

Cardiovascular Modelling and Identification in Septic Shock – Experimental validation

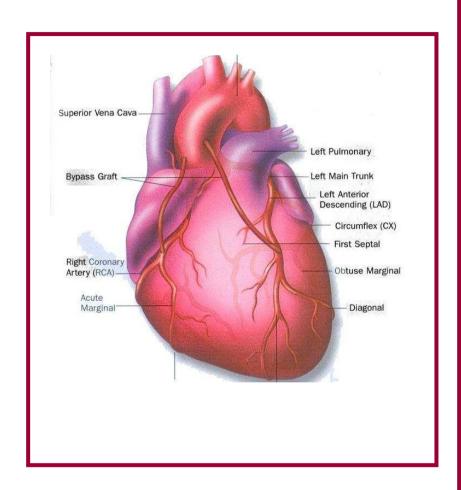
17th IFAC World Congress 2008

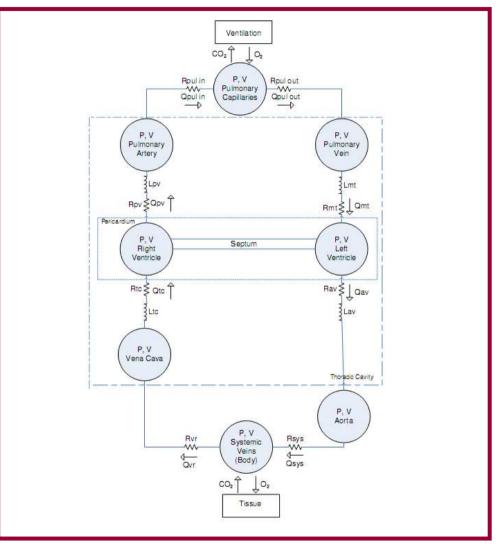
T. Desaive¹, B Lambermont¹, A. Ghuysen¹, P. Kolh¹, P. Dauby¹, C. E. Hann², C. Starfinger², J. G. Chase², and G. M. Shaw³

¹Hemodynamics Research Laboratory, University of Liège, Belgium ²Department of Mechanical Engineering, University of Canterbury, Christchurch, New Zealand ³Department of Intensive Care, Christchurch Hospital, Christchurch, New Zealand

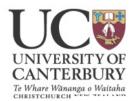
Diagnosis and Treatment

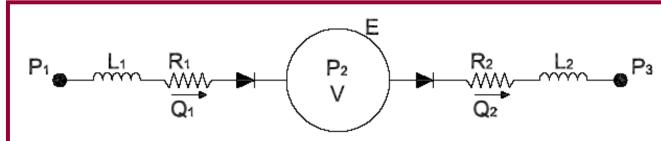
- **Problem**: Cardiac disturbances difficult to diagnose and treat
 - − Limited data
 → experience and intuition (mental models)
 - Reflex actions
- Solution: Minimal Model + Patient-Specific Parameter ID
 - Interactions of <u>simple</u> models to create <u>complex</u> dynamics
 - Primary parameters
 - Identification must use common ICU measurements
 - E.g. increased resistance in pulmonary artery → pulmonary embolism,
 atherosclerotic heart disease
- However: Identification for diagnosis requires fast parameter ID
 - Must occur in "clinical real-time"
 - Limits model and method complexity (e.g. parameter numbers, non-linearities, ...)

