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Outline of talk

What is dark energy?:

Dark energy is a misidentification of gradients in
quasilocal kinetic energy of expansion of space

(in presence of density and spatial curvature gradients
on scales <

∼ 100h−1Mpc which also alter average
cosmic expansion).

Ideas and principles of timescape scenario

Overview of current status of cosmological tests
SneIa, BAO, CMB (Ahsan Nazer), . . .
H0 variance (James McKay), ‘local’/global H0 . . .

Future tests
Timescape and ΛCDM distinguishable with Euclid
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Averaging and backreaction

Fitting problem (Ellis 1984):
On what scale are Einstein’s field equations valid?

Gµν =
8πG

c4
Tµν

In general 〈Gµ
ν(gαβ)〉 6= Gµ

ν(〈gαβ〉)

Inhomogeneity in expansion (on <
∼ 100h−1Mpc scales)

may make average non–Friedmann as structure grows

Weak backreaction: Perturb about a given background

Strong backreaction: fully nonlinear
Spacetime averages (R. Zalaletdinov 1992, 1993);
Spatial averages on hypersurfaces based on a 1 + 3
foliation (T. Buchert 2000, 2001).
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Buchert-Ehlers-Carfora-Piotrkowska
-Russ-Soffel-Kasai-Börner equations

For irrotational dust cosmologies, with energy density,
ρ(t,x), expansion scalar, ϑ(t,x), and shear scalar, σ(t,x),
where σ2 = 1

2σµνσ
µν , defining 3 ˙̄a/ā ≡ 〈ϑ〉, we find average

cosmic evolution described by exact Buchert equations

3
˙̄a
2

ā2
= 8πG〈ρ〉 − 1

2〈R〉 − 1
2Q(1)

3
¨̄a

ā
= −4πG〈ρ〉 + Q(2)

∂t〈ρ〉 + 3
˙̄a

ā
〈ρ〉 = 0(3)

∂t

(

ā6Q
)

+ ā4∂t

(

ā2〈R〉
)

= 0(4)

Q ≡
2

3

(

〈ϑ2〉 − 〈ϑ〉2
)

− 2〈σ2〉
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Backreaction in Buchert averaging
Kinematic backreaction term can also be written

Q = 2
3〈(δϑ)2〉 − 2〈σ2〉

i.e., combines variance of expansion, and shear.

Eq. (6) is required to ensure (3) is an integral of (4).

Buchert equations look deceptively like Friedmann
equations, but deal with statistical quantities

The extent to which the back–reaction, Q, can lead to
apparent cosmic acceleration or not has been the
subject of much debate (e.g., Ishibashi & Wald 2006):

How do statistical quantities relate to observables?
What about the time slicing?
How big is Q given reasonable initial conditions?
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What is a cosmological particle (dust)?
In FLRW one takes observers “comoving with the dust”

Traditionally galaxies were regarded as dust. However,
Neither galaxies nor galaxy clusters are
homogeneously distributed today
Dust particles should have (on average) invariant
masses over the timescale of the problem

Must coarse-grain over expanding fluid elements larger
than the largest typical structures [voids of diameter
30h−1Mpc with δρ ∼ −0.95 are >

∼ 40% of z = 0 universe]

gstellar

µν → ggalaxy

µν → gcluster

µν → gwall

µν
...

gvoid

µν











→ guniverse

µν
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Dilemma of gravitational energy. . .
In GR spacetime carries energy & angular momentum

Gµν =
8πG

c4
Tµν

On account of the strong equivalence principle, Tµν

contains localizable energy–momentum only

Kinetic energy and energy associated with spatial
curvature are in Gµν: variations are “quasilocal”!

Newtonian version, T − U = −V , of Friedmann equation

ȧ2

a2
+

kc2

a2
=

8πGρ

3

where T = 1
2mȧ2x2, U = −1

2kmc2x2, V = −4
3πGρa2x2m;

r = a(t)x.
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Within a statistically average cell

Need to consider relative position of observers over
scales of tens of Mpc over which δρ/ρ∼−1.

