Dark energy from cosmic structure

David L. Wiltshire (University of Canterbury, NZ)

DLW: New J. Phys. 9 (2007) 377

Phys. Rev. Lett. 99 (2007) 251101

Phys. Rev. D78 (2008) 084032

Phys. Rev. D80 (2009) 123512

Class. Quan. Grav. 28 (2011) 164006

B.M. Leith, S.C.C. Ng & DLW:

ApJ 672 (2008) L91

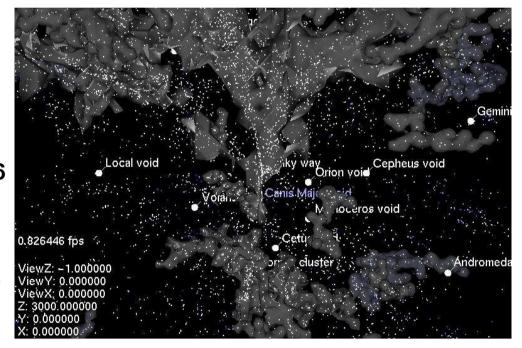
P.R. Smale & DLW, **MNRAS 413 (2011) 367**

P.R. Smale, **MNRAS 418 (2011) 2779**

J.A.G. Duley, M.A. Nazer & DLW: Class. Quantum Grav. 30 (2013) 175006

M.A. Nazer & DLW: arXiv:1410.3470

Recent summer school lectures: arXiv:1311.3787



Outline of talk

What is dark energy?:

Dark energy is a misidentification of gradients in quasilocal kinetic energy of expansion of space

(in presence of density and spatial curvature gradients on scales $\lesssim 100\,h^{-1}{\rm Mpc}$ which also alter average cosmic expansion).

- Ideas and principles of timescape scenario
- Overview of current status of cosmological tests
 - Snela, BAO, CMB (Ahsan Nazer), ...
 - H_0 variance (James McKay), 'local'/global H_0 ...
- Future tests
 - Timescape and \(\Lambda \)CDM distinguishable with \(Euclid \)

Averaging and backreaction

Fitting problem (Ellis 1984): On what scale are Einstein's field equations valid?

$$G_{\mu\nu} = \frac{8\pi G}{c^4} T_{\mu\nu}$$

- In general $\langle G^{\mu}{}_{\nu}(g_{\alpha\beta})\rangle \neq G^{\mu}{}_{\nu}(\langle g_{\alpha\beta}\rangle)$
- Inhomogeneity in expansion (on $\lesssim 100 \, h^{-1} \rm Mpc$ scales) may make average non–Friedmann as structure grows
- Weak backreaction: Perturb about a given background
- Strong backreaction: fully nonlinear
 - Spacetime averages (R. Zalaletdinov 1992, 1993);
 - Spatial averages on hypersurfaces based on a 1+3 foliation (T. Buchert 2000, 2001).

Buchert-Ehlers-Carfora-Piotrkowska -Russ-Soffel-Kasai-Börner equations

For irrotational dust cosmologies, with energy density, $\rho(t,\mathbf{x})$, expansion scalar, $\vartheta(t,\mathbf{x})$, and shear scalar, $\sigma(t,\mathbf{x})$, where $\sigma^2 = \frac{1}{2}\sigma_{\mu\nu}\sigma^{\mu\nu}$, defining $3\dot{\bar{a}}/\bar{a} \equiv \langle\vartheta\rangle$, we find average cosmic evolution described by exact Buchert equations

(1)
$$3\frac{\dot{a}^{2}}{\bar{a}^{2}} = 8\pi G\langle\rho\rangle - \frac{1}{2}\langle\mathcal{R}\rangle - \frac{1}{2}\mathcal{Q}$$
(2)
$$3\frac{\ddot{a}}{\bar{a}} = -4\pi G\langle\rho\rangle + \mathcal{Q}$$
(3)
$$\partial_{t}\langle\rho\rangle + 3\frac{\dot{a}}{\bar{a}}\langle\rho\rangle = 0$$
(4)
$$\partial_{t}\left(\bar{a}^{6}\mathcal{Q}\right) + \bar{a}^{4}\partial_{t}\left(\bar{a}^{2}\langle\mathcal{R}\rangle\right) = 0$$

$$\mathcal{Q} \equiv \frac{2}{3}\left(\langle\vartheta^{2}\rangle - \langle\vartheta\rangle^{2}\right) - 2\langle\sigma^{2}\rangle$$

Backreaction in Buchert averaging

Kinematic backreaction term can also be written

$$Q = \frac{2}{3} \langle (\delta \vartheta)^2 \rangle - 2 \langle \sigma^2 \rangle$$

i.e., combines variance of expansion, and shear.

