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Abstract. The timescape cosmology represents a potentially viable alternative to

the standard homogeneous cosmology, without the need for dark energy. Although

average cosmic evolution in the timescape scenario only differs substantially from that

of Friedmann-Lemâıtre model at relatively late epochs when the contribution from

the energy density of radiation is negligible, a full solution of the Buchert equations

to incorporate radiation is necessary to smoothly match parameters to the epoch

of photon decoupling and to obtain constraints from cosmic microwave background

data. Here we extend the matter-dominated solution found in earlier work to include

radiation, providing series solutions at early times and an efficient numerical integration

strategy for generating the complete solution. The numerical solution is used to directly

calculate the scale of the sound horizon at decoupling, and at the baryon drag epoch.

The constraints on these scales from the Planck satellite data yield bounds on the

timescape cosmological parameters, which are found to also agree with the best-fit

values from a recent analysis of SDSS-II supernova data, while avoiding the problem

of a primordial lithium-7 abundance anomaly.
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1. Introduction

The standard model of cosmology is based on the assumption that average cosmic

evolution is identical to that of an exactly homogeneous isotropic Friedmann–Lemâıtre–

Robertson–Walker (FLRW) model. This assumption is well justified at the epoch of

last scattering, by the evidence of the Cosmic Microwave Background (CMB) radiation.

However, small density perturbations eventually grow nonlinear, forming the observed

structures of the universe, and by the present epoch the universe is only homogeneous in

some average statistical sense when one averages on scales >∼ 100 h−1Mpc, where h is the

dimensionless parameter related to the Hubble constant by H
0
= 100h km sec−1Mpc−1.

Below this scale we observe a universe dominated in volume by voids [1]–[3], with clusters

of galaxies in walls, sheets and filaments surrounding and threading the voids.

The problem of fitting a smooth geometry to this complex hierarchical structure

entails many fundamental issues [4]–[6], including in particular: (i) how is average cosmic

evolution to be described; and (ii) how are local observables related to quantities defined

with respect to some average geometry? There has been considerable interest in these

problems in recent years (for some recent reviews see [6]–[10]) since it is possible that a

full understanding of these issues might explain the observation of cosmic acceleration

attributed to a smooth form of dark energy in the standard cosmology.

In this paper, we will focus on the timescape cosmology [11]–[13], which is a

phenomenologically viable model of the universe to the extent that it has been tested

[13]–[16]. The differences between the predictions of the timescape model and those of

the ΛCDM model for supernova luminosity distances are at the same level as current

systematic uncertainties in data reduction [15]. The timescape model fits the angular

scale of sound horizon in the CMB anisotropy data, and the Baryon Acoustic Oscillation

(BAO) scale in galaxy clustering statistics [14] but these tests have not yet been

developed to the extent that they can tightly constrain cosmological parameters.

The timescape model is based on the Buchert scheme [17, 18] for statistical averages

of a fully inhomogeneous geometry, while maintaining a statistical Copernican principle.

Since the Buchert scheme involves statistical quantities, additional physical assumptions

are required to relate its average parameters to cosmological observables [19, 20].

In the timescape model it is postulated that the relevant physical assumptions

relate to gravitational energy: in particular, to the relative regional volume deceleration

of expanding regions of different density, which provides a measure of the relative kinetic

energy of regional expansion [11, 21]. In the absence of an exact timelike Killing vector,

bound systems – which necessarily form in regions where the density is greater than

critical – can always be embedded within expanding regions bounded by a “finite infinity

surface” [4, 11, 21] within which the smoothed geometry is spatially flat, with a close

to Einstein-de Sitter expansion law.

It is postulated that in describing the statistical cosmological geometry one can

always choose a uniform Hubble flow slicing, akin to a constant mean extrinsic curvature

(CMC) slicing, in which the effects of regional scalar spatial curvature are compensated
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by the choice of the canonical time coordinate of “cosmological inertial frames”, namely

expanding regions whose spatial extent is smaller than the (negative) curvature scale

but larger than bound systems [21]. The canonical time parameter for observers

within finite infinity regions, where galaxies and other bound systems are located, is

then related to the time parameter appearing in the Buchert statistical averages by

a phenomenological lapse function. By a procedure of matching null geodesics in the

two geometries [11], solutions of the Buchert equations can be related to cosmological

observables determined by observers (such as ourselves) within bound systems where

the regional spatial curvature is different from the global statistical average.

The physical explanation of apparent cosmic acceleration in the timescape scenario

relies then not simply on the backreaction of inhomogeneities which define the average

cosmic evolution, but more on the differences of gravitational energy manifest in the

canonical clocks of observers in galaxies as compared to observers in voids, where

the spatial curvature is negative. These differences are insignificant in the early

universe which is close to homogeneous, but the differences grow cumulatively and

become especially large when voids come to dominate the volume of the universe.

Phenomenologically, apparent acceleration is found to begin when the void fraction

reaches 59% [11].

The timescape scenario faces two main challenges to be developed into a model

that can fully compete with the standard ΛCDM cosmology:

• At a formal level new mathematical constructions are required to define a modified

statistical geometry of the universe, and the methods by which it is patched to

regional geometries. The procedures of coarse-graining, and their relationship to

gravitational energy and entropy have to be well-understood.

• At an observational level, cosmological tests which rely heavily on the standard

FLRW model in data reduction procedures need to be revisited from first

principles. This applies in particular to the analysis of the power spectrum of

CMB anisotropies, and to the analysis of galaxy clustering statistics.

The present paper will take steps towards the second of these goals by fully incorporating

a radiation fluid in the solution of the Buchert equations.

At epochs prior to last scattering the universe is close to homogeneous, so that

timescape model is almost indistinguishable from the standard cosmology. In previous

work [11] estimates of the angular diameter distance of the sound horizon, and

calibrations of the baryon–to–photon ratio for big bang nucleosynthesis, were made

by simply matching the matter only solution of the Buchert equations to a spatially

flat FLRW model with matter and radiation. While this may be sufficient for simple

estimates, a more detailed treatment of cosmic evolution of the early universe after last

scattering requires that the radiation component is incorporated directly.
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2. Buchert equations for two-scale model with radiation fluid

Our primary aim in this paper is to extend the exact solution of [12, 13] to include

the contributions of relativistic species (photons and neutrinos) directly in the solution

of the Buchert equations. The matter content will therefore be taken as that of the

standard cosmology without a cosmological constant, namely matter fields in the form

of both baryonic and nonbaryonic matter treated as dust, plus photons and the standard

three generations of neutrinos.

