
Electronic Journal of Statistics
Vol. 13 (2019) 2257–2306
ISSN: 1935-7524
https://doi.org/10.1214/19-EJS1570

Tests for qualitative features in the

random coefficients model

Fabian Dunker∗

School of Mathematics and Statistics, University of Canterbury, Private Bag 4800,
Christchurch 8140, New Zealand

e-mail: fabian.dunker@canterbury.ac.nz

Konstantin Eckle∗,†

Mathematical Institute of the University of Leiden, Niels Bohrweg 1, 2333 CA Leiden,
Netherlands

e-mail: konstantin@eckles.de

Katharina Proksch∗,‡

Institute for Mathematical Stochastics, Georg-August-University of Goettingen,
Goldschmidtstrasse 7, 37077 Goettingen, Germany

e-mail: kproksc@uni-goettingen.de

Johannes Schmidt-Hieber∗,§

University of Twente, 5 Drienerlolaan, 7522 NB Enschede, Netherlands
e-mail: a.j.schmidt-hieber@utwente.nl

Abstract: The random coefficients model is an extension of the linear
regression model that allows for unobserved heterogeneity in the popula-
tion by modeling the regression coefficients as random variables. Given data
from this model, the statistical challenge is to recover information about the
joint density of the random coefficients which is a multivariate and ill-posed
problem. Because of the curse of dimensionality and the ill-posedness, non-
parametric estimation of the joint density is difficult and suffers from slow
convergence rates. Larger features, such as an increase of the density along
some direction or a well-accentuated mode can, however, be much easier
detected from data by means of statistical tests. In this article, we follow
this strategy and construct tests and confidence statements for qualitative
features of the joint density, such as increases, decreases and modes. We
propose a multiple testing approach based on aggregating single tests which
are designed to extract shape information on fixed scales and directions.
Using recent tools for Gaussian approximations of multivariate empirical
processes, we derive expressions for the critical value. We apply our method
to simulated and real data.
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1. Introduction

In the random coefficients model, n i.i.d. random vectors (Xi, Yi), i = 1, . . . , n
are observed, with Xi = (Xi,1, . . . , Xi,d) a d-dimensional vector of design vari-
ables and

Yi = βi,1Xi,1 + βi,2Xi,2 + . . .+ βi,dXi,d, i = 1, . . . , n. (1)

The unobserved random coefficients βi = (βi,1, . . . , βi,d), i = 1, . . . , n, are i.i.d.
realizations of an unknown d-dimensional distribution Fβ with Lebesgue density
fβ. Design variables and random coefficients are assumed to be independent.
The statistical task is to recover properties of the joint density fβ, which is
assumed to belong to some nonparametric class. In this work, we derive tests
for increases and modes of fβ.

For d = 1, the random coefficients model simplifies to nonparametric density
estimation. For d > 1, recovery of fβ is an inverse problem with ill-posedness
depending on the distribution of the design vectors Xi. If the design is suffi-
ciently regular, the inverse problem is mildly ill-posed. Otherwise, the model
can be severely ill-posed or even be non-identifiable. In this work, we study the
mildly ill-posed regime and consider in particular the random coefficients model
with random intercept

Yi = βi,1 + βi,2Xi,2 + . . .+ βi,dXi,d, i = 1, . . . , n, (2)

which can be obtained from (1) setting Xi,1 = 1, almost surely.
Random coefficients models appear in econometrics and epidemiology and

are used to model unobserved heterogeneity in the population. While the stan-
dard linear regression model accounts for unobserved heterogeneity only by the
additive noise, the random coefficients model allows in addition that different
individuals have different slopes. Applications in epidemiology are considered
by Greenland (2000); Gustafson and Greenland (2006). In economics, random
coefficients models are frequently used to evaluate panel data, cf. Hsiao (2014)
or Hsiao and Pesaran (2004), Chapter 6, for an overview. Modeling and esti-
mating consumer demand in industrial organization and marketing often makes
use of random coefficients Berry et al. (1995); Petrin (2002); Nevo (2001); Dubé
et al. (2012). In all these works, parametric assumptions on fβ are imposed.
Recently, nonparametric approaches for random coefficients became popular
in microeconometrics Hoderlein et al. (2010); Masten (2018); Hoderlein et al.
(2017), frequently combined with binary choice Ichimura and Thompson (1998);
Gautier and Hoderlein (2012); Gautier and Kitamura (2013); Masten and Tor-
govitsky (2016); Dunker et al. (2013); Fox and Gandhi (2016); Dunker et al.
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(2018), among others. Model (1) without intercept has been considered in this
context by Berry and Pakes (2007) and Dunker et al. (2017).

The random coefficients model also includes quantum homodyne tomography.
In this case, we observe an angle Φi and

Yi = Qi cos(Φi) + Pi sin(Φi), i = 1, . . . , n, (3)

with (Qi, Pi) i.i.d. random variables which are unobserved and independent of
Φi. The angles Φi can be chosen by the experimenter and are typically uniform
on [0, π]. The interest is in reconstruction of the Wigner function which takes
the role of the joint density of (Qi, Pi). In quantum mechanics, it is impossible
to measure/observe the random variables Pi and Qi simultaneously and the
Wigner function can take negative values. For more on quantum homodyne
tomography and the Wigner function, see Section 2 in Butucea et al. (2007).

We propose a nonparametric test for shape information of the joint density
fβ in the random coefficients model. The focus will be on a test for directional
derivatives and modes. The nonparametric estimation theory for fβ has been
developed in Beran and Hall (1992); Beran et al. (1996); Feuerverger and Vardi
(2000); Hoderlein et al. (2010); Hohmann and Holzmann (2016); Holzmann and
Meister (2019) Due to the ill-posedness of the problem and the curse of dimen-
sionality induced by d, nonparametric estimation rates are slow. The reason is
that small perturbations in the random coefficient density are indistinguishable
in the data. Nevertheless, we can get good detection rates for larger features,
such as an accentuated mode or a strong increase in the joint density along some
direction. From a practical point of view, the relevant information regarding an
unknown density is typically its shape rater than its precise, full reconstruction.
It is therefore essential to recover increases/decreases and the modes of a den-
sity. If, say, two modes in the joint density are detected, this indicates that two
different groups can be identified. Hence, shape information allows to interpret
a given dataset.

Larger features of the density will also be discovered by a nonparametric
estimator even if it suffers from slow convergence. There are, however, two im-
portant reasons why a testing approach might be more appropriate. Firstly, with
a significance test of level α we can conclude that with probability 1− α a de-
tected feature is not an artifact. Secondly, for an estimator we need to pick one
bandwidth or smoothing parameter while detection of different features might
require different bandwidth choices depending on the size of the hidden fea-
tures themselves. Indeed, a short and steep increase will be best detected on a
small scale whereas for finding a longer and less strong increase the choice of a
larger bandwidth is beneficial. Using multiple testing methods, it is possible to
combine a whole range of smoothness parameters into one test and to adapt to
different shapes of features.

We construct a so called multiscale test, aggregating single tests on differ-
ent scales and directions. Multiscale tests can be viewed as a multiple testing
procedure specifically designed for nonparametric models. Given a model, the
theoretical challenge is to prove that a multiscale statistic can be approximated
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by a distribution free statistic which is independent of the observations. This
allows us then to compute quantiles and to find approximations for the criti-
cal values of the multiscale statistic. So far, qualitative feature detection based
on multiscale statistics has been studied for various nonparametric models, in-
cluding the Gaussian white noise model Dümbgen and Spokoiny (2001), density
estimation Dümbgen and Walther (2008) and deconvolution Schmidt-Hieber
et al. (2013). In multivariate settings the classical KMT approximation suffers
from the curse of dimensionality which then leads to very restrictive conditions
on the usable scales. Instead, very recent results on Gaussian approximations of
suprema of multivariate empirical processes developed by Chernozhukov et al.
(2017) can be used (see Eckle et al. (2017); Proksch et al. (2018) for applications
to multivariate deconvolution and multivariate linear inverse problems with ad-
ditive noise). In this work, we extend these techniques. The main difficulties
are twofold. First, we need to derive specific properties of the inverse Radon
transform for general dimension d. Second, in contrast to the other works on
multiscale inference, no distribution free approximation can be obtained and we
therefore need to study the approximating process if several unobserved func-
tions are replaced by estimators.

In order to study the power of the multiscale test, a theoretical detection
bound and numerical simulations are provided. The theoretical result gives con-
ditions under which a mode can be detected. In a numerical simulation study,
we investigate the power of the test for increases/decreases along some direction
and mode detection in dependence on the sample size and the design variables.
We also analyze real consumer demand data from the British Family Expendi-
ture Survey.

