Akaroa 2.5
User’s Manual

G. Ewing and K. Pawlikowski
(Department of Computer Science)
and D. McNickle
(Department of Management)
University of Canterbury

TR-COSC 07/98, September 1998

The contents of this work reflect the views of the authors who are responsible for the facts and accuracy
of the data presented. Responsibility for the application of the material to specific cases, however, lies
with any user of the report and no responsibility in such cases will be attributed to the author or to the

University of Canterbury.

Abstract

This document describes how to use Akaroa 2, a package for executing quantitative stochas-
tic simulations on multiple processors using the method of Multiple Replications In Parallel

(MRIP).

Akaroa 2.5
User’s Manual

Greg Ewing
Krzysztof Pawlikowski
Donald McNickle

September 4, 1998

Preface

AKAROA: Copyright(© June 1992 (original version), June 1995 (AKAROA
I1), Department of Computer Science, University of Canterbury, Christchurch,
New Zealand

The original version of AKAROA was designed at the Department of Computer Sci-
ence, University of Canterbury in Christchurch, New Zealand, by Associate Professor K.
Pawlikowski and Victor Yau (Computer Science) and Dr D. McNickle (Management). A
contribution from Peter Smith (Computer Science) is also acknowledged. The project was
partially sponsored by Telecom Australia Research Laboratories in Melbourne. The current
version (AKAROA 1) is a reimplementation by Dr Greg Ewing (Computer Science).

The AKAROA package can be used free of charge for teaching and non-profit re-
search activities at universities and research institutes, but we would appreciate if users
of AKAROA clearly acknowledge using this package as a tool in their simulation studies
when presenting or publishing their results.

Before using AKAROA for any other purposes, please consult Associate Prof. K. Paw-
likowski, Department of Computer Science, University of Canterbury, Christchurch, New
Zealand

Phone: (03) 364-2351 (national), +64 3 364 2351 (international)
Fax: (03) 364-2999 (national), +64 3 364 2999 (international)
Email: k.pawlikowski@cosc.canterbury.ac.nz

WWW: http://www.cosc.canterbury.ac.nz/ krys

Contents

1 Introduction

11

UsingAkaroa

2 Writing a simulation for Akaroa

2.1
2.2
2.3
2.4
2.5

2.6

Example simulationprogram L.
Compiling a simulation program
Using a simulation program.
Observing more than one parameter
Random Numbers
2.5.1 Algorithm used by AkRandom.
Terminating Simulation vs. Steady-State Simulation

3 Running a simulation under Akaroa

3.1
3.2
3.3

3.4
3.5

3.6
3.7

3.8

Parts of the Akaroasystem
Starting up the Akaroasystem
Runningasimulation
3.3.1 Runningon particularhosts
3.3.2 Passing options to the simulation program
3.3.3 Controlling the randomnumberseed
3.3.4 Messages you may getfromakrun
Adding engines to a running simulation
Monitoring the Akaroasystem
351 Examples
352 Columnheadings
Shutting down the Akaroasystem
Debuggingasimulation.
3.7.1 Sending diagnostic information
3.7.2 Running a simulation engine under a debugger.
3.7.3 Precautions against excessively shortruns
Graphical User Interface
3.8.1 Themainakguiwindow
3.8.2 Startingasimulation
3.8.3 Simulationwindow Lo
3.8.4 Examining an existing simulation
3.85 Quittingakgui

4 The Akaroa Environment

4.1 Environment Variables
4.2 Environment Syntax

iv

5 Akaroa Library Routines
5.1 Random Number Distributions

A

5.2
5.2.1 Synopsis
5.2.2 Using Queues
5.2.3 Methods
5.3 Priority Queues
5.3.1 Synopsis
5.3.2 Using PriorityQueues
5.4 Process Manager
5.4.1 Synopsis
5.4.2 Creating a process
5.4.3 Stack size
5.4.4 Scheduling
5.4.5 Other routines
55
5.5.1 Synopsis
5.5.2 Methods
5.6
5.6.1 Synopsis
5.6.2 Using AkSimulation
Examples

6.1 An M/M/1 Queueing System
6.2 A Multiprocessing Computer System
6.3 A Terminating Simulation

5.1.1 Synopsis

5.1.2 Descriptions
Queues

Resources

AkSimulation

Obsolete Facilities

Al

Adding an analysis method to Akaroa
Introduction
B.2 What an analysis method does
B.2.1 Checkpoints
Implementing an analysis method
B.3.1 Steps to implementing an analysis method
B.3.2 ClasParameterAnalyser
B.3.3 Declaring your analyser to Akaroa
B.3.4 Adding a value for AnalysisMethod
B.3.5 Adding your code to the Makefile
B.3.6 Recompiling Akaroa
Accessing the Akaroa Environment
B.4.1 Retrieving Akaroa environment variables
B.4.2 Defining new Akaroa environment variables

B.1

B.3

B.4

Event Manager

A.1.1 Event Manager Routines

Bibliography

CONTENTS

Chapter 1

Introduction

Quantitative stochastic simulation is a useful tool for studying performance of stochastic
dynamic systems, but it can consume much time and computing resources. Even with
today’s high speed processors, it is common for simulation jobs to take hours or days to
complete.

Processor speeds are increasing as technology improves, but there are limits to the speed
that can be achieved with a single, serial processor. To overcome these limits, parallel or
distributed computation is needed. Not only does this speed up the simulation process,
in the best case proportionally to the number of processors used, but the reliability of the
program can be improved by placing less reliance on a single processor.

One approach to parallel simulation is to divide up the simulation model and simulate
a part of it on each processor. However, depending on the nature of the model it can be
very difficult to find a way of dividing it up, and if the model does not divide up readily, the
gain from parallelising it will be less than proportional to the number of processors. Even
in cases where the model can be parallelised easily, more work is required to implement a
parallel version of the simulation than a serial one.

Akaroa takes a different approach to parallel simulation, thatwdfiple replications in
parallel or MRIP [1-8]. Instead of dividing up the simulation program, multiple instances
of an ordinary serial simulation program are run simultaneously on different processors.

These instances run independently of one another, and continuously send back to a
central controlling process observations of the simulation model parameters which are of
interest. The central process calculates from these observations an overall estimate of the
mean value of each parameter. When it judges that it has enough observations to form an
estimate of the required accuracy, it halts the simulation.

Since the simulations run independently, if thereracepies of the simulation running
on n processors they will on average produce observationgiates the rate of a single
copy, and therefor produce enough observations to halt the simulation aftierof/the
time. So the MRIP technique can be expected to speed up the simulation approximately in
proportion to the number of processors used.

MRIP also provides a degree of fault tolerance. It doesn’t matter which instance of the
simulation the estimates come from, so if one processor fails, the program it was running
can be restarted and the simulation continued without penalty. Alternatively, the simula-
tion can simply be continued with one less processor and take proportionately longer to
complete.

In summary, the advantages of the MRIP technique are that it can be applied to any
simulation program without the need to parallelise it or modify it in any way; it provides
a speedup proportional to the number of processors; and it improves the reliability of the
simulation.

2 CHAPTER 1. INTRODUCTION

1.1 Using Akaroa

To use Akaroa, the user writes a simulation program which models the system to be stud-
ied and, when executed, collects a serieslmdervationof one or moregparametersof

the processes being simulated. Akaroa automatically launches and manages the execution
of a number of copies of this program on available processors; each such copy is called a
simulation engineEach simulation engine runs independently of the others and generates
its own sequence of observations, from whiebal estimate®f the parameters are calcu-

lated. Akaroa collects these local estimates when they are produced and calcglates a
estimateof each parameter.

The user specifies the required precision and confidence level for each parameter. When
the global estimates of all parameters have reached the required precision at the required
level of confidence, the simulation engines are automatically stopped, and the results are
reported.

If any of the simulation engines fails for some reason, the rest are allowed to continue,
and the global estimates are calculated using values from the remaining engines. Akaroa
thereby provides a certain amount of fault tolerance - if one of the processors goes down,
the simulation will continue, although it will take longer to complete.

Chapter 2

Writing a simulation for Akaroa

Writing a simulation program to run under Akaroa is very straightforward. You write a
program in C++ to simulate the system you wish to study, using whatever techniques you
would normally use.® Whenever your program generates an observation of one of the
parameters you are interested in, you make a call to the Akaroa library to communicate this
observation to the Akaroa system.

2.1 Example simulation program

Here is an example of a very simple simulation program designed to run under Akaroa. It
simulates a process which generates random numbers in the range 0 to 1, and gives each
numberto Akaroa as an observation. (The source of this program, and the other examplesin
this manual, can be found in tlexamples directory of the Akaroa installation directory.
Consult your site administrator for the location of this directory.)

/*
* uni.C - A very simple simulation engine
*/

#include <akaroa.H>
#include <akaroa/distributions.H>

int main(int argc, char *argv[]) {

for () {
double x = Uniform(0, 1);
AkObservation(x);

}

}

This example demonstrates how to use one of the most important Akaroa library rou-
tines. AkObservation takes an observation and makes it known to the Akaroa system,
which updates its estimate of the mean value. As long as the estimate has not yet reached
the required accuracpkObservation will return and allow the simulation to continue.
When the estimate reaches the required precision, Akaroa will automatically terminate the
simulation.

This example also uses the routldeiform , which returns uniformly distributed ran-
dom numbers in the specified range. You should always use Akaroa library routines to
obtain random numbers; for more information, see section 2.5.

1You may also write the program in C and compile it with the C++ compiler, although you will not be able to
use all of the modelling facilities provided with Akaroa.

3

4 CHAPTER 2. WRITING A SIMULATION FOR AKAROA

2.2 Compiling a simulation program

The examples directory contains aakefile for compiling the example programs.
You can copy this Makefile to your own directory and use it for compiling your own simu-
lation programs.

For example, if you have also copied the filei.C from the examples directory, you
can compile it with the command

% make uni

If your simulation program consists of a single source file, you can compile it with the
commandmake xxx wherexxxis the name of the program, without making any changes
to the Makefile. But if your program is built from more than one source file, you will have
to add a rule for linking it to the Makefile. An example of such a rule is included at the
bottom of the Makefile.

2.3 Using a simulation program

A simulation program may, without modification, be used in two ways. It may be launched
manually and rurstand-aloneor it may be launched automatically by Akaroa asia-

ulation engine When run stand-alone, it will write a report of the final estimate of each
parameter to standard output when finished. Here is an example of the output produced by
running theuni program stand-alone:

% uni
Param Estimate Delta Conf Var Count Trans
1 0.483686 0.0218746 0.95 8.55314e-05 756 252

Estimateis Akaroa’s estimate of the mean value of the param&elta is the half-
width of the confidence interva;onfis the confidence level, andr is the variance of the
estimate.Countis the total number of observations collected, darmhsis the number of
observations that were discarded during the transient phase, before the system settled down
into a steady state.

2.4 Observing more than one parameter

If your simulation produces observations of more than one parameter, you need to call
AkDeclareParameters before starting your simulation, and pass it the number of pa-
rameters you wish to estimate. Then, each time youAaDbservation , you pass it
the parameter number along with the observation.

For example, here’s an extensionusfi which generates observations of two parame-
ters:

/*
* uni2.C - A very simple 2-parameter simulation engine
*/

#include <akaroa.H>
#include <akaroa/distributions.H>

int main(int argc, char *argv[]) {
AkDeclareParameters(2);
for () {
double x = Uniform(0, 1);

2.5. RANDOM NUMBERS 5

double y = x * x;
AkObservation(1, x);
AkObservation(2, y);

}
}
Runninguni2 produces output similar to the following:
% uni2
Param Estimate Delta Conf Var Count Trans
1 0.492028 0.0148889 0.95 3.96252e-05 1512 252
2 0.322265 0.0159348 0.95 4.53877e-05 1554 259

2.5 Random Numbers

When running multiple replications of a simulation model in parallel, it is important that
each simulation engine uses a unique stream of random numbers, independent of the streams
used by other simulation engines. For this reason, if your simulation requires random num-
bers, you shouldlwaysobtain them from the Akaroa system, so that Akaroa can coordinate
the random number streams received by different simulation engines.

The simplest way is to use the random number distribution routines provided in the
Akaroa library, described in section 5.1. If you need a distribution that is not provided
in the library, you will need to write your own distribution generator, using the routine
AkRandomas a basic source of random numbers:

unsigned long AkRandom();

Each time AkRandom is called, it returns a random integguch thatl < n < 231 —1.

2.5.1 Algorithm used by AkRandom

AkRandom uses a multiplicative linear congruential random number generator together
with a series of multiplying coefficients to generate a sequence of random numbers made
up of subsequences of length! — 2, one subsequence for each multiplier. Currently 50
multipliers are available, for a total sequence length of 107,374,182,300 numbers.

These multipliers are taken from a list of optimal multipliers published by Fishman and
Moore?, and they have been subjected to extensive statistical testing by those authors. For
more information, including a list of the multipliers, see the on-line manual entry AkRan-
dom(3).