At early epochs when radiation is dominant the universe is assumed to be very

close to homogeneous and isotropic, and thus the solution we expect will be very

close to that of a standard matter plus radiation FLRW model with negligible spatial

curvature. Furthermore at late epochs, when the solutions to the Buchert equations

differ substantially from a FLRWmodel, the contribution of the radiation energy density

to the overall energy density is negligible. At late epochs it is only the matter component

which drives the overall evolution of the universe (assuming no dark energy), and it is

the matter component which defines the density gradients. While the radiation fluid

certainly responds to density gradients, this only affects questions such as gravitational

lensing, rather than the average cosmological evolution considered here.

We will therefore treat the radiation fluid as a component with a pressure P
R
= 1

3
ρ
R

which commutes under the Buchert average,

∂t〈PR
〉 − 〈∂tPR

〉 = 〈P
R
θ〉 − 〈P

R
〉〈θ〉 = 0, (1)

throughout the evolution of the universe, rather than using the more detailed Buchert

formalism that applies to fluids with pressure [18]. Here θ is the expansion scalar

and angle brackets denote the spatial volume average of a quantity on the surface of

average homogeneity, so that 〈P
R
〉 ≡

(

∫

D
d3x
√

det 3g P
R
(t,x)

)

/V(t), where V(t) ≡
∫

D
d3x
√

det 3g is the average spatial volume, 3gij being the 3-metric. The detailed

Buchert formalism for general averaging and backreaction in fluids with pressure may

be of relevance for deriving further results in a perturbation theory approach in the

early universe. In this paper, however, we confine ourselves to finding a smooth solution

which makes a transition from radiation domination to the late epoch matter-dominated

solution of the timescape cosmology [11]–[13].

With our assumptions the radiation fluid does not contribute to the backreaction,

and the Buchert equations [17, 18] may then be written

3 ˙̄a
2

ā2
= 8πG

(

〈ρ
M
〉+ 〈ρ

R
〉
)

− 1

2
〈R〉 − 1

2
Q, (2)

3¨̄a

ā
= −4πG

(

〈ρ
M
〉+ 2〈ρ

R
〉
)

+Q, (3)

∂t〈ρM
〉+ 3

˙̄a

ā
〈ρ

M
〉 = 0, (4)

∂t〈ρR
〉+ 4

˙̄a

ā
〈ρ

R
〉 = 0, (5)

∂t
(

ā6Q
)

+ ā4∂t
(

ā2〈R〉
)

= 0, (6)
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where an overdot denotes a time derivative for volume-average observers “comoving”

with the dust of density ρ
M
. Here ā(t) ≡

[

V(t)/V(t
0
)
]1/3

is the volume-average scale

factor, 〈R〉 is the average spatial curvature scalar and

Q = 2

3

(

〈θ2〉 − 〈θ〉2
)

− 2〈σ2〉, (7)

is the kinematic backreaction, which combines the variance in volume expansion and

the shear scalar σ2 = 1

2
σαβσ

αβ. We use units in which c = 1. Equation (6) is a

condition needed to ensure that (2) is the integral of (3). The integrability condition (6)

constrains just one of the two unknowns Q and 〈R〉 in general. In the timescape model

an ensemble of wall and void regions is further specified, thereby constraining 〈R〉 and
giving a coupled set of differential equations which can be solved.

The notion of “comoving with the dust” is reinterpreted in the timescape approach.

Since particle geodesics cross during structure formation one must necessarily coarse-

grain over scales larger than galaxies to define “dust” in cosmology. However, galaxies

are not isolated particles whose masses remain invariant from last-scattering until today.

In the timescape approach it is assumed that “dust” can only be defined as expanding

fluid cells coarse-grained at a scale a few times larger than that of the largest typical

nonlinear structures, so that the mass contained in a dust cell does not change on

average. Given that the largest typical nonlinear structures are voids of diameter

30 h−1Mpc [1, 2], we take the coarse-graining scale or statistical homogeneity scale to be

comparable to the BAO scale, 100 h−1Mpc. The Buchert time parameter is therefore

regarded as a collective coordinate of such a coarse-grained “dust” cell. Equations (2)–

(6), which involve derivatives with respect to Buchert time, represent the evolution of a

statistical geometry. The Buchert time parameter would only be directly measured by a

volume-average isotropic observer, namely an observer who measures an isotropic CMB

and whose local regional spatial curvature scalar happens to match the scalar curvature

averaged over a horizon volume, 〈R〉.
Following references [11, 12] we assume that the present epoch horizon volume,

V = Viā
3, is a disjoint union of void and wall regions characterized by scale factors av

and aw related to the volume-average scale factor by

ā3 = fviav
3 + fwiaw

3 (8)

where fvi and fwi = 1 − fvi represent the fraction of the initial volume, Vi, in void and

wall regions respectively at an early unspecified epoch. The voids are assumed to have

negative spatial curvature characterized by 〈R〉v ≡ 6kv/av
2 with kv < 0, while the wall

regions [11] are on average spatially flat, 〈R〉w = 0.

In previous work the initial volume was assumed to be prescribed at the surface of

last scattering. Furthermore, since finite infinity regions are only well–defined once

gravitational collapse results in the formation of bound structures, the operational

definition of fwi and fvi is complex. Following [11]–[13] we assume that fwi is close

to unity, consistent with the universe at last scattering being very close to a spatially

flat FLRW model. The tiny void fraction fvi ≪ 1 then represents that fraction of the
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present epoch horizon volume in which underdense perturbations were not compensated

by overdense perturbations at last scattering. It is convenient to rewrite (8) as

fv(t) + fw(t) = 1, (9)

where fw(t) = fwiaw
3/ā3 is the wall volume fraction and fv(t) = fviaw

3/ā3 is the void

volume fraction. Since 〈ρ
M
〉 = ρ̄

M0
(ā/ā

0
)−3 and 〈ρ

R
〉 = ρ̄

R0
(ā/ā

0
)−4, where the subscript

zero refers to quantities evaluated at the present epoch, after solving (4) and (5) in the

standard fashion the remaining independent Buchert equations in (2)–(6) may be written

as

˙̄a
2

ā2
+

ḟv
2

9fv(1− fv)
− α2fv

1/3

ā2
=

8πG

3

(

ρ̄
M0

ā3
0

ā3
+ ρ̄

R0

ā4
0

ā4

)