Let us briefly summarize related literature on testing in the random co-
efficients model. Under a parametric assumption on the density fβ, Beran
(1993) considers goodness-of-fit testing and Swamy (1970); Andrews (2001) test
whether some of the random coefficients are deterministic. The only test based
on a nonparametric assumption was proposed recently by Breunig and Hoder-
lein (2018). It allows to assess whether a given set of data follows the random
coefficients model.

This paper is organized as follows. In Section 2, we describe the connection
between the random coefficients model and the Radon transform. Rewriting
the model as an inverse problem in terms of the Radon transform reveals the
ill-posed nature of the model. This allows us to construct and to analyze the mul-
tiscale test in Section 3. In this part we also derive the asymptotic theory of the
estimator and obtain theoretical detection bounds. In Section 4, the test is stud-
ied for simulated data. As a real data example, consumer demand is analyzed in
Section 5. Proofs and technicalities are deferred to a supplement. An R package
and Python code is available from https://arxiv.org/abs/1704.01066.

Notation: Throughout the paper, vectors are displayed by bold letters, e.g.
X,β. Inequalities between vectors are understood componentwise. The Eu-
clidean norm on R

d is denoted by ‖ · ‖ and the corresponding standard inner
product by 〈·, ·〉. We further denote by e1, . . . , ed ∈ R

d the standard ON-basis of
the d-dimensional Euclidean space, Sd−1 denotes the unit sphere in R

d and we

https://arxiv.org/abs/1704.01066
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write Z for the cylinder Z = R× S
d−1. Furthermore, we write v for any direc-

tion v =
∑d

j=1 vjej ∈ S
d−1. For two positive sequences (an)n, (bn)n, an � bn or

bn � an mean that for some positive constant C, an ≤ Cbn for all n. As usual,
we write an � bn if an � bn and bn � an.

2. The random coefficients model as an inverse problem

The random coefficients model can
be written in terms of the Radon
transform, see Beran et al. (1996).
This allows us then to interpret the
model as an inverse problem. In
this section, we summarize the main
steps and review relevant results on
the inversion of the Radon trans-
form. For a density f ∈ L1(Rd),
let Rf denote its Radon transform,
given by

Rf(s,θ) =

∫
〈b,θ〉=s

f(b) dμd−1(b),

where μd−1 the surface measure on the (d − 1)-dimensional hyperplane {b ∈
Rd : 〈b,θ〉 = s}. The Radon transform maps therefore a function to all its
integrals over hyperplanes parametrized by (s,θ) ∈ Z. The figure above shows
the parametrization in two dimensions. For the connection between the Radon
transform and the random coefficients model (1) consider the normalized obser-
vations

Si :=
Yi

‖Xi‖
, Θi :=

Xi

‖Xi‖
, i = 1, . . . , n. (4)

The random vectors Θi take values in the (d − 1)-dimensional sphere S
d−1. In

the random coefficients model with intercept (2), Θi is always in the upper
hemisphere, i.e. the first component of Θi is positive. In this case, we extend
the distribution of Θi to the whole sphere by randomizing the signs of the
design variables. For this purpose, we generate independent random variables ζi,
i = 1, . . . , n, with P(ζi = 1) = P(ζi = −1) = 1/2, which are independent of the
data (Xi, Yi), i = 1, . . . , n, and define Si := ζiYi/‖Xi‖ and Θi := ζiXi/‖Xi‖.
Independent of the symmetrization, we have Si = 〈Θi,βi〉. The conditional
distribution of S1|Θ1 is therefore

FS|Θ(x|θ) = P(S1 ≤ x|Θ1 = θ) = P(〈Θ1,β1〉 ≤ x|Θ1 = θ) =

∫ x

−∞
Rfβ(s,θ)ds,

and the conditional density becomes

fS|Θ(s|θ) = (Rfβ)(s,θ). (5)
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Recall that we have access to an i.i.d. sample (Si,Θi) of the joint density fS,Θ.
This allows nonparametric estimation of fS|Θ via fS|Θ(s|θ) = fS,Θ(s,θ)/fΘ(θ).
Applying the inverse Radon transform to this estimate gives an estimator for the
joint density fβ. This inversion scheme suffers from two sources of ill-posedness.
Firstly, dividing by fΘ might result in very unstable reconstructions if fΘ is
small. This happens if the normalized design variables Θi = Xi/‖Xi‖ systemat-
ically miss observations from some directions. In this case the problem becomes
unevenly harder, see Davison (1983); Frikel (2013); Hohmann and Holzmann
(2016). For example, if the support of Θi does contain a hemisphere, only log-
arithmic convergence rates can be obtained. When the support of Θi does not
contain an open ball, fβ might be non-identifiable. Secondly, even with regu-
larity on the distribution of the design, the Radon inversion is known to be an
ill-posed problem with degree of ill-posedness (d − 1)/2. Hence, regularization
of the inversion scheme is necessary.

In this work, we study the mildly ill-posed case where the random directions
Θi, i = 1, . . . , n, are sufficiently regularly distributed over the sphere and the
ill-posedness is only due to the inversion of the Radon transform. The precise
assumptions on the design are stated in Section 3.2.

Our approach makes use of the following explicit inversion formula of the
Radon transform for f ∈ L1(Rd) ∩ L2(Rd). Define the operator Λ via

Λf(s,θ) = Hd∂
d−1
s Rf(s,θ), (6)

where Hd denotes the identity for d odd and the Hilbert transform

Hdf(u) =
1

π
lim

ε→0+

∫
(−∞,u−ε]∪[u+ε,∞)

f(t)

u− t
dt =

1

π
p.v.

∫ ∞

−∞

f(t)

u− t
dt

(
u ∈ R

)
taken with respect to the variable s, for d even. Let c−1

d = (−1)(d−1)/22−dπ1−d

for d odd and c−1
d = −(−1)d/22−dπ1−d for d even. If ϕ is a Schwartz function

on R
d, then we have the inversion formula

ϕ = c−1
d R∗Λϕ, (7)

cf. Theorem 3.8 in Helgason (2011). The so called back projection operator R∗

is the adjoint of the Radon transform with respect to the L2 scalar product.
Notice that our constant cd differs from the constant in Helgason (2011) as we
use the standard definition of the Hilbert transform and define R∗ as the adjoint
of the Radon transform (as opposed to the dual transform).

3. Multiscale tests for qualitative features

3.1. Multiscale inference

The goal of this work is to derive confidence statements for qualitative features
of the joint density of the random coefficients. In particular, we are interested
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in the detection of modes (local maxima) of the density. Following the approach
of Schmidt-Hieber et al. (2013), we express the features in terms of differential
operators. To be precise, for a collection of compactly supported, non-negative
and sufficiently smooth test functions φt,h consider the integral∫

Rd

φt,h(b)∂vfβ(b) db =

d∑
k=1

vk

∫
Rd

φt,h(b)
∂

∂bk
fβ(b) db (8)

for some directional vector v = (v1, . . . , vd)
� and d ≥ 2. Since there should not

be any favored direction, we consider in the following radially symmetric test
functions,

φt,h(·) =
1

hd Vol(Sd−2)
φ
(‖ · −t‖

h

)
(9)

with a non-negative and sufficiently smooth kernel φ : [0,∞) → [0,∞) with∫∞
0

φ(u)du = 1 and support on [0, 1]. Moreover, Vol(Sd−2) denotes the volume

of the sphere S
d−2 ⊂ R

d−1 and Vol(S0) := 2. Notice that φt,h is supported on
the ball Bh(t) with center t and radius h. The normalization for φt,h turns out
to be convenient but does not entail that φt,h integrates to one.

If the integral (8) is positive, there exists a subset of Bh(t) with positive
Lebesgue measure on which ∂vfβ is positive. On this subset, fβ is thus strictly
increasing in direction v. Similarly, we can recover a decrease if the integral
(8) is negative. To construct a statistical test for increases and decreases, it is
therefore natural to use an empirical counterpart of the functional defined in
(8).

Let T = {(t, h,v) : h ∈ (0, 1],a1+h ≤ t ≤ a2−h,v ∈ S
d−1} for a1 ≤ a2 ∈ R

d,
where the inequalities for the vectors a1,a2, t are understood componentwise
and vector plus (minus) scalar means that the scalar is added to (subtracted
from) each entry of the vector. For statistical inference regarding the sign of the
directional derivatives of fβ, we fix a subset Tn ⊂ T and test for all (t, h,v) ∈ Tn
simultaneously the corresponding hypotheses of the form

Ht,h,v
0,+ :

∫
Rd

φt,h(b)∂vfβ(b)db ≤ 0 versus Ht,h,v
1,+ :

∫
Rd

φt,h(b)∂vfβ(b)db > 0

(10)

and

Ht,h,v
0,− :

∫
Rd

φt,h(b)∂vfβ(b)db ≥ 0 versus Ht,h,v
1,− :

∫
Rd

φt,h(b)∂vfβ(b)db < 0.