2.6 Terminating Simulation vs. Steady-State Simulation

In steady-state simulation, the stream of observations produced by the simulation model
is usually correlated. However, some types of simulation produce observations which are
independent. An exampletisrminating simulatiorin which the simulation is run for a pre-
determined period, at the end of which a single data item is produced. To obtain a stream
of data items for Akaroa to analyse as observations, the simulation must be repeated many
times with different random number seeds. Because the repetitions are independent of each
other, the data items produced are also independent.

In the case of independent observations, there is no transient phase, and there is no need
to use a method such as Batch Means or Spectral Analysis to analyse the observations. To

2George S. Fishman and Louis R. Moore Wn exhaustive analysis of multiplicative congruential random
number generators with modul@8! — 1. SIAM J. Sci. Stat. Comput. Vol. 7, No. 1, January 1986, pp. 24-44

6 CHAPTER 2. WRITING A SIMULATION FOR AKAROA

take advantage of these facts, Akaroa hagmdependent observation madghis mode is
selected by making the following call to ti&ObservationType routine:

AkObservationType(Akindependent);

You must make this calbeforecalling AkDeclareParameters or calling AkObservation
for the first time. (If you call it later, it will have no effect, and Akaroa will assume that
the observations are correlated as usual.) For an example of a simulation which uses this
routine, see Chapter 6.

When independent observation mode is selected, the setting &rtalysisMethod
environment variable is ignored. No transient observations are discarded, and the variance
of the estimate of the mean is estimated using

. 1,
0?—(= Nog(i (2.1)

whereX; is theith data item anaV is the number of independent data items, and

N
1 _
~2 w2
% = 71 ?Zl(xz X) (2.2)

Chapter 3

Running a simulation under
Akaroa

This section explains how to run multiple replications of your simulation in parallel under
the Akaroa system.

3.1 Parts of the Akaroa system

The Akaroa system consists of three main prograakmastey akslave andakrun plus
three auxiliary programakadd akstatandakgui

Akmasteris the master process which coordinates all other processes in the Akaroa
system. Before you can use Akaroa, there must be an akmaster process of yours running
on some host which can communicate with all the other hosts you wish to use.

There must be aakslaveprocess running on each host that you wish to use to run a
simulation engine. Akmaster uses the akslave to launch the simulation engine and to help
establish communication with it.

The host on which akmaster is running may also, if you wish, run an akslave, and
therefore be used to run a simulation engine.

Once the akmaster and any desired akslaves are running, you makrusdo start
a simulation. Akrun takes as arguments the name of the program you wish to run as a
simulation engine, any arguments to be passes to that program, and the number of hosts on
which you want to run it.

Akrun instructs akmaster to launch the simulation on the requested number of hosts.
Akmaster chooses this many hosts from among those running akslaves, and instructs the
akslaves on those hosts to launch the requested program as a simulation engine.

Akmaster collects local estimates from the simulation engines, calculates global esti-
mates, and decides when to stop the simulation. When the simulation is over, akmaster
sends the final global estimates back to akrun, which reports them to the user and exits.

Akadd(section 3.4) is used to add more simulations to a running simulaidustat
(section 3.5) is used to obtain information about the state of the Akaroa sy#tkgui
(section 3.8) provides a graphical user interface for starting and monitoring simulations
that can be used instead of, or in addition to, akrun and akstat.

3.2 Starting up the Akaroa system
To start up the Akaroa system:

1. Startakmasterunning in the background on some host.

7

8 CHAPTER 3. RUNNING A SIMULATION UNDER AKAROA

2. On each host where you wish to run a simulation engine, akataverunning in the
background.

You may accomplish these steps either by ussty or by logging into the relevant
hosts and running the programs directly. However, you should take care about the environ-
ment in which each akslave process runs. The program name that you give to akrun will
be passed as-is to each akslave, and you must ensure that the akslave will be able to find
it, either by using a full pathname, or by including the directory where it resides in your
search path before launching the akslaves.

If you are going to launch akslaves using rsh, you must make any necessary additions
to your search path in youcshrcfile (or, if you usetcsh your .tcshrcfile), not just in the
shell from which you issue the rsh command.

Example: Starting up Akaroa via rsh

Here is an example of starting up Akaroa on two hgatsauandmohua with the akmaster
running on a third hostyhio. It assumes that the user is already logged into whio, and has
set up her path variable in her .cshrc file to include the directory where her simulation
programs reside, and the directory where the akaroa programs reside.

whio% akmaster &

[1] 14018

whio% rsh purau ’'akslave &’
[1] 14117

whio% rsh mohua ’akslave &'
[1] 14136

whio%

Once an akslave is up and running, it breaks its links with the rsh. So, if the rsh com-
mand exits without any error messages, you know that the akslave has been launched suc-
cessfully.

3.3 Running a simulation

Theakruncommand starts a simulation, waits for it to complete, and writes a report of the
results to standard output. The basic usage of the akrun command is:

akrun -nnumhosts commanfargument..]

wherenumhostsis the number of hosts on which you wish to run simulatiausn-
mandis the name of the program you wish to run as a simulation engine, aatgheens
are the arguments, if any, that you want to pass to each simulation engine.

Once Akaroa is started up, you may run as many simulations as you like. You may
even run more than one simulation at a time, although they will compete with each other
for processing resources.

You can make a new host available for running simulation engines at any time by start-
ing an akslave on that host (although it will only be available to simulations subsequently
started, not to any already running).

Example: Running uni under Akaroa

Assuming that Akaroa has been started up in the manner of the previous example, here
is an example showing how to run thi program on two hosts, and the typical output
produced:

3.3. RUNNING A SIMULATION 9

whio% akrun -n 2 uni

Simulation ID = 17

Simulation engine started: host = pukeko, pid = 23672
Simulation engine started: host = purau, pid = 434

Param Estimate Delta Conf Var Count Trans
1 0.503476 0.0157353 0.95 4.42582e-05 1530 255
whio%

3.3.1 Running on particular hosts

If you just specify a number of hosts to akrun with the -n option, the Akaroa system arbi-
trarily chooses this many hosts from among those running akslave processes. Akaroa will
try to spread the simulation load that it is given evenly over the hosts available, but it only
takes Akaroa processes into account. It doesn’t know about non-Akaroa processes, or even
Akaroa processes belonging to another user.

If Akaroa’s simple method of load balancing is not sufficient, you can specify which
hosts to use by giving -H options to akrun. Each -H option is followed by the name of a
host. For example,

whio% akrun -H mohua -H raupo uni

will run simulation engines on the hostwhuaandraupo(provided they are both running
akslaves).

3.3.2 Passing options to the simulation program

If your simulation program requires arguments that begin with a hyphen, you will need to
separate them from the options to akrun by using a double hyphen, for example,

akrun -n 5 -- mysim -a 42 -b 6.8

All the arguments after- are taken to be part of the simulation command.

3.3.3 Controlling the random number seed

Each time you invoke akrun to start a simulation, Akaroa’s random number generator is
started with the same seed. If you want to run a simulation several times using different
invocations of akrun, with a different stream of random numbers each time, you will need
to ensure that the random number generator is restored to the state it was in at the end of
the previous run.

To find out the state of the random number generator at the end of a run, give the
option to akrun, for example:

whio% akrun -n 1 -s uni

Repetition 1:

Simulation engine 3921 started on purau
Repetition 2:

Simulation engine 3922 started on purau
RandomNumberState: 0:20000

Param Estimate Delta Conf Var Count Trans
1 0.502473 0.0251216 0.95 0.000163424 503 0
whio%

Note theRandomNumberStaf@:20000 in this example) written out before the re-
port. This indicates the state of the random number generator at the end of the last repeti-
tion. To run the simulation again with the random number generator initialised to this state,
give it to akrun using ther option:

10 CHAPTER 3. RUNNING A SIMULATION UNDER AKAROA

whio% akrun -n 1 -r 0:20000 uni

Repetition 1:

Simulation engine 3928 started on purau

Repetition 2:

Simulation engine 3929 started on purau

Param Estimate Delta Conf Var Count Trans
1 0.494674 0.0247054 0.95 0.000158099 535 0

whio%

This time the results are different, as expected, since they are based on a different
random number sequence.
3.3.4 Messages you may get from akrun
Akrun will emit warning messages if certain events occur which could affect the progress

of the simulation:

Loss of simulation engine

If a simulation engine crashes, a warning message is issued and the simulation
is continued using the remaining engines. This will not affect the validity of
the results, but the simulation may take longer to complete.

Exhaustion of random number stream

If the random number sequence provided by Akaroa is exhausted before the
simulation completes, a warning message is issued and the sequence is re-
used starting from the beginning. This could affect the validity of the results,
so results obtained after this has occurred should be treated with caution.

The total length of Akaroa’s random number sequence is alidt

3.4 Adding engines to a running simulation

Theakaddcommand can be used to add simulation engines to a running simulation. You
can use it to replace engines which have been lost for some reason, or to speed up the
simulation if more hosts become available.

To start a given number of new engines, the usage is:

akadd -s sid -n num-engines

wheresid is the simulation ID reported bgkrun when the simulation was started. For
example,

akadd -s 42 -n 5

will add 5 new engines to the simulation with ID 42.
To add simulation engines running on particular hosts, the usage is:

akadd -s sid -H hostname...
For example,
akadd -s 42 -H purau matata kahu

will add three new engines running on the hosts purau, matata and kahu.

3.5. MONITORING THE AKAROA SYSTEM 11

3.5 Monitoring the Akaroa system

The akstatcommand can be used to obtain information about the status of the Akaroa
system: what hosts are available, what simulations are running, and what progress each
simulation is making.

There are two kinds of options to akstat. Upper case options control which kind of
information to display, and lower case options restrict the information to particular simula-
tions, engines or parameters.

The-H option produces a list of hosts which are running akslave processes, together
with the number of simulation engines running on each host.

The-S option produces a list of the currently running simulations.

The-G option produces information about the current global estimates of parameters
being observed.

The-E option produces information about the state of simulation engines.

The-L option produces information about the current local estimates of parameters
from simulation engines.

Without any other options, the requested information is listed for all existing simula-
tions, engines or parameters. Tise option restricts the listing to a particular simulation
ID, -e to a particular engine number, apdo a particular parameter.

Without any options at all, akstat assumes the -H and -S options.

3.5.1 Examples
akstat
List all hosts and all simulations.
akstat -S
List all simulations.
akstat -G
List global estimates of all parameters of all simulations.
akstat -G -s 27
List global estimates of all parameters of simulation ID 27.
akstat -G -s 27 -p 3
List global estimate of parameter 3 of simulation ID 27.
akstat -E
List all simulation engines of all simulations.
akstat -E -s 27
List all simulation engines of simulation ID 27.
akstat -E -s 27 -e 2
List engine 2 of simulation ID 27.
akstat -GL -s 27
List all global and local estimates of simulation ID 27.
akstat -L -e 2

List local estimates of all parameters for engine 2 of all simulations
which have at least 2 engines.

12

CHAPTER 3. RUNNING A SIMULATION UNDER AKAROA

3.5.2 Column headings

HOST Host name

PID Process ID

ENGINES Number of engines running on host

SID Simulation ID

EID Engine ID

PAR Parameter number

PARMS Number of parameters

ENGS Number of engines belonging to simulation

RANDOM State of random number generator

FLAGS Internal state flags (see the akstat(1) man page)
COMMAND Command and arguments

STATE State of simulation engine

MEAN Estimate of the mean

PREC Relative precision of the estimate

VARIANCE Variance of the estimate

OBS Number of observations

TRANS Number of transient-phase observations

CHKPTS Number of checkpoints received

CP/MIN Average number of checkpoints per minute received during the last 10 minutes
LAST CHKPT Date and time at which the last checkpoint was received

For more detailed information, see the man page for akstat(1).

3.6 Shutting down the Akaroa system

To shut down the Akaroa system, simply kill the akmaster process. Any akslaves, akruns
or simulation engines attached to it will automatically terminate.

You can remove a host from the pool available for running simulation engines, without
shutting down the whole Akaroa system, by just killing the akslave on that host.

3.7 Debugging a simulation

Before you run your simulation under Akaroa, you should debug it as much as possible
stand-alone. If you compile your simulation program with the -g option, you can run it
under a source-level debugger and use all of the usual debugging techniques. Only when
you are satisfied that your simulation program runs successfully on its own should you
attempt to run it under Akaroa.

3.7.1 Sending diagnostic information

Usually, a simulation that runs correctly stand-alone will also run correctly under Akaroa.
However, sometimes you may encounter a bug that only shows up under Akaroa. To help
find such bugs, your simulation program can send diagnostic output usiAgtiessage
routine:

AkMessage(format, argl, arg2, ...);

AkMessage formats its arguments likprintf and sends the result to the akrun
process that started the simulation, which in turn writes it to standard error.

3.8. GRAPHICAL USER INTERFACE 13

Note that the standard input, output and error of a simulation engine running under
Akaroa are connected fdev/nul| so anything written to them will not be seéhn.

3.7.2 Running a simulation engine under a debugger

As an alternative to producing diagnostic output, you can persuade Akaroa to run your
simulation engine under a debugger by using a command such as

akrun -n 1 xxgdb mysim

You will need to supply any required arguments to your simulation engine iruthe
command toxgdb You will also need to ensure that the akslave is running in an environ-
ment where the DISPLAY variable is set correctly. The easiest way to ensure this is to start
the akslave from antermon the relevant host.