, (10)

f̈v +
ḟv

2
(2fv − 1)

2fv(1− fv)
+ 3

˙̄a

ā
ḟv −

3α2fv
1/3(1− fv)

2ā2
= 0, (11)

where α2 ≡ −kvfvi
2/3 > 0. We note that (11) is unchanged from the corresponding

equation in the matter only case [11, 12]. The acceleration equation (3) which may be

derived from (10) and (11) is given by

¨̄a

ā
=

2ḟv
2

9fv(1− fv)
− 4πG

3

ā3
0

ā3

[

ρ̄
M0

+ 2ρ̄
R0

ā
0

ā

]

, (12)

where have made the substitutions [11]

〈R〉 ≡ 6kvfvi
2/3fv

1/3

ā2
, Q ≡ 2ḟv

2

3fv(1− fv)
. (13)

The first Buchert equation (10) is the equivalent of the Friedmann equation for the

bare Hubble parameter, which from (8) is given by

H̄ ≡
˙̄a

ā
= fwHw + fvHv , (14)

where Hw ≡ ȧw/aw and Hv ≡ ȧv/av are the Hubble parameters of the walls and voids

respectively as determined by the clocks of volume–average observers. These satisfy an

inequality

hr ≡ Hw/Hv < 1 . (15)

It is an assumption of the timescape model that while any observer with a single

clock will always determine wall regions to be expanding at a slower rate than void

regions, the actual expansion rates depend on time parameters which differ on account

of gravitational energy gradients between regions of different spatial curvature. In

particular, observers in the denser (spatially flat) wall regions use the wall time

parameter dτw = dt/γ̄, where

γ̄ = 1 +

(

1− hr

hr

)

fv (16)

is the phenomenological lapse function relating the clock of the wall observer to that of

a volume–average observer.
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Equation (10) is also conveniently written in the form

Ω̄M + Ω̄R + Ω̄k + Ω̄
Q
= 1, (17)

where

Ω̄M =
8πGρ̄

M0
ā3
0

3H̄
2
ā3

, (18)

Ω̄R =
8πGρ̄

R0
ā4
0

3H̄
2
ā4

, (19)

Ω̄k =
α2fv

1/3

ā2H̄
2

, (20)

Ω̄
Q

=
−ḟv

2

9fv(1− fv)H̄
2
=

−(1− fv)(1− γ̄)2

fvγ̄
2

, (21)

are the volume–average or “bare” density parameters of matter, radiation, average

spatial curvature and kinematic backreaction respectively. It would be straightforward

to add a cosmological constant term to the right hand side of (10) with the addition

of a further density parameter Ω̄
Λ
= Λ/(3H̄

2
), and in fact the equivalent solution with

matter and a cosmological constant (but no radiation) has been derived in [22, 23].

Since we are investigating the possibility of a viable cosmology without dark energy, we

set Ω̄
Λ
= 0.

If we evaluate (17)–(21) at the present epoch we find that the present value of the

phenomenological lapse parameter is given in terms of the other parameters by

γ̄
0
=

√
1− fv0

(√
1− fv0 +

√

fv0(1− fv0)(Ω̄0
− 1)

)

1− fv0Ω̄0

, (22)

where

Ω̄
0
≡ Ω̄

M0
+ Ω̄R0

+ Ω̄
k0
, (23)

which satisfies 1 < Ω̄
0
< f−1

v0 . If we drop the subscript zero in (22) and (23) we obtain

a generic relation for γ̄ in terms of Ω̄M , Ω̄R and Ω̄k at any epoch.

The bare cosmological parameters are not those determined by observers in galaxies

in wall regions where the local spatially flat curvature is different to the volume–average

one. Instead, using a matching procedure [11], the relevant dressed Hubble parameter

is determined to be

H = γ̄H̄ − γ̄−1 ˙̄γ . (24)

The dressed matter density parameter Ω
M

≡ γ̄3Ω̄M takes numerical values closer to

the corresponding parameter for the concordance ΛCDM model when evaluated at the

present epoch.
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3. Solution for the two-scale model with radiation

In the case of purely nonrelativistic matter, ρR = 0, an analytic solution of the ODEs

(10), (11) is readily found [12, 13]. This is in fact a consequence of the energy density

scaling as a simple power of the total volume, as do the wall and void fractions. In the

present case, which is not so simple, no further analytic integrals of the ODEs are easily

obtained.

3.1. Early time series solution

Although an exact analytic solution to (10) and (11) is not to be found, a series solution

in powers of (H̄
0
t)1/2 is readily obtained in the early time limit t → 0. Here H̄

0
≡ H̄(t

0
)

is the bare Hubble constant. We find

ā

ā
0

=
√
2 Ω̄

1/4

R0
(H̄

0
t)1/2 +

Ω̄
M0

(H̄
0
t)

3 Ω̄
1/2

R0

−
7Ω̄

2

M0
(H̄

0
t)3/2

72
√
2 Ω̄

5/4

R0

+





5 Ω̄
3

M0

216 Ω̄
3/2

R0

+
8ᾱ3

5
√
5





(H̄
0
t)2

Ω̄
1/2

R0

−





91 Ω̄
3

M0

6912
√
2 Ω̄

3/2

R0

+
7
√
2 ᾱ3

75
√
5





Ω̄
M0

(H̄
0
t)5/2

Ω̄
5/4

R0

+





Ω̄
3

M0

243 Ω̄
3/2

R0

+
604 ᾱ3

8925
√
5





Ω̄
2

M0
(H̄

0
t)3

Ω̄
2

R0

+ · · · (25)

fv
ᾱ3

=
2
√
2(H̄

0
t)3/2

5
√
5 Ω̄

3/4

R0

− 8 Ω̄
M0

(H̄
0
t)2

25
√
5 Ω̄

3/2

R0

+
6617 Ω̄

2

M0
(H̄

0
t)5/2

25500
√
10 Ω̄

9/4

R0

−





127
√
5 Ω̄

3

M0

5967 Ω̄
3/2

R0

+
576 ᾱ3

8125





(H̄
0
t)3

Ω̄
3/2

R0

+





8811748927 Ω̄
3

M0

100086480000
√
10 Ω̄

3/2

R0

+
88522

√
2 ᾱ3

1503125





Ω̄
M0

(H̄
0
t)7/2

Ω̄
9/4

R0

+ · · · (26)

where ᾱ ≡ α/(ā
0
H̄

0
) = Ω̄

1/2

k0
f
−1/6
v0 ≃ 3f

1/3
v0 /(2+ fv0), which is a parameter close to unity,

taking values in the range 0.973 < ᾱ < 0.999 for solutions with 0.6 < fv0 < 0.9. When

α = 0, then fv = 0 and (25) reduces to the standard spatially flat FLRW solution for

matter plus radiation, ā
FLRW

. More generally we note that as t → 0, then fv → 0 and

the series solution (25) differs from the series solution for ā
FLRW

at the level of terms

O(ᾱ3Ω̄
3/2

R0
/Ω̄

3

M0
) ≪ 1 and smaller in the coefficients of the powers (H̄

0
t)n, n ≥ 2.