GR is a local theory: gradients in spatial curvature and
gravitational energy can lead to calibration differences
between our rulers & clocks and volume average ones
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The Copernican principle

Retain Copernican Principle - we are at an average
position for observers in a galaxy

Observers in bound systems are not at a volume
average position in freely expanding space

By Copernican principle other average observers
should see an isotropic CMB

BUT nothing in theory, principle nor observation
demands that such observers measure the same mean
CMB temperature nor the same angular scales in the
CMB anisotropies

Average mass environment (galaxy) will differ
significantly from volume–average environment (void)
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Cosmological Equivalence Principle

In cosmological averages it is always possible to
choose a suitably defined spacetime region, the
cosmological inertial region, on whose boundary
average motions (timelike and null) can be described by
geodesics in a geometry which is Minkowski up to
some time-dependent conformal transformation,

ds2
CIR

= a2(η)
[

−dη2 + dr2 + r2dΩ2
]

,

Defines Cosmological Inertial Region (CIR) in which
regionally isotropic volume expansion is equivalent to a
velocity in special relativity

Such velocities integrated on a bounding 2-sphere
define “kinetic energy of expansion”: globally it has
gradients
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Finite infinity

θ<0Collapsing Expanding

Finite infinity <θ>=0

<θ>=0 θ>0

θ>0

Virialized

Define finite infinity, “fi ” as boundary to connected
region within which average expansion vanishes 〈ϑ〉 = 0
and expansion is positive outside.

Shape of fi boundary irrelevant (minimal surface
generally): could typically contain a galaxy cluster.
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Statistical geometry. . .
Local Inertial Frame

Cosmological Inertial Region

S.E.P.

Γ

Γ

C.E.P.

cos

local

Cosmological geometry
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Why is ΛCDM so successful?
The early Universe was extremely close to
homogeneous and isotropic

Finite infinity geometry (2 – 15h−1Mpc) is close to
spatially flat (Einstein–de Sitter at late times) – N–body
simulations successful for bound structure

At late epochs there is a simplifying principle –
Cosmological Equivalence Principle

Hubble parameter (first derivative of statistical metric;
i.e., connection) is to some extent a “gauge choice”

Affects ‘local’/global H0 issue
Has contributed to fights (e.g., Sandage vs de
Vaucouleurs) depending on measurement scale

Even on small scales there is a notion of uniform Hubble
flow at expense of calibration of rulers AND CLOCKS

CosPA2014, 10 December 2014 – p. 13/31



Model detail
Take horizon volume average of two populations:

voids: negatively curved, volume fraction, fv

“walls” = ∪{sheets, filaments, knots} coarse grained
as spatially flat, volume fraction, fw = 1 − fv

Solve Buchert equations:
Buchert time parameter, t, is a collective coordinate of
fluid cell coarse-grained at ∼ 100h−1Mpc, giving bare
cosmological parameters H̄, Ω̄M , Ω̄R, Ω̄k, Ω̄

Q
, . . .

Relate statistical solutions to local (“wall”) geometry:
Conformally match radial null geodesics to spatially flat
finite infinity geometry on spherically averaged past light
cone using uniform quasilocal Hubble flow condition,
giving dressed cosmological parameters H, ΩM , . . .
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Dressed “comoving distance”D(z)
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TS model, with fv0 = 0.695, (black) compared to 3 spatially

flat ΛCDM models (blue): (i) ΩM0 = 0.3175 (best-fit ΛCDM

model to Planck); (ii) ΩM0 = 0.35; (iii) ΩM0 = 0.388.
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Equivalent “equation of state”?
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A formal “dark energy equation of state” w
L
(z) for the TS model, with fv0 = 0.695,

calculated directly from rw(z): (i) Ω
M0

= 0.695; (ii) Ω
M0

= 0.3175.

