bug we introduced
affects only the if-block; this call to AddMinutes executes the correct else-block. The

third and fourth tests show Pex executing AddMinutes with a larger value, which leads

Chapter 3. Survey of Existing Software Contract Technologies 53

Program Listing 3.5 A simple Clock class with CODE CONTRACTS specifications

public class Clock{
private int minutes;

public void AddMinutes (int minutesToAdd) {
Contract.Requires (minutesToAdd > 0);

Contract.Ensures (minutes == (Contract.0ldValue<int> (minutes)
+ minutesToAdd) % 60);

if (minutes + minutesToAdd >= 60) {
minutes = (minutes + minutesToAdd) % 100;

}

else {
minutes += minutesToAdd;

[ContractInvariantMethod]

private void ObjectInvariant () {
Contract.Invariant (minutes >= 0);
Contract.Invariant (minutes < 60);

Chapter 3. Survey of Existing Software Contract Technologies 54

to the execution of the incorrect if-block. Pex finds a postcondition violation and reports
this as a failed test case. After we remove the bug, all test cases succeed and Pex does

not find any more bugs.

Pex Exploration Results - stopped - 2 failed, 6 runs- 12/20 dynamic coverage ~ 1 x
Clock.IncrementByMinutes(Int32) + @ Run ~ %3 | Views ~ | g ®¥ Follow Pex on Facebook

Review bold issues: | All Tests oj 2 Failed Tests | All Events “T{ 1 Object Creation

target minutesTo.. result(target) Summary/Exception Error Message

‘ﬂ 1 newClockf.. 0 ContractException Precondition failed: minutesToAdd = 0

@ 2 newClocki.. 1 new Clockl...

W 2 newClock.. 21474836... ContractException Postcondition failed: minutes == (Contract.OldValue <int> (minutes) + minutesToAdd) % 60
Q 4 new Clock.. 19189034.. ContractException Postcondition failed: minutes == (Contract.OldValue <int>(minutes) + minutesToAdd) % 60

Figure 3.3: Pex test report for the Clock class

Pex has been shown to be a valuable testing tool. It was tested on a core component
of the .NET library which had already been tested for five years previously by 40 testers.
Pex found several errors, including one serious issue, while achieving relatively high
code coverage [192].

In our view, Pex is a very useful testing tool that automates most of the testing
process and makes it possible to achieve high code coverage.

Pex automatically generates tests, making it more powerful and more useful than
a testing tool like Cdd, which relies on developers to run the program to generate test
cases. It also uses sophisticated strategies to cover as many paths as possible through
the program, unlike AutoTest which generates random test inputs without considering

the internal code structure. This allows Pex to achieve much higher code coverage.

3.4 Java Contract Tools

A number of tools to support the addition of contracts to Java programs have been
developed. In this section, we describe seven: JML, ICONTRACT, CONTRACT JAVA,
HANDSHAKE, JASS, JCONTRACTOR and JMS ASSERT.

3.4.1 JML

JML, the Java Modeling Language [125]], adds extensive software contract support to

Java. It allows developers to express preconditions, postconditions and class invariants

Chapter 3. Survey of Existing Software Contract Technologies 55

and is more expressive than other contract technologies such as EIFFEL [56]. Part of

our Stack class with JML specifications can be seen in Program Listing 3.6.

Program Listing 3.6 Part of the Stack contract in JML

/*@
* invariant size >= 0 && size <= MAX_ SIZE;
@*/
/*@
* requires !isEmpty();
* ensures size == \old(size) - 1;
* assignable size;
@x/

public Object /*@ non_null @*/ pop() {
return stack[--size];

/*@

* requires !isEmpty();

* ensures size == \old(size);
@x/

public Object /*@ pure non_null @*/ peek() {
return stack[size - 1];

In JML, specifications are added to Java programs as comments, enclosed between
/*@ and @*/, or following //@. This means that the final program can be compiled
using the standard Java compiler.

Method contracts are usually placed just before the method header, while invariants
can appear anywhere in the class [125]. The requires and ensures keywords are
used to specify preconditions and postconditions; invariant is used to define class
invariants. The specifications are Java boolean expressions and must include the end
semicolon [56].

In addition to standard Java boolean expressions, specifications may also make use
of additional operators. JML supports some quantifiers such as \forall and \exists,
counting functions such as \sum and \num_of, logical implications, and the special

operators \result and \old (variable_name) [123].

Chapter 3. Survey of Existing Software Contract Technologies 56

Any code used in specifications, including any methods called, must be free of side
effects. Such methods must be annotated as /*@ pure @*/ before they can be called
from within contracts [[126].

In addition to declaring a method to be pure, the return type of a method can be
annotated with /*@ non_null @*/, signalling that a method may never return null.
Similarly, parameters and other variables may be declared to be non-null [56].

Method contracts may include not only standard preconditions and postconditions,
but can also define frame conditions and exceptional postconditions [123} 127]. Frame
conditions are defined using the assignable keyword [123].

Class invariants are implicitly included in the preconditions and postconditions of all
publicly visible methods [[123]]. In addition to invariants, developers can specify history
constraints which describe how the value of a field is allowed to change between two
publicly visible states. This could for example be used to express the constraint that the
value of a field may only ever increase [[123].

All contracts can be given a level of visibility using the standard Java access mod-
ifiers public, protected and private [127]. A specification may make use only of
fields and methods that have at least the same visibility; that is a public specification
may use only public fields and methods, while a protected specification may use
both public and protected members [127].

JML contracts are inherited similarly to EIFFEL specifications: preconditions are
disjuncted, while postconditions and class invariants are conjuncted [125]].

In addition to the standard contract functionality, JML provides a lot more com-
plex and powerful contract support, such as contract nesting, ghost variables and model
fields. Ghost variables and model fields are fields that are usable only by contracts.
Model fields can be used when the inner data representation of a class needs to be
changed but the developer does not want to update all of the contracts to the new data
format. The model field of the old data format can be used from within the contracts
and a correspondence is defined between the new data format and the model field [[125].

Overall, the contract support provided by JML is much more sophisticated and ex-
tensive than that of other contract tools. Despite this, JML remains relatively simple to
use. Compared with SPEC# it is much easier to learn and use, although it is also some-
what less powerful, for example not ensuring invariants in the presence of concurrency.

While JML is a very useful technology, more work needs to be done to keep it

up-to-date with the development of Java. JML usually lags about one version behind

Chapter 3. Survey of Existing Software Contract Technologies 57

Java, for example supporting only Java 4 instead of Java 5. In order to be truly useful to
developers, JML needs to be compatible with the latest Java version, the version which

is most likely to be used by many software developers.

JML Tools

A number of tools have been developed to support software development using JML,
including documentation tools, static checkers and verifiers, runtime checkers and spec-
ification generators. jmldoc, for example, is a tool that generates Javadoc-style docu-
mentation from Java programs that have been augmented with JML [[125]].

Several static checkers and program verifiers have been developed for JML. The
most famous one of these is ESC/Java which provides fully automated extended static
checking [35]. It does not attempt to be a full program verifier and is capable only
of checking relatively simple program properties. ESC/Java attempts to prove that
contracts are never violated. In addition, it also warns of potential runtime errors,
such as dereferencing a null object [78]]. It is especially good at discovering potential
NullPointerExceptions and ArrayIndexOutOfBoundsExceptions [123].

Since it is not a full static verifier, ESC/Java is neither sound nor complete, meaning
that it may miss errors or warn of errors that do not exist [127]. It does, however,
provide a certain advantage over full verifiers which, unlike ESC/Java, cannot work with
incomplete and ambiguous contracts because, being both complete and sound, they try
to fully prove the correctness of the program [35].

One part of the JML specifications which are not checked by ESC/Java are frame
conditions. These can instead be checked using a tool called CHASE [35]. CHASE
analyses a program to check that every assignment statement or method call modifies
only variables which are declared in the assignable clause [44].

LOOP [102; [109] 1s a tool that can handle much more complex specifications that
ESC/Java [335]]. It uses the PVS theorem prover and tries to fully prove the correctness of
the program. The added power of this tool comes at a certain cost: it requires interaction
with the user, making it more time-consuming to use; it also requires the user to have a
good amount of knowledge about the theorem prover [35)]. Krakatoa [138]] is similar to
LOOQP in terms of power and effort for users but uses the Coq theorem prover instead of
PVS [188]].

JACK [56] is a static verifier which is integrated into the Eclipse IDE; like LOOP

and Krakatoa, it also tries to fully prove the correctness of a program. However, it does

Chapter 3. Survey of Existing Software Contract Technologies 58

not require the user to have knowledge of the underlying theorem prover used, hiding
the mathematical complexities of program proving [35]. JACK partly automates the
program verification process but allows the user to do the rest interactively [36]].

Static verifiers can eliminate a lot of problems at compile-time but to fully test a
program it needs to be executed. Runtime checking tools help to discover bugs during
program execution.

jmlc is a JML compiler which turns JML specifications into runtime checks [125;
127]. When the compiled program is then executed using the jmlrac tool [123], any
assertion violations will be reported to the user [S6].

JML-JUnit is an automatic unit testing tool which combines jmlc with the JUnit test
framework [56]. It automatically generates test classes which call the methods to be
tested and interpret the results using JML specifications as test oracles [[125]. However,
while the evaluation of test results is automated, users still need to supply the test input
data to be used [35]. They provide a set of values for each parameter and JML-JUnit
executes one test for every input value combination [[186].

Tan et al. experimented with the JML-JUnit tool and concluded that its testing
strategy is not very effective compared to random testing. However, while the tool does
not appear to be very good at discovering bugs in the program, they found it particularly
helpful for uncovering bugs in the contracts themselves [186].

In addition to static verifiers, runtime checkers and testing tools, several specifica-
tion generators have been developed for JML. They aim to help developers by automat-
ing part of the contract writing process. The Daikon tool [71] observes the execution
of a program during testing and deduces likely invariants by finding properties which
are always true. It then inserts the invariants it deduced into the program code as JML
specifications. The quality of the inferred invariants depends on the completeness of the
test cases that were executed [35]].

The Houdini tool takes a slightly different approach: it tries to guess possible an-
notations and then uses ESC/Java to eliminate conditions that can be proven to be false
[35]. Unlike Daikon, it therefore does not just help with generating invariants, but also
covers method contracts. Houdini starts by using a heuristic to generate a large number
of candidate annotations [76; [77]]. It then repeatedly runs ESC/Java to prove that some
of the conditions it generated are wrong and eliminates these false conditions. At the
end it will be left with a set of annotations which cannot be proven to be wrong by

ESC/Java. However, since ESC/Java is unsound, Houdini may allow wrong annotations

Chapter 3. Survey of Existing Software Contract Technologies 59

to be deduced; since ESC/Java is incomplete Houdini may reject correct annotations
[76].

3.4.2 iContract

The ICONTRACT tool, developed in the late 1990s, was the first to offer contract support
for Java [117]. It allows the definition of contracts through simple annotations which
are turned into standard Java assertions by the iContract preprocessor. Part of our Stack

class augmented with ICONTRACT specifications can be seen in Program Listing 3.7.

Program Listing 3.7 Part of the Stack contract in ICONTRACT

@inv size >= 0 && size <= MAX SIZE

@pre !isFull()

@pre obj != null

@post peek () == obj

@post size == size Qpre + 1

public void push (Object obj) {
stack[sizet++] = obj;

ICONTRACT allows developers to specify preconditions, postconditions and class
invariants using the @pre, @post and @invariant annotations. Since these annota-
tions are ignored by the standard Java compiler, any annotated program remains fully
compatible with standard Java [117].

All contract expressions are simply standard Java boolean expressions, although ad-
ditional operators including implies and quantifiers forall and exists are also avail-
able. Furthermore, postconditions may use the return keyword (which is analogous to
the result operator in other technologies) and the @pre clause which is similar to the
old keyword. Any variables and methods usually visible at the point where the contract
is defined may be used, although they are required to be non-private. This ensures that
any subclasses which inherit contracts can check the conditions specified [117]].

ICONTRACT specifications are inherited by subclasses; similarly to other tools,
ICONTRACT does this by conjuncting invariants and postconditions, while precondi-

tions are disjuncted [[117].

Chapter 3. Survey of Existing Software Contract Technologies 60

The ICONTRACT preprocessor turns contract expressions into Java assertions. It in-
serts checks for invariants at the start and the end of each non-private, non-static method
[L17].

In our view, ICONTRACT is a simple and easy-to-use contract tool for Java. It pro-
vides good support for defining contracts, containing all the vital features necessary for
specifying contracts. The preprocessing approach taken by ICONTRACT works well,

with the annotations used allowing for backward compatibility with standard Java.

3.4.3 Contract Java

CONTRACT JAVA is a contract tool for Java which allows developers to specify method
contracts. It takes a different approach from many of the other technologies described
here and focuses solely on method contracts; it supports only the specification of precon-
ditions and postconditions, not invariants [/5]. A contract for our Stack class defined

using CONTRACT JAVA can be seen in Program Listing 3.8.

Program Listing 3.8 Part of the Stack contract in CONTRACT JAVA

public interface IStackContract ({
void push (Object obj);
@pre{ !this.isFull() && obj != null }
@post{ obj == this.peek() }

Object peek();
@pre{ !'this.isEmpty() }
@post{ peek != null }

Object pop();
@pre{ !this.isEmpty() }
@post{ pop != null }

In CONTRACT JAVA, preconditions and postconditions are specified in a separate
interface, directly below the declaration of the method to which they apply, using the
@pre and @post annotations. The expressions given as part of the contract must con-
stitute correct Java syntax and evaluate to a boolean. CONTRACT JAVA’s specification
definitions are much less powerful than those of other contract technologies: they can

refer only to the current object, the method’s parameters and the return value of the

Chapter 3. Survey of Existing Software Contract Technologies 61

method; CONTRACT JAVA lacks the old operator. In addition, it is not possible for
contracts to refer to any fields since fields do not exist in interfaces, where contracts are
defined [[75]].

In the context of inheritance, postconditions in CONTRACT JAVA may be strength-
ened by subclasses; however, preconditions are not allowed to be strengthened or weak-
ened and must remain syntactically identical to the precondition in the superclass.

One of the main goals of CONTRACT JAVA is to hold accountable for contract
breaches only those classes that explicitly declare themselves to meet a particular con-
tract. This is the main reason for separating the contract definitions into a separate
interface. Only objects of the interface type are held accountable for breaching a con-
tract; objects of any other type may breach a contract since they do not explicitly declare
that they adhere to it. In the example above, objects of type IStackContract must ad-
here to the contract and will be blamed for any violations; objects of type Stack do
not subscribe to the contract explicitly and can therefore not be held accountable for
any breaches [75]]. In our view, this idea is problematic and incompatible with contract
theory. If subscribing to a contract is optional, much of the power of contracts is lost;
components would, for example, have to be prepared for being called without satisfied
preconditions. This removes the advantage of having clearly defined specifications that
both clients and suppliers can rely on.

When a CONTRACT JAVA program is compiled, it is translated into standard Java.
Code to check preconditions and postconditions is inserted by the compiler. Whenever
a contract is broken by an object subscribing to that contract, the program is terminated
and the part of the program which breached the contract is blamed for the violation.

In our view, CONTRACT JAVA is inferior to most other tools discussed here in terms
of what contracts can be expressed, mainly due to the fact that contracts do not have

access to fields or the old operator.

3.4.4 Handshake

HANDSHAKE allows developers to add contracts to their Java programs without chang-
ing the original source code; this is achieved by declaring contracts in separate contract
files. An example of a HANDSHAKE contract file for our Stack class can be seen in

Program Listing 3.9.

Chapter 3. Survey of Existing Software Contract Technologies 62

Program Listing 3.9 Part of the Stack contract in HANDSHAKE

contract Stack {
invariant size >= 0 "Size is negative";
invariant size <= MAX_SIZE "Size is too large";

public void push (Object obj)
pre !isFull() && obj != null;
post peek() == obj;

public Object pop ()
pre !isEmpty();
post S$result != null;

public Object peek()
pre !isEmpty();
post S$result != null;

HANDSHAKE allows the definition of preconditions, postconditions and class in-
variants using the pre, post and invariant keywords.

One contract file specifies the contract for one class. Contracts can access any visible
fields and methods declared in the original class. This cleanly separates the contract
specifications from the actual code, meaning that the program’s original source files
are not required to specify HANDSHAKE contracts, so that contracts could be added
even when the original source code is not available, for example when working with
third-party software.

A contract consists of a number of Java boolean expressions, optionally followed
by a string containing the error message to be printed if the condition is violated. The
expression may be any legal Java code, but may not contain assignment and object or
array creation statements. The special operator $result is used to refer to the return value
of a method. However, similarly to CONTRACT JAVA, HANDSHAKE does not provide
support for referring to previous variable values [70], constituting a serious gap in the
tool.

HANDSHAKE contract files are compiled in two stages. First, the contract compiler
creates a simple text file containing all relevant contracts. Then it translates the text file

into a more compact binary representation, with Java bytecode and associated annota-

Chapter 3. Survey of Existing Software Contract Technologies 63

tions [70]. When the Java program is run, the Java Virtual Machine (JVM) requests
the relevant class files from the operating system. HANDSHAKE intercepts these files,
makes the relevant modifications to include contracts and passes the modified files to
the JVM. This creates a small performance overhead. HANDSHAKE inserts checks for
preconditions and postconditions at the start and end of relevant methods, as well as
checks for invariants at the start and end of all non-private methods. It also enforces

correct inheritance of contracts [[70].

3.4.5 Jass

JASS allows developers to add preconditions, postconditions, class invariants and frame
conditions to existing Java code. JASS specifications are written as comments in Java, so
that any JASS program remains compatible with standard Java [16]. Part of our Stack

class augmented with JASS specifications can be seen in Program Listing 3.10.

Program Listing 3.10 Part of the Stack contract in JASS

public void push (Object obj) {
/** require !isFull() && obj != null; **/
stack[sizet+] = ob7j;
/** ensure changeonly{stack, size};
size == 0Old.size + 1;
peek () == obj; **/

/** invariant size >= 0 && size <= MAX_SIZE; **/

JASS specifications are written as simple Java boolean expressions, but may make
use of additional operators, including existential and universal quantifiers. Precondi-
tions in JASS must be placed at the start of a method; postconditions at the end. They
are defined using the require and ensure keywords. Any fields or methods used in the
precondition of a method must be at least as visible as the method itself. Postconditions
can use the special variables Result and 01d to refer to the return value of the method
and the value of variables before method execution. Method contracts may also contain

frame conditions, specified using the changeonly keyword [[16]].

Chapter 3. Survey of Existing Software Contract Technologies 64

JASS allows the specification of class invariants using the invariant keyword.
Class invariants must be placed at the end of the class body and are evaluated at the
end of each method [16].

Like EIFFEL, JASS methods may have a rescue clause which is called whenever a
relevant exception is thrown inside the method. The rescue clause may give up and
pass on the exception to the method’s caller or it can use the retry command to re-
execute the method [16]).

In addition to standard contract support, JASS adds two novel contract concepts:
trace assertions and refinement checks. Trace assertions are used to ensure that methods
are invoked in the correct order, making them especially useful for designing concurrent
systems. Refinement checks are performed by JASS to ensure that inheritance is used
correctly. If this is not the case, an error is reported. Refinement checks are optional and
need not be applied to all classes. This means that, in theory, developers can strengthen
preconditions and weaken postconditions; the correct use of inheritance will be enforced
only when refinement checks are turned on [16].

JASS uses a pre-compiler to translate contracts into Java runtime checks. This
pre-compiler can also add contract information to Javadoc documentation by inserting
Javadoc comments about contracts into the source code when compiling the program
[L16].

In our view, JASS is a relatively powerful contract tool which is nevertheless simple
to use. It provides developers with the ability to express frame conditions in addition to
standard contracts. However, we feel that JASS’s refinement checks are problematic as
they allow developers to avoid the correct use of contract inheritance when they choose.

This is dangerous and should not be allowed by the tool.

3.4.6 jContractor

JCONTRACTOR is a tool which allows developers to augment Java programs with con-
tracts using standard Java syntax. It uses a customised class loader to add contract
checks to class files just before the program is executed [113]]. Part of our Stack class
augmented with JCONTRACTOR specifications can be seen in Program Listing 3.11.
JCONTRACTOR method contracts are specified in contract methods, which
have a particular method signature associating them with the method whose

contract they describe. Preconditions and postconditions are both defined in

Chapter 3. Survey of Existing Software Contract Technologies 65

Program Listing 3.11 Part of the Stack contract in JCONTRACTOR

public Object pop() {
return stack[--size];

protected boolean pop_Precondition () {
return !isEmpty();

protected boolean pop_Postcondition (Object RESULT) {
return size == OLD.size - 1 && RESULT != null;

protected boolean Stack_Invariant () {
return size >= 0 && size <= MAX_SIZE;

protected boolean methods with the name methodName_Precondition and
methodName_Postcondition [113]]. Placing contracts in separate methods cleanly
separates them from implementations. However, we believe that this approach could
create problems for large classes, where it may be difficult to see which contracts are
associated with which methods. Also, this approach makes it easy to confuse contract
methods and standard methods and clutters a class’ interface.

Precondition and postcondition methods take the same parameters as the method
whose contract they define. Postcondition methods additionally take the parameter
RESULT, which refers to the return value of the method [112]. They also have access to
a special object called OLD, which contains the state of the object as it was before the
method execution [113]].

Similarly to preconditions and postconditions, class invariants are defined in a
protected boolean method named className_Invariant which must be non-static
and takes no parameters [112]]. The invariant is checked at the end of all public, non-
static methods [[112].

JCONTRACTOR allows developers to specify exception handlers which are called
when an exception is thrown in the associated method. Exception handling methods are
called methodName_OnException; they take the same parameters as the method with

which they are associated, in addition to the exception object which was thrown, and

Chapter 3. Survey of Existing Software Contract Technologies 66

return an Object [112]. Exception handlers can be used to restore invariants or reset
the state of an object to enable continuation of the program; in this case, the exception
handler must re-throw the exception when it is finished. Alternatively, the exception
handler can try to compute the correct method return value and return it as an Object
[113].

Contract methods in JCONTRACTOR may be placed inside the class to which they
apply or in a separate contract class named ClassName_CONTRACT [113]. A contract
class must inherit from the class to which it is adding contracts in order to inherit rel-
evant behaviour and to make the instances of the class with contracts substitutable for
objects without contracts. Placing contracts in separate classes is useful for cleanly
separating implementations and contracts and enables the addition of contracts to third
party software where the original source code is not available [[113].

JCONTRACTOR enforces correct inheritance by only allowing preconditions to be
weakened and postconditions to be strengthened in subclasses. Preconditions in sub-
classes are combined with inherited preconditions through disjuncting, while postcon-
ditions are conjuncted.

When the program is run, JCONTRACTOR uses Java Reflection to modify the pro-
gram’s class files on the fly, adding contract checks. The JCONTRACTOR class loader
identifies contracts by searching for methods named according to the JCONTRACTOR

naming conventions.

3.4.7 JMSAssert

JMSASSERT adds contract support to standard Java, allowing developers to specify
preconditions, postconditions and class invariants. It was developed by Man Machine
Systems and is currently available only for Microsoft Windows [137]. Part of the con-
tract for our Stack class expressed using JMS ASSERT can be seen in Program Listing
3.12.

Using JMS ASSERT, contracts are specified as Javadoc comments, using the @pre,
@post and @inv tags. Preconditions and postconditions are defined just before the
method to which they apply and may reference the method’s parameters and any
visible fields. In addition, the postcondition may make use of the special operators
Sprev (variable_name) and $ret to refer to the old value of a variable and the return

value of the method. JMSASSERT contracts are simple boolean expressions that must

Chapter 3. Survey of Existing Software Contract Technologies 67

Program Listing 3.12 Part of the Stack contract in JMS ASSERT

/**

* Qinv size >= 0 && size <= MAX_ SIZE
*x)

public class Stack {

/*x
* @dpre !isEmpty ()

* @post Sret != null

* @post size == S$prev(size) -1
**/
public Object pop () {

return stack[--size];

conform to JMScript syntax, a simple Java based scripting language [137)]. Although
JMScript is similar to Java, this requires developers to learn a new scripting language in
order to be able to write contracts, somewhat steepening the learning curve.

Class invariants may appear anywhere in the class but it is suggested they be placed
right before the class declaration to improve readability. They may refer to any field or
method in the class or in ancestor classes, including private fields [[137].

Correct contract inheritance is enforced by JMSASSERT in the standard manner:
preconditions are disjuncted; postconditions and class invariants are conjuncted [[137].

Once a Java program has been augmented with JMSASSERT contracts, the jm-
sassert preprocessor extracts the specification information from the code and places
it in special contract files. The contract files contain triggers written in JMScript which
are called at runtime to check contracts. Class invariants are checked at the entry to
non-private, non-static methods and at the end of non-private, non-static methods and
constructors [137].

Class invariants in JMSAssert may access methods and data of the class itself or an-
cestors, even if they are private. This breaks Java’s encapsulation, allowing contracts
to access members which are not usually visible. In standard Java, private members

are private to a class and not visible to subclasses. In our view, this approach could

Chapter 3. Survey of Existing Software Contract Technologies 68

potentially be dangerous if developers are not aware that private members in super-

classes are no longer truly private to the class in which they are declared.

3.5 Object Constraint Language

OBJECT CONSTRAINT LANGUAGE (OCL) is a modelling language which can be used
to augment UML diagrams with constraints, such as invariants, preconditions and post-
conditions [159; [198]. Such constraints are usually not explicit in the diagram itself.
Specifying them using natural language can introduce ambiguities; using formal math-
ematic languages requires an extensive mathematical background. OCL was developed
as a middle ground between these two approaches [159].

OCL is a pure specification language and its expressions therefore have no side
effects. It is a modelling language and its expressions are by definition not directly
executable [[159].

Each OCL constraint has an associated context which is declared using the context
keyword; the context specifies to which class or part of the model the constraint refers
[159]. Invariants are specified using the inv keyword followed by a boolean expression
[159]. An example invariant specification for a standard Stack class can be seen in

Program Listing 3.13.

Program Listing 3.13 An invariant for the Stack contract in OCL

context Stack inv:
self.size >= 0 and
self.size <= self.MAX SIZE

Preconditions and postconditions are declared in a similar way using the pre and
post keywords followed by boolean expressions. The method to which they apply is
declared in the context of the constraint [159]]. For example, OCL preconditions and
postconditions for our Stack’s push method can be seen in Program Listing 3.14.

Postconditions may use the result keyword to refer to the return value of a method;
they may also use the @pre construct to refer to the value of a variable before the
method’s execution. For example, size@pre refers to the previous value of the size
field [159]]. In addition, preconditions and postconditions can declare their own vari-

ables and use various quantifiers and control statements, such as if-statements and loops.

Chapter 3. Survey of Existing Software Contract Technologies 69

Program Listing 3.14 Preconditions and postconditions for the push method in OCL

context Stack::push(obj : Object) : OclVoid
pre: !isFull ()
pre: obj <> null
post: self.peek() = obj
post: self.size = self.size@pre + 1

This makes OCL’s contract definitions more expressive and flexible than those of many
other tools discussed here.

In addition to preconditions, postconditions and invariants, OCL’s init keyword
can be used to specify initial values of fields or variables; the derive keyword can be
used to define values of fields which can be derived from others [[159]]. The derive
keyword is for example useful when defining a Circle: the diameter of the Circle is
twice the radius and can thus be derived from the radius’ value.

OCL has received much research attention and a wide variety of supporting tools
have been developed. One prominent OCL library is the Dresden OCL toolkit, which
includes an OCL parser, interpreter and OCL-to-Java translator [65; 166]. Other tools
support the generation of OCL constraints from natural language definitions [9], auto-
mated testing of Java programs using OCL constraints as test oracles [46]], and transla-
tion between OCL and JML [94} 95]].

3.6 Comparison of Contract Technologies

We investigated a number of technologies and programming languages which support
the addition of software contracts to programs. All these tools aim to support software
contracts, most of them at the implementation level. OCL is the only technology to work
exclusively at the software design level; it allows contracts, including preconditions and
postconditions, to be added to UML diagrams, while all other tools we looked at allow
developers to augment source code using contracts.

We have identified significant differences and shortcomings in what these tools de-
liver. Table 3.1 gives an overview of the similarities and differences between the tools;

it clearly shows that no two tools take exactly the same approach.

Chapter 3. Survey of Existing Software Contract Technologies 70
< Q
2 L g | & §
3] s < o | 2 5
E| 8 |z < * (S5l 4
— g = © g 2] 4=
Z|8| &8 |&|&|S |2 & 3|5 8
Contract Pre/Postconditions VIV Vv ([VIVIVIV] VvV VI V]V
Support Class Invariant v |V VIiIVvIVvIiIVvI] VvV | VIV] VY
Frame Conditions v v v
Exceptional Post. v v |V
Operators Result VIV Vv ([VIVIVIV]V |V V]V
Oold v |V VAN A AN AR VAN VAN I
Variables v v v v
Control Statements v v v
Contract Original Language v v [VIIVv| Y
Language Modified Language Vi Vv V|V
Scripting Language v
Contract Comment v v v
Placement Annotation v
With Program v |V VIVIiVv] Vv V|V
Separately v Vv v v
Method Purity | Enforced v v v
Precondition Enforced v v v
Visibility
Invariant After Methods v v v
Check Before and After v N/A | vV v |V v | N/A
Expose Block v
Invariant All Methods v
Check Non-private Methods v | NA | vV v | N/A v | N/A
Public Methods Only | v/ v v
Contract Enforced ViV v |V Vi v | v |V |V |NA
Inheritance Pre. Weakening v |V VIiVvIivI|IVv |V v | N/A
Multiple Fully Supported V| Vv
Inheritance For Interfaces Only VIV Vv I VI VIV IVv] Vv |V
Contract Preprocessor v v v
Compilation Custom Compiler v v N/A
Standard Compiler v VY
Runtime Linking v v

Table 3.1: Overview of contract tools

3.6.1 Core Contract Support

All of the technologies we looked at provide core contract support, allowing for the
specification of preconditions, postconditions and class invariants, with the exception
of CONTRACT JAVA which does not support class invariants. We believe that any con-

tract tool which does not support these basic constructs is inadequate for practical use.

Chapter 3. Survey of Existing Software Contract Technologies 71

The lack of support for class invariants in CONTRACT JAVA, for example, represents a
serious gap in this tool.

In addition to the basic contract specifications, some technologies offer additional
constructs. SPEC#, CODE CONTRACTS and JML support the definition of exceptional
postconditions, which specify postconditions that need to be satisfied if the method
terminates with an exception.

SPEC#, JML and JASS further allow the specification of frame conditions. Frame
conditions specify which parts of the memory a method is allowed to modify. This
ensures that a method does not unexpectedly change the value of variables it should not
be allowed to modify [14; [128]. A variable is deemed to have been modified if it is
accessible at the start and the end of a method and its value has been changed. This
means that newly created objects and local variables are not included in the restrictions
of frame conditions [123]].

We find the concept behind frame conditions useful. It is often difficult to know
what data is changed when calling a method, particularly if this method calls other
methods. In some cases, unexpected data changes can be difficult to trace to their ori-
gins. Defining frame conditions forces developers to think carefully about which parts
of the memory a method should be able to access and modify. They inform the pro-
grammer of inappropriate memory modifications, reducing the incidence of unexpected
data changes.

Overall, of the technologies we considered, JML provided the most extensive con-
tract support. Among other constructs, it also supports history constraints and model

fields, not supported by any other tools.

3.6.2 Special Operators and Quantifiers

The different tools we investigated offer varying amounts of special operators and quan-
tifiers for use in contracts. All of the technologies we looked at allow postconditions
to refer to the return value of the method; this functionality is usually provided by the
result or return operator. In addition, all technologies except CONTRACT JAVA and
HANDSHAKE allow postconditions to refer to the value of a variable before method ex-
ecution, often through the old operator. This is important to check that the value of a
field is changed correctly by a method; we used this in most of our Stack examples to

verify that the size of the Stack changed as expected. The omission of the o1d opera-

Chapter 3. Survey of Existing Software Contract Technologies 72

tor in CONTRACT JAVA and HANDSHAKE represents a serious limitation, significantly
restricting what contracts can be expressed using these tools.

Most technologies also offer some quantifiers such as for all and exists. No such
quantifiers are available in EIFFEL, but Meyer argues that they can be easily emulated
by writing helper methods that can be called by the contracts [145]. Several tools,
including JML, SPEC#, JCONTRACTOR and OCL, have a sophisticated range of addi-

tional operators including quantifiers, counting functions and predicate logic operators.

3.6.3 Variables and Contract Structures

In order to support flexible definition of contracts, some technologies allow contracts to
define their own local variables which are visible only inside the contract. This approach
is taken by OCL, JCONTRACTOR, CODE CONTRACTS and JML. For example, in JML
special model fields and ghost fields are accessible only to contracts. Allowing contracts
to declare and use local variables can significantly simplify the declaration of more
complex contracts.

In addition, OCL, JCONTRACTOR and CODE CONTRACTS support the use of stan-
dard control statements such as if-statements and loops in their definition. This can
simplify the expression of complex contracts, although a similar result can be achieved

by quantifiers such as for all and exists in other technologies.

3.6.4 The Contract Language

Contract tools for Java and .NET represent additions to an existing programming lan-
guage. Some tools, including CODE CONTRACTS and JCONTRACTOR, specify con-
tracts in the existing programming language. EIFFEL and SPEC# are both languages
which natively support contracts and thus the language used to specify contracts is part
of the wider programming language. The advantage of this approach is that there is no
need for a separate compiler and contracts can be processed by standard tools along with
the remainder of the program. In CODE CONTRACTS, for example, contracts are spec-
ified by calling the static methods of the Contract class. In JCONTRACTOR, method
contracts are specified in contract methods using standard Java [113]].

The remaining tools we considered take a slightly different approach: they take the
original programming language as a basis but augment it using additional keywords and

operators. This approach is taken by ICONTRACT, JML, JASS and others; it requires

Chapter 3. Survey of Existing Software Contract Technologies 73

special tools to translate the contracts into the original programming language in order
for the program to be able to be processed by standard language tools.

JMS ASSERT takes this approach a step further by using a scripting language, JM-
Script, for contract specification. While JMScript is similar to Java, the underlying
programming language, it differs sufficiently that developers need to learn the scripting
language before being able to write contracts. We see this as a problem as it steepens the

learning curve for developers and is likely to inhibit the uptake of contract technologies.

3.6.5 Integration of Contracts into Source Code

There are several ways in which contracts can be incorporated into source code. Some
contract technologies, including JML, JASS and JMS ASSERT, require contracts to be
added in the form of comments, while in ICONTRACT they are defined as annotations.
The advantage of these two approaches is that they work when the contract language is
not the same as the standard programming language; the contracts are simply ignored
by the standard compiler, meaning that no special compiler is needed when working
with contracts. Instead, the contracts are usually inserted into the source code by a
preprocessor and the program is then compiled using the standard compiler.

In EIFFEL, SPEC#, CODE CONTRACTS and JCONTRACTOR, contracts are defined
as an integral part of the program and are compiled and checked by the standard com-
piler. This approach works for these technologies because the contracts are expressed
in the same language as the rest of the program.

The placement of contracts in the programs also varies between different technolo-
gies. In most cases, for example in JML, ICONTRACT and SPEC#, method contracts
including preconditions and postconditions are specified as part of the method header.
This approach has the advantage of clearly showing which contracts apply to which
methods.

In CODE CONTRACTS, preconditions and postconditions are placed inside the
method body along with the method implementation. We feel that this approach is
not ideal since it mixes contracts with implementation code and makes it difficult to
distinguish between the two.

Other technologies enforce a full separation between contracts and the code to which
they apply. In HANDSHAKE, specifications are placed in separate contract files [113];
in CONTRACT JAVA they are placed in separate interfaces [75]. This approach has the

Chapter 3. Survey of Existing Software Contract Technologies 74

advantage of clearly separating contracts from standard code, allowing them to be con-
sidered independently of the implementation. It further allows the addition of contracts
even when source code is not available, for example when working with third party
software. JCONTRACTOR allows both of these approaches: contract methods to define
preconditions and postconditions may be placed in the same class as the methods to
which they apply; alternatively, they can be defined in a separate contract class [113].
We suggest that contracts should ideally be declared separately from the implemen-
tation as part of a type definition. As explained in Chapter[2] much research has already
suggested that the public interface, or type, should be separated from the implemen-
tation; that is, the type definition should contain signatures of visible methods, but no
internal details. We suggest that such a type definition should include contracts for
publicly visible methods since, similarly to method signatures, contracts provide vital
information to clients wanting to use a service. This approach is taken by our contract

tool PACT which we present in the next chapters.

3.6.6 Side Effects in Contracts

Preconditions, postconditions and invariants should not call methods which cause side
effects since this can create bugs which are difficult to trace. For example, the two
query methods we used to define our Stack contract, isEmpty and isFull, have no
side effects and can therefore be called safely from within a contract.

Some technologies, including SPEC# and JML, enforce this and allow only methods
which have been declared free of side effects (pure methods) to be called from within
contracts. CODE CONTRACTS is also expected to enforce purity in the future [151].
OCL is a modelling language and all its code is implicitly free of side effects and thus
any methods called from the contract are guaranteed to have no side effects.

Most of the technologies we looked at do not explicitly enforce method purity; they
only recommend that no methods with side effects are called from within contracts. We
agree with Barnett et al., who claim that the latter approach gives developers too much
freedom and is unsound [15]]. As we argued above, it can be difficult to see which parts
of the memory a method modifies, making frame conditions useful; similarly, it can be
difficult to determine whether a method is pure or not, particularly when this method

calls other methods, which in turn could have side effects.

Chapter 3. Survey of Existing Software Contract Technologies 75

3.6.7 Precondition Visibility

According to contract theory, it is the responsibility of clients to ensure that precon-
ditions hold when they invoke a method in the supplier. Therefore, it is important to
ensure that preconditions do not refer to any data or methods which are not visible to
clients. Some contract technologies enforce this restriction, while others do not.

CODE CONTRACTS ensures that anything used to define the precondition is visible
to clients. JASS and JML require anything referred to by the precondition to be at
least as visible as the method itself. Thus, the preconditions of public methods must
be defined using only publicly visible data and methods; preconditions for protected
methods may refer to both public and protected items.