- Eq. (6) is required to ensure (3) is an integral of (4).
- Buchert equations look deceptively like Friedmann equations, but deal with statistical quantities
- The extent to which the back—reaction, Q, can lead to apparent cosmic acceleration or not has been the subject of much debate (e.g., Ishibashi & Wald 2006):
 - How do statistical quantities relate to observables?
 - What about the time slicing?
 - How big is Q given reasonable initial conditions?

What is a cosmological particle (dust)?

- In FLRW one takes observers "comoving with the dust"
- Traditionally galaxies were regarded as dust. However,
 - Neither galaxies nor galaxy clusters are homogeneously distributed today
 - Dust particles should have (on average) invariant masses over the timescale of the problem
- Must coarse-grain over expanding fluid elements larger than the largest typical structures [voids of diameter $30\,h^{-1}{\rm Mpc}$ with $\delta_\rho\sim -0.95$ are $\gtrsim 40\%$ of z=0 universe]

$$g_{\mu\nu}^{\rm stellar} \to g_{\mu\nu}^{\rm galaxy} \to g_{\mu\nu}^{\rm cluster} \to g_{\mu\nu}^{\rm wall}$$

$$\vdots \\ g_{\mu\nu}^{\rm void}$$

$$\Rightarrow g_{\mu\nu}^{\rm universe}$$

Dilemma of gravitational energy...

In GR spacetime carries energy & angular momentum

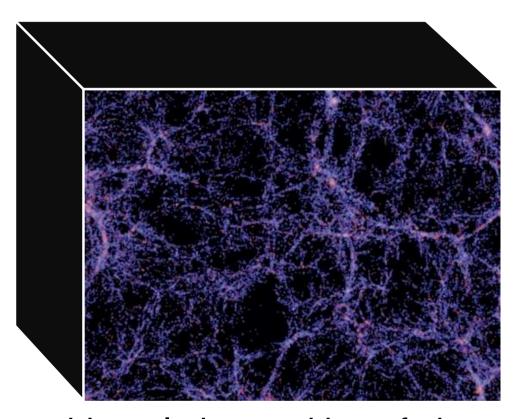
$$G_{\mu\nu} = \frac{8\pi G}{c^4} T_{\mu\nu}$$

- On account of the strong equivalence principle, $T_{\mu\nu}$ contains localizable energy–momentum only
- Kinetic energy and energy associated with spatial curvature are in $G_{\mu\nu}$: variations are "quasilocal"!
- Newtonian version, T U = -V, of Friedmann equation

$$\frac{\dot{a}^2}{a^2} + \frac{kc^2}{a^2} = \frac{8\pi G\rho}{3}$$

where
$$T=\frac{1}{2}m\dot{a}^2x^2$$
, $U=-\frac{1}{2}kmc^2x^2$, $V=-\frac{4}{3}\pi G\rho a^2x^2m$; ${\bf r}=a(t){\bf x}$.

Within a statistically average cell



- Need to consider relative position of observers over scales of tens of Mpc over which $\delta\rho/\rho\sim-1$.
- GR is a local theory: gradients in spatial curvature and gravitational energy can lead to calibration differences between our rulers & clocks and volume average ones

The Copernican principle

- Retain Copernican Principle we are at an average position for observers in a galaxy
- Observers in bound systems are not at a volume average position in freely expanding space
- By Copernican principle other average observers should see an isotropic CMB
- BUT nothing in theory, principle nor observation demands that such observers measure the same mean CMB temperature nor the same angular scales in the CMB anisotropies
- Average mass environment (galaxy) will differ significantly from volume—average environment (void)

