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a b s t r a c t

Probabilities of monophyly, paraphyly, and polyphyly of two-species gene genealogies are computed
for modest sample sizes and compared for two different Λ coalescent processes. Coalescent processes
belonging to the Λ coalescent family admit asynchronous multiple mergers of active ancestral lineages.
Assigning a timescale to the time of divergence becomes a central issue when different populations have
different coalescent processes running on different timescales. Clade probabilities in single populations
are also computed, which can be useful for testing for taxonomic distinctiveness of an observed set of
monophyletic lineages. The coalescence rates of multiple merger coalescent processes are functions of
coalescent parameters. The effect of coalescent parameters on the probabilities studied depends on the
coalescent process, and if the population is ancestral or derived. The probability of reciprocal monophyly
tends to be somewhat lower, when associated with a Λ coalescent, under the null hypothesis that two
groups come from the same population. However, even for fairly recent divergence times, the probability
of monophyly tends to be higher as a function of the number of generations for coalescent processes that
admit multiple mergers, and is sensitive to the parameter of one of the example processes.

© 2012 Published by Elsevier Inc.

1. Introduction1

The coalescent (Kingman, 1982a,c) has proved to be a2

very useful tool for inference in population genetics (Hudson,3

1990; Donnelly and Tavaré, 1995; Möhle, 2000; Nordborg,4

2001; Rosenberg and Nordborg, 2002; Wakeley, 2009), and5

phylogenetics (Satta et al., 2000; Ting et al., 2000; Liu and Pearl,6

2007; Degnan and Rosenberg, 2009; Liu et al., 2009). Genetic7

information drawn from a set of taxa may not yield unequivocal8

resolution of the corresponding species tree (Hudson, 1983;9

Nei, 1986; Neigel and Avise, 1986; Doyle, 1992; Ruvolo, 1994;10

Maddison, 1997; Nichols, 2001; Nordborg, 2001). To understand11

why, it is helpful to think about the gene genealogies of the12

sampled DNA sequences embedded within the phylogeny of the13

species in question (Fig. 1). Reciprocal monophyly (Rosenberg,14

2003) is illustrated in Fig. 1a; the lineages from both populations15

(A and B) reach their respective most recent common ancestor16

(MRCA) before any coalescence event involving lineages from17

both A and B occurs. Polyphyly (Rosenberg, 2003) is illustrated18

in Fig. 1c, d, in which lineages from A and B coalesce more19

∧
quickly than a MRCA is reached in either population. Although20

∗ Corresponding author.
E-mail addresses: eldon@stats.ox.ac.uk, beldon11@gmail.com (B. Eldon).

phenomena such as recombination, sampling error (Cummings 21

et al., 1995; Otto et al., 1996), and gene duplication can result 22

in gene genealogies being discordant with species trees, lack of 23

reciprocal monophyly is often expected to be widespread for 24

closely related populations (Knowles and Carstens, 2007), whose 25

divergence occurred recently. The proportion of genes which are 26

reciprocally monophyletic or paraphyletic is a reflection of the 27

time of divergence between populations. 28

Probabilities of monophyly, paraphyly, and polyphyly under 29

the Kingman coalescent model (Kingman, 1982a,c,b) have been 30

the focus of previous work (Hudson and Coyne, 2002; Rosenberg, 31

2003). The Kingman coalescent can be derived from the usual 32

Fisher–Wright (Fisher, 1930; Wright, 1931) and the Moran (1958, 33

1962) population models, which can be classified as low offspring 34

number models. In low offspring number models, individuals have 35

very many offspring with only negligible probability in large pop- 36

ulations. Indeed, convergence to the Kingman coalescent follows 37

from conditions on higher moments of Cannings (1974) repro- 38

duction law, of which the Fisher–Wright and the Moran models 39

are special cases. Large offspring number models (Schweinsberg, 40

2003; Eldon and Wakeley, 2006; Sargsyan and Wakeley, 2008) in 41

which individuals can have verymany offspring – up to the order of 42

the population size – with non-negligible probability in large pop- 43

ulations, give rise to multiple merger coalescent processes (Don- 44

nelly and Kurtz, 1999; Pitman, 1999; Sagitov, 1999; Schweinsberg, 45

2000a; Möhle and Sagitov, 2001). In multiple merger coalescent 46
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a b

c d

Fig. 1. Examples of gene genealogies relating genetic information drawn from two populations A and B diverged at time τ . Thick lines demarcate the populations, while thin
lines trace ancestral lineages from the present into the past. The gene genealogies display monophyly of A and B (a); paraphyly of A relative to B (b); polyphyly (c) and (d).
Population A and the common ancestral population both admit multiple mergers of ancestral lineages. The time of the MRCA of A and B is denoted by tA and tB , respectively;
t denotes the first time at which lineages from A and B coalesce.

processes, any number of active ancestral lineages can coalesce1

to a different common ancestral sequence at the same time (Λ2

coalescent). Simultaneous multiple merger coalescent processes3

(Schweinsberg, 2000a) admit the
∧
coalescence of different groups4

of active ancestral lineages to different ancestors at the same time5

(Ξ coalescent). Fig. 1 carries examples of gene genealogies with6

multiple mergers, in population A and the common ancestral pop-7

ulation. In Fig. 1a, for example, the first merger in population A is a8

merger of four lineages, followed by a merger of two lineages. The9

three remaining ancestral lineages finally reach the most recent10

common ancestor of the A lineages in a single merger.11

Large offspring number models may be better approximations12

for highly fecund organisms than the usual low offspring13

number Fisher–Wright and
∧
Moran models. Schweinsberg (2003)14

considers a population model in discrete generations in which the15

distribution of potential offspring has heavy tails. The population is16

then regenerated by sampling from the pool of potential offspring.17

If the tails are ‘heavy enough’, the resulting coalescent process18

admits multiple mergers of ancestral lineages. Eldon and Wakeley19

(2006) and Sargsyan and Wakeley (2008) consider large offspring20

number models and predictions about genetic diversity, and21

argue that large offspring number models may be appropriate for22

highly fecund marine organisms such as Pacific oysters. Indeed,23

∧
sweepstake-style reproduction, in which few parents have very24

many offspring, was proposed by Beckenbach (1994), Hedgecock25

et al. (1982), and Hedgecock (1994) when considering data on26

Pacific oysters. Árnason (2004) raises similar ideas in relation27

to Atlantic cod. Genetic evidence for large offspring numbers in28

different marine taxa continues to be subject to investigation29

(Boudry et al., 2002; Flowers et al., 2002; Petersen et al., 2008).30

Ingvarsson (2010) proposes that large offspring number models31

may be appropriate for forest trees.32

We compute probabilities of monophyly, paraphyly, and33

polyphyly, of two-species gene genealogies (Fig. 1) when the34

coalescent process in any of the three populations (A, B, or35

the common ancestral population) are special cases of the Λ36

coalescent; i.e., admitting asynchronous multiple mergers of37

ancestral lineages. The approach is similar to the one taken by38

Hudson and Coyne (2002); conditioning on the number of lineages39

that have coalescedmore recently than the species divergence, and40

using recursions for the ancestral population.41

The simple techniques we employ can be applied to any42

multiple merger coalescent. Special cases of the Λ coalescent43

derived by Schweinsberg (2003) and Eldon andWakeley (2006) are44

considered in detail. The presence of multiple mergers limits the 45

computation of exact probabilities to modest, but very relevant, 46

sample sizes. By way of example, Waters and Roy (2004) study 47

the phylogeography of a New Zealand sea star by sampling, on 48

average, five specimens of Patiriella regularis at different locations 49

around the coast of NewZealand. As different populations can have 50

different coalescent processes running on different timescales, 51

assigning a timescale to the time of divergence becomes a central 52

issue in the computations. In addition, we consider probabilities 53

that a subset of lineages form a clade in the case of a single 54

population. Clade probabilities are useful for determining whether 55

observed levels of monophyly can be considered statistically 56

significant when treating a single population as a null hypothesis 57

(Rosenberg, 2007). 58

2. Theory and results 59

2.1. One population 60

The two special cases of a Λ coalescent we will consider 61

are the ones introduced by Schweinsberg (2003) and Eldon 62

and Wakeley (2006). At each timestep in Schweinsberg (2003)’s 63

model, individual i independently produces a random number 64

Xi of potential offspring; N offspring are then drawn without 65

replacement from the pool of the potential offspring. The 66

assumption E[Xi] > 1 assures that X1 + · · · + XN ≥ N 67

with sufficiently high probability (Schweinsberg, 2003). The Xi are 68

independent and identically distributed with tail probabilities 69

P[Xi ≥ k] ∼ Ck−α, k > 0 70

in which ∼ means that the ratio of the two sides tends to 1 as 71

k → ∞, and C is a constant. The usual Kingman coalescent is 72

obtained when α ≥ 2. In the Kingman coalescent, each pair of 73

active ancestral lineages coalesces with rate 1. When 1 ≤ α < 74

2, the coalescent process is a Λ coalescent, and the time during 75

which there are i active ancestral lineages is exponential with rate 76i
k=2 λi,k, in which 77

