Theoretical investigation of the performance of an Alpha Stirling engine for low temperature applications # Benedikt HOEGEL^{a,*}, Dirk PONS^b, Michael GSCHWENDTNER^c, Alan TUCKER^d, Mathieu SELLIER^e ^aUniversity of Canterbury, Private Bag 4800, 8041 Christchurch, New Zealand, benedikt.hoegel@pg.canterbury.ac.nz ^bUniversity of Canterbury, dirk.pons@canterbury.ac.nz ^cTS-dot Engineering Limited, michael.gschwendtner@ts-dot-engineering.com ^dUniversity of Canterbury, alan.tucker@canterbury.ac.nz ^eUniversity of Canterbury, He > H2) which allows for higher frequency and thus more power, and partly due to the thermal properties of the different gases. At these low temperature differences, the heat transfer to and from the working fluid has a much smaller driving force than at higher temperatures as e.g. in fossil fired SEs. Therefore the achievable frequency is much lower than at high temperature differences. This has also an impact on the preferable phase angle. Iwabuchi et al. [7] showed experimentally that the heat transfer between the heat exchanger and the working gas in reciprocating flow improves when the phase angle between two opposed pistons is changed from 90 degrees to 180 degrees, so that the complete gas volume from one piston is swept to the other. In the case discussed here the 180 degree phase difference corresponds to a phase angle of zero degrees, as the backside of the piston is used as compression piston (see Figure 2). Depending on the used working fluid, the preferred phase angle lies in between 30 and 45 degrees which correspond to a 12, 10 or 8 cylinder engine in the case of a Siemens arrangement (the phase angle of an Alpha multi-cylinder engine can be calculated by: $\alpha_{piston} = 360^{\circ}/n$, with n being the number of cylinders). These small phase angles lead to small volumetric changes as the pistons move very close to parallel motion, but the enhanced heat exchange with heat source and sink makes them the preferable choice. The West number (W_n) as a means to evaluate the power output of a SE relates the pressure level, the frequency, the volumetric change, and the temperature levels [8]: $$W_{n} = P / (p f V (T_{hot}\text{-}T_{cold}) / (T_{hot}\text{+}T_{cold}))$$ Typical values range from 0.2 to 0.25. Not considering the mechanical efficiency, at maximum power, the simulation gives values between 0.2 and 0.24 depending on the working fluid, which prove to be within the predicted range even though the temperature difference is very low. In the considered range the efficiency drops as the frequency rises. The higher the frequency the higher the temperature difference between the working gas and the heat exchangers and thus the smaller the temperature difference in the working gas and so the efficiency. As the optimisation of the heat exchanger components was done in order to achieve the highest possible power output, the efficiencies could be improved at the expense of power density. At the maximum power point the efficiency is independent of the working gas around 8%, which is 30% of the Carnot efficiency. Fig. 3 Power and efficiency for Hydrogen (a,b), Helium (c,d), and Nitrogen (e,f) at T_{hot} =150°C and p_{mean} = 5 MPa ## Brake power reduction as a result of the piston arrangement Low temperature differences between heat source and sink in Stirling engines result in an unfavourable ratio of compression work to expansion work. Figure 4 shows this relation clearly using pV-plots for the expansion, compression, and total gas volume for 450 K (~ 180°C) heat source and 300 K (~ 30°C) sink temperature. It can be seen that a large portion of the expansion work is consumed for compression. The net work (total) is largely diminished and the resulting pV-plot very narrow. Fig. 4 Pressure - volume variations for the expansion and compression space and the total gas volume In a double-acting Alpha arrangement two variable gas spaces are combined on the two sides of a piston. These can be a compression and an expansion space in the case of the Siemens arrangement or two gas spaces of the same kind in the case of the Franchot arrangement (expansion – expansion; compression – compression). Figure 5 shows the non-dimensional power for each piston in a four cylinder engine. For each of the two different arrangements the power is given over one crankshaft revolution. In both cases the net indicated power of all four pistons (P_{ABCD}) is identical, which is not the case for the individual pistons. In the case of the Siemens arrangement (a) each piston shows the same characteristic. The combination of compression and expansion on one single piston leads to smaller power amplitudes and thus loads on the piston rods as parts of the power is directly transferred between the two gas cycles. In the case of the Franchot arrangement (b) two pistons supply the crankshaft with power (A, D) and two pistons consume power (B, C) most of the time. This results in larger power amplitudes and loads on the crankshaft as the generated power has to be transferred from the expansion pistons to the crankshaft first and then back to the compression pistons. Fig. 5 Non dimensional power (P*) Siemens (a) and Franchot (b) arrangement The magnitude of the load transferred from the pistons to the