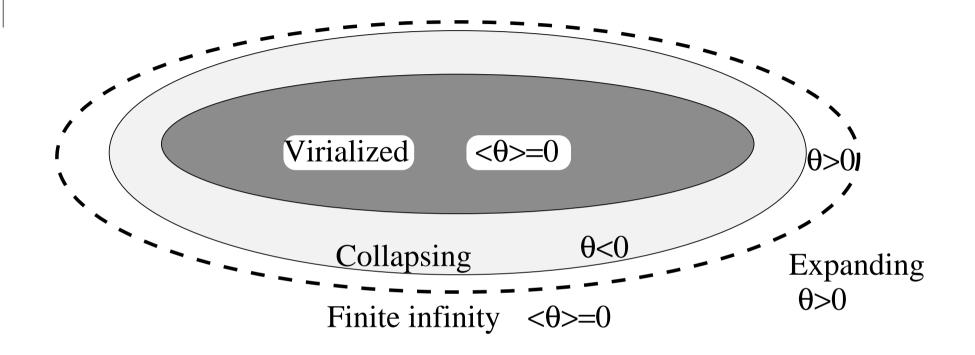
Cosmological Equivalence Principle

In cosmological averages it is always possible to choose a suitably defined spacetime region, the cosmological inertial region, on whose boundary average motions (timelike and null) can be described by geodesics in a geometry which is Minkowski up to some time-dependent conformal transformation,

$$ds_{CIR}^2 = a^2(\eta) \left[-d\eta^2 + dr^2 + r^2 d\Omega^2 \right],$$

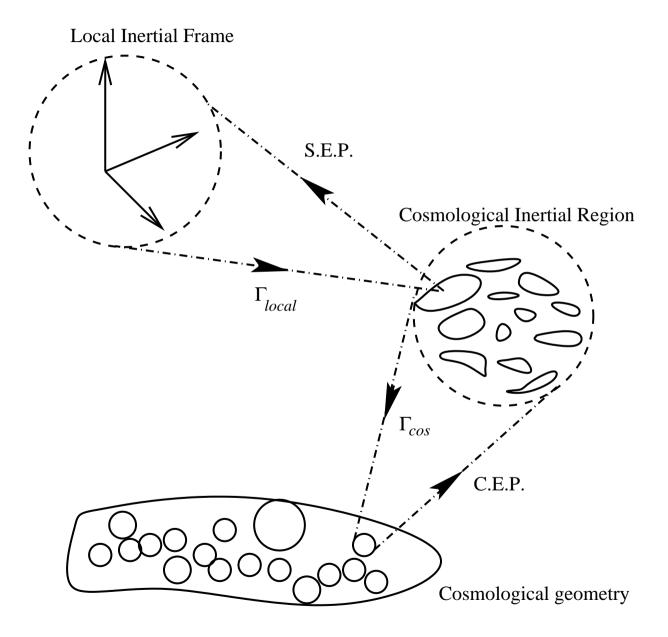
- Defines Cosmological Inertial Region (CIR) in which regionally isotropic volume expansion is equivalent to a velocity in special relativity
- Such velocities integrated on a bounding 2-sphere define "kinetic energy of expansion": globally it has gradients

Finite infinity



- Define *finite infinity*, "*fi*" as boundary to *connected* region within which *average expansion* vanishes $\langle \vartheta \rangle = 0$ and expansion is positive outside.
- Shape of fi boundary irrelevant (minimal surface generally): could typically contain a galaxy cluster.

Statistical geometry...



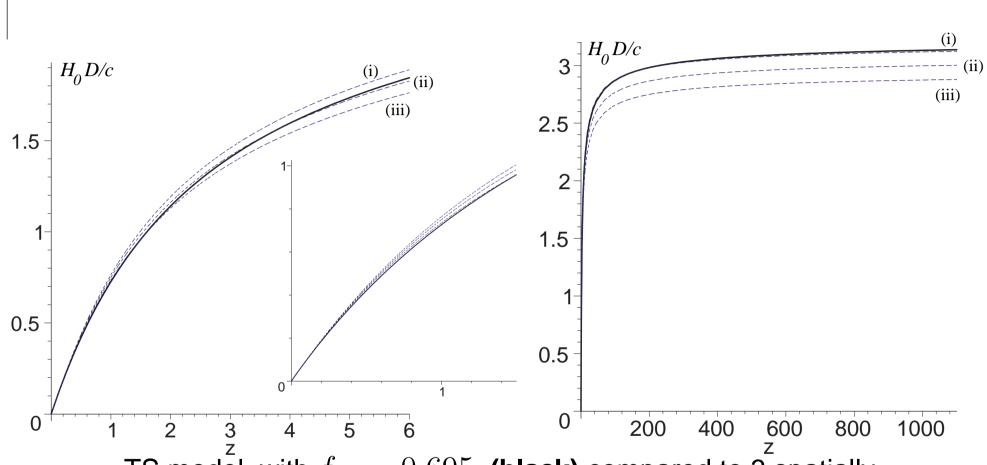
Why is Λ CDM so successful?