Description by a “dark energy equation of state” makes
no sense when there’s no physics behind it; but average
value wL ≃ −1 for z < 0.7 makes empirical sense.
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Apparent cosmic acceleration

Volume average observer sees no apparent cosmic
acceleration

q̄ =
2 (1 − fv)

2

(2 + fv)2
.

As t → ∞, fv → 1 and q̄ → 0+.

A wall observer registers apparent cosmic acceleration

q =
− (1 − fv) (8fv

3 + 39fv
2 − 12fv − 8)

(

4 + fv + 4fv
2
)2 ,

Effective deceleration parameter starts at q∼ 1
2 , for

small fv; changes sign when fv = 0.5867 . . ., and
approaches q → 0− at late times.
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Cosmic coincidence problem solved
Spatial curvature gradients largely responsible for
gravitational energy gradient giving clock rate variance.

Apparent acceleration starts when voids start to
dominate
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Relative deceleration scale
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By cosmological equivalence principle the instantaneous relative deceleration of backgrounds

gives an instantaneous 4-acceleration of magnitude α = H
0
cγ̄ ˙̄γ/(

p

γ̄2
− 1) beyond

which weak field cosmological general relativity will be changed from Newtonian expectations:
(i) as absolute scale nearby; (ii) divided by Hubble parameter to large z.

Relative volume deceleration of expanding regions of
different local density/curvature, leads cumulatively to
canonical clocks differing by dt = γ̄w dτw (→∼ 35%)
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Smale + DLW, MNRAS 413 (2011) 367
SALT/SALTII fits (Constitution,SALT2,Union2) favour
ΛCDM over TS: ln BTS:ΛCDM = −1.06,−1.55,−3.46

MLCS2k2 (fits MLCS17,MLCS31,SDSS-II) favour TS
over ΛCDM: ln BTS:ΛCDM = 1.37, 1.55, 0.53

Different MLCS fitters give different best-fit parameters;
e.g. with cut at statistical homogeneity scale, for
MLCS31 (Hicken et al 2009) ΩM0 = 0.12+0.12

−0.11;
MLCS17 (Hicken et al 2009) ΩM0 = 0.19+0.14

−0.18;
SDSS-II (Kessler et al 2009) ΩM0 = 0.42+0.10

−0.10

Supernovae systematics (reddening/extinction, intrinsic
colour variations) must be understood to distinguish
models

Inclusion of SneIa below 100h−1Mpc an important issue
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Supernovae systematics
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CMB: sound horizon + baryon drag
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) plane which fit the angular scale of the sound horizon θ∗ = 0.0104139

(blue), and its comoving scale at the baryon drag epoch as compared to Planck value 98.88 h−1Mpc (red) to

within 2%, 4% and 6%, with photon-baryon ratio η
Bγ

= 4.6–5.6 × 10−10 within 2σ of all observed light

element abundances (including lithium-7). J.A.G. Duley, M.A. Nazer + DLW, Class. Qu. Grav. 30 (2013) 175006
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Planck constraintsDA + rdrag

Dressed Hubble constant H0 = 61.7 ± 3.0 km/s/Mpc

Bare Hubble constant Hw0 = H̄0 = 50.1 ± 1.7 km/s/Mpc

Local max Hubble constant Hv0 = 75.2+2.0
−2.6 km/s/Mpc

Present void fraction fv0 = 0.695+0.041
−0.051

Dressed matter density parameter ΩM0 = 0.41+0.06
−0.05

Dressed baryon density parameter Ω
B0

= 0.074+0.013
−0.011

Nonbaryonic/baryonic matter ratio ΩC0/ΩB0
= 4.6+2.5

−2.1

Age of universe (galaxy/wall) τw0 = 14.2 ± 0.5 Gyr

Age of universe (volume-average) t0 = 17.5 ± 0.6 Gyr

Apparent acceleration onset zacc = 0.46+0.26
−0.25

BUT . . . TALK BY AHSAN NAZER (arXiv:1410.3470)
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Baryon acoustic oscillations

Commonly used measure DV =
[

zD2

H(z)

]1/3
gives results

which differ very little between ΛCDM and timescape
(both within uncertainty)

Alcock–Paczyński test which separates angular and
radial scales is a better model discriminator

BOSS arXiv:1404.1801 finds 2.5σ tension for ΛCDM in
Ly-α forest measurement at z = 2.34.