λi,k =


i
k


Γ (k − α)Γ (i − k + α)

Γ (i)Γ (2 − α)Γ (α)
, 1 < α < 2. (1) 78

Schweinsberg (2003). The quantity λi,k is the rate at which k out 79

of i active ancestral lineages coalesce, and is referred to as the 80

coalescence rate. Refer to the coalescent with rate (1) as the Beta- 81

coalescent. Eldon and Wakeley (2006) consider a discrete-time 82
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modified Moran-type model in which a single individual chosen1

uniformly at random from the population contributes a random2

number U of offspring at each timestep, and persists. Eldon and3

Wakeley (2006) give U the distribution4

P[U = u] =


1 − N−γ if u = 1, γ > 0
N−γ if u = ⌊ψN⌋, 0 < ψ < 1,5

in which γ and ψ are constants. A simple case of a Λ coalescent6

results when 0 < γ < 2, in which the coalescence rate is7

λi,k =


i
k


ψk(1 − ψ)i−k, 2 ≤ k ≤ i, 0 < ψ < 1. (2)8

Refer to the coalescent with rate (2) as the ψ-coalescent. The9

Kingman coalescent is recovered from the Beta coalescent by10

taking α = 2. The Kingman coalescent is not recovered from the11

ψ-coalescent. To obtain the ψ-coalescent, one has already12

assumed that large offspring number events (U = ⌊ψN⌋) are13

much more frequent than ordinary Moran reproduction (U = 1)14

by taking γ < 2. Thus, ψ is not a timescale parameter (unlike15

α in the Beta coalescent), but rather reflects the size of the large16

offspring number event. Hence, if ψ is quite small, the resulting17

genealogy will look just like a Kingman coalescent genealogy by18

consisting only of binary mergers, but running on a much shorter19

timescale.20

It will sometimes be convenient to denote by qi,j = λi,k the rate21

at which i active lineages change to j = i− k+1 active lineages by22

the merging of k lineages. Also for ease of presentation, write23

qi = qi,i = −

i
k=2

λi,k = −

i−1
j=1

qi,k.24

The reason for the negative sign is that the qi terms are the25

diagonals in the instantaneous ratematrix for the continuous-time26

Markov chain Ar(t) that counts the number of active lineages in a27

single population (see Appendix). The process Ar(t) starts at time28

t = 0 in state Ar(0) = r , which means that at time zero we have r29

active ancestral lineages. The process stops as soon as Ar(t) = 1, in30

which case the r lineages have reached their most recent common31

ancestor.32

A key quantity in our computations is the probability P[Ai(t) =33

j] for 1 ≤ j ≤ i. Following Tavaré (1984) we write gi,j(t) =34

P[Ai(t) = j], where t is measured in units associated with the35

coalescent process used. The units of time of the twoΛ coalescent36

processes considered are shorter than the ones associated with37

the Kingman coalescent. Letting tg represent time measured in38

generations and N the number of copies of a gene in a population,39

we use t = tg/Nα−1 for the Beta-coalescent. Substituting α = 240

yields the natural coalescent units for the Kingman coalescent,41

t = tg/N . Thus, the parameter α is a timescale parameter. Under42

theψ-coalescent, the time tg is based on time in theMoranmodel,43

and we have t = tg/Nγ , 0 < γ < 2. The issue of timescales is44

treated in more depth as a separate subsection below.45

An explicit expression for gi,j(t) can be obtained when asso-46

ciated with the Kingman coalescent (Griffiths, 1979; Watterson,47

1982; Tavaré, 1984). A generalization of the functions gi,j(t) tomul-48

tiple merger coalescents is needed. The parameter π indicates the49

coalescent process used, where π = 2 indicates a Kingman coa-50

lescent, 1 < π < 2 indicates a Beta-coalescent with α = π , and51

0 < π < 1 indicates a ψ-coalescent with ψ = π . By gi,j,π we de-52

note the probability that i lineages coalesce into j lineages by time53

t under a coalescent process with parameter π . Thus, gi,j,α or gi,j,ψ54

will refer to the stated probability when associated with a particu-55

lar process. An explicit expression is difficult to obtain for gi,j,π (t)56

when associated with amultiple merger coalescent. In Appendices57

B1 and B2 two ways to compute gi,j,k(t) for any Λ coalescent are58

presented. One method enumerates all the paths of Ar(t), but is59

not practical for i > 20, approximately, due to the exponential in- 60

crease in number of paths for Ai(t) to go from i to j < i lineages as 61

i increases. Another method to compute gi,j,π (t) involves finding 62

the spectral decomposition of the rate matrix (12). Tavaré (1984) 63

applies this technique to obtain the gi,j(t) for the Kingman coales- 64

cent. This method is computationally more feasible than listing all 65

the paths of Ai(t). 66

The probability that two lineages coalesce before time t is 67

g2,1,π (t) = 1 − g2,2,π (t) = 1 − exp(tq2). Under the Beta- 68

coalescent, −q2 = 1, and g2,1(t) is therefore the same for 69

both the Beta-coalescent and the Kingman coalescent. One must 70

remember, however, that the units of t depend on the particular 71

process. Two lineages coalesce with probability 1 − exp(−1) 72

within N generations under the Kingman coalescent, or within 73

Nα−1 generations for the Beta-coalescent. Thus, two lineages will 74

tend to coalesce faster, in number of generations, under the Beta- 75

coalescent than the Kingman coalescent. Under the point-mass 76

coalescent, g2,1,ψ (t) = 1 − exp(−tψ2), in which the timescale 77

is also shorter than the corresponding one (proportional to N2
78

timesteps) associated with the Kingman coalescent. 79

Considering three active lineages, one obtains 80

g3,1,α(t) = 1 −
3
2
e−t

+
1
2
e−(1+α)t

81

g3,2,α(t) =
3
2


e−t

− e−(1+α)t , (3) 82

g3,3,α(t) = e−(1+α)t . 83

In a population with the Beta-coalescent. In a population with the 84

ψ-coalescent, 85

g3,1,ψ (t) = 1 −
3
2
e−tψ2

+
1
2
e−t[ψ3

+3(1−ψ)ψ2
], 86

g3,2,ψ (t) =
3
2


e−tψ2

− e−t[ψ3
+3(1−ψ)ψ2

]


, (4) 87

g3,3,ψ (t) = e−t(ψ3
+3(1−ψ)ψ2). 88

The quantities g3,j,π (t) in (3) and (4) have similar form as those 89

obtained for the Kingman coalescent, 90

g3,1(t) = 1 −
3
2
e−t

+
1
2
e−3t

91

g3,2(t) =
3
2


e−t

− e−3t (5) 92

g3,3(t) = e−3t . 93

In particular, gi,j,α(t) = gi,j(t) when α = 2 for any i and j, which 94

follows from the form (1) of the rate of coalescence associated 95

with the Beta-coalescent. In case of the ψ-coalescent, one obtains 96

limψ→0 gi,i,ψ (t) = 1. 97

In general, gi,j,π (t) is not amonotone function of j, and can have 98

more than one peak under the ψ coalescent. Figs. 2 and 3 show 99

graphs of gi,j,π (t) as a function of j for different values ofπ and time 100

t of divergence. The value of j that maximizes gi,j,ψ (t) depends on 101

ψ for intermediate values of t . Similar conclusions hold for gi,j,α(t) 102

(Fig. 2). When α is close to 1, and t is small enough, the values of 103

gi,j,α(t) become more evenly distributed over j as compared to the 104

values of gi,j(t) associated with the Kingman coalescent. One must 105

keep in mind, though, that α is a timescale parameter of the Beta- 106

coalescent. Hence, different values of α result in different units of 107

time. By way of example, consider the rate λb ≡ λb,2 + · · · + λb,b, 108

with λb,k associated with the Beta-coalescent given by Eq. (1). The 109

overall coalescent rate, λb, is an increasing function of α when 110

measured in units ofNα−1 generations (Appendix D), whichmeans 111

that the probability P[Ai(t) = i] = e−tλb that none of the i lineages
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Fig. 2. The probability g30,j,α(t) as a function of j as α varies over the values shown in the legend. Results for the Kingman coalescent (α = 2) are shown for reference. Each
plot is for different