- The early Universe was extremely close to homogeneous and isotropic
- **●** Finite infinity geometry $(2 15 h^{-1}\text{Mpc})$ is close to spatially flat (Einstein–de Sitter at late times) N–body simulations successful *for bound structure*
- At late epochs there is a simplifying principle –
 Cosmological Equivalence Principle
- Hubble parameter (first derivative of statistical metric; i.e., connection) is to some extent a "gauge choice"
 - Affects 'local'/global H_0 issue
 - Has contributed to fights (e.g., Sandage vs de Vaucouleurs) depending on measurement scale
- Even on small scales there is a notion of uniform Hubble flow at expense of calibration of rulers AND CLOCKS

Model detail

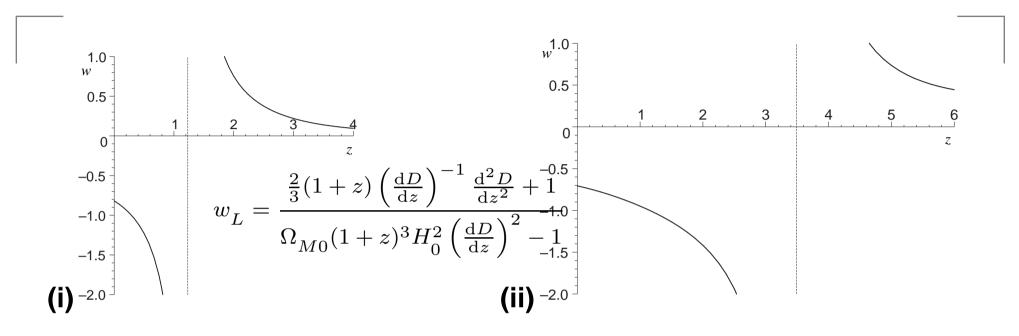
- Take horizon volume average of two populations:
 - voids: negatively curved, volume fraction, $f_{\rm v}$
 - "walls" = $\cup \{$ sheets, filaments, knots $\}$ coarse grained as spatially flat, volume fraction, $f_{\rm w}=1-f_{\rm v}$
- Solve Buchert equations: Buchert time parameter, t, is a collective coordinate of fluid cell coarse-grained at $\sim 100\,h^{-1}{\rm Mpc}$, giving bare cosmological parameters \bar{H} , $\bar{\Omega}_M$, $\bar{\Omega}_R$, $\bar{\Omega}_k$, $\bar{\Omega}_{\mathcal{O}}$, ...
- Pelate statistical solutions to local ("wall") geometry: Conformally match radial null geodesics to spatially flat finite infinity geometry on spherically averaged past light cone using uniform quasilocal Hubble flow condition, giving dressed cosmological parameters H, Ω_M, \ldots

Dressed "comoving distance" D(z)



TS model, with $f_{\rm v0}=0.695$, (black) compared to 3 spatially flat Λ CDM models (blue): (i) $\Omega_{M0}=0.3175$ (best-fit Λ CDM model to Planck); (ii) $\Omega_{M0}=0.35$; (iii) $\Omega_{M0}=0.388$.

Equivalent "equation of state"?



A formal "dark energy equation of state" $w_L(z)$ for the TS model, with $f_{\rm V0}=0.695$, calculated directly from $r_w(z)$: (i) $\Omega_{M0}=0.695$; (ii) $\Omega_{M0}=0.3175$.

● Description by a "dark energy equation of state" makes no sense when there's no physics behind it; but average value $w_L \simeq -1$ for z < 0.7 makes empirical sense.