Given how widely documented the requirement of precondition visibility is, we are
surprised that not more tools enforce it. If clients do not have access to some of the meth-
ods or data used in precondition definitions, they may not be able to check preconditions
and may therefore fail to fulfill their responsibilities under the contract. Contracts are
based on the idea of shared responsibility between clients and service providers and

having potentially invisible preconditions violates the foundation of software contracts.

3.6.8 Checking of Class Invariants

Class invariants are constraints that need to be maintained in all visible states of the
objects of a class; that is they must be true at the start and the end of each method that
can be called by a client. For this reason, Meyer asserts that each invariant essentially
represents an additional precondition and postcondition for each exported method in a
class [145]]. EIFFEL, JML, HANDSHAKE and others therefore check class invariants at
the start and end of each method execution.

However, as we explained in Chapter [2| seeing class invariants as an addition to
each method’s precondition causes problems: it violates contract inheritance principles
by allowing strengthening of preconditions and wrongly makes the client responsible
for establishing the class invariant, which should be maintained by the class itself. For
this reason, CODE CONTRACTS, ICONTRACT and JASS check the class invariant only
at the end of method executions. In this way, invariants are essentially added only to the
postconditions, not the preconditions.

SPEC# takes a more complex approach to invariant checking. It allows changes

to memory only inside special expose blocks because such changes could invalidate

Chapter 3. Survey of Existing Software Contract Technologies 76

class invariants; every time an expose block is exited the class invariants are checked.
While this approach has the advantage of working in the presence of concurrency and
reentrancy, it greatly increases the complexity of writing programs with contracts and
requires the use of complicated constructs even when writing simple programs. We
believe that this complexity is likely to alienate new users and slow the uptake of SPEC#
and software contracts in general.

Apart from the disagreement over when the invariant needs to be checked, there is
also some debate about which methods this check applies to. According to contract
theory, the class invariant must be maintained in all externally visible states but may be
broken while internal methods are executed. For example, a recursive method needs to
maintain the invariant only for its outermost invocation. Private methods should be
allowed to break the invariant; only methods called by the client should need to maintain
it.

Of the technologies we considered, only JASS checks the invariant after each method
execution, effectively forcing all methods, including private methods, to maintain the
invariant. EIFFEL, ICONTRACT, HANDSHAKE and JMS ASSERT require all non-private
methods to maintain the invariant, while CODE CONTRACTS, JML and JCONTRACTOR
only require public methods to do so.

Some of the Java technologies allow only private methods to break the class in-
variant, while others allow private, package and protected methods to do so. The
latter approach is problematic, since calls to package and protected methods may
come from a different class and object, and therefore should be forced to maintain the
invariant. On the other hand, this allows methods from the subclass to call methods in
the superclass while the invariant is broken, which may be important in the context of
inheritance.

We argue that ideally the invariant should need to be satisfied only directly before
returning control to the client; that is, it should be checked after every method call orig-
inating from outside the object. This would allow an object to break its own invariant
temporarily (possibly while calling code in the superclass) but would also ensure that
the object remains in a consistent state when it returns control.

Overall, we found a highly variable approach to invariant checking in the tools we
studied. In our view, the wide range of approaches stems from the incomplete body
of theory about this aspect of contracts. We have found no research that fully explains

when invariants should be checked and what implications the different approaches have.

Chapter 3. Survey of Existing Software Contract Technologies 77

Given the wide range of different approaches, we feel that this is an area where further

investigation is warranted.

3.6.9 Inheritance of Contracts

Inheritance is an important mechanism in OO programming and consequently contract
tools need to support it. When inheriting contracts, preconditions may be weakened and
postconditions and class invariants may be strengthened.

In many technologies, including EIFFEL, ICONTRACT, JML and JCONTRACTOR,
correct contract inheritance is enforced by disjuncting inherited preconditions and con-
juncting inherited postconditions; this leads to a weakening of preconditions and a
strengthening of postconditions.

CODE CONTRACTS and CONTRACT JAVA take a more restrictive approach: while
postconditions and invariants may be added by subclasses, preconditions must be spec-
ified completely in the superclass; subclasses are not allowed to specify any additional
preconditions. This ensures that preconditions are not strengthened, but also makes de-
velopers unable to weaken them. The developers of CODE CONTRACTS argue that “we
just haven’t seen any compelling examples where weakening the precondition is useful”
[151].

In our own work with CODE CONTRACTS we have found this approach very frus-
trating because it does not allow for flexible precondition definition. We strongly dis-
agree with the point of view that precondition weakening is not useful. In the real world
there are many examples of precondition weakening. Consider, for example, vehicle
licencing. In New Zealand, all vehicles driving on the road must have a current reg-
istration. Essentially, having a current registration is the precondition for driving the
vehicle legally. However, if you are driving a tractor (a subtype of vehicle) for agricul-
tural purposes, no current registration is required. This represents a weakening of the
precondition for legally driving a vehicle. An important principle of software design
is modelling the real world [[172]]; since precondition weakening is common in the real
world, we feel that it is also an essential tool for software developers.

While almost all technologies we investigated always enforce the correct use of
contract inheritance, JASS takes a more tolerant approach. It can check for correct

inheritance using refinement checks, but this is optional and can be turned off by the

Chapter 3. Survey of Existing Software Contract Technologies 78

developer. In OCL, the semantics of contract inheritance are not fully specified because
it is a general purpose modelling language rather than a concrete implementation.

As we discussed in Chapter [2, multiple inheritance is more flexible and expressive
than single inheritance. Both .NET and Java support only single inheritance of classes
and consequently none of the contract tools based on .NET and Java support multiple
inheritance for classes; however, multiple inheritance is allowed between interfaces.
EIFFEL, on the other hand, fully supports multiple inheritance, making it more flexible
and expressive. Multiple inheritance is also allowed in UML diagrams and therefore
handled by OCL.

We are encouraged by the high level of support for correct inheritance in contract
tools. Using inheritance correctly is notoriously difficult and our intuition sometimes
leads us to use it incorrectly. This is particularly evident in the well-known square-
rectangle problem [140]. Our own experience shows that contracts are very valuable
when creating inheritance hierarchies because they force us to ensure that an instance
of the subclass is substitutable for an instance of the superclass; problems with contract

inheritance usually signal incorrect use of inheritance.

3.6.10 Conversion of Contracts into Runtime Checks

Once contracts have been written, they are turned into runtime checks that report when
a contract is violated. This conversion may be done in several ways. Programs written
in EIFFEL, CODE CONTRACTS and SPEC# can simply be compiled using a standard
language compiler since contracts are expressed in the same language as the rest of the
program. The EIFFEL and SPEC# compilers insert runtime checks for contracts during
compilation; CODE CONTRACTS uses library classes to implement contract checking.
Those technologies where the contract language differs from the standard program-
ming language require custom tools for compilation. JML and CONTRACT JAVA pro-
vide a customised Java compiler which not only compiles the program but also generates
the runtime checks. ICONTRACT, JASS and JMSASSERT all use preprocessors which
insert Java statements into the code before it is compiled by the standard Java compiler.
This has the advantage that the standard Java compiler can be used after preprocessing
is completed. HANDSHAKE and JCONTRACTOR use a dynamic library and class loader

to inject runtime checks when the program is executed, rather than at compile-time.

Chapter 3. Survey of Existing Software Contract Technologies 79

3.6.11 Supporting Tools

In addition to describing technologies which support the specification of contracts, we
have also presented a number of supplementary tools, including static verifiers and test-
ing tools. Static verifiers vary widely in their level of sophistication. ESC/Java for
JML, for example, is an extended static checker which is capable of proving simple
contracts only and is neither sound nor complete. In contrast, verifiers such as LOOP
for JML and Boogie for SPEC# are much more complex and powerful. Such verifiers
attempt to fully prove the correctness of a program but are usually much more difficult
and time-consuming to use than simpler checkers.

Both black-box and white-box unit testing tools have been developed for use with
contracts. Tools like AutoTest essentially create random test inputs, while Pex analyses
the program structure and chooses test cases that will exercise as many different paths
through the program as possible. An additional difference between the various testing
tools is that some tools, including Pex and AutoTest, run largely automatically, while
other tools, such as Cdd and jmlunit, require user input. Tools which run automatically

are usually much simpler and less time-consuming to use.

3.7 Summary

Our investigation into existing software contract technologies has uncovered a range of
different approaches and shortcomings of current tools. The most important ones are

summarised below:-

e Class invariant checking is particularly inconsistent in the contract technologies
we investigated. Some tools check class invariants at the start and end of methods,
others only at the end; some tools check class invariants in all methods, others in
public methods only. We have argued that class invariants are part of method
postconditions, but not preconditions, and should therefore be checked at the end
of methods only. In addition, internal methods should be able to break the class
invariant while executing, as long as it is restored before control is returned to the
client. Therefore, we suggest that class invariants should be checked at the end of
all method calls originating from outside the object; this approach is not taken by

any of the existing tools.

Chapter 3. Survey of Existing Software Contract Technologies 80

e Only two of the tools we investigated, HANDSHAKE and CONTRACT JAVA, re-
quire contract definitions to be in separate locations from the implementations to
which they apply. We suggest that this approach is preferable to placing contracts
directly with method implementations because it provides a clear separation be-
tween implementation details and information for clients, meaning that irrelevant

details do no intrude on interface specifications.

In Chapter [2] we reviewed research showing the advantages of separating types
and implementations. In the current chapter, we argued that contracts ought to
be considered part of types since they provide vital information to clients about
how to use methods; contracts are, in effect, more fully specified types. We sug-
gest that separating types, including contracts, from implementations can provide
many benefits to contract technologies. However, none of the contract tools we

investigated take this approach.

e (Calling methods which cause side effects from within contracts can cause obscure
bugs. Nevertheless, all of the technologies we looked at, with the exception of
SPEC#, JML and perhaps OCL, allow methods with side effects to be called
from within contracts. Like Barnett et al., we argue that this gives developers too
much freedom, particularly because it can sometimes be difficult for developers

to recognise methods with side effects.

e Preconditions must be checked by clients before calling a method. However,
only three of the technologies we investigated, CODE CONTRACTS, JML and
JASS, ensure that all preconditions can be checked by clients. The sharing of
responsibility between the client and supplier of a service is a core concept of
software contracts; the accessibility of preconditions should match these seman-
tics of contracts and therefore all contract tools should ensure that preconditions

can be checked by clients.

e Although most tools investigated here enforce the correct use of contract inher-
itance, JASS allows checks for correct inheritance to be turned off; in addition,
CODE CONTRACTS and CONTRACT JAVA do not allow weakening of precondi-
tions, limiting the expressiveness and power of contract inheritance. Given the
importance of inheritance in OO contracts, we argue that correct contract inheri-

tance must be supported by all tools.

Chapter 3. Survey of Existing Software Contract Technologies 81

e Multiple inheritance is more expressive than single inheritance, as we discussed
in Chapter 2] Nevertheless, C# and Java support only single inheritance between
classes, although multiple inheritance is possible between interfaces. Conse-
quently, none of the contract tools based on C# and Java support multiple inher-
itance between classes. Only EIFFEL and OCL provide full support for multiple
inheritance. We suggest that despite the complexities surrounding multiple inher-

itance, its increased expressiveness and flexibility offers distinct advantages.

In addition to these issues and limitations, we discussed in detail additional improve-
ments to standard inheritance in Chapter 2] including covariance and contravariance for
return types and parameter types and a separation of the two orthogonal dimensions of
inheritance. However, these are not supported by any of the contract tools we investi-

gated here:-

e Covariance and contravariance of return types and parameter types respectively
gives developers maximal flexibility when overriding methods. Mainstream pro-
gramming languages including C# and Java do no support covariance and con-
travariance for return types and parameter types and consequently neither do the
contract tools based on them. EIFFEL, on the other hand, supports covariance of
return types and parameter types; however, its covariant parameter types result in

a loss of type safety.

e Inheritance has two orthogonal dimensions, subtyping and implementation
derivation, which are conflated into a single relationship by most programming
languages. Separating them allows developers to use inheritance for reuse even
when there is no substitutability between the types. This distinction is particularly
important in the presence of contracts because contracts more precisely specify
the constraints that are placed upon the types in order to achieve substitutabil-
ity. None of the contract technologies we investigated support such a separation

between dimensions of inheritance.

We suggest that supporting covariance and contravariance as well as separating the
two dimensions of inheritance in contract tools would allow developers to fully utilise
the power of inheritance.

We argue that it is important that the issues with existing contract technologies are

addressed in order to increase developers’ confidence in contract tools and the practice

Chapter 3. Survey of Existing Software Contract Technologies 82

of using software contracts in general. We hope that this survey and the issues it uncov-

ered can serve as a basis for more consistent contract tool development in the future.
Not one of the tools investigated here completely fulfills all our requirements and

expectations. Therefore we begin the development of our own contract framework in

the next chapters, applying the lessons learned from this survey.

PACT - Design for a new Contract
Framework

In the last two chapters, we presented background about software contracts and evalu-
ated existing contract tools. In our survey of contract tools we found several shortcom-
ings and inconsistencies surrounding even some basic contract concepts.

We find it surprising that principles of good design which are almost universally
accepted are still inadequately supported in current tools. For example, separation of
types from implementations should be enforced by programming languages, while in-
heritance — which is a foundational concept of OO — should be well understood and
supported in ways that avoid its pitfalls. Indeed, remarkably few of the fundamental
ideas for structuring software are currently fully exploited. The inadequacies of exist-
ing technologies have lead us to develop our own tool, PACT, which applies the lessons
from the survey of existing contract tools and from our background research.

In this chapter, we present the design of PACT, a framework for better software

contracts. In particular, our goals for PACT will be to:-

e Fully separate types from their implementations;

e Distinguish between different dimensions of inheritance and support multiple in-

heritance;

e Support correct covariance and contravariance;

83

Chapter 4. PACT - Design for a new Contract Framework 84

e Enhance the specification of types with preconditions, postconditions and class

invariants;
e Enforce correct inheritance of contracts;

e Support more expressive specification of contracts by allowing variables and other

control statements to be used within contracts;

e Ensure that preconditions only make use of members which are accessible to

clients;

e Support checking of the class invariant at the end of each method call originating

from outside the object; and

e Use object encapsulation rather than class encapsulation.

Section {.1.1]introduces the separation of types and implementations in PACT and
Section4.1.2] gives an overview of PACT’s encapsulation policy; Section d.1.3]explains
the different types of inheritance available in PACT; Section[4.2|gives more detail about
type specifications; Section 4.3 explains how implementations are written; finally, Sec-
tion [4.4]looks more closely at the issues surrounding constructors and object instantia-

tion.

4.1 Core Concepts

4.1.1 Separation of Types and Implementations in PACT

In Chapter 2] we reviewed research proposing that a separation between types and imple-
mentations can provide higher levels of abstraction, flexibility and encapsulation. One
of the main goals of PACT is to achieve a full separation of types from implementation.
We are surprised that none of the existing contract tools support such a separation, given
the many benefits it provides.

We propose that the combination of contracts with the separation of types and im-
plementations is a natural union that will further increase the benefits gained by each
practice. Firstly, we argue that separating types and implementations can bring the
same benefits to software contracts as they have been shown to add to standard OO

programming. Secondly, contracts are an ideal tool for defining types since they can

Chapter 4. PACT - Design for a new Contract Framework 85

be used to more fully specify the external interface of software components. All of
the programming languages we considered which enforce a separation between types
and implementations, define the operations of types by simply specifying method sig-
natures. Such method signatures include only information about parameter types and
return types. Contracts, on the other hand, are much more expressive and able to convey
complex preconditions and postconditions. We therefore argue that using contracts will
greatly increase the expressiveness and exactness of type definitions.

None of the contract technologies we investigated in Chapter [3|enforce the separa-
tion of types and implementations. The vast majority of tools does not separate contracts
from their implementations at all. Only two, HANDSHAKE and CONTRACT JAVA, en-
sure that contracts are placed in separate contract files. Although this cleanly separates
contracts from implementations, this separation is done mainly so that existing source
code and class files do not need to be modified when adding contracts; this allows con-
tracts to be added in cases where the source code is not available, for example when
working with third party software. However, such a separation of contracts and source
code does not represent a proper separation of types and implementations since the in-
formation in contract files is not seen as a separate interface or type but is rather an
addition to the existing implementations. Implementations continue to be accessible to
clients rather than being hidden and accessed only through a type. For these reasons, this
approach provides fewer benefits than a full separation of types and implementations.

Given the various benefits of separating types and implementations, we propose
a full separation in PACT; type specifications in PACT will contain not only simple
method signatures but also method contracts, including preconditions and postcondi-

tions. We strictly enforce the separation between types and implementations so that:-

Types and implementations are defined completely separately;

e Types are not allowed to know about their implementation(s);

Implementations declare which type(s) they implement; and

Any code refers only to types and not to other implementations.

PACT organises source code into files in a way that is consistent with this semantic
structure. When writing code for a type and its associated implementation, we place
the method signatures of all public methods and their associated contracts in the type.

This part is visible to clients and thus needs to hold all the information describing the

Chapter 4. PACT - Design for a new Contract Framework 86

type’s interface. Everything else, including the methods’ implementations, fields and
any private methods, is placed in the implementation.

The complete separation of types and implementations in PACT allows for the flex-
ible combination of types and implementations. In addition, it encourages a high level
of encapsulation and information hiding since all internal details are declared in imple-

mentations and thus inaccessible to clients.

4.1.2 Encapsulation in PACT

In Chapter [2] we reviewed our previous work in which we argued that there are two dif-
ferent encapsulation policies: class encapsulation and object encapsulation [196; [197]].
Class encapsulation is supported by most mainstream programming languages, includ-
ing C#, Java and C++; however, we suggested in previous work that object encapsula-
tion is more powerful and flexible. In addition, a survey we conducted found that object
encapsulation is more intuitive and that a significant amount of confusion exists among
developers about encapsulation boundaries.

Given the benefits of object encapsulation, we will use this encapsulation boundary

in PACT. As a result only two kinds of access are needed:-

e public access: public members can be accessed from any other part of the

system; and

e private access: private members are hidden and cannot be accessed from out-
side the object in which they are contained. They may be accessed by any inherit-
ing parts of the same object. Given the separation of types and implementations,

all members of implementations are implicitly private.

4.1.3 Different Types of Inheritance in PACT

Subtyping and Implementation Derivation

Much research has indicated that inheritance has two different dimensions: subtyping
and implementation derivation. Subtyping entails substitutability of the subtype for the
supertype while implementation derivation is simple reuse of code. Separating these two
orthogonal dimensions is essential since it allows developers to differentiate between

two different and sometimes conflicting goals: code reuse and behaviour reuse.

Chapter 4. PACT - Design for a new Contract Framework 87

PACT supports both subtyping and implementation derivation, fully separating
these two dimensions of inheritance. Subtyping is a relationship between two types,
where the subtype becomes substitutable for the supertype. The contracts of the two
types must be compatible; that is, preconditions may only be weakened in the subtype
and postconditions may only be strengthened. Subtyping in PACT entails no reuse
of implementation details, since types contain only contracts and signatures of public
methods.

In PACT, subtyping can also occur between types and implementations. When an
implementation implements a type, it becomes substitutable for this type and an object
of the implementation can be used when an object of the type is expected. This is
semantically exactly the same as subtyping between two types. In this case, we refer to
the supertype and sub-implementation.

Implementation derivation in PACT is a relationship between two implementations,
where the derived implementation reuses code from the base implementation. This does
not, however, make the derived implementation substitutable for the base implementa-
tion.

Implementation derivation has sometimes been criticised in literature and some lan-
guages have chosen to allow only subtyping but no implementation derivation. How-
ever, we disagree with the criticisms and contend that implementation derivation is dan-
gerous only when coupled with subtyping. Code reuse by itself presents no danger and
is even highly desirable.

Although the separation between implementation derivation and subtyping in PACT
provides a number of benefits, we argue that even with this separation using inheritance
correctly remains a challenge. Contracts can be a significant help in clarifying the dif-
ference between subtyping and implementation derivation.

Let us use an example to demonstrate this. Imagine that we have a simple Stack
type with the three standard methods push, pop and peek. In addition, we want to create
a second type NoNullStack which, unlike the standard Stack, does not allow null to
be pushed and therefore guarantees that pop and peek will never return null. At first
sight, it may seem like we have a simple subtype relationship here. We make Stack
the supertype and NoNullStack the subtype, as we believe many software developers
would do in practice.

It is only when we take a closer look at the contracts for the three Stack methods

that we realise that this is not a correct subtype relationship; that is, NoNullStack is not

Chapter 4. PACT - Design for a new Contract Framework 88

substitutable for its supertype Stack. The contracts for Stack and NoNullStack are

specified in pseudocode in Program Listing 4.1.

Program Listing 4.1 Pseudocode contracts for the Stack and NoNullStack types

type Stack {
Precondition: !isFull ()
Postcondition: size == oldsize + 1 && obj == peek()

void push(Object obj);

Precondition: !isEmpty ()
Postcondition: size == oldsize - 1
Object pop();

Precondition: !isEmpty ()
Postcondition: size == oldsize
Object peek();

type NoNullStack {
Precondition: !isFull() && obj != null
Postcondition: size == oldsize + 1 && obj == peek()
void push (Object obj);

Precondition: !isEmpty ()
Postcondition: size == oldsize - 1 && result != null
Object pop();

Precondition: !isEmpty ()
Postcondition: size == oldsize && result != null
Object peek();

The push method of the subtype NoNullStack allows only non-null items to be
pushed. No such condition exists in the supertype and thus this is a strengthening of the
precondition, resulting in a type that is not substitutable for its supertype. We experi-
ence the same issue if we reverse the relationship and make NoNullStack the supertype
and Stack the subtype. NoNullStack guarantees that the results of pop and peek are
not null but the subtype Stack makes no such guarantees, again violating the substi-

tutability requirement.

Chapter 4. PACT - Design for a new Contract Framework 89

In this situation we do not have a subtyping relationship but it would nevertheless
be useful to reuse common features. The implementations for the two types are likely
to be particularly similar. In programming languages where the two dimensions of
inheritance are conflated, this would not be easily possible. However, because PACT
separates subtyping from implementation derivation, developers are able to make use of
one type of inheritance without incurring the unwanted semantics of the other.

The example above shows that contracts are a very useful mechanism for exposing
problems with inheritance because they define precisely what is and what is not al-
lowable when overriding methods. In established programming environments, the two
dimensions of inheritance are conflated and this often means that inheritance problems
brought to light by specifying contracts cannot readily be resolved with the available
inheritance mechanisms. By separating inheritance into its two underlying dimensions
while at the same time supporting contract specification, PACT enables developers to
use inheritance to its full potential. In next section we explain in full how PACT’s in-

heritance mechanisms can be used to implement the Stack and NoNullStack example.

Type Derivation

Although the two types Stack and NoNullStack are not substitutable for each other
and can therefore not be related through subtyping, their contracts are nevertheless very
similar. The implementations of the two types are also very similar and we can use
implementation derivation to reuse code and avoid duplicating common features.

In existing literature, the code reuse dimension of inheritance always focuses on
the reuse of implementations. However, we contend that reusing type specifications,
including contracts, is equally useful in situations where the contracts for two types are
very similar but not compatible for subtyping.

This new form of reuse is not a new relationship as such but represents the applica-
tion of implementation derivation to types. In situations where we need to distinguish
it from implementation derivation we call it type derivation; in most cases there is no
need to differentiate between the two and we use the term derivation to refer to either.

We are not aware of any programming languages other than PACT which include
this form of inheritance. Although type derivation was previously described by Kurtev
[118], he imagined that it would be mostly useful in interface definition languages and
entail substitutability. We find, however, that it is more widely applicable, particularly

in the presence of contracts.

Chapter 4. PACT - Design for a new Contract Framework 90

In our Stack example from above, the contracts for Stack and NoNullStack are
very similar; reusing the contracts from one type in the definition of the other avoids
duplication of the many common features. Using type derivation, the specification of
NoNullStack reuses the specification of Stack and adds additional preconditions and
postconditions. Unlike with subtyping, the two types are not substitutable for each other,
but we are still able to achieve a high level of code reuse.

We are now in a position to design a solution to our Stack and NoNullStack exam-
ple using PACT’s inheritance mechanisms. A diagram of this solution can be seen in

Figure . 1| The notation used in the diagram is explained in detail in the next sections.

<<type=> <<implementation>>
Stack [KI<----------1 StackImpl

~<type=> <<implementation>>

NoNullStack [<< """ NoNullStackImp

Figure 4.1: A solution to the Stack and NoNullStack example in PACT

NoNullStack and Stack are related through type derivation rather than subtyping,
allowing for reuse without substitutability. NoNullStack is the derived type; Stack is
the base type. We have an implementation of Stack called StackImpl and an imple-
mentation of NoNullStack called NoNullStackImpl. Both are connected through the
subtyping relationship to their respective type; this means that an object of each imple-
mentation is substitutable for its respective type. The two implementations have a lot in
common and thus NoNullStackImpl reuses code from StackImpl through implemen-
tation derivation.

An interesting observation can be made when considering the direction the deriva-
tion relationship. Subtyping is constrained by the semantics of contracts and therefore
one type must be the supertype and the other the subtype; reversing the relationship
is not possible. However, for derivation the direction of the relationship is something
the software designer is free to choose. In our example, Stack could be derived from
NoNullStack or vice versa. In reality, it is likely that the type or implementation which

is developed later becomes the derived type or implementation.

Chapter 4. PACT - Design for a new Contract Framework 91

Restriction

Restriction is a new inheritance concept introduced by PACT. It is essentially the in-
verse of subtyping and is particularly useful when the subtype rather than the supertype
is the original core concept. This occurs, for example, when we try to define multiple
interfaces to a type, each providing different combinations of features.

Objects or people in the real world often offer a number of different levels of inter-
action. Let us, for example, consider a car mechanic whose job it is to repair people’s
cars. When the mechanic is working on his friends’ cars he may perform services he
does not usually offer to other customer and may charge less than normal.

Similar situations occur in the design of a software system, where we want to create
multiple different interfaces to the same type. This is useful in situations where we
want to limit certain parts of the system to a more restrictive interface, while providing
a fuller level of service to other parts. Existing programming languages provide only
limited mechanisms for doing this through the use of access modifiers such as private,
protected and public but such a system is not very flexible and does not allow us to
define many distinct interfaces.

For example, consider a Stack which allows everyone to peek but only certain parts
of the system to pop and push. We could make peek public and the other two methods
protected or private but this may not produce the desired effect, potentially giving
away pop and push access to more or fewer clients than we wanted. Clearly, more
flexibility would be useful.

Alternatively, we could define two types: PeekOnlyStack, which contains only the
peek method definition, and Stack which is a subtype of PeekOnlyStack and adds
the pop and push methods. If we have an implementation of Stack, we could give it
to clients to use, either as a PeekOnlyStack or as a Stack depending on the level of
access we want the particular client to have. This works, because Stack is substitutable
for PeekOnlyStack. What we have done is created two different interfaces for the
Stack type. We could define more, for example an interface that allows clients only to
pop but not push.

However, there are some issues with this approach. Semantically, Stack is the core
concept rather than the supertype PeekOnlyStack we have created. The Stack concept
has not been derived from PeekOnlyStack but the other way around. Creating multiple
interfaces to the Stack type requires us to modify the Stack type every time; we need

to modify it to subtype PeekOnlyStack and move relevant method definitions into the

Chapter 4. PACT - Design for a new Contract Framework 92

new supertype. This means that every time that we want to create a new interface for
Stack, the core type Stack has to be modified. This approach does not easily scale to a
multitude of combinations of interfaces.

With standard subtyping, when we create an extension or specialisation of another
type, the original type is not affected by this and does not need to know anything about
its subtypes. This ensures that software remains extensible and easy to maintain. This

is expressed in Riel’s heuristic 5.2:-

Derived classes must have knowledge of their base class by definition, but
base classes should not know anything about their derived classes. If base
classes have knowledge of their derived classes, then it is implied that if
a new derived class is added to a base class, the code of the base class
will need modification. This is an undesirable dependency between the

abstractions captured in the base and derived classes [172} page 81].

If we apply this principle to our situation, we can see that it is a mistake to force
Stack to change when we declare PeekOnlyStack. On the other hand, PeekOnlyStack
should know about the concept from which it has been derived; that is, Stack.

We need a new relationship since subtyping cannot do exactly what we require.
What we want is to reverse the direction of knowledge, so that PeekOnlyStack knows
about Stack but not vice versa, while making Stack substitutable for PeekOnlyStack.
To this end, we define a new relationship, which is essentially the inverse of subtyping.
We call this new relationship restriction, because we note that PeekOnlyStack is
a more restrictive version of Stack. We call Stack the full type and PeekOnlyStack
the restricted type. The restricted type is derived from the full type, while the full type
becomes substitutable for the restricted type.

Applying the principles of substitutability, we can see that the restricted type is not
allowed to include methods that do not exist in the full type, although it does not have
to include all methods from the full type. Preconditions in the restricted type may be
stronger than in the full type, while postconditions may be weaker. This means that
the restricted type may be more demanding than the full type and may make fewer
guarantees. It may also make fewer methods available to the client than the full type.
Thus, the restricted type essentially represents a less privileged level of access than the
full type.

If these rules are satisfied, an object which conforms to the full type is substitutable

for the restricted type and can be used whenever an object of the restricted type is

Chapter 4. PACT - Design for a new Contract Framework 93

expected. The client can thus be given a standard object but through the restricted type
will be confined to a more limited interface. The standard object does not need to know
that it is given away to a client with a lower level of access, just as the client will not
know that it is given a full object rather than a restricted one.

Restriction is a powerful concept that enables designs which are not possible in
conventional programming languages and solves some design problems more elegantly
than is currently possible. Existing programming languages typically use access modi-
fiers as the principal mechanism supporting information hiding; access modifiers allow
an object member to be either fully exposed or fully hidden from other parts (packages,
subclasses, ...) of the program. In the case where an owner object hides a member object
from the outside world, the owner must take responsibility for all manipulations of the
member. Conversely, if it exposes the member it allows the outside world unconstrained
access, entailing a loss of control over the member. Restriction is more flexible and pro-
vides a middle ground between complete hiding and exposure: it allows an object to
expose limited interfaces of its components.

For example, imagine that we are developing a banking system, where Customers

have Accounts. A diagram of this example is shown in Figure 4.2}

Client “~type>>
. Customer
]
]
]
I
]
X
AVA
<<type>> <=type>>

NonNegativeAccount <l----> Account

Figure 4.2: Customers and Accounts in a banking system

Each Customer encapsulates and hides its Account s so that they cannot be modified
by other parts of the system without the Customer’s knowledge. In particular, this is
important in our banking system because we need the Customer to know when one of
its Accounts goes into overdraft. This means that exposing Accounts to the rest of the

system is not feasible.

Chapter 4. PACT - Design for a new Contract Framework 94

On the other hand, this policy is more conservative than it needs to be. It may
be that clients should be able to make transactions to and from an Account directly
unless there is a danger that the transaction will result in a negative account bal-
ance. Therefore, we create a restricted type, NonNegativeAccount which restricts
Account. NonNegativeAccount includes preconditions that ensure that a transaction
can only be made if it does not result in a negative balance. Rather than hiding its
Accounts and processing all transactions directly, Customers can now safely expose
their Accounts to the rest of the system as NonNegativeAccounts. In this way, the
NonNegativeAccounts can process most transactions directly without the involvement
of the Customers; at the same time, the Customers can be sure that these direct trans-
actions will not result in an account overdraft.

Restriction allows us to create multiple interfaces to one type. For example, we
could create another restriction of Account which supports only read-only operations
for the purposes for reporting. In this way, the Customer object can retain full control
over its Accounts, while at the same time exposing them in a limited way.

Restriction is also valuable for other purposes. For example, it can be used to define
common interfaces of types which are otherwise not related through subtyping. This
allows us to achieve limited substitutability. Consider our earlier example of Stack
and NoNullStack. The two are clearly not related through substitutability but they still
have a lot in common. We should be able to give either a Stack or a NoNullStack to
a client who wants to pop and peek. As long as the client does not push any items,
NoNullStack’s added constraint of disallowing null items on the Stack is not impor-
tant.

Let us create a new type, NoPushStack, which restricts both Stack and
NoNullStack. NoPushStack sets the precondition of push to false and reuses the
preconditions of pop and peek as defined in Stack. A diagram of this example can be
seen in Figure 4.3} pseudocode for the NoPushStack type is shown in Program Listing
4.2 and pseudocode for the Stack and NoNullStack types can be found in Program
Listing 4.1 above.

Looking at the contracts of the three types, we can see that NoPushStack is a valid
restriction of both Stack and NoNullStack; that is, Stack and NoNullStack are sub-
stitutable for NoPushStack. Clients can now be given a NoPushStack to pop and peek
without having to know whether they are dealing with a Stack or NoNullStack. In
this way, we have achieved limited substitutability for NoNullStack and Stack. Be-

Chapter 4. PACT - Design for a new Contract Framework 95

<<type>>
.--"7] Stack
<<type>>
NoPushStack
N <<type=>
NoNullStack

Figure 4.3: NoPushStack, a common interface for Stack and NoNullStack

Program Listing 4.2 Pseudocode contracts for the NoPushStack type

type NoPushStack {
Precondition: false
void push (Object obij);

Precondition: !isEmpty ()
Postcondition: size == oldsize - 1
Object pop () ;

Precondition: !isEmpty ()
Postcondition: size == oldsize
Object peek();

cause we made NoPushStack a restriction of Stack and NoNullStack rather than a
supertype, neither of the two original types needed to be modified.

We can construct multiple restriction levels, as shown in Figure The notation
used here is explained in detail in the next section; the PACT syntax used in the defini-
tion of contracts in the diagram is introduced in Section 4.2}

In this example, the original type Stack is restricted in two ways to cre-
ate NoPopStack, which does not allow clients to pop objects off the stack, and
NoPushStack, which does not allow clients to push objects. NoPopStack and
NoPushStack are further restricted to create PeekOnlyStack. This shows that a type

can restrict more than one type, as long as all the full types are compatible.

Chapter 4. PACT - Design for a new Contract Framework 96

<<type>>
NoPushStack
push():
pre{
<<type> N } check false; pr———.
. o it - I L et i
Stack = > PeekOnlyStack
push()
pop(
peek() o > <<type>> |, >
NoPopStack
pop():
pre{
check false;
}

Figure 4.4: A restriction hierarchy of stacks

Summary of Inheritance Types

To summarise, PACT differentiates between two different dimensions of inheritance,
subtyping and derivation. Subtyping results in the subtype being substitutable for the
supertype. This requires the contracts for the two types to match; that is, preconditions
may not be strengthened by the subtype and postconditions may not be weakened.

Restriction is semantically the opposite of subtyping and is particularly useful when
the subtype, not the supertype, is the central semantic concept; this happens, for exam-
ple, when we try to create multiple different interfaces for a type.

Implementation derivation and type derivation represent the reuse of implementa-
tions and type specifications respectively and do not result in substitutability.

Different relationships are possible between different PACT constructs. Subtyping
can occur only between two types or one type and one implementation. Derivation can
occur either between two types or two implementations. This is shown in Table 4.1.

In order to distinguish between the different inheritance relationships in diagrams,
we have created a new notation. This notation has been derived from the original UML
inheritance notation [82] which can be seen in Figure 4.5] Our notation is summarised
in Figure this figure also reiterates the terminology used to refer to the types or
implementations that participate in the relationships.

Chapter 4. PACT - Design for a new Contract Framework 97

Base Type Implementation
Derived
Type Subtyping,
Derivation
Implementation | Subtyping Derivation

Table 4.1: Overview of PACT inheritance relationships

Our notation includes two basic arrows: one for subtyping and one for derivation.
The subtyping arrow has an open arrowhead and a dotted line, similar to the arrow
for interface inheritance in UML [82]. The open arrowhead represents the direction
of substitutability and always points from the subtype to the supertype. In addition, a
second, smaller arrowhead is used to show the direction of knowledge. In subtyping,
the direction of knowledge is the same as the direction of substitutability; when using
restriction, the direction of knowledge is inverted. This allows us to distinguish between
subtyping and restriction on our diagrams.

The derivation arrow has a solid line and filled-in arrowhead. In this relationship,
we do not need to denote the direction of knowledge separately, as it always runs from
the derived type or implementation to the base type or implementation.

Multiple inheritance, as discussed in Chapter [2] is more expressive than single in-
heritance, albeit more difficult to implement. Much research has been done into the
implementation of multiple inheritance and many of the issues surrounding it have been
more or less resolved. We believe that the expressiveness of multiple inheritance is very
valuable and therefore aim to provide multiple inheritance for all types of inheritance in
PACT. However, since multiple inheritance has been thoroughly researched previously,
we will not consider the issues surrounding it in much detail here.

In Chapter [2] we also explained the difference between named and structural in-
heritance. In PACT, we use named inheritance because of the added transparency it
provides. We believe that it is essential for developers to explicitly know, understand
and document the relationships between types and implementations. This is important
for fully understanding the semantics of the software. It also helps to avoid accidental
conformance, for example where one type inadvertently and without the knowledge of

the developer becomes the subtype of another.

Chapter 4. PACT - Design for a new Contract Framework 98

UML Inheritance Subclass |[—————{>{ Superclass

UML Interface Inheritance Subinterface |--------- |> Superinterface

Figure 4.5: UML inheritance notation

Subtypmg SU.btype ———————— }:D Supertype
Type Restriction Restricted Type e - - - - - o> Full Type
Derivation Derived Type/ |y, BaseType/
Implementation Implementation

Figure 4.6: PACT inheritance notation

4.2 Type Specifications in PACT

In this section, we will explain in detail how types are specified in PACT. Examples
of type definitions, which will be referred to throughout this section, can be seen in
Program Listing 4.3 and Program Listing 4.4. In Program Listing 4.3 we the define
a simple Circle type; in Program Listing 4.4 we show the PACT specification of a
simple NoNullStack type, similar to the one we encountered earlier in this chapter.
The most important rule about types is that they may never refer to implementations,
although they are allowed to mention other types. This is very important to ensure that

types are in no way coupled to implementations so that the two can be combined flexibly.

