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Abstract: Previous studies through simulation and empirical data have shown that a Network
Macroscopic Fundamental Diagram (NMFD) exists and can be used for designing network
optimal perimeter control strategies. These control strategies rely on well defined NMFDs, which
highly depend on the homogeneity of the traffic condition in the network. However, it is known
that traffic dynamics change drastically during the day in different zones in a large-scale network,
and different control strategies might lead to heterogeneous traffic distribution across the urban
network. One potential direction is re-partitioning the network to maintain the well defined
NMFDs. However, re-partitioning the network changes each sub network’s size, such that it
makes the well-defined NMFDs unpredictable. This paper provides a model predictive control-
based optimization approach for perimeter control using real-time partitioning to avoid this
problem and utilize re-partitioning techniques. Results show that the proposed method can be
used in a heterogeneous network to improve control performance by redistributing accumulations
via re-partitioning over time. Our results, which are compared to no control and the traditional
model predictive control, yield that the proposed method is superior to the others.

Keywords: Perimeter control; Macroscopic fundamental diagram; Network fundamental
diagram; Network partitioning; Model predictive control

1. INTRODUCTION

Modeling microscopic traffic dynamics in an urban traffic
network with a large number of intersections and road links
is a challenging task. In order to build a realistic model, not
only the computational burden needs to be considered, but
also the queues, disturbances, drivers’ behavior, and the
interplay between neighboring intersections are required
in detail. On the contrary, the NMFD-based approaches
have shown beneficial for macroscopic modeling of traffic
dynamics and, ultimately, mitigating congestion in large-
scale networks (Keyvan-Ekbatani et al., 2019). NMFD is
particularly useful for designing perimeter control strate-
gies, resulting from the property of NMFDs that the shape
of NMFDs is relatively stable to a small fluctuation of
traffic demand patterns. In reality, road users’ daily trip
schedule shows a fixed pattern in which their known places,
such as the workplace, home, a favorite shopping center,
are usually their common origins and destinations (Zong
et al., 2019). This stable trip pattern provides the essential
presupposition of the utilization of well defined NMFDs
to design network level control strategies to maintain the
throughput of a network at its maximum level by limiting
incoming redundancy vehicles. However, note that only
networks with a homogeneous traffic state have a well
defined NMFD. Pre-partitioning is one of the possible

solutions. The logic behind the pre-partitioning is to divide
the network into some sub networks with relatively ho-
mogeneous traffic state to construct a multi-region system
such that each sub network in the system has a well defined
NMFD. Then, control strategies can be developed based
on the multi-region system.

Compared to the control strategies for single-region net-
works, see Daganzo (2007) and Keyvan-Ekbatani et al.
(2012) for example, pre-partitioning is more important for
control strategies for multiple-region system. Geroliminis
et al. (2013) designed the initial control strategies for
multi-region system. Then Ramezani et al. (2015) im-
proved the strategy via hierarchical structure to come up
with a higher level perimeter control upon a lower level
feedback control. Then, the multi-region system model
predictive control strategy is linearized by Kouvelas et al.
(2017). Zhou et al. (2016) designed hierarchical MPC gat-
ing regulation by which the implementation of MPC op-
erates on both network and link levels. The improvement
is also observed in Sirmatel and Geroliminis (2017), which
aggregated route guidance into the multi-region system
perimeter control. Recently, Haddad and Zheng (2018)
developed an adaptive approach for a multi-region system
with a delay based model to be better suitable for traffic
wave propagation and travel time evolution. Sirmatel and



Geroliminis (2019) increased the availability of the model
predictive control strategy for the multi-region system by
giving a solution of the estimation problem of initial states
for the prediction model in the model predictive control
strategy for the multi-region system.