crankshaft and back has a direct influence on the mechanical efficiency of the engine. Applying the above explained analysis of the mechanical efficiency on the two arrangements, the benefits of internal balancing of expansion and compression forces can be seen clearly. Figure 6 shows the overall mechanical efficiency as a function of the efficiency of the crankshaft mechanism. As expected the overall mechanical efficiency drops as the efficiency of the crank mechanism drops. A less efficient crank mechanism proves to be less detrimental in the case of the Siemens arrangement. But even at high mechanism efficiencies of for example 0.95 the Siemens arrangement provides 18% more power or mechanical efficiency than the Franchot arrangement, a notable difference. Fig. 6 Overall mechanical efficiency versus crankshaft efficiency The type of compounding also has an influence on the pressure difference between the gas spaces separated by the piston seal. A larger amplitude in pressure difference leads to increased leakage into the adjacent gas cycle. Even though there is no net loss of the working gas as the direction of the pressure difference changes there is a loss in power. Figure 7 shows the pressure difference acting on one piston for each of the two arrangements. For the Franchot arrangement the amplitude of this difference is almost 30% higher and leakage increases accordingly. For an identical piston diameter this pressure difference is also directly proportional to the force on the piston rod and the crankshaft. Although the indicated power is identical and both arrangements effectively reduce the engine size by using the double acting principle the Siemens arrangement shows a number of advantages. In addition to the above stated, the reduced load on the crankshaft has additional benefits. Having to sustain less stress, the piston rods can be made from less or lighter material. This reduction of mass reduces the inertial forces of the crank and thus side forces and piston ring friction (for slider crank assemblies). Reduced load on the bearings and reciprocating seals also increase longevity of the engine. A smaller rod diameter also decreases leakage to and from the crankcase as the sealed gap becomes smaller and the power output is increased. Fig. 7 Effective pressure oscillation for the Siemens and the Franchot arrangement over one cycle So far the mechanical implications were discussed only for four cylinder engines. It could be shown that the combination of a compression space and an expansion space on one piston is favourable in terms of mechanical efficiency, seal leakage, and internal loads. The thermodynamic optimisation with Sage implies that phase angles between pistons of 30 – 45 degrees are favourable which correspond to piston numbers between 8 and 12 in the case of interconnected cylinders. In Figure 8 the above made analysis is expanded to higher piston numbers for the better balanced Siemens arrangement. The higher the number of interconnected pistons the higher the overall mechanical efficiency as the gas forces are balanced even better (Figure 8 (a)). The amplitude of the pressure difference on the piston seal decreases with the number of pistons as the pressure amplitude in each gas cycle decreases (Figure 8 (b)). Fig. 8 Mechanical efficiency and effective pressure for different cylinder numbers in a Siemens arrangement ### 4. Conclusion The results of the two different analyses to optimise the indicated power as well as the mechanical efficiency both indicate favourable working conditions in a similar region, thus no compromise has to be found to reach maximum performance, a well appreciated fact when dealing with low enthalpy heat sources. The simulation shows the possibility to reach high power outputs from Alpha Stirling engines operating at low temperature differentials if the operation conditions (phase angle, frequency, working fluid) are chosen appropriately and if the mechanical set-up is designed aptly. As discussed above the Siemens configuration is the superior double-acting set-up for a number of reasons. ## Acknowledgements The authors acknowledge the support received from Mighty River Power to carry out the research reported in this paper. ## References - [1] Clifford M. Hargreaves. The Philips Stirling Engine. Elsevier, 1991. - [2] Graham Walker. Stirling Engines. Clarendon Press, 1980. - [3] Arne Hoeg, Tor-Martin Tveit, and Trond-Atle Asphjell. The development of a double-acting Stirling lab engine for low temperature heat utilisation. In ISEC2009 The 14th International Stirling Engine Conference, Groningen, the Netherlands, 2009. - [4] Gedeon Associates, 16922 South Canaan Rd Athens, OH 45701 U.S.A., http://www.sageofathens.com/ - [5] Douglas C. Montgomery. Design and Analysis of Experiments. John Wiley and Sons, Inc., 2001. - [6] J.R. Senft. Mechanical Efficiency of Heat Engines. Cambridge University Press, 2007. - [7] M. Iwabuchi and M. Kanzaka. Experimental investigation into heat transfer under the periodically reversing flow condition in heat tube. In Stirling engines Progress towards reality, pages 77–85. I Mech E, Mechanical engineering publications, 1982. - [8] C.D. West. Principles and Applications of Stirling Engines. Van Nostrand Reinhold Company, 1986.