3.7.3 Precautions against excessively short runs

In sequential stochastic simulation, sometimes the simulation stopping criteria are spuri-
ously met, causing the run to be stopped too soon and producing results which are not
reliable. If you are concerned about this possibility, you can guard against it by running
the simulation more than once (with a different random number seed each time) and disre-
garding results from any runs which are much shorter than the others (i.e. produced much
fewer observations).

To automate this process, akrun haRan option, which causes it to run the simulation
n times with different random number sequences. For each parameter, the final result
reported is the one from the run which submitted the greatest number of observations for
that parameter.

Increasing the value of will reduce the probability of a spurious final result being
reported, but the simulation will take longer to complete.

The-A option may be used to obtain the results from all of the repetitions. Without
this option, akrun only reports the final results chosen.

3.8 Graphical User Interface

Theakguiprogram provides a graphical user interface to the Akaroa system as an alterna-
tive to the shell command interface provideddirun, akaddandakstat

Note Akgui does not yet provide access to all the facilities of Akaroa. For
some tasks you may need to use the shell command interface.

Before using akgui, you will need to start up the Akaroa system using the akmaster and
akslave commands, as described in section 3.2.

3.8.1 The main akgui window

The main window of akgui displays two lists:

1. Thehost listshows the names of all hosts running akslave processes, their process
IDs, and the number of simulation engines running on that host.

2. Thesimulation listshows information about the currently running simulations: the
simulation ID, the number of parameters being estimated, the number of simulation
engines, and the command name and arguments.

1in some earlier versions of Akaroa, text written to the standard error of a simulation engine was reported by
akrun. This is no longer supported; AkMessage should be used instead.

14 CHAPTER 3. RUNNING A SIMULATION UNDER AKAROA

3.8.2 Starting a simulation

To start a simulation, click th&lew Simulatiorbutton in the main window. Enter the
following information into the form which appears:

1. The simulation program name and arguments.

2. The required precision and confidence (if they are different from the default values
initially displayed).

3. The number of simulation engines to launch. Alternatively, you may choose the
Select Hosteption and select particular hosts on which to run engines.

You can optionally change the values of the following settings:

1. The analysis method (Spectral or BatchMeans).

2. The checkpoint spacing factor and method (see Chapter 4).

When you have filled out the form, click tHieunbutton to begin the simulation. A
simulation windowappears as described in the next section.

3.8.3 Simulation window

The simulation window displays the status of a running simulation and provides means of
adding engines or killing the simulation. There are four information display areas:

1. The box at the top of the window displays information identifying the simulation
(command and arguments, and simulation ID) and the status of the simulation (Run-
ning, Finished or Failed).

2. TheSimulation Enginegable lists the host, process ID and state of each simulation
engine belonging to the simulation. The possible states are:

¢ launching The engine has been launched but has not yet contacted the akmas-
ter process.

¢ alive: The engine is running and reporting estimates.
e dead The engine has died unexpectedly.

3. TheRelative Precisiomox displays a bar graph for each parameter being estimated.
The red bar shows the relative precision of the current global estimate, and the black
triangle shows the relative precision requested for that parameter.

4. TheGlobal Estimatesable shows the current global estimate of each parameter, its
relative precision, the total number of observations received for that parameter, and
the number of observations discarded during the transient phase. It also shows the
checkpoint arrival rate in checkpoints per minute (in total from all engines) and the
date and time of arrival of the last checkpoint received.

To add more engines to the simulation, click theéd Enginedutton. A form appears
similar to the one for selecting engines when the simulation was started.

When the simulation finishes, the simulation status changésmtshed The engine
table, precision bars and global estimate table are removed and replacedesititsitable
showing the final estimate of each parameter, the half-width of its confidence interval, and
the total and transient observation counts. When you have finished examining the results,
you can dismiss the window by clicking ti@tose Windoviutton.

To kill the simulation prematurely, click thi€ill Simulationbutton.

3.8. GRAPHICAL USER INTERFACE 15

3.8.4 Examining an existing simulation

You can examine the status of any running simulation by double-clicking its entry in the
main akgui window. If the simulation was started using akgui, this will bring its simulation
window to the front. If it was started using akrun (or using a different instance of akgui), a
simulation window will be created showing the status of the simulation.

The simulation window behaves slightly differently depending on whether the simu-
lation was started by akgui or not. If the simulation was started by akgui, the simulation
window must remain in existence until the simulation finishes — you cannot close the win-
dow without killing the simulation.

In contrast, if the simulation was not started by akgui, you can close the window at any
time without affecting the simulation. Moreover, you cannot kill the simulation using akgui
— to do that, you would have to find the akrun process which started the simulation and kill
it.

In either case, thAdd Enginedutton can be used to add engines to the simulation.

3.8.5 Quitting akgui

The Quit button in the main akgui window quits akgui and closes any existing simulation
windows. The same thing will happen if you close the main akgui window using your
window manager.

Warning Quitting akgui will kill any simulations started by it!

16

CHAPTER 3. RUNNING A SIMULATION UNDER AKAROA

Chapter 4

The Akaroa Environment

The Akaroa Environment is a collection of variables which control the operation of the
Akaroa system. When you start a simulatiakrunlooks for a file called “Akaroa” in the
current directory, and, if it is present, reads environment settings from it.

Note: The Akaroa Environment is separate from the Unix environment. You
cannot change an Akaroa Environment variable usetenv

Here is an example of an Akaroa environment file which sets the desired precision and
confidence level for the results of the simulation.

Precision = 0.01
Confidence = 0.90

This specifies the precision of all parameters to be withit% at a confidence level of
90%.

Variables may be set globally for all parameters, or locally for individual parameters.
The following example sets the confidence level of parameter 1 to 0.97, the precision of
parameter 2 to 0.02, and the precision and confidence levels of all other parametersto 0.01
and 0.90.

Precision = 0.01
Confidence = 0.90
parameter 1 {

Confidence = 0.97
}

parameter 2 {
Precision = 0.02
}

Variables not mentioned at all in the Akaroa file take on default values supplied by the
Akaroa system.

You can specify an alternative file from which to read the Akaroa environment using
the-f option toakrun, for example:

whio% akrun -f my_environment -n 2 uni

4.1 Environment Variables

Here is a list of the Akaroa Environment variables you are most likely to want to set. The
values after “=" are the default values.

17

18 CHAPTER 4. THE AKAROA ENVIRONMENT

Variables pertaining to all analysis methods

Precision = 0.05
Relative precision.

Confidence = 0.95
Confidence level.

AnalysisMethod = Spectral
Method of estimating variance. In the current version of Akaroa, two
methods are availabl@pectralandBatchMeans !

Variables pertaining to Spectral Analysis

CPSpacingMethod = Linear
Method used to determine spacing between checkpoints (local estimates
sent to the akmaster process). One of:

Linear
Constant number of observations between checkpoints.
Geometric
Number of observations between checkpoints increase geometrically.

CPSpacingFactor = 1.5
For Linear spacing, distance between successive checkpoints, relative to
the length of the transient period.

For Geometricspacing, factor by which checkpoint spacing increases
after each checkpoint.

PeriodogramPoints = 25
Number of points of the periodogram used in spectral analysis.

PolynomialDegree = 2
Degree of the polynomial fitted to the periodogram in spectral analysis.

Variables pertaining to Batch Means

InitBatchSize = 50
Initial batch size. The final batch size chosen will be a multiple of this
size.

AnalysedSeqLen = 100

Length of the sequence of batch means tested for autocorrelation during
the batch size selection phase.

AutoCorrSignif = 0.1
Significance level at which the coefficients of autocorrelation of the batch
means are tested when determining whether to accept a batch size.

4.2 Environment Syntax

The formal syntax of the Akaroa environment file is described by the following grammar.
Items enclosed in curly bracés.} may be repeated zero or more times.

An identifieris a letter followed by zero or more letters or digits. Ategeror float
is an integral or floating point constant written in the usual wagting is a sequence of
characters enclosed in double quotes.

1See K. Pawlikowski, “Steady-state simulation of queueing processes: Survey of problems and solutions”,
ACM Computing Surveysune 1990, pp. 123-170

4.2. ENVIRONMENT SYNTAX

environment— { setting | parameter}

setting — identifier ‘=" value

value — integer | float | identifier | string
parameter— ‘parameter’ integer ‘{" { setting} ‘}’

19

20

CHAPTER 4. THE AKAROA ENVIRONMENT

Chapter 5

Akaroa Library Routines

Akaroa comes with a set of library routines and classes designed to help you write stochas-
tic discrete-event simulations. Their use is optional — you may use them if they help, or
you may use just the core Akaroa routines already described.

5.1 Random Number Distributions

Functions are available for providing random numbers drawn from a variety of commonly-
used distributions. These functions all UseRandom as a basic source of random num-
bers.

5.1.1 Synopsis
The following random number functions are defined:

#include <akaroa/distribution.H>

real Uniform(real a, real b);

long Uniformint(long nO, long nl);
long Binomial(long n, real p);

real Exponential(real m);

real Erlang(real m, real s);

real HyperExponential(real m, real s);
real Normal(real m, real s);

real LogNormal(real m, real s);
long Geometric(real m);

real HyperGeometric(real m, real s);
long Poisson(real m);

real Weibull(real alpha, real beta);

5.1.2 Descriptions

real Uniform(real a, real b)
Uniformly distributed reals in the rangeto b.

long Uniformint(long nO, long nl)
Uniformly distributed integers in the rang® to n1, inclusive.

long Binomial(long n, real p)
Binomial distribution fromn items, each with a probability of being drawn.

21

22 CHAPTER 5. AKAROA LIBRARY ROUTINES

real Normal(real m, real s)
Normal distribution with meam: and standard deviation

real LogNormal(real m, real s)
Log-normal distribution with meam and standard deviation

real Exponential(real m)
Exponential distribution with meain.

real HyperExponential(real m, real s)
HyperExponential distribution with mean and standard deviation s > m.

long Poisson(real m)
Poisson distribution with meamn, m > 0.

long GeometricO(real m)

long Geometricl(real m)
Geometric distributions with mean, m > 0. GeometricO returns integer$ 0;
Geometricl returnsintegers- 0.

real HyperGeometric(real m, real s)
HyperGeometric distribution with mean.

real Erlang(real m, real s)
Erlang distribution with meam and standard deviation

real Weibull(real alpha, real beta)
Weibull distribution with parameterphaandbeta

5.2 Queues

ClassQueuemplements a queue of objects of some specified type. Objects may be added
to the tail of the queue and removed from the head. The queue may be tested for emptiness,
and the number of objects in the queue may be determined. Objects may belong to more
than one queue at a time, if desired.

5.2.1 Synopsis

ClassQueueds defined as follows:

#include <akaroa/queue.H>

template <class T>
class Queue {
public:
Queue();
virtual void Insert(T *item);
virtual void Remove(T *item);
virtual T *Next();
virtual T *Head();
virtual int Empty();
virtual int Length();

5.3. PRIORITY QUEUES 23

5.2.2 Using Queues

When declaring a variable of type Queue, you need to specify the type of object the queue
is to contain, e.g.

Queue<Customer> customersWaiting;

5.2.3 Methods

Queue::Insert(item)
Addsitem to the tail of the queue.

Queue::Remove(item)
Removestem from the queue, if it is present (wherever it happens to be).

Queue::Next()
Removes one item from the head of the queue and returns a pointer to it. If the queue
is empty, it returns null.

Queue::Head()
Returns a pointer to the head item of the queue, without removing it. If the queue is
empty, it returns null.

Queue::Empty()
Returns true if there are no items in the queue, false otherwise.

Queue::Length()
Returns the number of items in the queue.

5.3 Priority Queues

PriorityQueue is a variant of class Queue which maintains its contents in order of
priority. The priority of the elements is defined by a user-supplied method.

5.3.1 Synopsis

ClassPriorityQueueis defined as follows:
#include <akaroa/priority_queue.H>

template <class T>
class PriorityQueue : public Queue<T> {
public:
virtual void Insert(T *item);
virtual void HigherPriority(T *iteml1, T *item2) = O;
h

5.3.2 Using PriorityQueues

To use the PriorityQueue template to create a priority queue of a particular type, you have to
implement a method called HigherPriority which takes pointers to two items of that type.
The method should return true if the first one has higher priority than the second, false
otherwise.

24 CHAPTER 5. AKAROA LIBRARY ROUTINES

PriorityQueue::Insert(item) will then insert the given item in the appropri-
ate place in the queue according to its priority in relation to the items already there. All
other methods of PriorityQueue work the same as for Queue.

For example, here is a definition of a priority queue of objects of castomemhich
the user has defined as havinfpeightmember. It arranges for taller customers to have
priority over shorter ones.

class MyPrioQ : public PriorityQueue<Customer> {
public:
int HigherPriority(Customer *, Customer *);

3

int MyPrioQ::HigherPriority(Customer *cl1, Customer *c2) {
return cl->height > c2->height;
}

5.4 Process Manager

The Process Manager is provided to help you implement process-oriented discrete event
simulations. It allows you to create multiple “lightweight processes”, or threads of exe-
cution, within the Unix process that is running your simulation. In this section, the term
“process” refers to a lightweight process.