The multi-region NMFDs system’s stability might be af-
fected by the undesired queues generated from the control
strategies by which the queues increase the variance of
link density in the pre-partitioned regions. The shape of
the NMFD would be changed. Even though some advanced
queue management, see Keyvan-Ekbatani et al. (2021) for
example, can be applied to multi-reservoir system, the un-
stable shape problem of the NMFD is still suspending. To
mitigate the influence of the queues, real-time partitioning
could also be taken into account.

Partitioning can be applied by some classic clustering
techniques (e.g. k-mean, hierarchical clustering and spec-
tral clustering). For example, Ji and Geroliminis (2012)
proposed a multi-step approach that utilizes N-cut strat-
egy. Also, one can implement a hierarchical concept based
on a series of connectivity constraints. Algorithms begin
with every single quantity or the whole set of databases.
Then iterative merging or splitting algorithms can be
employed, which has been achieved within some methods,
see Guo (2008) and An et al. (2017) for example. The
partitioning improvement can also be observed in Gu and
Saberi (2019) and Saeedmanesh and Geroliminis (2016),
as it is a continuously developing topic. However, real-time
partitioning changes each sub network’s size such that it
makes the well-defined NMFDs unpredictable. This causes
the difficulty in which real-time partitions can hardly be
applied in network level control strategies.

This study takes both control and real-time partitioning
into account and forges a model predictive control with a
partitioning method to improve control performance. This
method is then tested on a multi-region NMFDs system
and compared versus no control and traditional MPC
scenarios to present the importance of real-time partitions
used in traffic flow perimeter control. The remainder of
the paper is organized as follows: section II presents the
applied methodology in this study, including the network
transmission model, the partitioning method, and the con-
trol objective with constraints. Then, the paper discusses
the simulation results obtained from the implementation
of multi-region scenarios. In the end, conclusions have been
addressed.

2. METHODOLOGY

2.1 Multi-cell NMFDs system

A heterogeneous urban network can be pre-partitioned
into several relatively homogeneous sub networks or cells,
as illustrated in Fig.1. The cell i is included in the set of all
cells R. Assume the sub urban network i has a well-defined
NMFD Gi(ni(t)), where ni(t) is the accumulation in cell
i. For the multi-region system, dii(t) denotes endogenous
traffic demands in i, while exogenous traffic demands
from origin of i with destination to one of the cell j is
dij , i, j ∈ R. Then, the accumulation ni(t) in i can be
calculated as: ni(t) =

∑
j∈R nij(t), where nij(t) is the

accumulation in i with destination to j. Let h ∈ Ni (i ∈ R)

be one of the cells in the set of all the neighboring cells
Ni.

Fig. 1. Multi-cell system

The perimeter controllers uih(t) and uhi(t) are designed to
limit the transfer flows between cells in order to maximize
the total travel distance of all vehicles that emerged
in the multi-region NMFDs system. They allow ratio
transfers across boundaries at time t (e.g. uih(t) denotes
the transfer ratio gating the transfer flow from i to h). The
traffic dynamics of the multi-region NMFDs system as in
Ramezani et al. (2015) can be written as follows:

∀i ∈ R,
dnii(t)

dt
= dii(t)−Mii(t) +

∑
h∈Ni

uhi(t)M̂hii(t)

(1)

∀i, j ∈ R, i 6= j,
dnij(t)

dt
= dij(t)−

∑
h∈Ni

uih(t)M̂ihj(t)

+
∑

h∈Ni,h 6=j

uhi(t)M̂hij(t)

(2)

where M̂ihj(t) signifies the effective transfer flow from i
with destination to j via the neighboring downstream cell
h, which is restricted by boundary capacity Cih(nh(t))

between i and h, similar to M̂hij(t) and M̂hii(t). Mii(t)
is the completion trips in i at time t. The boundary
capacity is affected by both the serve capacity of the roads
connecting i and h and also constrained by the supply of h.
Considering the reality, the road serve capacity is relatively
constant such that the boundary capacity can be assumed
as a function of nh(t). Therefore, the M̂ihj(t) is described
as:

M̂ihj(t) = min[Mihj(t), Sih(nh(t))
nij(t)θihj(t)∑

k∈R nik(t)θihk(t)
,

Cih
nij(t)θihj(t)∑

k∈R nik(t)θihk(t)
]

(3)

where θihj(t) is the splitting ratio of flow via h from origin
i with destination to j,

∑
h∈Ni

θihj(t) = 1, the Smax
ih is the

supply constraint, which is designed by:

Sih(nh(t)) = ωh(njam
h − nh(t))·∑

k∈R nihk(t)∑
m∈Nh,k∈R nmhk(t) + nhh(t)

(4)

where m is one of the neighboring cell in the set of all
its neighboring cells Nh, while the transfer users from



m with a certain destination k through h at time t is
denoted by

∑
k∈R nihk(t). There is also boundary capacity

Cih, specifying the service capability of the connecting
roads between the two cells. The boundary capacity can
be defined as:

Cih =
∑
l∈Lih

alCl (5)

where l is a link in Lih, which denotes the set of all the
road links from i to h; al is a variable defining the number
of lanes on link l; the Cl is the lane capacity of link l, note
that there is an assumption of existing the same capacities
for all lanes on one link. Gi(ni(t)) is designed as a trape-
zoid NMFD because in an urban network the capacity
generally occurs in a range of accumulations. Then, as
suggested in Mariotte and Leclercq (2019), the external
flow to a downstream reservoir is only restricted by the
supply function of the downstream reservoir, whereas the
internal flow follows the NMFD. The internal and external
flows can be formulated as:

MNMFD
i (t) =

{
Gi(ni(t)) for internal flow

Oi(ni(t)) for external flow
(6)

The internal flow Gi(ni(t)) can be shaped as the complete
trapezoid NMFD, while the outflow of the external flow of
high accumulations is only restricted by the downstream
supply. Thus, Gi(ni(t)) and Oi(ni(t)) can be written as:

Gi(ni(t)) =


υini(t) for 0 ≤ ni(t) < na0

i

Ci for na0
i ≤ ni(t) ≤ n

b0
i

ωi(n
jam
i − ni(t)) for nb0

i < ni(t) ≤ njam
i

(7)

and

Oi(ni(t)) =

{
υini(t) for 0 ≤ ni(t) < na0

i

Ci otherwise
(8)

where i ∈ R; ni denotes the number of vehicles in i,
it follows physical constraints of the empty and gridlock
or jam situations (0 ≤ ni ≤ njam

i ), the υi and ωi are
NMFD parameters, Ci denotes the maximum flow of the
NMFD, na0

i and nb0
i signify the lower and upper bounds

of critical accumulation, while njam
i is the gridlock or

jam accumulation. Then, the transfer flow Mihj(t) can be
obtained from the external flow function as:

Mihj(t) = θihj(t)
nij(t)

ni(t)
Oi(ni(t)) (9)

while the internal flow function is:

Mii(t) =
nii(t)

ni(t)
Gi(ni(t)) (10)

2.2 Partitioning

To explicitly describe the method, we redefine ’cells’ as the
sub networks resulting from pre-partitioning and ’reser-
voirs’ as the sub networks resulting from the real-time par-
titioning. By applying pre-partitioning, the entire network
of hosts is divided into a fixed number and size of cells.
These cells would remain constant throughout the whole
period. Static partitioning might be implemented to divide
a large-scale network into a multi-cell NMFDs system.
There will be no discussion of this step in this paper since
the focus will be on applying real-time partitioning for
control purposes based on a multi-cell NMFDs system. It

is assumed that the system can be well built. Then, real-
time partitioning produces a certain number of reservoirs.
A reservoir consists of single or multiple cells. The traffic
dynamic between these cells follows the network transmis-
sion model that we have presented above. However, the
control ratio should only be applied to the border between
reservoirs.

