

Can otolith shape discriminate between populations of a widely dispersing galaxiid?

Eimear Egan, Mike Hickford, John Quinn & David Schiel

- Galaxias maculatus is amphidromous (Figure 1)
- Juveniles form the basis of New Zealand's whitebait fishery (Figure 2)
- Marine larval development is poorly understood
- Consequently populations are managed as homogeneous entities
- Growing concern of population decline
- Population dynamics must be understood for conservation and management

Figure 1. Life cycle of Galaxias maculatus

- Adults sexually mature in freshwater
- 2. Eggs develop in riparian vegetation for 20 days
- 3. Hatchlings are washed out to sea and develop in the marine environment for 3-6 months
- 4. Juveniles recruit back to lowland coastal streams

Figure 2. Whitebaiter with his catch

Otolith Shape

- Product of genetics + environment (temperature, feeding history, growth rates)
- Stock discrimination tool (e.g. Baltic cod, herring)
- Geometric approach:
 - Shape indices (ratio of otolith dimensions)
 - Elliptical Fourier coefficients (EFcs) (outline trajectory)

Figure 3. Binarised otolith

Hypotheses

H₀: Populations of *Galaxias maculatus* are homogeneous H₀: Otolith shape is not different between populations

Methods

- Whitebait collected September 2013
- 3 sites in both Bay of Plenty and Buller (Figure 4)
- 45-55mm TL fish used in analysis (n=52)
- Left sagitta photographed using dark field microscopy
- Sagitta measured and shape indices corrected for otolith length (Table 1)
- 10 EF harmonics generated in SHAPE v1.3*

Table 1. Shape indices used in analysis

Size parameters | Size based shape indices Area (A) Perimeter (P) Otolith Length (OL)

Roundness (Rnd) = $(4A)/(\pi OL^2)$ Rectangularity (Rec) = $A/(OL \times OW)$ Aspect ratio (Ar) = OL/OWOtolith Width (OW) Ellipticity (Ell) = (OL-OW)/(OL+OW)

Figure 4. Whitebait collection sites in New Zealand

completing their lifecycle

1. Shape indices

Results

2. Elliptical Fourier coefficients

Figure 5. Principal component analysis of shape indices

Figure 6. Principal component analysis of Elliptical Fourier coefficients

1. Shape Indices

- Indices (Rnd, Ar and Ell) significant (ANOVA, p<0.001)
- Three PCs explain 99% variation
- Regional grouping, (PERMANOVA p=0.001)

Elliptical Fourier coefficients

- 17 PCs required to explain 90% variation
 - No regional grouping evident (PERMANOVA p=0.073)

Conclusions

- Otolith shape indices are different between populations, but EFcs are not
- Greater spatial and temporal resolution needed
- Differences may reflect genetic or environmental history
- Shape differences may be related to growth rates at sea (Figure 7)
- Ontogeny must be accounted for
- Potentially a valuable tool for discrimination of *Galaxias maculatus* populations

Figure 7. Mean standardised growth rate (µmd⁻¹)