The Process Manager also maintaisgaulation clockand provides the means for pro-
cesses to schedule themselves or other processes to execute at specified simulation times.

5.4.1 Synopsis

The Process Manager defines the following types and functions:
#include <akaroa/process.H>
typedef real Time;

class Process {
public:
Process(long stackSize = 1024);
void Schedule(Time delay);
protected:
virtual void LifeCycle() = O;
h

Time CurrentTime();
Process *CurrentProcess();
void Hold(Time delay);
void Hold();

void DeleteProcesses();

5.4.2 Creating a process

Initially, there is one process executing the main program of your simulation. To create
additional processes, you need to define a subclass ofRlassssand give it a.ifeCycle
method. For example:

5.4. PROCESS MANAGER 25

class Customer : public Process {
protected:
void LifeCycle();

3

void Customer::LifeCycle() {
EnterStore();
WaitForServer();
if (!AskFor(aRareltem))
ComplainToManager();
LeaveStore();

}

You could then create a new Customer process with:
Customer *c¢ = new Customer;

The newly created process is scheduled to execute at the current simulation time. When
it gains control, it will execute its LifeCycle method.

Despite its name, the LifeCycle does not automatically cycle. If the LifeCycle method
returns, the process’s thread will be terminated and the memory occupied by the Process
object deallocated (i.e. the process widlete itself).

5.4.3 Stack size

By default, a new process is allocated 1024 bytes of stack space, plus some extra to allow
for the requirements of the Process Manager. If this is not sufficient, you can specify a
larger stack when you create a process:

Customer *c¢ = new Customer(5000);

It is important to give your processes enough stack space. Once created, a process’s

stack cannot be extended,; if the process runs out of stack space, your simulation will crash.
1

5.4.4 Scheduling

A process can be scheduled to execute at a specified simulatiorPioeess::Schedule(delay)
will schedule the process to execute at the current simulation timedplag until then,
the process will be blocked.

Hold(delay) blocks the current process until the simulation clock reaches the cur-
renttime pluglelay. Itis equivalenttcCurrentProcess() - > Schedule(delay)

Hold() with no arguments blocks the current process indefinitely. It will not run again
until some other process schedules it.

Process scheduling is non-preemptive. Once a process is running, control is never trans-
ferred to another process until the current process eitherttalits or invokesSchedule
on itself.

5.4.5 Other routines

CurrentTime()
Returns the current value of the simulation clock.

1An exception to this is the process executing the main program, which uses the initial Unix stack, and will
therefore have its stack extended when necessary.

26 CHAPTER 5. AKAROA LIBRARY ROUTINES

Process *CurrentProcess()
Returns a pointer to the Process whose LifeCycle is currently executing.

void DeleteProcesses()

Deallocates all instances of clad®cess in existence. This is useful if you have a
terminating simulation and you want to return your system to an empty state before
starting another repetition.

A process queued for Resource will be removed from the queue before being
deleted. However, any other pointers you have to it will be left dangling, so itis up
to you to deal with those.

5.5 Resources

ClassResourcas used to represent a finite resource which comes in discrete units, and to
coordinate processes which are competing for access to the resource.

5.5.1 Synopsis

ClassResources defined as follows:

#include <akaroa/resource.H>

class Resource {

public:
Resource(int capacity);
void Acquire(int amount);
void Release(int amount);

3

5.5.2 Methods

Resource::Resource(int capacity)
The capacityspecifies how many units of the resource are initially available.

Resource::Acquire(int amount)

Allocates the specified number of units of the resource to the current process. If the
requested amountis not available, the process is blocked until sufficient units become
available. Processes waiting for units are allocated them on a first come, first served
basis.

Resource::Release(int amount)

Releases the specified number of units of the resource and make them available for
other processes.

5.6 AkSimulation: Running an Akaroa simulation from a
program

Theakrun command is designed primarily for launching an Akaroa simulation manually
and visually examining the results. If you want to automate the running of one or more
simulations, one way would be to write a shell script which invokes akrun. However,
extracting the results from the textual output written by akrun can be tedious.

5.6. AKSIMULATION 27

To make it easier to automatically run an Akaroa simulation and process the results,
the classAkSimulatioris provided. This class allows a C++ program to directly initiate an
Akaroa simulation. The results are returned in the form of a structure, which you can then
process as desired.

5.6.1 Synopsis

ClassAkSimulatioris defined as follows:
#include <akaroa/simulation.H>
class AkSimulation {
public:

/I Creation and setting up
AkSimulation(char *command);
AkSimulation(int argc, char *argv[]);
void UseHosts(int numHosts);

void UseHost(char *hostName);

void SetEnvironmentFile(char *path);
void SetRandomState(AkRandomState);

/I Running the simulation
int Run();

/I Getting the results

int GetNumParams();

int GetResult(int paramNum, AkResult &);
AkRandomState GetRandomState();

char *ErrorMessage();

/I A type used by the routines below
enum Disposition {Continue, Terminate};

protected:

/I Callback routines
virtual void EngineStarted(int pid, char *host);
virtual Disposition RandomOverflow();
virtual Disposition EngineLost(int pid, char *host);
virtual Disposition EngineOutput
(int pid, char *host, char *data, size_t data_length);

b

5.6.2 Using AkSimulation

To use the AkSimulation class, you first create an instance of it, specifying the command
name and arguments to use to start the simulation engines. The AkSimulation class pro-
vides two alternative constructors for this. One takes a single string containing a program
name and arguments separated by spaces; the other takes an array of string pointers. If any
of your argument strings contain spaces, you will have to use the second form of construc-
tor, because the first one does not interpret quotes or any other special characters.

28 CHAPTER 5. AKAROA LIBRARY ROUTINES

After creating the AkSimulation, you then specify either how many hosts to use with
UseHosts , or particular hosts to use witiseHost . If you are specifying particular
hosts, you should make one UseHost call for each host you want to use.

Optionally you may us&etEnvironmentFile or SetRandomState to specify
the environment file to use or the initial state of the random number generator.

Then you calRun, which launches the simulation and waits for it to complete. If Run
returns 0, the simulation has completed successfully. You can theBetllumParams
to find out how many results are available, abetResult for each parameter to get the
results themselves.

The results are returned in &kResult structure:

struct AkResult {

long count; /I Total number of observations made
long trans; /I Number of transient observations
double mean; /Il Estimate of mean value of parameter
double variance; // Variance of estimate of mean

double delta; /I Half-width of confidence interval

double conf; /I Confidence level

After the simulation has been run, you can @&etRandomState to get the final
state of the random number generator. This value can be pasSsiRandomState
method of the same or another instance of AkSimulation.

TheRun method may be called repeatedly to run the simulation multiple times. If this
is done, the random number state used for each run will be the one left by the previous run,
so in that case it is not necessary to use GetRandomsState and SetRandomState.

If Run returns -1, the simulation did not complete successfully for some reason. You
can useéerrorMessage to obtain a string explaining the reason for failure. (This method
returns a pointer to static storage, so you should copy the string if you're not going to use
it right away.)

TheEngineStarted method is called by the system to acknowledge that a simula-
tion engine has been launched. The default implementation of this method does nothing.
If you want to take some action on receiving the acknowledgement, create a subclass of
AkSimulation and override this method.

The RandomOverflow method is called if the stream of random numbers runs out
during the simulation. By default, this method returns the vaAlk®@imulation:: Terminate
which causes the simulation to be terminated with an appropriate error.

You can override RandomOverflow to perform whatever action you want. If you re-
turn AkSimulation::Continue , the simulation will be continued with the random
number stream starting again from the beginning.

TheEngineLost method is called if contact with a simulation engine is unexpectedly
lost. The default method returdskSimulation::Continue , Which causes the sim-
ulation to be continued with the remaining engines. If you override this method to return
AkSimulation::Terminate , the simulation will be terminated with an appropriate
error.

TheEngineOutput method is called whenever a simulation engine writes output to
its standard error. The default method writes the data to the standard error of the process
invoking the simulation (preceded by an identification of the host and process from which
the data came) and returA&Simulation::Continue , Which causes the simulation
to be continued. If you override this method to retédkSimulation::Terminate .
the simulation will be terminated with an appropriate error.

Here is an example which illustrates the use ofAk&imulation class.

/*

5.6. AKSIMULATION

* run_uni2.C - Simple example illustrating the use of the
* ========== AkSimulation class

#include <stdio.h>
#include <akaroa.H>
#include <akaroa/simulation.H>

int main(int argc, char *argv[]) {
AkSimulation *sim = new AkSimulation("uni2");
sim->UseHosts(3);
if (sim->Run() == 0) {
int n = sim->GetNumParams();
for (int i = 1; i <= n; i++) {
AkResult result;
sim->GetResult(i, result);
printf("Parameter %d: Mean = %lg +/- %lg\n",
i, result.mean, result.delta);

}
}

else
printf("It didn’t work! %s\n", sim->ErrorMessage());

29

30

CHAPTER 5. AKAROA LIBRARY ROUTINES

Chapter 6

Examples

This chapter contains some examples of complete simulation engines, illustrating the use
of the core Akaroa routines and many of the library routines and classes.

6.1 An M/M/1 Queueing System

This example models a simple M/M/1 queueing system, illustrating the use of the Process
Manager and the Resource class. You will see that it is just an ordinary simulation program,
with the addition of a call t)AkObservation at the point where the service time is
calculated.

* mml1l.C - M/M/1 Queueing System

#include "akaroa.H"

#include "akaroa/distributions.H"
#include "akaroa/process.H"
#include "akaroa/resource.H"

double arrival_rate; // Rate at which customers arrive
double service_rate; /I Rate at which customers are served

/I There is one server, modelled here as a Resource
/I with a capacity of 1 unit.

Resource server(l);

/I Each customer is modelled as a process. A customer’s
/I life consists of arriving, waiting for the server to become
/I available, waiting to be served, and leaving.

/I We calculate the time between entering and leaving,

/I and hand it to Akaroa as an observation.

I

/I This is not a very efficient implementation, but it serves
/I to illustrate how to use Processes and Resources.

class Customer : public Process {
public:

31

32 CHAPTER 6. EXAMPLES

void LifeCycle();
h

void Customer::LifeCycle() {
Time arrival_time, service_time;
arrival_time = CurrentTime();
server.Acquire(1);
Hold(Exponential(1/service_rate));
server.Release(1);
service_time = CurrentTime() - arrival_time;
AkObservation(service_time);

}

/I The main program. After getting the load from the command
/I line and calculating the arrival and service rates,

/I we enter a loop generating new customers at the arrival

/I rate.

int main(int argc, char *argv[]) {
real load = atof(argv[l)]);
service_rate = 10.0;
arrival_rate = load * service_rate;
for (;}) {
new Customer;
Hold(Exponential(1/arrival_rate));
}
}

6.2 A Multiprocessing Computer System

This example models a multiprocessing computer system consisting of one CPU, some
number of disks, and some number of terminals. It illustrates the use of the Process and
Resource classes, and how they can be used to model a closed system (one with no sources
or sinks).

At each terminal, a user interactively submits requests and waits for the results. Ob-
servations are made of the response times of the requests - i.e. the time between the user
making the request and the system finishing processing of the request.

Each user is modelled as a Process, and the CPU and disks are modelled as Resources.
The life cycle of a user consists of thinking for some random time and then making a
request. The request uses the CPU for a random time, then has some probability of either
using one of the disks for a random time and returning to use the CPU again, or of finishing.
The user then goes back to the think state and the life cycle repeats.

In this example, all of the random times are exponentially distributed.

* multi.C - Simulation of a timesharing computer system

#include "akaroa.H"
#include "akaroa/distributions.H"
#include "akaroa/process.H"

6.3. A TERMINATING SIMULATION 33

#include "akaroa/resource.H"

int num_users = 5; // Number of terminals/users

int num_disks = 1; // Number of disk drives

real mean_CPU_time = 20; // Mean burst of CPU usage

real mean_disk_time = 4; // Mean disk usage time

real mean_think_time = 100; // Mean time a user spends thinking
real use_disk_probability = 0.25; // Probability of using disk

class User : public Process {
public:
User() : Process(1024) {}
virtual void LifeCycle();

3

User **users;
Resource *cpu;
Resource **disks;

void User::LifeCycle() {
for () {
Time start = CurrentTime();
cpu->Acquire(1);
Hold(Exponential(mean_CPU_time));
cpu->Release(1);
if (Uniform(0, 1) <= use_disk_probability) {
int i = Uniformint(0, num_disks - 1);
disks[i]->Acquire(1);
Hold(Exponential(mean_disk_time));
disks[i]->Release(1);
}
else {
AkObservation(CurrentTime() - start);
Hold(Exponential(mean_think_time));
}
}
}

int main(int argc, char *argv[]) {

users = new User*[num_users];

for (int i = 0; i < num_users; i++)
users[i] = new User();

cpu = new Resource(1);

disks = new Resource*[num_disks];

for (i = 0; i < num_disks; i++)
disks[i] = new Resource(1);

Hold();

6.3 A Terminating Simulation

This is an example of a simulation which produces independent observations. An M/M/1
gueueing system is run for the first 25 customers and the mean delay of these customers is

34 CHAPTER 6. EXAMPLES

submitted to Akaroa as an observation. The simulation is repeated to generate a series of
observations, which are analysed using independent observation mode.