4.2.1 Type Header

Types are declared in a similar fashion to classes in Java or C#, using the keyword type
followed by the name of the type. This can be seen in the examples introduced above.

The entire rest of the type specification is enclosed in braces, forming the body of the

type.

Chapter 4. PACT - Design for a new Contract Framework

99

Program Listing 4.3 The Circle type in PACT

type Circle {

inv {
check getRadius() > 0;
}

Circle (double radius) {
pre {
check radius > 0;

double getRadius () {
post {
check result > 0;

double getArea() {
post {
check result > 0;
}
result {
double r = getRadius();
return r * r * Math.PI;

Chapter 4. PACT - Design for a new Contract Framework 100

Program Listing 4.4 The NoNullStack type in PACT

type NoNullStack {

void push (Object obj) {
int oldSize;
pre {
check !isFull ()
check obj != null;
o0ldSize = size();
}

post {
check size() == oldSizetl && obj == peek() && !rankChanged();

Object pop() {
int oldSize;
pre {
check !isEmpty();
0ldSize = size();
}

post {
check size() == oldSize-1 && result != null && !rankChanged();

Object peek() {
int oldSize;

pre {
check !isEmpty();
o0ldSize = size();

}

post {
check size() == oldSize && result != null && !rankChanged();

boolean isFull() {}
boolean isEmpty () {}

private boolean rankedChanged() {}

Chapter 4. PACT - Design for a new Contract Framework 101

As we explained in the last sections, a type can be a subtype or restriction of another,
or alternatively can reuse another type without being substitutable. To signal that a type
is a subtype of another, the keyword subtypes is used; for type derivation without sub-
typing, the keyword derivesfrom is used; to declare that a type restricts another type,
the keyword restricts is used. For example, to make Circle a subtype of Shape, we
declare type Circle subtypes Shape;toderive NoNullStack from Stack, we write
type NoNullStack derivesfrom Stack; to declare PeekOnlyStack as a restriction

of Stack, we write type PeekOnlyStack restricts Stack.

4.2.2 Methods and Constructors

A type contains a number of method definitions; each method definition is made up of a
simple method signature and optionally a method contract. The method signature con-
tains the return type, method name and parameter types; the method contract, including
preconditions and postconditions, is defined where the method’s implementation would
usually be and is enclosed in braces. More detail about the specification of method
contracts can be found in Section4.2.4l

We allow only methods to be defined in type specifications and completely exclude
the use of fields or instance variables; they are inherently implementation specific. Our
approach here is similar to that used by Baumgartner et al., who also disallow fields in
types [17].

Although types cannot be instantiated in the program because they contain no im-
plementation details, type specifications can contain constructor definitions including
preconditions and postconditions. In PACT, implementations are never allowed to be
referenced directly, even during object construction. This means that when a client
wants to instantiate an object it must call the constructor for the object’s type, not its
implementation. The use of type constructors in PACT represents a significant depar-
ture from existing programming languages where the concrete implementation must
always be specified during object construction. Constructors and object construction in
PACT is discussed in more detail in Section 4.4]

An example of a constructor definition can be seen in the Circle type above. Here,
the radius to be provided by the client must be larger than zero. As in Java or C#, the
constructor’s name must match the name of the type and the constructor must not have

a return type.

Chapter 4. PACT - Design for a new Contract Framework 102

As explained in Section 4.1.2] PACT includes only public and private access.
Methods and constructors placed in types are usually inherently public, which is why
we do not require the use of access modifiers in their definition. However, some meth-
ods (so-called helper methods) may be necessary for the specification of contracts for
other methods. For example, the NoNullStack type shown above uses the method
rankChanged to check that the order of items in the stack remains the same after each
operation. We want to use this method in the definition of the contracts of other meth-
ods, including push, pop and peek. However, we do not want to expose rankChanged
to clients. For situations like this, we allow methods in types to be declared private.
Such operations are not accessible to clients but can be used to specify contracts for
other methods in the type. Private operations are inherited and thus are available in
subtypes and derived types. This feature of PACT represents a departure from previous
research and programming languages, where operations declared in types were always
considered implicitly public.

In addition to making methods private, it is also possible to declare them as
static; this leads to a method belonging to a class rather than an instance of a class.
This use of static is the same as in many modern programming languages such as Java

and C#. Constructors may not be static.

4.2.3 Type Invariants

As well as method definitions, a type may contain any number of invariants to describe
conditions which must be true in all publicly observable states. This means, according
to contract theory, that the invariants must be satisfied before and after the execution
of each publicly visible method and at the end of each publicly visible constructor. An
example of an invariant can be seen in the Circle type above; the invariant specifies
that the radius of the Circle must always be larger than zero.

In our research into existing contract technologies, we found that there was a large
amount of disagreement about when invariants should be checked. In PACT, invariants
will be checked after the completion of methods and can thus be seen as an additional
postcondition. Meyer argues in his work on DBC that invariants should also be added to
all preconditions [145]. However, the authors of SPEC# and CODE CONTRACTS pro-
pose that checking the invariant is not the responsibility of clients and should therefore

Chapter 4. PACT - Design for a new Contract Framework 103

be included only in the postcondition [103]. We agree with this approach and see the
invariant as an addition to each method’s postcondition.

Furthermore, contract theory stipulates that internal methods may break the invari-
ant while executing, as long as it is again restored when control is returned to the client.
We therefore argue that invariants should be checked only after each method call origi-
nating from outside the object, which is what we do in PACT. This allows the object to
temporarily break its invariant while executing internal operations but ensures that the

invariant is always satisfied in publicly visible states.

4.2.4 Contract Specifications

Method contracts are specified in three blocks. A method’s pre block will be executed
before the method itself and is used to define preconditions; the post block specifies
postconditions and is evaluated after the method has finished executing; the result
block can be used to specify the default return value of the method. All of these blocks
are optional; at most one of each type can be specified for a method. Examples of the
use of pre, post and result blocks can be seen in the examples above. It should be
noted that the rankChanged method in the NoNullStack type, for example, does not
contain any of the three blocks, illustrating that it is not necessary for a method to define
a contract at all.

The preconditions and postconditions are defined by specifying a number of con-
ditions that need to be tested. The check keyword is used followed by the condition
that needs to be true; the condition is a boolean expression. Multiple conditions can be
checked in separate check clauses. For example, the precondition of the push method
of NoNullStack above is that the stack is not full and that the object being pushed is
not null.

We chose to introduce a new keyword, check, in this context to highlight the parts
of the contract that express conditions. In PACT, contracts can contain any other pro-
gramming language constructs, including loops, if-statements and variable declarations.
For this reason we wanted to make sure that conditions, the core parts of the contract,
were easy to recognise.

One of our main goals for the specification of contracts in PACT is to make them
as expressive as possible. From our experience with other contract tools we know that

it can be difficult to express more complex constraints as contracts. Therefore, we have

Chapter 4. PACT - Design for a new Contract Framework 104

chosen a similar approach to CODE CONTRACTS, allowing contracts to be specified as
standard code. This allows the use of local variables and control statements such as if-
statements and loops, simplifying the expression of more complex contracts. We argue
that standard programming language constructs are more intuitive to use than operators
such as forall in other contract tools, since almost all developers will be very familiar
with them already.

For example, consider the development of a widget which surveys users on a par-
ticular question and then displays the results of the survey, showing what percentage of
people voted for which option. For displaying the results of the poll we write a method,
displayPollResults, which takes a map (or Dictionary in C#) of options and the
associated percentages of votes. One of the preconditions of this method is that all of
the percentages must add up to 100 percent. Using variables and a loop, this condition

is straightforward to express, as shown in Program Listing 4.5.

Program Listing 4.5 The precondition of displayPollResults in PACT

public void displayPollResults (Dictionary<string, int> results) {
pre {
int sum = 0;
foreach(int percentage in results.Values) {
sum += percentage;
}

check sum == 100;

This is an example where the ability to use variables and control statements such as
if-statements and loops greatly simplifies the specification of a contract.

Variables can be defined in each of the three contract blocks; however, they will
be available only in the block in which they are declared. Variables that need to be
available in multiple blocks must be declared before the beginning of the pre block.
The declaration of such variables must not include any instantiation of the variable or
other code; semantically, any intialisation should take place in the precondition. Such
shared variables can, for example, be used to record the value of a variable before the
method execution which can then be compared to the updated value at the end of method
execution in the post block. This function is usually performed by the o1d operator in

other contract technologies; however, we feel that using standard variables is simpler

Chapter 4. PACT - Design for a new Contract Framework 105

and more consistent than introducing a new operator. The contracts of the push, pop
and peek methods in NoNullStack above use the variable 01dSize to record the size
of the stack in the precondition before the method execution; this allows them to check
how the size has changed in the postcondition.

Invariants are defined in a very similar way to preconditions and postconditions.
They are placed in the inv block, which must be inside the type’s body but outside
any methods. To specify the invariant, the check keyword is again used followed by a
boolean expression. Circle, for example, declares an invariant to ensure that its radius
remains positive.

According to contract theory, preconditions are the client’s responsibility and con-
sequently, the client must be able to check them before calling a method [145} [72].
Some contract technologies, including CODE CONTRACTS, JASS and JML, ensure this
is possible, by enforcing that preconditions are defined only in terms of publicly visible
members. PACT follows this example and stipulates that preconditions are allowed to
only invoke methods defined in the public part of the type or another type. Postcondi-
tions and invariants, on the other hand, do not need to be checked by clients and can also
call the type’s private methods. The restriction of precondition visibility applies only
to preconditions of publicly visible methods; preconditions of private methods may
call other private methods. In addition to this restriction on preconditions, constructor
preconditions should make use only of parameters in their checks, since the new ob-
ject has not yet been constructed when the precondition is executed; therefore, calling
methods of the object in the constructor’s precondition is not possible.

In addition to all standard code, postconditions have access to the result keyword
which refers to the return value of the method. This is, for example, used by the Circle
type above to ensure that the return value of getRadius is always larger than zero.
The result keyword may not be used in postconditions of constructors or methods

returning void.

4.2.5 Concrete Type Methods

We believe that one of the main reasons why software contracts are not more widely
used is that they are perceived as time-consuming and cumbersome by many software
engineers. We hope that by making our contracts more expressive and flexible, the

creation of contracts will become easier and more attractive. In some cases, a contract

Chapter 4. PACT - Design for a new Contract Framework 106

will be extremely similar to the actual method implementation, particularly when the
return value can simply be derived from those of other methods in the type’s interface.
We want to exploit such situations to make contract creation less time-consuming.

In the getArea method of the Circle type above, we can see that its result can
simply be defined in terms of the return value of getRadius. In such a situation, the
return value of a method (in this case getArea) can be defined in the result block
of the contract; in this way, the result block essentially provides a default method
implementation. We call a method like getArea with a result block concrete. This
idea is similar to that of derived values in OCL.

The result block is written exactly like a standard method body; it differs only
by belonging to a type rather than an implementation. Its last line must be a return
statement which evaluates to the correct return type of the method. Code in the result
block of a contract can be used for automatic implementation generation. In addition,
the definition in the result block is checked against the return value of the method at
runtime and thus constitutes an additional part of the method’s postcondition. We can
see how the result block is used in the Circle type above to define the return value of
getArea, which can simply be derived from the return value of getRadius. Note that
no result block is allowed for constructors and methods with a void return type for
obvious reasons.

Concrete type methods do not have to be implemented explicitly in implementa-
tions; the code is automatically derived from the result block in the type. Implemen-
tations may still override this default implementation if they wish. Of course, concrete
type methods should be used only if the return value of a method can easily be defined
in terms of other methods to avoid cluttering the type specification with implementation
details. We hope that this feature of PACT will make contracts less time-consuming to

write by avoiding duplication between contracts and implementations.

4.2.6 Subtyping

When a type is the subtype of others, all method and constructor specifications, in-
cluding preconditions and postconditions, as well as invariants are inherited. In confor-
mance with contract theory, preconditions can only be weakened, while postconditions
and invariants can only be strengthened in the subtype. In PACT, preconditions from

all supertypes are therefore disjuncted; postconditions are conjuncted. The subtype can

Chapter 4. PACT - Design for a new Contract Framework 107

add additional preconditions and postconditions which are combined with the inherited
contract by disjuncting preconditions and conjuncting postconditions. This is consistent
with the approach taken by many other contract tools.

In the presence of subtyping, PACT also ensures the correct use of covariance and
contravariance. An operation’s parameter types may be overridden by a subtype, but
only if this is done contravariantly. This means that if the operation in the supertype ex-
pects a parameter of type Circle, the operation in the subtype could instead be declared
to take a parameter which is a supertype of Circle, such as Shape or Object. This is in
line with contract theory which stipulates that methods in the subtype can expect only
less of clients, not more. Similarly, an operation’s return type can be changed by the
subtype, but this change must be covariant; that is, the new parameter type must be a

subtype of the return type used in the supertype.

4.2.7 Type Derivation

When using type derivation, contracts are inherited from the base type. For each in-
herited method definition and its associated contract the derived type has two options:
inherit the contract unchanged or override it to provide a modified contract. By default,
method specifications are inherited from the base types. Alternatively, the derived type
can choose not to inherit any part of the method contract from the base type; it does this

by re-stating the method signature and providing the new method contract.

4.2.8 Restriction

PACT allows the use of restriction, the inverse of subtyping. Here, we present an exam-
ple of a restriction: we define the type PeekOnlyStack to be a more restrictive version
of NoNullStack. The code for this type can be seen in Program Listing 4.6. The corre-
sponding diagram is shown in Figure

We declare the restriction relationship in a similar way to subtyping: type
PeekOnlyStack restricts Stack. Just as for subtyping, preconditions and post-
conditions are inherited; however, preconditions are conjuncted and postconditions are
disjuncted to ensure that preconditions can only be strengthened and postconditions can
only be weakened by the restricted type to ensure correct substitutability. If we want
to completely hide an operation and not allow clients to call it, we simply tighten the

operation’s precondition to false. Although the operation is not fully hidden from the

Chapter 4. PACT - Design for a new Contract Framework

108

Program Listing 4.6 The PeekOnlyStack type in PACT

type PeekOnlyStack restricts NoNullStack ({

Object pop () |
pre {
check false;

void push (Object obj) {
pre {
check false;

<<type>>

PeekOnlyStack

A

]
|
v
<<type>>

NoNullStack

Figure 4.7: PeekOnlyStack, a restriction of NoNullStack

client, it may never be called. In the example, we use this technique to ensure that the

pop and push operations are never called.

4.3 Implementations in PACT

Types describe external behaviour as it is visible to clients; implementations contain the

actual behaviour and the code that is used to create objects and execute the program.

This section explains the syntax and semantics of implementations in PACT. An ex-

ample implementation called CircleImpl of the Circle type can be seen in Program

Listing 4.7; the Circle type was introduced in the previous section. CircleImpl stores

Chapter 4. PACT - Design for a new Contract Framework 109

the area of the Circle rather than its radius and uses the area to calculate the radius

as necessary.

Program Listing 4.7 The CircleImpl implementation in PACT

implementation CircleImpl implements Circle {
double area;
inv {

check area > 0;

CircleImpl (double radius) {}{
area = getAreaFromRadius (radius);

double getRadius() {}{
return getRadiusFromArea (area);

double getRadiusFromArea (double area) {
post {
check result > 0;
check getAreaFromRadius (result) == area;

return Math.sqrt (area / Math.PI);

double getAreaFromRadius (double radius) {}{
return radius * radius * Math.PI;

Implementations are separated from types; each implementation explicitly states
which type or types it implements. A single implementation may implement any number
of types, including none at all, and similarly a type may be implemented by any number

of implementations. We have chosen a named implementation relationship rather than a

Chapter 4. PACT - Design for a new Contract Framework 110

structural one, ensuring that developers always know to which type an implementation
conforms.

The aim of PACT is to place the public interface available to clients in the type
and completely hide the implementation. To achieve this, PACT does not allow any
reference to an implementation from anywhere in the code. This means that one imple-

mentation cannot refer to another; it can refer only to other types.

4.3.1 Implementation Header

An implementation is defined similarly to a class in Java or C#. In the example above,
we create an implementation called CircleImpl of the Circle type; we use the decla-
ration implementation CircleImpl implements Circle.

Note that we use the convention of adding Impl to the name of each implementa-
tion, similar to the widely used convention of prefixing interfaces by I. This convention
clearly marks which names correspond to implementations and ensures there is no con-
fusion and overlap between implementation and type names. Although this naming
convention may appear a little verbose, this is of little consequence since implementa-
tions cannot be referred to directly from client code, making uses of implementations’

names very rare.

4.3.2 Methods and Constructors

When an implementation implements a type, it must provide code for all methods of
the type, including all private methods. However, no implementation needs to be pro-
vided for concrete type methods; the implementation for these methods can be derived
from the contract specification in the type. This can be seen in the CircleImpl imple-
mentation above which implements the getRadius method but does not provide code
for the concrete type method getArea.

Constructors are defined in the type, despite the fact that the type cannot be directly
instantiated itself. These constructors must be supplied by in the implementation, sim-
ilarly to standard methods. The name of the constructor must match the name of the
implementation and have the same parameters as the constructor declared in the type.

In addition to the methods of the type, an implementation can define utility methods
and constructors. Since these operations are not mentioned in the type, they are hidden

from all clients. They are, however, visible to any derived implementations. The use of

Chapter 4. PACT - Design for a new Contract Framework 111

the private keyword (or any other access modifiers) is not necessary or even allowed

in implementations. However, methods may be declared to be static.

4.3.3 Implementation Derivation

As we mentioned above, it is possible for an implementation to implement no types at
all, but in this case they could not be directly used by clients. However, such implemen-
tations could serve as a reusable base for other implementations through the mechanism
of implementation derivation.

Implementation derivation is declared in the same way as type derivation, since
the two are the same relationship, albeit between different concepts. Thus, if
we have an implementation CircleImpl inheriting code from ShapeImpl, we
would declare implementation CircleImpl implements Circle derivesfrom
ShapeImpl. An implementation may be derived from any number of base implementa-
tions.

Implementation derivation is the reuse of code from another implementation and
therefore requires intimate knowledge of the base implementation. This implies that the
coupling between the two may be quite tight. At the very least, the developer needs
to be familiar with the implementation that is being reused. This is not a problem in
this situation; on the contrary, having little or no knowledge of the base implementation
would be problematic. This is a significant difference between derivation and subtyp-
ing; in subtyping only knowledge of the general semantic concept which is inherited is
required.

Because of the high level of knowledge of the base implementation and the close
connection between the two implementations, we argue that the use of object encap-
sulation is most suitable in the context of implementation derivation. As explained in
Section [4.1.2] object encapsulation allows access from the derived implementation to
all parts of the base implementation, including private members not declared in the
type. One criticism of object encapsulation is that it closely couples the two implemen-
tations; however, this is the case anyway when using implementation derivation. Thus,
in PACT we use object encapsulation and therefore an implementation has access to all

parts of the base implementation, including all fields and methods.

Chapter 4. PACT - Design for a new Contract Framework 112

4.3.4 Contracts in Implementations

As well as the contracts inherited from type definitions, an implementation may define
its own method contracts and class invariants. This is especially useful for private
methods which do not appear in the type specification and therefore do not have a con-
tract defined for them in the type. Although such methods are not accessible to clients,
contracts are still very useful, for example to inform derived implementations of how the
method should be used. At the very least, writing contracts helps developers understand
and document how a method works and puts in place further correctness checks.

Specifying invariants in implementations can be particularly useful since they can
make use of the fields of the implementation. Because types cannot refer to implemen-
tation details, they cannot put such checks in place. This means that some invariants are
easier to specify in the implementation, rather than the type.

The main difference between method contracts in types and implementations is that
no result blocks are allowed in implementations. The implementation is the place
for specifying the code for a method so it makes no sense to have an additional de-
fault implementation. Apart from this distinction, the syntax for specifying contracts in
implementations is the same as in types.

CircleImpl, for example, defines an invariant to ensure that the value of its
area field is always larger than zero. It also specifies a method contract for
its getRadiusFromArea method which calculates the size of the radius of the
Circle given the area. All other methods either do not have a contract (such as
getAreaFromRadius) or receive the standard method contract defined in the type (such
as the constructor and getRadius).

If a contract for a method is already defined in the type, the contract in the implemen-
tation must match the type contract. Since an implementation must be substitutable for
the type it implements, it must do at least as much as the type promises to its clients; this
means that preconditions in the implementation may only be weakened and postcondi-
tions may only be strengthened. This is again achieved by disjuncting preconditions and

conjuncting postconditions.

Chapter 4. PACT - Design for a new Contract Framework 113

4.4 Constructors

PACT attempts to fully separate types from their implementations so that implementa-
tions are never referred to from anywhere in the program; however, constructors, which
are inherently implementation specific, present a significant obstacle. Whenever an ob-
jectis constructed, the constructor of the implementation to be used must be called. This
is the only time when a reference to the implementation cannot be avoided and where
referencing only the type is insufficient.

This problem is raised in the work of Cho et al. and Martin who try to separate types
and implementations as much as possible [49; [139]. While enforcing this separation in
most parts of a program, they still require references to implementations during object
construction.

In our work, we originally planned to take a similar approach, allowing a reference
to the implementation only during object construction. However, we felt that this was
inconsistent and removed some of the advantages gained by the rigorous and complete
separation of types and implementations.

There are some simple approaches that can be taken to overcome this problem and
fully enforce the separation between types and implementations. A first step would
be to have a configuration file associating each type with a preferred implementation.
In this approach, the developer records which implementation is to be used by default
whenever a specific type is constructed. This allows developers using the type to simply
call the constructor defined in the type without knowing which implementation will be
used.

A configuration file listing types and associated implementations is easy to imple-
ment but not very flexible. It always uses the same implementation for a particular type
without taking into account that other implementations may be preferable in certain sit-
uations. For example, when writing programs that make use of lists, ArrayLists are
often the preferred implementation because they provide constant-time access to any
item in the list. On the other hand, deletion of items is inefficient in ArrayLists, hav-
ing an algorithmic complexity of O(n). A LinkedList can delete an item in constant
time if it has a direct reference to it. This can make a LinkedList the more efficient
implementation in applications which require frequent deletion of list items. A simple

configuration file does not take into account these additional factors.

Chapter 4. PACT - Design for a new Contract Framework 114

Despite the limitations of simple configuration files, they allow us to achieve a com-
plete separation of types and implementations something which, to our knowledge, has
not been done before by other tools or languages. We therefore see them as the first step
on the way to exploring more sophisticated schemes in the future and as a significant
milestone in their own right. For example, if implementations document additional de-
tails, such as the algorithmic complexity of their operations, and clients state their needs
and priorities, the preferred implementation could be inferred automatically. Alterna-
tively, a tool could monitor software at runtime and switch implementations to achieve

greater efficiency depending, for example, on which operations are commonly executed.

4.5 Summary

In this chapter, we have presented the specifics of our contract framework PACT, which
we believe significantly improves on current contract technologies. The most important
features of PACT are:-

e Rigorous separation of types and implementations. PACT code is allowed to
refer only to types and never to implementations, even during object construction.
The complete separation of types and implementations is unique to PACT and
to our knowledge is not found in any other programming language or contract

technology.

e The separation of two orthogonal dimensions of inheritance: subtyping and
derivation. This enables developers to maximally reuse code by enabling reuse in
situations where there is no substitutability. None of the other contract technolo-
gies we investigated in Chapter [3] separates these distinct dimensions of inheri-

tance.

e The application of implementation derivation to types. This introduces the novel
reuse relationship called type derivation which to our knowledge is not available

in other contract technologies or programming languages.

e The new restriction relationship between types, the semantic opposite of subtyp-
ing. This relationship is particularly useful for defining multiple interfaces to a
single type and can be used to achieve limited substitutability between types that

are not related through subtyping.

Chapter 4. PACT - Design for a new Contract Framework 115

e Covariance and contravariance of return types and parameter types respectively.
This gives developers maximal flexibility for overriding methods and changing
parameter and return types, while maintaining type safety. Covariance and con-
travariance for return types and parameter types is not fully supported by main-
stream programming languages or any of the contract technologies we discussed
in Chapter 3]

e The division of types into a public and a private part. This division helps to
distinguish between methods provided to clients and helper methods for defining

contracts.

e Expressive and flexible definition of contracts. This is achieved in PACT by
allowing the use of variables and standard programming language control state-
ments such as if-statements and for-loops within contracts. Most of the contract
technologies we investigated in Chapter |3| do not allow the use of variables and

control statements in contracts, making it harder to specify certain conditions.

e Concrete type methods which are used to automatically generate method imple-
mentations in cases where the return value of a method can be derived from those
of other methods in a type’s interface. Concrete type methods are a novel con-
cept introduced by PACT which can help decrease the effort involved in contract

specification.

All of the features listed above were not designed in isolation but work together and
reinforce each other. They all derive from the simple vision of providing programmers
with greater flexibility to design systems by maximising reuse and substitutability.

We argue that our approach makes the definition of contracts easier and less time-
consuming by providing more expressive tools for contract specification and by allow-
ing some method implementations to be generated automatically from their contracts.
Furthermore, we argue that the separation of types and implementations will improve
flexibility and encapsulation in software. Types and implementations can now be com-
bined flexibly and by providing several different and distinct kinds of inheritance, both
types and implementations can be reused without unwanted side effects. Since imple-
mentation details are hidden from clients, all internal implementation details are fully
encapsulated, leading to higher levels of abstraction and improving maintainability.

The benefits of PACT are discussed in detail in Chapter [7]

Formal Description of PACT Syntax and
Typing Rules

In this chapter, we describe in more detail the formal syntax and typing rules of PACT.
In this discussion, we focus exclusively on the core concepts of PACT, including types,
implementations, contracts and inheritance relationships. We ignore the lower level
detail, including the syntax and semantics of code used to write implementations and
assume that this will be very similar to existing programming languages such as Java or
C#. In fact, we have implemented the first version of PACT (described in more detail
in Chapter [6)) using the established programming language C#, which is used to write
the code in implementations and contracts. Thus, the lower level syntax and semantics
for this implementation of PACT have already been described and researched in detail
elsewhere.

Section [5. 1| presents the core syntax of PACT; Section[5.2|focuses on the semantics

of typing in PACT, with a particular focus on subtyping.

5.1 Syntax Definition

In this section, we give a quick overview of the most important of PACT’s syntax rules.
A more formal and complete grammar in Extended Backus-Naur Form (EBNF) can be

found in Appendix [B] All PACT examples from the previous chapter follow this syntax.

116

Chapter 5. Formal Description of PACT Syntax and Typing Rules 117

We express only high-level syntax here and use C# syntax for more low level con-
structs. Thus, combining this syntax with the official C# syntax [150] produces a full
language syntax and can be used as direct input into parser generators such as Yakyacc
[1O6].

In this section, we enclose non-terminals in angle brackets; terminals and literals are
enclosed by quotes. The * symbol signifies that zero or more instances of this term are
allowed; a ? allows zero or one instance.

We first present the syntax rules for types:-

<TypeDeclaration> = “type” <TypeName> (“supertypes” <TypeList>)?
(“derivesfrom” <TypeList>)? (“restricts” <TypeList>)? “{”
<TypeMemberDeclaration>* “}”

<TypeMemberDeclaration> = <InvariantBlock> |
<TypeConstructorDeclaration> | <TypeMethodDeclaration>

<InvariantBlock> = “inv” “{” <ContractStatement>* “}”

<TypeConstructorDeclaration> = <TypeConstructorModifier> <TypeName>
“ (" <ParameterList>? “)” “{” <VariableDeclaration>*
<PreBlock>? <PostBlock>? “}”

<TypeMethodDeclaration> = <TypeMethodModifier>* <TypeName>
<MethodName> “(” <ParameterList>? “)” “{”
<VariableDeclaration>* <«<PreBlock>? <PostBlock>?
<ResultBlock>? “}”

<VariableDeclaration> = <TypeName> <VariableName> “;”

<PreBlock> = “pre” “{” <ContractStatement>* “}”

<PostBlock> = “post” “{” <ContractStatement>* “}”

<ResultBlock> = “result” “{” <Statement>* <ReturnStatement> “}”

<ContractStatement> = <Statement> | <CheckStatement>

<CheckStatement> = “check” <BooleanExpression> “;”

These rules show how types and contracts are declared in PACT. For example,

the <TypeDeclaration> rule demonstrates how to declare a type, including its su-

Chapter 5. Formal Description of PACT Syntax and Typing Rules 118

pertypes, type derivations and restrictions. <TypeMethodDeclaration> shows that
method contracts contain, optionally, a variable definition block, precondition, postcon-
dition and result block.

Next, we introduce the syntax for declaring implementations:-

<ImplDeclaration> = “implementation” <ImplName> (“implements”
<TypeList>)? (“derivesfrom” <ImplList>)? “{"
<ImplMemberDeclaration>* “}”

<ImplMemberDeclaration> = <ConstantDeclaration> | <FieldDeclaration>
| <InvariantBlock> | <ImplConstructorDeclaration> |
<ImplMethodDeclaration>

<ImplConstructorDeclaration> = <ImplName> “(” <ParameterList>? ™“)”
“{” <PreBlock>? <PostBlock>? “}” “{” <Statement>* “}”

<ImplMethodDeclaration> = <ImplementationMethodModifier>?
<TypeName> <MethodName> “(” <ParameterList>? “)” “{”
<PreBlock>? <PostBlock>? “}” “{” <Statement>* “}”

Similarly, these rules show how to declare implementations and their methods, con-
structors and contracts. For example, the <ImplMethodDeclaration> rule shows that

a method contains a method contract followed by a method body.

5.2 Typing Rules

In 1996, Abadi et al. released their book A Theory of Objects [1] which describes object
calculi, a formal basis for OO typing. Their work has been very influential and valuable
in providing a rigorous, formal underpinning for OO type systems; it has been widely
used by other researchers to precisely describe OO typing rules.

In this section, we provide a formal definition of important typing rules in PACT
by extending a simple object calculus described by Abadi et al. to include software
contracts; that is, preconditions, postconditions and class invariants. To our knowledge,
such formal typing rules for software contracts have not been proposed before. It is our
hope that this work will provide a formal underpinning for software contracts, explicitly
specifying their semantics. We expect that our typing rules will not apply to only PACT,
but will provide a formal basis for other contract tools as well.

Chapter 5. Formal Description of PACT Syntax and Typing Rules 119

We are not concerned here with the typing rules governing statements and expres-
sions written as part of implementations and contracts. Much research into the typing
of such low-level constructs has already been done, for example by Bruce [33]]. Instead,
we focus on the high-level relationships between types, with a particular focus on the
subtyping relationship, defining what constitutes correct subtyping and thus ensures one
type is substitutable for another. Although some work has been done to define the se-
mantics of subtyping, for example by Bruce [33]], Pierce [166] and Abadi et al. [1],
PACT adds the concept of contracts, requiring an extension of previous work.

The relationship of derivation between two types or two implementations is an im-
portant part of PACT; however, we do not consider it here since it achieves only reuse
and has no effect on typing.

The restriction relationship, on the other hand, entails substitutability of one type
for another and is therefore of interest in this discussion. Although we explained the
semantic difference between subtyping and restriction in the previous chapter, this dif-
ference is of no importance in the context of typing: with either relationship, one type
becomes substitutable for another type; the only difference is the direction of knowl-
edge. Therefore, we do not distinguish between subtyping and restriction here.

One important aspect of PACT is the separation of types and implementations: types
represent the public interface while implementations hide internal details. Type A is sub-
stitutable for type B if it is a subtype of A. Similarly, an implementation / is substitutable
for type B if it directly implements type B or a subtype of B. In both cases, the same
conditions must be met in order to achieve substitutability. Thus, in our typing rules,
we will not make a distinction between subtyping involving two types and subtyping
involving one type and one implementations; the same rules apply in each case.

In the next section, we outline two basic object calculi proposed by Abadi et al.:
Ob; and Ob, . [1]. We then describe an extension of Ob;.. required for the definition
of our typing rules. Finally, we describe the typing rules for PACT and use an example

to demonstrate how they can be applied in practice.

5.2.1 Introduction to Object Calculi

For some time, calculi of functions (also called A-calculi) have been used as a founda-
tion for procedural languages [1]. However, Abadi et al. note that no such equivalent

exists for OO languages and thus introduce object calculi in an attempt to better model

Chapter 5. Formal Description of PACT Syntax and Typing Rules 120

and understand the semantics and foundations of OO languages [1]. They present a
number of different object calculi of increasing complexity, including typed, untyped,
imperative and higher-order calculi.

For our purposes, we are interested in typed calculi since we are aiming to formalise
PACT’s typing rules. The Ob; calculus is the simplest typed calculus presented by
Abadi et al. and we explain the basics of this calculus in the next section. In addition to
the basic structures provided by Ob, we also need to be able to model subtyping. This
leads us to the Ob <. calculus, which adds subtyping to Ob;. This calculus is sufficient

for our purposes here and we therefore do not further investigate more complex calculi.

The Ob; Calculus

Ob; [1, page 79] is a very simple, typed object calculus. It represents objects as
a collection of methods (also called values) and allows the invocation (also called

selection) and update of values:-

Type Object [l; = g(x; : A;)biE!-"],

abbreviated: [/; : Bi€!-"], (I; distinct)
Value Invocation a.l
Value Update al=g(x:A)b

¢(x : A)b represents a method with self-parameter x of type A and method body b.
Object types are composed of a collection of such methods, labelled /; to [,. Instead
of writing out the full method signature each time, we can simply abbreviate a method
to [; : B;, where [; is the method’s label and B; is its return type. The type of the self-
parameter is implied and we therefore do not need to list it every time.

The labelling of methods allows the direct invocation of a method, through a./,
where a is the name of the object and [is the name of the method to be called on
object a. Methods can also be updated; that is they can be redefined and given a new
method body.

In general, it should be noted that types are always represented by capital letters,
while lower case letters stand for labels and identifiers.

Ob; does not explicitly represent fields, although these are an important part of
many OO languages. Instead, fields can be represented in exactly the same way as

methods: ¢(x: A)b. A method whose body b does not make use of the self-parameter x

Chapter 5. Formal Description of PACT Syntax and Typing Rules 121

can essentially be regarded as a field [[1]. This distinction is subtle; methods and fields
are essentially the same construct in this calculus. Through the update operation, a field
can even be turned into a method and vice versa. This is not possible in mainstream OO
languages.

A central concept in typed calculi is the ability to perform type checking. The types
of expressions need to be able to be checked and compared to ensure that a program is
valid. To this end, we write type checking rules. Each type checking rule may have a
number of premises and a single conclusion. Premises and conclusions are collectively
called judgements. A rule is checked in a typing environment E which associates types
with expression identifiers [33]. An example of a very simple rule is:-

~

E+—3

This simple rule states that judgement J is true, given typing environment £. A
more complex rule may contain a number of premises, which must be true in order for

the conclusion to be true:-

Ei-=31... Ex =3
ErJ
The conclusion is placed below the line; the premises are placed above. Thus, this

rule states that judgement is true in typing environment E given that judgements
to J, are also true in their respective typing environments. If all premises are true, the
conclusion is also true.

An example of a type rule in Oby is:-

(Type Object)

ErB; Viel.n
E - [l;: B!

This rule [T, page 81] states that object [/; : Bi€!-"] is a valid object in environment
E, given that B; is a valid type in environment E for all i between 1 and n. A number of

other rules can be defined to describe typing in Oby [1].

The Ob; .. Calculus

Abadi et al. also introduce Ob; .., a variant of Ob; which adds subtyping capabilities:-

Chapter 5. Formal Description of PACT Syntax and Typing Rules 122

E—A<:B

asserts that A is a subtype of B in typing environment E.
With the subtyping construct in place, Abadi et al. [1, page 93-94] and Pierce 166,
page 182—183] introduce several important subtyping rules, which we will use as a basis

for our own subtyping rules:-
(Sub Refl)
E-A
EFA<A

(Sub Trans)

E+-HA<:B E+—B<:C
EFHA<:C

(Val Subsumption)

Er—a:A ERHA<B
Era:B

(Sub Object) (I; distinct)

E+B; Viel.n+m
E [li . Bﬁel..n—i—m] <: [li . Béel.ln]

The first rule, Sub Refl, states that subtyping is always reflexive; that is, a valid type
A 1s always a subtype of itself. Sub Trans further states that subtyping is transitive: if A
is a subtype of B and B is in turn a subtype of C, then we can conclude that A must also
be a subtype of C.

Val Subsumption is a very important subtyping rule. It states that an object of a
subtype can be used wherever an object of the supertype is expected.

The final rule, Sub Object, describes under which circumstances one object type is
a subtype of another. The rule states that the subtype may have more methods than
the supertype, but all methods that are common to both types must have the same return
type. This is commonly referred to as width subtyping and depth subtyping [166l]. Width

subtyping stipulates that the subtype may have more elements such as methods than the

Chapter 5. Formal Description of PACT Syntax and Typing Rules 123

supertype; depth subtyping states that all elements common to subtype and supertype
must have compatible types.
It should be noted here that the return type B; is invariant in this rule; that is, both

the subtype and the supertype must have the same types B; for all common methods.

Adding Variance to Ob ..

Covariance and contravariance are important concepts in PACT, in the context of both
methods and contracts. After presenting Ob; .., Abadi et al. show how variance anno-
tations can be added to allow covariant and contravariant subtyping [1, page 109].
Abadi et al. use the symbols ~, © and T to denote contravariance, invariance and
covariance respectively. Each method in an object type now has a variance symbol,
v, associated with it, showing if it is covariant, contravariant or invariant. Thus, the

definition of a type becomes:-
[l,"l)l' : BiIEI"n]

In our work, we stipulate that method parameters are inputs and therefore always
contravariant, while return types are outputs and therefore always covariant. This is in
line with contract theory and other covariance and contravariance research. Abadi et
al. take a different approach: in their work each construct has a variance which may
be invariant, covariant or contravariant. Depending on its variance, a construct may or
may not be used as input or output. Covariant constructs may be used only as output;
contravariant constructs may be used only as input; invariant constructs may be used as
either input or output. In this way, selecting a value (or invoking a method) is possible
only if its type (the output) is covariant or invariant; updating a value (or method) is
possible only if its type (the input) is contravariant or invariant. Thus, Abadi et al.

derive the following rules for selection and update of values [1, page 111]:-

(Val Select)

Eta:[lv;: BE"] vje{° T} jel.n
Eral;j:B;

Chapter 5. Formal Description of PACT Syntax and Typing Rules 124

(Val Update) (where A = [[;v; B§€1-~n])

Eta:A Ex:A-b:Bj v;e{°’,”} jel.n
Eralj<=gx:A)b:A

Val Select shows that selecting a value or method gives a result of a particular type;
however, this operation is valid only if the value which is selected is invariant or covari-
ant.