Using (25), (26) series solutions for all other relevant quantities can be obtained.

For example, the void scale factor av= āfv
1/3fvi

−1/3 takes the form

av

a
vi

=
2√
5
(H̄

0
t) +

√
2 Ω̄

M0

15
√
5 Ω̄

3/4

R0

(H̄
0
t)3/2 −

209 Ω̄
2

M0

5100
√
5 Ω̄

3/2

R0

(H̄
0
t)2
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+





53621
√
2 Ω̄

3

M0

3978000
√
5 Ω̄

3/2

R0

+
8
√
2 ᾱ3

1625





(H̄
0
t)5/2

Ω̄
3/4

R0

+





261638807 Ω̄
3

M0

28149322500
√
5 Ω̄

3/2

R0

+
6716 ᾱ3

901875
√
5





Ω̄
M0

ᾱ(H̄
0
t)3

Ω̄
3/2

R0

+ · · · (27)

where a
vi

≡ fvi
−1/3ā

0
ᾱ, which to leading order is linear in H̄

0
t as t → 0, like a Milne

universe, but differs at higher order. The wall scale factor aw= ā(1− fv)
1/3fwi

−1/3 takes

the form

aw

a
wi

=
√
2 Ω̄

1/4

R0
(H̄

0
t)1/2 +

Ω̄
M0

(H̄
0
t)

3 Ω̄
1/2

R0

−
7Ω̄

2

M0
(H̄

0
t)3/2

72
√
2 Ω̄

5/4

R0

+





5 Ω̄
3

M0

216 Ω̄
3/2

R0

+
4ᾱ3

75
√
5





(H̄
0
t)2

Ω̄
1/2

R0

−





91 Ω̄
3

M0

6912
√
2 Ω̄

3/2

R0

+
7
√
2 ᾱ3

225
√
5





Ω̄
M0

(H̄
0
t)5/2

Ω̄
5/4

R0

+





Ω̄
3

M0

243 Ω̄
3/2

R0

+
11927 ᾱ3

401625
√
5





Ω̄
2

M0
(H̄

0
t)3

Ω̄
2

R0

+ · · · (28)

where a
wi

= fwi
−1/3ā

0
, which is very close to the background solution (25), differing only

at O[(H̄
0
t)2].

The relative expansion rate of walls and voids, and the phenomenological lapse

function, are found to be

hr =
1

2
+

3 Ω̄
M0

(H̄
0
t)1/2

20
√
2 Ω̄

3/4

R0

−
463 Ω̄

2

M0
(H̄

0
t)

6800 Ω̄
3/2

R0

+





332167 Ω̄
3

M0

5304000
√
2 Ω̄

3/2

R0

+
ᾱ3

65
√
5





(H̄
0
t)3/2

Ω̄
3/4

R0

−





1452551123 Ω̄
3

M0

50043240000 Ω̄
3/2

R0

+
7329 ᾱ3

120250
√
5





Ω̄
M0

(H̄
0
t)2

Ω̄
3/2

R0

+ · · · , (29)

γ̄ = 1 +
2
√
2 ᾱ3

5
√
5 Ω̄

3/4

R0

(H̄
0
t)3/2 − 14 Ω̄

M0
ᾱ3

25
√
5 Ω̄

3/2

R0

(H̄
0
t)2 +

3781 Ω̄
2

M0
ᾱ3

5100
√
10 Ω̄

9/4

R0

(H̄
0
t)5/2

−





142189 Ω̄
3

M0

298350
√
5 Ω̄

3/2

R0

+
736 ᾱ3

8125





ᾱ3(H̄
0
t)3

Ω̄
3/2

R0

+ · · · (30)

In [11] the matter–only solution was joined to the spatially flat FLRW solution

with matter and radiation, which corresponds to the ᾱ = 0 limit above. We see that

all the assumptions made in the matching procedure were correct, with one exception.

In [11] it was assumed that as t → 0 we would have hr → 1, whereas it turns out that

hr → 1

2
. Actually, this small difference in assumptions makes no difference to any of

the physical conclusions derived in [11], since the late time solution quickly reaches a

tracking limit which is largely independent of the initial conditions. Furthermore, in

deriving constraints from the early universe, such as primordial nucleosynthesis bounds,
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calculations in [11] only required the property that γ̄ → 1 and fv → 0 as t → 0,

which remains correct in the full solution with radiation. The exact dependence of hr as

t → 0 may be of relevance for determination of features of the matter power spectrum.

However, such features remain to be determined.

It is possible to invert the series (25) to obtain an expression for H̄
0
t in terms of a

series in ā/ā
0
at very early times. This enables one to determine the epoch of matter–

radiation equality, for example, when āeq/ā0
= Ω̄R0

/Ω̄
M0

. It turns out that the terms

in ᾱ introduce differences of less than 0.1% from the leading order spatially flat FLRW

result,‡ H̄
0
teq = 2(2−

√
2)Ω̄

3/2

R0
/(3Ω̄

2

M0
).

3.2. Numerical solutions and results

We have determined further terms in the series expansions (25), (26) and have

established that they provide accurate solutions well beyond the epoch of recombination,

when compared to numerical solutions. For practical investigations, however, it is

convenient to use the series expansions to provide initial conditions at an early time,

and to integrate the ODEs (10) and (11) numerically. We begin integrations after the

epoch of nucleosynthesis when the universe is radiation dominated but the number of

relativistic species is no longer affected by phase transitions, e.g., at H̄
0
t ≃ 5 × 10−11

when the universe is about a year old.