Apparent cosmic acceleration

Volume average observer sees no apparent cosmic acceleration

$$\bar{q} = \frac{2(1 - f_{\rm v})^2}{(2 + f_{\rm v})^2}.$$

As $t \to \infty$, $f_{\rm v} \to 1$ and $\bar{q} \to 0^+$.

A wall observer registers apparent cosmic acceleration

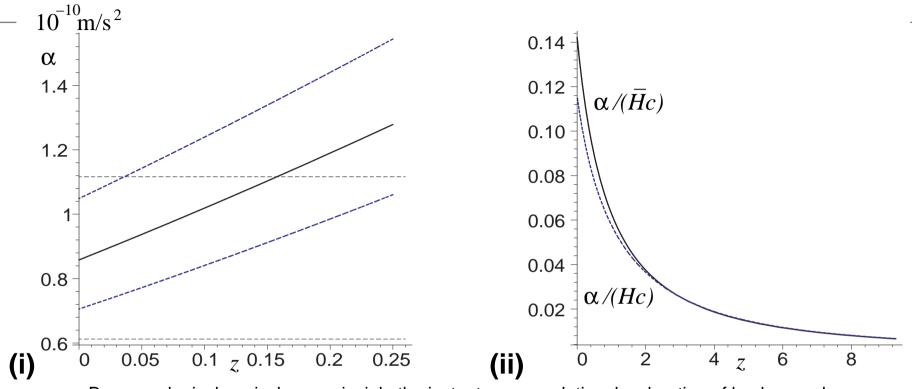
$$q = \frac{-(1 - f_{\rm v}) (8f_{\rm v}^3 + 39f_{\rm v}^2 - 12f_{\rm v} - 8)}{(4 + f_{\rm v} + 4f_{\rm v}^2)^2},$$

Effective deceleration parameter starts at $q \sim \frac{1}{2}$, for small $f_{\rm v}$; changes sign when $f_{\rm v} = 0.5867\ldots$, and approaches $q \to 0^-$ at late times.

Cosmic coincidence problem solved

Spatial curvature gradients largely responsible for gravitational energy gradient giving clock rate variance. Apparent acceleration starts when voids start to dominate Decelerating Sloan Great Wall

Relative deceleration scale



By cosmological equivalence principle the instantaneous relative deceleration of backgrounds gives an instantaneous 4-acceleration of magnitude $\alpha=H_0c\bar{\gamma}\dot{\bar{\gamma}}/(\sqrt{\bar{\gamma}^2-1})$ beyond which weak field cosmological general relativity will be changed from Newtonian expectations: (i) as absolute scale nearby; (ii) divided by Hubble parameter to large z.

Pelative *volume* deceleration of expanding regions of different local density/curvature, leads cumulatively to canonical clocks differing by $\mathrm{d}t = \bar{\gamma}_\mathrm{w} \, \mathrm{d}\tau_\mathrm{w} \; (\to \sim 35\%)$