(11)

For constructing global tests, we can now argue as in Eckle et al. (2017). Our
main interest are the following three global testing problems (i)-(iii).

(i) Testing for the presence of a mode at a fixed location. Tests for
the hypotheses (10) and (11) can be used for the detection of specific shape



2264 F. Dunker et al.

constraints such as a mode at a given point b0 ∈ R
d. For this purpose, we use

several bandwidths/scales h and for each h consider pairs (t1,v1), . . . , (tp,vp),
where vj , j = 1, . . . , p, are directional vectors and the test locations tj are points
on the line {b0 + rvj : r ≥ h} (j = 1, . . . , p) in a neighborhood of b0. Inference
for the presence of a mode at the point b0 can now be conducted by studying
the testing problem

H
tj ,h,vj

0,− versus H
tj ,h,vj

1,− , (12)

with h ranging over all chosen scales and j = 1, . . . , p. Level and power of the
mode test (12) for different designs are reported in Section 4.2. In Section 4.3,
we also show that it is essential to include several bandwidths/scales h in order
to separate modes which are close.

(ii) A global testing procedure for all modes. Simultaneous tests for
the hypotheses (10) and (11) can be used for a global testing procedure to detect
all modes of the density on a domain. Compared to the previous case, we search
for evidence over a range of different b0 which then inflates the number of local
tests.

(iii) A graphical representation of the local monotonicity behavior
for bivariate densities. Let d = 2 and define a subset Tn = {(t̃j , h0, ṽj) :
j = 1, . . . , p} for a fixed scale h0 of the form Tn = Tt × {h0} × Tv, where Tt
contains the p/|Tv| vertices of an equidistant grid of width 2h0 and Tv contains
the directions. We restrict the testing procedure to one fixed scale for an easy
to read graphical representation. We consider four equidistant directions on S

1

given by Tv = {v1,−v1,v2,−v2}. Since Tv = −Tv, we have symmetry in the

hypotheses, i.e. H
t̃j ,h0,ṽj

0,+ = H
t̃j ,h0,−ṽj

0,− . Therefore, we test only H
t̃j ,h0,ṽj

0,− for

all triples (t̃j , h0, ṽj) ∈ Tn. Figure 1 displays an example for the test outcome
with the hypotheses in (10) and Tn as above. An arrow in a direction ṽj at

a location t̃j represents a rejection of the corresponding hypothesis H
t̃j ,h0,ṽj

0,−
and provides an indication of a negative directional derivative of fβ in direction

ṽj at the location t̃j . Thus, Figure 1 provides strong evidence that the density
is trimodal with modes close to the locations (−0.5,−0.5)�, (1.5,−0.5)�, and
(0.5, 1.5)�. A detailed description of the settings used to generate Figure 1 and
an analysis of the results is given in Section 4.1.

We now derive an empirical counterpart of the functional (8) in terms of the
Radon transform Rfβ. We make the following assumptions for the inversion of
the Radon transform.

Assumption 1. Suppose that the function φ in (9) is (d+2)-times continuously
differentiable with φ′(0) = φ′′(0) = 0.

Assumption 2. Suppose that the density fβ is compactly supported, contin-
uously differentiable and bounded from below in the test region by a constant
cβ > 0

fβ(b) ≥ cβ for all b ∈ [a1,a2].
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Fig 1. Example of a global map for monotonicity of a bivariate density. Each arrow indicates
a decrease in the respective direction.

Assumption 2 is too restrictive for quantum homodyne tomography (model
(3)), where the density fβ is given by the Wigner function. The Wigner function
can take negative values and is not compactly supported. In this case, we replace
Assumption 2 by the following conditions.

Assumption 2′. Suppose that fβ is continuously differentiable and, for some
γ′, ε > 0,

(i) b 
→ ‖b‖d+ε|fβ(b)| is bounded;

(ii) |fβ(b)− fβ(b
′)| � ‖b− b′‖γ′

(1 + min{‖b‖, ‖b′‖})d+γ′+ε
for all b,b′ ∈ R

d;

(iii) There exist constants δ, cβ > 0 such that for every hyperplane P ⊂ R
d

with P ∩ [a1 − δ,a2 + δ] �= ∅,
∫
P
fβ(b)dμd−1(b) ≥ cβ.

Under the assumptions above the inversion formula (7) holds for partial
derivatives of the test functions ∂vφt,h. This is a direct consequence of The-
orem 3.8 in Helgason (2011). The following lemma analyzes the structure of a
partial derivative of the test function transformed by the operator Λ introduced
in (6) and how this transform depends on h.

Lemma 3.1. Work under Assumption 1 and let

φ̃(z) :=

∫ ∞

0

rd−2 ∂

∂z
φ
(√

z2 + r2
)
dr with z ∈ R. (13)

Then

Λ(∂vφt,h)(s,θ) =
〈θ,v〉
hd+1

(Hdφ̃
(d−1))

(s− 〈t,θ〉
h

)
,

where Λ and φt,h are defined in (6) and (8), respectively. Moreover,

(i) ‖Λ(∂vφt,h)‖∞ � h−d−1;

(ii) ‖Λ(∂vφt,h)‖kLk(Z) � h−dk−k+1 for k > 1.
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For a given triple (t, h,v) ∈ T we study the statistic

Tt,h,v :=
1

n
√
h

n∑
i=1

〈Θi,v〉
fΘ(Θi)

(Hdφ̃
(d−1))

(Si − 〈t,Θi〉
h

)
.

By Lemma 3.1, the expectation of this statistic can be written as

E
[
Tt,h,v

]
=

∫
Sd−1

∫
R

hd+1/2Λ(∂vφt,h)(s,θ)fS|Θ(s|θ)dsdθ.

By an application of the inversion formula introduced in (7) and Lemma 5.1 in
Helgason (2011), we obtain

E
[
Tt,h,v

]
= −cdh

d+1/2

∫
Rd

φt,h(b)∂vfβ(b)db. (14)

Up to rescaling, Tt,h,v is thus an empirical counterpart of the functional defined
in (8).

The statistic Tt,h,v depends on the density fΘ. In quantum homodyne tomog-
raphy this density is known. For many other applications, however, fΘ needs to
be estimated from the data. In this case, we use a standard cut-off kernel density
estimator f̃Θ for fΘ based on an additional sample (Si,Θi), i = n + 1, . . . , 2n
which is independent of (Si,Θi), i = 1, . . . , n. See also Appendix A for the def-
inition of the estimator. We replace fΘ by its estimator and consider the test
statistic

T̂t,h,v :=
1

n
√
h

n∑
i=1

〈Θi,v〉
f̃Θ(Θi)

(Hdφ̃
(d−1))

(Si − 〈t,Θi〉
h

)
. (15)

3.2. Assumptions on the design

As mentioned in Section 2, the inverse problem might become severely ill-posed
or non-identifiable if the density fΘ approaches zero for some directions. This
section provides conditions on the design which ensure that fΘ has positive
Hölder smoothness and is bounded from below and above. These results are of
independent interest.

In the random coefficients model (1), the density fΘ can be expressed in
terms of the density fX via fΘ(θ) =

∫∞
0

rd−1fX(rθ)dr. To enforce that fΘ is

bounded from below we restrict ourselves to designs where
∫∞
0

rd−1fX(rθ)dr is
bounded away from 0. The formula also allows us to relate the smoothness of
fX to the smoothness of fΘ.

Although, the random coefficients model with intercept (2) could be viewed
as a special case of the more general model (1) and vice versa, it requires a
different set of assumptions. For model (2), we write fX as a function of x =
(x2, . . . , xd) ∈ Rd−1 and obtain

fΘ(θ) =
1

2|θ1|d
fX

(θ2
θ1

, . . . ,
θd
θ1

)
, (16)
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see Appendix B for a proof. A necessary condition to ensure that infθ fΘ(θ) > 0,
is given by fX(x) � 1∧‖x‖−d for all x. This corresponds to Cauchy-type tails of
the design variables. Thinner tails will increase the ill-posedness of the problem.
In order to avoid very technical proofs, we consider in the random coefficients
model with intercept only the case where (Xi,2, . . . , Xi,d) follows a multivariate
Cauchy distribution, that is,

fX(x) =
Γ(d/2)

πd/2|Σ|1/2
(
1 + (x− μ)�Σ−1(x− μ)

)d/2 for x ∈ R
d−1, (17)

with μ ∈ R
d−1 and Σ ∈ R

(d−1)×(d−1) a symmetric and positive definite matrix.
We can compute fΘ explicitly using (16)

fΘ(θ) =
π−d/2|Σ|−1/2Γ(d/2)

2
(
θ21 + ((sgn(θ1)θj − |θ1|μj)dj=2)

�Σ−1((sgn(θ1)θj − |θ1|μj)dj=2)
)d/2 ,
(18)

where sgn(·) denotes the signum function. In this case, fΘ is bounded from above
and below and is continuously differentiable on the hemispheres S

d−1
+ := {θ ∈

S
d−1 | θ1 > 0} and S

d−1
− := {θ ∈ S

d−1 | θ1 < 0}. In particular, if (Xi,2, . . . , Xi,d)
is standard Cauchy, then the density fΘ is constant. This leads to the following
assumptions on the design.