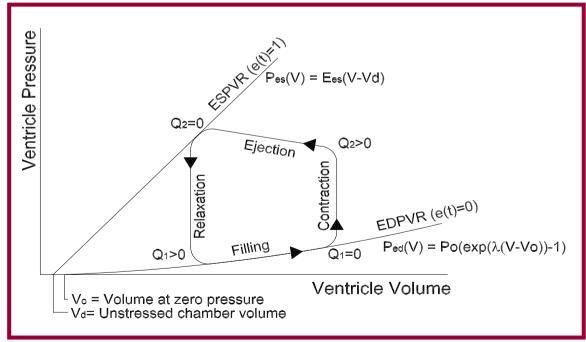




Heart Model







D.E.'s and PV diagram

Open on pressure, close on flow valve law

$$\dot{V} = Q_{1} - Q_{2}$$

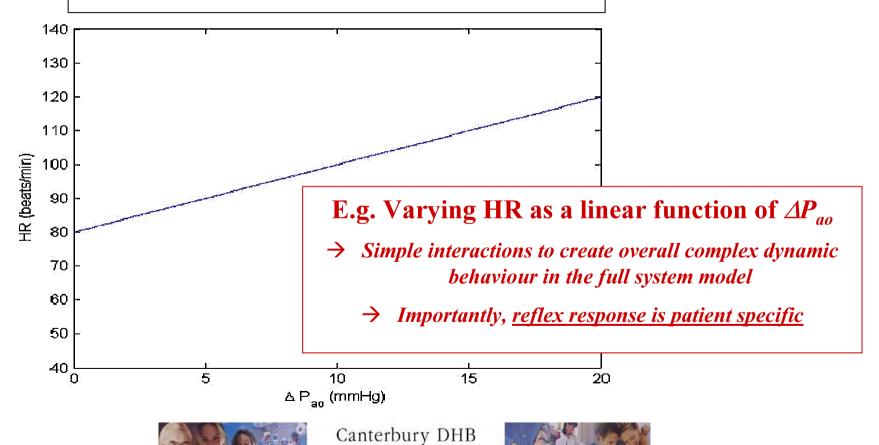
$$\dot{Q}_{1} = \frac{P_{1} - P_{2} - Q_{1}R_{1}}{L_{1}}$$

$$\dot{Q}_{2} = \frac{P_{2} - P_{3} - Q_{2}R_{2}}{L_{2}}$$

$$P_2 = e(t)E_{es}(V - V_d) + (1 - e(t))P_0(e^{\lambda(V - V_0)} - 1),$$

$$e(t) = e^{-80\left(t - \frac{period}{2}\right)^2}$$

(Cardiac muscle activation)



Reflex Actions

- Vaso-constriction contract veins
- Venous constriction increase venous dead space
- Increased HR
- Increased ventricular contractility

District Health Board

Disease States

• Pericardial Tamponade:

- Build up of fluid in pericardium
- <u>Decrease</u>: dead space volume V0,pcd

Pulmonary Embolism:

Increase: Rpul

Current Status:

- Clinical results for Pulmonary Embolism
- Clinical results for Septic Shock and therapy intervention
- Clinical results for PEEP interventions
- Simulated results for others

Cardiogenic shock:

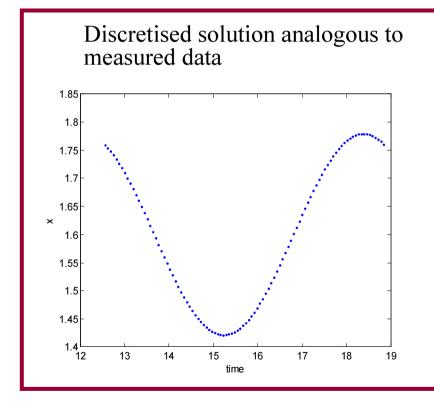
- Not enough oxygen to myocardium (e.g. from blocked coronary artery)
- <u>Decrease</u>: Ees,lvf, Increase: P0,lvf → A more complex set of changes/interactions

• Septic shock:

- Blood poisoning
- <u>Decrease</u>: Rsys = systemic resistance

• Hypovolemic shock:

Severe decrease in total blood volume = sum of individual volumes



Integral Method - Concept

•
$$\dot{x} = ax + b\sin(t) + c$$
, $x(0) = 1$
 $a = -0.5$, $b = -0.2$, $c = 0.8$

(simple example with analytical solution)

- Work backwards and find a,b,c
- Current method solve D. E. numerically or analytically

$$x(t) = \frac{1}{(a^2 + 1)a} \left(e^{at} \left(a + c + ab + ca^2 + a^3 \right) - \left(ab \cos t + ba^2 \sin t + ca^2 + c \right) \right)$$

- Find best least squares fit of x(t) to the data
- Non-linear, non-convex optimization, computationally intense
- integral method
- reformulate in terms of integrals
- linear, convex optimization, minimal computation