100 101 102 103 104 105

z + 1

0.0

0.2

0.4

0.6

0.8

Ω̄

Ω̄M

Ω̄R

Ω̄K

Ω̄Q

100 101 102 103 104 105
z̄ + 1

Figure 1. Bare density parameters (18)–(21) for the full numerical solution, as a

function of z+1 = γ̄ā
0
/(γ̄

0
ā), for the dressed parameters H

0
= 61.7 km sec−1Mpc−1,

Ω
M0

= 0.410. (The redshift, z, is the dressed parameter measured by wall observers,

and z̄ is the bare redshift.) The vertical bar at 1094.88 < z < 1100.46 represents the

width of the uncertainty in the redshift of decoupling for our chosen range of η
Bγ

.

‡ Here H̄
0
is, however, the bare Hubble constant which differs from the dressed Hubble constant, H

0
,

according to H
0
= (4f2

v0 + 4fv0 + 4)H̄
0
/[2(2 + fv0)] [12, 13].
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In figure 1 we display the variation of the bare density parameters as a function

of redshift for one choice of (H
0
,Ω

M0
) values which fit cosmological data well. For

redshifts z <∼ 10 the bare density parameters are essentially indistinguishable from those

computed for the matter-only solution [11]–[13]. The full matter plus radiation solution

is certainly required to make reliable estimates of Ω̄M and Ω̄R at redshifts larger than

that corresponding to the maximum of Ω̄M , i.e., at z >∼ 50.

In earlier work we joined the matter-dominated solution [12] to a spatially flat

FLRW with matter plus radiation at the surface of last scattering [11, 14, 15]. This

allowed a rough estimate of the angular diameter distance of the sound horizon, and of

the effective comoving BAO scale which is independently measured in galaxy clustering

statistics. Since the approximations were rough we simply took zdec ≃ 1100 as an

estimate of the epoch of photon decoupling, θ∗ ≃ 0.01 rad as an estimate of the angular

acoustic scale, and 104 h−1Mpc as an estimate of the effective comoving BAO scale based

on measurements for the standard cosmology known at the time [11, 14].

Given a full numerical solution including radiation, we can determine both the

epoch of photon decoupling and the subsequent baryon drag epoch directly in parallel to

our numerical integrations, using the standard physics of the recombination era adapted

to the timescape model, as discussed in Appendix B. The volume–average sound horizon

scale at any epoch is given by

D̄s =
ā(t)

ā
0

c√
3

∫ x̄dec

0

dx̄

x̄2H̄
√

1 + 0.75 x̄ Ω̄
B0
/Ω̄γ0

, (31)

where Ω̄γ0 = 2g−1
∗ Ω̄R0

is the volume-average photon density parameter at the present

epoch and g∗ = 3.36 is the relative degeneracy factor of relativistic species. We fix

the value of Ω̄
B0

= ηBγmp
n̄γ0 in terms of the proton mass, m

p
, the present epoch

volume–average photon density, n̄γ0, and the baryon–to–photon ratio, ηBγ . For BAO

measurements, the relevant comoving size of the sound horizon is that at the baryon

drag epoch, which occurs when c τ
d
≃ 1, where τ

d
is the drag depth (B.12).

Examples of the estimation of the decoupling redshift, zdec, from the peak of the

visibility function are shown in figure 2 for fixed values of (H
0
, Ω

M0
), with three

different values of the baryon–to–photon ratio, giving rise to different values of Ω̄
B0

(or of Ω
B0

= γ̄3

0
Ω̄

B0
). It is a feature of the timescape model that for a given baryon–

to–photon ratio, the baryon fraction at decoupling is increased relative to the standard

ΛCDM model. Thus it is possible to match features of the acoustic peaks [11] for

baryon–to–photon ratios for which there is no primordial lithium abundance anomaly

[24]. In keeping with past work [11, 14], we perform calculations for the range

ηBγ = (5.1 ± 0.5) × 10−10 on the basis of constraints from light element abundances

alone§ [25, 26].

§ A higher value is assumed in the ΛCDM fits of CMB data, giving rise to the lithium abundance

anomaly. While there is an intrinsic tension in the light element data between abundances of deuterium

and lithium-7 [26], for the range of η
Bγ

we adopt here, all abundances fall within 2σ.
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Figure 2. The visibility function (B.10) is plotted as a function of the dressed

redshift, z, (and also of z̄). For this example, H
0

= 61.7 km sec−1 Mpc−1 (or

H̄
0
= 50.1 km sec−1 Mpc−1), Ω

M0
= 0.410 (or Ω̄

M0
= 0.167), with three different

values of the baryon–to–photon ratio: 1010η
Bγ

= {4.6, 5.1, 5.6} (which correspond to

Ω̄
B0

= {0.0274, 0.0303, 0.0333} respectively).

Using the procedures discussed in Appendix A we have conducted numerical

integrations over the parameter space to investigate the extent to which the timescape

model parameters can be constrained using recent Planck data [27]. We see from (A.1)–

(A.3) that since the curvature parameter ᾱ can be absorbed into a rescaling of the

time variable there are effectively three independent parameters, H̄ , α
M0

and α
R0
, or

equivalently H̄
0
, Ω̄

M0
and Ω̄R0

. Since the bare radiation density parameter is constrained

by measurements of the CMB temperature, this leaves two independent parameters of

interest. We can take these to be either the bare parameters, H̄
0
and Ω̄

M0
, or equivalently

the dressed Hubble constant, H
0
= γ̄

0
H̄

0
− γ̄−1

0
˙̄γ
∣

∣

0
, and the dressed matter density

parameter Ω
M0

= γ̄3

0
Ω̄

M0
. For the figures below we will use the dressed parameters,

since H
0
ideally corresponds to our measured average Hubble constant, while Ω

M0
is

numerically closer to that of the homogeneous ΛCDM cosmology.

In figure 3 and figure 4 we display contours of the decoupling redshift, zdec, and

the baryon drag redshift, zdrag, for the case of a fixed ηBγ = 5.1 × 10−10, but with the

two independent parameters (H
0
, Ω

M0
) varying. In each case we display the dressed

redshifts determined by wall observers such as ourselves.