/*
mmlterm.C - Terminating M/M/1 Simulation

* Example of a simulation which produces independent
* observations. Repeatedly runs an M/M/1 queueing

* system starting from empty and idle, and observes
* the mean delay of the first 25 customers.

#include <stdlib.h>

#include <iostream.h>

#include "akaroa.H"

#include "akaroa/distributions.H"
#include "akaroa/process.H"
#include "akaroa/resource.H"

int customersRequired = 25;

double arrival_rate; // Rate at which customers arrive
double service rate; // Rate at which customers are served

Resource *server; // The server

int customersServed; // For calculating mean
real totalDelay; // delay of customers

I
I Process class modelling a customer
I

class Customer : public Process {
public:

void LifeCycle();
%

void Customer::LifeCycle() {
Time arrival_time, begin_service time, delay;
arrival_time = CurrentTime();
server->Acquire(1);
begin_service_time = CurrentTime();
Time service_time = Exponential(1/service_rate);
Hold(service_time);
server->Release(1);
delay = begin_service_time - arrival_time;
++customersServed,;
totalDelay += delay;

}

1
/I Perform one repetition of the simulation.

6.3. A TERMINATING SIMULATION 35

Il
I/
1
1
)
I
"
I
I
)

Loop generating new customers until the required
number of customers have been served.

Then calculate the mean delay, give it to Akaroa
as an observation, and clean out the system ready
for the next repetition.

Note that we create a fresh server for each
repetition to ensure that it starts out with
the correct initial state.

void RunOnce() {

}

1
1
1
I
I
1

customersServed = 0;

totalDelay = 0;

server = new Resource(l);

while (customersServed < customersRequired) {
new Customer;
Hold(Exponential(1/arrival_rate));

}

real meanDelay = totalDelay / customersServed;

AkObservation(meanDelay);

DeleteProcesses();

delete server;

The main program. After getting the load from the command
line and calculating the arrival and service rates,

we inform Akaroa that the observations will be independent,
then enter a loop repeating the simulation forever.

int main(int argc, char *argv[]) {

real load = atof(argv[l]);
service_rate = 10.0;
arrival_rate = load * service_rate;
AkObservationType(Akindependent);
for ()

RunOnce();

36

CHAPTER 6. EXAMPLES

Appendix A

Obsolete Facilities

This chapter describes parts of Akaroa Il and its libraries which are obsolete. They are
provided only to support simulation programs written to run under previous versions of

Akaroa. You should not use any of the facilities described here in new simulation programs,
since they may disappear from future versions of Akaroa Il.

A.1 Event Manager

The functions of the Event Manager have been taken over by the Process Manager. You
should useeitherthe Process Manager the Event Manager, but not both.

The Event Manager maintains a queuewénts each of which is scheduled to occur
at a specifiecgsimulation time When an event occurs, it executes a piece of code which
you supply. This code can perform whatever action you want, including scheduling further
events.

To use the Event Manager, you write a procedure for each event which can occur in
your simulation. Each event procedure should take one argument, which must be a pointer,
although it can point to whatever type of data is appropriate, and different event procedures
can take pointers of different types.

You start the simulation off by callin§chedule to schedule one or more events as
described below. Then you enter a loop calldgxtEvent repeatedly. Each time you
call NextEvent, the earliest event in the event queue is extracted, the simulation clock is
advanced to the time for which it is scheduled, and its associated procedure is called with
the specified argument.

Typically, your action procedures will schedule further events, which will schedule
further events again, and so forth, thus keeping the simulation going. You should also call
AkSimulationOver periodically in your main loop, so that you can tell when to stop.

A.1.1 Event Manager Routines

The Event Manager defines the following types and routines.
#include <akaroa/events.H>

typedef real Time;

Values of typeTime are used by the Event Manager to represent simulation times.
The unit in which simulation time is measured is up to the user’s interpretation.

template <class T>
void Schedule(void (*proc)(T *), T *argument, Time delay);

37

38

APPENDIX A. OBSOLETE FACILITIES

Schedules the procedypeoc to be called with the giveargument at the current
simulation time pluglelay . For example,

Pentium *p = new Pentium;
Schedule(Explode, p, 42);

schedules an event to occur 42 time units from now. When the simulation clock
reaches that timegxplode will be called withp as argument (both of which the
user has presumably defined in some appropriate way).

int NextEvent()

If there are any events in the event queue, the one scheduled to occur next is removed
from the queue, its action procedure is called with the argument specified when the
event was scheduled, and true is returned. If the event queue is empty, false is re-
turned.

Typically, NextEvent will be called from the main loop of your simulation, which

will look something like this

while (IAkSimulationOver())
NextEvent();

Time CurrentTime()

Returns the current value of the simulation clock.

1This example assumes the simulation to be designed so that the event queue can never become empty. In

a steady-state simulation, this will usually be the case. If there is a chance that the event queue could become
empty, you should test the return value from NextEvent, and if it is false, do something that will schedule one or
more events.

Appendix B

Adding an analysis method to
Akaroa

B.1 Introduction

Akaroa comes with two methods for analysing observations: Batch Means and Spectral
Analysis. If neither of these methods suits your needs, and you have another way in which
you want to analyse your observations, you can implement your own analysis method and
add it to the Akaroa library. This appendix describes how to do this.

Note: The information presented here depends on the internal structure of the Akaroa
library, and is likely to change in future versions of Akaroa.

B.2 What an analysis method does

The job of an analysis method is to take a stream of observations and calculate two things
from it: (1) an estimate of the mean valug of the parameter; (2) an estimaté of the
variance ofj.

Typically, an analysis method operates in two phases:

1. thetransient phasein which observations from the beginning of the simulation run
are discarded, until the analysis method determines (by some means) that the simu-
lation has reached steady state. The analysis method then enters:

2. theanalysis phasen which observations are collected and used to calculate values
for /i ands2.

Not all analysis methods will have a transient phase; only those (such as Batch Means
and Spectral Analysis) which require the system to be in steady state before beginning
analysis. For example, analysis of independent observations in Akaroa is done using a
third analysis method which does not have a transient phase.

B.2.1 Checkpoints

Although the analysis method could calculate a new estimafeasfd 52 after every ob-
servation, to do so would be very inefficient. Therefore, the analysis method will usually
collect some number of observations before calculating a new set of estimates.

The point at which new estimates are calculated is calldtbakpointand the spacing
between checkpoints (the number of observations collected before a checkpointis reached)
is under the control of the analysis method. Some methods will have natural places to use

39

40 APPENDIX B. ADDING AN ANALYSIS METHOD TO AKAROA

as checkpoints — in Batch Means, for instance, a checkpoint corresponds to a batch or some
number of batches. In other methods — such as Spectral Analysis — checkpoint spacing can
be arbitrary.

If your analysis method allows freedom in the spacing of checkpoints, you may wish to
base it on the value of an Akaroa environment variable so that it is under the control of the
user (see B.4).

B.3 Implementing an analysis method

Before starting, you should make your own copy of the Akaroa source. The easiest way
is to unpack the distributedar file in a directory of your own. In what follows, this
directory will be referred to aSMYAK

Note: Don't usecp to copy the Akaroa source directory. It contains symbolic
links, which will be messed up byp.

You should update youPATH variable to look for the Akaroa binarieakmaster |,
akslave andakrun)in $MYAK/bin .

B.3.1 Steps to implementing an analysis method

Implementing an analysis method and adding it to Akaroa requires the following steps:

1. Write a new subclass of claBarameterAnalyser ~ which implements your analy-
sis method.

2. Declare your analysis method to Akaroa by including a call to the macro
DefineParameterAnalyserType

3. Addthe name of your analysis method to the list of possible values fantigsisMethod
variable in the Akaroa environment. Optionally, you can also add new Akaroa envi-
ronment variables for controlling your analysis method.

4. Add the name of your object file to the Akaroa Makefile and recompile Akaroa.

Each of these steps is described in detail below.

B.3.2 ClassParameterAnalyser

A ParameterAnalyser performs observation analysis for a single parameter. Akaroa
will create an instance of your parameter analyser for each parameter to be analysed.
You will need to include the following header files:

#include "parameter_analyser.H"
#include "environment.H"
#include "checkpoint.H"

The interface to clasBarameterAnalyser is declared irsMYAK/src/engine/
parameter _analyser.H . The relevant parts of this declaration are as follows.

class ParameterAnalyser {

public:
ParameterAnalyser(int paramNum, Environment *);
virtual void ProcessObservation(real value) = 0;
virtual boolean ReachedCheckpoint() = 0;
virtual void GetCheckpoint(Checkpoint &cp) = O;

}

B.3. IMPLEMENTING AN ANALYSIS METHOD 41

Your analyser class must have a constructor which takes the same arguments as the
ParameterAnalyser constructor, and passes them on to that constructor. For instance, if
your class is calletMyAnalyser , your constructor should look like this:

MyAnalyser::MyAnalyser(int n, Environment *e)
. ParameterAnalyser(n, e)

{

/I initialise your analyser here

}

Your analyser should implement the following three methods:

void ProcessObservation(real value)

Akaroa will call this method each time an observation for this pa-
rameter is submitted by the simulation engine.

boolean ReachedCheckpoint()

Akaroa will call this method periodically to find out whether your
analyser has reached a checkpoint (i.e. it has collected enough ob-
servations since the last checkpoint to calculate an estimate of the
mean and variance). If your analyser has reached a checkpoint, it
should returrirue , otherwisefalse

void GetCheckpoint(Checkpoint &cp)

When yourReachedCheckpoint method returnsrue , Akaroa
will then call this method. Your analyser should calculate and fill
in the following fields of theCheckpoint ~ structure:

cp-count

Total number of observations submitted, in both the tran-
sient phase (if any) and the analysis phase.

cp.trans

Number of observations discarded during the transient phase,
if any.

cp.mean

Estimate ofy.

cp.variance
Estimate ofr?(j2).

Optionally, you can set the value op.df . Akaroa sets this to
zero before callingsetCheckpoint ; if you leave it zero, Akaroa
uses the normal distribution to calculate the confidence interval of
jfroma?2(f). If you setcp.df to a non-zero value, Akaroa uses
at-distribution withn degrees of freedom.

42 APPENDIX B. ADDING AN ANALYSIS METHOD TO AKAROA

B.3.3 Declaring your analyser to Akaroa

To make your analyser known to Akaroa, you must place a call to the following macro at
the top of your source file:

DefineParameterAnalyserType(" name, clasg

wherenameis the name by which your analysis method is to be know to the usecglassl
is the name of the class implementing your method. For example,

DefineParameterAnalyserType("MyMethod", MyAnalyser)

B.3.4 Adding a value for AnalysisMethod

You also have to addame to the list of valid values for the AnalysisMethod variable
(otherwise the user will get an error when he tries to use it). To do this, you need to edit the
file $SMYAK/src/env/variables.C . Find the part which contains:

"AnalysisMethod”, "e", "Spectral’, "Spectral', "BatchMeans",
".Independent”, 0,

and add the name of your method (themestring that you used in the DefineParame-
terAnalyserType call) to the list at the end, before the final zero. For example:

"AnalysisMethod”, "e", "Spectral", "Spectral’, "BatchMeans",
".Independent”, "MyMethod", O,

B.3.5 Adding your code to the Makefile

Add the name of the obiject file (or files) implementing your analyser to the definition of
AKANALOBJIn $MYAK/src/Makefile.common , for example:

AKANAL_OBJ =\
$HOME/mystuff/my_analyser.o \

The pathname you use in the Makefile must either be a full pathname or relative to the
$MYAK/src directory. The source file corresponding to thefile should end inC so that
the Makefile will be able to find it.

B.3.6 Recompiling Akaroa

To recompile Akaroa, change directory to $MYAK/src and issue the following shell com-
mand:

make system

This will compile the Akaroa library and the programenaster , akslave andakrun ,
and make them available in tB&YAK/lib and$MYAK/bin directories.

You will also need to recompile any simulation engines that you want to use with the
new method. To recompile one of the example simulations nengl. use a command such
as

make mm1l

If you compile a simulation engine of your own, make sure that you link it with your
new version of the Akaroa library (the one$nYAK/lib).

B.4. ACCESSING THE AKAROA ENVIRONMENT 43

B.4 Accessing the Akaroa Environment

If desired, your analyser can use the values of Akaroa environment variables. For example,
you might want to use the value of tl@PSpacingFactor variable as a basis for the
checkpoint spacing. You can also define new environment variables of your own.

B.4.1 Retrieving Akaroa environment variables

Values of Akaroa environment variables are retrieved usingetivironment * pointer
passed to the constructor of the parameter analyser. This pointEtwiesnment object
which has the following methods:

int GetInt(char *name)
real GetReal(char *name)
char *GetString(char *name)

These retrieve the values of integer, real and string valued variables, respectively.