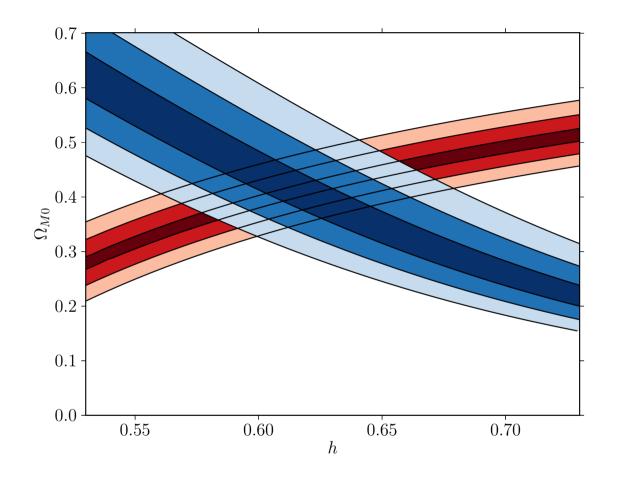
Smale + DLW, MNRAS 413 (2011) 367

- **SALT/SALTII** fits (Constitution,SALT2,Union2) favour Λ CDM over TS: ln $B_{\text{TS:}\Lambda\text{CDM}} = -1.06, -1.55, -3.46$
- MLCS2k2 (fits MLCS17,MLCS31,SDSS-II) favour TS over Λ CDM: $\ln B_{\mathrm{TS:}\Lambda\mathrm{CDM}} = 1.37, 1.55, 0.53$
- Different MLCS fitters give different best-fit parameters; e.g. with cut at statistical homogeneity scale, for MLCS31 (Hicken et al 2009) $\Omega_{M0}=0.12^{+0.12}_{-0.11}$; MLCS17 (Hicken et al 2009) $\Omega_{M0}=0.19^{+0.14}_{-0.18}$; SDSS-II (Kessler et al 2009) $\Omega_{M0}=0.42^{+0.10}_{-0.10}$
- Supernovae systematics (reddening/extinction, intrinsic colour variations) must be understood to distinguish models
- Inclusion of Snela below $100 h^{-1}$ Mpc an important issue

Supernovae systematics



CMB: sound horizon + baryon drag



Parameters within the (Ω_{M0}, H_0) plane which fit the angular scale of the sound horizon $\theta_*=0.0104139$ (blue), and its comoving scale at the baryon drag epoch as compared to Planck value $98.88\,h^{-1}{\rm Mpc}$ (red) to within 2%, 4% and 6%, with photon-baryon ratio $\eta_{B\gamma}=4.6$ – 5.6×10^{-10} within 2σ of all observed light element abundances (including lithium-7). J.A.G. Duley, M.A. Nazer + DLW, Class. Qu. Grav. **30** (2013) 175006