In figure 5 we display two sets of contours in the (H
0
, Ω

M0
) parameter space:

firstly, parameters which match the acoustic scale of the sound horizon θ∗ = 0.0104139

determined from the Planck satellite data [27] to within ±2%, ±4% or ±6%; and

secondly parameters which similarly match the present effective comoving scale of the
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Figure 3. Contours of decoupling redshift, zdec, in the space of dressed parameters (h,

Ω
M0

), (where H
0
= 100 hMpc). Contours are shown for the case η

Bγ
= 5.1× 10−10.
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Figure 4. Contours of the redshift of the baryon drag epoch, zdrag, in the space of

dressed parameters (h, Ω
M0

), (where H
0
= 100 hMpc). Contours are shown for the

case η
Bγ

= 5.1× 10−10.

sound horizon at baryon drag epoch as determined by the standard ΛCDM model

analysis of the Planck data, namely‖ 98.88 h−1Mpc [27]. This figure updates figure

4 of [15] both in terms of using the latest data [27], and also in using our new full

matter–radiation solution to determine the relevant scales.

The constraints obtained from figure 5 are not statistical constraints of the sort

‖ Since the Hubble constant H
0
= 67.11 km sec−1 Mpc−1 determined from the Planck satellite is a

fit to the ΛCDM model, any effective present comoving scale must be given in units h−1Mpc, as the

timescape model will generally yield a different value for H
0
. In all cases, we use the values determined

from the Planck data only.
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Figure 5. Contours of (h, Ω
M0

) parameter values for which the angular diameter

of the sound horizon at decoupling matches the angular scale θ∗ = 0.0104139 [27] to

within ±2%, ±4% and ±6% are shown in blue (upper left to lower right). Contours

of parameter values for which the present-day effective comoving scale of the sound

horizon at the baryon drag epoch matches the value 98.88 h−1Mpc [27] are shown in

red (lower left to upper right). In each case the baryon–to–photon ratio is assumed to

be in the range 4.6 < 1010η
Bγ

< 5.6.

that could be obtained by fully fitting the Planck data directly to the timescape model.

However, the angular scale in particular is unlikely to differ much from that of the

FLRW model analysis, and the 2% constraint is a reasonable estimate of uncertainty.

There is greater uncertainty in the determination of the BAO scale since the timescape

model involves a potential recalibration of the relative proportions of baryonic and

nonbaryonic dark matter which needs to be accounted for in fitting the acoustic peaks

in CMB anisotropy data¶.
If we nonetheless take the 2% constraint on θ∗ and the 6% constraint on rdrag as

estimates of the uncertainty, then this corresponds to the constraints H
0
= 61.7 ±

3.0 km sec−1Mpc−1, Ω
M0

= 0.41+0.05
−0.06. Constraints on other parameters with these

bounds are given in table 1. It is interesting to note that the constraints on (H
0
, Ω

M0
)

are well in agreement+ with the constraints obtained from the analysis of 272 SDSS-II

supernova distances [28] in the timescape cosmology, as shown in the second panel of

figure 8 of [15]. The timescape model therefore remains competitive.

Even if the constraints on rdrag were to change in a detailed fit of the acoustic

¶ The ratio of the nonbaryonic cold dark matter density to the baryonic density found for the ΛCDM

model with the Planck data [27], Ω
C0

/Ω
B0

= 5.4±0.2, is well within the range found for the timescape

model in table 1, which justifies the approach we have taken.
+ For supernova analysis constraints on H

0
are subject to an overall normalization of the distance scale.

In the present case, using the normalization chosen by the authors of [28] the constraints on both H
0

and Ω
M0

from supernovae [15] coincide with parameters which fit the Planck data, as given in table 1.
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Table 1. Constraints on the cosmological parameters of the timescape model obtained

from a ±2% match to the angular scale, θ∗, of the sound horizon at decoupling; and to

a ±6% match to the effective comoving scale, rdrag, of the sound horizon at the baryon

drag epoch, using recent values from the Planck satellite analysis [27].

Parameter Range

Dressed Hubble constant H
0

61.7± 3.0 km/(sec ·Mpc)

Dressed matter density parameter Ω
M0

0.41+0.06
−0.05

Dressed baryon density parameter Ω
B0

0.074+0.013
−0.011

Age of universe (galaxy/wall observer) τw0 14.2± 0.5Gyr

Apparent acceleration onset redshift zacc 0.46+0.26
−0.25

Present void fraction fv0 0.695+0.041
−0.051

Present phenomenological lapse function γ̄
0

1.348+0.021
−0.025

Bare Hubble constant H̄
0

50.1± 1.7km/(sec ·Mpc)

Bare matter density parameter Ω̄
M0

0.167+0.036
−0.037

Bare baryon density parameter Ω̄
B0

0.030+0.007
−0.005

Bare radiation density parameter Ω̄
R0

(

5.00+0.56
−0.48

)

× 10−5

Bare curvature parameter Ω̄
k0

0.862+0.024
−0.032

Bare backreaction parameter Ω̄
Q0

−0.0293+0.0033
−0.0036

Nonbaryonic/baryonic matter densities ratio Ω̄
C0

/Ω̄
B0

4.6+2.5
−2.1

Age of universe (volume-average observer) t
0

17.5± 0.6Gyr

peaks to the timescape model, we can at least rule out parameters by determining the

ratio of matter to radiation densities at the epoch of photon decoupling. In figure 6 we

display contours of the Ω̄M/Ω̄R ratio at zdec. While there is no direct constraint on the

degree to which Ω̄M/Ω̄R can differ from that of the concordance ΛCDM cosmology, it

is certainly the case that matter–radiation equality has to occur well before decoupling

in order that the standard physics of recombination applies. In this manner we can rule

out parameters Ω
M0

< 0.2 if H
0
< 65 km sec−1Mpc−1. For the parameters of table 1,

the ratio Ω̄M/Ω̄R ≃ 2 at decoupling, which differs from the ratio Ω̄M/Ω̄R ≃ 3 for the

concordance ΛCDM model.

As compared to earlier best-fit values [14], the best-fit age of the universe with the

new constraints, τw0 = 14.2 ± 0.5Gyr, is somewhat closer to the ΛCDM concordance

cosmology value.