Val Update, on the other hand, stipulates that the operation is valid only if the method
or value to be updated is invariant or contravariant. In addition, it checks that the body
b of the new value or method produces the expected type B;.

The introduction of variance also has an influence on the Sub Object rule, defined

above without variance. In the presence of variance, it becomes:-

(Sub Object) (I; distinct)

ErvB;<:VB, Viel.n ERB; VYien+l.n+m
E+ [li‘l)i : Bi:el..n—i-m] <t [li‘l)g : B; iel..n]

A type A can now be the subtype of another type B, even if the return types of
the methods are not exactly the same. This is caused by the introduction of variance.
Depending on whether an element is covariant, contravariant or invariant, the subtype
could redefine its type. Therefore, we must check that the two return types match in the
presence of variance. This is expressed by the premise E - v;B; <: v.B}. In order to
be able to check whether type B; is a legitimate subtype of type B! in the presence of
variance, Abadi et al. define some additional rules [1, page 110]:-

(Sub Invariant)
E+-B
E+—°B<:°B

(Sub Covariant)

E+-B<:B ve{°*}
E+—vB<: tB

Chapter 5. Formal Description of PACT Syntax and Typing Rules 125

(Sub Contravariant)

E+-B <:B ve{° }
El—-vB<: B

The Sub Invariant rule states that the only valid subtype of an invariant type is
the type itself [1]. Sub Covariant shows that if a type B’ is covariant, any invariant
or covariant subtype B of B is also a subtype of *B’. Similarly, Sub Contravariant
states that a contravariant or invariant type B is a subtype of contravariant type ~B’ if
B is a supertype of B'. These rules are consistent with our previous understanding of

contravariance and covariance.

5.2.2 Extension of Ob;_.

For our purposes, we require a few extensions to Obj.. in order to be able to fully
define our typing rules for PACT. In particular, we need to be able to represent method
parameters other than the self-parameter included in Ob; ... We also need to be able to
represent and refer to contracts, including method contracts and invariants.

Ob . includes only a single parameter for each method: the self-parameter which is
often implied in OO languages. In Abadi et al.’s object calculus, methods with multiple
arguments return a function closure, which in turn can be further applied [52]. However,
we find it simpler to use parameter lists here, which is more similar to the way most OO
languages deal with multiple argument methods.

Our approach here is similar to that of Clarke et al., who also choose to extend one
of Abadi et al.’s object calculi using parameter lists [52]. They introduce I" as the list of
remaining parameters, thus changing a method’s definition to:-

Q(xh l—*l)bieln

However, such a method definition does not explicitly show the method’s return type
and the types of the parameters, which we need in order to define our typing rules. In
addition, we need to be able to represent method contracts and invariants.

To remedy the first point, we ensure that our method definitions always explicitly
include return types. We further model parameter lists as tuples (ordered collections) of
parameter labels and corresponding types. In our notation, angle brackets are used to
denote tuples. Using this notation, a method’s parameter list is represented as:-

Chapter 5. Formal Description of PACT Syntax and Typing Rules 126

<pi . })ljel..n>

where pj to p, are the parameter labels and P; to P, are the parameter types.
Following the introduction of a parameter list, we also modify Abadi et al.’s method

invocation rule to include a list of arguments:-

al(qi: Q)

Secondly, we introduce a notation for contracts. A method contract has three parts:
preconditions, postconditions and a result block. The result block is very similar to a
method body: it is a block of statements with a return type. Therefore, we represent it
using the notation Abadi et al. use for method bodies.

Preconditions, postconditions and invariants are collections of boolean expressions
used to check certain assertions. When we use subtyping and restriction, disjunction
and conjunction may be introduced into preconditions, postconditions and invariants;
they all are conjunctions and disjunctions of boolean expressions. In order to treat all
preconditions, postconditions and invariants uniformly, we convert them to Disjunctive
Normal Form (DNF); this means we convert them into a set of conjunctions which are
disjuncted together. Converting preconditions, postconditions and invariants to DNF is
always possible since they contain only disjunction and conjunction operators.

Each precondition, postcondition and invariant is thus a contract disjunction; that is,
it is a tuple of contract conjunctions, which are disjuncted together to obtain the final

contract. We write:-

cd = {cc; : Bool™'™)

for preconditions, postconditions and invariants, where cd is a contract disjunction
and cc is a contract conjunction.

Each contract conjunction cc; is of type Bool, a simple primitive type. We model
our simple Bool type on that introduced by Pierce [166, page 93] which can take the
values true or false.

A contract conjunction cc; is in turn a set of simple boolean expressions which are

conjuncted together. We write:-

{ci: BooliEI"">

Chapter 5. Formal Description of PACT Syntax and Typing Rules 127

where c; is a boolean expression.

In order to keep method definitions concise we provide a few useful abbreviations.
Preconditions may be abbreviated to pre, postconditions to post and invariants to inv.
Each of these symbols stands for a contract disjunction, which in turn contains a number

of contract conjunctions. In this way, a method contract is written as:-

pre, post,rb : B

where rb is the result block of type B.
In a method definition, a method contract can be further abbreviated to ¢. Thus, the

definition of a method becomes:-

Gz A, (pi: PE"))b B,

where p; to p, are the parameters with their respective types, B is the method’s return
type and ¢ is the method’s contract.

Whenever we define a type, we also need to include any invariants that apply. For
simplicity, we stipulate that each type has only one invariant in DNF, a contract disjunc-
tion.

With the invariant and the addition of parameter types and contracts to method defi-
nitions, type definitions can become cluttered and long. We thus allow the definition of

a method to be further abbreviated to u. Thus, the definition of a type becomes:-

i€l..n

[:ui) inU]

In PACT, types of outputs such as method return types are always covariant, while
types of inputs such as parameters are contravariant. This is consistent with contract
theory and research about covariance and contravariance we discussed in Chapter [2]
However, this differs from the variance as introduced by Abadi et al. who allow each
construct to be declared invariant, covariant or contravariant. They then let the variance
of a construct determine whether it can be used as output or input. Because of these
different approaches, we do not directly include Abadi et al.’s variance notation in our

typing rules.

Chapter 5. Formal Description of PACT Syntax and Typing Rules 128

5.2.3 Conventions and Notation

Since we are concentrating on high-level typing concepts, most of the relevant typing
rules for PACT define what constitutes correct subtyping. The key characteristic of
subtyping is substitutability and this is what we focus on.

We follow similar conventions in our definition of typing rules to those of Abadi et
al.: capital letters represent types; lower case letters represent expressions or labels.

Although we do not explicitly distinguish between implementations and types here,
there are some situations where either a type or an implementation may be used, while
in other cases only a type is valid. We use S or T to refer to types only, I to refer to
implementations only, and 7'/ whenever a type or an implementation is valid.

The distinction between types and implementations is particularly important in the

context of substitutability. There are four combinations of types and implementations:-

S<:T allowed
I <:T allowed
T <:1 not allowed

I <:I' notallowed

A type S can be substitutable for another type 7. Alternatively, an implementation /
can be substitutable for a type T. However, since implementations are never allowed to
be referenced directly we do not allow anything to be substitutable for an implementa-

tion by definition.

5.2.4 PACT Typing Rules

We are now ready to define the typing rules for PACT. Our typing rules are based on
Abadi et al.’s Ob . calculus, in terms of both notation and semantics.
First, we define some basic rules to describe what constitutes valid types, implemen-

tations, methods, method contracts, contract disjunctions and contract conjunctions:-

(Type / Implementation)
(where T1 = [u€!" inv))

Eruy Viel.n EFinw
E-TI

Chapter 5. Formal Description of PACT Syntax and Typing Rules 129

(Method)
(Where p = g(x: TI,{p; : SE")b : T, ¢
and where ¢ = pre, post,rb: T)

E+TI EvS; Viel.n Ex:TIL{p;i:S€"")b:T E+T Etc
E+pu

(Method Contract)
(where ¢ = pre, post,rb : T)

Etpre Erpost Errb:T
Erc

(Contract Disjunction)
(where cd = {cc; : Bool'®'-")

Erc; Viel.n
Ercd

(Contract Conjunction)
(where cc = {c; : Bool€!-"))

EF c

These rules simply formalise our definitions of PACT constructs: a type must have
valid methods and invariants; each method must have valid parameter types and return
types and a valid contract; a method contract must have valid precondition and post-
condition contract disjunctions and a result block; a contract disjunction must contain
valid contract conjunctions; a contract conjunction is made up of any number of boolean
conditions.

With these definitions in place, we can now go on to define more complex typing
rules about substitutability. Five rules describing correct substitutability for types, meth-
ods, method contracts, contract disjunctions and contract conjunctions are presented and
explained below. Our typing rules are derived from Abadi et al.’s subtyping rules for
the Ob <. calculus and are also loosely based on basic subtyping rules defined by Bruce
[33, page 88].

Our first subtyping rule, Type / Implementation Sub, defines when a type or imple-
mentation, 71, is substitutable for another type, 7 ':-

Chapter 5. Formal Description of PACT Syntax and Typing Rules 130

(Type / Implementation Sub)
(where TI = [inv] and T = g} 1" inwr])

1

n<m Ery <y Viel.n Ebrp VYien+l.m E® i <:ind
E-TI<T

Type or implementation 7/ is substitutable for type T if:-

e T has at least as many methods as 7" and each method in the 7'/ is substitutable
for the matching method in 7. Method substitutability is defined by rule Method
Sub;

e All methods added by 7'/ which are not in T are valid methods; and

e The invariant of T is substitutable for the invariant of 7. Substitutability of

invariants is defined by rule Contract Disjunction Sub.

Type / Implementation Sub is an extension of Abadi et al.’s Sub Object and performs
similar but more complex checks due to our extended definition of types and methods.

Abadi et al.’s Sub Object rule is repeated below for convenience:-

(Sub Object) (I; distinct)

E+vB;i<:VB. Viel.n E+B; Vien+l.n+m
E+ [ll"l),' : Bi:el..n—i-m] <. [ll"l)g : B; iel..n]

Abadi et al.’s Sub Object rule checks, for all methods common to the subtype and
supertype, that the return type of the subtype method is substitutable for that of the
supertype method. When performing this check, it takes into account the variance of
the two return types. In addition, it verifies that all remaining methods added by the
subtype have valid return types.

Our Type / Implementation Sub rule takes the same approach: for all methods com-
mon to subtype and supertype, it checks that the subtype method is substitutable for
the supertype method. Since we have introduced additional concepts including param-
eters and method contracts, this check is quite complex and is therefore deferred to the
Method Sub rule. For all methods added by the subtype, the rule also checks that the
methods are valid (according to rule Method). As well as comparing method types, Type

/ Implementation Sub also verifies that the invariant of the subtype is substitutable for

Chapter 5. Formal Description of PACT Syntax and Typing Rules 131

the invariant of the supertype. This check is deferred to the Contract Disjunction Sub
rule.
Our second subtyping rule, Method Sub, describes when one method, u, is substi-

tutable for another method, /':-

(Method Sub)
(where p = g(x: TL{p; : SE")b : T,cand ff = g(x' : TI',{p}: SLE-")b T,)

ErS <SS Viel.n E-T<T' Erc<:/(
Eru<:y

Method u is substitutable for method p/ if:-

e The two methods have the same number of parameters;

e Each parameter type of method ¢/ is substitutable for the matching parameter type

of u (contravariance);

e The return type of method u is substitutable for the return type of ¢/ (covariance);

and

e The contract of method u is substitutable for the contract of method ¢/. Substi-
tutability of method contracts is defined by the rule Method Contract Sub.

Our conditions for covariance of return types and contravariance of parameter types
expressed in the Method Sub rule are consistent with Abadi et al.’s variance rules.

Return types are outputs and therefore covariant by definition in PACT. Abadi et
al.’s Sub Covariant rule, repeated below for convenience, shows that a covariant or in-
variant type T is substitutable for a covariant type 7" if the simple type T is substitutable
for T':-

(Sub Covariant)

E-T<T wve{°*t}
E T <: T’

The Sub Covariant rule applies to return types, which are covariant by definition.
The return types of both methods are covariant and therefore the premise v € {°, %} is

satisfied. Thus, in order for return type T to be substitutable for return type 7', type T

Chapter 5. Formal Description of PACT Syntax and Typing Rules 132

must be substitutable for type T”; this result is expressed by the condition E — T <: T’
in Method Sub.

A similar argument can be made for parameters: these are inputs and therefore
contravariant by definition. Abadi et al.’s Sub Contravariant rule, repeated below, shows
that a contravariant or invariant type T is substitutable for a contravariant type T if the

simple type T’ is substitutable for 7':-

(Sub Contravariant)

E-T'<T wve{°}
Er—vT <: - T

All parameter types are contravariant; thus, the Sub Contravariant rule applies here:
let T be the type of the parameter in the subtype and 7' the type of the parameter in the
supertype. Since both are contravariant, the condition v € {°,~ } in Sub Contravariant
is satisfied. From the remainder of the rule, we can see that in order for parameter of
type T to be substitutable for parameter of type T’, type T’ must be substitutable for
type T. This is expressed in our Method Sub rule by the premise E |- S, <: S; Vie l..n.
Overall, this shows that the covariance and contravariance constraints expressed in our
Method Sub rule are consistent with the variance rules defined by Abadi et al.

Our third typing rule, Method Contract Sub, defines when a method contract, ¢, is

substitutable for another method contract, ¢’:-

(Method Contract Sub)
(where ¢ = pre, post,rb : T and ¢’ = pre’, post’ , rb : T")

Etprd <:pre E+ post <:post'’ T <:T'
Erc<:d

Method contract ¢ is substitutable for method contract ¢’ if:-

e The precondition of ¢’ is substitutable for the precondition of c;

e The postcondition of ¢ is substitutable for the postcondition of ¢; and

e The type T of result block b is substitutable for type T’ of result block rb’.

The Method Contract Sub rule again applies the concepts of covariance and con-
travariance, as defined in Abadi et al.’s variance rules. Since preconditions behave con-

travariantly, Abadi et al.’s Sub Contravariant rule can be applied; thus, pre’ must be

Chapter 5. Formal Description of PACT Syntax and Typing Rules 133

substitutable for pre. On the other hand, postconditions behave covariantly and there-
fore, according to Abadi et al.’s Sub Covariant rule, post must be substitutable for post’ .
Similarly to the return type of a method, the type of the contract’s result block is covari-
ant and therefore the Sub Covariant rule applies again; according to this rule, 7 must be
substitutable for 7.

Our fourth subtyping rule, Contract Disjunction Sub, defines when a contract dis-
junction, ¢d, (such as an invariant or a method’s precondition or postcondition) is sub-

stitutable for another contract disjunction, cd”:-

(Contract Disjunction Sub)
(where cd = {cc; : Bool'"™) and cd’ = <CC;. : Bool €1+)

m<n Erci<icct Viel.m Erc Yiem+1.n
Etcd < cd

Contract disjunction ¢4 is substitutable for contract disjunction cd” if:-

o ¢4’ has at least as many individual conjunctions as cd’;

e For each conjunction cc in ¢4 there is a conjunction ¢’ in ¢4’ so that cc is substi-

tutable for ¢c’; and

e All additional contract conjunctions in ¢4’ are valid.

Finally, our Contract Conjunction Sub rule defines when a contract conjunction of

boolean expressions, cc, is substitutable for another contract conjunction, cc’:-

(Contract Conjunction Sub)
(where cc = (c; : Bool's!"") and cc’ = {¢; : Bool/¥!-")

n<m ci=c} Yiel.n Erc¢ Vien+1l.m
E+ cc<:ced

Contract conjunction cc is substitutable for contract conjunction cc’ if:-
e cc has at least as many individual conditions as cc’;
e Each condition ¢} in ¢¢’ is semantically equivalent to a condition ¢; in cc; and

e All additional boolean conditions in cc¢ are valid.

Chapter 5. Formal Description of PACT Syntax and Typing Rules 134

Note that we use = to denote semantic equivalence. We cannot use type information
to compare contract conditions since they are all of type Bool. Instead, we compare
them semantically to ensure that they express the same constraints.

In addition to these typing rules, the rules of subtyping reflexivity, transitivity and
value subsumption, as presented by Abadi et al. [1, page 93], also apply to PACT. We
have modified these rules to reflect where a type or an implementation can be used; this
makes the rules consistent with our definitions of types and implementations, but does

not affect their basic semantics.

(Sub Refl)

E-T
E-T<:T

(Sub Trans)

Er-TI<:S E—S<:T
E-TI<:T

(Val Subsumption)

Era:TI] E-TI<:T
Era:T

The Sub Refl rule shows that a type is substitutable for itself; an implementation
cannot be substituted for itself because, according to our definition of types and imple-

mentations presented above, nothing is ever substitutable for an implementation.

5.2.5 Applying the Typing Rules in Practice

In this section, we show how our formal typing rules can be applied to concrete exam-
ples. Each of the examples presented here includes an incorrect subtyping relationship;
we use our typing rules to identify the particular problem with the subtyping relation-
ship.

Let us start with a very simple stack example: we have a standard Stack types that
stores Objects and want to create a StringStack type that stores Strings. Because
we want to reuse code from Stack in StringStack, we make StringStack a subtype

of Stack. Program Listing 5.1 shows pseudocode for the Stack and StringStack

Chapter 5. Formal Description of PACT Syntax and Typing Rules 135

Program Listing 5.1 Pseudocode for the Stack and StringStack types

type Stack{
void push (Object obj){ ... }
Object pop(){ ... }
Object peek(){ ... }

}

type StringStack subtypes Stack {
void push(String s){ ... }
String pop(){ ... }
String peek(){ ...}

}

types. In order to keep this example simple we have omitted all contracts, which are not
needed here to illustrate our point.

Given the rules of covariance for return types and contravariance for parameter
types, StringStack is clearly not a subtype of Stack. In particular, the push method
in Stack takes a parameter of type Object; the same method in the subtype takes a pa-
rameter of type String, a subtype of Object; this is covariant overriding of parameter
types and leads to a loss of substitutability.

Let us apply our Type / Implementation Sub and MethodSub rules, repeated below

for convenience, to demonstrate that StringStack is not a correct subtype of Stack.

(Type / Implementation Sub)
(where TI = [inv] and T = [y} 1" inor])

n<m Ery<:y Viel.n Ery Yien+l.m E&inw<:ind
E-TI<T

(Method Sub)
(Where p = g(x: TL{p; : SEL-")b: T,cand ¢/ = g(x' : TI',{p}: SLE-")b T,)

ErS <SS Viel.n E-T<T' Erc<:/(
Eru<:y

According to the Type / Implementation Sub rule, each method in Stack must have

a corresponding, substitutable method in StringStack. In addition, the invariant of

Chapter 5. Formal Description of PACT Syntax and Typing Rules 136

StringStack must be substitutable for the invariant of Stack; since neither type de-
clares any invariants this part of the rule is automatically satisfied.

To check that for each method in Stack, a substitutable method exists in
StringStack, we need to use the Method Sub rule. Let us start by looking at the
push method:-

e Neither the push method in Stack nor the one in StringStack has a method

contract and thus the premise E +— ¢ <: ¢’ of Method Sub is satisfied.

e Both methods have the same return type, void. Thus, the premise E - T <: T’ is
satisfied.

e The parameter type of push in Stack is Object; the parameter type in
StringStack is String, a subtype of Object. Thus, we have S; <: S!, violat-
ing the premise E |- S} <: ;.

The violation of the premise E — S, <: S;, the contravariance constraint for pa-
rameter types, means that the conclusion of Method Sub is false; the push method in
StringStack is not substitutable for that in Stack. This causes a violation in the Type
/ Implementation Sub rule which requires each method in Stack to have a substitutable
method in StringStack. This shows that StringStack is not a correct subtype of
Stack.

A similar problem occurs if we reverse the subtyping relationship and make Stack

a subtype of StringStack. Pseudocode for this situation is shown in Program Listing
5.2.

Program Listing 5.2 Pseudocode for the revised Stack and StringStack types
type StringStack {

void push(String s){ ... }

String pop(){ ... }

String peek(){ ...}

type Stack subtypes StringStack ({
void push (Object obj){ ... }
Object pop(){ ... }
Object peek(){ ... }

Chapter 5. Formal Description of PACT Syntax and Typing Rules 137

In this example, the return types of pop and peek vary contravariantly from
StringStack to Stack, violating substitutability.

Let us again use our formal typing rules to demonstrate that Stack is not a subtype
of StringStack. When we use the Method Sub rule to, as before, check substitutability
of the push method, we find no violations this time. This shows that the push method

of Stack is substitutable for that of St ringStack. Next, we consider the pop method:-

e Neither the pop method in StringStack nor the one in Stack has a method

contract and thus the premise E | ¢ <: ¢/ of Method Sub is satisfied.

e Neither of the two pop methods have any parameters and therefore the premise
E S} <:S; Viel.nis satisfied.

e The return type of the pop method in StringStack is String; the return type
in the subtype Stack is Object, a supertype of String. Thus, we have T/ <: T,

violating the covariance constraint for return types, E — T <: T".

Our typing rules clearly show that, as expected, Stack is not a subtype of
StringStack.

Finally, let us look at an example which includes contracts. In this example, we
reuse the types Stack and NoNullStack introduced in Chapter] and incorrectly make
NoNullStack a subtype of Stack. Pseudocode for the two types can be seen in Program
Listing 5.3. Note that in order to keep this example concise we have left out the peek
method, which is very similar to the pop method.

In Chapter] we explained in detail why NoNullStack is not a correct sub-
type of Stack: the precondition of the push method is strengthened in the subtype
NoNullStack, resulting in a loss of substitutability.

Let us apply our formal typing rules to demonstrate the problem with this subtyping
relationship. NoNullStack and Stack have the same number of methods with exactly
the same parameter and return types; only their method contracts differ and this is there-
fore the area we need to investigate. For this, we require our Method Contract Sub,

Contract Disjunction Sub and Contract Conjunction Sub rules, repeated below:-

Chapter 5. Formal Description of PACT Syntax and Typing Rules

138

Program Listing 5.3 Pseudocode contracts for the Stack and NoNullStack types

type Stack {
void push(Object obj) {

Precondition: !isFull()
Postcondition: size == oldsize
}
Object pop () {
Precondition: !isEmpty ()
Postcondition: size == oldsize

type NoNullStack subtypes Stack {
void push (Object obj) {

Precondition: !isFull() && obj
Postcondition: size == oldsize
}
Object pop () {
Precondition: !isEmpty ()
Postcondition: size == oldsize

+ 1 && obj == peek()

-1

'= null

+ 1 && obj == peek()
- 1 && result != null

Chapter 5. Formal Description of PACT Syntax and Typing Rules 139

(Method Contract Sub)
(where ¢ = pre, post,rb : T and ¢/ = pre, post’ , rb : T")

Et prd <:pre E post <:post' T <:T'
Erc<:d

(Contract Disjunction Sub)
(where cd = {cc; : Bool™'™) and cd’ = <Cc;. : Bool €1+)

m<n Erci<icct Viel.m Erc Yiem+1.n
Etcd < cd

(Contract Conjunction Sub)
(where cc = {c; : Bool™®'""™) and ¢¢' = () Bool €1

n<m cij=c} Viel.n Erc¢ Vien+l.m
Erc<:cd

Let us look more closely at the contracts for the push method. According to the
Method Contract Sub rule, the precondition of push in the supertype Stack must be
substitutable for the precondition in the subtype NoNullStack, while the postcondition
of push in the subtype NoNullStack must be substitutable for the postcondition in the
supertype Stack.

Next, we evaluate the substitutability of the preconditions and postconditions using
the Contract Disjunction Sub and Contract Conjunction Sub rules. Both rules deal with
contracts expressed in DNF. Fortunately, the contracts in this example are already in
DNF. Neither contract contains any disjunction; this means that each of them contains
only a single contract conjunction.

First, we look at the postconditions of push in the two types, keeping in mind that
the postcondition of NoNullStack must be substitutable for that of Stack:-

e The postconditions of push in both Stack and NoNullStack contain only a single
contract conjunction, satisfying the premise m < n in the Contract Disjunction
Sub rule.

e In order to satisfy the premise E cc; <: cc; Vi€ 1..min the Contract Disjunction
Sub rule, the contract conjunction of the postcondition in NoNullStack must be

substitutable for the contract conjunction of the postcondition in Stack.

Chapter 5. Formal Description of PACT Syntax and Typing Rules 140

e The contract conjunction of the postconditions in Stack and NoNullStack con-
tain exactly the same number of conditions. This satisfies the premise n < m in

the Contract Conjunction Sub rule.

e Each condition in the contract conjunction of the postcondition in Stack
has a semantic equivalent in the contract conjunction of the postcondition in
NoNullStack, satisfying the premise ¢; = ¢} Vi€ 1..n of the Contract Conjunc-
tion Sub rule.

e This means that the postcondition contract conjunction of NoNullStack is substi-
tutable for that of Stack and consequently the postcondition of the push method
in NoNullStack is substitutable for that in Stack.

Now, we take a look at the preconditions of push in the two types; here, the precon-
dition of Stack must be substitutable for that of NoNullStack:-

e Again, the preconditions of push in both Stack and NoNullStack contain only
a single contract conjunction. Therefore, the premise m < n in the Contract Dis-

junction Sub rule is satisfied.

e In order to satisfy the premise E - c¢; <: cc; Vi€ 1..min the Contract Disjunction
Sub rule, the contract conjunction of the precondition in Stack must be substi-

tutable for the contract conjunction of the precondition in NoNullStack.

e The contract conjunction of the precondition of push in NoNullStack has more
conditions than that in Stack; this violates the premise n < m in the Contract

Conjunction Sub rule.

e This means that the precondition contract conjunction for the push method in
Stack is not substitutable for that in NoNullStack; consequently, the precondi-
tion of push in Stack is not substitutable for that in NoNullStack; in turn the
push method in NoNullStack is not substitutable for the push method in Stack
and therefore NoNullStack is not substitutable for Stack.

The result of applying our formal typing rules to this example again coincides with

our expectation that NoNullStack is not a subtype of Stack.

Chapter 5. Formal Description of PACT Syntax and Typing Rules 141

5.3 Summary

Abadi et al.’s influential work on object calculi has been widely used as a formal un-
derpinning for OO type systems. In our work, we have extended their object calculus
Ob <. to include contracts. We hope that this can provide a formal basis for the seman-
tics surrounding software contracts and note that our work is more widely applicable
than to just PACT; our typing rules apply to other contract technologies as well.
Formal typing rules are useful for clarifying typing issues; for example, Abadi et
al.’s work is powerful for resolving the debate around covariance and contravariance we
explained in Chapter [2] The formal typing rules clearly show that, in order to make a
system type-safe, parameter types must vary contravariantly, while return types must
vary covariantly. Our own typing rules provide a check on the validity of subtyping in

PACT and demonstrate the soundness of our approach.

Implementation of PACT

In previous chapters, we identified limitations of existing software contract tools and
presented a design for our own contract framework, PACT; in addition, we specified
typing rules for PACT which provide a formal underpinnings for its type system. In
this chapter, we describe the development of a tool, PACT 1.0, which implements our
design from previous chapters. This tool supports the majority of PACT’s features and
serves to demonstrate the viability of the design. We see it as an important step on the
way to realising better software contracts.

This chapter is structured as follows: first, we describe the implementation and
structure of PACT 1.0, which is divided into three separate parts: parsing, model build-
ing and exporting. In Section we discuss some of the limitations of our current

implementation and possible future improvements.

6.1 Description of PACT 1.0

In order to put the ideas for our contract framework PACT into practice, we have devel-
oped a simple tool, PACT 1.0, which takes source files with software contracts as input
and converts them into C#. PACT 1.0 makes some use of CODE CONTRACTS, one of
the software contract technologies we evaluated in Chapter 3]

We decided to write a tool to translate our software contracts into an existing lan-
guage rather than creating a new language in order to simplify implementation and

allow for the quick development of a prototype implementation of PACT. C# was our

142

Chapter 6. Implementation of PACT 143

preferred choice as the target language, since it is already widely used and similar to
other popular programming languages such as Java. In addition, it is compatible with
CODE CONTRACTS which is a simple but sufficiently complete contract technology for
our purposes. C# and CODE CONTRACTS are also compatible with a range of support-
ing tools, such as the testing tool Pex and static program verifiers.

A consequence of translating PACT into an existing programming language is that
our tool needs to map PACT’s semantics onto the existing semantics of C#. In many
ways, this proved to be difficult given the significant difference in semantics between the
two. For example, PACT supports multiple inheritance, while C# supports only single
inheritance for classes and multiple inheritance for interfaces. PACT supports covariant
and contravariant overriding of return types and parameter types respectively, while C#
does not support covariance or contravariance in this context. PACT’s encapsulation
boundary is the object; that is, it supports object encapsulation; C#, on the other hand,
supports only class encapsulation. These different semantics and the mapping required
between them made the design and implementation of PACT 1.0 significantly more
complex and difficult than expected.

A full UML class diagram of our software can be seen in Figure [6.6| on page 162.
PACT 1.0 takes as input files which conform to PACT’s syntax described in Section

[5.1] The process of translation into C# occurs in three distinct stages:-
e Parsing: Source files are parsed using a recursive descent parser;

e Model Building: A model of the program is built and some consistency checks

are performed to ensure the program adheres to PACT’s semantics; and

e FExporting: The model is converted into C# code which can be compiled and

executed using standard C# tools.

These three stages are described in more detail in the following sections.

6.1.1 Parsing

In the first stage of the translation process, source code is read from source files and
parsed using a recursive descent parser. The UML class diagram in Figure [6.6] on page
162 shows the classes involved in the parsing process.

The main recursive descent parser is implemented in the Parser class. A Scanner

reads the raw text from the source file and divides it into Tokens which it passes to the

Chapter 6. Implementation of PACT 144

Parser. Each Token has a particular TokenType. TokenTypes describe symbols or
keywords used in the syntax of PACT; examples of TokenTypes include SEMICOLON,
PRE_KW (pre keyword) and TYPE_KW (type keyword). The Parser analyses the stream
of Tokens and deduces whether or not it constitutes a syntactically correct program.

Whenever the Parser finds an unexpected Token, it throws an exception to report
the error, rather than attempting to recover. PACT 1.0 is a research tool and prototype
and therefore this approach to error handling is sufficient for our purposes. More so-
phisticated error handling and error recovery is a feature we expect to add as part of the
future development of PACT 1.0.

Method bodies and contracts of the input files contain C# code, which is not checked
by our Parser. Creating a full parser for C# is both time-consuming and unnecessary,
since such parsers exist already. Our parser simply records the C# code, which will be
exported along with the rest of the program in the third stage. Any syntax errors in this
part of the program will thus become evident only when the exported program is run
through a C# parser or compiler.

In our design of PACT we proposed a complete separation of types and implemen-
tations. This means that no code is allowed to refer directly to an implementation. In
Chapter f] we suggested that during object construction, only the type’s constructor
should be called and the preferred implementation for this type should be determined
automatically. In this implementation, we use a configuration file to record which im-
plementation is the preferred one for each type. This is a simple way of allowing types,
rather than implementations, to be referenced during object construction and, although
it is not very flexible and sophisticated, it serves our purpose and helps us achieve a
complete separation of types and implementations.

As part of the parsing stage of the translation process, our tool parses the program
configuration file, which contains information about which implementation is the pre-
ferred one for each type. This information is necessary in order to automatically con-
struct an object of the preferred implementation when a type’s constructor is called. The
configuration file is a simple text file; each line contains the name of a type followed by

the name of the preferred implementation for this type.

Chapter 6. Implementation of PACT 145

6.1.2 Building a Model of the Program

As the Parser analyses source code, it passes information about constructs it discovers
to the Builder, which builds a model of the program; for example, the Parser calls
the StartType method of the Builder when it finds a type declaration. The classes
representing the model of the program can be seen in the UML class diagram in Figure
[6.6]on page 162.

The model of the program is a collection of Constructs. Each such construct is ei-
ther a Type or an Implementation. Both Types and Implementations contain invari-
ants (ContractBlocks) and operations, or methods; Implementations may have only
ConcreteOperations; that is, operations which include a method body. Types, on the
other hand, may contain both Operations without a body and ConcreteOperations.

An Operation has a name and returnType, as well as parameters
(VariableDeclarations). In addition, it has a precondition and a
postcondition (both ContractBlocks). It may further contain contractVariables
(VariableDeclarations) which are used in the definition of the precondition and
postcondition.

Once the parser has finished parsing the program and has passed on its information
to the Builder, the model of the program is almost complete. At this point in the pro-
cess, the model contains all constructs (types and implementations) that the Parser has
discovered, along with each construct’s operations and contracts. However, the rela-
tionships between constructs have not yet been resolved. For example, when a type is
declared to be the subtype of another type, the builder is not immediately able to resolve
this relationship, since the supertype may not have been parsed and constructed yet. In-
stead, the builder records the name of the supertype. When all constructs have been
discovered it is then able to resolve all relationships, including subtyping, derivation
and restriction. If a relationship cannot be resolved because a type or implementation is
missing, the Builder throws an exception to notify the developer. As explained above,
this simple error handling strategy is sufficient for our purposes here but we expect to
implement more sophisticated error handling and error recovery in the future.

After resolving relationships, the Builder checks that each implementation matches
the types it implements. It does this by calling the CheckTypeImplementations
method of each Implementation and throws an exception if it finds a type which is

not correctly implemented by an implementation. In order to correctly implement a

Chapter 6. Implementation of PACT 146

type, an implementation must have a matching method for all non-concrete methods
of the type, including any methods the type has inherited through subtyping or type

derivation.

6.1.3 Exporting the Model into C#

After a model of the program has been constructed, it can be translated into C#. This
task is performed by the ModelExported class.

In our implementation of PACT, we aimed to make as much use as possible of
existing C# and CODE CONTRACTS tools in order to keep our own implementation
simple and avoid duplication of effort. We therefore designed the exporting portion
of PACT 1.0 to translate a program’s model into C# in such a way that many of the
necessary semantic and consistency checks could be performed by the C# compiler. In
addition to this, we tried to avoid duplication of code as much as possible to reduce the
amount of generated code.

We found that using CODE CONTRACTS to implement PACT 1.0 was not as
straightforward as we had envisaged. The main problem encountered with CODE CON-
TRACTS was its inability to weaken preconditions. In CODE CONTRACTS, precondi-
tions must be invariant; in other words preconditions cannot be modified when over-
riding methods. In PACT, however, we allow weakening of preconditions through dis-
junction of terms. Since CODE CONTRACTS could not support this feature, our only
option was to implement our own preconditions. We further decided to implement our
own postconditions in order to keep our implementation consistent. We do, however,
use invariant support from CODE CONTRACTS since this is well implemented and easy
to use.

Implementing our own preconditions and postconditions rather than using those pro-
vided by CODE CONTRACTS does not result in any significant disadvantages for our
tool. In fact, our preconditions are more powerful than those implemented by CODE
CONTRACTS since they allow precondition weakening; our postconditions are very
similar to those provided by CODE CONTRACTS. The only disadvantage we incur is
that tools associated with CODE CONTRACTS, such as Pex and the CODE CONTRACTS
static verifier, can use only information specified in CODE CONTRACTS. Therefore, our

preconditions and postconditions are not available to these tools.

Chapter 6. Implementation of PACT 147

We will use an example to demonstrate how PACT 1.0 translates programs into C#.
Here, we use a simple Stack type with only two methods: push and pop. The pop
method has been made private for the purposes of explaining how our tool deals with
different levels of access. In addition to the Stack type, we write a simple implemen-
tation, StackImpl, which implements Stack. A diagram of this example is shown in
Figure [6.1} the PACT code for Stack and StackImpl can be seen in Program Listing
6.1. Note that the code for this example is not complete; we have included just enough
detail to illustrate how PACT 1.0 exports PACT code.

<<type>>
Stack

+push(obj:object):void
-pop():object

<<implementation>>
Stackimpl

+push(obj:object):void
-pop():object

Figure 6.1: A simple Stack example

Public Interface

<<interface>>
Stack

+ push(obj:object):void
A

owner

Public Contrao:t

Private Interface

<<interface>>
_Stack_Private

+ pop():object

Private Contracti

Invariant Class

_Stack_Private
Contract_Interface

+ push(obj:object):void
+ pop():object
- objectinvariant():void

 Implementation Class

_Stack_Public_Contract

_Stack_Private_Contract

_Stacklmpl_Implementation
_Class

+$ _pre_push(owner:Stack,
obj:object, size:int):bool

+$ _post_push(owner:_Stack_Private,

obj:object, size:int):bool

+$ _pre_pop(owner:_Stack_Private,

size:int):bool

+$ _post_pop(owner:_Stack_Private,

result:object, size:int):bool

<< - - - -

+ push(obj:object):void

+ pop():object

+ _pre_push(owner:Stackimpl,
obj:object, size:int):bool

+ _post_push(owner:Stackimpl,
obj:object, size:int):bool

+ _pre_pop(owner:Stackimpl,
size:int):bool

+ _post_pop(owner:Stacklmpl,
result:object, size:int):bool

Figure 6.2: UML class diagram of the Stack example after processing

A class diagram of the stack program after translation into C# can be seen in Figure

[6.2] The source code of the final C# program after exporting is listed in Appendix [C]

Chapter 6. Implementation of PACT 148

Program Listing 6.1 PACT code for Stack and StackImpl
type Stack { implementation StackImpl
implements Stack {

inv {
check size() >= 0; object[] stack;
} int top;
void push(object obj) { void push(object obj) {}{
int size; stack[top++] = obj;
pre }
size = size();
} object pop () {}{
post { return stack[--top];
check size() == size + 1; }
check obj == peek(); }

private object pop() {
int size;
pre {
size = size();
check size > 0;
}
post {
check size() == size - 1;

Chapter 6. Implementation of PACT 149

The C# version is significantly more complex than the PACT version because of the
overheads of mapping PACT semantics onto existing C# semantics.