∧
values of t .

have coalesced by time t decreases as α increases when t is fixed.1

As α increases, however, the unit of time Nα−1 increases also. As2

a result, the expected time until the next coalescence is increasing3

in α when time is measured in generations and the sample size is4

not a large fraction of the population size N (Appendix D).5

Comparing Figs. 2 and 3, one observes that gi,1,α(t) tends to6

one much more quickly than gi,1,ψ (t) as t increases, in particular7

for low values of ψ . Comparing Eqs. (3) and (4) is helpful in this8

context. The expressions for g3,j,ψ (t) (Eq. (4))
∧
show that only when9

t ≫ 1/ψ2 is g3,1,ψ (t) ≈ 1.10

Exact computations involving coalescent processes with multi-11

ple mergers are generally only possible for moderate sample sizes.12

It would be highly desirable to be able to distill the most likely13

paths of Ai(t), but this is not a simple matter. By way of example,14

one obtains for the Beta-coalescent15

qi,i−1 > qi,i−2 > · · · > qi,116

for any value of α ∈ (1, 2), and hence a merger of two active17

lineages is always the most likely merger in a Beta-coalescent.18

However, a path of only 2-mergersmay not be themost likely path.19

Table 1 reports the probability P2(π) of a path consisting of only20

2-mergers as a function of sample size andπ , and shows that P2(π)21

decreases quickly as a function of sample size. Table 2 reports22

the most likely sequence of mergers for the two Λ coalescents23

for different values of π , and sample size (i), for paths of Ai(t)24

going from i to 1. The most likely paths of Ai(t) can be those25

beginning with a large merger, at least for the small sample sizes26

considered, suggesting that it ismore likely for tree topologies to be27

unresolved near the tips than towards the root of the tree. Table 228

also reveals that, in some cases, the vastmajority of pathswill have29

low probability compared to the highest probability.

Table 1
The probability P2(π) a gene genealogy consists of only binary mergers, as a
function of sample size n, and π . The parameter π stands for α when 1 < π < 2,
and for ψ when 0 < π < 1.

α ψ n P2(α) P2(ψ)

1.01 0.01 5 0.319 0.980
25 0.000 0.391
50 0.000 0.017

1.05 0.05 5 0.343 0.900
25 0.000 0.006
50 0.000 0.000

1.2 0.1 5 0.438 0.802
25 0.000 0.000
50 0.000 0.000

1.5 0.2 5 0.643 0.611
25 0.004 0.000
50 0.000 0.000

1.9 0.5 5 0.928 0.157
25 0.388 0.000
50 0.115 0.000

2.2. Two extant populations 30

Additional notation is needed to write down the recursion for 31

the probability of reciprocal monophyly. Let nA and nB denote the 32

number of sequences sampled for species A and B, respectively. Of 33

the nA and nB lineages,mA andmB pass into the common ancestral 34

population from A and B, respectively. Let m = mA + mB. By P 35

we denote the probability of monophyletic concordance (Fig. 1a) 36

between the species tree of speciesA and B, and the gene genealogy 37

of the sample of nA lineages from species A, and nB lineages from 38

species B. Denote by T the time when lineages from both derived 39

populations A and B are first involved in a coalescence event. Let 40

TA and TB denote the times of the most recent common ancestors
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Fig. 3. The probability g30,j,ψ (t) as a function of j as ψ varies over the values shown in the legend. Each plot is for different
∧
values of t .

Table 2
The paths of Ai(t) with the highest probability for the α- and ψ-coalescents. The
parameter π stands for α when 1 < π < 2, and for ψ when 0 < π < 1. Sample
size is denoted by i. By c⋆ denote the sequence ofmergers corresponding to the path
with the highest probability. The % column denotes the fraction of sequenceswhose
probability is< 1/1000 of the probability of c⋆ .

π i % c⋆

1.01 10 0 (2, . . . , 2)
20 66.9 (19, 2)

1.05 10 0 (2, . . . , 2)
20 58.6 (19, 2)

1.2 10 0 (2, . . . , 2)
20 39.8 (18, 2, 2)

1.5 10 18.8 (2, . . . , 2)
20 96.6 (2, . . . , 2)

1.9 10 90.2 (2, . . . , 2)
20 99.9 (2, . . . , 2)

0.01 10 96.5 (2, . . . , 2)
20 99.9 (2, . . . , 2)

0.05 10 84.4 (2, . . . , 2)
20 99.2 (2, . . . , 2)

0.1 10 61.7 (2, . . . , 2)
20 84.1 (3, 3, 2, . . . , 2)

0.2 10 14.1 (3, 2, . . . , 2)
20 59.3 (5, 4, 4, 3, 2, . . . , 2)

0.5 10 23.8 (6, 3, 2, 2)
20 98.9 (11, 6, 3, 2, 2)

of the lineages from A and B, respectively. By τ we denote the time1

of divergence. One can now express the probability P(nA, nB, τ ) of2

reciprocal monophyly as3

P(nA, nB, τ ) = P[T > TA, T > TB].4

Similarly to the approach of Hudson and Coyne (2002), we5

condition on the number of lineages entering the common6

ancestral population from populations A and B. The probability7

P(nA, nB, τ ) is a function of the sample sizes nA and nB and the time8

τ of divergence, and is obtained recursively by 9

P(nA, nB, τ ) =

nA
mA=1

nB
mB=1

P(mA,mB, 0) 10

× gnA,mA,πA(τ )gnB,mB,πB(τ ) (6) 11

and, withm = mA + mB, 12

P(mA,mB, 0) =

max(mA,mB)
k=2

mA
k

m
k

 p(m, k)P(mA 13

− k + 1,mB, 0) 14

+

mB
k

m
k

 p(m, k)P(mA,mB − k + 1, 0)


(7) 15

with P(1, 1, 0) = 1, and 16

p(m, k) =
qm,m−k+1

−qm
, 2 ≤ k ≤ m, 17

is the probability of a k merger given m active ancestral lineages. 18

The coefficient
 u
v


= 0 if v > u, and gnA,mA,πA(τ ) denotes the 19

probability that mA of nA lineages pass into the common ancestral 20

population. 21

Fig. 4 reports values of the probability of monophyly P (6) 22

as a function of time τ of divergence when all populations have 23

the same Λ coalescent with same parameter value. The values of 24

P associated with a Beta-coalescent are not directly comparable 25

for different values of α since α is a timescale parameter. 26

However, Fig. 4 reveals that about four coalescent time units 27

result in approximately 80% probability of monophyly for any 28

Beta-coalescent. Values of P are directly comparable for different 29

values of ψ , and P varies quite a bit with ψ . Knowing ψ is thus 30

crucial for estimating time of divergence in a population with the 31

ψ-coalescent, since P can be high even for a short time of 32

divergence, if ψ is high. 33

∧
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1.05
1.2
1.5

0.05
0.2
0.4
0.5

1.95

Fig. 4. The probability P of monophyly as a function of time τ of divergence when
all populations have the same Λ coalescent. Different lines in each plot represent
different values of π associated with each process (see legends). Initial sample size
is nA = nB = 40.