4. Conclusion

In this paper we have derived solutions to the Buchert equations [17, 18] with matter

and a radiation fluid. The solutions smoothly interpolate between a very early epoch,

in which the relevant physics was that of the standard hot big bang with an almost

homogeneous FLRW background, and a late time universe in which the average evolution

is not that of a FLRW model even though a statistical notion of homogeneity persists
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Figure 6. Contours of Ω̄
M
/Ω̄

R
at zdec, in the space of dressed parameters (h, Ω

M0
),

(where H
0
= 100 hMpc). The shaded region with Ω̄

M
/Ω̄

R
< 1 is certainly ruled out.

when one averages on >∼ 100 h−1Mpc scales. Both the early time series solutions (25),

(26) and the full numerical integrations can produce solutions of the Buchert equations

for a late-time ensemble of spatially flat wall regions and negatively curved void regions

irrespective of the observational interpretation. Our specific calibration of parameters is

that relevant to the timescape cosmology [11]–[13] in which the Buchert time parameter

for the statistical volume-average geometry is assumed to differ from that of observers in

bound structures, on account of gravitational energy gradients which become significant

once nonlinear structures such as voids dominate average cosmic evolution.

The timescape cosmology is phenomenologically successful, to the extent that it

has been tested, and further tests require that its methodology is developed in detail.

This paper takes key steps towards a full analysis of the acoustic peaks in the CMB

anisotropy spectrum. The new solutions have enabled us to directly determine the

epochs of photon–electron decoupling, zdec, and of photon–baryon Compton scattering

decoupling, zdrag, and consequently the scale of the sound horizon at these epochs.

With these refinements the parameters of table 1 which agree with both the acoustic

scale, θ∗, and the BAO scale, rdrag, from the Planck data [27] remain in concordance

with the outcome [15] of the fit of 277 supernovae distances from the SDSS-II survey

[28]. Furthermore, this agreement is obtained for values of the baryon–to-photon ratio,

ηBγ , for which the primordial lithium-7 abundance is not anomalous. The timescape

model therefore remains a viable competitor to the standard cosmology.

A detailed treatment of the acoustic peaks in the CMB data may of course still

challenge the timescape cosmology, as it will certainly further tighten the constraints.

Work on this problem, which requires a revisiting of CMB data analysis from first

principles, is in progress. As shown in figure 6, the new results in the present paper

already allow us to rule out portions of the parameter space, such as Ω̄
M0

< 0.2 if
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H
0
< 65 km sec−1Mpc−1, which were still admissible in previous studies [14, 15].

Interestingly, the tightening of constraints in the present paper has also pushed the

value of the age of the universe (in wall time) closer to that of the ΛCDM cosmology.

It should be stressed that the value of the average Hubble constant, H
0

=

61.7 ± 3.0 km sec−1Mpc−1, inferred above∗ is a model–dependent fit to the timescape

cosmology in the same way that the value quoted by the Planck satellite team, namely

67.4 ± 1.4 km sec−1Mpc−1 [27], is a model–dependent fit to the FLRW cosmology.

There has been much interest about the apparent discrepancy between this ΛCDM

model value of H
0
determined from the Planck satellite and the somewhat larger values

from local measurements [29]. In the timescape model, a larger value of the Hubble

parameter is expected below the scale of statistical homogeneity♯, and this may impact

the calibration of the distance scale. Such issues are further discussed in a separate

paper [30]. While no single piece of evidence provides conclusive proof of the timescape

model, a number of recent observations which are puzzles for the standard cosmology

– the primordial lithium-7 abundance; the local versus global values of H
0
; a possible

nonkinematic component to the CMB dipole [30, 31] – are consistent with expectations

of the timescape cosmology. The results of the present paper provide a further stepping

stone to even more detailed tests of the timescape scenario.
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Appendix A. Numerical integration

For the purposes of numerical integration it is convenient to write the derivatives with

respect to x ≡ ā/ā
0
, yielding the system of three coupled ODEs

dt′

dx
=

x
√
1 + x2F 2

√

fv
1/3x2 + α

M0
x+ α

R0

, (A.1)

dfv
dx

= 3F
√

fv (1− fv), (A.2)

dF

dx
=

(1 + x2F 2)
[

fv
−1/6√1− fv + F

(

α
M0

+ 2α
R0
x−1
)

]

2
(

fv
1/3x2 + α

M0
x+ α

R0

) − F

(

3

x
+ 2xF 2

)

, (A.3)

∗ For the timescape model this uncertainty is not yet statistical, as discussed above. Statistical

uncertainties obtained from a detailed analysis of the Doppler peaks are likely to be of the same

order as those quoted by the Planck team for the ΛCDM model [27].
♯ For the parameter values of table 1 the maximum value of the Hubble constant measured locally

by a wall/galaxy observer to the other side of a void below the statistical homogeneity scale is
3
2
H̄

0
= 75.2+2.0

−2.6 km sec−1 Mpc−1.
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in the dimensionless variables t′ ≡ ᾱH̄
0
t, fv and F ≡ ∂xfv/[3

√

fv (1− fv)], where

α
M0

≡ ᾱ−2Ω̄
M0

and α
R0

≡ ᾱ−2Ω̄R0
. The wall time parameter, τw =

∫

γ̄−1dt, may be

determined also by integrating the equation

ᾱH̄
0

dτw
dx

=
1− fv (1 + x2F 2)

1− fv + xF
√

fv (1− fv)

dt′

dx
. (A.4)

Given an initial estimate of fv0, the tracker solution [12, 13] is used to estimate

Ω̄
M0

≃ 4(1 − fv0)/(2 + fv0)
2, Ω̄

k0
≃ 9fv0/(2 + fv0)

2, ᾱ2 ≃ 9f
2/3
v0 /(2 + fv0)

2 and

α
M0

= 4(1 − fv0)/[9f
2/3
v0 ]. Since Ω̄R0

= κg∗T0

4/(H̄
0
2γ̄4

0
), where κ ≡ 4π3GkB

4/(45~3c5),

g∗ = 3.36 and T
0
= 2.725K, then given a value of H̄

0
and the tracker solution estimates

for Ω̄
M0

and Ω̄
k0

we can solve (22) to estimate γ̄
0
, Ω̄R0

and α
R0
.