To implement the partitioning, we convert the multi-cell
network into a graph Gp(V,E) in which a cell i is regarded
as a vertex v ∈ V with a number of directed edges (e ∈ E),
that are geographically connected to the neighboring cells.
Initially, we search for the highest accumulation vertex
vseed at time t, and set it as the seed vertex. Secondly,
the seed iteratively grows by merging the most similar
neighboring vertex to form a gradually increasing vector
v̄. If the length of the vector v̄ is lv̄ and the accumulation
in each v ∈ v̄ is nv(t), the similarity between the v̄ and a
neighboring vertex is calculated as:

∀v ∈ Nv, sv = (

∑
x∈v̄ nx(t)

lv̄
− nv)2 (11)

where Nv is the set of all vertex neighboring v̄, nx(t) is
the accumulation of a certain vertex x ∈ v̄ at time t.
The vertex with minimum sv is sequentially added into
v̄. The process would be repeated until lv̄ equal to the
cardinality of V, where the vector v̄ can represent the
sequence of the relationship among cells by considering
both accumulation and geographic information. By cutting
the vector, the whole network can be partitioned into
a number of reservoirs. Let the cutting variable p ∈
{1, 2, 3...lv̄ − 1} denote the cutting point after the p-th
vertex in v̄, for example, if p1 = 3 and p2 = 5, the first
cutting point is located between the third vertex and the
fourth vertex in v̄ and the second cutting point is between
fifth and sixth vertex, such that the first 3 vertex are in
reservoir 1, and the vertex 4 and vertex 5 are deployed
in reservoir 2, and the rest are in reservoir 3. By this
definition, we can partition the entire network using a
number of variables {p1, p2, ...plv̄−1}. The partitions will
update at each partitioning interval Tp.

2.3 Model predictive control with partitioning

Let the ud signify the vector of control ratio between
reservoirs during the prediction horizon NP. The control
horizon is defined as NC, which is smaller than NP. To
discretize the problem, it is assume that the control ratio
will be constant for ∆T s), and the manipulation happens
at every interval T . Thus, the objective function can be
written as:

J = max
ud,p

NP−1∑
T=0

∑
i∈R

Mii(T ) (12)

subject to:

n(0) = n̂(tc) (13)

∀0 ≤ T ≤ NP − 1,n(T + 1) = f
(
n(T ),d(T ),ud(T ),

Θ(T ), P (T )
)

(14)

∀i ∈ R, 0 ≤
∑
j∈R

nij(T ) ≤ njam
i (15)



P (T ) =


P̂ (tc) for T = 0 ∧ T 6= Tp

fp(p(T ),n(T )) for T = Tp ∧

Tp ≤
tc mod (Tp∆T )

∆T
+NC

P (T − 1) otherwise

(16)

ud(0) = ûd(tc) (17)

ud+(T ) + ud−(T ) = 1 (18)

∀0 ≤ T ≤ NP − 1, umin ≤ ud(T ) ≤ umax (19)

∀NC + 1 ≤ T ≤ NP − 1, ud(T ) = ud(T − 1) (20)