The probability of monophyly depends strongly on values of1

ψ in the descendent populations when all populations have the2

ψ-coalescent, and only weakly on values of ψ in the common3

ancestral population (Fig. 5).4

2.3. Timescales5

Probabilities of monophyly and gi,j,π (·) are functions of time.6

The appropriate way to scale time is in units of cN generations7

(timesteps) in which cN is the probability that two lineages8

coalesce in one timestep in the discrete-timemodel (Möhle, 2000).9

If νi denotes the number of offspring of a single individual (i),10

cN = E[νi(νi − 1)]/(N − 1), if the νi are identically distributed. In11

a Fisher–Wright haploid population of constant size N , cN = 1/N .12

In the usual Moran model, cN ≈ 1/N2. For the ψ-coalescent, the13

leading term of cN is ψ2/Nγ , with 0 < γ < 2. However, to14

facilitate interpretation of the results, we scale time in units of Nγ15

for the ψ-coalescent, with 1 < γ < 2. We interpret γ to be a16

fixed parameter, and its exact value is not important, as none of the17

quantities we are concerned with are functions of γ . The timescale18

Nγ for theψ-coalescent should be compared to the one associated19

with the usual Moran model. Thus, the ψ-coalescent runs on20

a shorter timescale than the corresponding timescale associated21

with the Kingman coalescent. By way of example, t = 1 on the22

Kingman coalescent timescale corresponds to t = N2−γ on the23

ψ-coalescent timescale. Similarly, cN is proportional to N1−α
24

with 1 < α < 2 when associated with the Beta-coalescent25

(Schweinsberg, 2003). Thus, t = 1 on the corresponding Kingman26

coalescent timescale in units of N generations corresponds to t =27

N2−α on the Beta-coalescent timescale for a given value of α. Since28

α is a timescale parameter, Beta-coalescents with different values29

of α have different units of time, each proportional to Nα−1.30

To compare the Beta-coalescent to the Kingman coalescent, it31

is helpful to convert units of time into generations, so that the32

Fig. 5. The probability P as a function of ψA when all populations have the
ψ-coalescent, with nA = nB = 40, time τ = 100. Different lines represent different
values of the vector (ψB, ψAB), or for (ψA, ψB) (lower panel). See legends for values
of parameters.

timescale does not depend on the parameter α. To do this we 33

have computed probabilities of monophyly as a function of the 34

number of generations since divergence. Fig. 6 gives the probability 35

of reciprocal monophyly when the divergence time ranges from 0 36

to 6N generations, using N = 105 (Fig. 6a) and N = 104 (Fig. 6b). 37

Here we see that the probability of monophyly as a function 38

of time in generations can depend strongly on α, with smaller 39

values of α reaching high probabilities of monophyly with much 40

more recent species divergences than the Kingman coalescent 41

processeswith largerα values. The probability ofmonophyly is not 42

strictly decreasing in α, however, if the number of generations is 43

sufficiently small. This is shown by zooming in to the probabilities 44

of monophyly for a very small number of generations (Fig. 6, top 45

right panel). 46

The probability of monophyly measured in generations de- 47

pends on N more strongly for smaller values of α, which is a result 48

of the probability depending on t/Nα−1 rather than t/N (where t is 49

timemeasured in generations), as in the Kingman coalescent. Thus, 50

the shapes of the curves for the Kingman coalescent (π = 2 in 51

Fig. 6a and b) are exactly the same (ignoring the scaling of the time 52

axis) when changing from N = 105 to N = 105, but the shapes of 53

the curves change slightly for smallerα values,with the probability 54

of monophyly being slightly higher for larger N whenmeasured in 55

units ofN generations.We also see that the shapes of the curves are 56

similar with nA = nB = 4 lineages versus nA = nB = 40 lineages 57

per population, with monophyly
∧
being achieved slightly faster for 58

the smaller sample size. 59

One might be interested in knowing, for each process, the 60

effects of the coalescent parameter π on the time by which all 61

eldon
Sticky Note
10^4



B. Eldon, J.H. Degnan / Theoretical Population Biology xx (xxxx) xxx–xxx 7

Fig. 6. Probabilities of monophyly as a function of time in generations for the Beta-coalescent and Kingman coalescent (solid line). In the top row, nA = nB = 4 andN = 105 .
In the bottom row, nA = nB = 40 with N = 105 (bottom left) and N = 104 (bottom right).

Table 3
Estimates of t⋆(π) = inf{t > 0 : gi,1,π (t) > 0.999999} for different values of i, α,
and ψ .

α ψ i t⋆(α) t⋆(ψ)

1.01 0.01 5 14.55 145,000
25 15.15 148,000
50 15.31 149,000

1.05 0.05 5 14.55 5,806
25 15.13 5,952
50 15.29 5,977

1.2 0.1 5 14.54 1,452
25 15.07 1,493
50 15.21 1,502

1.5 0.2 5 14.53 363
25 14.97 376
50 15.06 380

1.9 0.5 5 14.52 59
25 14.86 62
50 14.91 63

lineages have coalesced with a ‘high’ probability. Table 3 reports1

estimates of t⋆(π) ≡ inf{t > 0 : gi,1,π (t) ≥ 0.999999}, or the2

smallest values of time t at which i lineages have all coalescedwith3

ahighprobability in a single population. The results in Table 3 show4

a much stronger effect of ψ than α on t⋆. Sample size appears to5

matter little for t⋆ for both processes. The Beta-coalescent ‘comes6

down from infinity’ (Schweinsberg, 2000b), which means that the7

number of active ancestral lineages becomes finite in finite time, if8

the process started with an infinite number of lineages. The point9

mass process does not come down from infinity, as one can check10

using Schweinsberg (2000b)’s results. Thus, t⋆(α) should approach11

a limit as sample size tends to infinity.12

Different populations may have different population sizes. If 13

a Fisher–Wright population has population size bN for some 14

constant b > 0, on a timescale of N generations
∧
, then each pair of 15

ancestral lineages coalesces with rate 1/b. In a Moran population 16

with only one parent each timestep, the rate is 1/b2 (Eldon, 2009) 17

on a timescale proportional to N2. In the presence of large families, 18

the scaling by b depends on the specifics of the model. In the 19

modified Moran model of Eldon andWakeley (2006), the constant 20

b cancels from the coalescence rate of multiple mergers (Eldon, 21

2009). Consider Schweinbergs’s (2003) model, and let cbN denote 22

the timescale in a population of size bN . As cN is proportional to 23

N1−α , 24

lim
N→∞

cbN
cN

= b1−α, b > 0; (8) 25

inwhich cbN = E

ν1,Nb


2


/(Nb−1) and the randomvariable ν1,Nb 26

denotes the number of offspring of individual 1 in a population of 27

size Nb. One can follow Schweinsberg (2003) to establish that, in a 28

large population of size bN , 29

λn,k = b1−α
n
k

 Γ (k − α)Γ (n − k + α)

Γ (n)Γ (2 − α)Γ (α)
,

1 < α < 2, b > 0,
(9) 30

when the timescale is cN . 31

Let cA and cB denote the relative population size scaling 32

constants (8) for populations A and B, respectively. Fig. 7 shows 33

the probability of monophyly as a function of time of divergence 34

for different values of cB and α (nA = nB = 40), with cA = 1 in 35

all cases. In Fig. 7, the size of population B can be taken as being 36

scaled relative to A, which has population size N . The form of the 37
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Fig. 7. Graphs of P as a function of time τ of divergence when all populations have
the same Beta-coalescent. Values of α and the population size scaling constant cB
vary as shown in the legend (as (α, cB)).

coalescence rates (9) results in the probability gi,1,α(t) being small1

for large t when cB is small, i.e., when the population size bN of2

B is large relative to the one of A. On the other hand, P increases3

quickly with time when cB is large, i.e., when the two populations4

differ significantly in size.5

2.4. Paraphyly and polyphyly6

Paraphyly occurs when the lineages from only one of the two7

descendent populations are monophyletic (Fig. 1b). Let PA ≡8

P[T > TA], in which T was the first time at which lineages from9

both A and B coalesce. The probability P∗

B of paraphyly of B with10

respect to A is11

P∗

B = P[T > TA, T ≤ TB]12

= P[T > TA] − P[T > TA, T > TB].13

Polyphyly is the event {T ≤ TA}∩{T ≤ TB} (Fig. 1c, d), which occurs14

with probability15

P⋆ = P[T ≤ TA, T ≤ TB] = 1 − PA − PB + P.16

The probabilities PA and PB can be obtained recursively analogously17

to Eqs. (6) and (7) with P replaced by PA (or PB), with boundary18

conditions19

PA(1,mB, τ ) = 1, PB(mA, 1, τ ) = 1, τ ≥ 0.20

As expected, the probability of polyphyly increaseswith sample21

size for the Beta- and ψ-coalescents if time of divergence was22

recent (results not shown). Polyphyly is most likely to occur23

when the time of divergence was recent (Fig. 8). The values of24

monophyly, paraphyly, and polyphyly associated with the Beta-25

coalescent (Fig. 8a) for different values of α must be interpreted26

in light of the timescale property of α already mentioned. When27

the value of ψ is low (Fig. 8b), monophyly becomes most likely28

for more ancient divergence times (in ψ-coalescence time units),29

compared to populations with high value of ψ (Fig. 8c).30

2.5. Clade probabilities31

Monophyly for a set of lineages can be used as evidence that32

the lineages should be considered a separate taxonomic group33

(Hudson and Coyne, 2002). Using the null hypothesis that all34

lineages are from the same population, clade probabilities have35

been used as a measure of taxonomic distinctiveness for a set36

of lineages in a population (or subpopulation) that form a clade37

(Rosenberg, 2007). Here we can compare probabilities of clades38

Fig. 8. Probabilities of monophyly (squares), paraphyly (circles), and polyphyly
(triangles) for two species as a function of time τ of divergence, and nA = nB = 40.
In (a) α = 1.05 (open symbols); α = 1.5 (closed symbols).