There is also a fourth type of variablenumeratedwhose value is one of a set of
named values (like thanalysisMethod variable). There are two methods for retrieving
the value of an enumerated variable:

void GetEnum(char *name, char *&value)
void GetEnum(char *name, int &value)

The first one returns the value as a string, and the second one returns it as an ordinal number
(starting with 0).

Here is a partial example of a parameter analyser which retrieves the value of two
existing Akaroa environment variablesPSpacingFactor andCPSpacingMethod , and
stores them for later use.

class MyAnalyser : public ParameterAnalyser {
public:
MyAnalyser(int n, Environment *env);

private:
real cpsf;
int cpm;

\

MyAnalyser::MyAnalyser(int n, Environment *env)
: ParameterAnalyser(n, env)
{

cpsf = env->GetReal("CPSpacingFactor");
GetEnum("CPSpacingMethod”, cpm); // 0 = Linear, 1 = Geometric

B.4.2 Defining new Akaroa environment variables

To add a new Akaroa environmentvariable, you need to add a row to the t&$M& kK/src
/envlvariables.C . The table has four columns: the name of the variable, its type, its
default value, and (for enumerated variables only) a list of all the possible values.

Here are four example table entries, defining a variable of each of the four types:

[*Name*/ [*Type*/ [*Default*/ *Values*/
"MylInteger", i, "42",

44 APPENDIX B. ADDING AN ANALYSIS METHOD TO AKAROA

"MyReal", "r, "3.1415",
"MyString", "s", "strawberry",

"MyEnum®”, "e", "Honda", "Honda", "Suzuki", "Yamaha", O,

Bibliography

(1]

(2]

(3]

(4]

(5]

(6]

(7]

(8]

K. Pawlikowski and V. Yau. “On Automatic Partitioning, Runtime Control and
Output Analysis Methodology for Massively Parallel Simulations”. Proc. European
Simulation Symp. ESS '92 (Dresden, Germany, Nov. 1992), So. Computer Simula-
tion, 1992, pp. 135-139

V. Yau and K. Pawlikowski. “"AKAROA: a Package for Automatic Generation and
Process Control of Parallel Stochastic Simulation”. Proc. of the 16th Australian
Computer Science Conference, ACSC '93, Brisbane, Australia, Feb. 1993, vol. A,
pp. 71-82

K. Pawlikowski, V.Yau and D.McNickle. “Distributed Stochastic Discrete-Event
Simulation in Parallel Times Streams”. Proc. Winter Simulation Conf. WSC’94,
IEEE Press, 1994, pp. 723-730

G.Ewing, D.McNickle and K.Pawlikowski. “Credibility of the Final Results from
Quantitative Stochastic Simulation”.Proc. European Simulation Congress, ESC’95,
Vienna (Austria), Sept.1995, Elsevier, 1995, pp. 189-194

D.McNickle, K.Pawlikowski and G.Ewing. “Experimental Evaluation of Confidence
Interval Procedures in Sequential Steady-State Simulation”. Proc. Winter Simulation
Conference, WSC'96, San Diego, Dec. 1996, pp. 382-389

G.Ewing, D.McNickle and K.Pawlikowski. “Multiple Replications in Parallel: Dis-
tributed Generation of Data for Speeding Up Quantitative Stochastic Simulation”.
Proc. of IMACS’97 (15th Congress of Int. Association for Mathematics and Com-
puters in Simulation, Berlin, Germany, August 1997), Wissenschaft und Technik
Verlag, 1997, pp. 397-402

K.Pawlikowski, G.Ewing and D.McNickle. “Coverage of Confidence Intervals in
Sequential Steady-State Simulation”. J. Simulation Practice and Theory, vol. 6, no.
3, 1998, pp. 255-267

K.Pawlikowski, G.Ewing and D.McNickle. “Performance Evaluation of Industrial
Processes in Computer Network Environments”. Proc. ECEC’98 (1998 European
Conference on Concurrent Engineering, Erlangen, Germany, April 1998). Int. Soci-
ety for Computer Simulation, 1998, in press

45

AKADD(1) 1 AKADD(1)

NAME
akadd — add simulation engines to an Akaroa simulation

SYNOPSIS

akadd [-d] -s sid -n neng
akadd [-d] -s sid -H host...

OPTIONS

-d Turn on debugging. With this option, akadd writes a trace of all messages sent to or received
from the akmaster process.

-s sid Specifies the simulation ID of the simulation to which engines are to be added.

-n neng Specifies the number of simulation engines to add.

-H host...
Specifes a list of hosts on which to start new simulation engines.

DESCRIPTION
Akadd is used to add new simulation engines to an already running simulation. With -n, the given
number of engines are started on hosts arbitrarily chosen from those available. With -H, one new
engine is started on each of the specified hosts.

The -s flag identifies the simulation to which engines are to be added by means of the simulation ID
reported by akrun when the simulation was started.

SEE ALSO
akrun(1)

Akaroa Il User’s Manual

AUTHOR
Gregory C. Ewing, University of Canterbury

Version: 1 Last change: 28 April 1997 1

AKMASTER(1) 1 AKMASTER(1)

NAME
akmaster — Akaroa master process

SYNOPSIS

akmaster [-d]

OPTIONS
-d Turn on debugging. With this option, akmaster will write a trace of all messages sent to or
received from other processes, together with other information.
DESCRIPTION

Akmaster is the master process which coordinates all other processes in the Akaroa system. There
must be one akmaster process running under your userid on some host before you can start any
other Akaroa processes.

When you are finished with Akaroa, you should terminate the akmaster process using an interrupt
or terminate signal (control-C, or kill with no arguments) so that it can clean up temporary files.

When an akmaster process terminates (either normally or abnormally), any connected akslave or
akrun processes terminate immediately, and any connected simulation engines terminate at the next

checkpoint.
FILES
=/ .akmaster This file is created in the user’s home directory to hold the host
name and port number of the current akmaster process, so that
other Akaroa processes can contact it. If an akmaster process ter-
minates abnormally, you may need to remove this file before an-
other akmaster can be started.
SEE ALSO
akslave(1), akrun(1)
Akaroa IT User’s Manual
AUTHOR

Gregory C. Ewing, University of Canterbury

Version: 1 Last change: 28 February 1995 1

AKRUN(1) 1 AKRUN(1)

NAME
akrun — run an Akaroa simulation

SYNOPSIS

akrun [-d] [-f env-file] [-r] [-s state] [-R nreps] [-A]
[-n num-hosts] [-H host-name]...
[-P precision] [-C confidence]
[-D variable=value]...
[--1 command [arg...]

OPTIONS
-d Turn on debugging. With this option, akrun writes a trace of all messages sent to or received
from the akmaster process.
-f env-file
Obtain Akaroa Environment settings from the specified file. Without this option, the file
Akaroa in the current directory is used if present, otherwise the built-in defaults are used.
-r Report the state of the random number generator at the end of the run.

-s state Initialise the random number generator to the given state before the run.

-R nreps
Repeat the simulation nreps times with different random number streams. For each param-
eter, report the result from the run which produced the greatest number of observations.

-A With -R, report the results from all repetitions. Otherwise, only the final results chosen are
reported.
-n num-hosts

Run simulation engines on the given number of hosts.

-H host-name
Run a simulation engine on the given host. One -H option must be given for each host to
be used.

-P precision
Specifies the required relative precision of the results. The argument must be a number
between 0 and 1.

-C confidence
Specifies the required confidence level of the results. The argument must be a number
between 0 and 1.

-D variable=value
Specifies the value of an Akaroa environment variable. In the case of a string-valued variable,

the value must be enclosed in double quotes (which must be protected from interpretation
by the shell).

— If the arguments to the simulation program contain options beginning with a hyphen, a
double hyphen is required before the simulation command to separate the akrun options
from the simulation program options.

Version: 1 Last change: 14 February 1997 1

AKRUN(1) 1 AKRUN(1)

command arg...
The command to execute in order to start each simulation engine. If the command is not
a full pathname, it will be searched for by each akslave process along the search path that
was in effect when the akslave was started.

DESCRIPTION
Akrun is the command by which the user runs a simulation under Akaroa. Before using akrun, an
akmaster process must be running, together with an akslave process on each host where it is desired
to run a simulation engine.

If the -n option is given with no -H options, the akmaster arbitrarily chooses the specified number
of hosts from among those running akslaves, and launches a simulation engine on each one. If -H
options are given, simulation engines are launched on the specified hosts. If both -n and -H options
are given, the number of hosts specified with -n must equal the number of -H options.

Each simulation engine calculates a local estimate of each observed parameter, and periodically
reports these estimates to the akmaster. The akmaster calculates a global estimate of each parameter
and keeps track of its precision and confidence.

When all parameters have reached the required precision with the required confidence, the simulation
engines are terminated.

To guard against unreliable results from spuriously short runs, the entire simulation may be repeated
a number of times using the -R option. For each parameter, the result reported is the one from the
run which produced the greatest number of observations for that parameter.

Oupu
The report consists of a headline followed by one line for each observed parameter. Each line contains
the following fields:

Min, Max Lower and upper bounds of the estimate of the mean value of the parameter.
The true mean lies between Min and Max with probability p, where p is
the confidence level specified for the parameter.

Variance Variance of the estimate of the mean.
Count The total number of observations made by all engines.
Trans The total number of observations discarded during the transient phases of

all replications (before the system settled down into steady state).

The Akaroa Environment
The Akaroa Environment is a collection of variables which affect the operation of the Akaroa system.
The settings of these variables are read from a file when a simulation is started. If a file is specified
with the -f option, that file is used. If no -f option is specified and there is a file called Akaroa in
the current directory, that file is used. Otherwise, built-in defaults are used for all settings.

(Note: The Akaroa Environment is separate from the Unix environment. You cannot set an Akaroa
Environment variable using setenv).

The environment file has the following syntax:

Version: 1 Last change: 14 February 1997 2

AKRUN(1)

<environment>
<item>
<global-setting>
<local-settings>
<param-num>
<setting>
<value>

1 AKRUN(1)

<item>...

<global-setting> | <local-settings>

11z <setting>

1= parameter <param-num> { <setting>... }
<integer>

II= <name> = <value>

II= <integer> | <float> | <string> | <name>

Local settings apply only to the specified parameter. Global settings apply to all parameters which
do not specify a local setting for that variable. If no local or global setting is specified for a variable,
the built-in default is used.

Values for environment variables can also be specified using the -P, -C and -D command line options.
Such values override any global settings for the same variables in an environment file, but not local

settings.

The following variables may be set:

Precision
Confidence

AnalysisMethod

Relative precision required. Default is 0.05.
Confidence level required. Default is 0.95 (i.e. 95 per cent).

Method used to calculate the variance of the estimate in order to determine
its precision and confidence. Valid values are: Spectral - use the method of
spectral analysis [HEID81]. BatchMeans - use the method of batch means
[PAWLI0].

The following variables apply to the Spectral analysis method:

CPSpacingMethod

CPSpacingFactor

PeriodogramPoints

PolynomialDegree

Method used to determine spacing between checkpoints. Valid values are
Linear or Geometric. Default is Linear.

For Linear checkpoint spacing, this is the distance between successive check-
points as a multiple of the length of the transient period. For Geometric
checkpoint spacing, this is the factor by which the checkpoint spacing is
increased after each checkpoint. Default is 1.5.

For the Spectral analysis method, this is the number of points used from
the periodogram (see HEID81). Default is 25.

For the Spectral analysis method, this is the degree of the polynomial fitted
to the periodogram (see HEID81). Default is 2.

The following variables apply to the BatchMeans analysis method:

InitBatchSize

AnalysedSeqLen

AutoCorrSignif

Version: 1

Initial batch size. The final batch size chosen will be a multiple of this size.

Length of the sequence of batch means tested for autocorrelation during
the batch size selection phase.

Significance level below which autocorrelation between batch means is con-
sidered small enough to accept the batch size being tested.

Last change: 14 February 1997 3

AKRUN(1) 1 AKRUN(1)

Random Numbers
Akaroa coordinates the random numbers received by each simulation engine to ensure that each
replication of the simulation receives a different sequence of random numbers, independent of the
sequences received by the other replications.

With the -r option, akrun reports the state of the random number generator at the end of the run
with a line of the form:

RandomState: %d:%d

where the first number specifies one of the coefficients listed in AkRandom and the second number
specifies a position in the sequence generated by that coefficient.

The -s option may be used to set the initial state of the random number generator by giving it
an argument of the form By feeding the result of the -r option from one run to the -S option of a
subsequent run, a simulation can be run multiple times with a different random number sequence
each time.

FILES
Akaroa Default file from which to obtain the Akaroa Environment settings.