where the ud(0) is the initial control ratio by the randomly

selected first guess ûd(tc); n(0) is the initial accumulation
states, which is measurement or estimation n̂(tc) from
the plant; the accumulations, demands, control ratio and
splitting ratio vectors at interval T are indicated by n(T ),
d(T ), ud(T ) and Θ(T ), respectively; f(.) describes the
dynamic of the multi-cell NMFD system. To find the
optimal partitions, the cutting points p are also considered
as variables for optimization. P (T ) is the partitions at
interval T . It is initially obtained by partitions observation
P̂ (tc) at time tc, and recalculated at time Tp, which repre-
sents the decision making time of partitioning. Tp should
follow the partitioning plan of the plant. Due to partition-
ing period being usually a few times more than control
interval, the partitioning would not always be applied at
the first step of the prediction. Therefore, in case of Tp >
(tc mod (Tp∆T ))/∆T + NC, there is no necessity of re-
partitioning. fp(.) is the partitioning method introduced
in 2.2. The mixed integer non-linear optimization problem
can be solved via sequential quadratic programming, e.g.
APOPT solver (Hedengren et al., 2012). The control ratios
at time interval T should be bounded by the maximum and
minimum limitation, which are represented by two vectors
umax and umin respectively. Due to the physical meaning
of control ratio (green phase over cycle), each ratio should
be between 0 and 1. In terms of fairness, the upper bound
is designed as a ratio less than 1, and the lower bound is
larger than 0 in order to allow at least a certain number of
vehicles from a certain direction to cross the intersection.
There exist signalized intersections scattering along parti-
tion boundaries. The boundary control can be applied by
utilizing the existing signals. Such that the transfer flows
from opposite directions at time T (ud+(T ) and ûd−(T ))
go via the same intersection system. In other words, the
opposite directions control ratios are restricted by each
other since the sum of green time for different directions at
one intersection should equal to or less than the total cycle.
Hence, the sum of all opposite direction control ratios at
interval T is set equivalent to 1, being represented by the
constraint ud+(T ) + ûd−(T ) = 1.

3. NUMERICAL TEST

This section presents a numerical test example to explore
the characteristics of the proposed model predictive con-
trol with the partitioning scheme. This example shows
the investigation of the effect of no control (NC), model
predictive control using fixed partitions (MPC), and model

predictive control with real-time partitioning (MPC-P).
Note that the scenarios, such as some cases in Geroliminis
et al. (2013) are not thoroughly tested since the main
contribution of this study is modeling the aggregation of
real-time partitioning with a perimeter control strategy.
This study emphasizes the performance of real-time par-
titioning strategy in control compared to fixed partitions.

(a) Two regions network (b) Demand profile

Fig. 2. Network layout and demand profile

Table 1. NMFD parameters

Parameter Value Units

υi 10.57 h−1

ωi 3.84 h−1

njam
i 10762 veh

na0
i 1736 veh

nb0
i 5986 veh

Ci 18341 veh/h

The testbed consists of 19 cells, which is shown in Fig.2(a)
by two regions to designate the periphery (12 cells) and
the city center (7 cells) of an urban network. The NMFD
of the cells has been assumed to be the same, and the
values in Table 1 are derived from the realistic NMFD
of Christchurch, New Zealand (for further details on the
network description and characteristics see Johari et al.
(2020)). In the numerical test, the initial accumulation in
each cell is identical (ni(0) = 1232). To simulate the peak
period traffic, the total demand from region 1 to region
2 (D12) is designed larger than the others, including the
opposite demand flows from region 2 to region 1 (D21),
the internal demand in region 1 (D11) and region 2 (D22),
see profile in Fig.2(b). We also assume a largely biased
distribution of transfer demand to exhibit the importance
of partitioning (cell 8, cell 9, cell 10, cell 811, cell 12, and
cell 13 contain 90% transfer demands in region 1). Random
recurrent noises are added to the demand for simulating
the stochasticity of the demand in the plant and assuming
errors in the NMFDs in the plant according to the method
mentioned in Geroliminis et al. (2013). For the whole test,
the selected MPC controller and partitioning variables are
as follows: the prediction horizon Np = 20, the control
horizon NC = 2, the control interval is 120 s, the re-
partitioning period is 600 s, the lower bound and upper
bound of control ratio are 0.1 and 0.9 respectively, the ratio
for non-controlled boundaries is fixed as 0.5. The splitting
ratio is fixed and calculated by the shortest path method
initially. Note that due to the space limitation, we will not
discuss the influence of rerouting techniques in this paper.



(a) NC (b) MPC (c) MPC-P

Fig. 3. Accumulation profile of each cell: (a) no control; (b) model predictive control with fixed partitions; (c) model
predictive control with real-time partitions

The total boundary capacity of the observed cell is 186900
(veh/h).