Assumption 3. In model (1), suppose that
(i) fX(x) � ‖x‖−d−ε for all x ∈ R

d and some ε > 0;

(ii)

∫ ∞

0

rd−1fX(rθ)dr ≥ c > 0 for all θ ∈ S
d−1;

(iii) |fX(x)− fX(x′)| � ‖x− x′‖γ
1 + ‖x‖d+γ+ε

for x,x′ ∈ R
d, ‖x‖ = ‖x′‖, and

γ > 0.
In model (2), assume that fX is of the form (17) with Σ a symmetric and

positive definite matrix.

In quantum homodyne tomography we set a global γ equal to the minimum
of γ′ from Assumption 2’ and γ from Assumption 3.

It is important to notice that statistical testing in the random coefficients
model relies on two unrelated sets of assumptions. Firstly, there are assump-
tions on the density of the random coefficients as introduced in Section 3.1.
Restrictions of this kind are common in statistical inference for an unknown
density. On the other hand, there are assumptions (see Assumption 3 above) on
the design. These assumptions control the ill-posedness of the problem.

Note that Assumption 3 (ii) can be weakened to
∫∞
−∞ rd−1fX(rθ)dr ≥ c >

0 for all θ ∈ Sd−1. For example, if the support of Θ is a hemisphere this
condition can hold while Assumption 3 (ii) is violated. This relaxation can be
achieved by multiplying independently generated ζi to Θi and Si as proposed
for model (2) in Section 2.
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3.3. Asymptotic properties

This section presents the main theoretical result of the paper stating that the
standardized and properly calibrated test statistic (15) can be uniformly approx-
imated by a maximum of a Gaussian process. For that we need the definition
of a Gaussian process on the cylinder Z. To this end, let B(Z) be the Borel
σ-algebra on Z. Define the σ-finite measure

ν :

{
B(Z) → R

+
0 ,

E 
→ ν(E) =
∫
Sd−1

∫
R
1E(θ, s) ds dθ.

Let
(
B(Z)

)
ν
denote the collection of all sets of finite ν-measure and let W

denote Gaussian ν-noise on
(
B(Z), ν

)
. For disjoint sets E1, E2 ∈

(
B(Z)

)
ν
this

implies

W (E1) ∼ N (0, ν(E1)), W (E1 ∪ E2) = W (E1) +W (E2) a.s.

and W (E1)⊥W (E2)

(Adler and Taylor, 2007, Chapter 1.4.3).W is a random, finitely additive, signed
measure. Integration with respect to W can be defined similarly to Lebesgue-
integration, starting with a definition for simple functions and an extension
to general f ∈ L2(ν) via approximation by simple functions in the L2-limit.
Integration with respect to W yields∫

E

W (dsdθ) = W (E) ∼ N (0, ν(E)) for E ∈
(
B(Z)

)
ν
,

W (f) :=

∫
Sd−1

∫
R

f(s,θ)W (dsdθ) ∼ N (0, ‖f‖L2(ν)) for f ∈ L2(ν),

and Cov(W (f),W (g)) = 〈W (f),W (g)〉L2(P) = 〈f, g〉L2(ν) for f, g ∈ L2(ν),

where Lk(P) denotes the collection of all random variables whose first k ab-
solute moments exist. For more details, cf. Adler and Taylor (2007), Chapter
5.2.

Let us provide some heuristic for the Gaussian approximation of Tt,h,v. The
process (t, h,v) 
→ √

n(Tt,h,v−E[Tt,h,v]) has in the important case E[Tt,h,v] = 0
the same mean and covariance structure as the Gaussian process

Xt,h,v = h−1/2

∫
Sd−1

∫
R

〈θ,v〉(Hdφ̃
(d−1))

(s− 〈t,θ〉
h

)√fS,Θ(s,θ)

fΘ(θ)
W (dsdθ).

(19)

In the proof of Theorem 3.2 below we show that the expectation E[Tt,h,v] is
asymptotically negligible in the limit process. The test statistic and the Gaussian
process depend, however, on the unknown densities fS,Θ and fΘ which have
to be estimated from the second part of the sample. To this end, we use the
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standard cut-off kernel density estimates f̃Θ and f̃S,Θ defined in Appendix A.
For Gaussian ν-noise W that is independent of the data let

X̂t,h,v := h−1/2

∫
Sd−1

∫
R

〈θ,v〉(Hdφ̃
(d−1))

(s− 〈t,θ〉
h

)√f̃S,Θ(s,θ)

f̃Θ(θ)
W (dsdθ)

and

σ̂t,h,v :=
(∫

Sd−1

∫
R

〈θ,v〉2
(
(Hdφ̃

(d−1))(s)
)2 f̃S,Θ(〈t,θ〉+ hs,θ)

f̃Θ(θ)2
dsdθ

)1/2

. (20)

The Gaussian approximation result for the family of test statistics T̂t,h,v holds
for a finite subset Tn ⊂ T . Its cardinality may, however, grow polynomially of
arbitrary degree with the sample size. Moreover, the range of bandwidths must
be bounded from above and below by hmax and hmin, both converging to zero
as n goes to infinity. The precise conditions are summarized in the following
assumption.

Assumption 4. When working in model (1), let γ be as defined in Assumption
3. When considering model (2), let γ = 1. Set hmin := min{h : (t, h,v) ∈ Tn}
and hmax := max{h : (t, h,v) ∈ Tn}. Suppose that |Tn| = p � nL for some
L > 0 and hmax � log(n)−14γ/(d−1)−5n2γ/(d−1)−1 ∧ o(1), hmin � n−1+ε for
some ε > 0.

Let Ap be the set of half-open hyperrectangles in Rp, i.e. every A ∈ Ap has
the representation A = {x ∈ R

p : −∞ < x ≤ a} for some a ∈ R
p. For finite sets

Sn and two stochastic processes (Xs,n)s∈Sn and (X̃s,n)s∈Sn , which are defined
on the same probability space, we write

(Xs,n)s∈Sn ↔ (X̃s,n)s∈Sn

if limn supA∈A|Sn|
|P((Xs,n)s∈Sn ∈ A)− P((X̃s,n)s∈Sn ∈ A)| = 0.

Theorem 3.2. For the calibration of the standardized statistic define

αh :=
√
(3d− 1) log(1/h) and βh :=

√
log(e/h)

log(log(ee/h))
.

Then, under Assumptions 1-4,

(
βh

(√
n
|T̂t,h,v − E[Tt,h,v]|

σ̂t,h,v
− αh

))
(t,h,v)∈Tn

↔
(
βh

( |X̂t,h,v|
σ̂t,h,v

− αh

))
(t,h,v)∈Tn

.

Furthermore, almost surely conditionally on the estimators f̃S,Θ and f̃Θ, the
limit distribution is bounded in probability by a constant that is independent of
the sample size n.
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3.4. Construction of the multiscale test

With the previous theorem, we can now construct simultaneous statistical tests
for the hypotheses (10) and (11). If the constant cd is positive then the method

consists of rejecting the hypotheses Ht,h,v
0,+ in (10) for small values of T̂t,h,v and

rejecting Ht,h,v
0,− in (11) for large values of T̂t,h,v, and vice versa if cd is negative.

Theorem 3.2 is used to control the multiple level of the tests. Let α ∈ (0, 1) and
denote by κn(α) the smallest number such that

P

(
sup

(t,h,v)∈Tn

βh

(
|X̂t,h,v|
σ̂t,h,v

− αh

)
≤ κn(α)

)
≥ 1− α.

By Theorem 3.2, κn(α) is bounded uniformly with respect to n. Define for
(t, h,v) ∈ Tn the quantiles

κt,h,v
n (α) =

σ̂t,h,v√
n

(
β−1
h κn(α) + αh

)
(21)

and reject the hypothesis (10), if

sgn(cd)T̂t,h,v < −κt,h,v
n (α). (22)

Similarly, hypothesis (11) is rejected, whenever

sgn(cd)T̂t,h,v > κt,h,v
n (α). (23)

Theorem 3.3. Let the assumptions of Theorem 3.2 hold and assume that the
tests (22) and (23) for the hypotheses (10) and (11) are performed simultane-
ously for all (t, h,v) ∈ Tn. The probability of at least one false rejection of any
of the tests is asymptotically at most α, i.e.