SEE ALSO
akmaster(1), akslave(1), AkRandom(3)

Akaroa Il User’s Manual
HEIDS81 Philip Heidelberger and Peter D. Welch. A spectral method for confidence interval gener-
ation and run length control in simulations. Communications of the ACM, vol. 24, no. 4, April

1981

PAWLOI0 Kzrystof Pawlikowski. Steady -state simulation of queueing processes: A survey of problems
and solutions. ACM Computing Surveys, vol. 22, no. 2, June 1990

AUTHOR
Gregory C. Ewing, University of Canterbury

Version: 1 Last change: 14 February 1997 4

AKSLAVE(1) 1 AKSLAVE(1)

NAME

akslave — Akaroa simulation engine launcher

SYNOPSIS

akslave [-d]

OPTIONS
-d Turn on debugging. With this option, akslave will write a trace of all messages sent to or
received from the akmaster process.
DESCRIPTION

Akslave is the part of the Akaroa system responsible for launching simulation engines on a particular
host. To use a host to run simulation engines, there must be one akslave process running on that
host. The akslave will automatically locate and contact the akmaster when started.

The search path in effect when an akslave is started should include the directories containing any
simulation engines that you will desire to run. Otherwise, it will be necessary to specify the full
pathname of the simulation engine to akrun when initiating the simulation.

Once an akslave process has started up properly, it closes its standard input, output and error. If
the akslave is being started using rsh, this will cause the rsh command to terminate. Therefore,
if the rsh command completes with no error messages, the akslave has started successfully and is
running in the background on the remote host.

As long as an akmaster process exists, an akslave can be started on a new host at any time, and
that host will be available to any subsequently initiated simulations. An akslave process may be
killed to make its host unavailable for subsequent simulations (but killing an akslave on a host where
simulation engines are running is not recommended).

FILES
~ /.akmaster Used by akslave to locate the user’s akmaster process.
SEE ALSO
akmaster(1), akrun(1)
Akaroa II User’s Manual
AUTHOR
Gregory C. Ewing, University of Canterbury
Version: 1 Last change: 28 February 1995 1

AKSTAT(1)

NAME

1 AKSTAT(1)

akstat — enquire status of Akaroa system

SYNOPSIS
akstat [-d] [-HSEGL] [-s sid] [-e eng] [-p param]
OPTIONS
-d Turn on debugging. With this option, akstat writes a trace of all messages sent to or received
from the akmaster process.
-H Show list of hosts running akslave processes.
-S Show information about currently running simulations. With -s, shows the specified simu-
lation, otherwise shows all simulations.
-E Show information about currently running simulation engines. With -s and/or -e, restrict
the list to the specified simulation and/or engine ID.
-G Show information about global estimates. With -s and/or -p, show global estimates for the
specified simulation and/or parameter only.
-L Show information about local estimates. With -s, -e and/or -p, show local estimates for the
specified simulation, engine ID and/or parameter only.
-s sid Restrict listing to the specified simulation ID.
-e eng Restrict listing to the specified engine ID.
-p param

Restrict listing to the specified parameter number.

DESCRIPTION
The akstat command displays inmformation about the status of the Akaroa system. There are two
kinds of options to akstat: upper case options specify what kinds of information to display, and
lower case options specify which simulation, engine or parameter to display information about.

Options may be combined in any meaningful way. Combining upper case options produces all of
the requested listings. Combining lower case options produces the logical "and” of the individual
restrictions.

Akstat with no arguments is equivalent to akstat -HS.

OUTPUT

Host List

The -H option produces a list with the following columns:

SLAVE
HOST

Version: 1

Slave number.

Name of the host on which the akslave process is running.

Last change: 29 June 1998 1

AKSTAT(1) 1 AKSTAT(1)

PID Process ID of the akslave process.
ENGINES Number of simulation engines running on the host on behalf of this akmaster
process.

Simuation List
The -S option produces a list with the following columns:

SID Simulation ID.

PARMS Number of parameters being estimated.

ENGS Number of simulation engines belonging to the simulation.

RANDOM State of the random number generator.

FLAGS An 70” in this column indicates that the simulation is over.

COMMAND Command and arguments used to start the simulation engines.
Engine List

The -E option produces a list with the following columns:

SID Simulation ID.

EID Engine ID.

HOST Name of the host on which the engine is running.

PID Process ID of the simulation engine.

FLAGS An ”R” in this column indicates that the engine has reported a local esti-

mate and is waiting for a reply from the akmaster process.

STATE This column may contain one of: ”launching” - a launch request has been
sent to the akslave and the akmaster is waiting for the engine to connect;
“running” - the engine is connected and running; "dead” - connection to
the engine has been lost.

Global Estimate List
The -G option produces a list with the following columns:

SID Simulation ID.

PAR Parameter number.

MEAN Current global estimate of the mean.

PREC Relative precision of the global estimate.

VARIANCE Variance of the global estimate.

OBS Total number of observations made of this parameter by all engines.
TRANS Number of observations made of this parameter during the transient phase

by all engines.

Version: 1 Last change: 29 June 1998 2

AKSTAT(1)

CHKPTS

CP/MIN

LAST CHKPT

Local Estimate List

1 AKSTAT(1)

Total number of checkpoints (local estimates) received for this parameter
from all engines.

Average number of checkpoints per minute received for this parameter from
all engines over the last 10 minutes.

Time and date at which the last checkpoint was received for this parameter
from any engine.

The -L option produces a list with the following columns:

SID

EID

PAR
MEAN
VARIANCE
OBS
TRANS

CHKPTS

CP/MIN

LAST CHKPT

SEE ALSO
Akaroa Il User’s Manual

AUTHOR

Simulation ID.

Engine ID.

Parameter number.

Current local estimate of the mean.

Variance of the local estimate.

Number of observations made of this parameter by this engine.

Number of observations made of this parameter during the transient phase
by this engine.

Number of checkpoints (local estimates) received for this parameter from
this engine.

Average number of checkpoints per minute received for this parameter from
this engine over the last 10 minutes.

Time and date at which the last checkpoint was received for this parameter
from this engine.

Gregory C. Ewing, University of Canterbury

Version: 1

Last change: 29 June 1998 3

AKMESSAGE(3) 3 AKMESSAGE(3)

NAME

AkMessage — Send informative message from simulation engine to user

SYNOPSIS

#include <akaroa/ak_message.H>

void AkMessage(char *format...);

DESCRIPTION

AkMessage can be used by a simulation program to report information to the user who initiated the
simulation. It accepts printf-style arguments and formats them into a string.

If the simulation program is running stand-alone, the string is written to standard error followed by
a newline.

If the simulation program is participating in a simulation started by akrun, the string is written to
the standard error of the akrun process, preceded by an identification of the process from which it
came.

If the simulation was started by an AkSimulation object in a user program, that object’s Engine-
Output method is called with the string as an argument.

Note: Some earlier versions of Akaroa relayed text written to the standard error of a simulation
engine back to the initiating process. This is no longer supported; the AkMessage routine should
now be used instead.

SEE ALSO

printf(3S), akrun(1), AkSimulation(3)

Akaroa IT User’s Manual

AUTHOR

Version:

Gregory C. Ewing, University of Canterbury

1 Last change: 14 February 1997 1

AKRANDOM(3) 3 AKRANDOM(3)

NAME
AkRandom — Akaroa random number source

SYNOPSIS

#include <akaroa.H>

unsigned long AkRandom();

DESCRIPTION
AkRandom is the basic source of random numbers used by simulation engines. The Akaroa system
coordinates the random number streams received by different replications of a simulation being run
in parallel, to ensure that each replication receives an independent random number sequence.

Simulation engines should always obtain random numbers using AkRandom or a routine based on
it. All of the routines described in AkDistribution(3) are based on AkRandom.

RETURN VALUE
Each time it is called, AKRandom returns a random integer n such that 1 < n < 231-1.

ALGORITHM
AkRandom uses a multiplicative linear congruential random number generator. The random number
sequence consists of the concatenation of several sequences of length 231-2 with different multiplying
coefficients. This sequence is partitioned among the different replications of a parallel run, so that
the length of the sequence available to one replication is reduced in proportion to the number of
replications.

The coefficients currently used by AkRandom are listed below. They are taken from a list of optimal
full-period coefficients published by Fishman and Moore [FISH86]. The ones marked * have been
recommended by those authors as being of particularly high quality.

No. Coefficient
0 742938285*
1 950706376*
2 1226874159*
3 6208991*
4 1343714438*
5 2049513912
6 781259587
7 482920380
8 1810831696
9 502005751

10 464822633

11 1980989888

12 329440414

13 1930251322

14 800218253

15 1575965843

16 1100494401

17 1647274979

Version: 1 Last change: 14 February 1997 1

AKRANDOM(3) 3 AKRANDOM(3)

18 62292588
19 1904505529
20 1032193948
21 1754050460
22 1580850638
23 1622264322
24 30010801
25 1187848453
26 531799225
27 1402531614
28 988799757
29 1067403910
30 1434972591
31 1542873971
32 621506530
33 473911476
34 2110382506
35 150663646
36 131698448
37 1114950053
38 1768050394
39 513482567
40 1626240045
41 2099489754
42 1262413818
43 334033198
44 404208769
45 257260339
46 1006097463
47 1393492757
48 1760624889
49 1442273554

The list of coefficients may be extended by editing the file src/stats/random_generator.C in the
Akaroa source and recompiling the system. To ensure quality it is recommended that additional
numbers also be taken from the list in [FISH86].

FILES <akaroa>/src/stats/random_generator.C
Source file containing the list of coefficients, for extending the ran-
dom number sequence.

SEE ALSO

AkDistribution(3)

FISH86 George S. Fishman and Louis R. Moore III. An exhaustive analysis of multiplicative con-
gruential random number generators with modulus 231-1. SIAM J. Sci. Stat. Comput. Vol. 7, No.
1, January 1986

Akaroa Il User’s Manual

Version: 1 Last change: 14 February 1997 2

AKRANDOM(3) 3 AKRANDOM(3)

AUTHOR
Gregory C. Ewing, University of Canterbury

Version: 1 Last change: 14 February 1997 3

AKSIMULATION(3) 3 AKSIMULATION(3)

NAME
AkSimulation — Akaroa simulation launching class

SYNOPSIS

#include <akaroa/simulation.H>

class AkSimulation {
public:
AkSimulation(char *command) ;
AkSimulation(int argc, char *argv[]);
void UseHosts(int n);
void UseHost (char *host);
void SetEnvironmentFile(char *path);
void SetRandomState(AkRandomState state);
void SetPrecision(float);
void SetConfidence(float);
int SetEnvInt(char *name, int value);
int SetEnvReal(char *name, double value);
int SetEnvString(char *name, char *value);
int SetEnvEnum(char *name, char *value);
int Run();
int GetNumParams() ;
int GetResult(int i, AkResult &result);
AkRandomState GetRandomState();
char *ErrorMessage() ;
enum Disposition {Continue, Terminate};
protected:
virtual void EngineStarted(int pid, char *host);
virtual Disposition RandomOverflow();
virtual Disposition EngineLost(int pid, char *host);
virtual Disposition EngineQutput
(char *host, int pid, char *data, size_t 0);

};

struct AkResult {
long count;
long trans;
double mean;
double variance;
double delta;

};

DESCRIPTION
Class AkSimulation provides the means for a program to initiate a simulation under Akaroa, wait
for it to complete and collect the results.

The program to be run as a simulation engine and the arguments to be passed to it are specified
when constructing an instance of AkSimulation.

Version: 1 Last change: 14 February 1997 1

AKSIMULATION(3) 3 AKSIMULATION(3)

The first constructor accepts a string containing a program name and arguments separated by spaces.
No interpretation of quotes or other special characters is done on this string, so the argument strings
cannot contain embedded spaces.

The second constructor accepts a count argc and a vector of strings argv, where argu[0] is the program
name and argv[1],... are the arguments. The value of argc should be the number of strings in argw.
The strings may contain any characters, including spaces. These strings will appear unchanged as
the argc and argv parameters of the simulation program.

UseHosts specifies that simulation engines are to be run on n hosts arbitrarily chosen from those
available. Alternatively, particular hosts may be specified by calling UseHost once for each host
which is to be used.

SetEnvironmentFile specifies the file from which to obtain Akaroa Environment settings. Otherwise,
the defaults used by akrun(1) apply.

SetRandomState sets the initial state of the random number generator before running the simulation.
It takes the following structure as an argument:

class AkRandomState {
public:
int sequence;
unsigned long phase;

where sequence specifies one of the multiplying coeffients listed in AkRandom(3), numbered from 0,
and phase specifies a position within the sequence generated by that coefficient, as an integer in the
range 0..231-2.

SetPrecision and SetConfidence set the required precision and confidence. Calling these methods is
equivalent to using SetEnvReal (see below) to set the values of the ”Precision” and ”Confidence”
variables.

SetEnvInt, SetEnvReal, SetEnvString and SetEnvEnum set the values of integer, real, string and
enumerated-type valued Akaroa environment variables. They return 0 on success, and -1 if the
variable does not exist or is of the wrong type.

Note: If a variable is set both by one of these methods and in a file specified with SetEnvironmentFile,
the results are undefined.

Runlaunches the simulation and waits for it to complete. If it completes successfully, true is returned.
Otherwise, false is returned, and ErrorMessage may be used to obtain a string describing the reason
for failure. ErrorMessage returns a pointer to static storage.

Run may be called repeatedly to execute the simulation multiple times. If this is done, the initial
random number state of each run will be the final state from the previous run, so that each run will

receive a unique stream of random numbers.