Integral Method - Concept

• Integrate $\dot{x} = ax + b\sin(t) + c$, both sides from t_0 to t ($t_0 = 4\pi$)

$$\int_{0}^{\infty} \dot{x} \, dt = \int_{0}^{\infty} (ax + b\sin(t) + c) \, dt$$

$$\Rightarrow x(t) - x(t_0) = a \int_{0}^{\infty} x \, dt + b \int_{0}^{\infty} \sin(t) \, dt + c \int_{0}^{\infty} 1 \, dt$$

$$\Rightarrow x(t) = x(t_0) + a \int_{0}^{\infty} x \, dt + b(\cos(t_0) - \cos(t)) + c(t - t_0)$$

• Choose 10 values of t, between $t_0 = 4\pi$ and 6π form 10 equations in 3 unknowns a,b,c

$$a \int_{t}^{t} x dt + b(1 - \cos(t_i)) + c(t_i - t_0) = x(t_i) - x(t_0), \quad i = 1, ..., 10$$

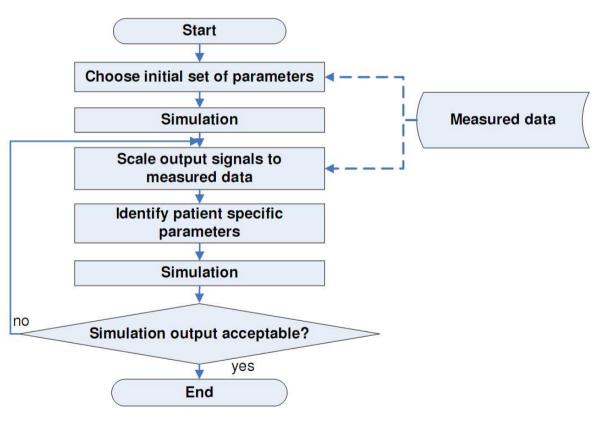
Integral Method - Concept

$$\begin{pmatrix}
\int_{t_0}^{t_1} x \, dt & \cos(t_0) - \cos(t_1) & t_1 - t_0 \\
\vdots & \vdots & \vdots \\
\int_{t_0}^{t_{10}} x \, dt & \cos(t_0) - \cos(t_{10}) & t_{10} - t_0
\end{pmatrix}
\begin{pmatrix}
a \\
b \\
c
\end{pmatrix} = \begin{pmatrix}
x(t_1) - x(t_0) \\
\vdots \\
x(t_{10}) - x(t_0)
\end{pmatrix}$$

• Linear least squares (unique solution)

Method	Starting point	CPU time (seconds)	Solution
Integral	-	0.003	[-0.5002, -0.2000, 0.8003]
Non-linear	[-1, 1, 1]	4.6	[-0.52, -0.20, 0.83]
Non-linear	[1, 1, 1]	20.8	[0.75, 0.32, -0.91]

- Integral method is at least 1000-10,000 times faster depending on starting point
- Thus very suitable for clinical application

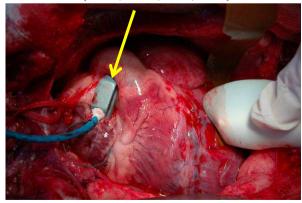


Integral method with discrete data

- If only given max and min, scale pre-computed waveforms (cts input)
- Requires typically several iterations but fast convergence since integrals filter modelling error and noise
- "Simulation" can be replaced by closed form analytical approximations

 immediate evaluation at steady state
- 10⁵-10⁶ times faster than standard methods (non-linear regression)

Clinical trials - Belgium



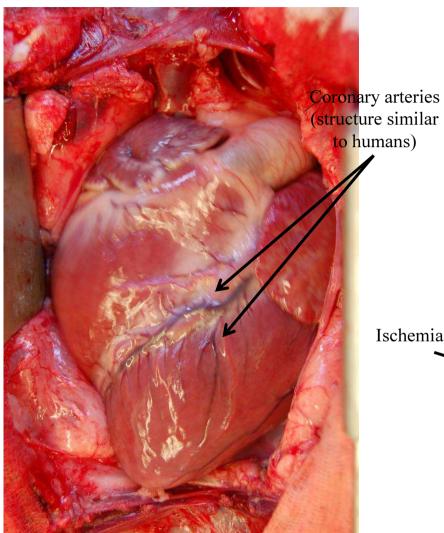
- Septic shock induced in pigs (collaborators in Liege, Belgium)
 - 0-30 minutes, endotoxin infusion, >60 minutes, hemofiltration, (5 pigs, 25-30 kg)