P

(
∃(t, h,v) ∈ Tn : |T̂t,h,v| > κt,h,v

n (α)
)
≤ α+ o(1)

for n → ∞.

Based on the previous result, we now propose a method for the detection and
localization of modes on a subdomain. For convenience, we only consider the
case of a hyperrectangle [a1,a2] ⊂ Rd. We study the case that there is a mode
b0 in the interior (a1,a2). For the multiscale test to have power we need that
the set of local tests is rich enough. This can be expressed in terms of conditions
on Tn. Let H(Tn) be the set of all scales/bandwidths such that for every scale
h in this set all triples (t, h,v) are in Tn, where t ranges over all grid points
of an equidistant grid with component wise mesh size h in the hyperrectangle
[a1 + h,a2 − h], and v ranges over all grid points of a grid of Sd−1 and grid
width converging to zero with increasing sample size.

The testing procedure is as follows. For any b0 in (a1,a2), let T b0
n be the set

of all sequences of triples (tn, hn,vn)n ∈ Tn such that chn ≥ ‖b0 − tn‖ ≥ 2hn
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for some sufficiently large c > 2 and ∠(tn − b0,vn) → 0 as n → ∞, where
∠ denotes the angle between two vectors. The previous conditions ensure that
several such sequences can be found. If for all triples in T b0

n all local tests (23)
reject the hypotheses (12), we have evidence for the existence of a mode at the
point b0. By choosing the test locations as the vertices of an equidistant grid
no prior knowledge about the location of b0 has to be assumed. Theorem 3.4
below states that the procedure detects all modes of the density with probability
converging to one as n → ∞.

Theorem 3.4. Assume the conditions of Theorem 3.2 and suppose that for any
mode b0 in (a1,a2) there are functions gb0 : Rd → R, rb0 : R → R such that
the density fβ has a representation of the form

fβ(b) ≡ (1 + gb0(b))rb0(‖b− b0‖) (24)

in an open neighborhood of b0. Furthermore, let gb0 be differentiable in an open
neighborhood of b0 with gb0(b) = o(1) and 〈∇gb0(b), e〉 = o(‖b − b0‖) when

b → b0 for all e ∈ R
d with ‖e‖ = 1. In addition, let f̃b0 be differentiable in an

open neighborhood of zero with f̃ ′
b0
(h) ≤ −ch(1 + o(1)) for h → 0.

If min{h : h ∈ H(Tn)} ≥ C log(n)1/(2d+3)n−1/(2d+3) is nonempty for some
sufficiently large constant C > 0, then the procedure described in the previous
paragraph detects the mode b0 with probability converging to one as n → ∞.

The rate for the localization of the modes is n−1/(2d+3) (up to some log-
arithmic factor). The expected optimal rate for mode detection in an inverse
problem with ill-posedness of degree r over a 2-Hölder class is n−1/(d+2r+4).
This has been rigorously proven in some special cases such as univariate density
deconvolution, see Wieczorek (2010). Since the ill-posedness of the Radon trans-
form is d−1

2 and 2d+3 = d+2d−1
2 +4, the obtained rate matches the expected

optimal rate. Assumption 4 requires hmax � log(n)−14γ/(d−1)−5n2γ/(d−1)−1. To
be able to include scales of the order n−1/(2d+3) we need γ > (d2 − 1)/(2d+ 3).
The right hand side is smaller than one for d = 2, 3.

4. Finite sample properties

In this section we illustrate the finite sample properties of the proposed test in
a bivariate and a trivariate setting. In the bivariate setting we illustrate how
simultaneous tests for the hypotheses (10) and (11) can be used to obtain a
graphical representation of the local monotonicity properties of the density. In
the trivariate setting we investigate the performance of the test for modality at
a given point b0 (see the hypotheses in (12)) and the dependence of its power
on the distribution of X.

As test function we consider the simplest polynomial which satisfies the con-
ditions of Assumption 1 for d = 2, 3, that is,

φ(x) = c(56x3 + 21x2 + 6x+ 1)(1− x)61{x ≤ 1}, x ∈ [0,∞),
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with c such that
∫
φ = 1. Figure 2 displays the function Hdφ̃

(d−1) for d = 2, 3.
Throughout this section the nominal level is fixed as α = 0.05, and all level and
power statements are in percent. Except for Table 2, none of the simulations in
this section assumes knowledge of the design density fΘ or uses a parametric
specification of it.

Fig 2. The function Hdφ̃
(d−1) for d = 2 (left) and d = 3 (right).

4.1. Inference about local monotonicity of a bivariate density

We follow the multiscale approach in Section 3.1 to obtain a graphical repre-
sentation of the monotonicity behavior for a bivariate density of random coeffi-
cients. To test the hypotheses (11) we use (23) with Tn = Tt ×{h0}× Tv. Here,
h = h0 = 0.5 is fixed and the set of test locations Tt is defined as the set of
vertices on an equidistant grid in the square [−1, 2]2 with width one. Finally,
the set of test directions is

Tv =
{
v1 = −v3 = 2−

1
2 (1, 1)�,v2 = −v4 = 2−

1
2 (−1, 1)�

}
.

The data are simulated with fβ the density of the normal mixture

1
3N ((−0.4,−0.57)�, 0.2I) + 1

3N ((1.5,−0.52)�, 0.2I) + 1
3N ((0.45, 1.6)�, 0.15I).

The design is chosen such that Θi is uniformly distributed on the sphere S
1.

Figure 1 in Section 3.1 displays the monotonicity behavior of the density fβ
based on sample size n = 20000. Each arrow at a location t in direction v
displays a rejection of a hypothesis (11). The map indicates the existence of
modes around the points (−0.5,−0.5)�, (1.5,−0.5)�, and (0.5, 1.5)� and thus
detects the true modes fairly well.

4.2. Influence of the design on the power

Given the random coefficients model with d = 3, we study the power of the test
for the existence of a mode at a given location b0 considering only few local
tests. The postulated mode is given by the point b0 = (0, 0, 0)� and we take
Tn = {(t, h,v) : h = 1, t = v ∈ {±ei, i = 1, 2, 3}} with ei the i-th standard
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unit vector in R
3. We conclude that fβ has a local maximum at the point b0,

whenever all hypotheses H
tj ,h0,vj

0,− , j = 1, . . . , 6, are rejected, that is,

sgn(cd)T̂tj ,h0,vj > κtj ,h0,vj
n (α), for all j = 1, . . . , 6, (4.1)

with κ
tj ,h0,vj
n (α) as defined in (21). Recall that the quantiles κ

tj ,h0,vj
n (α) are

constructed in such a way that the probability of at least one false rejection
within the six tests (4.1) is bounded by α. However, the mode test detects the
presence of a mode whenever all six tests (4.1) are rejected at the same time.
The multiscale method is therefore rather conservative for the specific task of
mode detection. In this simulation, we also study a calibrated version of the
test where the quantiles are chosen such that the test keeps its nominal level
α = 0.05 and detects the presence of a non existing mode in about 5 percent
of the simulation runs. For the calibration of the test we work under the null
hypothesis assuming that fβ is uniform. Therefore, knowledge about the true
unknown density fβ is not required.

Numerical simulations for random coefficients model without inter-
cept: At first, we consider model (1) with uniform design Xi ∼ Unif[−5, 5]3. To
study the level of the test, we used fβ(β) ∝ 1(β ∈ [−5, 5]3). For the power we
took fβ as the density of a trivariate standard normal distribution. All results
are based on the local tests (4.1) and 1000 repetitions. Level simulations with
the theoretical quantiles confirm that the multiscale test keeps its nominal level
as the percentage of false rejections of at least one of the six hypotheses in (4.1)
for sample size n ∈ {250, 500, 1000} is nearly 5 percent. The results of the mode
test are reported in Table 1.

Next, we investigate an asymmetric distribution of the directions Θi by sam-
pling Xi ∼ N ((3, 0, 0)�, 2I), with I the 3× 3 identity matrix. We only consider
the calibrated mode test. Results are reported in columns five and six in Table
1. Compared to the case of uniform design, we observe a decrease in the power
of the mode test (4.1). The explanation is that the uniform design on the Xi

induces a more uniform distribution of Θi on the sphere which makes it simpler
to recover information about the joint density as discussed in Section 2.

Table 1

Simulated level and power of the test (4.1) for a mode considering uniform design
Xi ∼ Unif[−5, 5]3 and normal design Xi ∼ N ((3, 0, 0)�, 2I). Results with theoretical

quantiles are in the second column. Results where κ
tj ,h0,vj
n (α) in (4.1) are replaced by

calibrated quantiles are in all other columns.