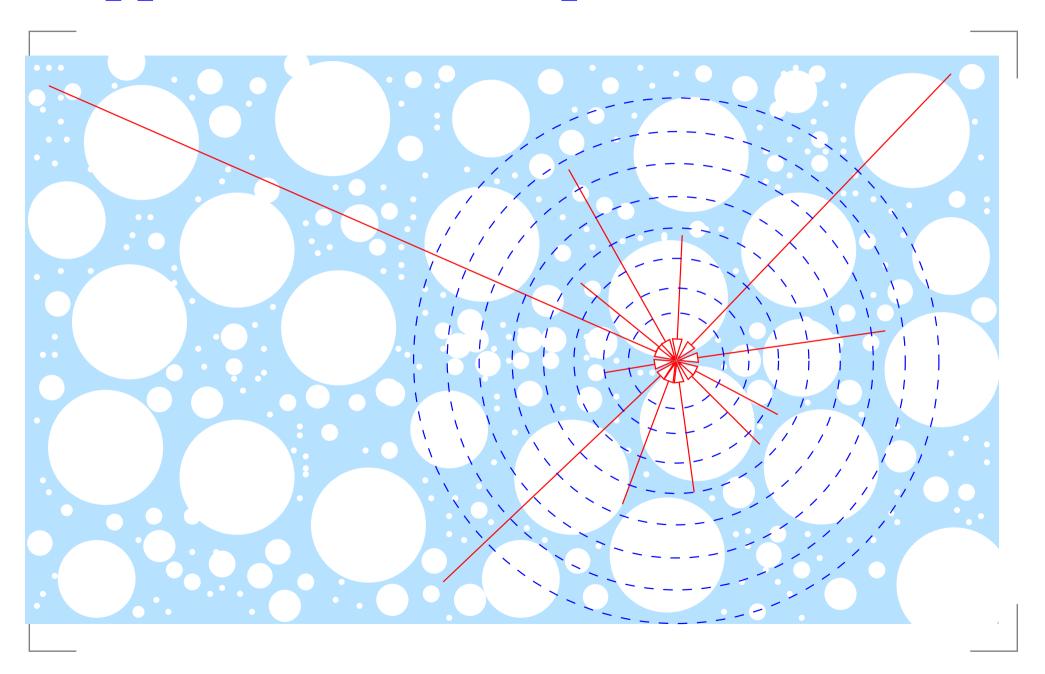
Planck constraints $D_A + r_{drag}$

- \bullet Dressed Hubble constant $H_0 = 61.7 \pm 3.0 \, \mathrm{km/s/Mpc}$
- \blacksquare Bare Hubble constant $H_{\mathrm{w0}} = \bar{H}_0 = 50.1 \pm 1.7 \, \mathrm{km/s/Mpc}$
- ▶ Local max Hubble constant $H_{v0} = 75.2^{+2.0}_{-2.6}$ km/s/Mpc
- Present void fraction $f_{v0} = 0.695^{+0.041}_{-0.051}$
- Dressed matter density parameter $\Omega_{M0} = 0.41^{+0.06}_{-0.05}$
- Dressed baryon density parameter $\Omega_{\rm B0}=0.074^{+0.013}_{-0.011}$
- Nonbaryonic/baryonic matter ratio $\Omega_{C0}/\Omega_{\mathrm{B0}} = 4.6^{+2.5}_{-2.1}$
- Age of universe (galaxy/wall) $\tau_{\rm w0} = 14.2 \pm 0.5 \, {\rm Gyr}$
- Age of universe (volume-average) $t_0 = 17.5 \pm 0.6 \, \mathrm{Gyr}$
- Apparent acceleration onset $z_{\rm acc} = 0.46^{+0.26}_{-0.25}$
- BUT ... TALK BY AHSAN NAZER (arXiv:1410.3470)

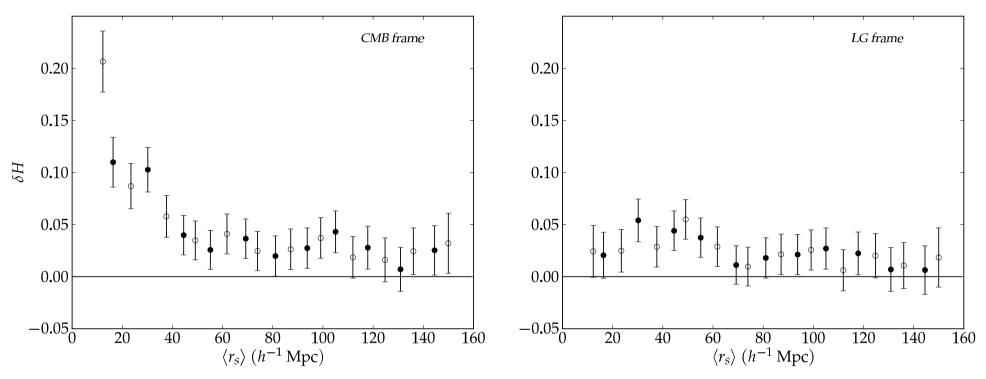
Baryon acoustic oscillations

- Commonly used measure $D_V = \left[\frac{zD^2}{H(z)}\right]^{1/3}$ gives results which differ very little between Λ CDM and timescape (both within uncertainty)
- Alcock-Paczyński test which separates angular and radial scales is a better model discriminator
- **●** BOSS arXiv:1404.1801 finds 2.5σ tension for Λ CDM in Ly- α forest measurement at z=2.34.
- Timescape with $f_{v0}=0.695$, h=0.617, agrees with BOSS angle, and H(2.24)=223 km/s/Mpc agrees with BOSS value 222 ± 7 km/s/Mpc (BUT should be off by H_0 ratio?) Full CMB fit (Ahsan Nazer's talk)— driven by 2nd/3rd peak heights, $\Omega_{C0}/\Omega_{\rm B0}$, ratio gives BOSS z=2.34 result in tension at level similar to ΛCDM

Apparent Hubble expansion variance



Radial variance $\delta H_s = (H_s - H_0)/H_0$



- Hubble expansion more uniform in LG frame than CMB frame with very strong Bayesian evidence $\ln B > 5$
- Monopole variation correlated with additional dipole variation (TALK BY JAMES McKAY)