The Stack type is converted into a C# interface of the same name. In this way, ex-
isting code in the program referring to the type will continue to work correctly after the
conversion. Only non-private methods from the type are transferred into this interface
since they are the only ones that should be visible to clients of the type; we refer to
this C# interface as the type’s public interface. We use C# interfaces to represent types
because of their support for multiple inheritance and their implementation-free nature.

The private methods of the type are placed in a second interface, which we refer to
as the private interface. This interface inherits from the public interface and thus offers
all its methods. We use the simple expedient of generating a name for the interface to
avoid it being available to client code, effectively hiding the methods declared here.

CODE CONTRACTS requires contracts for interfaces, including class invariants, to
be placed in a separate abstract class which implements the interface, since no imple-
mentation code is allowed in the interface itself. This contract class is connected to
the interface through the [ContractClass] attribute. In our implementation, we place
any invariants defined by the type into such a contract class, which we refer to as the
invariant class. As required by CODE CONTRACTS, the class invariants are placed in
a private void method called objectInvariant in the invariant class. Since C#
abstract classes inheriting from interfaces must provide an implementation for each
method declared in the interface, we must provide a default implementation in the in-
variant class for each method in the private interface. In our system, these default im-
plementations are never accessed but in order to meet the compiler’s requirements each
method’s default implementation simply returns the default value of its return type.

The remaining contracts from the type, including preconditions and postconditions,
are placed in two classes: the type’s public contract and private contract. Pre-
conditions of publicly visible methods may access only other methods in the type which
are publicly visible; they are therefore placed in the public contract. All postconditions
and preconditions of hidden methods may access the type’s private methods as well as
publicly visible methods and are therefore placed in the private contract.

Both the public and the private contract use an owner object, to which they forward
all method calls. The public contract’s owner type is the public interface; the private
contract’s owner type is the private interface. In this way, any method contracts defined

in the public contract can access only the methods declared in the public part of the type;

Chapter 6. Implementation of PACT 150

that is, publicly visible methods. Contracts defined in the private contract can access all
of the type’s methods. The structure of the exported program means that this semantic
constraint is checked automatically by the C# compiler.

Implementations are translated into standard C# classes which we call implemen-
tation classes. The implementation class has a different name from the original im-
plementation name; for example, the implementation StackImpl is turned into the C#
class _StackImpl_Implementation_Class. This is done so that existing code does
not refer directly to implementations; if there is code which refers to an implementation
using the original PACT implementation name, no class with the matching name will
exist in the final C# program and an error will be reported by the C# compiler.

In other programming languages, the concrete implementation to be used must usu-
ally be referred to directly whenever an object is constructed. In PACT, we never allow
such a direct reference, even during object construction; therefore, when some part of
the system wants to create an object, it must call the type’s constructor, not the imple-
mentation’s constructor. Our tool replaces all calls to a type’s constructor with calls
to the constructor of the preferred implementation, as defined in the configuration file.
This ensures that the preferred implementation is constructed, while at the same time
no implementation is ever referenced directly.

When writing out the implementation class, all fields and method bodies are ex-
ported as standard C# code. Whenever an implementation implements a type with a
concrete type method and does not override this method, a method implementation is
generated automatically from the concrete type method’s result block in the type.

In addition to standard methods, a precondition and postcondition method is added
to the implementation class for each standard method. This creates a clear separation be-
tween contracts and the method implementations in the generated code. Any invariants
declared in the implementation are placed in private CODE CONTRACTS invariant
methods in the implementation class.

As an example, the pop method of the exported C# implementation class is shown
in Program Listing 6.2.

Each standard method is modified to first call its precondition method, then execute
the method body and finally call its postcondition method. For example, pop first calls
its precondition method (_pre_pop), executes its body and finally calls its postcondition
method (_post_pop). The return value of the method is calculated and stored in the

result variable before the postcondition method is called, and is returned at the end

Chapter 6. Implementation of PACT 151

Program Listing 6.2 The pop method in the exported C# program

public object pop() {
int size = default (int);
if (!_pre_pop(this, ref size)){
throw new Exception("Precondition Failure in implementation
StackImpl, method pop");
}
object result = stack[--top];
if (!_post_pop(this, result, ref size)) {
throw new Exception("Postcondition Failure in implementation
StackImpl, method pop");
}

return result;

of the method. The precondition and postcondition methods both return a boolean
value to indicate whether or not the contract was fulfilled. If either of these methods
return false the contract was broken and an exception is thrown with an appropriate
error message. This design ensures that the exception is thrown from within the method
implementation where the violation occurred, rather than from within the precondition
or postcondition itself which may have inherited a clause that caused the problem; this
results in more informative error messages.

The precondition and postcondition methods for the pop method are shown in Pro-
gram Listing 6.3. This code is maybe not as concise as hand written code might be; this
is the case because it is generated code designed to accommodate all possible contracts.

Like all precondition and postcondition methods, _pre_pop and _post_pop take
a number of parameters as follows: the first parameter is the owner object; this is the
object to which any method calls from within the contract should be forwarded. This
is followed by all parameters of the original method. The pop method does not take
any parameters; on the other hand, the precondition and postcondition methods of push
would take a parameter of type object, like the push method itself. This ensures that
the precondition and postcondition methods have access to the method’s parameters.

Following the parameters, the postcondition method of non-void methods also takes
a parameter called result, which contains the return value of the method. In this way,

the postcondition can use the method’s return value in its checks.

Chapter 6. Implementation of PACT 152

Program Listing 6.3 The precondition and postcondition method for the pop method
in the exported C# program

public bool _pre_pop(StackImpl owner, ref int size) {
if (_Stack_Private_Contract._pre_pop (owner, ref size)) {
return true;

}

return false;

public bool _post_pop(StackImpl owner, object result,
ref int size){
if (!_Stack_Private_Contract._post_pop (owner, result,
ref size)){
return false;
}

return true;

In addition to this, the precondition and postcondition methods take one parameter
for each declared contract variable. In the pop method’s contract, we declared the con-
tract variable size in order to be able to compare the size of the Stack before and
after the method’s execution. This variable is first declared in the pop method of the
implementation class, given a default value and is then passed into both the precondi-
tion and postcondition methods. The C# keyword ref is used here to ensure that the
variable is passed by reference, so that any value assigned to it by the precondition or
postcondition is preserved. In this way, the same variable is made accessible to both
parts of the contract.

In the pop method above, we can see how the precondition and postcondition meth-
ods are called using all these parameters. The current object passes itself into the con-
tract as owner to ensure that any method calls get redirected back to itself for execution.
The return value of the method, which is calculated and stored in the result variable, is
also passed to the postcondition as a parameter. Finally, the size variable is initialised
to a default value and passed to both the precondition and postcondition.

The precondition and postcondition methods calculate a boolean value to indicate
whether or not the contract is satisfied. They do this by checking their own conditions

and any inherited conditions. This checking is complicated by the fact that contracts

Chapter 6. Implementation of PACT 153

may contain code other than conditions that need to be checked. If the contracts con-
tained only conditions, all checks could easily be combined into a single return state-

ment like the one shown in Program Listing 6.4.

Program Listing 6.4 A single return statement for checking contract conditions

return inheritedConditionl && inheritedCondition2 && ownConditionl
&& ownCondition?2;

However, since contracts may contain other statements such as variable declarations,
if-statements and for-loops, this is not possible. For example, the contract in Program
Listing 6.5, which checks that numbers in a list are sorted in increasing order, cannot be

transformed into a single statement due to the presence of the loop.

Program Listing 6.5 A contract that cannot be converted into a single statement

for(int 1 = 0; 1 < list.Count - 1; 1i++) {
check list[i] <= list[i+1];

The fact that the contract conditions must be checked one by one significantly com-
plicates the process. The flowgraphs in Figure [6.3] show how precondition and postcon-
dition methods determine their overall result.

Precondition and postcondition methods must check inherited contracts as well as
their own conditions and merge these into an overall result. This merging of results
supports multiple inheritance of contracts: if one method is inherited from more than
one supertype, each of the inherited contracts is evaluated and the results are combined
through disjunction or conjunction for preconditions and postconditions respectively.
Disjuncting ensures weakening of preconditions; conjuncting ensures strengthening of
postconditions. The resulting, combined contract will be substitutable for each of the
supertype contracts.

In order to avoid code duplication, the checking of inherited conditions is forwarded
to the relevant contract class. For example, the precondition and postcondition of the
pop method forward the contract evaluation on to the private contract of the Stack
type. This contract contains a precondition and postcondition method for pop, since
pop was inherited from this type. The methods in the Stack contract could in turn pass

on contract evaluation to Stack’s supertype. This arrangement ensures that duplication

Chapter 6. Implementation of PACT 154

Inherited
Conditions
Left?

Evaluate
Condition

Inherited

Yes Evaluate

Conditions Condition

Return False

Evaluate
Condition

Conditions
Left?

Return False

Own

Yes Evaluate

Conditions Condition

Return False

Inherited
Conditions
Exist?

Conditions
Exist?

Return True

Preconditions Postconditions

Figure 6.3: Flowcharts showing the merging of results in preconditions and postcondi-
tions

of contracts is minimised; several implementations of Stack all call the methods in
Stack’s private and public contract, essentially sharing the contract implementation.
This approach is facilitated by making methods in the public and private contracts static.

Postcondition methods conjunct all conditions, including those inherited from su-
pertypes and their own. They first check all inherited conditions followed by their own
conditions. If any one of these conditions evaluates to false, an overall result of false
is returned. If all checks pass, true is returned at the end.

Precondition methods are somewhat more complicated. Inherited preconditions
need to be disjuncted; that is, if any one of them is true a result of true is returned.
If none of the inherited preconditions are t rue, the method’s own preconditions need
to be evaluated. However, these conditions are not disjuncted, but conjuncted; that is,

all conditions must be true for the entire precondition to be true. The precondition

Chapter 6. Implementation of PACT 155

therefore checks if any conditions are false and if so, returns a result of false. If none
of the inherited conditions were t rue and none of the method’s own preconditions were
false, some special cases need to be covered. If the method had its own preconditions
and these were not found to be false, they must have been true and thus a result of
true is returned. If the method had neither its own preconditions nor inherited precon-
ditions, it should return the default value of true. The final case occurs if the method
has only inherited preconditions. If none of these were found to be true, the overall
result is false.

The checking of preconditions and postconditions continues to work in the presence
of subtyping. In order to demonstrate this, we introduce another type, Collection,
to our example and make it a supertype of Stack, so that Stack inherits two methods

from Collection: size and the private method isFull. This extension can be seen

in Figure

<<type>>
Collection

+size():int
-isFull():bool

A

<<type>>
Stack

+push(obj:object):void
-pop():object

<<implementation>>
Stackimpl

+push(obj:object):void
-pop():object

Figure 6.4: Diagram of the extended Stack example

The structure of the C# program produced from this example can be seen in Figure
6.5}

We can see that the Stack’s private and public contracts forward contract evalua-
tions to Collection’s contracts. The results of preconditions and postconditions are
merged as explained above. Multiple inheritance is automatically supported through
this merging of contracts. We do not need to worry about inheritance of class invariants

since CODE CONTRACTS handles this automatically.

Chapter 6. Implementation of PACT

156

<<interface>>
Collection

+ size():int

<<interface>>
_Collection_Private

+ isFull():bool

oF---

ollection_Public_Contract

_Collection _Private_Contract

+$ pre size(owner:Collection):bool

A

<<interface>>
Stack

+ push(obj:object):void
A

owner

<

'
'
'
'
'
'
'
'
'
1

_Stack_Public_Contract

+$ _pre_push(owner:Stack,
obj:object, size:int):bool

+$ _pre_size(owner:Stack):
bool

+$ _post_size(owner:_Collection_Private,
result:int):bool
+$ _pre_isFull(owner:_Collection_Private)

+$ _post_isFull(owner:_Collection_Private,
result:bool):bool

: :bool

+$ _post_pop(owner:_Stack_Private,
result:object, size:int):bool

+$ _post_size(owner:_Collection_Private,
result:int):bool

+$ _pre_isFull(owner:_Collection_Private)
:bool

+$ _post_isFull(owner:_Collection_Private,
result:bool):bool

A
i _Stack_Private_
<<interfac¢>> 5 Contract_Interface
””””””””” Stack Private <J--t--------+7 5 oh(obj:object)-void
+ pop():object ' + size(()):ir;)t_ ,
' + pop():objec
/:'\ A ! + isFull():bool
' ' ! - obiectlnvariant():void
owner | 1
_Stack_Private_Contract ! _Stackimpl_Implementation_
Class
+$ _post_push(owner:_Stack_Private, L
obj:object, size:int):bool + p.USh(_c.’bJ'ObJECt)'VO'd
+$ _pre_pop(owner:_Stack_Private, <] : ZES(()):(I)T)tject
size:int):bool + isFuII.():bool

+ _pre_push(owner:Stackimpl,
obj:object, size:int):bool
+ _post_push(owner:Stacklmpl,
obj:object, size:int):bool
+ _pre_pop(owner:Stackimpl,
size:int):bool
+ _post_pop(owner:Stackimpl,
result:object, size:int):bool
+ _pre_size(owner:Stackimpl):
bool
+ _post_size(owner:Stackimpl,
result:int):bool
+ _pre_isFull(owner:Stackimpl)
:bool
+ _post_isFull(owner:Stackimpl,
result:bool):bool

Figure 6.5: UML class diagram of the extended Stack example after processing

Restriction is semantically the exact opposite of subtyping; a restriction of a type

can strengthen preconditions and weaken postconditions. We implement restriction very

similarly to subtyping in PACT 1.0: the restricted type forwards contract evaluation to

the full type; it conjuncts its own preconditions with the full type’s preconditions and

disjuncts postconditions. In this way, the full type is guaranteed to be substitutable for

the restricted type.

Chapter 6. Implementation of PACT 157

While we can handle subtyping and restriction well by delegating evaluation of con-
tracts to supertype contracts, the same approach does not work in the context of type
derivation. This is because in C# (and in other modern programming languages) there
is no equivalent to type derivation; that is, reuse without substitutability. When type
derivation occurs, we would ideally delegate evaluation of contracts to the contract of
the base type. However, this is not possible.

The derived type is not substitutable for the base type in PACT. Therefore, we do
not want to relate them using inheritance in C# since this would incorrectly lead to
substitutability. By not relating them at all, we ensure that the C# compiler can check
that a derived type is never substituted for a base type. However, this means that the
owner parameter of the two contracts is not compatible; that is, the contract of the
derived type cannot call the contract of the base type because the types of the owner
parameters do not match.

To avoid this issue, we decided to implement type derivation through generating
duplicated common code. We simply take all contracts from the base type (including
any inherited or derived contracts) and replicate them in the derived type. Although this
leads to a duplication of some contracts, we feel that it was the simplest and cleanest
solution.

For the same reason, we take the same approach for implementation derivation. We
first write out all fields and methods of the derived implementation and then add any
fields and methods of the base implementations which have not been overridden in the
derived implementation. In this way, the derived implementation duplicates all fields
and methods, including private items, from the base implementation. Again, although
some duplication occurs, we feel that this was the simplest solution.

Although duplicate code is widely seen as poor practice, the duplication in this in-
stance is not visible to the developer because it arises from code generation. This sig-
nificantly mitigates the problems surrounding duplicated code.

In PACT, it is possible for a type or implementation to be derived from more than
one base type or implementation. In PACT 1.0 the derived type or implementation
inherits the members of all its base types or implementations. However, this can lead to
problems when a member with the same name is inherited more than once.

In the context of subtyping, multiple inheritance of a single member is easy to re-
solve by combining inherited contracts according to the rules of substitutability. How-

ever, this is more difficult when using derivation. If a member with the same name is

Chapter 6. Implementation of PACT 158

inherited from more than one base type or implementation, it is not clear which of them
should be used or if and how they should be combined in the derived type or implemen-
tation; consequently, such name clashes cannot be resolved automatically. When more
than one member with the same name is inherited, our tool simply includes all of them
in the generated C# code, resulting in compile-time errors. Name clashes must therefore
be resolved by the developer by overriding the member causing the clash in the derived
type or implementation. In this case, the code will compile successfully because the

tool does not generate multiple copies.

6.2 Limitations and Future Extensions

We have implemented a simple tool, PACT 1.0, which translates code written in PACT
into C#. The current version of the tool works correctly and supports the majority of the
desired features of the PACT framework.

The development of PACT 1.0 was complicated significantly by the mismatch be-
tween C# and PACT semantics. This issue made the design and implementation of
PACT 1.0 complex and difficult.

Our current tool has some limitations and missing features which we plan to add in

the future:-

e Checking of class invariants is done in a wide variety of ways in existing contract
technologies. For example, some tools check invariants at the start and end of
a method, others only at the start; some tools perform invariant checks only for
public methods, others for all methods. Because we are currently using CODE
CONTRACTS to implement our invariants, we have no control over when exactly
invariants are checked. As in all other CODE CONTRACTS programs, invariants in
programs translated into C# using PACT 1.0 are checked at the end of all public

methods.

This is not ideal; in our design of PACT we suggested that invariants should be
checked after each method call originating from outside the object. However, this
is not trivial to implement and therefore we have focused on the development
of preconditions and postconditions here. We have largely ignored the issues

surrounding invariants, choosing to let CODE CONTRACTS deal with them for

Chapter 6. Implementation of PACT 159

now. In the future, we feel that correcting the checking of class invariants is one

of the most important features to be added to our tool.

e Many of the semantic checks required by PACT are carried out correctly by the
C# compiler because of the structure of the exported programs. We worked hard
on developing this structure in such a way that many of PACT’s semantic con-
straints were encoded into it. This lightens the load on our own tool and reuses as
much of the existing C# infrastructure as possible. On the other hand, this means
that many violations of semantic constraints are not discovered until the program
is compiled using the C# compiler. At this point, the program’s source code is
substantially different from the original code. If an error occurs, developers must
be able to recognise what caused the problem in the original program. This is
usually relatively simple but requires developers to have some awareness of how
the original program is translated into C#. In the future, better error messages
and a mapping of C# errors onto the original PACT source code would make it

significantly easier for developers to locate and resolve the errors encountered.

e PACT 1.0 implements a very simple error handling strategy: when it discovers a
problem it throws an exception which terminates the program, rather than trying
to recover from the error. Given that, in its current form, PACT 1.0 is a research
tool, such error handling is sufficient for our purposes. However, if we were to
extend it further to allow other developers to use it, better error handling and error

recovery would be essential.

e Our tool allows the definition of result blocks in types and transfers the body of
the result block to the relevant implementations. We have not yet implemented
checking of the return value of a method against the return value specified in the
result block. Such a check would be useful in situations where an implemen-
tation provides its own method body for a concrete type method; in this case, we
should check that the return value of the new method body matches that of the

default implementation provided in the type.

e PACT aims to support the correct use of covariance and contravariance. In partic-
ular, parameter types should vary contravariantly and method return types should
vary covariantly. Unfortunately, C# does not support covariance and contravari-

ance of parameters and return types. For this reason, this part of PACT remains

Chapter 6. Implementation of PACT 160

impossible to implement in C#. This is perhaps the most severe limitation of PACT

1.0 but is inevitable when using C# as the underlying technology.

e Currently, type and implementation derivation are implemented by generating du-
plicated code. This is not ideal because such duplication could lead to a large
increase in the size of the translated program. However, code duplication like this
is not uncommon in automatically generated code. We could not find a different
solution to this issue because there is no comparable semantic construct in C#;
attempting to fit derivation into a different and incompatible set of semantics is
difficult.

e When translating a program into C# using PACT 1.0 the amount of source code
increases significantly. Our tool creates multiple interfaces and classes for each
type and implementation. A type is converted into two interfaces (public and pri-
vate interface) and up to three classes (invariant class, public contract and private
contract). An implementation is translated into only one class, but precondition
and postcondition methods are added for each original method, essentially tripling
the number of methods in the class. Because of the necessary duplication, deriva-

tion further leads to an inflation of source code.

Although we have tried to avoid duplication of contracts as much as possible, our
test examples show that the number of lines of code increased by a factor of 3.5
to 5. Programs using derivation recorded a particularly large increase. Although
such an increase in the amount of source code is not ideal, developers will rarely

have to work with the generated C# code.

e One of the most valuable features of modern programming languages like C# is
their comprehensive collection of library classes. Unfortunately, the use of such
library classes is somewhat limited when using PACT, since library classes do not
adhere to the format and constraints defined by PACT. In particular, subtyping,
derivation and restriction of a library class is not possible. On the other hand,
library classes can continue to be used as services, for example as fields, return

types and even inside contracts.

e In the current version of our tool, we enforce a complete separation of types and
implementations; we use a simple configuration file listing the preferred imple-

mentation for each type to decide which implementation to instantiate during ob-

Chapter 6. Implementation of PACT 161

ject construction. This means that PACT code never needs to refer directly to
implementations. Although this scheme works and achieves full separation of
types and implementations, it is far from ideal and lacks flexibility. We see it as
only the first step on the way to developing more sophisticated schemes in the

future for deciding automatically which implementations to instantiate.

e We originally decided to use CODE CONTRACTS as a basis for our implementa-
tion in order to give anyone using PACT access to existing tools, including the
testing tool Pex and the CODE CONTRACTS static verifier. However, due to the
limitations of CODE CONTRACTS preconditions, we did not implement our pre-
conditions and postconditions using CODE CONTRACTS, making them unavail-

able for analysis by a static verifier or testing tool.

We originally tried to implement preconditions and postconditions by call-
ing the CODE CONTRACTS method Contract.Assert; in this way, precondi-
tions and postconditions could have been analysed by existing tools. However,
Contract.Assert is an inflexible mechanism, which brings up an error message
when the assertion is violated, rather than throwing an exception which we could
catch. This meant that in the implementation of preconditions, we were unable
to implement a disjunction of inherited preconditions. For this reason, we im-
plemented our own preconditions and postconditions, returning booleans from

contract methods and throwing our own exceptions when a contract was violated.

Several of these limitations are caused by the mismatch in semantics between PACT
and C# which makes it difficult to translate between the two. In the future, we plan
to implement PACT as a standalone language, rather than translating to an existing
language. This will simplify the design and implementation of many aspects of PACT

and overcome a number of the limitations above.

162

Chapter 6. Implementation of PACT

adA] :()suoneiuawajdwiadAoayD+

‘|dwir)uoneausquolreluswaldwppy+
ploA:(adA 1 :adA)adA | pauawajdwippy+

ploA:(uonejuawsaldw|

ploA:(Bulis:|oap)[0aapisidppy+

<Buiis>isiisuonerepaaploly-

<Bus>isi:Apog-

uoneuawsa|dwy

<1nIsu0D>1dsyseH:()|eponpua +
ploA:(BuLis:adAy ‘Buiis:aweu)pags|qere AppY+
ploA:(<Buis>1s17:400]0)300|aPPY+
plon:()o0|g)NsadppY+

plon:()xo0|gisodppy+

ploA:()x0|g81dpPY+

uoneladpalaiouo)d

pioA:(adA] :adAr)uonoinsayadA] ppy+
plon:(adA | :adA1)uoireniagadA] ppy+
ploa:(edA L :adAy)adA L ladnsppy+
100q:(<uoneladO>19SyseH
:suolesado)AgpaianodsuolesadO+

ploA:(Buiins:adAl ‘Bulins:aweu)ialsweledppy+
uonresadQa1aiouo):(JuoneladQa1alouodsy+

|00Q: 3 AL dS!-

T
adAy I

100q:()uax0 1 IXONSeH+
uaqoL:() usoLIxaN+

wrIsgquINNauUll-
Buins:anfeAuax0l-

lapeaywess:iapeal -
Jauueds

uaxol

~ welboid

pioA:()sa|gelie A1 UODPPY+ adAL 00g:0neISS|
Buins:adA L uinal-
ploA:(Buiis:adAy ‘Buins:aweu)isisweredppy+ " Buns:aweu-
ploA:(Juoiresadopu3+ MN :
PIOA:(J00G:31BALIdS! ‘|00g:0NeISSI : : uonesado
‘Buis:adA Luinal ‘Buiis:aweu)uonelsdoueIS+ _o_o>.Eo:m_wno.aovco_uﬁmaaog<+
PIOA:(IUELIEAUIPPY+ uoneaLB|dul:QuogElRWBIdL ISy ¢ SoIEURA sopaufered
10A:(JuonejuswaldwioadAlpug+ |- --->| odAL:030hLsy+ uompucdised *| Peauoo *
proA-{uoney IdWHOSGALPUF+ PIOA:(20|g1oeuo) .
ploA:(Juoneiuswsaldwiyels+ “JUBLIeAUIJUBLIBAUIPPY+ _
pion:()adA 1 ue1s+ Buiis:adA)-
. Buis:aweu- | A SUELEAU <Bums>1s17:190(q9- Buins:aweu-
*
// Japling S 19n11SU0) 320|g1oeI1u0) uoljere|daga|gelien
~ "~ e
T T /—/—/——— T esieqd | — % ||||||||| N T T T T T TTTT T T odxg T T T T
/ d pion:()asred+ AN AR] 3
adA1uaoL Tosie A
d [N~ 10A:([]Buins:sbre)ure|
Sswinue>> ~ pion:([Jbuns:sbire)urei+ pion:(Buins:aweNoaloid ‘Buins:yred

‘<Buins ‘Bulns>Areuonaig:uoneinfbyuod
‘<1ONIISU0D>19SYSEH: [9pow)[dpoNHodX T+

Ja1iodx3jlapon

-

f PACT 1.0

lagram O

UML class d

Figure 6.6

Discussion

Software contracts provide a number of benefits when developing software, including
improved rigour and testability. Many tools supporting software contracts have been
developed over the years. However, our survey of such tools in Chapter [3|found several
inconsistencies and shortcomings surrounding even some of the most basic concepts of
software contracts.

This finding lead us to propose a new framework for software contracts, PACT,
which cleanly separates types and implementations, distinguishes between separate di-
mensions of inheritance and allows for more expressive and flexible definition of con-
tracts. We suggest these features make PACT superior to all of the other contract tech-
nologies we discussed in Chapter 3]

We have extended an existing formal calculus for OO to include contracts and our
expanded inheritance semantics; this provides us with a rigorous mechanism for reason-
ing about PACT’s extended semantics. In addition, we have developed an implementa-
tion of PACT which already supports the majority of PACT semantics.

In this chapter, we discuss the direct benefits to be gained from using PACT. We
start by examining more closely the benefits of separating types and implementations,
as well as the different dimensions of inheritance in Sections and We then
discuss the usefulness of a new type of inheritance we proposed, restriction, in Section
and elaborate on the benefits of multiple inheritance in Section In Sections
and we look more closely at the definition of contracts in PACT, focusing
particularly on the expressiveness of PACT contracts and the new concept of concrete

163

Chapter 7. Discussion 164

type methods. We then illustrate the difference between static and dynamic contract
checking and highlight the need for both in Section We conclude with a case study
illustrating some of the advantages of PACT in Section|/.8

Although the examples and case study in this section are relatively simple, they
fully illustrate the important aspects of PACT and its advantages over existing tools.
The same concepts apply equally to larger projects, where they yield correspondingly

greater benefits.

7.1 Full Separation of Types and Implementa-
tions

The benefits to be gained from separating types and implementations have been exten-
sively documented in the literature, as discussed in Section @ Such benefits include
better encapsulation and information hiding, increased abstraction and reusability and
greater flexibility in combining types and implementations.

Most modern programming languages, including Java, C++ and C#, provide lim-
ited mechanism for separating types and implementations and also include a number of
features that can subvert this separation. Consequently, a number of tools have been
developed to improve separations of types and implementations in languages such as
C++ [17; 495 [139]]. However, none of these tools has achieved a full separation of the
two concepts because implementations must be referenced directly during object con-
struction.

In our design for PACT, we have proposed that implementations should never be
referred to from anywhere in the program, including during object construction. We
suggested that when an object of a particular type needs to be constructed, the imple-
mentation to be used for that particular type should be decided automatically, rather
than by the programmer. In our tool PACT 1.0, we minimally implemented this feature
through the use of a configuration file, which specifies the preferred implementation for
each type. Whenever the constructor of a type is called our translator instead inserts a
call to the constructor of the preferred implementation. In this way, our tool enforces the
constraint that implementations are never referenced directly anywhere in the program,

including during object construction, leading to a complete separation of types and im-

Chapter 7. Discussion 165

plementations. In the future, we plan to design and implement more sophisticated and
flexible schemes for deciding which implementations to instantiate.

In PACT, implementations are never accessible to clients and therefore their inter-
nal details can never be exposed, enabling a high level of encapsulation and information
hiding. This can significantly lower coupling between different parts of the software be-
cause one component can never depend on the internal details of another. Low coupling
decreases the complexity of software, increasing maintainability and reusability.

In current programming practice, types are widely used while contracts are not. In
our work, however, we recognise contracts as simply a fuller specification of types; they
make explicit the constraints that are otherwise implied by a type. To our knowledge,
PACT is the first contract tool to fully integrate types and contracts as a single concept.
This approach is an important improvement because it fully realises the advantages
of separating types and implementations; types are complete and self-consistent, so
that there is no opportunity for implementation details to leak through the abstraction
provided by the type.

PACT supports object encapsulation. This is a significant departure from the ma-
jority of existing contract tools, which, like the languages upon which they are based,
support only class encapsulation. As we have argued in earlier work, object encapsu-
lation offers significant advantages over class encapsulation and more fully realises the
OO paradigm.

In practice, the consequence of this encapsulation boundary is that when we use sub-
typing or derivation the inheriting type or implementation gains access to all inherited
members, including private ones; in this way, software reuse is maximally supported
because all members, including private ones, may be readily overridden.

One of the contributions of our implementation of PACT is providing object encap-
sulation semantics on top of a mainstream programming language, C#, that supports
only class encapsulation. This shows that it is possible to adapt existing technologies to

a new set of semantic requirements.

7.2 Separation of Subtyping and Derivation

Using inheritance correctly can be challenging, as we demonstrated in Chapter 4] We
introduced the example of a simple Stack type, which can push, pop and peek. We then

presented the NoNullStack type which can perform the same operations; however, it

Chapter 7. Discussion 166

does not allow null to be pushed and further guarantees that the result of peek and pop
will never be null. We found that although these two types look very similar, there is
no substitutability relationship between them.

In many modern programming languages, including Java, C++ and C#, derivation
and subtyping relationships are conflated. In the Stack example, software designers
using such a programming language have a number of options, none of which are

satisfactory:-

e Use inheritance so that NoNullStack can reuse code from Stack; however,
this gives away substitutability incorrectly and could create problems when
NoNullStack is mistakenly substituted for Stack;

e Use inheritance in the reverse direction so that Stack extends NoNullStack. This

leads to the same problems as above;

e Not use inheritance; however, this means that although the code for the two types

is very similar, NoNullStack may have to duplicate a lot of code from Stack; or

e Create a new common supertype for both Stack and NoNullStack which con-
tains common features. This yields a type with an interface that provides no useful

features to clients.

As we noted in Chapter [2} research has suggested that the derivation and subtyping
dimensions should to be separated. PACT supports such a separation, distinguishing
between subtyping, which always leads to substitutability, and derivation, which allows
for reuse without substitutability. In this way, developers using PACT could reuse code
from Stack when implementing NoNullStack without making NoNullStack substi-
tutable for Stack. This is not possible in mainstream programming languages, as well
as in the contract technologies using these languages as a basis; this includes all contract
technologies we discussed in Chapter 3]

In PACT, we have introduced a new reuse relationship, type derivation, which is
the application of implementation derivation to types. It allows a type to reuse contracts
defined in another type; other languages which allow derivation separately from subtyp-
ing support only derivation of implementations, not types. In the case of NoNullStack,
most of its contracts will be very similar to Stack. For this reason, reusing them rather

than duplicating similar contracts is very useful. PACT’s introduction of concrete type

Chapter 7. Discussion 167

methods, which allow a default implementation to be provided by a type, further in-
creases the value of reusing types. To our knowledge, reusing contracts and type speci-

fications in this way is not possible in any other language or contract technology.

7.3 Restriction

PACT introduces a new inheritance relationship called restriction. This relationship
is essentially the inverse of subtyping and is particularly useful for creating multiple
interfaces to a single type. As far as we know, restriction is a new concept not presented
elsewhere in the literature and not available in any other software contract technology
or programming language.

In subtyping, we can see that the direction of substitutability is the same as the
direction of knowledge. The subtype is substitutable for the supertype; the subtype
knows about the supertype but not the other way around. This is useful in situations
where the supertype is the more general and central type, which is typically created
first, and the subtype is added afterward.

However, in some cases, it is possible that the subtype is the core concept, while
the supertype is simply a more restrictive interface to the subtype. This, for exam-
ple, arises when we have a Stack type and want to define a more restrictive version
PeekOnlyStack to give away to some clients we do not want to have the ability to
modify the Stack. The central concept here is Stack; PeekOnlyStack is added later
as a more limited interface to Stack. In this case, we want to keep the direction of
substitutability the same: a Stack should be substitutable for a PeekOnlyStack; how-
ever, we would like to invert the direction of knowledge so that Stack does not need to
know about the more restrictive version PeekOnlyStack. This new relationship, where
the direction of knowledge is inverted while the direction of substitutability remains the
same, is called restriction.

Restriction is particularly useful for defining multiple interfaces to a type for differ-
ent clients. In the example above, we defined a PeekOnlyStack which cannot push or
pop. Other programming languages provide only limited support for this through pro-
gramming language access modifiers. Many modern programming languages, including
Java, C++ and C#, provide access modifiers such as private, protected (subclass ac-

cess) and public. Instead of declaring a new type PeekOnlyStack, we could have used

Chapter 7. Discussion 168

such access modifiers to create a similar effect by, for example, making pop and push
private.

However, programming language access modifiers are much less flexible than re-
striction. Firstly, when using restriction any number of distinct interfaces to a type can
be created. For example, we could create another interface for Stack, which can pop
and peek but not push. Most programming languages provide up to four access modi-
fiers. Java, for example, provides private, package, protected and public access.
Using these access modifiers, we can create up to four distinct interfaces only, one per
access level, rather than as many as we need; in addition, the portions of the program
that have access to these interfaces are predefined by the system.

Furthermore, programming language access modifiers either completely hide or
completely expose each method in a type’s interface. Restriction can be made much
more flexible through the use of preconditions in method contracts. For example, with
our PeekOnlyStack we may decide that it is acceptable for clients to pop items, as long
as more than 10 items remain. We would add this to the precondition of pop. In this
way, clients could call pop under certain circumstances but not under others.

In Chapter 4] we also explained how restriction can be used to achieve limited sub-
stitutability for two unrelated types. We used the example of Stack and NoNullStack
to show that a type NoPushStack, which allows clients to pop and peek but not to push,
is a valid restriction of both. This means that a client expecting a NoPushStack could
be given either a Stack or NoNullStack. NoPushStack contains the parts of Stack
and NoNullStack which are compatible, achieving limited substitutability of the two
types. In our case study in Section [/.8| we see another example of how restriction can

be useful in this context.

7.4 Multiple Inheritance

Multiple inheritance is more expressive than single inheritance but also more complex to
implement in programming languages. Our implementation of PACT, however, shows
that it is relatively straightforward to develop a simple multiple inheritance mechanism
on top of the single inheritance supplied by an existing programming language. In addi-
tion to the difficulty of implementing multiple inheritance, it is often suggested that mul-
tiple inheritance confronts software developers with undue complexity for the benefits it

offers. We suggest, however, that much of the difficulty of using multiple inheritance in

Chapter 7. Discussion 169

practice arises from the conflation of the two dimensions of inheritance. By decoupling
subtyping from derivation, as well as rigorously separating types and implementations
in PACT, the advantages of multiple inheritance are more easily realised.

Because of the perceived problems surrounding multiple inheritance, many mod-
ern programming languages do not fully support it. Java and C#, for example, do not
support multiple inheritance for classes, only for interfaces. Consequently, none of the
contract technologies we presented in Chapter [3] with the exception of EIFFEL, support
multiple inheritance.

The debate about whether single or multiple inheritance is the better technology
has been intense and sustained. We argue that multiple inheritance is fundamentally
a more powerful modelling approach but that existing implementations of inheritance
have made it more complicated and more limited than it deserved to be. Our approach
cleans up the artificial complexities of inheritance and eliminates the complications that
arise from poor separation of types and implementations, enabling multiple inheritance

to be used to its full potential.

7.5 Expressiveness of Contracts

Our goal in designing contracts for PACT was to make them as expressive as possible.
Firstly, this means allowing the declaration and use of variables inside contracts in order
to store temporary results. Many contract technologies we considered in Chapter [3] do
not allow variables to be declared inside contracts. This leads to problems, particularly
when defining complex contracts, a task which can be in the same order of difficulty
as writing implementations themselves. Although it is possible to express any contract
without variables, the task is made unnecessarily complex by restricting the power of
the language available to the designer.

As a simple example, consider a variant of our Circle example used in Chapter [4]
which has a getRadius method and a get SectorArea (double angle) method which
calculates the area of a sector of the Circle given the angle in degrees of the sector. A
diagram of a circle sector can be seen in Figure The area of the circle sector can be

calculated as:-

circle_area = sector_angle

total_angle

Chapter 7. Discussion 170

Circle
Sector

Figure 7.1: Diagram of a circle sector

Program Listing 7.1 and Program Listing 7.2 contrast possible postconditions for

this method; the first is written without the use of variables.

Program Listing 7.1 A simple postcondition written without the use of local variables

post {
check result == 2*PI * getRadius() * getRadius() * angle / 360;

Program Listing 7.2 A simple postcondition written with the use of local variables

post {
int radius = getRadius();
int area = 2 * PI * radius * radius;
check result == area * angle / 360;

The second version is easier to follow since it breaks the formula into smaller and
easier to understand parts. In addition, it calls the getRadius method only once, rather
than twice. Even this simple example demonstrates the advantages of allowing vari-
ables inside contracts; with more complex conditions the advantages are correspond-

ingly greater.