Xi ∼ Unif[−5, 5]3 Xi ∼ N ((3, 0, 0)�, 2I)
n power level (cal.) power (cal.) level (cal.) power (cal.)
250 9 4.5 91.0 4.7 66.1
500 15.7 4.6 99.1 4.5 78.8
1000 79.1 5.0 100 4.5 90.6

Numerical simulations for the random coefficients model with in-
tercept: We study model (2) with d = 3. In a first simulation, we sample the
random vectors (Xi,2, Xi,3)

� from a standard bivariate Cauchy distribution,
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such that the density fΘ is constant. Except for the different design, we con-
sider otherwise the same test settings as above. The simulated level and power
of the calibrated version of the test (4.1) are reported in Table 2. To investigate
the influence of the estimation of the design density fΘ on the power of the test
we compare this with simulations for which we assume that the density fΘ is
known to be constant. Compared to the power approximations for unknown fΘ,

Table 2

Same as Table 1 but for random coefficients model with intercept and (Xi,2, Xi,3)
� from a

standard bivariate Cauchy distribution. In the fourth and fifth column we assume that the
density fΘ is known.

fΘ unknown fΘ known
n level (cal.) power (cal.) level (cal.) power (cal.)
250 4.8 91.3 5.0 93.3
500 5.2 99.0 5.2 99.7
1000 5.3 100 5.3 100

we observe only a slight increase in power of the test for known fΘ.
Finally, we consider two designs which do not satisfy Assumption 3. Table

3 reports the level and power for the same setting as above except that now
(Xi,2, Xi,3)

� is drawn from a standard normal distribution or (Xi,2, Xi,3)
� ∼

Unif[−5, 5]2. We observe only a slight decrease in the power of the test for
normally distributed design compared to the setting where Assumption 3 holds.
Even under uniform design, the test performs fairly well.

Table 3

Same as Table 1 but for random coefficients model with intercept and
(Xi,2, Xi,3)

� ∼ N ((0, 0)�, I) (second and third column) and (Xi,2, Xi,3)
� ∼ Unif[−5, 5]2

(fourth and fifth column).

(Xi,2, Xi,3)
� ∼ N ((0, 0)�, I) (Xi,2, Xi,3)

� ∼ Unif[−5, 5]2

n level (cal.) power (cal.) level (cal.) power (cal.)
250 5.1 88.3 5.1 64.8
500 5.5 98.3 5.1 78.1
1000 5.1 100 5.5 89.4

4.3. Multiscale mode testing

For multimodal densities which have a second mode close to the test location
b0 testing different bandwidths simultaneously can be advantageous to separate
the modes. This is illustrated by the following example, where we consider the
random coefficients model without intercept with d = 2. The data are simulated
with fβ being the density of the normal mixture

1

2
N
(
(0, 0)�,

( 0.05 0
0 0.4

))
+

1

2
N ((2, 0)�, 0.1 · I).

We consider a design such that Θ is uniformly distributed on the circle S
1.

The level α is fixed to five percent. We conducted simultaneously twelve tests
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Fig 3. Rejected hypotheses of the twelve tests. Each arrow indicates a decrease on a scale
that corresponds to the length of the arrow.

with three different scales h ∈ {0.5, 1, 2.5} for the hypotheses (12) with b0 =
(0, 0)�. The tests are given by {(ti, hj ,vi) : i = 1, . . . , 4;hj ∈ {0.5, 1, 2.5},
vi ∈ {±e1,±e2}, ti = hjvi}. We analyze the outcome of the twelve tests in
two ways. Firstly, we investigate the performance of each of the three tests for
modality for the bandwidths h = 2.5, h = 1 and h = 0.5 separately. Secondly, we
consider the performance of a combined test for modality using two scales h = 1
and h = 0.5. The power approximations for sample sizes n ∈ {2000, 5000, 15000}
based on 1000 repetitions are displayed in Table 4.

Table 4

Power of the multiscale test for modality. The mode tests for the bandwidths h = 2.5, h = 1
and h = 0.5 are in the second, third and fourth column. The combined mode test using

h = 1 and h = 0.5 is in the fifth column.

n h = 2.5 h = 1 h = 0.5 h ∈ {0.5, 1}
2000 100 0 0 25

5000 100 0 1 86.3

15000 100 0 68.7 100

Figure 3 illustrates the results of the twelve tests for the hypotheses (12)
conducted simultaneously. Each arrow at a location t in direction v displays a
rejection of a hypothesis (12) and the length of the arrows corresponds to the
respective bandwidths.

The results in Table 4 show that the mode test for bandwidth h = 2.5 detects
in all cases a mode in a neighborhood of (0, 0)�. However, this bandwidth is too
large to distinguish between the underlying modes of fβ at (0, 0)� and (2, 0)�.
The test for the bandwidth h = 1 fails to detect the mode as h = 1 is still too
large to separate the two modes of fβ. On the contrary, h = 0.5 is too small
to detect the decrease with small slope corresponding to the eigenvalue 0.4 of
the covariance matrix in the first mixture component of fβ. This effect vanishes
for increasing sample size. By conducting the tests for bandwidths h = 1 and
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h = 0.5 simultaneously, we are able to detect the mode at (0, 0)� in most of the
simulations.

4.4. Comparison with the parametric random coefficients model

It is common in the literature to use a parametric specification of the random
coefficients. Usually, β is assumed to have a multivariate normal distribution.
In this section, we compare our nonparametric approach with mode estimation
under a parametric specification of the random coefficient distribution. Our find-
ings are similar to what is usually observed when parametric and nonparametric
methods are compared. If the parametric specification of the model is consistent
with the data generating process, the parametric approach outperforms the non-
parametric one in terms of estimation errors, power of tests, and computation
time. However, when the parametric specification and the data generating pro-
cess differ, a model misspecification bias is present in the parametric estimation.
This will not vanish, even if the sample size is large. The nonparametric model
does not suffer from this problem and can in these cases perform better than
the parametric model. We illustrate this effect in the following simulations.

We consider the parametric random coefficients model Y = β̃�X where the
density of β̃ belongs to some parametric family fβ̃(b; η) with parameter η.

Note that we can rewrite the equation as a mixed model Y = γ�X + u�X.
Here γ = E(β̃) are fixed effects and u = β̃ − E(β̃) are random effects with
expectation 0. If fβ̃(b; η) is unimodal with a mode at E(β̃), we just need to
derive confidence statements for γ. This is in particular true if fβ̃(b; η) is a
normal density, which is the most common choice. A simple and efficient way to
estimate γ is heteroscedasticity robust regression. Obviously, the computational
complexity of this method is much smaller than the complexity of our algorithm.

Our test example is the random coefficients model with intercept (2) with
d = 3 and (Xi,2, Xi,3)

� sampled from a standard bivariate Cauchy distribution.
The distribution of the random coefficients βi in the data generating process
is given by (i) a standard Gaussian, (ii) the normal mixture 0.5N (0, 0.1I) +
0.5N ((2, 0, 0)�, 0.1I) and (iii) an exponential-2 distribution for βi,1 in addition
(βi,2, βi,3)

� ∼ N (0, 0.1I) independent of the first component. Table 5 reports
estimates for γ obtained by transforming Y and X to S and Θ, and running a
heteroscedasticity robust regression as described in Wooldridge (2013), Chapter
8.

In column (i) of Table 5 the parametric assumption holds and the procedure
detects the true mode 0 of the density with high precision compared to the
bandwidth choice h = 1 in the simulations presented in Table 2 in Section
4.2. In contrast, for the bimodal density in column (ii) the coefficient vector
(1, 0, 0)� does not describe a representative member of the population because
the misspecification bias is too large. For the skewed distribution of column (iii)
the estimator also fails to detect the mode of the density for the same reason.

By applying our testing procedure in the setting of columns (ii) and (iii) we
can show that the OLS results do not represent modes of the density. To this
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Table 5

Results of OLS for model Y = γ�X+ u�X for d = 3, n = 1000 and (Xi,2, Xi,3)
� drawn

from a standard bivariate Cauchy distribution. The distribution of the true random
coefficients βi is a standard Gaussian in column (i), the normal mixture

0.5N (0, 0.1I) + 0.5N ((2, 0, 0)�, 0.1I) in column (ii) and an exponential-2 distribution for
βi,1 and (βi,2, βi,3)

� ∼ N (0, 0.1I) independent of the first component in column (iii).

(i) (ii) (iii)
γ̂1 0.00 (0.02) 1.00 (0.02) 2.03 (0.03)
γ̂2 0.02 (0.02) 0.00 (0.01) -0.02 (0.02)
γ̂3 0.00 (0.02) 0.01 (0.01) 0.02 (0.02)

end, we set in (ii)

t = (0.5, 0, 0)�, h = 0.5, v = (1, 0, 0)�

and in (iii)
t = (1, 0, 0)�, h = 1, v = (1, 0, 0)�.