We compared three scenarios that are essential to exhibit
the importance of partitioning using in control strategy: (i)
no control (NC) i.e. only fixed control ratio have applied
to all boundaries; (ii) model predictive control with fixed
partitions where the MPC controller is only implemented
on the boundary between region 1 and region 2; (iii)
model predictive control with partitions; the partitioned
reservoirs can be updated in each re-partitioning period
via a single objective function that finds the optimal
control ratio and the optimal partitions simultaneously.

Fig.3 illustrates the accumulations ni(t) evolution over
simulation duration for the three strategies. Initially, the
accumulations in all cells increase in all cases. Then, the
traffic state in most cells for no control case goes quickly
to gridlock or jam, see Fig.3(a). The MPC case shows
a better circulation in which the traffic situation in a
few cells can reach the gridlock or jam accumulation,
while there is no gridlock or jam observed after 5000
s for the MPC-P case. The mean completion trips for
MPC-P within the simulation duration is 10.38 (veh/s),
which is approximately 20% and 40% higher than MPC
and NC (note that the completion trips decrease because
of the congestion release during the last 3000 seconds.
Thus the effective performance is even higher). Both the
shapes in these figures and the total values demonstrate
that although both MPC and MPC-P are effective in
mitigating congestion and improve traffic situation, the
MPC-P performs superiorly.

A more clear investigation is presented in Fig.4, which ex-
hibits the completion trips (

∑
i∈RMii(t)) over the simula-

tion duration. Utilizing the control strategies can vastly in-
crease the entire traffic performance, see MPC and MPC-P
versus NC. Obviously, the MPC-P is better than the MPC
in terms of completion trips. Note that the completion
trips for MPC-P decrease after 16000 s, which does not
mean the performance deteriorates. This is caused by
faster mitigation of the congestion and higher throughput,
which results in an empty network at the end of the
simulation.

To understand why the strategies perform differently, we
plot Fig.5. This figure shows the accumulation standard
deviation (STD) versus time. With the uneven demand
increasing, the heterogeneity for all three cases grows
sharply. Then, the proposed MPC-P approach tries to
reverse the tendency and bring the whole network back

Fig. 4. Completion trips

to more homogeneous states. As a result, the network
undergoes redistribution, avoiding gridlock or jam and
restoring flows to its potential maximum. In contrast,
there is less effect on accumulation redistribution for MPC
and NC case. Therefore, in these scenarios after a certain
cell reaches the congested traffic state, its upstream cells
quickly become congested. Consequently, the congestion
might further propagate to the whole network.

Fig. 5. Accumulation homogeneity

Fig.6 lists the partitions over the simulation duration.
Since there is only one partitioning decision parameter
set in the objective function, the entire network is bi-
partitioned for each partitioning step. The computational
cost for each prediction averages 16 seconds, small com-
pared to the signal cycle of 120 seconds. In reality, a longer
duration (e.g. half an hour) of the partitioning step can
be considered. Thus, the proposed method can be feasible
for dealing with the congestion in heterogeneous traffic
states from both performance and efficient computational
perspectives.

4. CONCLUSIONS

This study presents a model predictive control structure
that integrates perimeter control scheme and real-time
partitioning to improve the mobility in the heterogeneous
traffic networks. The optimization makes decisions by find-
ing suitable control and partitioning variables to optimize



Fig. 6. Real-time partitioning during perimeter control

the total trip completion rate. The perimeter control has
been applied to the boundary between reservoirs to limit
transfer flows to keep the total traffic performance as
its maximum. The applied partitioning method enables
reservoirs to be updated over time without changing the
well-defined NMFDs in each cell to overcome the difficulty
of combining real-time partitioning and perimeter control.
The numerical test shows an efficient performance (i.e.
20% and 40% higher than conventional MPC and no con-
trol) of the proposed MPC-P method under the simulated
peak traffic situation with uneven demand pattern. The
accumulation homogeneity investigation also exhibits that
the performance improvement comes from increasing the
accumulation homogeneity across the entire network.
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