Open chest

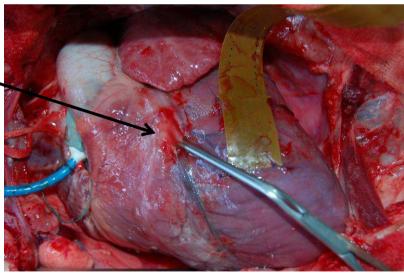
12 Electrode Conductance Catheter (Vlv,Vrv,Plv,Prv)

Ventilated and sedated

Canterbury DHB



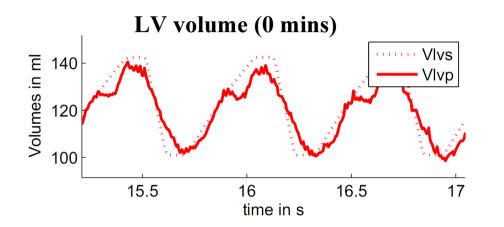
Also measure Pao,Ppa

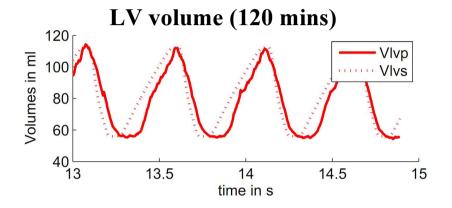

More pictures

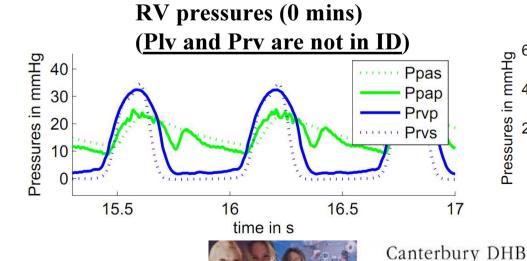
Ischemia

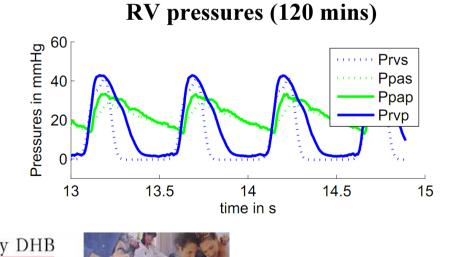
Clinical setting

Canterbury DHB

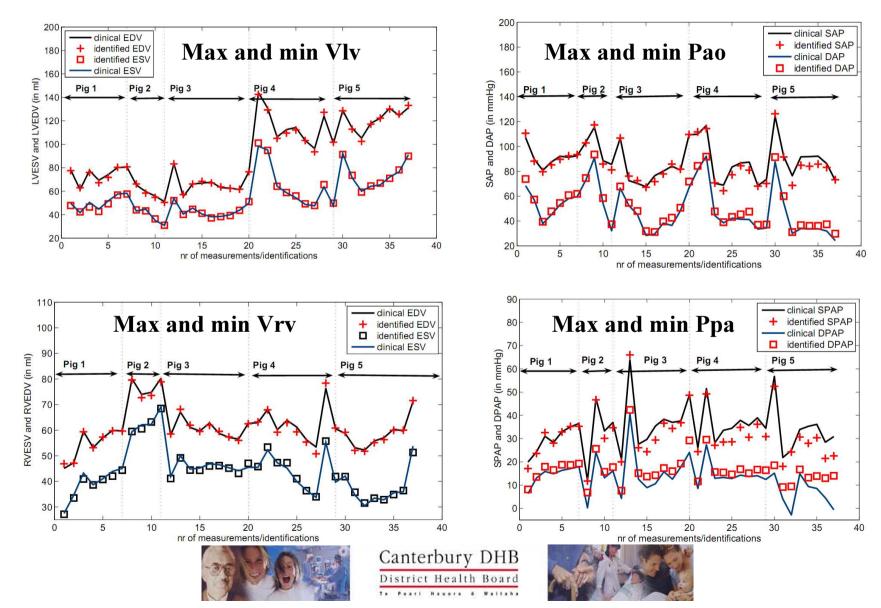

Clinical Results



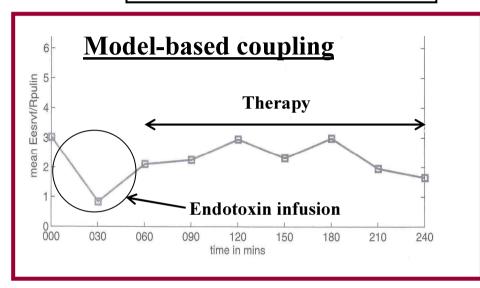

• Use only: Pao, Ppa, min/max(Vlv, Vrv) to ID all parameters

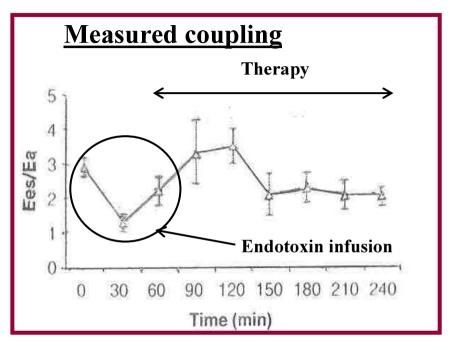

District Health Board

• Measurements available in an ICU



Animal Model Results – all pigs

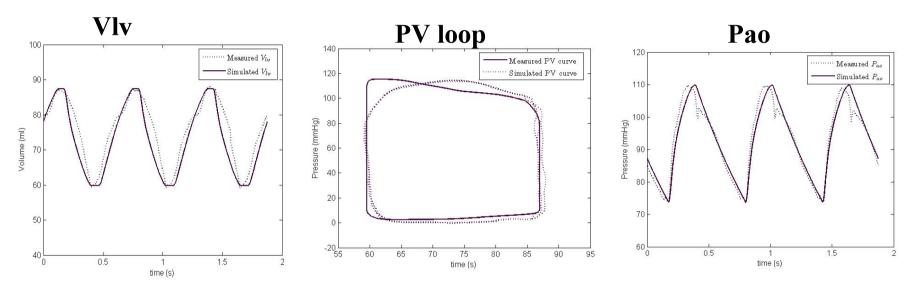




RV-vascular coupling

$$Coupling = \frac{Contractil ity}{Afterload}$$

- Five pigs Endotoxin infusion over first 30 minutes
- Therapy → large-pore membrane Hemofiltration from 60-240 minutes
- Model accurately matches all hemodynamic response < 8% error
- Preserved coupling validated with invasive rapid vena cava occlusion maneuver



New results for IFAC

- Using extra measurement of ECG → systolic, diastolic timings
- Experimentally derived, driver function shape (Plv/Vlv)

- Don't need max and min Vlv and Vrv. Replace by SV's (much easier to measure!)