Both tests reject Ht,h,v
0,− (in (ii) in 100% and in (iii) in 95.5% percent of 1000

repetitions). Therefore, our procedure shows that neither (1, 0, 0)� in (ii) nor
(2, 0, 0)� in (iii) are modes of the underlying density. Of course, the parametric
model would be able to detect the modes in cases (ii) and (iii) with a differ-
ent parametric specification. However, this would require considerable a priori
knowledge about the data. If we did not interpret the results as estimators for
the mode but as estimators for E(β), the parametric method would perform
well.

5. Application to consumer demand data

Heterogeneity of consumers is a major challenge in modeling and estimating
consumer demand. In several different demand models random coefficients were
proposed to account for the heterogeneity in the population of consumers.

5.1. Model and data

In this section we are interested in the almost ideal demand system (AIDS) which
was initially proposed by Deaton and Muellbauer (1980) with fixed coefficients.
This model does not explain demand for a product itself but explains the budget
share spent on a product by a linear equation. The explanatory variables are
log prices and the log of total expenditure divided by a price index. A detailed
discussion of the model is contained in Lewbel (1997).

Fixed coefficients in this model mean that all consumers are assumed to react
in the same way when the price of a product changes. It is well known that
some consumers are very price sensitive and change their behavior significantly
with small variations in prices while other consumers are less price sensitive.
This type of heterogeneity can be modeled by a random coefficient on log prices
which is assumed to vary across the population of consumers. A similar argument
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suggests a random coefficient on log total expenditure. Recently, applications of
the AIDS using a nonparametric random coefficient specification instead of fixed
coefficients were presented in Hoderlein et al. (2017) and Breunig and Hoderlein
(2018).

We apply our multiscale test to detect modes in the random coefficients for
budget shares for food at home (BSF)

BSFi = βi,1 + βi,2 ln(TotExpi) + βi,3 ln(FoodPricei). (4.2)

Food expenditure is a large fraction of total expenditure and is roughly about
20%.

We analyze the data of the British Family Expenditure Survey which ran from
1961 to 2001. It reported yearly cross sections for household income, expenditure
and other characteristics of roughly 7000 households. We use data of the years
1997–2001 only which gives a sample size of about 33000. Budget shares of food
are generated by dividing the expenditure for all food by total expenditure. Food
prices are reported as relative prices in comparison to a general prize index. The
variable TotExp is normalized to January 2000 real prizes.

Assumption 3 and the numerical simulations in Section 4 suggest that our
test has more power when the normalized regressors are approximately uniform
on the sphere. We can achieve this by symmetrizing the design in model (4.2)
as follows:

BSFi = β̃i,1 + β̃i,2 (ln(TotExpi)− 5) + β̃i,3 (25 ln(FoodPricei)− 0.3) . (4.3)

The relation of the modified model to the random coefficients in (4.2) is βi,1 =

β̃i,1 − 5β̃i,2 − 0.3β̃i,3, βi,2 = β̃i,2, βi,3 = 25β̃i,3. Observations of the new variable
ln(TotExpi)−5 lie between −5 and 3.7. The observations of 25 ln(FoodPricei)−
0.3 range from −1 to 1.3.

5.2. Results

For a first evaluation of the data we assumed fixed coefficients in model (4.3)
and estimated the model with ordinary least squares (OLS).

Table 6

Results of OLS for model (4.3) with fixed coefficients.

β̃1 β̃2 β̃3

0.1940 −0.0587 0.0005

(0.000) (0.001) (0.001)

In order to find modes of the density we conducted simultaneously tests
on the 5% level of the form (12) on the two scales h1 = 0.75 and h2 = 0.5.
In the simulation settings in Section 4.2 our testing procedure performed well
even when the Xi were not Cauchy distributed. Therefore, to obtain a testing
procedure which is more flexible with respect to the design, we use the non-
parametric density estimator f̂Θ instead of a parametric estimation procedure.
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We were testing for modes on the equidistant grid covering [−1, 1]3 with grid
width 1. Hence, the grid had 27 nodes. For every grid point b ∈ R

3 tests of the
hypotheses (12) were conducted for the directions and locations

t1 = b+ hje1, v1 = e1, t4 = b− hje2, v4 = −e2,
t2 = b− hje1, v2 = −e1, t5 = b+ hje3, v5 = e3, (j = 1, 2)
t3 = b+ hje2, v3 = e2, t6 = b− hje3, v6 = −e3,

where e1, e2, e3 ∈ R
3 denote the standard unit vectors of R3. We detected a

single mode in the neighborhood of the grid point (0, 0, 0)� for the tests with
bandwidth h1 = 0.75. The test for the bandwidth h2 = 0.5 did not detect a
mode.

In the following we use nonparametric density estimation to motivate hy-
potheses for the testing procedure. It is important that this estimate and the
test are independent, otherwise the testing procedure would be biased and could
not guarantee a bound on the error rate. We meet the requirement by splitting
the sample in two independent equally sized sub-samples. The first sub-sample
is used for nonparametric estimation of the random coefficient density in model
(4.3) with the estimator in Hoderlein et al. (2010). Figure 4 gives contour plots
for the joint densities of fβ̃1,β̃2

, fβ̃1,β̃3
, and fβ̃2,β̃3

based on about 16500 observa-
tions. We chose the smoothing parameters h and g in the estimator in Hoderlein
et al. (2010) equal to 0.05 and 0.1, respectively. These values are hand-picked af-
ter trying different smoothing parameters. We noticed for smaller parameters an
increase of small fluctuations in the estimate which indicated overfitting. Larger
smoothing parameters did not change the overall shape of estimate. They just
made the mode slightly flatter. We interpreted this as oversmoothing and con-
cluded that 0.05 and 0.1 are a good compromise. Note that these bandwidth
choices do not affect the level or the power of the test performed below as the test
is completely independent from this estimator. The nonparametric estimate sug-
gests that the random coefficient density of fβ̃1,β̃2,β̃3

has one (well-pronounced)
mode close to

(β1, β2, β3) = (0.25,−0.07, 0.02). (4.4)

This is consistent with the results of the test above which found a mode close to
(0, 0, 0). Since the marginal densities of β1, β2, β3 are nearly symmetric it is also
consistent that the mode is close to the OLS estimates given in Table 6. With
a significantly skewed or with a multimodal random coefficient density location
of modes would differ from OLS.

With the second sub-sample we studied whether a mode can be found for the
location given by (4.4) on a smaller scale than in the test above. This would then
indicate that the location of the mode is not (0, 0, 0)�. Our primary interest is
in the coefficients on β̃2 and β̃3 on total expenditure and food prices. In order to
see if the mode is indeed in a location where β̃2 < 0 and β̃3 > 0, we conduct two
mode tests (4.4) simultaneously for the bandwidths h1 = 0.07 and h2 = 0.02,
that is, we test twelve hypotheses (12) for the following locations and directions
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Fig 4. Nonparametric estimates of the joint densities of fβ̃1,β̃2
(left), fβ̃1,β̃3

(middle), and

fβ̃2,β̃3
(right).

(ti,vi). On scale h1 = 0.07, we tested

t1 = (0.32,−0.07, 0.02)�, v1 = (1, 0, 0)�,

t2 = (0.18,−0.07, 0.02)�, v2 = −v1,

t3 = (0.25, 0, 0.02)�, v3 = (0, 1, 0)�,

t4 = (0.25,−0.14, 0.02)�, v4 = −v3,

t5 = (0.25,−0.07, 0.09)�, v5 = (0, 0, 1)�,

t6 = (0.25,−0.07,−0.05)�, v6 = −v5

and on scale h2 = 0.02,

t7 = (0.27,−0.07, 0.02)�, v7 = v1, t10 = (0.25,−0.09, 0.02)�, v10 = −v3,

t8 = (0.23,−0.07, 0.02)�, v8 = −v1, t11 = (0.25,−0.07, 0.04)�, v11 = v5,

t9 = (0.25,−0.05, 0.02)�, v9 = v3, t12 = (0.25,−0.07, 0)�, v12 = −v5.

The test rejected all local hypotheses on scale h1 = 0.07 but not on scale h2 =
0.02. This gives evidence that the mode is in a location where β̃2 is negative but
we cannot decide whether β̃3 is positive at the mode.

Let us return to the initial model (4.2). The results of our test give evidence
that a mode exists close to

(β1, β2, β3) = (0.5,−0.07, 0.5)

with strong evidence that β2 is indeed negative. This vector of coefficients de-
scribes a representative member of the majority of consumers. It suggests that in
the majority group food budget shares decrease with increasing log total expen-
diture. The nonparametric estimate in Figure 4 shows that there is considerable
variance among consumers around this representative member.