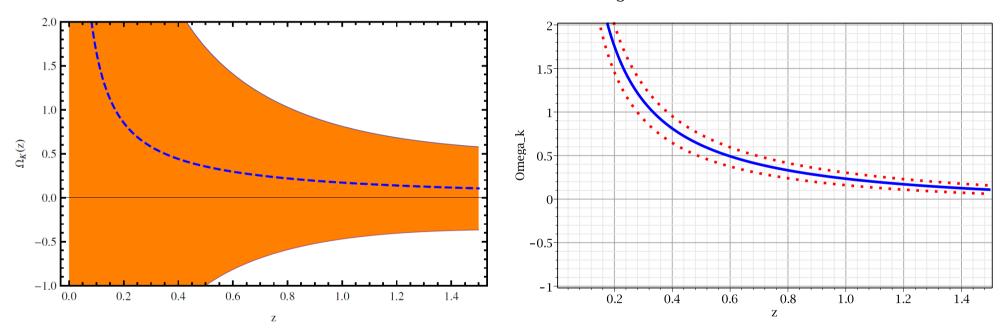
'Local' / global H_0

- Since Planck 2013 the values of 'local' and global H_0 measurements are an issue, even for Λ CDM
- Piess et al (2009, 2011) estimate H_0 by fit of $O(z^3)$ spatially flat FLRW luminosity distance to Snela in range 0.23 < z < 0.1, assuming $q_0 = -0.55$, $j_0 = 1$.
- If "nonlinear regime" inhomogeneities on $\lesssim 65 \, h^{-1}{\rm Mpc}$ scales do not obey the Friedmann equation such a fit gives H_0 values which vary with redshift range used, even for z>0.23. (Seen in COMPOSITE data.)
- Pay-tracing simulations through nonlinear foreground voids, using exact solutions of Einstein's equations matched asymptotically to a Planck-fit Λ CDM model show 'local'/global H_0 potentially resolved. (K. Bolejko, M.A. Nazer, R. Watkins + DLW, in preparation)

Clarkson Bassett Lu test $\Omega_k(z)$

ullet For Friedmann equation a statistic constant for all z

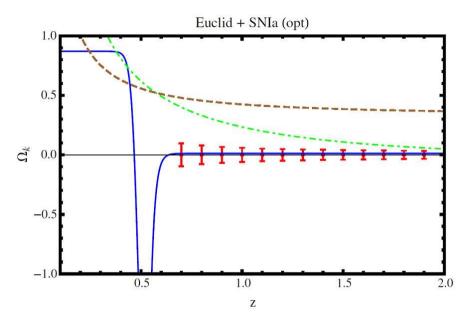
$$\Omega_{k0} = \Omega_k(z) = \frac{[c^{-1}H(z)D'(z)]^2 - 1}{[c^{-1}H_0D(z)]^2}$$



Left panel: CBL statistic from Sapone, Majerotto and Nesseris, arXiv:1402.2236v1 Fig 8, using existing data from Snela (Union2) and passively evolving galaxies for H(z).

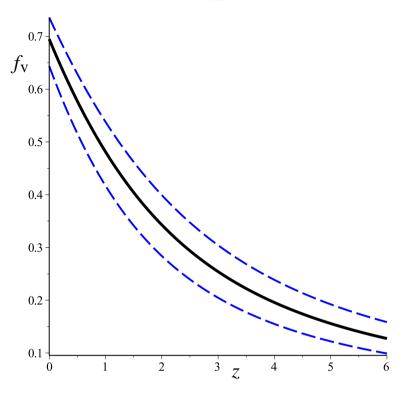
Right panel: TS prediction, with $f_{\rm V0} = 0.695^{+0.041}_{-0.051}$.

Clarkson Bassett Lu test with Euclid



- Projected uncertainties for ΛCDM model with Euclid + 1000 Snela, Sapone et al, arXiv:1402.2236v2 Fig 10
- Timescape prediction (green), compared to non-Copernican Gpc void model (blue), and tardis cosmology, Lavinto et al arXiv:1308.6731 (brown).
- Timescape prediction becomes greater than uncertainties for $z \leq 1.5$. (Falsfiable.)

Void fraction: potential test?



- Growth of structure difficult to parameterize as effective FLRW model, as not based on this geometry
- Bound system measures below finite infinity likely to be close to standard GR (Einstein-de Sitter) prediction
- Void volume fraction $f_v(z)$ itself provides a measurable constraint. Ly– α tomography at high z may help.

Conclusion: Modified Geometry

- Apparent cosmic acceleration can be understood by
 - treating geometry of universe more realistically
 - understanding fundamental aspects of general relativity which have not been fully explored – quasi–local gravitational energy, of gradients in kinetic energy of expansion etc.
- "Timescape" model gives good fit to major independent tests of Λ CDM with new perspectives on many puzzles e.g., 'local'/global differences in H_0 ; primordial ⁷Li ?
- Many tests can be done to distinguish from ΛCDM. Must be careful not to assume Friedmann equation in any data reduction.
- "Modified Geometry" rather than "Modified Gravity"