- <10% change in fitted parameters (including volumes), improved ID of valvular resistances (trade off a little with Ees, significantly with preload parameters, e.g. Ppu)

Conclusions and summary

- Minimal cardiac model → simulate time varying disease states
 - Accurately captures physiological trends and magnitudes
 - Accurately captures a wide range of dynamics
 - Very Fast simulation methods available
- Integral-based parameter ID → patient specific models
 - <u>Simulation</u>: ID errors from 0-10%, with 10% noise
 - <u>Animal models</u>: Pulmonary embolism, septic shock (with and without hemofiltration)

Pressures (Total Error) < 8%

Volumes (Total Error) < 5%

- PEEP Therapy prediction: within 10% error
- Identifiable using a minimal number of common measurements
 - Rapid ID method, easily implemented in Matlab
 - Rapid ID = Rapid diagnostic feedback
- Future Work = septic shock, ischemia, human trials and other disease states (2008-)

Acknowledgements

Engineers and Docs

Belgium

Dr Philippe Kolh

Clinicians:

Dr Alexander Ghuysen
Dr Bernard Lambermont

Honorary Kiwis

The Danes

PhD student: French student (6 months):

Katherine Kok Claire Froissart

Summer student (3 months): Research Assistant (9 months):

James Revie David Stevenson

Questions???

Canterbury DHB
District Health Board