Chapter 7. Discussion 171

In addition to allowing variables to be declared inside of contracts, PACT also al-
lows the use of other programming language constructs such as if-statements and loops.
These can be useful for expressing more complex conditions.

For example, consider a SortedList type which keeps a list of integers sorted in
increasing order. After a new item is added, all items in the list should again be in
increasing order. We can express this as a postcondition as shown in Program Listing
7.3.

Program Listing 7.3 A simple postcondition written with the use of a for-loop

post {
for(int 1 = 0; 1 < size()-1; 1i++) {
check getItem(i) <= getlItem(i+l);

Some contract technologies provide operators such as forall or exists for the
purpose of defining such contracts, but we find that it is more natural to use standard

programming language constructs instead.

7.6 Concrete Type Methods

Concrete type methods introduced by PACT allow default method implementations
to be included in method contract definitions in types. They are somewhat similar to
derived values in OCL. We chose to add concrete type methods to PACT, because we
found that for some simple methods the implementation of the method was very similar
to the method’s postcondition.

For example, in a simple Circle type, we may have a getRadius method and a
getDiameter method. The return value of the getDiameter method must be twice
that of the getRadius method. Clearly, the implementations of these two methods are
very similar and the return value of one can easily be derived from the return value of
the other. This is a situation where using concrete type methods is useful.

A PACT Circle type including the definitions of getRadius and getDiameter is
shown in Program Listing 7.4. getDiameter is a concrete type method here and its

return value is simply derived from the return value of getRadius.

Chapter 7. Discussion 172

Program Listing 7.4 A Circle type with a concrete type method
type Circle({
double getRadius() {
post {
check result > 0;

double getDiameter() {
post {
check result > 0;
}
result {
return 2 * getRadius();

The contract of the getDiameter method includes a result block which specifies
the default method implementation. This default implementation simply derives the
diameter of the Circle from the return value of the getRadius method. getDiameter
does not need to be implemented by implementations of Circle; the code in the result
block will be used to automatically generate a method body.

Without using concrete type methods, we would have included the condition result
== 2 * getRadius () in the postcondition of getRadius. In addition, each separate
implementation of Circle would have been forced to implement getDiameter in a
very similar way. Using a concrete type method here avoids this duplication of effort.

We believe that in many instances, concrete type methods can reduce the workload
on developers by allowing them to write only the contracts and automatically generate
method implementations. Writing contracts clearly imposes an extra burden on devel-
opers; features such as concrete type methods decrease this effort and we therefore hope
that they can help speed up the uptake of contract technologies.

Although concrete type methods may appear to move implementation details into
types, they in fact do not. They can only make use of methods provided by the type
abstraction and have no access to implementation details. This means that they are

defined at the same level of abstraction as method contracts and invariants.

Chapter 7. Discussion 173

7.7 Static versus Dynamic Contract Checking

Software contracts have traditionally been used to check program correctness at run-
time, although more recently static verifiers for contracts have emerged. There appears
to be little or no discussion in the literature of the relative merits of the two approaches.
This is a significant omission. We note that static and dynamic contract checking are
fundamentally distinct and will uncover different issues, making both of them valuable.

Consider a simple example with two types, Stack and PeekOnlyStack, and two
implementation, StackImpl and PeekOnlyStackImpl. A diagram of this example can
be seen in Figure [7.2]

void push(object obj) {
pre {
check false;
1 ’ <<type>> <<implementation>>
| PeekOnlyStack <I<--- PeekOnlyStackimpl
object pop() { 4
pre { !
check false; !
} :
} e
V
<<type>> | , <<implementation>>
Stack << Stacklmpl
void push(object obj) { object pop() { object peek() {
pre { pre { pre {
check lisFull(); check lisEmpty(); check lisEmpty();
} }
} } }

Figure 7.2: Stack and PeekOnlyStack example

As usual, Stack implements the three standard methods push, pop and peek and
defines standard contracts for them. Note that we consider only the preconditions of
these methods here, which is sufficient to illustrate our point. PeekOnlyStack restricts

Stack and sets the preconditions of push and pop to false, so that these methods

Chapter 7. Discussion 174

cannot be called. Our example further includes an implementation of each of the two
types; PeekOnlyStackImpl reuses some of the code from StackImpl through deriva-

tion. Given this example, we can make the following observations:-

e Stack is substitutable for PeekOnlyStack;
e An instance of PeekOnlyStackImpl is substitutable for PeekOnlyStack; and

e An instance of StackImpl is substitutable for both Stack and PeekOnlyStack.

Now let us consider a client which has a reference of type PeekOnlyStack and
wants to call its methods. From the contracts of the PeekOnlyStack type, the client
can see that it cannot call push and pop. If the client called one of these methods nev-
ertheless, a static verifier would detect a precondition violation. At compile-time when
the static verifier analyses the program, no objects exist; the static verifier knows only
that the client has a reference of type PeekOnlyStack but not which object is actually
placed in this variable. It therefore looks only at the contract of PeekOnlyStack, which
is found to be violated.

Static checking is complex, time-consuming and, in the general case, undecidable.
Therefore, runtime checking is usually used when working with contracts. However,
runtime checking works quite differently from static checking. Even in cases where a
static verifier would find a precondition violation, it is possible that in practice no con-
tract violation would occur at runtime. If the client’s PeekOnlyStack variable actually
contains an instance of StackImpl, no precondition violation will occur. The runtime
contract checking is initiated by the object, which will check whether the Stack con-
tract or the PeekOnlyStack contract is satisfied. Thus, as long as the client fulfills the
Stack contract, no precondition violation occurs as far as the object is concerned.

On the other hand, if the client’s variable instead contains an instance of
PeekOnlyStackImpl, a precondition violation will be reported. The reason for this
is that an instance of PeekOnlyStackImpl checks only the PeekOnlyStack contract
and thus encounters the false precondition.

These two different cases of runtime behaviour signify that the client must assume
that the contracts of PeekOnlyStack apply, although in some cases more lenient con-
tracts may also be valid.

From this we can see that at runtime the contract checking which occurs depends

solely on the type of the object, rather than the reference type held by the client. At

Chapter 7. Discussion 175

compile-time, on the other hand, only the static type of the client’s variable is consid-
ered. For this reason, static and dynamic checking of contracts may produce different

results; both are necessary to fully and correctly enforce contracts.

7.8 Case Study: Singly-Linked and Doubly-
Linked Nodes

An example, which is sometimes used to criticise OO type systems, for exam-
ple by Bruce [33], is that of singly-linked and doubly-linked nodes. Code for
a simple SinglyLinkedNode type is shown in in Program Listing 7.5; a simple
DoublyLinkedNode type is shown in Program Listing 7.6. No inheritance is used in

these examples so the common features are duplicated.

Program Listing 7.5 The SinglyLinkedNode type

type SinglyLinkedNode {
void setNext (SinglyLinkedNode node) {...}
SinglyLinkedNode getNext (){...}

}

Program Listing 7.6 The DoublyLinkedNode type

type DoublyLinkedNode {
void setNext (DoublyLinkedNode node) {...}
DoublyLinkedNode getNext (){...}
void setPrevious (DoublyLinkedNode node) {...}
DoublyLinkedNode getPrevious(){...}

}

Note that the DoublyLinkedNode should be linked up to other DoublyLinkedNodes
only, while a SinglyLinkedNode should only be connected to other
SinglyLinkedNodes.

Obviously, these two types have a lot in common and we can reasonably expect their
contracts and implementations to be very similar. For this reason, many designers would

be tempted to make DoublyLinkedNode a subtype of SinglyLinkedNode. However,

Chapter 7. Discussion 176

this is not a valid subtyping relationship because parameter types must vary contravari-
antly, while return types must vary covariantly. This is not the case here. Consider the
setNext method, for example. The parameter type for setNext in DoublyLinkedNode
must be another DoublyLinkedNode, while in the supertype the parameter must be of
type SinglyLinkedNode. This is a covariant change, rather than correct contravariant
overriding and thus violates substitutability.

As with the NoNullStack example in Section[7.2] we want to reuse the type specifi-
cation and implementation of SinglyLinkedNode when creating DoublyLinkedNode,
without making DoublyLinkedNode substitutable for SinglyLinkedNode. Conven-
tional programming language mechanisms do not allow us to solve this problem ele-
gantly; PACT’s derivation relationship allows us to reuse the SinglyLinkedNode type
specification and implementation without entailing substitutability.

Given the lack of substitutability, we cannot have a client, for exam-
ple a LinkedList, which handles nodes without knowing whether they are
SinglyLinkedNodes or DoublyLinkedNodes. However, such an abstraction could be
useful in some situations. Imagine, for example, that we have a list of either singly-
linked or doubly-linked nodes. We want to give the list to a client for printing. The
client simply wants to start at the front of the list and repeatedly go to the next node
until the end of the list is reached. This should be possible without the client knowing
whether the list contains doubly-linked or singly-linked nodes.

Using PACT, we can achieve such limited substitutability through the use of re-
striction. We introduce a third type, ReadOnlyNode, which contains a single method
getNext to get and return the next ReadOnlyNode. We make this type a restriction of
both SinglyLinkedNode and DoublyLinkedNode. This can be seen in Figure

ReadOnlyNode 1is a valid restriction of both SinglyLinkedNode and
DoublyLinkedNode since the return and parameter types for this limited part of
the two types are compatible. Although ReadOnlyNode’s getNext method has a differ-
ent return type from the same method in SinglyLinkedNode and DoublyLinkedNode,
the return type varies covariantly from ReadOnlyNode to SinglyLinkedNode and
DoublyLinkedNode, making both substitutable for ReadOnlyNode.

We can now give a client the start of the list as a ReadOnlyNode; the client can
repeatedly call the getNext method without needing to know what kind of nodes
it is dealing with. This shows that despite the fact that SinglyLinkedNode and
DoublyLinkedNode cannot be substituted for each other, limited substitutability can

Chapter 7. Discussion

177

<<type>>

ReadOnlyNode

+ getNext() : ReadOnlyNode

A

<<type>>

SinglyLinkedNode

: void
+ getNext() : SinglyLinkedNode

+ setNext(SinglyLinkedNode node)

Y

<<type>>
DoublyLinkedNode

+ setNext(DoublyLinkedNode node) : void
+ getNext() : DoublyLinkedNode
+ setPrevious(DoublyLinkedNode node)
: void
+ getPrevious() : DoublyLinkedNode

<<implementation>>

SinglyLinkedNodelmpl

+ setNext(SinglyLinkedNode node)
: void
+ getNext() : SinglyLinkedNode

f

<<implementation>>

DoublyLinkedNodelmpl

+ setNext(DoublyLinkedNode node)
: void

+ getNext() : DoublyLinkedNode

+ setPrevious(DoublyLinkedNode
node) : void

+ getPrevious() : DoublyLinkedNode

Figure 7.3: Singly-linked and doubly-linked nodes

be established using restriction. The use of restriction is useful here since it does not

require us to modify SinglyLinkedNode and DoublyLinkedNode when creating the

more restrictive ReadOnlyNode.

7.9 Summary

In this section, we discussed in detail some of the core concepts of PACT, highlighting

their benefits and usefulness. In particular, we looked at:-

e The complete separation of types and implementations, which results in increased

flexibility, abstraction, reusability and encapsulation. This separation is not en-

forced by any other contract technologies we investigated;

e The rigorous separation of the two different dimensions of inheritance, subtyping

and derivation. We have argued that combining these dimensions, as is done in

many mainstream programming languages as well as all contract technologies we

investigated, is limiting;

e The new restriction relationship which inverts the direction of knowledge in the

subtyping relationship. We demonstrated that it can be used to create multiple

interfaces to a type and to establish limited substitutability between otherwise

unrelated types;

Chapter 7. Discussion 178

e The expressiveness of PACT contracts achieved by allowing both variables and
programming language constructs including if-statements and loops to be used in

contracts; and

e The new concept of concrete type methods which avoid duplication of code and

effort for simple method implementations.

We also illustrated the difference between static and dynamic contract checking,
showing that both are valuable for ensuring full adherence to contracts. In our literature
review, we did not come across a similar discussion of the differences between the
two approaches; instead, at any one time, only one or other of the approaches was
considered.

We suggest that PACT is superior to all the existing contract technologies we inves-

tigated in Chapter [3| because:-

e [t cleanly separates types and implementations. No other contract technology we

investigated does this;

o [t separates different dimensions of inheritance, allowing reuse and substitutabil-

ity to be handled separately. None of the other contract technologies do this;

e It allows multiple inheritance for all inheritance relationships. Of the contract

technologies we investigated, only EIFFEL supports multiple inheritance;
e [t introduces the new concept of type derivation for the reuse of contracts;

e [t introduces the new concept of restriction which reverses the direction of substi-

tutability found in conventional subtyping;

e [t allows for flexible and expressive definition of contracts, similar to or better

than contract definitions in other technologies we studied;

e [t supports the definition of concrete type methods, whose postconditions can be
used to automatically generate method implementations. Although this is simi-
lar to derived values in OCL, automatic generation of method implementations
from contracts is not supported by any other contract technology of which we are

aware;

Chapter 7. Discussion 179

e [t supports full covariance and contravariance of return types and parameter types
respectively. None of the existing contract technologies we investigated enables

correct use of covariance and contravariance in this context; and

e [t is supported by formal typing rules based on existing object calculi which are

valuable for reasoning about the soundness of type systems.

In current programming practice the correct use of inheritance, hiding of implemen-
tation details and explicit definition of method behaviour are all significant challenges
for developers. PACT equips developers with mechanisms to overcome the issues un-
derlying these difficulties. Any one of these mechanisms alone is insufficient to remedy
the problems surrounding software development, but all of them combined provide de-

velopers with a powerful tool for overcoming the challenges they face.

Conclusions and Future Work

Software contracts explicitly define the interface between software components to en-
sure that they cooperate correctly. In this way, they can help improve the correctness of
programs and serve as documentation. In addition, contracts help with the difficult task
of unit testing. When we write unit tests, we check specific cases; contracts express the
general case of correctness and can therefore be used by tools to automatically generate
unit tests. Software contracts are also useful for clarifying the use of inheritance, as
we demonstrated in Chapter 4| through the use of the Stack and NoNullStack exam-
ple. We argue that all these benefits make software contracts an invaluable tool in the
development of complex, large-scale software.

In this work, we first evaluated current software contract technologies and found
several inconsistencies and areas of disagreement, as well as some shortcomings of
existing tools. We argue that these inconsistencies suggest a degree of immaturity in
contract theory and can create confusion for developers and lessen their confidence in
contract technologies and the use of contracts in general.

Using the information from our survey of existing contract technologies, we de-
signed our own contract framework, PACT, which we argue provides a number of ben-
efits over existing tools. Core features of PACT include the rigorous separation of types
from implementations, highly expressive and flexible contract definition and separation
of orthogonal dimensions of inheritance.

PACT contains several novel concepts, including the derivation and restriction rela-

tionships, as well as the concept of concrete type methods which we suggest make the

180

Chapter 8. Conclusions and Future Work 181

development of contracts for simple methods less time-consuming. To our knowledge,
PACT is the only tool which completely separates types from implementations, never
allowing implementations to be referred to directly, even during object construction.
This separation ensures that code only ever depends on abstract types and encourages
encapsulation, leading to lower coupling and higher maintainability.

We implemented a version of PACT in our tool, PACT 1.0, which supports the
majority of PACT concepts and semantics. PACT 1.0 simply translates PACT code into
the existing programming language C#, using some support from the software contract
tool CODE CONTRACTS.

Finally, we fully explained and demonstrated the advantages of PACT over existing
contract tools, showing the benefits of its separation of types and implementations, its
support for different dimensions of inheritance and the expressiveness of its contracts.

The specific contributions of this work include:-

e A thorough description of the background literature around software contracts

and inheritance;

e A detailed survey of existing contract technologies, highlighting inconsistencies
and areas of disagreement. We hope that this survey can serve as a basis for
more consistent contract tool development in the future. A paper entitled A Criti-
cal Comparison of Existing Software Contract Tools detailing the survey’s results
has been accepted to ENASE 2011 (6th International Conference on Novel Ap-

proaches to Software Engineering);

e The novel concept of concrete type methods which can reduce the effort involved

in contract definitions, particularly for simple methods;

e The new restriction inheritance relationship, which inverts the direction of knowl-
edge of the subtyping relationship. This makes it particularly useful for defining

multiple interfaces to a type;

e The new type derivation relationship; although this relationship has previously
been suggested in some literature, it appears never to have been implemented in

contract tools;

e The full separation of types and implementations which, to our knowledge, has

not previously been achieved;

Chapter 8. Conclusions and Future Work 182

e Formal typing rules, particularly subtyping rules, for the PACT framework. To
our knowledge, this is the first time that such formal typing rules have been de-
veloped for software contracts and we hope that our work in this area will provide
a formal underpinning for other software contract technologies and software con-

tracts in general;

e PACT 1.0, an implementation of most of the concepts and features of PACT.
This implementation provides evidence of the viability of the PACT design and
shows that it is possible to support significantly altered semantic structures such
as multiple inheritance, object encapsulation and more elaborate inheritance on
top of existing technology with conventional semantics. It also served to identify
the areas where this mapping was too difficult and custom technology would be

required;

e A thorough discussion of the advantages provided by PACT, with a particular
focus on the benefits of separating types and implementations, as well as distinct

dimensions of inheritance; and

e A discussion of the differences between static and dynamic typing, showing the
benefits and importance of both. We are not aware of a similar discussion else-

where in the literature.

We suggest that in the future more research is warranted regarding the new concepts
and relationships introduced by this work, including restriction, type derivation and
concrete type methods. Although we have made arguments about their usefulness, this
should be confirmed through experiments. Restriction, for example, is useful when the
supertype is created after the subtype. To validate its usefulness, we could investigate
how often this situation occurs in reality.

In addition, the benefits of a full separation between types and implementations
should be further investigated. This could, for example, be done with the use of coupling
metrics to show that such a separation decreases the amount of coupling in a system,
thus increasing maintainability.

In this work, we have created a simple implementation of PACT which translates
PACT code into C#, as far as possible. In the future, we wish to create a standalone tool
which fully compiles PACT code rather than translating it into an existing language.

The problem we had with the translation process is that it is impossible to map some of

Chapter 8. Conclusions and Future Work 183

the more expressive and flexible semantics of PACT onto the semantics of existing pro-
gramming languages like C#. In many instances, there is no equivalent in C#, making it
difficult to implement; this situation occurs, for example, for covariance and contravari-
ance as well as type and implementation derivation. Creating a standalone language
would overcome these difficulties.

When separating types from implementations constructors pose a serious problem
since, during object construction, the specific implementation must be referenced di-
rectly. In the current version of our tool we overcome this issue through the use of a
configuration file which specifies the preferred implementation for each type. Although
this solution enables us to completely hide implementations, it is still far from ideal.
We have suggested more sophisticated schemes for selecting an appropriate implemen-
tation to instantiate and plan to implement these in the future. Such schemes include
recording the algorithmic complexities of operations to select the most efficient for a
particular scenario or monitoring performance at runtime and switching implementa-
tions to achieve greater efficiency.

In our survey of existing technologies, we found a particularly variable approach to
invariant checking and suggested that more research in this area is needed. We propose
that invariants should be checked at the end of each method call originating from outside
the object; that is, each method call coming from a client. In our implementation, we
simply used the invariant checking provided by CODE CONTRACTS and chose to focus
our efforts on the implementation of preconditions and postconditions. In the future, we

intend to implement correct invariant checking in our tool.

8.1 Final Words

The idea of software contracts is an old one that seems never to have attained its full
promise. Our work shows that existing contract technologies are significantly flawed
and it proposes a model of software contracts that, we argue, addresses these flaws and
provides a self-consistent and comprehensive basis for programming with contracts. In
order to substantiate these ideas, we developed formal underpinnings for the approach
and provided a working implementation. We hope that this work will serve to advance
the field of research into software contracts and encourage their adoption in mainstream

software development.

References

[1]

(2]

[3]

[4]

[5]

[6]

[7]

Martin Abadi and Luca Cardelli. A Theory of Objects. Springer-Verlag New
York, Inc., Secaucus, NJ, USA, 1st edition, 1996.

Manish Agrawal and Kaushal Chari. Software effort, quality, and cycle time: A
study of CMM level 5 projects. IEEE Transactions on Software Engineering,
33(3):145-156, 2007.

Walid Al-Ahmad. On the interaction of programming by contract and Liskov
Substitution Principle. In AICCSA ’01: Proceedings of the ACS/IEEE Interna-
tional Conference on Computer Systems and Applications, page 421, Washing-
ton, DC, USA, 2001. IEEE Computer Society.

Christopher Alexander, Sara Ishikawa, Murray Silverstein, Max Jacobsen, In-
grid Fiksdahl-King, and Shlomo Angel. A Pattern Language: Towns, Buildings,
Construction. Oxford University Press, New York, 1977.

Allen Ambler, Donald Good, James Browne, Wilhelm Burger, Richard Cohen,
Charles Hoch, and Robert Wells. Gypsy: A language for specification and im-
plementation of verifiable programs. In Proceedings of an ACM Conference on
Language Design for Reliable Software, pages 1-10, New York, NY, USA, 1977.
ACM.

Pierre America. Inheritance and subtyping in a parallel object-oriented language.
In ECOOP ’87: Proceedings of the European Conference on Object-Oriented
Programming, pages 234-242, London, UK, 1987. Springer-Verlag.

Pierre America and Frank van der Linden. A parallel object-oriented language
with inheritance and subtyping. In OOPSLA/ECOOP’90: Proceedings of the Eu-

184

References 185

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

ropean Conference on Object-Oriented Programming Systems, Languages, and
Applications, pages 161-168, New York, NY, USA, 1990. ACM.

Ken Arnold, James Gosling, and David Holmes. The Java Programming Lan-
guage. Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA, 2000.

Imran Sarwar Bajwa, Behzad Bordbar, and Mark Lee. OCL constraints gen-
eration from natural language specification. In Enterprise Distributed Object
Computing Conference (EDOC), 2010, pages 204-213, 2010.

Mike Barnett, Bor-Yuh Evan Chang, Robert DeLine, Bart Jacobs, and K. Rus-
tan M. Leino. Boogie: A modular reusable verifier for object-oriented pro-
grams. In Fourth International Symposium on Formal Methods for Components
and Objects (FMCO’2005), volume 4111 of Lecture Notes in Computer Science.
Springer Verlag, 2006.

Mike Barnett, Robert Deline, Manuel Fihndrich, Bart Jacobs, K. Rustan Leino,
Wolfram Schulte, and Herman Venter. The Spec# programming system: Chal-
lenges and directions. pages 144—152, 2008.

Mike Barnett, Robert Deline, Manuel Fihndrich, K. Rustan Leino, and Wolfram

Schulte. Verification of object-oriented programs with invariants. Journal of
Object Technology, 3(6):27-56, 2004.

Mike Barnett, Manuel Fiahndrich, Peli de Halleux, Francesco Logozzo, and Niko-
lai Tillmann. Exploiting the synergy between automated-test-generation and
programming-by-contract. In Proceedings of ICSE 2009, 31th International Con-
ference on Software Engineering, Companion, pages 401-402, May 2009.

Mike Barnett, K. Rustan M. Leino, and Wolfram Schulte. The Spec# program-
ming system: An overview. In Construction and Analysis of Safe, Secure, and In-
teroperable Smart Devices, International Workshop, CASSIS 2004, volume 3362

of Lecture notes in computer science. Springer Verlag, 2004.

Mike Barnett, David Naumann, Wolfram Schulte, and Qi Sun. 99.44% pure:
Useful abstractions in specifications. In ECOOP Workshop on Formal Techniques
for Java-like Programs (FTfJP) 2004, 2004.

References 186

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

Detlef Bartetzko, Clemens Fischer, Michael Moller, and Heike Wehrheim. Jass
— Java with assertions. Electronic Notes in Theoretical Computer Science, 55(2),
2001.

Gerald Baumgartner and Vincent Russo. Implementing signatures for C++. ACM
Transactions on Programming Languages and Systems, 19(1):153-187, 1997.

Kent Beck. Test Driven Development: By Example. Addison-Wesley Longman
Publishing Co., Inc., Boston, MA, USA, 2002.

Antoine Beugnard, Jean-Marc Jézéquel, Noé€l Plouzeau, and Damien Watkins.

Making components contract aware. Computer, 32(7):38-45, 1999.

Andrew Black, Norman Hutchinson, Eric Jul, and Henry Levy. Object structure
in the Emerald system. In OOPLSA ’86: Conference Proceedings on Object-
Oriented Programming Systems, Languages and Applications, pages 78—86, New
York, NY, USA, 1986. ACM.

Andrew Black and Jens Palsberg. Foundations of object-oriented languages. SIG-
PLAN Notices, 29(3):3-11, 1994.

Andrew P. Black, Norman C. Hutchinson, Eric Jul, and Henry M. Levy. The
development of the Emerald programming language. In HOPL I1I: Proceedings
of the third ACM SIGPLAN Conference on History of Programming Languages,
pages 11-1-11-51, New York, NY, USA, 2007. ACM.

Martin Blom, Eivind Nordby, and Anna Brunstrom. An experimental evaluation
of programming by contract. In ECBS ’02: Proceedings of the 9th IEEE Interna-
tional Conference on Engineering of Computer-Based Systems, pages 118—127,
Washington, DC, USA, 2002. IEEE Computer Society.

Barry Boehm, John Brown, and M. Lipow. Quantitative evaluation of software
quality. In ICSE ’76: Proceedings of the 2nd International Conference on Soft-
ware Engineering, pages 592-605, Los Alamitos, CA, USA, 1976. IEEE Com-
puter Society Press.

Mark Bolstad. Design by Contract: A simple technique for improving the quality
of software. In Proceedings of the Users’ Group Conference 2004, pages 303—
307, 2004.

References 187

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

Grady Booch. Object-Oriented Analysis and Design with Applications (3rd Edi-
tion). Addison Wesley Longman Publishing Co., Inc., Redwood City, CA, USA,
2004.

Alan Borning and Daniel Ingalls. Multiple inheritance in Smalltalk-80. Pro-
ceedings of the National Conference on Artificial Intelligence, pages 234-237,
August 1982.

John Boyland and Giuseppe Castagna. Type-safe compilation of covariant spe-

cialization: A practical case. Technical report, Berkeley, CA, USA, 1995.

Ronald Brachman. I lied about the trees — or, defaults and definitions in knowl-
edge representation. AI Magazine, 6(3):80-93, 1985.

Lionel Briand, Jiirgen Wiist, John Daly, and Victor Porter. Exploring the relation-
ship between design measures and software quality in object-oriented systems.
Journal of Systems and Software, 51(3):245-273, 2000.

Fernando Brito e Abreu and Walclio Melo. Evaluating the impact of object-
oriented design on software quality. In In Proceedings of the 3rd International

Software Metrics Symposium, pages 90-99, 1996.

William Brown, Raphael Malveau, Hays McCormick, and Thomas Mowbray.
AntiPatterns: Refactoring Software, Architectures, and Projects in Crisis. John
Wiley and Sons, 1998.

Kim Bruce. Foundations of Object-Oriented Languages: Types and Semantics.
MIT Press, Cambridge, MA, USA, 2002.

Kim Bruce, Luca Cardelli, Giuseppe Castagna, Gary Leavens, and Benjamin
Pierce. On binary methods. Theory and Practice of Object Systems, 1(3):221—
242, 1995.

Lilian Burdy, Yoonsik Cheon, David Cok, Michael Ernst, Joseph Kiniry, Gary T.
Leavens, K. Rustan M. Leino, and Erik Poll. An overview of JML tools and

applications. International Journal on Software Tools for Technology Transfer,
7(3):212-232, 2005.

References 188

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

Lilian Burdy, Antoine Requet, and Jean-Louis Lanet. Java applet correctness:
A developer-oriented approach. In In Proceedings of Formal Methods Europe,

Lecture Notes in Computer Science.

Frank Buschmann, Regine Meunier, Hans Rohnert, Peter Sommerlad, and
Michael Stal. Pattern-Oriented Software Architecture: A System of Patterns.
John Wiley and Sons, Inc., New York, NY, USA, 1996.

Peter Canning, William Cook, Walter Hill, and Walter Olthoff. Interfaces for
strongly-typed object-oriented programming. In OOPSLA ’89: Conference Pro-
ceedings on Object-Oriented Programming Systems, Languages and Applica-
tions, pages 457-467, New York, NY, USA, 1989. ACM.

Luca Cardelli. A semantics of multiple inheritance. Information and Computa-
tion, 76(2-3):138-164, 1988.

Luca Cardelli. Bad engineering properties of object-oriented languages. ACM

Computing Surveys, 28, December 1996.

Bernard Carré and Jean-Marc Geib. The point of view notion for multiple in-
heritance. In OOPSLA/ECOOP ’90: Proceedings of the European Conference
on Object-Oriented Programming Systems, Languages, and Applications, pages
312-321, New York, NY, USA, 1990. ACM.

Manuela Carrillo-Castellon, Jesis Garcia-Molina, Ernesto Pimentel, and Israel
Repiso. Design by Contract in Smalltalk. Journal of Object-Oriented Program-
ming, 9(7):23-28, November/December 1996.

Giuseppe Castagna. Covariance and contravariance: Conflict without a cause.
ACM Transactions on Programming Languages and Systems, 17(3):431-447,
1995.

Néstor Catafio and Marieke Huisman. CHASE: A static checker for JML’s
assignable clause. In VMCAI 2003: Proceedings of the 4th International Confer-

ence on Verification, Model Checking, and Abstract Interpretation, pages 26—40,
London, UK, 2003. Springer-Verlag.

Craig Chambers and Gary T. Leavens. BeCecil, a core object-oriented language

with block structure and multimethods: Semantics and typing. In In FOOL 4, The

References 189

[46]

[47]

[48]

[49]

[50]

[51]

[52]

[53]

Fourth International Workshop on Foundations of Object-Oriented Languages,

Paris, France, January 1997.

Yoonsik Cheon and Carmen Avila. Automating Java program testing using OCL
and Aspect]. In Proceedings of the 2010 Seventh International Conference on
Information Technology: New Generations, ITNG ’10, pages 1020-1025, Wash-
ington, DC, USA, 2010. IEEE Computer Society.

Yoonsik Cheon and Gary T. Leavens. The Larch/Smalltalk interface specifica-
tion language. ACM Transactions on Software Engineering and Methodology,
3(3):221-253, 1994.

Yoonsik Cheon and Gary T. Leavens. A simple and practical approach to unit
testing: The JML and JUnit way. In ECOOP °02: Proceedings of the 16th Eu-
ropean Conference on Object-Oriented Programming, pages 231-255, London,
UK, 2002. Springer-Verlag.

Eun-Sun Cho, Sang-Yong Han, and Hyoung-Joo Kim. A semantics of the separa-
tion of interface and implementation in C++. In COMPSAC ’96: Proceedings of
the 20th Conference on Computer Software and Applications, pages 83—, Wash-
ington, DC, USA, 1996. IEEE Computer Society.

Wesley Chun. Core Python Programming (2nd Edition). Prentice Hall PTR,
Upper Saddle River, NJ, USA, 2006.

Ilinca Ciupa and Andreas Leitner. Automatic testing based on Design by Con-
tract. In In Proceedings of Net.ObjectDays 2005 (6th Annual International Con-
ference on Object-Oriented and Internet-based Technologies, Concepts, and Ap-
plications for a Networked World, pages 545-557, 2005.

David Clarke, James Noble, and John Potter. Simple ownership types for object
containment. In ECOOP ’01: Proceedings of the 15th European Conference
on Object-Oriented Programming, pages 5376, London, UK, 2001. Springer-
Verlag.

Peter Coad. Object-oriented patterns. Communications of the ACM, 35(9):152—
159, 1992.

References 190

[54]

[55]

[56]

[57]

[58]

[59]

[60]

[61]

[62]

[63]

[64]

Alistair Cockburn. The interaction of social issues and software architecture.
Communications of the ACM, 39(10):40-46, 1996.

Anthony Cohen. Data abstraction, data encapsulation and object-oriented pro-
gramming. SIGPLAN Notices, 19(1):31-35, 1984.

David Cok, Joseph Kiniry, and Erik Poll. Introduction to JML. http://secure.

ucd.ie/documents/tutorials/slides/1_intro_jml.pdfl

William Cook. OOPSLA ’87 Panel P2: Varieties of inheritance. In OOPSLA
'87 Addendum to the Proceedings, volume 23 of ACM SIGPLAN Notices, pages
35-40. ACM Press, October 1987.

William Cook. A proposal for making Eiffel type-sate. The Computer Journal,
32(4):305-311, 19809.

William Cook. Interfaces and specifications for the Smalltalk-80 collection
classes. In OOPSLA ’92, pages 1-15, New York, NY, USA, 1992. ACM.

William Cook, Walter Hill, and Peter Canning. Inheritance is not subtyping.
In POPL ’90: Proceedings of the 17th ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages, pages 125-135, New York, NY, USA,
1990. ACM.

William Cook and Jens Palsberg. A denotational semantics of inheritance and its
correctness. SIGPLAN Notices, 24(10):433-443, 1989.

Christoph Csallner, Yannis Smaragdakis, and Tao Xie. DSD-Crasher: A hybrid
analysis tool for bug finding. ACM Transactions on Software Engineering and
Methodology, 17(2):1-37, 2008.

Ole-Johan Dahl, Bjgrn Myhrhaug, and Kristen Nygaard. Some features of the
SIMULA 67 language. In Proceedings of the Second Conference on Applications
of Simulations, pages 29-31. Winter Simulation Conference, 1968.

Robert DeLine and K. Rustan M. Leino. BoogiePL: A typed procedural language
for checking object-oriented programs. Technical Report MSR-TR-2005-70, Mi-
crosoft Research, March 2005.

http://secure.ucd.ie/documents/tutorials/slides/1_intro_jml.pdf
http://secure.ucd.ie/documents/tutorials/slides/1_intro_jml.pdf

References 191

[65]

[66]

[67]

[68]

[69]

[70]

[71]

[72]

[73]

Birgit Demuth. The Dresden OCL Toolkit and its role in information systems
development. In /3th International Conference on Information Systems Develop-
ment: Methods and Tools, Theory and Practice Conference, Advances in Theory,
Practice and Education (ISD’2004), September 2004.

Birgit Demuth, Sten Locher, and Steffen Zschaler. Structure of the Dresden OCL
Toolkit. In The 2nd International Fujaba Days “MDA with UML and Rule-based
Object Manipulation”, September 2004.

Krishna Kishore Dhara and Gary T. Leavens. Forcing behavioral subtyping
through specification inheritance. In ICSE ’96: Proceedings of the 18th Inter-
national Conference on Software Engineering, pages 258-267, Washington, DC,
USA, 1996. IEEE Computer Society.

Edsger Dijkstra. A Discipline of Programming. Prentice Hall, Englewood Cliffs,
NJ., 1976.

Mahesh Dodani and Chung-Shin Tsai. ACTS: A type system for object-oriented
programming based on abstract and concrete classes. In ECOOP ’92: Proceed-

ings of the European Conference on Object-Oriented Programming, pages 309—
328, London, UK, 1992. Springer-Verlag.

Andrew Duncan and Urs Hoelzle. Adding contracts to Java with Handshake.
Technical Report TRCS98-32, University of California at Santa Barbara, Santa
Barbara, CA, USA, December 1998.

Michael Ernst, Jake Cockrell, William Griswold, and David Notkin. Dynamically
discovering likely program invariants to support program evolution. In ICSE

'99: Proceedings of the 21st International Conference on Software Engineering,
pages 213-224, New York, NY, USA, 1999. ACM.

Manuel Fihndrich, Michael Barnett, and Francesco Logozzo. Embedded contract
languages. In SAC ’10: Proceedings of the 2010 ACM Symposium on Applied
Computing, pages 2103-2110, New York, NY, USA, 2010. ACM.

Yishai Feldman. Extreme Design by Contract. In XP’03: Proceedings of the 4th
International Conference on Extreme Programming and Agile Processes in Soft-

ware Engineering, pages 261-270, Berlin, Heidelberg, 2003. Springer-Verlag.

References 192

[74]

[75]

[76]

[77]

[78]

[79]

[80]

[81]

[82]

[83]

[84]

N.E. Fenton and Shari Lawrence Pfleeger. Software Metrics: A Rigorous & Prac-

tical Approach. International Thompson Computer Press, 2nd edition, 1997.

Robert Bruce Findler and Matthias Felleisen. Behavioral interface contracts for
Java. Technical Report TR00-366, Rice University, September 2000.

Cormac Flanagan, Rajeev Joshi, and K. Rustan M. Leino. Annotation inference
for modular checkers. Information Processing Letters, 77(2-4):97-108, 2001.

Cormac Flanagan and K. Rustan M. Leino. Houdini, an annotation assistant for
ESC/Java. In FME °01: Proceedings of the International Symposium of Formal
Methods Europe on Formal Methods for Increasing Software Productivity, pages
500-517, London, UK, 2001. Springer-Verlag.

Cormac Flanagan, K. Rustan M. Leino, Mark Lillibridge, Greg Nelson, James
Saxe, and Raymie Stata. Extended static checking for Java. In PLDI ’02: Pro-
ceedings of the ACM SIGPLAN 2002 Conference on Programming Language
Design and Implementation, pages 234-245, New York, NY, USA, 2002. ACM.

Robert Floyd. Assigning meanings to programs. Proceedings of Symposium on
Applied Mathematics, 19:19-32, 1967.

Martin Fowler. Analysis Patterns: Reusable Object Models. Addison-Wesley
Longman Publishing Co., Inc., Boston, MA, USA, 1997.

Martin Fowler. Refactoring: Improving the Design of Existing Code. Addison-
Wesley Longman Publishing Co., Inc., Boston, MA, USA, 1999.

Martin Fowler. UML Distilled: A Brief Guide to the Standard Object Modeling
Language. Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA,
2003.

Michael Franz. The programming language Lagoona — a fresh look at object-
orientation. In Software — Concepts and Tools, volume 18, pages 14-26, 1997.

Erich Gamma, Richald Helm, Ralph Johnson, and John Vlissides. Design Pat-
terns: Elements of Reusable Object-Oriented Software. Addison-Wesley.