in single populations for multiple merger coalescents and the 39

Kingman coalescent. 40

The quantities PA and PB are clade probabilities, which are also 41

of interest in single populations—i.e., when the species divergence 42

time τ is zero. In particular, PA(i, j) with boundary condition 43

PA(1, j) = 1 is the probability that i lineages from A form a clade 44

when i + j lineages have been drawn from a single population. 45

Probabilities of clades under multiple merger models have 46

considerably different properties from clade probabilities under 47

strictly bifurcatingmodels of trees such as the Kingman coalescent 48

and Yulemodels. For example, a constraint that exists formodels of 49

binary, rooted trees is that the sum of the clade probabilities must 50

be exactly n − 2 (Allman et al., 2011), where n is the number of 51

species. Thus if Ci is a clade, we use P(Ci) to denote the probability 52

that Ci is a clade given a randomgenealogy. There are k = 2n
−n−2 53

nontrivial clades for a genealogy with n lineages, and the clade 54

probabilities must satisfy the constraint 55

k
i=1

P(Ci) = n − 2. 56

However, formultiplemergermodels, we show in Appendix C that 57

the sum of clade probabilities is strictly less than n − 2: 58

k
i=1

P(Ci) < n − 2. (10) 59

The result is due to the fact that multiple merger trees have fewer 60

clades, thus reducing the chances for many clades to occur in a 61
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Table 4
Probabilities of monophyly of lineages from group A with sample sizes from group A (rows) and group B (columns) under the null hypothesis that all lineages are from the
same unstructured population. π = 2 is the Kingman coalescent.

Lineages from A π Lineages in group B
1 2 3 4 5 6 7 8 9 10

2 2 0.3333 0.2222 0.1667 0.1333 0.1111 0.0952 0.0833 0.0741 0.0667 0.0606
2 1.5 0.3000 0.1857 0.1333 0.1035 0.0842 0.0709 0.0611 0.0536 0.0477 0.0430
2 0.1 0.3214 0.2047 0.1476 0.1137 0.0913 0.0754 0.0636 0.0544 0.0472 0.0413
3 2 0.1667 0.0833 0.0500 0.0333 0.0238 0.0179 0.0139 0.0111 0.0091 0.0076
3 1.5 0.1571 0.0714 0.0405 0.0260 0.0180 0.0132 0.0100 0.0079 0.0064 0.0052
3 0.1 0.1666 0.0798 0.0466 0.0304 0.0212 0.0156 0.0118 0.0093 0.0074 0.0060
4 2 0.1000 0.0400 0.0200 0.0114 0.0071 0.0048 0.0033 0.0024 0.0018 0.0014
4 1.5 0.1000 0.0359 0.0169 0.0092 0.0056 0.0036 0.0025 0.0018 0.0013 0.0010
4 0.1 0.1033 0.0394 0.0192 0.0108 0.0066 0.0043 0.0030 0.0021 0.0016 0.0012
5 2 0.0667 0.0222 0.0095 0.0048 0.0026 0.0016 0.0010 0.0007 0.0005 0.0003
5 1.5 0.0706 0.0209 0.0084 0.0040 0.0021 0.0013 0.0008 0.0005 0.0003 0.0002
5 0.1 0.0712 0.0224 0.0094 0.0046 0.0025 0.0015 0.0009 0.0006 0.0004 0.0003
6 2 0.0476 0.0136 0.0051 0.0023 0.0011 0.0006 0.0004 0.0002 0.0001 9.5e−05
6 1.5 0.0531 0.0134 0.0047 0.0020 0.0010 0.0005 0.0003 0.0002 0.0001 7.2e−05
6 0.1 0.0525 0.0140 0.0051 0.0022 0.0011 0.0006 0.0003 0.0002 0.0001 8.8e−05
7 2 0.0357 0.0089 0.0030 0.0012 0.0005 0.0003 0.0001 8.3e−05 5.0e−05 3.1e−05
7 1.5 0.0418 0.0092 0.0028 0.0011 0.0005 0.0002 0.0001 6.7e−05 4.0e−05 2.4e−05
7 0.1 0.0406 0.0094 0.0030 0.0012 0.0005 0.0003 0.0001 8.1e−05 4.8e−05 3.0e−05
8 2 0.0278 0.0062 0.0019 0.0007 0.0003 0.0001 6.5e−05 3.5e−05 1.9e−05 1.1e−05
8 1.5 0.0340 0.0066 0.0018 0.0006 0.0003 0.0001 5.5e−05 2.9e−05 1.6e−05 9.2e−06
8 0.1 0.0326 0.0066 0.0019 0.0006 0.0003 0.0001 6.4e−05 3.4e−05 1.9e−05 1.1e−05
9 2 0.0222 0.0044 0.0012 0.0004 0.0002 6.7e−05 3.1e−05 1.6e−05 8.2e−06 4.6e−06
9 1.5 0.0283 0.0049 0.0012 0.0004 0.0001 6.0e−05 2.7e−05 1.3e−05 6.9e−06 3.8e−06
9 0.1 0.0269 0.0048 0.0013 0.0004 0.0002 6.8e−05 3.1e−05 1.6e−05 8.2e−06 4.5e−06

10 2 0.0182 0.0033 0.0008 0.0003 9.1e−05 3.6e−05 1.6e−05 7.5e−06 3.7e−06 2.0e−06
10 1.5 0.0240 0.0038 0.0009 0.0003 8.7e−05 3.4e−05 1.4e−05 6.6e−06 3.2e−06 1.7e−06
10 0.1 0.0227 0.0037 0.0009 0.0003 9.4e−05 3.7e−05 1.6e−05 7.6e−06 3.8e−06 2.0e−06