Timescape with fv0 = 0.695, h = 0.617, agrees with
BOSS angle, and H(2.24) = 223 km/s/Mpc agrees with
BOSS value 222 ± 7 km/s/Mpc (BUT should be off by H0

ratio?) Full CMB fit (Ahsan Nazer’s talk)– driven by
2nd/3rd peak heights, ΩC0/ΩB0

, ratio – gives BOSS
z = 2.34 result in tension at level similar to ΛCDM
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Apparent Hubble expansion variance
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Radial varianceδHs = (Hs − H0)/H0

Hubble expansion more uniform in LG frame than CMB
frame with very strong Bayesian evidence ln B > 5

Monopole variation correlated with additional dipole
variation (TALK BY JAMES McKAY)
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‘Local’ / global H0

Since Planck 2013 the values of ‘local’ and global H0

measurements are an issue, even for ΛCDM

Riess et al (2009, 2011) estimate H0 by fit of O(z3)
spatially flat FLRW luminosity distance to SneIa in
range 0.23 < z < 0.1, assuming q0 = −0.55, j0 = 1.

If “nonlinear regime” inhomogeneities on <
∼ 65h−1Mpc

scales do not obey the Friedmann equation such a fit
gives H0 values which vary with redshift range used,
even for z > 0.23. (Seen in COMPOSITE data.)

Ray-tracing simulations through nonlinear foreground
voids, using exact solutions of Einstein’s equations
matched asymptotically to a Planck-fit ΛCDM model
show ‘local’/global H0 potentially resolved. (K. Bolejko,
M.A. Nazer, R. Watkins + DLW, in preparation)
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Clarkson Bassett Lu testΩk(z)

For Friedmann equation a statistic constant for all z

Ωk0 = Ωk(z) =
[c−1H(z)D′(z)]2 − 1

[c−1H0D(z)]2

Left panel: CBL statistic from Sapone, Majerotto and Nesseris, arXiv:1402.2236v1 Fig 8, using

existing data from SneIa (Union2) and passively evolving galaxies for H(z).

Right panel: TS prediction, with fv0 = 0.695+0.041
−0.051 .
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Clarkson Bassett Lu test withEuclid

Projected uncertainties for ΛCDM model with Euclid +
1000 SneIa, Sapone et al, arXiv:1402.2236v2 Fig 10

Timescape prediction (green), compared to
non-Copernican Gpc void model (blue), and tardis
cosmology, Lavinto et al arXiv:1308.6731 (brown).

Timescape prediction becomes greater than
uncertainties for z <

∼ 1.5. (Falsfiable.)
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Void fraction: potential test?

z

fv

Growth of structure difficult to parameterize as effective
FLRW model, as not based on this geometry

Bound system measures below finite infinity likely to be
close to standard GR (Einstein-de Sitter) prediction

Void volume fraction fv(z) itself provides a measurable
constraint. Ly–α tomography at high z may help.
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Conclusion: Modified Geometry
Apparent cosmic acceleration can be understood by

treating geometry of universe more realistically
understanding fundamental aspects of general
relativity which have not been fully explored –
quasi–local gravitational energy, of gradients in
kinetic energy of expansion etc.

“Timescape” model gives good fit to major independent
tests of ΛCDM with new perspectives on many puzzles
– e.g., ‘local’/global differences in H0; primordial 7Li ?

Many tests can be done to distinguish from ΛCDM.
Must be careful not to assume Friedmann equation in
any data reduction.

“Modified Geometry” rather than “Modified Gravity”
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