GetNumParams returns the number of parameters for which results are available. GetResult returns
the result for parameter i in the following structure:

Version: 1 Last change: 14 February 1997 2

AKSIMULATION(3) 3 AKSIMULATION(3)

struct AkResult {
long count;
long trans;
double mean;
double variance;
double delta;

};
count The total number of observations made by all engines.
trans The total number of observations discarded during the transient phases
(before the system settled down into steady state).
mean Estimate of the mean value of the parameter.
variance Variance of the estimate of the mean.
delta Confidence interval of the estimate of the mean. The true mean lies between

mean - delta and mean + delta with probability p, where p is the confidence
level specified for the parameter.

GetRandomState returns the final state of the random number generator after running the simulation.

Callbacks
The following methods are called by the system in response to certain events. They may be over-
ridden to take user-defined action when these events occur.

EngineStarted is called to acknowledge the successful launching of a simulation engine. The default
implementation does nothing.

RandomOverflow is called if all sequences of random numbers are exhausted (i.e. all multipliers
have been used). If AkSimulation::Continue is returned, the simulation is continued, starting with
the first multiplier once more. If AkSimulation::Terminate is returned, the simulation is terminated
with an appropriate error. The default is to terminate the simulation.

EngineLostis called if contact with a simulation engine is unexpectedly lost. If AkSimulation::Continue
is returned, the simulation is continued with the remaining engines. If AkSimulation::Terminate is
returned, the simulation is terminated with an appropriate error. The default is to continue.

EngineOutput is called whenever a simulation engine sends a message using the AkMessage routine.
If AkSimulation::Continue is returned, the simulation is continued. If AkSimulation::Terminate is
returned, the simulation is terminated with an appropriate error. The default is to write the message
to the standard error of the invoking process, preceded with an identification of the process from
which it came, and continue the simulation.

SEE ALSO
akrun(1), AkRandom(3), AkMessage(3)

Akaroa IT User’s Manual

AUTHOR
Gregory C. Ewing, University of Canterbury

Version: 1 Last change: 14 February 1997 3

CURRENTTIME(3) 3 CURRENTTIME(3)

NAME
CurrentTime — Akaroa simulation clock

SYNOPSIS

#include <akaroa/time.H>
typedef real Time;

Time CurrentTime();

DESCRIPTION
CurrentTime returns the current value of the simulation clock.
The simulation clock is maintained by either the Process Manager or the Event Manager, whichever
is being used (they cannot both be used in the same simulation program). The Process Manager

should be used by new simulations; the Event Manager is provided only for backward compatibility.

SEE ALSO
Process(3), events(3)

Akaroa IT User’s Manual

AUTHOR
Gregory C. Ewing, University of Canterbury

Version: 1 Last change: 26 July 1995 1

PRIORITYQUEUE(3) 3 PRIORITYQUEUE(3)

NAME
PriorityQueue — Akaroa prioritised queue class

SYNOPSIS

#include <akaroa/priority_queue.H>

template <class T>
class PriorityQueue : public Queue<T> {
public:
virtual void Insert(T *item);
protected:
virtual int HigherPriority(T *iteml, T *item2) = O0;
I

template <class T>
int HigherPriority(T *iteml, T *item2);

DESCRIPTION
PriorityQueue implements a queue of items which is ordered according to a user-specified priority
rule.

Insert inserts item into the queue at a position which is determined by its priority relative to other
items in the queue.

HigherPriority defines the relative priority of items in this queue. An implementation of this method
must be supplied; it should return true if item1 has higher priority than item?2, false otherwise.

SEE ALSO
Akaroa IT User’s Manual

AUTHOR
Gregory C. Ewing, University of Canterbury

Version: 1 Last change: 14 February 1997 1

PROCESS(3) 3 PROCESS(3)

NAME
Process — Akaroa Process Manager

SYNOPSIS

#include <akaroa/process.H>
typedef real Time;

class Process {

public:
Process(long stackSize = 1024);
void Schedule(Time delay) ;

protected:
virtual void LifeCycle() = 0;
};

Process *CurrentProcess();
void Hold(Time delay);
void Hold();

void DeleteProcesses();

DESCRIPTION
Class Process provides the means to spawn independent threads of execution within a simulation
program. Each Process object has its own thread of execution with its own stack, but all the threads
exist within the one Unix process and thus share the same address space.

Initially, there is one thread, executing the main program. To create additional threads, you must
declare one or more subclasses of Process, and define a LifeCycle method for each one. Each time
you create an instance of a Process subclass, its LifeCycle method is executed in a separate thread.

The Process Manager also maintains a simulation clock and a queue of processes scheduled to execute
at specific simulation times. Primitives are provided to block and unblock processes and schedule
them at given times. Other classes in the Akaroa library build upon these primitives to provide a
variety of process synchronisation facilities.

Process scheduling is non-preemptive. Once a process is executing, control is never transferred to
another process until the current process either calls one of the Hold routines, re-schedules itself
using Process::Schedule, or destroys itself.

Process::Process initialises the process and allocates it the requested number of bytes of stack space.
The new process is scheduled to execute at the current simulation time (although it will not run
until the process that created it blocks).

The stack belonging to a process cannot be extended. If a process exceeds the stack space allocated

to it when it was created, the simulation program will crash. (An exception is the main process,
which uses the initial Unix stack and will thus have its stack extended when necessary.)

Version: 1 Last change: 14 February 1997 1

PROCESS(3) 3 PROCESS(3)

Process::Schedule blocks the process until the simulation clock reaches the current time plus delay.

Process::LifeCycle contains the code which is executed by the process’s thread. If it returns, the
thread is terminated and the Process object is deallocated.

If a Process is deleted by another process while its life cycle is active, its thread is terminated
immediately.

CurrentProcess() returns a pointer to the currently executing process.
Hold(delay) is equivalent to CurrentProcess() -; Schedule(delay).

Hold() blocks the current process indefinitely. It will not run again until it is re-scheduled (using
Process::Schedule).

DeleteProcesses() deletes all instances of class Process in existence. If a Process is queued for a
Resource (or any other subclass of Semaphore) it is removed from the queue before being deleted.

SEE ALSO
CurrentTime(3), Resource(3)

Akaroa IT User’s Manual

AUTHOR
Gregory C. Ewing, University of Canterbury

Version: 1 Last change: 14 February 1997 2

QUEUE(@3) 3 QUEUE(@3)

NAME
Queue — Akaroa queue class

SYNOPSIS

#include <akaroa/queue.H>

template <class T>
class Queue {
public:

Queue () ;
virtual void Insert(T *item);
virtual T *Next();
virtual T *Head();
virtual void Remove(T *item);
virtual int Empty();
virtual int Length();

DESCRIPTION
Class Queue implements a first-in first-out queue of pointers to objects of a given type.

Insert adds item to the tail of the queue.

Next removes an item from the head of the queue and returns a pointer to it. If the queue is empty,
0 is returned.

Head returns a pointer to the item at the head of the queue, without removing it. If the queue is
empty, 0 is returned.

Remove removes item from the queue, if present, regardless of its position.
Empty returns true if the queue is empty, false otherwise.

Length returns the number of items in the queue.

SEE ALSO
Akaroa II User’s Manual

AUTHOR
Gregory C. Ewing, University of Canterbury

Version: 1 Last change: 30 March 1995 1

RESOURCE(3) 3 RESOURCE(3)

NAME
Resource — Akaroa Resource class

SYNOPSIS

#include <akaroa/resource.H>

class Resource {

public:
Resource(int capacity);
void Acquire(int amount);
void Release(int amount);

};

DESCRIPTION
Class Resource represents a finite resource which comes in discrete units, and coordinates processes
competing for access to the resource.
Resource::Resource initialises the resource to have capacity units available.
Resource::Acquire blocks the current process until amount units of the resource are available, then
allocates that many units to the process. Processes waiting for units to become available are allocated
them on a FIFO basis.

Resource::Release releases amount units of the resource, making them available to other processes.

SEE ALSO
Process(3)

Akaroa II User’s Manual

AUTHOR
Gregory C. Ewing, University of Canterbury

Version: 1 Last change: 26 July 1995 1

DISTRIBUTIONS(3) 3 DISTRIBUTIONS(3)

NAME

Uniform, UniformInt, Binomial, Normal, LogNormal, Exponential, HyperExponential, Poisson, Ge-
ometric0, Geometricl, HyperGeometric, Erlang, Weibull — Akaroa random number distributions

SYNOPSIS

#include <akaroa/distributions.H>

real Uniform(real a, real b);

long UniformInt(long m, long n);
long Binomial(long n, real p);

real Normal(real m, real s);

real LogNormal(real m, real s);

real Exponential(real m);

real HyperExponential(real m, real s);
long Poisson(real m);

long GeometricO(real m);

long Geometricl(real m);

real HyperGeometric(real m, real s);
real Erlang(real m, real s);

real Weibull(real alpha, real beta);

DESCRIPTION

Version:

These routines return pseudorandom numbers drawn from various distributions. They all use
AkRandom(3) as a basic source of random numbers.

Uniform returns uniformly distributed real numbers in the range a to b.
UniformInt returns uniformly distributed integers in the range m to n, inclusive.

Binomial returns numbers from a binomial distribution of n items where each item has a probability
p of being drawn.

Normal returns numbers from a normal distribution with mean m and standard deviation s.
LogNormal returns numbers from a log-normal distribution with mean m and standard deviation s.
Ezponential returns numbers from an exponential distribution with mean m.

HyperExponential returns numbers from a hyperexponential distribution with mean m and standard
deviation s.

Poisson returns numbers from a Poisson distribution with mean m.

Geometric0 and Geometricl return numbers from geometric distributions with mean m. Geometric0
returns integers > 0, whereas Geometricl returns integers > 1.

HyperGeometric returns numbers from a hypergeometric distribution with mean m and standard
deviation s.

1 Last change: 26 July 1995 1

DISTRIBUTIONS(3) 3 DISTRIBUTIONS(3)

Erlang returns numbers from an Erlang distribution with mean m and standard deviation s.
Weibull returns numbers from a Weibull distribution with parameters alpha and beta.

SEE ALSO
AkRandom (3)

Akaroa IT User’s Manual

AUTHOR
Gregory C. Ewing, University of Canterbury

Version: 1 Last change: 26 July 1995 2

EVENTS(3) 3 EVENTS(3)

NAME

Schedule, NextEvent — Akaroa event manager

SYNOPSIS

NOTE

#include <akaroa/events.H>
typedef real Time;

template <class T>
void Schedule(void (*proc)(T *), T *arg, Time delay);

int NextEvent();

The Event manager is obsolete and has been superseded by the Process Manager (see Process(3)).
The routines described here are provided for backward compatibility only.

DESCRIPTION

These routines implement an event management system for discrete event simulation, which may
optionally be used by simulation engines.

The type Time is used to represent simulation times.

Schedule schedules an event to occur delay units of simulation time from the current time. When
the simulation clock reaches the scheduled time, the procedure proc will be called with the argument
arg. The procedure may do whatever is required, including scheduling further events.

NextEvent should be called repeatedly from the main loop of the simulation. It retrieves the next
event from the event queue, advances the simulation clock to its scheduled time, and calls the
associated procedure.

Normally, NextEvent returns true. If there are no events in the event queue, NextEvent returns
false. In this case, the simulation engine should do something to schedule one or more events so that
the simulation may continue.

BUGS
Due to limitations of g++, the Schedule function is implemented as a macro rather than a template,
and therefore cannot be overloaded.
SEE ALSO
CurrentTime(3)
Akaroa II User’s Manual
AUTHOR
Gregory C. Ewing, University of Canterbury
Version: 1 Last change: 26 July 1995 1

OBSERVATION(3) 3 OBSERVATION(3)

NAME
AkObservationType, AkDeclareParameters, AkObservation, AkSimulationOver — Report observa-
tions made during simulation to Akaroa

SYNOPSIS

#include <akaroa.H>

enum AkObservationTypes {
AkCorrelated, AkIndependent
s

void AkObservationType (AkObservationTypes) ;
void AkObservation(real x);

void AkDeclareParameters(int numParams) ;
void AkObservation(int paramNum, real x);

int AkSimulationOver();

DESCRIPTION
These routines are used by a simulation engine to report observations to the Akaroa system and
determine when to cease the simulation.

AkObservationType is used to declare whether the observations will be correlated or independent.
The default is AkCorrelated. If AkIndependent is to be specified by calling this routine, it must be
done before calling AkDeclareParameters or AkObservation.

AkObservation is used to report an observation to Akaroa. If only one parameter is being observed,
it is simply passed to AkObservation.

If more than one parameter is to be observed, AkDeclareParameters should be called once to inform
Akaroa how many parameters to expect. Then AkObservation should be called with two arguments,
the parameter number (parameters are numbered from 1 upwards), and the observation.

After processing an observation, AkObservation tests whether the estimates of the means all the
observed parameters have reached the required precision, and if so, terminates the simulation engine.

AkSimulationQOver is an obsolete routine which tests whether all parameters have reached the re-
quired precision.

SEE ALSO
Akaroa IT User’s Manual

AUTHOR
Gregory C. Ewing, University of Canterbury

Version: 1 Last change: 26 July 1995 1