random tree from one of these models. For example, a four-taxon1

binary tree such as (((A1, A2), B1), B2), with two lineages from A2

and two from B, has two clades, one with two lineages from A,3

and one clade with three lineages (A1, A2, and B1). However, if a4

3-merger occurs on a 4-taxon tree, such as for the tree ((A1, A2,5

B1), B2), then there is only one non-trivial clade, which in this case6

has three lineages. The inequality (10) holds more generally than7

just for theΛ-coalescents considered in this paper. In particular, it8

just needs to be assumed that at least one multifurcating tree has9

positive probability.10

As another example, under a strictly bifurcating model, a tree11

must have at least one cherry, a clade with exactly two lineages12

(McKenzie and Steel, 2000). Consequently, for a process that13

produces a strictly bifurcating tree with n
∧
descendants labeled14

A1, . . . , An, clade probabilities must satisfy the constraint15

n−1
i=1

n
j=i+1

P[(Ai, Aj) is a clade] ≥ 1. (11)16

The sum in (11) can be greater than 1.0 because not all clades17

are mutually exclusive if n > 3. Under multiple merger models,18

however, it is possible for the sum of the probabilities of cherries19

to be less than 1 if multiple mergers are sufficiently likely.20

Probabilities of nA lineages forming a clade out of nA + nB21

total lineages are given in Table 4 under the point-mass coalescent22

(with ψ = 0.1), Beta-coalescent with α = 1.5, and the23

Kingman coalescent. Values for the Kingman coalescent are also24

reported in Table 1 of Rosenberg (2007). Tables analogous to25

those in Rosenberg (2007) can be constructed for different values26

of ψ and α to determine significance levels for observed levels27

of monophyly and reciprocal monophyly. The probabilities listed28

in the table can be interpreted as p-values for having observed29

monophyly of the a lineages sampled from species A under the30

null hypothesis of all lineages being from the samepopulation. This31

p-value gives a test of the taxonomic distinctiveness of A.32

From Table 4, it appears that for small numbers of lineages in33

A, there is stronger evidence against the null hypothesis of a single34

population under typical multiple merger coalescents than under 35

the Kingman coalescent. This trend strengthens if the number 36

of lineages in A is kept small and the total number of lineages 37

increases. For example, with a total of 12 lineages sampled, two 38

of which are from A, the probability that the two from A are 39

monophyletic is 0.06 under the Kingman coalescent and about 0.04 40

under the two multiple merger coalescent models tried. 41

The intuition behind these results is that multiple merger 42

coalescents will tend to put increased probability on larger clades, 43

so observing small clades can be better evidence (compared to a 44

Kingman coalescentmodel) against the hypothesis that all lineages 45

are from a single population. The p-value for small clades also will 46

tend to decrease as ψ increases and as α decreases, since larger ψ 47

and smaller α result in increased probability of multiple mergers. 48

For example, with 12 lineages sampled, two of which are sampled 49

from A, the probability of monophyly for the A lineages decreases 50

from 0.041 to 0.026 as ψ changes from 0.1 to 0.2. 51

The flip side of this intuition is thatwhen the number of lineages 52

sampled from population A is relatively large compared to the 53

number of lineages sampled from B, the probability of monophyly 54

of the A lineages can be larger under a multiple merger coalescent 55

than under the Kingman coalescent (e.g., Table 4 with 10 lineages 56

from A and 3 or less not from A). 57

A similar comparison between different coalescent models can 58

be made for probabilities of reciprocal monophyly for two groups 59

under the null hypothesis of a single unstructured population. 60

In most examples tried, as long as the number of lineages in 61

population B is greater than 1, then the probability of reciprocal 62

monophyly is slightly lower under multiple merger models than 63

under a Kingman model (Table 5; see also Table 6 of Rosenberg 64

(2007)), suggesting that an observation of reciprocal monophyly 65

under a multiple merger model is often slightly stronger evidence 66

against the null hypothesis of a single population than is obtained 67

under the Kingman coalescent. Consistent with this observation, 68

as the parameter changes to make multiple mergers more likely 69

(i.e., smallerα or largerψ), the probability of reciprocalmonophyly 70

decreases, can be computed using P(mA,mB, 0) (Table 6). 71
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Table 5
Probabilities of reciprocal monophyly with sample sizes from group A (rows) and not A (columns) under the null hypothesis that all lineages are from the same unstructured
population.

Lineages from A π Lineages from B
1 2 3 4 5 6 7 8 9 10

2 2 0.3333 0.1111 0.0500 0.0267 0.0159 0.0102 0.0069 0.0049 0.0036 0.0028
2 1.5 0.3000 0.0857 0.0381 0.0208 0.013 0.0085 0.0060 0.0044 0.0034 0.0026
2 0.1 0.3214 0.0996 0.0448 0.0242 0.0146 0.0095 0.0066 0.0047 0.0035 0.0027
3 2 0.1667 0.0500 0.0200 0.0095 0.0051 0.0030 0.0019 0.0012 0.0008 0.0006
3 1.5 0.1571 0.0381 0.0144 0.0068 0.0037 0.0022 0.0014 0.0009 0.0007 0.0005
3 0.1 0.1666 0.0448 0.0176 0.0083 0.0045 0.0026 0.0016 0.0011 0.0007 0.0005
4 2 0.1000 0.0267 0.0095 0.0041 0.0020 0.0011 0.0006 0.0004 0.0002 0.0002
4 1.5 0.1000 0.0208 0.0068 0.0028 0.0014 0.0007 0.0004 0.0003 0.0002 0.0001
4 0.1 0.1033 0.024 0.0083 0.0035 0.0017 0.0009 0.0005 0.0003 0.0002 0.0001
5 2 0.0667 0.0159 0.0051 0.0020 0.0009 0.0004 0.0002 0.0001 7.7e−05 4.8e−05
5 1.5 0.0706 0.0128 0.0037 0.0014 0.0006 0.0003 0.0002 8.7e−05 5.2e−05 3.3e−05
5 0.1 0.0712 0.0146 0.0045 0.0017 0.0008 0.0004 0.0002 0.0001 6.5e−05 4.1e−5
6 2 0.0476 0.0102 0.0030 0.0011 0.0004 0.0002 9.7e−05 5.1e−05 2.9e−05 1.7e−05
6 1.5 0.0531 0.0085 0.0022 0.0007 0.0003 0.0001 6.3e−05 3.3e−05 1.9e−05 1.1e−05
6 0.1 0.0525 0.0095 0.0026 0.0009 0.0004 0.0002 8.2e−05 4.3e−05 2.4e−05 1.4e−05
7 2 0.0357 0.0069 0.0019 0.0006 0.0002 9.7e−05 4.5e−05 2.2e−05 1.2e−05 6.4e−06
7 1.5 0.0418 0.0060 0.0014 0.0004 0.0002 6.3e−05 2.9e−05 1.4e−05 7.4e−06 4.1e−06
7 0.1 0.0406 0.0066 0.0016 0.0005 0.0002 8.2e−05 3.7e−05 1.8e−05 9.7e−06 5.3e−06
8 2 0.0278 0.0049 0.0012 0.0004 0.0001 5.1e−05 2.2e−05 1.0e−05 5.1e−06 2.7e−06
8 1.5 0.0340 0.0044 0.0009 0.0002 8.7e−05 3.3e−05 1.4e−05 6.5e−06 3.2e−06 1.7e−06
8 0.1 0.0326 0.0047 0.0011 0.0003 0.0001 4.3e−05 1.8e−05 8.6e−06 4.2e−06 2.2e−06
9 2 0.0222 0.0036 0.0008 0.0002 7.7e−05 2.9e−05 1.2e−05 5.1e−06 2.4e−06 1.2e−06
9 1.5 0.0283 0.0034 0.0007 0.0002 5.2e−05 1.9e−05 7.4e−06 3.2e−06 1.5e−06 7.5e−07
9 0.1 0.0269 0.0035 0.0007 0.0002 6.5e−05 9.6e−06 1.1e−05 4.2e−06 2.0e−06 9.8e−07

10 2 0.0182 0.0028 0.0006 0.0002 4.8e−05 1.7e−05 6.4e−06 2.7e−06 1.2e−06 5.7e−07
10 1.5 0.0240 0.0026 0.0005 0.0001 3.3e−05 1.1e−05 4.1e−06 1.7e−06 7.5e−07 3.5e−07
10 0.1 0.0227 0.0027 0.0005 0.0001 4.1e−05 1.4e−05 5.3e−06 2.2e−06 9.8e−07 4.6e−07

Table 6
Values of P(m,m) (7) for different values of αAB , ψAB , andm = mA = mB .