Initial values of the variables are now determined at an early initial time using the

series solutions (25), (26), or the equivalent series in x:

H̄
0
ᾱ t =

x2

2α
1/2
R0

− α
M0

x3

6α
3/2
R0

+
3α2

M0
x4

32α
5/2
R0

−
(

2
√
5

125α2

R0

+
α3

M0

16α
7/2
R0

)

x5

+

(

7
√
5α

M0

300α3

R0

+
35α4

M0

768α
9/2
R0

)

x6 −
(

402
√
5α2

M0

14875α4

R0

+
9α5

M0

256α
11/2
R0

)

x7 + · · · (A.5)

fv =

√
5x3

25α
3/2
R0

− 9
√
5α

M0
x4

250α
5/2
R0

+
639

√
5α2

M0
x5

21250α
7/2
R0

−
(

6

325α3

R0

+
5553

√
5α3

M0

221000α
9/2
R0

)

x6

+

(

11106α
M0

300625α4

R0

+
295461027

√
5α4

M0

13900900000α
11/2
R0

)

x7 + · · · (A.6)

We then integrate the ODEs (A.1)–(A.4) until the present epoch is reached at x
0
= 1,

giving the exact numerical values t′
0
= ᾱH̄

0
t
0
, fv0, F

0
and ᾱH̄

0
τw0

. We also have

γ̄
0
=
[

1− fv0 + F
0

√

fv0(1− fv0)
]

/
[

1− fv0(1 + F
0

2)
]

.

Only two parameters, α
M0

and α
R0
, appear in the ODEs (A.1)–(A.3). Solutions with

fixed α
M0

, α
R0

therefore represent a class of solutions which are physically equivalent

under a rescaling of the parameters ᾱ, Ω̄
M0

and Ω̄R0
, while keeping the ratio Ω̄

M0
/Ω̄R0

fixed. A general solution does not have H̄ = H̄
0
at x

0
= 1; to impose this condition

we identify the right hand side of (A.1) at x
0
= 1 with ᾱ, from which precise values of

Ω̄
M0

= ᾱ2α
M0

, Ω̄R0
= ᾱ2α

R0
and H̄

0
t
0
may be determined.

Appendix B. Recombination and baryon drag epoch

In [11] the epoch of photon decoupling was set by the rough condition consistent with

the Saha equation that z
dec

+ 1 ≃ 1100 as measured by a wall observer, or equivalently

x
dec

= z̄
dec

+ 1 = γ̄
0
(1 + z

dec
)/γ̄

dec
, giving x

dec
≃ 1518 if γ̄

0
= 1.38, given that γ̄

dec
≃ 1.

In the present paper, we determine the epoch of photon decoupling more precisely,

using the standard physics of recombination as described, for example, by Weinberg [32].

Since the universe is very close to that of the standard FLRW model at this epoch there

is no difference in any physical processes, but merely in the calibration of parameters
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relative to their present epoch values using the background solution. In particular, it

is convenient to work with the volume-average parameters that appear in the Buchert

equations, and therefore to work with the CMB photon temperature, T̄ , as measured

by a volume-average observer. In the very early universe this is indistinguishable from

the CMB photon temperature, T , measured by a wall observer. However, in general the

two temperatures are related by

T̄ = γ̄−1T , (B.1)

giving a significant difference at the present epoch.

Following helium recombination, the ionization fraction of hydrogen is given by

X ≡ n̄p/n̄, where

n̄ = n̄p + n̄
H
= 0.76 n̄

B
(B.2)

is the combined number density of ionized and atomic hydrogen. The relation to the

baryon number density, n̄
B
, arises from assuming that helium makes up 24% of baryons

in weight. In our case, the bare baryon number density is given by

n̄
B
=

3H̄
2

0
Ω̄

B0

8πGmp

(

T̄

T̄γ0

)3

, (B.3)

where Ω̄
B0

is the present epoch bare baryon matter density parameter, T̄γ0 = γ̄−1

0
2.275K

and mp the proton mass.

The ionization fraction is determined by solving the Peebles equation [33]

dX(t)

dt
=

(

Γ
2s
+ 3PΓ

2p

Γ
2s
+ 3PΓ

2p
+ β

)

[

−X2 + S−1(1−X)
]

A n̄ , (B.4)

where A(T̄ ) is the effective recombination rate to the excited 2s and 2p states;

Γ
2s
= 8.22458 s−1 and Γ

2p
= 4.699× 108 s−1 are decay rates from the 2s and 2p states;

β =

(

mekB
T̄

2π~2

)3/2

exp(−B2/kB
T̄ ) A (B.5)

is the ionization rate from the excited states;

P =
8πH̄

3λ3
αΓ2p

n̄
1s

(B.6)

is the photon survival probability, with λα = 1215.682× 10−8 cm and n̄
1s
≃ n̄

H
;

S ≡ 0.76n̄
B

(

mekB
T̄

2π~

)−3/2

exp(B1/kB
T̄ ) ; (B.7)

and Bn = mee
4/(2~2n2) = 13.6n−2eV is the binding energy of the state with principal

quantum number n. Detailed numerical calculations of A(T̄ ) can be fit by the formula

[32, 34]

A =
1.4337× 10−10 T̄−0.6166 cm3 s−1

1 + 5.085× 10−3 T̄ 0.5300
, (B.8)
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where T̄ is given in degrees Kelvin. The Saha equation

X(1 + SX) = 1 (B.9)

is an excellent approximation for the ionization fraction when X is close to unity

during the initial equilibrium. It may therefore be used to provide at initial value

for the differential equation (B.4) at T̄ = 4226K, or z = 1550 after the end of helium

recombination. For practical purposes, the differential equation (B.4) can be rewritten

as an ODE in T̄ using dt = −dT̄ /(H̄T̄ ) or as an ODE in x using (A.1) divided by ᾱ.

The visibility function,

g(t) ≡ −c
dτo
dt

exp(−cτo) , (B.10)

gives the probability that a photon last scattered at time t
(

T̄
)

when the temperature

was T̄ , where

τo(t) ≡
∫ t0

t(T̄)
σ
T
n̄edt (B.11)

is the optical depth, σ
T
being the Thomson scattering cross-section, and n̄e = n̄p the

free electron density. The maximum of the visibility function then defines the photon

last scattering surface at t
dec

.

Acoustic fluctuations in baryons are frozen in slightly later at the baryon drag epoch

[35] defined by the condition c τ
d
≃ 1, where

τ
d
(t) ≡

∫ t0

t

τ̇odt

āR
=

∫ t0

t

σ
T
n̄edt

āR
(B.12)

is the drag depth and R ≡ 0.75ρB/ργ = 0.75 (Ω̄
B0
ā)/(Ω̄γ0ā0

).
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