References 193

[85]

[86]

[87]

[88]

[89]

[90]

[91]

[92]

[93]

[94]

Giorgio Ghelli. A static type system for message passing. In OOPSLA ’91:
Conference Proceedings on Object-Oriented Programming Systems, Languages
and Applications, pages 129-145, New York, NY, USA, 1991. ACM.

Patrice Godefroid, Nils Klarlund, and Koushik Sen. DART: Directed automated
random testing. In PLDI ’05: Proceedings of the 2005 ACM SIGPLAN Con-

ference on Programming Language Design and Implementation, pages 213-223,
New York, NY, USA, 2005. ACM.

Adele Goldberg and David Robson. Smalltalk-80: The Language. Addison-
Wesley Longman Publishing Co., Inc., Boston, MA, USA, 1989.

Donald Good, Richard Cohen, and Lawrence Hunter. A report on the develop-
ment of Gypsy. In ACM ’78: Proceedings of the 1978 Annual Conference, pages
116-122, New York, NY, USA, 1978. ACM.

David Guaspari, Carla Marceau, and Wolfgang Polak. Formal verification of Ada
programs. IEEE Transactions on Software Engineering, 16(9):1058-1075, 1990.

Pedro Guerreiro. Another mediocre assertion mechanism for C++. In TOOLS
"00: Proceedings of the Technology of Object-Oriented Languages and Systems
(TOOLS 33), pages 226-237, Washington, DC, USA, 2000. IEEE Computer So-

ciety.

Pedro Guerreiro. Simple support for Design by Contract in C++. In TOOLS ’01:
Proceedings of the 39th International Conference and Exhibition on Technology
of Object-Oriented Languages and Systems (TOOLS39), pages 24-34, Washing-
ton, DC, USA, 2001. IEEE Computer Society.

Yuri Gurevich, Benjamin Rossman, and Wolfram Schulte. Semantic essence of
AsmL. Theoretical Computer Science, 343(3):370-412, 2005.

John Guttag and James Horning. Larch: Languages and Tools for Formal Speci-
fication. Springer-Verlag New York, Inc., New York, NY, USA, 1993.

Ali Hamie. Translating the Object Constraint Language into the Java Modelling
Language. In Proceedings of the 2004 ACM Symposium on Applied Computing,
SAC 04, pages 1531-1535, New York, NY, USA, 2004. ACM.

References 194

[95]

[96]

[97]

[98]

[99]

[100]

[101]

[102]

[103]

[104]

[105]

Ali Hamie. On the relationship between the Object Constraint Language (OCL)
and the Java Modeling Language (JML). In Proceedings of the Seventh Inter-
national Conference on Parallel and Distributed Computing, Applications and
Technologies, PDCAT ’06, pages 411-414, Washington, DC, USA, 2006. IEEE

Computer Society.

Warren Harris. Contravariance for the rest of us. Journal of Object-Oriented
Programming, 4(7):10-18, November/December 1991.

Anders Hejlsberg, Mads Torgersen, Scott Wiltamuth, and Peter Golde. The C#
Programming Language. Addison-Wesley Professional, 2008.

C. A.R. Hoare. An axiomatic basis for computer programming. Communications
of the ACM, 12(10):576-580, 1969.

C. A. R. Hoare. Proof of correctness of data representations. Acta Informatica,
1(4):271-281, December 1972.

C. A. R. Hoare. The emperor’s old clothes. Communications of the ACM,
24(2):75-83, 1981.

David Hovemeyer and William Pugh. Finding bugs is easy. SIGPLAN Notices,
39(12):92-106, 2004.

Marieke Huisman. Reasoning about Java Programs in Higher Order Logic using
PVS and Isabelle. PhD thesis, University of Nijmegen, 2001.

Kees Huizing and Ruurd Kuiper. Verification of object oriented programs using
class invariants. In FASE "00: Proceedings of the Third International Conference
on Fundamental Approaches to Software Engineering, pages 208-221, London,
UK, 2000. Springer-Verlag.

Interational Organization for Standardization. ISO/IEC 9126 — information tech-
nology — software product evaluation — quality characteristics and guidelines for
their use. 1SO JTCUSC?7, 1991.

Interational Organization for Standardization. ISO/IEC 25030:2007, software
engineering — software product quality requirements and evaluation (SQuaRE) —

quality requirements,. 2007.

References 195

[106] Warwick Irwin. Understanding and Improving Object-Oriented Software
Through Static Software Analysis. PhD thesis, University of Canterbury, 2007.

[107] Bart Jacobs. The Spec# programming system: An overview, 2005.

[108] Bart Jacobs, Frank Piessens, K. Rustan M. Leino, and Wolfram Schulte. Safe
concurrency for aggregate objects with invariants. In SEFM 05: Proceedings of
the Third IEEE International Conference on Software Engineering and Formal
Methods, pages 137-147, Washington, DC, USA, 2005. IEEE Computer Society.

[109] Bart Jacobs, Joachim van den Berg, Marieke Huisman, Martijn van Berkum,
Ulrich Hensel, and Hendrik Tews. Reasoning about Java classes: Preliminary
report. SIGPLAN Notices, 33(10):329-340, 1998.

[110] Jean-Marc Jézéquel and Bertrand Meyer. Design by Contract: The lessons of
Ariane. Computer, 30(1):129-130, 1997.

[111] Ralph Johnson and Brian Foote. Designing reusable classes. Journal of Object-
Oriented Programming, 1(2):22-35, 1988.

[112] Murat Karaorman and Parker Abercrombie. jContractor: Introducing Design-by-
Contract to Java using reflective bytecode instrumentation. Formal Methods in
System Design, 27(3):275-312, 2005.

[113] Murat Karaorman, Urs Holzle, and John Bruno. jContractor: A reflective Java
library to support Design by Contract. In Reflection '99: Proceedings of the Sec-
ond International Conference on Meta-Level Architectures and Reflection, pages
175-196, London, UK, 1999. Springer-Verlag.

[114] Alan Kay. The early history of Smalltalk. In HOPL-II: The second ACM SIG-
PLAN Conference on History of Programming Languages, pages 69-95, New
York, NY, USA, 1993. ACM.

[115] Brian Kernighan and Dennis Ritchie. The C Programming Language. Prentice
Hall Press, Upper Saddle River, NJ, USA, 1988.

[116] J. Lindskov Knudsen. Name collision in multiple classification hierarchies. In
ECOOP ’88: European Conference on Object-Oriented Programming, pages
93-109, London, UK, 1988. Springer-Verlag.

References 196

[117]

[118]

[119]

[120]

[121]

[122]

[123]

[124]

[125]

[126]

[127]

R. Kramer. iContract — the Java(tm) Design by Contract(tm) tool. In TOOLS
'98: Proceedings of the Technology of Object-Oriented Languages and Systems,
pages 295-307, Washington, DC, USA, 1998. IEEE Computer Society.

Stoyan Kurtev. Subtyping and inheritance in object-oriented programming. Mas-
ter’s thesis, Institut fiir Computersprachen der Technischen Universitit Wien,
2000.

John Lakos. Large-Scale C++ Software Design. Addison-Wesley, 1996.

Wilf R. Lal.onde, Dave Thomas, and John Pugh. An exemplar based Smalltalk.
In OOPLSA ’86: Conference Proceedings on Object-Oriented Programming Sys-
tems, Languages and Applications, pages 322-330, New York, NY, USA, 1986.
ACM.

Butler Lampson, Jim Horning, Ralph London, James Mitchell, and Gerald
Popek. Report on the programming language Euclid. SIGPLAN Notices, 12(2):1-
79, 1977.

Gary T. Leavens and Albert Baker. Enhancing the pre- and postcondition tech-
nique for more expressive specifications. In FM ’99: Proceedings of the Wold
Congress on Formal Methods in the Development of Computing Systems-Volume
11, pages 1087-1106, London, UK, 1999. Springer-Verlag.

Gary T. Leavens, Albert Baker, and Clyde Ruby. Preliminary design of JML: A
behavioral interface specification language for Java. SIGSOFT Software Engi-
neering Notes, 31(3):1-38, 2006.

Gary T. Leavens and Yoonsik Cheon. Preliminary design of Larch/C++. In Pro-
ceedings of the First International Workshop on Larch, pages 159-184, London,
UK, 1993. Springer-Verlag.

Gary T. Leavens and Yoonsik Cheon. Design by Contract with JML, 2006.

Gary T. Leavens, Yoonsik Cheon, Curtis Clifton, Clyde Ruby, and David Cok.
How the design of JML accommodates both runtime assertion checking and for-

mal verification. Science of Computer Programming, 55(1-3):185-208, 2005.

Gary T. Leavens, Joseph Kiniry, and Erik Poll. A JML tutorial: Modular specifi-

cation and verification of functional behavior in Java.

References 197

[128] K. Rustan M. Leino and Monahan Rosemary. Program verification using
the Spec# programming system. http://research.microsoft.com/en-us/

projects/specsharp/etaps—specsharp-tutorial.ppt, March 2008.

[129] K. Rustan M. Leino and Wolfram Schulte. Exception safety for C#. In SEFM "04:
Proceedings of the Software Engineering and Formal Methods, Second Interna-
tional Conference, pages 218-227, Washington, DC, USA, 2004. IEEE Com-

puter Society.

[130] Andreas Leitner, Ilinca Ciupa, Manuel Oriol, Bertrand Meyer, and Arno Fiva.
Contract driven development = test driven development — writing test cases. In
ESEC-FSE ’07: Proceedings of the the 6th Joint Meeting of the European Soft-
ware Engineering Conference and the ACM SIGSOFT Symposium on the Foun-
dations of Software Engineering, pages 425-434, New York, NY, USA, 2007.
ACM.

[131] Yuri Leontiev, M. Tamer Ozsu, and Duane Szafron. On separation between inter-
face, implementation, and representation in object DBMSs. In TOOLS ’98: Pro-
ceedings of the Technology of Object-Oriented Languages and Systems, pages
155-167, Washington, DC, USA, 1998. IEEE Computer Society.

[132] Barbara Liskov. Data abstraction and hierarchy. In ACM SIGPLAN Notices,
pages 17-34, May 1987.

[133] Barbara Liskov and John Guttag. Abstraction and Specification in Program De-
velopment. MIT Press, Cambridge, MA, USA, 1986.

[134] LisaLing Liu, Bertrand Meyer, and Bernd Schoeller. Using contracts and boolean
queries to improve the quality of automatic test generation. In TAP’07: Proceed-
ings of the Ist International Conference on Tests and Proofs, pages 114—130,
Berlin, Heidelberg, 2007. Springer-Verlag.

[135] David Luckham and Friedrich Von Henke. An overview of Anna, a specification
language for Ada. IEEE Software, 2(2):9-22, 1985.

[136] David Maley and Ivor Spence. Emulating Design by Contract in C++. In TOOLS
'99: Proceedings of the Technology of Object-Oriented Languages and Systems,
pages 66—75, Washington, DC, USA, 1999. IEEE Computer Society.

http://research.microsoft.com/en-us/projects/specsharp/etaps-specsharp-tutorial.ppt
http://research.microsoft.com/en-us/projects/specsharp/etaps-specsharp-tutorial.ppt

References 198

[137] Man Machine Systems. Design by Contract for Java using JMSAssert. http:
//www.mmsindia.com/DBCForJava.html, 2009.

[138] C. Marché, C. Paulin-Mohring, and X Urbain. The KRAKATOA tool for certi-
ficationof JAVA/JJAVACARD programs annotated in JML. Journal of Logic and
Algebraic Programming, 58(1-2):89—-106, 2004.

[139] Bruce Martin. The separation of interface and implementation in C++. pages
249-265, 1993.

[140] Robert Martin. The Liskov Substitution Principle. C++ Report, 8(3):16—17,
20-23, 1996.

[141] Robert Martin. Agile Software Development: Principles, Patterns, and Practices.
Prentice Hall PTR, Upper Saddle River, NJ, USA, 2003.

[142] Jim McCall, Paul Richards, and Gene Walters. Factors in Software Quality.
NTIS, 1977.

[143] John McCarthy. A basis for a mathematical theory of computation. Technical
report, Cambridge, MA, USA, 1962.

[144] John McCarthy and James Painter. Correctness of a compiler for arithmetic ex-

pressions. Proceedings of Symposia in Applied Mathematics, 19, 1967.

[145] Bertrand Meyer. Writing correct software. Dr. Dobb’s Journal, 14(12):48-60,
1989.

[146] Bertrand Meyer. Applying ‘Design by Contract’. Computer, 25(10):40-51, 1992.

[147] Bertrand Meyer. Object-Oriented Software Construction. Prentice Hall, 2nd
edition edition, 1997.

[148] Bertrand Meyer, Ilinca Ciupa, Andreas Leitner, and Lisa Ling Liu. Automatic
testing of object-oriented software. In SOFSEM ’07: Proceedings of the 33rd
Conference on Current Trends in Theory and Practice of Computer Science,
pages 114129, Berlin, Heidelberg, 2007. Springer- Verlag.

[149] Bertrand Meyer, Arno Fiva, Ilinca Ciupa, Andreas Leitner, Y1 Wei, and Em-
manuel Stapf. Programs that test themselves. Computer, 42(9):46-55, 2009.

http://www.mmsindia.com/DBCForJava.html
http://www.mmsindia.com/DBCForJava.html

References 199

[150] Microsoft Corporation. C# Language Specification. http://msdn.microsoft.
com/en-us/library/aa664812 (VS.71) .aspx, 2010.

[151] Microsoft Corporation. Code Contracts user manual. http://research.

microsoft.com/en-us/projects/contracts/userdoc.pdf, July 2010.

[152] Microsoft Corporation. Contracts FAQ. http://research.microsoft.com/
en-us/projects/contracts/faqg.aspx, 2010.

[153] Microsoft Corporation. Spec#. |http://research.microsoft.com/en-us/
projects/specsharp, 2010.

[154] Francis Morris and C. Jones. An early program proof by Alan Turing. [IEEE
Annals of the History of Computing, 6(2):139-143, 1984.

[155] Leonardo de Moura and Nikolaj Bjgrner. Proofs and refutations, and Z3. In IWIL
2008, 2008.

[156] Leonardo de Moura and Nikolaj Bjgrner. Z3: An efficient SMT solver. In Con-
ference on Tools and Algorithms for the Construction and Analysis of Systems
(TACAS), Budapest, Hungary, 2008.

[157] Matthias M. Miiller, Rainer Typke, and Oliver Hagner. Two controlled experi-
ments concerning the usefulness of assertions as a means for programming. In
ICSM °02: Proceedings of the International Conference on Software Mainte-
nance, pages 84-93, 2002.

[158] Pater Naur. Proof of algorithms by general snapshots. BIT Numerical Mathemat-
ics, 6(4):310-316, July 1966.

[159] Object Management Group. Object Constraint Language version 2.2. http:
//www.omg.orqg/spec/0CL/2.2, February 2010.

[160] A Jefferson Offutt, Yiwei Xiong, and Shaoying Liu. Criteria for generating
specification-based tests. In ICECCS ’99: Proceedings of the 5th Interna-
tional Conference on Engineering of Complex Computer Systems, pages 119—
129, Washington, DC, USA, 1999. IEEE Computer Society.

[161] Jonathan Ostroff, David Makalsky, and Richard Paige. Agile specification-driven
development. In J. Eckstein and H. Baumeister, editors, XP 2004, volume 3092

http://msdn.microsoft.com/en-us/library/aa664812(VS.71).aspx
http://msdn.microsoft.com/en-us/library/aa664812(VS.71).aspx
http://research.microsoft.com/en-us/projects/contracts/userdoc.pdf
http://research.microsoft.com/en-us/projects/contracts/userdoc.pdf
http://research.microsoft.com/en-us/projects/contracts/faq.aspx
http://research.microsoft.com/en-us/projects/contracts/faq.aspx
http://research.microsoft.com/en-us/projects/specsharp
http://research.microsoft.com/en-us/projects/specsharp
http://www.omg.org/spec/OCL/2.2
http://www.omg.org/spec/OCL/2.2

References 200

[162]

[163]

[164]

[165]

[166]

[167]

[168]

[169]

[170]

[171]

of Lecture Notes in Computer Science, pages 104-112. Springer-Verlag Berlin
Heidelberg, 2004.

Jens Palsberg and Michael Schwartzbach. Three discussions on object-oriented
typing. SIGPLAN OOPS Mess., 3(2):31-38, 1992.

David Parnas. On the criteria to be used in decomposing systems into modules.
Communications of the ACM, 15(12):1053—-1058, 1972.

David Parnas and Mark Lawford. The role of inspection in software quality
assurance. IEEE Transactions on Software Engineering, 29(8):674—676, 2003.

Dennis Peters and David Parnas. Using test oracles generated from program
documentation. [IEEE Transactions on Software Engineering, 24(3):161-173,
1998.

Benjamin Pierce. Types and Programming Languages. MIT Press, Cambridge,
MA, USA, 2002.

Reinhold Plosch. Design by Contract for Python. In APSEC ’97: Proceedings of
the Fourth Asia-Pacific Software Engineering and International Computer Sci-
ence Conference, pages 213-219, Washington, DC, USA, 1997. IEEE Computer
Society.

Reinhold Plosch. Tool support for Design by Contract. In TOOLS ’98: Pro-
ceedings of the Technology of Object-Oriented Languages and Systems, pages
282-294, Washington, DC, USA, 1998. IEEE Computer Society.

Reinhold Plosch and Josef Pichler. Contracts: From analysis to C++ imple-
mentation. In TOOLS ’99: Proceedings of the Technology of Object-Oriented
Languages and Systems, pages 248-257, Washington, DC, USA, 1999. IEEE

Computer Society.

Gerald Popek, Jim Horning, Butler Lampson, James Mitchell, and Ralph Lon-
don. Notes on the design of Euclid. In Proceedings of an ACM Conference
on Language Design for Reliable Software, pages 11-18, New York, NY, USA,
1977. ACM.

Roger Pressman. Software Engineering: A Practitioner’s Approach. McGraw-
Hill Higher Education, 2001.

References 201

[172]

[173]

[174]

[175]

[176]

[177]

[178]

[179]

[180]

[181]

[182]

[183]

Arthur Riel. Object-Oriented Design Heuristics. Addison-Wesley Longman Pub-
lishing Co., Inc., Boston, MA, USA, 1996.

David S. Rosenblum. A practical approach to programming with assertions.
IEEE Transactions on Software Engineering, 21(1):19-31, 1995.

Markku Sakkinen. Disciplined inheritance. pages 39-56, 1989.

Sriram Sankar. A note on the detection of an Ada compiler bug while debugging
an Anna program. SIGPLAN Notices, 24(6):23-31, 1989.

Craig Schaffert, Topher Cooper, Bruce Bullis, Mike Kilian, and Carrie Wilpolt.
An introduction to Trellis/Owl. In OOPLSA ’86: Conference Proceedings on
Object-Oriented Programming Systems, Languages and Applications, pages 9—
16, New York, NY, USA, 1986. ACM.

David Shang. Covariant specification. SIGPLAN Notices, 29(12):58—65, 1994.

Ghan Bir Singh. Single versus multiple inheritance in object oriented program-
ming. SIGPLAN OOPS Mess., 6(1):30-39, 1995.

Alan Snyder. Encapsulation and inheritance in object-oriented programming lan-
guages. In OOPLSA '86: Conference Proceedings on Object-Oriented Program-
ming Systems, Languages and Applications, pages 38—45, New York, NY, USA,
1986. ACM.

Bjarne Stroustrup. A history of C++: 1979-1991. In HOPL-II: The second
ACM SIGPLAN Conference on the History of Programming Languages, pages
271-297, New York, NY, USA, 1993. ACM.

Bjarne Stroustrup. The C++ Programming Language, third edition. Addison-
Wesley Longman Publishing Co., Inc., Boston, MA, USA, 2000.

Bjarne Stroustrup. Bjarne Stroustrup’s FAQ. http://www.research.att.com/
~bs/bs_fag.html, 2010.

Ivan Sutherland. Sketchpad: A man-machine graphical communication system.
In AFIPS °63 (Spring): Proceedings of the May 21-23, 1963, Spring Joint Com-
puter Conference, pages 329-346, New York, NY, USA, 1963. ACM.

http://www.research.att.com/~bs/bs_faq.html
http://www.research.att.com/~bs/bs_faq.html

References 202

[184]

[185]

[186]

[187]

[188]

[189]

[190]

[191]

[192]

[193]

Clemens Szyperski, Stephen Omohundro, and Stephan Murer. Engineering a
programming language: The type and class system of Sather. In Programming
Languages and System Architectures, volume 782 of Lecture Notes in Computer
Science, pages 208-227. Springer Berlin / Heidelberg, 1994.

Antero Taivalsaari. On the notion of inheritance. ACM Computing Surveys,
28(3):438-479, 1996.

Roy Patrick Tan and Stephen Edwards. Experiences evaluating the effectiveness
of IML-JUnit testing. SIGSOFT Software Engineering Notes, 29(5):1-4, 2004.

Judy Tantivongsathaporn and Daniel Stearns. An experience with Design by Con-
tract. In APSEC ’06: Proceedings of the XIII Asia Pacific Software Engineering
Conference, pages 335-341, Washington, DC, USA, 2006. IEEE Computer So-

ciety.

Coq Development Team. The Coq proof assistant reference man-
ual: Version 8.2-bugfix. http://flint.cs.yale.edu/cs430/cognew/pdf/
Reference-Manual.pdf, July 2009.

Patrick Thibodeau and Linda Rosencrance. Users losing billions due to bugs.
Computerworld, 2002.

Kresten Thorup. Genericity in Java with virtual types. In Mehmet Aksit and
Satoshi Matsuoka, editors, ECOOP’97 — Object-Oriented Programming, volume
1241 of Lecture Notes in Computer Science, pages 444-471. Springer Berlin /
Heidelberg.

Jeff Tian. Quality-evaluation models and measurements. IEEE Software,
21(3):84-91, 2004.

Nikolai Tillmann and Jonathan de Halleux. Pex — white box test generation for
NET. In Proceedings of TAP 2008: The 2nd International Conference on Tests
and Proofs, Lecture Notes in Computer Science, pages 134—153. Springer Verlag,
April 2008.

TIOBE Software. TIOBE programming community index for May
2011. http://www.tilobe.com/index.php/content/paperinfo/tpci/
index.html, May 2011.

http://flint.cs.yale.edu/cs430/coqnew/pdf/Reference-Manual.pdf
http://flint.cs.yale.edu/cs430/coqnew/pdf/Reference-Manual.pdf
http://www.tiobe.com/index.php/content/paperinfo/tpci/index.html
http://www.tiobe.com/index.php/content/paperinfo/tpci/index.html

References 203

[194]

[195]

[196]

[197]

[198]

[199]

[200]

[201]

[202]

[203]

[204]

Alan Turing. Checking a large routine. In Report of a Conference on High Speed
Automatic Calculating Machines, pages 67—69, 1949.

John Vlissides and Mark Linton. Applying object-oriented design to structured
graphics. Technical report, Stanford, CA, USA, 1988.

Janina Voigt, Warwick Irwin, and Neville Churcher. Intuitiveness of class and
object encapsulation. In 6th International Conference on Information Technology

and Applications, pages 83—-88, Hanoi, Vietnam, November 2009.

Janina Voigt, Warwick Irwin, and Neville Churcher. Class encapsulation and
object encapsulation. In ENASE2010: 5th International Conference Evaluation
of Novel Approaches to Software Engineering, Athens, Greece, July 2010.

Jos Warmer and Anneke Kleppe. The Object Constraint Language: Getting Your
Models Ready for MDA. Addison-Wesley Longman Publishing Co., Inc., Boston,
MA, USA, 2003.

Jeannette Wing. Writing Larch interface language specifications. ACM Transac-

tions on Programming Languages and Systems, 9(1):1-24, 1987.

Jeannette Wing. Using Larch to specify Avalon/C++ objects. IEEE Transactions
on Software Engineering, 16(9):1076-1088, 1990.

Jeannette Wing, Eugene Rollins, and Amy Zaremski. Thoughts on a Larch/ML
and a new application for LP. Technical report, Pittsburgh, PA, USA, 1992.

David Wortman and James Cordy. Early experiences with Euclid. In ICSE ’81:
Proceedings of the 5th International Conference on Software Engineering, pages
27-32, Piscataway, NJ, USA, 1981. IEEE Press.

David Wortman, Richard Holt, James Cordy, David Crowe, and lan Griggs. Eu-
clid: A language for compiling quality software. In AFIPS ’81: Proceedings of
the May 4-7, 1981, National Computer Conference, pages 257-263, New York,
NY, USA, 1981. ACM.

William Wulf, Ralph London, and Mary Shaw. An introduction to the construc-
tion and verification of Alphard programs. IEEE Transactions on Software Engi-
neering, 2(4):253-265, 1976.

References 204

[205] Edward Yourdon and Larry Constantine. Structured Design: Fundamentals of a
Discipline of Computer Program and Systems Design. Prentice-Hall, Inc., Upper
Saddle River, NJ, USA, 1979.

Appendices

205

Appendix A
ENASE Paper

This paper summarising conclusions from our survey of existing contract technologies
has been accepted to ENASE 2011 (6th International Conference on Novel Approaches

to Software Engineering).

206

A CRITICAL COMPARISON OF EXISTING SOFTWARE
CONTRACT TOOLS

Janina Voigt, Warwick Irwin, Neville Churcher
Department of Computer Science and Software Engineering, University of Canterbury, Christchurch, New Zealand
Janina.voigt@pg.canterbury.ac.nz, warwick.irwin@ canterbury.ac.nz, neville.churcher @ canterbury.ac.nz

Keywords:

Abstract:

Software Contracts, Design by Contract, Formal Software Specification

The idea of using contracts to specify interfaces and interactions between software components was proposed

several decades ago. Since then, a number of tools providing support for software contracts have been devel-
oped. In this paper, we explore eleven such technologies to investigate their approach to various aspects of
software contracts. We present the similarities as well as the areas of significant disagreement and highlight
the shortcomings of existing technologies. We conclude that the large variety of approaches to even some
basic concepts of software contracts indicate a lack of maturity in the field and the need for more research.

1 INTRODUCTION

When writing software, we aim to create programs
which not only work correctly, but are also reliable,
easy to use, understand and maintain. These and other
factors combine to determine the level of quality in
software.

Developing high quality software is a difficult,
complex and time-consuming task. The sheer size and
complexity of software contribute to these difficulties;
it is not unusual for a single program to contain mil-
lions of lines of code, far too much for one person to
understand. To manage this size and complexity, we
break large systems into smaller components which
can be developed independently. A developer work-
ing on one component does not need to know the in-
ternal details of other components of the system; he or
she only needs to understand the other components’
interfaces in order to use their services.

Software contracts (a subfield of formal specifica-
tions) are used to explicitly define the interfaces of
software components, specifying the responsibilities
of both the client using a service and the supplier of
the service. This formalises the interactions between
components of the software and ensures that two com-
ponents interact correctly (Meyer, 1997).

When software contracts are not used, clients of
a service usually have access to information about

the service’s interface, including method signatures,
as well as, optionally, documentation about how to
use the service. Software contracts elaborate on this
by formally specifying protocols of interaction which
otherwise may have remained implicit. Consequently,
we regard contracts as a natural extension of explicit
type systems; they specify interfaces fully rather than
just specifying signatures.

We believe that software contracts can mitigate
some of the problems surrounding large scale soft-
ware development. They not only improve the cor-
rectness of software by explicitly specifying interac-
tion protocols, but also serve as documentation and
clarify correct use of inheritance (Meyer, 1997).

Further, formal specifications such as software
contracts “represent a significant opportunity for test-
ing because they precisely describe what functions the
software is supposed to provide in a form that can eas-
ily be manipulated” (Offutt et al., 1999, page 119).
In particular, software contracts describe valid inputs
and outputs to methods; this information can be used
by automatic testing tools to find valid test inputs and
decide if particular test outputs are correct.

Despite the fact that the main ideas of software
contracts were proposed several decades ago, they are
still not commonly used in mainstream software de-
velopment. Meyer remarks that

In relations between people and companies, a

contract is a written document that serves to
clarify the terms of a relationship. It is really
surprising that in software, where precision is
so important and ambiguity so risky, this idea
has taken so long to impose itself. (Meyer,
1997, page 342)

However, more recently several different tech-
nologies supporting software contracts have been de-
veloped, including tools for mainstream program-
ming platforms such as Java and .NET. Along with
these technologies, a number of supporting tools are
emerging. Testing tools such as AutoTest for Eiffel
(Meyer et al., 2007) and Pex for .NET (Barnett et al.,
2009; Tillmann and Halleux, 2008) automatically ex-
tract unit tests from contracts without the need for in-
put from developers. Static analysers such as Boogie
for the .NET contract language Spec# (Barnett et al.,
2006) and ESC/Java for the Java contract language
JML (Flanagan et al., 2002) attempt to prove the cor-
rectness of software at compile-time.

As more technologies supporting software con-
tracts emerge and their usage becomes more common,
it is important for us to take stock of current develop-
ments and uncover any issues and areas of disagree-
ment which need to be addressed in the future. This
is what we attempt to do in this paper, as part of a
wider project in which we seek both to strengthen the
theoretical underpinnings of contracts and to develop
tools to support the adoption of contracts in modern
software engineering environments.

The rest of this paper is structured as follows: Sec-
tion 2 explains the background of software contracts.
Section 3 presents a comparison of several contract
technologies, highlighting the similarities and differ-
ences. A discussion of the issues and criticisms of
existing approaches follows in Section 4 before we
present our conclusions in Section 5.

2 BACKGROUND

The roots of software contracts run very deep in the
field of computer science; although it has been little
recognised in the literature, the origins of the idea can
be traced as far back as Turing, who first presented
the idea of assertions to check program correctness in
1949 (Turing, 1949).

In 1969, Hoare introduced Hoare triples. He used
the notation P{Q}R to mean that “If the assertion P is
true before initiation of a program Q, then the asser-
tion R will be true on its completion” (Hoare, 1969,
p- 577); P is commonly called the precondition, while
R is the postcondition. Three years later, Hoare also
presented the concept of the class invariant, a logical

predicate / where “each operation (except initialisa-
tion) may assume / is true when it is first entered; and
each operation must in return ensure that it is true on
completion” (Hoare, 1972, p. 275).

In the late 1980s, Meyer applied Hoare’s work
in his development of Design by Contract™ and
the programming language EIFFEL which included
the concepts of preconditions, postconditions and
class invariants (Meyer, 1989). Preconditions spec-
ify what the client must ensure before calling the ser-
vice provider; this could for example include ensur-
ing that the parameters are not null. Postconditions
define what the service provider promises in return,
given that the client has fulfilled the preconditions.

As an example, we define the contract for a sim-
ple Stack class with the three standard methods
push (Object obj), peek () and pop():

class Stack {

private Object[] stack;
private static final int MAX_SIZE = 100;
private int size;

Invariant: size >= 0 && size <= MAX_SIZE;

public Stack () {
stack = new Object [MAX_SIZE];
size = 0;

}

Precondition: !isFull ()
Postcondition: peek () == obj
&& size == old size + 1
public void push (Object obj) {
stack([size++] = obj;
}

Precondition: !isEmpty ()
Postcondition: size == old size
public Object peek/() {

return stack[size-1];

}

Precondition: !isEmpty ()
Postcondition: size == old size - 1
public Object pop() {

return stack[--size];

}

public boolean isFull() {
return size >= MAX_ SIZE;

}

public boolean isEmpty () {
return size <= 0;

}

Our Stack class uses a simple Object array to
store its values. It keeps track of the current Stack

size and also knows the maximum number of items it
can store.

We have defined preconditions and postconditions
for push, pop and peek. The preconditions for pop
and peek ensure that the methods are not called when
the Stack is empty; the precondition for push makes
sure the method is not called if the Stack is already
full. These preconditions call the query methods
isEmpty and isFull in their definitions instead of
referring directly to the private size field. Since pre-
conditions are the client’s responsibility, they must
be defined in such a way that the client can check
them before calling a method; that is, their definition
should only include members which are accessible to
the client (Meyer, 1989; Fihndrich et al., 2010). The
isEmpty and isFull methods therefore need to be
public.

The postconditions of the three methods check
that the size of the Stack has changed in the correct
way by comparing it to the old size of the Stack;
that is, the size before the method’s execution. Us-
ing old values is a common occurrence in contracts
and therefore contract specification languages usually
provide syntax for doing so. Calling the push method
increases the size of the Stack by one; calling pop de-
creases it by one; calling peek should have no effect
on the size. Unlike the preconditions, the postcondi-
tions access the size field directly and do not make
use of query methods. This does not cause any prob-
lems here because postconditions are the responsibil-
ity of the service supplier; that is, the Stack itself.
They do not need to be checked by outside clients and
can therefore refer to the private details of the Stack.

The invariant of the Stack ensures that its size
never drops below zero or exceeds the array’s capac-
ity. This invariant must be satisfied in all observ-
able states of every instance of a class (Meyer, 1989).
Specifically, the class invariant must be true after the
constructor has finished constructing a class instance
and before and after each call to an exported method
of the class; that is, a method accessible from outside
the class. This implies that while methods of the class
are executing, they may violate the class invariant, as
long as it is again satisfied when the method returns
(Meyer, 1997).

Software contracts also apply in the presence of
inheritance, through the concept of subcontracting
(Meyer, 1997); that is, the original contractor engages
a subcontractor for part of or all of the work. For this
to work, the subcontractor “must be willing to do the
job originally requested, or better than requested, but
not less” (Meyer, 1997, page 576).

Inheritance allows substitution of a subtype in
place of an expected type. This means, for example,

that a method expecting an object of type A may be
given an object of type B as long a B inherits from
A. Whenever a client makes use of a supplier, it does
not need to know whether the supplier is an imme-
diate instance of the specified type or an instance of
some subtype. Therefore, for contracting to continue
to work, the subclass must adhere to the contract spec-
ified by the superclass (Meyer, 1989). This means that

e Preconditions must be the same or weaker than in
the superclass. The subclass cannot expect more
of the client, although it may expect less;

e Postconditions must be the same or stronger than
in the superclass. The client expects certain re-
sults which must be delivered by the subclass. In
addition, the subclass may choose to deliver more
than promised by the superclass; and

e Class invariants are inherited from the superclass.
The subclass may introduce additional class in-
variants (Meyer, 1997).

In the next section, we present several different
contract technologies and contrast their approaches
to the implementation and interpretation of software
contracts.

3 CONTRACT TECHNOLOGIES

We investigated a number of technologies and pro-
gramming languages which allow the addition of soft-
ware contracts to programs, with a particular focus on
the following eleven:

e Java contract tools, including

— JAVA MODELING LANGUAGE (JML) (Leav-
ens et al., 2006; Leavens et al., 2005; Leavens
and Cheon, 2006);

— ICONTRACT (Kramer, 1998);

— CONTRACT JAVA (Findler and Felleisen,
2000);

— HANDSHAKE (Duncan and Hoelzle, 1998);

— JAss (Bartetzko et al., 2001);

— JCONTRACTOR (Karaorman and Abercrombie,
2005; Karaorman et al., 1999); and

— JMSASSERT (Man Machine Systems, 2009).
e NET contract languages, including
— SPEC# (Barnett et al., 2004b; Leino and Mon-
ahan, 2008); and
— CODE CONTRACTS (Fihndrich et al., 2010;
Microsoft Corporation, 2010).
e EIFFEL (Meyer, 1989; Meyer, 1992; Meyer,
1997); and

e OBIJECT CONSTRAINT LANGUAGE (OCL) (Ob-

ject Management Group, 2010; Warmer and
Kleppe, 2003)

The large number of existing software contract
tools made it impractical to consider all of them and
we therefore focused our investigation on the main
technologies which add contract support to the pop-
ular programming platforms Java and .NET. In addi-
tion, we looked at Eiffel, the original software con-
tract language. OCL was included because of its close
links to Java technologies such as JML.

All the tools we investigated aim to support soft-
ware contracts, most of them at the implementation
level. OCL is the only technology to work exclusively
at the software design level; it allows contracts in-
cluding preconditions and postconditions to be added
to UML diagrams, while all other tools we looked at
allow developers to augment source code using con-
tracts.

We have identified significant differences and
shortcomings in what they deliver. Table 1 gives an
overview of the similarities and differences of the
tools. In the following section, we describe the main
characteristics of the technologies, and in the sub-
sequent section we summarise the most important
themes and highlight areas of inconsistency.

3.1 Core Contract Support

All of the technologies we looked at provide core con-
tract support, allowing the specification of precondi-
tions, postconditions and class invariants, with the ex-
ception of CONTRACT JAVA which omits class invari-
ants.

In addition to the basic contract specifica-
tions, some technologies offer additional constructs.
SPEC#, JML and JASS allow the specification of
frame conditions. Frame conditions specify which
parts of the memory a method is allowed to mod-
ify. This ensures that a method does not unexpectedly
change the value of variables it should not be allowed
to modify (Barnett et al., 2004b; Leino and Monahan,
2008). A variable is deemed to have been modified if
itis accessible at the start and the end of a method and
its value has been changed. This means that newly
created objects and local variables are not included
in the restrictions of frame conditions (Leavens et al.,
2006).

SPEC#, CODE CONTRACTS and JML further
allow the definition of exceptional postconditions,
which specify conditions that need to be satisfied if
the method terminates with an exception.

Of the technologies we considered, JML provided
the most extensive contract support. Among other

constructs, it also supports history constraints which
describe how the value of a field is allowed to change
between two publicly visible states. This can for ex-
ample be used to express that the value of a field
may only increase (Leavens et al., 2006). JML fur-
ther introduces the concept of model fields which can
be used when the inner data representation of a class
needs to be changed but the developer does not want
to update all of the contracts to the new data format.
The model field of the old data format can be used
from within the contracts and a correspondence is de-
fined between the new data format and the model field
(Leavens and Cheon, 2006).

3.2 Special Operators and Quantifiers

The different technologies also offer varying amounts
of special operators and quantifiers for use in con-
tracts. All allow postconditions to refer to the return
value of the method; this functionality is usually pro-
vided by the result or return operator. In addition,
all except CONTRACT JAVA and HANDSHAKE also
allow postconditions to refer to the value of a variable
before method execution, often through the old op-
erator. This is important to check that the value of a
field is changed correctly by a method, as we did in
our Stack example above.