α ψ m P(α) P(ψ)

1.01 0.01 4 0.00163 0.00403
20 9.756 · 10−14 3.632 · 10−13

1.05 0.05 4 0.00172 0.00380
20 1.056 · 10−13 3.286 · 10−13

1.2 0.1 4 0.00207 0.00353
20 1.384 · 10−13 2.881 · 10−13

1.5 0.2 4 0.00281 0.00148
20 2.151 · 10−13 2.175 · 10−13

1.9 0.5 4 0.00382 0.00148
20 3.377 · 10−13 8.229 · 10−14

In addition to considering probabilities of monophyly for a1

single group and for two groups, formulas are available for2

computing probabilities that k groups are each monophyletic3

when there are more than k groups within a single population.4

In particular, supposing that the groups are A1, A2, . . . , As with5

m1,m2, . . . ,ms lineages, respectively. The probability that some6

∧
subsets, Ai1 , Ai2 , . . . , Aik , k ≤ s, are each monophyletic can be7

computed analytically under the Kingman coalescent (Zhu et al.,8

2011). The framework used in this paper could be extended to9

compute similar quantities under multiple merger coalescents by10

extending the recursion (7). In particular, the probability that the11

k groups are each monophyletic is12

P(mi1 , . . . ,mik , 0) =

max(mi1 ,...,mik )
k=2

k
j=1


mij
k


m

k

13

×

p(m, k)P(m1, . . . ,mj − k + 1, . . . ,ms, 0)


14

where m =
s

j=1 mj. The boundary condition for the recursion is15

P(v, 0) = 1 where v is a list of s 1s and 0s specifying whether a16

group is required to be monophyletic:17

vj =


1 j ∈ {i1, . . . , ik}
0 otherwise.18

In principle, probabilities of monophyly for more than two groups 19

when there has beenmultiple species divergences or a polytomy at 20

the species level could also be developed by similarly generalizing 21

Eq. (6). 22

3. Discussion 23

Monophyly, paraphyly, and polyphyly of ancestral lineages are 24

important concepts in molecular ecology and phylogeography 25

(Neigel and Avise, 1986; Nee et al., 1996; Avise, 1989; Palumbi 26

et al., 2001). Wakeley and Hey (1997) infer population histories of 27

the ancestral and the two descendent populations using coalescent 28

methods. Quantifying probabilities of monophyly, paraphyly, and 29

polyphyly under various demographic scenarios is therefore 30

helpful in understanding evolutionary histories of populations, 31

both ancestral and derived. The present focus is on ancestral 32

lineages in an isolation model of two species, in which the 33

coalescent processes admit multiple mergers of ancestral lineages. 34

Probabilities ofmonophyly, paraphyly, and polyphyly, are com- 35

puted, using recursion, in amodel of two species. Rosenberg (2003) 36

obtaines closed-form expressions for the three probabilities in 37

question, when the coalescent process is the Kingman coalescent. 38

The multiple-merger nature of the coalescent processes presently 39

considered makes obtaining closed-form expressions an arduous 40

task, and limits exact computations to modest sample sizes. How- 41

ever, important insights can still be obtained. 42

3.1. Multiple merger coalescent processes 43

Multiple merger coalescent processes (Donnelly and Kurtz, 44

1999; Pitman, 1999; Schweinsberg, 2000a; Möhle and Sagitov, 45

2001) arise from population models in which individuals have 46

a non-negligible propensity for having very many offspring 47

(Schweinsberg, 2003; Eldon and Wakeley, 2006; Sargsyan and 48

Wakeley, 2008). The question of which large offspring number 49

model applies to which population remains, however, very much 50

open. Resolving this question will require detailed knowledge of 51
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a b

c

Fig. 9. Effects of (a) monophyly, (b) paraphyly, and (c) polyphyly on observed genetic variation in sequences drawn from populations A and B. Mutations are denoted by
arrows (→). In (a), mutations (i) and (ii) are polymorphic in populations A and B, respectively. In (b), mutation (i) is polymorphic in A, while mutation (ii) is polymorphic in
A but fixed in B. In (c), mutation (i) is polymorphic in (a), while mutation (ii) is polymorphic in both A and B.

the biology of the organism in question, in addition to comparison1

of multi-loci genetic data to different models. The present focus2

is on two special cases (Schweinsberg, 2003; Eldon and Wakeley,3

2006) of a Λ coalescent (Pitman, 1999) that have been derived4

from specific populationmodels. Both processes introduce an extra5

parameter, which can be estimated from data (Birkner and Blath,6

2008; Eldon, 2011). As Table 2 shows, the two processes are quite7

different, with implications for inference.8

3.2. Monophyly and units of time9

In many cases, one may wish to compare populations with10

different coalescent processes, or at least with different parameter11

values of the same coalescent process. Different Beta-coalescents12

run on different timescales, as time scales proportionally to Nα−1
13

(Schweinsberg, 2003). By way of example, let αAB < min (αA, αB).14

If the time of divergence is taken in units according to αAB, then the15

coalescent processes in the descendent populations are running on16

longer timescales, leading to low frequencies ofmonophyly. On the17

other hand, if αA < αB, say, and one scales the divergence time18

according to αB, then all the A lineages will have coalesced before19

time of divergence. In that case, drawing more sequences from the20

A population will add little. The interpretation of Fig. 4 must be21

done with the timescale property of α in mind.22

In contrast, ψ is not a timescale parameter. The probabilities23

of monophyly, paraphyly, and polyphyly for different values of ψ24

can therefore be directly compared. The probability of monophyly25

increases quickly with values of ψ in the descendent populations26

when all populations have the ψ-coalescent. The probability of27

monophyly is almost invariant to changes in ψ in the ancestral28

population. Thus, the effects of coalescent parameters on the29

probability ofmonophyly depends on the coalescent process, and if30

the population is ancestral or derived. Obtaining estimates ofψ for31

the derived populations will therefore be important for accurately32

computing probabilities of monophyly.33

Distinguishing between the Kingman and Λ coalescents will34

be important for determining the unit of time of divergence. The35

timescales of both Beta- and ψ-coalescents are shorter than the36

usual Fisher–Wright timescale. As will probably frequently be the37

case, one may wish to apply computations for two species to38

data from closely related taxa, which will then most likely have39

very similar coalescent processes. However, should one wish to40

apply these computations to data from populations with very41

different coalescent processes, then the issue of the unit of time42

of divergence becomes central to the inference.43

3.3. Paraphyly and polyphyly 44

Genetic and phenotypic datasets sometimes give different 45

results in terms of monophyly or paraphyly of groups of taxa. 46

One example is the evolutionary relationship of lampreys and 47

hagfish to other chordates (Stock and Whitt, 1992; Forey and 48

Janvier, 1993; Meyer, 1996). The effect of coalescent parameters 49

on the probability of paraphyly of ancestral lineages depends 50

on the coalescent process (Fig. 8). If monophyly is repeatedly 51

observed among two populations, they will have been separated 52

by at least two coalescence-time units, if all populations have the 53

Beta-coalescent. On the other hand, if polyphyly is consistently 54

observed, then the time of divergence was quite recent. Similar 55

conclusions hold for paraphyly. 56

In the context of inference, it is helpful to keep in mind the 57

effects of paraphyly, polyphyly, and monophyly on patterns of 58

genetic diversity observed in the ancestral populations (Fig. 9). If 59

the time of divergence was very recent, then polyphyly will be 60

frequent, and many sites will be either fixed or polymorphic in 61

both populations (Fig. 9c). If the time of divergence was more 62

ancestral, then any site experiencing mutation more ancestral 63

in time than the most recent common ancestor of the derived 64

monophyletic population may be polymorphic in the derived 65

population displaying paraphyly (Fig. 9b). In ψ-populations, most 66

sites will be either fixed or polymorphic in both populations if the 67

time of divergencewas recent. Even if time of divergencewasmore 68

ancient (in ψ-coalescence units) polyphyly may still frequently 69

occur if ψ is low. 70

3.4. Conclusions 71

Probabilities of monophyly, paraphyly, and polyphyly for two 72

species are computed by recursion for populations with coalescent 73

processes that allow multiple mergers of ancestral lineages. 74

The effects of coalescent parameters on these probabilities 75

depend on the coalescent process and the population. The 76

timescale of the time of divergence becomes a key issue when 77

different populations have different coalescent processes running 78

on different timescales. By estimating coalescent parameters, 79

one should be able to distinguish between recent and ancient 80

divergence times, at least when the timescale is a function of the 81

same coalescent parameters. 82

Our calculations have shown that monophyly for a subset 83

of lineages sampled from one panmictic population can be less 84

likely under the α and ψ coalescent processes than under the 85
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Kingman coalescent. However, even for quite recent divergences,1

reciprocal monophyly is likely to be achieved in fewer generations2

under these multiple merger coalescent processes than under3

the Kingman coalescent when there has been some divergence4

without subsequent gene flow. Consequently, the amount of5

incomplete lineage sorting Ů meaning lineages failing to coalesce6

more recently than the species divergence (Degnan and Rosenberg,7

2009) Ů is likely to be reduced. This suggests that estimates of8

population divergence times measured in years or generations9

would typically be shorter under amultiplemerger coalescent than10

under a Kingman coalescent given the same observed levels of11

monophyly.12
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Appendix23

A.1. The rate matrix of aΛ coalescent24

Let (Ar(t); t ≥ 0) denote the gene genealogical process in a25

single population starting from Ar(0) = r , and
∧
stopping at the time26

inf{t ≥ 0 : Ar(t) = 1}. The pure-death process Ar(t) counts the27

number of active ancestral lineages, and therefore has state space28

[r] ≡ {1, 2, . . . , r}. The infinitesimal generator Q = (qi,j) of Ar(t)29

is30

qi,j =




i
i − j + 1

 1

0
xi−j+1(1 − x)j−1x−2Λ(dx)

if 1 ≤ j < i
−qi,1 − · · · − qi,i−1 if j = i
0 otherwise

(12)31

in whichΛ is a finite measure on the unit interval (Pitman, 1999).32

The rate atwhich k active lineages out of i coalesce, the coalescence33

rate, will be denoted by λi,k = qi,i−k+1, 2 ≤ k ≤ i.34

A.2. Enumerating the paths of Ar(t)35

One way to to compute gi,j,π (t) is by enumerating all the paths36

of Ar(t). In a Kingman coalescent, Ar(t) visits every state from r to37

1. In aΛ coalescent, however, Ar(t)may go directly from r to 1 in a38

single merger. Indeed, the total number of paths Ar(t) can take in39

going from i to j < i is 2i−j−1 (the number of subsets of the integers40

from j to i that include i and j). Let A(i, j) denote the set of all paths41

Ar(t) takes in going from i to j ≤ i. Let a = (a1, . . . , aℓ) ∈ A(i, j)42

denote an element in A(i, j), where i = a1 and ℓ denotes the43

number of coalescence events in path a. Let p(a) be the probability44

of a, given by45

p(a) =
qi,a2qa2,a3 · · · qaℓ,j
(−1)ℓqiqn2 · · · qaℓ

(13)46

since the probability of a transition of Ar(t) from i to j <47

i is qi,j/ (−qi). Let gi,j,π (t) denote the probability gi,j(t) when48

associated with a Λ coalescent with parameter π . If associated49

with the Kingman coalescent, simply write gi,j(t). Let T (a) ≡50

Tn1 + · · · + Tnℓ denote the sum of independent exponentials Tk51

with rate −qk. Each Tk denotes the time during which there are 52

k active ancestral lineages. By gi,j,π (t, a) denote the probability 53

gi,j,π (t) conditional on a, given by 54

gi,j,π (t, a) =

P[T (a) ≤ t, T (a)+ Tj > t] if 2 ≤ j < i
P[T (a) ≤ t] if j = 1
eqit if j = i.

(14) 55

The probability gi,j,π (t) is now given by 56

gi,j,π (t) =


a∈A(i,j)

gi,j,π (t, a)p(a). (15) 57

A.3. The spectral decomposition of the rate matrix 58

Under a Λ coalescent, the rate matrix (12) is triangular. The 59

left and right eigenvectors are therefore obtained recursively. Let 60

ℓ(k) =


ℓ
(k)
1 , . . . , ℓ

(k)
n


and r (k) =


r (k)1 , . . . , r (k)n


denote the left 61

and right eigenvectors, respectively, corresponding to eigenvalue 62

λk = qk for k ≥ 1 with λ1 = 0. Then ℓ(1)j = δ1j, ℓ
(k)
j = 0 if j > k, 63

ℓ
(k)
k = 1, and 64

ℓ
(k)
j =

qj+1,jℓ
(k)
j+1 + · · · + qk,jℓ

(k)
k

qk − qj
, 1 ≤ j < k. (16) 65

For the right eigenvectors we have r (1)j = 1, r (k)k = 1, r (k)j = 0 if 66

j < k, and 67

r (k)j =
qj,kr

(k)
k + · · · + qj,j−1r

(k)
j−1

qk − qj
, 1 < k < j ≤ n. (17) 68

One confirms that, for sample size two, ℓ(1) = (1, 0), ℓ(2) = 69

(−1, 1), r (1) = (1, 1), r (2) = (0, 1), yielding 70

P[A2(t) = 1] = 1 − P[A2(t) = 2] = 1 − eq2t . 71

The probability gi,j(t) can now be computed as 72

gi,j(t) =

i
k=j

etqk r (k)i ℓ
(k)
j , 1 ≤ j ≤ i. (18) 73

If R denotes a matrix whose columns are the right eigenvectors 74

of Q , D is a diagonal matrix whose entries are all zero except the 75

diagonal which contains the eigenvalues of Q , and L = R−1 whose 76

rows contain the left eigenvectors of Q , then Q = RDL. 77

A.4. Sum of clade probabilities 78

Here we show that under a multiple merger coalescent model 79

for rooted gene trees, the sum of the clade probabilities is less than 80

n− 2. The approach is similar to that used for binary trees (Allman 81

et al., 2011). We use Ci to denote an arbitrary clade on n taxa 82

(i.e., nontrivial subset of the taxa), and Tj to denote a rooted tree 83

which can be either binary or nonbinary.We note that P(Ci|Tj) = 1 84

if clade Ci is a clade on tree Tj; otherwise, P(Ci|Tj) = 0. Thus 85
i P(Ci|Tj) counts the number of clades on tree Tj. Thus, 86

i

P(Ci) =


i


Tj

P(Ci|Tj)P(Tj) 87

=


Tj

P(Tj)


i

P(Ci|Tj) 88

=


Tj binary

P(Tj)


i

P(Ci|Tj) 89

+


Tj nonbinary

P(Tj)


i

P(Ci|Tj) 90

<


Tj binary

(n − 2)P(Tj)+


Tj nonbinary

(n − 2)P(Tj) 91

= n − 2 92
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where the inequality is due to nonbinary trees having fewer than1

n − 2 clades.2

A.5. Sum of coalescence rates3

The sum λb ≡ λb,2 + · · · + λb,b of the coalescence rates λb,k4

associated with the Beta-coalescent and given by Eq. (1) increases5

with α for any b ≥ 3, as we now show.6

At first, time is measured in coalescent units, i.e. units of Nα−1
7

generations. It is straightforward to show that λb increases with α8

for b = 3, 4. Assume now that λb increases with α for some b. We9

start with the representation10

λb =

 1

0


1 − (1 − x)b − bx(1 − x)b−1 x−2Λ(dx) (19)11

in which12

Λ(dx) = (B(2 − α, α))−1 x1−α(1 − x)α−1dx13

and B(v,w) = Γ (v)Γ (w)/Γ (v + w) denotes the beta function.14

By rewriting the integrand in Eq. (19) for b + 1 one obtains15

1 − (1 − x)b+1
− (1 + b)x(1 − x)b16

= 1 − (1 − x)b(1 − x)− x(1 − x)b − bx(1 − x)b17

= 1 − (1 − x)b − bx(1 − x)b18

= 1 − (1 − x)b − bx(1 − x)b−1
+ bx2(1 − x)b−1.19

The representation (19) now gives20

λb+1 = λb + b
 1

0
(1 − x)b−1Λ(dx).21

The properties of the beta and gamma functions finally yield22

b
 1

0
(1 − x)b−1Λ(dx) = (b − 2 + α)(b − 3 + α) · · ·α23

and which is clearly increasing in α.24

Although the expected waiting time E[Tb] = 1/λb until the25

next coalescence with time measured in coalescent units, 1/λb,26

is decreasing in α, E[Tb] with time measured in generations is27

increasing in α. The expected waiting time in generations is28

Nα−1/λb. We therefore wish to show that λbN1−α is decreasing in29

α. This is straightforward to verify for b = 3, and we use induction30

for b > 3. To check that λb+1N1−α is decreasing in α if λbN1−α is31

decreasing in α, we let32

fb(α) := (b − 2 + α)(b − 3 + α) · · ·α =

b−2
j=0

(α + j).33

It is sufficient to show that fb(α)N1−α is decreasing in α. One34

obtains35

f ′

b(α) =

b−2
i=0

b−2
j=0
j≠i

(α + j), and36

f ′

b(α)

fb(α)
=

b−2
j=0

1
α + j

<

b−1
j=1

1
j
< 1 + log(b − 1).37

We can check when38

d
dα

fb(α)N1−α
= f ′

b(α)N
1−α

− fb(α)N1−α log(N)39

is less than 0 to find that λbN1−α is decreasing in α when40

N > exp


b−2
j=0

1
α + j


,41

which can be seen to be satisfied when N > e · (b − 1). Since b is42

the number of lineages that can merge, the result therefore holds43

as long as the sample size is not a large fraction of the population44

size N .45
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