Most technologies also offer some quantifiers
such as for all and exists; no such quantifiers are
available in EIFFEL, but Meyer argues that they can
be easily emulated using conventional programming
language constructs (Meyer, 1989). Several tools,
including JML, SPEC#, JCONTRACTOR and OCL,
have a sophisticated range of additional operators in-
cluding quantifiers, counting functions and predicate
logic operators.

3.3 The Contract Language

Contract specifications for Java and .NET repre-
sent additions to an existing programming lan-
guage. Some tools, including CODE CONTRACTS
and JCONTRACTOR, specify contracts in the exist-
ing language. EIFFEL and SPEC# are both languages
which natively support contracts and thus the lan-
guage used to specify contracts is part of the wider
programming language. The advantage of this ap-
proach is that there is no need for a separate com-
piler and contracts can be processed by standard tools
along with the remainder of the program. In CODE
CONTRACTS, contracts are specified by calling the
static methods of the Contract class; for example,
preconditions are defined by calling the Requires
method of the Contract class. In JCONTRACTOR,

Table 1: Overview of Contract Tools.

S
5 | o . g
- = v 8 5 =
2| 8 | £ 2| 2 S
.| E % '§ ‘E ;E; % 3 E —
28| S |£|2[(S|2| & (8|58
Contract Pre / Postconditions v |V v VvV v v |V v
Support Class Invariant v |V Ve A A 4 v v |V v
Frame Conditions v v v
Exceptional Postconditions | v/ v v
Operators Result v |V v vV I VIV Y v v IV v
old v |V VvV v v |V v
Contract Original Language v v v IV v
Language Modified Language v |V v v |V
Scripting Language v
Contract Comment v v v
Placement Annotation v
With Program v |V Viv|VY v v |V
Separately v v v v
Method Purity | Enforced v v v
Precondition Visible Members Only v v v
Invariant After Method v v v
Check Before and After v N/A | v V|V v | N/A
Expose Block v
Invariant All Methods v
Check Non-private Methods v | NA | v v | N/A v | N/A
Public Methods Only v v v
Contract Enforced vV IV v v v |V v v | v | NA
Inheritance Precondition Weakening v |V ViV VvVY v v | N/A
Contract Preprocessor v v v
Compilation Custom Compiler v v N/A
Standard Compiler v v |V
Runtime Linking v v
method contracts are specified in contract methods, 3.4 Integration of Contracts into Source

using standard Java. Postcondition methods take the
additional parameter RESULT, which can be used to
refer to the return value of the method. Postcondi-
tions also have access to a special object called OLD,
which contains the state of the current object as it was
before the method executed (Karaorman et al., 1999).

The remaining tools we considered take a slightly
different approach: they take the original program-
ming language as a basis but augment it using addi-
tional keywords and operators. This approach is taken
by ICONTRACT, JML and others; it requires special
tools to translate the contracts into the original pro-
gramming language.

JMS ASSERT takes this approach a step further by
using a full scripting language, JMScript, for con-
tract specification. While JMScript is similar to Java,
the underlying programming language, it differs suf-
ficiently that developers need to learn the scripting
language before being able to write contracts, signifi-
cantly steepening the learning curve.

Code

There are several ways in which contracts can be in-
corporated into source code. Some contract technolo-
gies, including JML, JASS and JMS ASSERT, require
contracts to be added in the form of comments, while
in ICONTRACT they are defined as annotations. The
advantage of these two approaches is that they work
when the contract language is not the same as the stan-
dard programming language; the contracts are sim-
ply ignored by the standard compiler, meaning that
no special compiler is needed when working with
contracts. Instead, the contracts are inserted into the
source code by a preprocessor and the program is then
compiled using the standard compiler.

In EIFFEL, SPEC#, CODE CONTRACTS and
JCONTRACTOR, contracts are defined as an integral
part of the program and are compiled and checked by
the standard compiler. This approach works for these
technologies because the contracts are expressed in
the same language as the rest of the program.

The placement of contracts in the programs also
varies between different technologies. In most
cases, for example in JML, ICONTRACT and SPEC#,
method contracts including preconditions and post-
conditions are specified as part of the method header.
In CODE CONTRACTS, preconditions and postcondi-
tions are placed inside the method body along with the
method implementation. These two approaches have
the advantage of clearly showing which contracts ap-
ply to which methods.

Other technologies enforce a separation between
contracts and the code to which they apply. In HAND-
SHAKE, specifications are placed in separate contract
files (Karaorman et al., 1999); in CONTRACT JAVA
they are placed in separate interfaces (Findler and
Felleisen, 2000). This approach has the advantage
of clearly separating contracts from standard code, al-
lowing them to be considered independently of imple-
mentation. It further allows the addition of contracts
even when source code is not available, for example
when working with third party software.

JCONTRACTOR allows both of these approaches:
contract methods to define preconditions and post-
conditions may be placed in the same class as the
methods to which they apply; alternatively, they
can be defined in a separate contract class named
ClassName_CONTRACT, which must extend the class
to which it is adding contracts in order to inherit rele-
vant behaviour and to make the objects with contracts
substitutable for objects without contracts (Karaor-
man et al., 1999).

3.5 Side Effects in Contracts

Preconditions, postconditions and invariants should
not call methods which cause side effects since this
can create bugs which are difficult to trace. Some
technologies, including SPEC# and JML, enforce
this and allow only methods which have been de-
clared free of side effects (pure methods) to be called
from within contracts. Pure methods may only call
other pure methods and may not modify any part of
the memory. For example, the two query methods
we used to define our Stack contract, isEmpty and
isFull, have no side effects and can therefore safely
be called from within a contract.

Most of the technologies do not explicitly enforce
method purity; they only recommended that no meth-
ods with side effects are called from within contracts.
CODE CONTRACTS is expected to enforce purity in
the future (Microsoft Corporation, 2010). OCL is a
modeling language and all its code is implicitly free
of side effects and thus any methods called from the
contract are guaranteed to have no side effects.

3.6 Precondition Visibility

Contract theory requires clients to ensure that pre-
conditions hold; therefore, it is important to ensure
that preconditions do not refer to any data or meth-
ods which are not visible to clients. Some contract
technologies enforce this restriction, while others do
not.

CODE CONTRACTS ensures that anything used to
define the precondition is visible to clients. JASS and
JML require anything referred to by the precondition
to be at least as visible as the method itself. Thus,
the preconditions of public methods must be defined
using only publicly visible data and methods; pre-
conditions for protected methods may refer to both
public and protected items.

3.7 Checking of Class Invariants

Class invariants are constraints that need to be main-
tained in all visible states of the objects of a class; that
is they must be true at the start and the end of each
method that can be called by a client. For this rea-
son, Meyer asserts that each invariant essentially rep-
resents an additional precondition and postcondition
for each exported method in a class (Meyer, 1989).
EIFFEL, JML and JMS ASSERT therefore check class
invariants at the start and end of each method execu-
tion.

However, seeing the invariant as an addition to
each method’s precondition raises a new problem:

The object invariant of class T is a condition
on the internal representation of T objects, the
details of which should be of no concern to
a client of T, the party responsible for estab-
lishing the precondition. Making clients re-
sponsible for establishing the consistency of
the internal representation is a breach of good
information hiding practices. (Barnett et al.,
2004a, page 30)

For this reason, other technologies, including
CODE CONTRACTS, ICONTRACT and JASS, check
the class invariant only at the end of method execu-
tions; that is, only in the postconditions, not the pre-
conditions.

SPEC# takes a more complex approach to invari-
ant checking. It allows changes to memory only
inside special expose blocks because such changes
could invalidate class invariants. At the start of each
expose block, the object’s invariant is set to false.
Changes to data are now allowed and at the end of the
expose block the invariant is re-checked. This pro-
tects invariants even in the presence of concurrency
and reentrancy: an expose block can only be entered

when the object’s invariant is t rue; that is, it can only
be entered by one thread of execution at a time (Bar-
nett et al., 2004b). While this approach has the ad-
vantage of working in the presence of concurrency, it
greatly increases the complexity of writing programs
with contracts.

Apart from the disagreement over when the invari-
ant needs to be checked, there is also some debate
about which methods this check applies to. Strictly
speaking, the class invariant must be maintained in
all externally visible states but may be broken while
internal methods are executed. For example, a recur-
sive method needs to maintain the invariant only for
its outermost invocation. Private methods should be
allowed to break the invariant; only methods called by
the client should need to maintain it.

Of the technologies we considered, only JASS
checks the invariant after each method execution,
effectively forcing all methods, including private
methods, to maintain the invariant. EIFFEL, ICON-
TRACT, HANDSHAKE and JMSASSERT require all
non-private methods to maintain the invariant, while
CODE CONTRACTS, JML and JCONTRACTOR only
require public methods to do so.

Some of the Java technologies allow only
private methods to break the class invariant, while
others allow private, package and protected
methods to do so. The latter approach is problematic,
since calls to package and protected methods may
come from a different class, and therefore should be
forced to maintain the invariant. On the other hand,
this allows methods from the subclass to call methods
in the superclass while the invariant is broken, which
may provide valuable flexibility.

3.8 Inheritance of Contracts

Inheritance is an important mechanism in object ori-
ented (OO) programming and consequently contract
tools need to support it. In many technologies, includ-
ing EIFFEL, ICONTRACT, JML and JCONTRACTOR,
correct contract inheritance is enforced by disjunct-
ing inherited preconditions and conjuncting inherited
postconditions; this leads to a weakening of precon-
ditions and a strengthening of postconditions and in-
variants. CODE CONTRACTS and CONTRACT JAVA
take a more restrictive approach: while postcondi-
tions and invariants may be added by subclasses, pre-
conditions must be specified completely in the super-
class; subclasses are not allowed to specify any addi-
tional preconditions. This ensures that preconditions
are not strengthened, but also makes developers un-
able to weaken them.

While almost all technologies we investigated al-

ways enforce correct use of contract inheritance, JASS
takes a more flexible approach. It can check for cor-
rect inheritance using refinement checks, but this is
optional and can be turned off by the developer. In
OCL, the semantics of contract inheritance are not
fully specified because it is a general purpose mod-
elling language rather than a concrete implementa-
tion.

3.9 Conversion of Contracts into
Runtime Checks

Once contracts have been written, they can be turned
into runtime checks that report whenever a contract
is violated. This conversion may be done in several
ways.

Programs written in EIFFEL, CODE CONTRACTS
and SPEC# can simply be compiled using a stan-
dard language compiler, since contracts are expressed
in the same language as the rest of the code. The
EIFFEL and SPEC# compilers insert runtime checks
for contracts during compilation; CODE CONTRACTS
uses library classes to implement contract checking.
JML and CONTRACT JAVA provide a customised
Java compiler which not only compiles the program
but also generates the runtime checks. ICONTRACT,
JASS and JMSASSERT all use a preprocessor which
inserts Java statements into the code before it is com-
piled by the standard Java compiler. This has the
advantage that the standard Java compiler can be
used after preprocessing is completed. HANDSHAKE
and JCONTRACTOR use a dynamic library and class
loader to inject runtime checks when the program is
executed, rather than at compile time.

4 DISCUSSION

In our investigation of existing software contract
technologies we have found some areas of significant
disagreement. The approaches of the technologies
vary widely and from Table 1 it becomes clear that
no two tools take exactly the same approach.

Interestingly, we have uncovered some relatively
basic issues which are handled inconsistently, for ex-
ample concerning the checking of class invariants.
We believe that it is important that the inconsisten-
cies are resolved - or at least justified - in order to
increase developers’ confidence in contract tools and
the practice of using software contracts in general.

We found good support for core contract concepts,
including preconditions, postconditions and invari-
ants, in nearly all tools. We believe that any contract
tool which does not support these basic constructs is

inadequate for practical use. CONTRACT JAVA, for
example, does not support the specification of class
invariants, representing a serious gap in this tool.

In addition to preconditions, postconditions and
class invariants, we find the concept behind frame
conditions useful. It is often difficult to know what
data is changed when calling a method, particularly if
this method calls other methods. In some cases, un-
expected data changes can be difficult to trace to their
origins. Defining frame conditions forces developers
to think carefully about which parts of the memory a
method should be able to access and modify. They in-
form the programmer of inappropriate memory mod-
ifications, reducing the incidence of unexpected data
changes.

Some contract technologies provide a wide range
of special operators and quantifiers; most tools pro-
vide at least two: the result or return operator to
access the return value of a method and the 01d opera-
tor to refer to the value of variables before the method
execution. However, two tools, CONTRACT JAVA and
HANDSHAKE, do not provide an old operator. This
is a serious omission and severely restricts what con-
tracts can be expressed, such as the size checks in our
Stack example.

Most tools we considered here declared contracts
using the same programming language as for the rest
of the program, although many introduced small ad-
ditions in the form of operators and quantifiers. Only
one tool, JIMSASSERT, used a significantly different
language to define contracts. We suggest that this is
an unnecessary burden on developers and is likely to
inhibit uptake of the technology.

With the exception of CODE CONTRACTS, all of
the technologies we investigated use contract defi-
nition syntax that groups contract information with
method declaration information. CODE CONTRACTS
places contracts inside the actual methods. We feel
that this approach is not ideal, since it mixes con-
tracts with implementation code and makes it diffi-
cult to distinguish between them. We suggest that
contracts should ideally be declared separately from
the implementation as part of a type definition. This
is consistent with existing literature, which suggests
that public interfaces, or types, should be separated
(Bruce, 2002; Canning et al., 1989); that is, the type
definition should contain signatures of visible meth-
ods, but no internal details. By extension, such a type
definition should include contracts for publicly visible
methods since, similarly to method signatures, con-
tracts provide vital information to clients wanting to
use a service.

Some tools do not allow contracts to call meth-
ods with side effects since this can create bugs which

are difficult to trace; other technologies do not im-
pose this restriction. We agree with Barnett et al.,
who claim that the latter approach gives developers
too much freedom and is unsound (2004). As we ar-
gued above, it can be difficult to see which parts of the
memory a method modifies; similarly, it can be diffi-
cult to determine whether or not a method is pure, par-
ticularly when this method calls other methods, which
in turn could have side effects. This makes both frame
conditions and explicit declarations of pure methods
very useful.

Clients are responsible for ensuring that precondi-
tions are met before calling a method. We are there-
fore surprised that not more tools ensure that meth-
ods and data referred to in preconditions are visible
to clients. If this is not the case, clients may not be
able to check preconditions and may therefore fail to
fulfill their responsibilities under the contract. Con-
tracts are based on the idea of shared responsibility
between clients and service providers and having po-
tentially invisible preconditions violates the founda-
tion of software contracts.

In the tools we studied, we found a particularly
variable approach to invariant checking. Some tools
check invariants after each method, others before and
after; some tools require the invariant to hold at the
start and end of all methods while others only ap-
ply this restriction to public methods. In our view,
the wide range of approaches stems from the incom-
plete body of theory about this aspect of contracts. We
have found no research that explains when invariants
should be checked and what implications the different
approaches have. Given the wide range of different
approaches, we feel that this is an area where further
investigation is warranted.

Most of the technologies allow private methods to
break the invariant temporarily. This makes sense be-
cause the internal operations of an object may not al-
ways maintain the invariant at all times; however, it
needs to be restored before returning control to the
client to ensure that the object is left in a consistent
state. We therefore argue that ideally the invariant
should to be checked before and after every method
call originating from outside the object. This would
allow the object to break its own invariant temporar-
ily (possibly while calling code in the superclass) but
would also ensure that the object remains in a consis-
tent state when it returns control.

In the context of invariant checking, SPEC#’s ap-
proach is far more complex than that of any other
technology we investigated. It requires the object to
be explicitly exposed whenever its state is modified
to ensure that its invariant cannot be violated by op-
erations from the outside or through the presence of

reentrancy and concurrency. Although this approach
is sound, we argue that it is too complex; it requires
the use of complicated constructs even when writing
simple programs. We believe that this complexity is
likely to alienate new users and slow the uptake of
SPEC# and software contracts in general.

Support for inheritance of contracts is essential for
their use in OO programming. We found that all the
tools with the exception of JASS ensure that contracts
are inherited correctly. JASS also allows correct con-
tract inheritance to be enforced but makes this op-
tional. We are encouraged by this high level of sup-
port for correct inheritance. Using inheritance cor-
rectly is notoriously difficult and our intuition some-
times leads us to use it incorrectly. This is particularly
evident in the well-known square-rectangle problem
(Martin, 1996). Our own experience shows that con-
tracts are very valuable when creating inheritance hi-
erarchies because they force us to ensure that an in-
stance of the subclass is substitutable for an instance
of the superclass; problems with contract inheritance
usually signal incorrect use of inheritance.

Most of the tools we looked at enforce the cor-
rect use of contracts by allowing weaker precondi-
tions through disjuncting inherited preconditions and
allowing stronger postconditions through conjuncting
inherited postconditions. CODE CONTRACTS uses
this approach to ensure postconditions are strength-
ened; however, the tool does not allow the weakening
of preconditions because “We just haven’t seen any
compelling examples where weakening the precon-
dition is useful” (Microsoft Corporation, 2010, page
15). CODE CONTRACTS forces developers to declare
all preconditions on the root method of an inheritance
chain. In our work with CODE CONTRACTS, we have
found this approach very frustrating because it does
not allow for flexible precondition definition. In par-
ticular, problems arise when a class inherits the same
method from multiple interfaces. In this situation, the
preconditions of this method in all ancestors must be
compatible; this is an example where we feel that al-
lowing precondition weakening is essential.

S CONCLUSIONS

In our investigation of existing software con-
tract tools we have uncovered a range of differences,
clearly demonstrating a level of confusion and con-
flict surrounding even some basic concepts of soft-
ware contracts. This indicates to us that more work is
needed in this area to resolve these issues and create a
consensus or at least a clear taxonomy of the different
semantics of software contracts. We have identified

a number of shortcomings of existing tools and areas
that require more research, including:

e The checking of class invariants;

e The separation of contracts and implementation;
and

e The inheritance of contracts, particularly the
weakening of preconditions.

We believe that using software contracts has the
potential to greatly increase the quality of software
and speed up software development. Not only do they
ensure that different components of a system know
how to interact with each other correctly, but they also
serve as documentation of developers’ intentions and
can be used as a basis of automated testing tools. Fur-
thermore, we believe that they are a highly valuable
tool for creating correct inheritance hierarchies.

We are currently developing our own contract
tool; having carefully studied other contract tools, we
are now aware of the major issues and questions in
the area. We plan to create a contract tool that empha-
sises:

e Rigorous separation of interface (i.e. contracts)
from implementation. This will ensure clients can
depend only on public information.

e Enhanced explicit support for inheritance and
substitutability and enforcement of correct con-
tract inheritance.

e Prevention of invalid contracts, such as precondi-
tions that cannot be tested by clients, or use of
methods with side-effects in contracts.

e Support for more flexible and expressive defini-
tion of contracts.

REFERENCES

Barnett, M., Chang, B.-Y. E., DeLine, R., Jacobs, B., and
Leino, K. R. M. (2006). Boogie: A modular reusable
verifier for object-oriented programs. In FMCO 2005,
volume 4111 of Lecture notes in computer science.
Springer Verlag.

Barnett, M., Deline, R., Fihndrich, M., Leino, K. R. M., and
Schulte, W. (2004a). Verification of object-oriented
programs with invariants. Journal of Object Technol-
0gy, 3(6):27-56.

Barnett, M., Fahndrich, M., Halleux, P. d., Logozzo, F.,
and Tillmann, N. (2009). Exploiting the synergy be-
tween automated-test-generation and programming-
by-contract. In Proceedings of ICSE 2009, 31th Inter-
national Conference on Software Engineering, Com-
panion, pages 401-402.

Barnett, M., Leino, K. R. M., and Schulte, W. (2004b). The
Spec # programming system: an overview. In CAS-
SIS 2004, volume 3362 of Lecture notes in computer
science. Springer Verlag.

Barnett, M., Naumann, D., Schulte, W., and Sun, Q.
(2004c). 99.44% pure: useful abstractions in speci-
fications. In ECOOP workshop on Formal Techniques
for Java-like Programs (FTfJP) 2004.

Bartetzko, D., Fischer, C., Moller, M., and Wehrheim, H.
(2001). Jass - Java with assertions. Electronic Notes
in Theoretical Computer Science, 55(2).

Bruce, K. B. (2002). Foundations of object-oriented lan-
guages: types and semantics. MIT Press, Cambridge,
MA, USA.

Canning, P. S., Cook, W. R., Hill, W. L., and Olthoff, W. G.
(1989). Interfaces for strongly-typed object-oriented
programming. In OOPSLA ’89: Conference proceed-
ings on Object-oriented programming systems, lan-
guages and applications, pages 457-467, New York,
NY, USA. ACM.

Duncan, A. and Hoelzle, U. (1998). Adding contracts to
Java with Handshake. Technical Report TRCS98-32,
University of California at Santa Barbara, Santa Bar-
bara, CA, USA.

Féhndrich, M., Barnett, M., and Logozzo, F. (2010). Em-
bedded contract languages. In SAC ’10: Proceedings
of the 2010 ACM Symposium on Applied Computing,
pages 2103-2110, New York, NY, USA. ACM.

Findler, R. and Felleisen, M. (2000). Behavioral interface
contracts for Java. Technical Report TR00-366, Rice
University.

Flanagan, C., Leino, K. R. M., Lillibridge, M., Nelson, G.,
Saxe, J. B., and Stata, R. (2002). Extended static
checking for Java. In PLDI ’02: Proceedings of the
ACM SIGPLAN 2002 Conference on Programming
language design and implementation, pages 234-245,
New York, NY, USA. ACM.

Hoare, C. A. R. (1969). An axiomatic basis for com-
puter programming. Communications of the ACM,
12(10):576-580.

Hoare, C. A. R. (1972). Proof of correctness of data repre-
sentations. Acta Informatica, 1(4):271 — 281.

Karaorman, M. and Abercrombie, P. (2005). jContractor:
Introducing design-by-contract to Java using reflective
bytecode instrumentation. Formal Methods in System
Design, 27(3):275-312.

Karaorman, M., Holzle, U., and Bruno, J. L. (1999). jCon-
tractor: A reflective Java library to support design by
contract. In Reflection 99: Proceedings of the Sec-
ond International Conference on Meta-Level Archi-
tectures and Reflection, pages 175-196, London, UK.
Springer-Verlag.

Kramer, R. (1998). iContract - the Java(tm) design by con-
tract(tm) tool. In TOOLS °98: Proceedings of the
Technology of Object-Oriented Languages and Sys-
tems, page 295, Washington, DC, USA. IEEE Com-
puter Society.

Leavens, G., Baker, A., and Ruby, C. (2006). Preliminary
design of JML: a behavioral interface specification
language for Java. SIGSOFT Software Engineering
Notes, 31(3):1-38.

Leavens, G. and Cheon, Y. (2006). Design by contract with
JML.

Leavens, G., Cheon, Y., Clifton, C., Ruby, C., and Cok, D.
(2005). How the design of JML accommodates both
runtime assertion checking and formal verification.
Science of Computer Programming, 55(1-3):185-208.

Leino, K. R. M. and Monahan, R. (2008). Program verifi-
cation using the Spec # programming system. http:
//research.microsoft.com/en-us/projects/
specsharp/etaps-specsharp-tutorial.ppt.

Man Machine Systems (2009). Design by contract for
Java using JIMSAssert. http://www.mmsindia.com/
DBCForJava.html.

Martin, R. (1996). The Liskov Substitution Principle. C++
Report, 8(3):16 — 17, 20 — 23.

Meyer, B. (1989). Writing correct software. Dr. Dobb’s
Journal, 14(12):48-60.

Meyer, B. (1992). Applying “design by contract”. Com-
puter, 25(10):40-51.

Meyer, B. (1997). Object-oriented software construction.
Prentice Hall, 2nd edition edition.

Meyer, B., Ciupa, I., Leitner, A., and Liu, L. L. (2007). Au-
tomatic testing of object-oriented software. In SOF-
SEM °07: Proceedings of the 33rd conference on Cur-
rent Trends in Theory and Practice of Computer Sci-
ence, pages 114-129, Berlin, Heidelberg. Springer-
Verlag.

Microsoft Corporation (2010). Code contracts user man-
ual. http://research.microsoft.com/en-us/
projects/contracts/userdoc.pdf.

Object Management Group (2010). Object constraint lan-
guage version 2.2. http://www.omg.org/spec/
0CL/2.2.

Offutt, A. J., Xiong, Y., and Liu, S. (1999). Criteria for
generating specification-based tests. In ICECCS '99:
Proceedings of the 5th International Conference on
Engineering of Complex Computer Systems, page 119,
Washington, DC, USA. IEEE Computer Society.

Tillmann, N. and Halleux, J. d. (2008). Pex - white box test
generation for NET. In Proceedings of TAP 2008:
the 2nd International Conference on Tests and Proofs,
Lecture Notes in Computer Science, pages 134 — 153.
Springer Verlag.

Turing, A. (1949). Checking a large routine. In Report of
a Conference on High Speed Automatic Calculating
Machines, pages 67 — 69.

Warmer, J. and Kleppe, A. (2003). The Object Con-
straint Language: Getting Your Models Ready for
MDA. Addison-Wesley Longman Publishing Co.,
Inc., Boston, MA, USA.

Appendix B

Formal Syntax for PACT

This section defines the formal syntax for PACT in Extended Backus-Naur Form
(EBNF). We use standard formatting conventions to present our syntax which will allow
it to be used directly as input to parser generators such as Yakyacc [[106]. Non-terminals
are enclosed in angle brackets; literals are surrounded by quotes. We use the symbol ?
to signal optional terms.

Since PACT defines only high-level constructs such as types and implementations
and uses the programming language C# for all lower-level code, our syntax is heavily
based on the official C# syntax [150]. Rather than repeating the full syntax of C#, our
syntax refers to the C# one where necessary. These references to C# are given in Section

Although the C# grammar is also presented in EBNF, the formatting is slightly dif-
ferent. Non-terminals are written in italics, while terminals and literals are written in

standard font. The subscript opt is used to flag optional terms.

B.1 EBNF Syntax

B.1.1 Types

<TypeDeclaration>
::= <TypeHeader> <TypeBody>

’

<TypeHeader>
1= “type” <TypeName> <Supertypes>? <TypeDerivations>?

217

Appendix B. Formal Syntax for PACT

218

<Restrictions>?

<Supertypes>
::= “subtypes” <TypeList>

<TypeDerivations>
::= “derivesfrom” <TypelList>

<Restrictions>
::= “restricts” <TypelList>

<TypeList>
1= <TypeName>
| <TypeList> “,” <TypeName>

r

<TypeBody>
::= “{” <TypeMemberDeclarations>? “}”

.
4

<TypeMemberDeclarations>
::= <TypeMemberDeclaration>
| <TypeMemberDeclarations> <TypeMemberDeclaration>

4

<TypeMemberDeclaration>
::= <InvariantBlock>
| <TypeConstructorDeclaration>
| <TypeMethodDeclaration>

r

<InvariantBlock>
::= “inv” “{” <ContractStatements> “}"”

<TypeConstructorDeclaration>
::= <TypeConstructorModifier>? <TypeName> ™“(”
<ParameterList>? “)” <ConstructorContract>

Appendix B. Formal Syntax for PACT

219

<TypeConstructorModifier>
::= “private”

<TypeMethodDeclaration>

::= <TypeMethodModifiers>? <TypeName> <MethodName>
“(” <ParameterList>? “)” <TypeMethodContract>

<TypeMethodModifiers>
::= <TypeMethodModifier>
| <TypeMethodModifiers> <TypeMethodModifier>

14

<TypeMethodModifier>
::= “private”
| “static”

4

<ParameterList>
::= <ParameterDeclaration>
| <ParameterList> “,” <ParameterDeclaration>

.
4

<ParameterDeclaration>
1= <TypeName> <ParameterName>

<TypeMethodContract>
::= “{” <VariableDeclarations>? <PreBlock>?
<ResultBlock>? “}”

<ConstructorContract>
::= “{” <VariableDeclarations>? <PreBlock>?

r

<VariableDeclarations>
::= <VariableDeclaration>

| <VariableDeclarations> <VariableDeclaration>

4

<VariableDeclaration>
1= <TypeName> <VariableName> “;”

<PostBlock>"?

<PostBlock>? “}”

Appendix B. Formal Syntax for PACT 220

<PreBlock>
::= “pre” “{” <ContractStatements> “}”

<PostBlock>
::= “post” “{” <ContractStatements > “}”

<ResultBlock>
::= “result” “{” <Statements> <ReturnStatement> “}”

<ContractStatements>
::= <ContractStatement>
| <ContractStatements> <ContractStatement>

4

<ContractStatement>
1= <Statement>
| <CheckStatement>

4

<CheckStatement >
::= “check” <BooleanExpression> “;”

<Statements>
1= <Statement>

| <Statements> <Statement>

.
4

B.1.2 Implementations

<ImplDeclaration>
::= <ImplHeader> <ImplBody>

<ImplHeader>
::= “implementation” <ImplName> <TypelImplementations>?

Appendix B. Formal Syntax for PACT

221

<ImplDerivations>?

<Typelmplementations>
::= “implements” <TypeList>

<ImplDerivations>
::= “derivesfrom” <ImplList>

<ImplList>
::= <ImplName>
| <ImplList> “,” <ImplName>

4

<ImplBody>
::= “{” <ImplMemberDeclarations>? “}”

r

<ImplMemberDeclarations>
::= < ImplMemberDeclaration>
| < ImplMemberDeclarations > < ImplMemberDeclaration>

4

<ImplMemberDeclaration>
::= <InvariantBlock>
| <ConstantDeclaration>
| <FieldDeclaration>
| <ImplConstructorDeclaration>
| <ImplMethodDeclaration>

<ImplConstructorDeclaration>
1= <ImplName> “(” <ParameterList>? “)”
<ConstructorContract>? <MethodOrConstructorBody>

<ImplMethodDeclaration>
::= <ImplMethodModifier>? <TypeName> <MethodName>
“(” <ParameterList>? “)"” <ImplMethodContract>?
<MethodOrConstructorBody>

Appendix B. Formal Syntax for PACT 222

<ImplMethodModifier>
1= “static”

<ImplMethodContract>
::= “{” <VariableDeclarations>? <PreBlock>? <PostBlock>? ™}

<MethodOrConstructorBody>
::= “{” <Statements> “}”

4

B.2 References to the C# Syntax

Some non-terminals in our syntax are undefined. These non-terminals are equivalent
to specific non-terminals in the C# grammar [[150]. We have chosen to refer to the
established grammar in order to keep our own syntax more concise and highlight the
core elements of PACT. Table B.1 contains the non-terminals which were not defined
explicitly by our syntax and shows to which C# non-terminals they are equivalent. In
this way, our syntax can be combined with the C# grammar to form a complete syntax
for PACT.

Our Syntax C# Syntax Equivalent
<TypeName> identifier
<MethodName> identifier
<ParameterName> identifier
<VariableName> identifier
<ImplName> identifier
<Statement> statement
<ReturnStatement> return-statement
<BooleanExpression> conditional-expression
<ConstantDeclaration> constant-declaration
<FieldDeclaration> field-declaration

Table B.1: Mapping of PACT non-terminals to C# non-terminals

Appendix B. Formal Syntax for PACT 223

B.3 Modification to the C# Syntax

There is one modification that we need to make to the existing C# syntax: we need to
allow the result keyword to be used in postconditions to refer to the return value of
a method. This means that the new result keyword must be allowed to be used in
expressions. Rather than restating the large number of syntax rules about expressions,
this can be achieved by modifying a single rule: unary-expression must be modified to

allow another case, the result keyword. This can be seen below:

unary-expression:
primary-expression
+ unary-expression
- unary-expression
! unary-expression
iinary-expression
* unary-expression
pre-increment-expression
pre-decrement-expression
cast-expression

result

With this minor modification, the C# syntax can now be used in combination with

our syntax rules above to give the complete set of syntax rules required for PACT.

Appendix C

Stack Example Program after Transla-
tion into C# with PACT 1.0

This section shows the source code of the Stack program from Chapter [f] after it is

processed and translated into C# by our PACT 1.0 tool.

Program Listing C.1 The public interface and contract of the Stack example

using System;

using System.Collections.Generic;
using System.Text;

using System.Diagnostics.Contracts;

namespace Stack{
public interface Stack {

void push(object obj);
}

public class _Stack_Public_Contract({

public static bool _pre_push(Stack owner, object obj,
ref int size){
size = owner.size();
return true;

}

224

Appendix C. Stack Example Program after Translation into C# with PACT 1.0 225

Program Listing C.2 The private interface, invariant class and private contract of the
Stack example

using System;

using System.Collections.Generic;
using System.Text;

using System.Diagnostics.Contracts;

namespace Stack({

[ContractClass (typeof (_Stack_Private_Contract_Interface))]
public interface _Stack_Private : Stack {

object pop();

[ContractClassFor (typeof (_Stack_Private))]
public abstract class _Stack_Private_Contract_Interface
_Stack_Private({

public virtual void push (object ob7j) {
}

public virtual object pop () {
return default (object);

[ContractInvariantMethod]
private void objectInvariantl () {
Contract.Invariant (size() >= 0);

Appendix C. Stack Example Program after Translation into C# with PACT 1.0 226

public class _Stack_Private_Contract{

public static bool _post_push(_Stack_Private owner, object obj,
ref int size) {
1f (! (owner.size() == size + 1)){
return false;

}
if (! (obj == owner.peek())) {
return false;

}

return true;

public static bool _pre_pop(_Stack_Private owner,
ref int size) {
size = owner.size();
if(size > 0){
return true;

}

return false;

public static bool _post_pop(_Stack_Private owner,
object result, ref int size){
if (! (owner.size() == size - 1)){
return false;

}

return true;

Appendix C. Stack Example Program after Translation into C# with PACT 1.0 227

Program Listing C.3 The implementation class of the Stack example

using System;

using System.Collections.Generic;
using System.Text;

using System.Diagnostics.Contracts;

namespace Stack({

public class _StackImpl_Implementation_Class : _Stack_Private {
object[] stack;
const int MAX_ SIZE = 10;
int top;

public void push (object obij) {
int size = default (int);
if (!_pre_push(this, obj, ref size)){
throw new Exception("Precondition failure in implementation
StackImpl, method push");
}
stack[topt++t] = obj;
if (!_post_push(this, obj, ref size)){
throw new Exception("Postcondition failure in implementation
StackImpl, method push");

public object pop () {
int size = default (int);
if (!_pre_pop(this, ref size)){
throw new Exception("Precondition failure in implementation
StackImpl, method pop");
}
object result = stack[--top];
if (!_post_pop(this, result, ref size)){
throw new Exception("Postcondition failure in implementation
StackImpl, method pop");
}

return result;

Appendix C. Stack Example Program after Translation into C# with PACT 1.0 228

public bool _pre_push(_StackImpl_Implementation_Class owner,
object obj, ref int size){
if (_Stack_Public_Contract._pre_push (owner, obj, ref size)){
return true;
}

return false;

public bool _post_push(_StackImpl_Implementation_Class owner,
object obj, ref int size){
if (!_Stack_Private_Contract._post_push(owner, obj, ref size)) {
return false;
}

return true;

public bool _pre_pop(_StackImpl_ Implementation_Class owner,
ref int size) {
if (_Stack_Private_Contract._pre_pop (owner, ref size)){
return true;
}

return false;

public bool _post_pop(_StackImpl_Implementation_Class owner,
object result, ref int size){
if (!_Stack_Private_Contract._post_pop (owner, result,
ref size)){
return false;
}

return true;

	Abstract
	List of Figures
	List of Tables
	List of Program Listings
	Acknowledgements
	Introduction
	Thesis Outline

	Background
	Object Oriented Programming
	Software Quality
	Encapsulation
	Software Design
	Software Contracts
	Software Contract Detail
	Software Contracts and Testing
	Advantages of Software Contracts

	Separation of Types and Implementations
	Inheritance
	Multiple Inheritance
	Subtyping versus Implementation Inheritance
	Covariance and Contravariance

	Survey of Existing Software Contract Technologies
	Early Specification Languages
	Eiffel
	The Eiffel Programming Language
	Cdd
	AutoTest

	.NET Contract Tools
	Spec #
	Code Contracts
	Pex

	Java Contract Tools
	JML
	iContract
	Contract Java
	Handshake
	Jass
	jContractor
	JMSAssert

	Object Constraint Language
	Comparison of Contract Technologies
	Core Contract Support
	Special Operators and Quantifiers
	Variables and Contract Structures
	The Contract Language
	Integration of Contracts into Source Code
	Side Effects in Contracts
	Precondition Visibility
	Checking of Class Invariants
	Inheritance of Contracts
	Conversion of Contracts into Runtime Checks
	Supporting Tools

	Summary

	PACT - Design for a new Contract Framework
	Core Concepts
	Separation of Types and Implementations in PACT
	Encapsulation in PACT
	Different Types of Inheritance in PACT

	Type Specifications in PACT
	Type Header
	Methods and Constructors
	Type Invariants
	Contract Specifications
	Concrete Type Methods
	Subtyping
	Type Derivation
	Restriction

	Implementations in PACT
	Implementation Header
	Methods and Constructors
	Implementation Derivation
	Contracts in Implementations

	Constructors
	Summary

	Formal Description of PACT Syntax and Typing Rules
	Syntax Definition
	Typing Rules
	Introduction to Object Calculi
	Extension of Ob1<:
	Conventions and Notation
	PACT Typing Rules
	Applying the Typing Rules in Practice

	Summary

	Implementation of PACT
	Description of PACT 1.0
	Parsing
	Building a Model of the Program
	Exporting the Model into C#

	Limitations and Future Extensions

	Discussion
	Full Separation of Types and Implementations
	Separation of Subtyping and Derivation
	Restriction
	Multiple Inheritance
	Expressiveness of Contracts
	Concrete Type Methods
	Static versus Dynamic Contract Checking
	Case Study: Singly-Linked and Doubly-Linked Nodes
	Summary

	Conclusions and Future Work
	Final Words

	References
	ENASE Paper
	Formal Syntax for PACT
	EBNF Syntax
	Types
	Implementations

	References to the C# Syntax
	Modification to the C# Syntax

	Stack Example Program after Translation into C# with PACT 1.0