Appendix A: Nonparametric estimators for fΘ and fS,Θ

In this section we discuss the estimation of the densities fΘ and fS,Θ and related
quantities. The results are derived by standard arguments. They are necessary
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for our analysis of the test. We use kernel density estimators based on the second
half of the observations (Si,Θi), i = n + 1, . . . , 2n. The density of the random
vector X1 is denoted by fX. In the random coefficients model without intercept
fX is a d-variate density and a (d−1)-variate density in the random coefficients
model with intercept. Throughout the following, K : R → R is assumed to be
Lipschitz continuous, non-negative and

∫
K = 1.

In the random coefficients model without intercept, we use the kernel density
estimator proposed by Bai et al. (1988)

f̂Θ(θ) =
C(h∗)

nhd−1
∗

2n∑
i=n+1

K
(1− 〈Θi,θ〉

h2
∗

)
, h∗ > 0, (4.5)

with normalization constant

C(h∗) := hd−1
∗

(∫
Sd−1

K
(1− 〈θ′,θ〉

h2
∗

)
dθ′

)−1

.

As shown in Bai et al. (1988), the integral does not depend on θ and C(h∗)
converges to some positive constant as h∗ → 0. For the joint density of (S,Θ),
we propose the kernel density estimator

f̂S,Θ(s,θ) =
1

nhd
+

C(h+)

2n∑
i=n+1

K
(1− 〈Θi,θ〉

h2
+

)
K
(Si − s

h+

)
, h+ > 0. (4.6)

In the random coefficients model with intercept the symmetrizations Si =
ζiYi/‖Xi‖ and Θi = ζiXi/‖Xi‖ with Rademacher variables ζi correspond to
point reflections of the densities at the origin. Thus, the density fΘ is in gen-
eral not continuous on the boundary of the hemisphere S

d−1
+ (see also (18)).

Smoothness is, however, necessary to control the bias. Therefore, we use a two
step procedure for the estimation of fΘ and fS,Θ in the random coefficients
model with intercept. First, we estimate the density of the non-symmetrized
samples Yi/‖Xi‖ and Xi/‖Xi‖, i = n + 1, . . . , 2n on the hemisphere S

d−1
+ and

on R× S
d−1
+ , respectively. The estimators for fΘ and fS,Θ are then the same as

(4.5) and (4.6) except that now θ ∈ S
d−1
+ and the normalization constant C(h∗)

is replaced by a function θ 
→ C(h∗,θ), defined by

C(h∗,θ) := hd−1
∗

(∫
S
d−1
+

K
(1− 〈θ′,θ〉

h2
∗

)
dθ′

)−1 (
θ ∈ S

d−1
+

)
.

In a second step, we symmetrize the estimators and divide by two to get esti-
mators of the densities fΘ and fS,Θ on the whole domain.

In the next lemma we establish convergence of these estimators. If in Lemma
A.1 fX follows a multivariate Cauchy distribution, then γ := 1. Otherwise, γ
comes from Assumption 3 (iii).

Lemma A.1. Suppose Assumption 3 is satisfied for some γ > 0 and set γ = 1 in
the case of the random coefficients model with intercept. In both models, the esti-
mator f̂Θ with bandwidth h∗ = O(log(n)−3/γ) and h∗ ≥ log(n)7/(d−1)n−1/(d−1)

satisfies
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(i) supθ∈Sd−1

∣∣E[f̂Θ(θ)
]
− fΘ(θ)

∣∣ = O
(
hγ
∗
)
;

(ii) supθ∈Sd−1

∣∣f̂Θ(θ)− E
[
f̂Θ(θ)

]∣∣ = OP

(√
log(n)

nhd−1
∗

)
;

(iii) supθ∈Sd−1

∣∣f̂Θ(θ)− fΘ(θ)
∣∣ = O

(
log(n)−1

)
, for n → ∞, a.s..

The proof is deferred to the end of this section. Let us now discuss prop-
erties of the density fS,Θ(s,θ). By (5), fS,Θ(s,θ) = fΘ(θ)Rfβ(s,θ). Under
Assumption 2, fβ is compactly supported and consequently, fS,Θ(s,θ) and
s 
→ log(|s|)2fS,Θ(s,θ) for |s| ≥ 1 are uniformly bounded. Moreover, fS,Θ is
Hölder continuous with Hölder constant γ. This is a straightforward conse-
quence of the Hölder γ-continuity of fΘ shown in the proof of Lemma A.1 and
the identity

Rfβ(s,θ) =

∫
Rd−1

fβ(sθ + x1θ1 + . . .+ xd−1θd−1)dx,

where θ1, . . . ,θd−1 denote an orthonormal basis of the orthogonal complement
of span{θ}, together with the compact support and the Lipschitz-continuity of
fβ (following from Assumption 2). Moreover, the properties of fS,Θ discussed
above also hold in quantum homodyne tomography under Assumption 2’. We
point out that the marginal densities of the Wigner function, which are given
by the Radon transform, are nonnegative. This will be used later to bound the
standard deviation σt,h,v away from zero.

If in Lemma A.2 fX follows a multivariate Cauchy distribution, then γ := 1.
Otherwise, γ comes from Assumption 3 (iii).

Lemma A.2. Let Assumptions 2 resp. 2’ and 3 hold and consider the es-
timator f̂S,Θ in (4.6) with bandwidth choice h+ = O(log(n)−3/γ) and h+ ≥
log(n)3/dn−1/(2d). Then

sup
(s,θ)∈R×Sd−1

∣∣f̂S,Θ(s,θ)− fS,Θ(s,θ)
∣∣ = O(log(n)−2) for n → ∞ almost surely.

For the estimation of the test statistic T̂t,h,v and the limiting process X̂t,h,v

the quantities 1/fΘ and
√
fS,Θ need to be estimated. The functions (·)−1 and√· are not smooth in zero and we therefore introduce the cut-off estimators

f̃Θ := f̂Θ ∨ log(n)−1 and f̃S,Θ := f̂S,Θ ∨ log(n)−2. (4.7)

By the boundedness from below of fΘ and Lemma A.1 it holds f̃Θ = f̂Θ almost
surely for n sufficiently large.

Proof of Lemma A.1. We only give a detailed proof for the case without in-
tercept, i.e. (i)-(iii) in Assumption 3 hold. In the case with intercept, we use
C(h∗) ≤ C(h∗,θ) ≤ 2C(h∗) and the fact that C(h∗,θ) is Lipschitz-continuous
with respect to θ to arrive at the same conclusion.
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To prove (i) observe that∣∣E[f̂Θ(θ)
]
− fΘ(θ)

∣∣ =∣∣∣C(h∗)

hd−1
∗

∫
Sd−1

K
(1− 〈θ′,θ〉

h2
∗

)
fΘ(θ′)dθ′ − fΘ(θ)

∣∣∣
≤C(h∗)

hd−1
∗

∫
‖θ′−θ‖�h∗

K
(1− 〈θ′,θ〉

h2
∗

)∣∣fΘ(θ′)− fΘ(θ)
∣∣dθ′.

Here, we used the identity 1−〈θ′,θ〉 = ‖θ′−θ‖2/2 and the compact support of
K. Since fΘ(θ) =

∫∞
0

rd−1fX(rθ)dr, we have by Assumption 3 (iii) |fΘ(θ′) −
fΘ(θ)| ≤

∫∞
0

rd−1|fX(rθ′)− fX(rθ)|dr � hγ
∗ for ‖θ′ − θ‖ � h∗. By definition of

the constant C(h∗), we obtain
∣∣E[f̂Θ(θ)

]
− fΘ(θ)

∣∣ � hγ
∗ and this proves (i).

Next, we bound the stochastic error term (ii) using an entropy argument

and Bernstein’s inequality. Observe that by the Lipschitz-continuity of K, f̂Θ−
E[f̂Θ] is Lipschitz-continuous with Lipschitz constant of order h−d−1

∗ . For an :=√
log(n)

nhd−1
∗

, let {θj : j = 1, . . . ,M} be defined as the set of smallest cardinality

such that
⋃M

j=1 Bc′hd+1
∗ an

(θj) ⊃ Sd−1 for some constant c′ > 0. If c′ > 0 is
chosen small enough, then

P

(
sup

θ∈Sd−1

∣∣f̂Θ(θ)− E
[
f̂Θ(θ)

]∣∣ > can

)
≤

M∑
j=1

P

(∣∣f̂Θ(θj)− E
[
f̂Θ(θj)

]∣∣ > c

2
an

)
.

(4.8)

In order to bound the probability, we apply Bernstein’s inequality to f̂Θ(θj)−
E[f̂Θ(θj)] =

∑2n
i=n+1 Zi with

Zi :=
1

nhd−1
∗

C(h∗)K
(1− 〈Θi,θ〉

h2
∗

)
− 1

n
E
[
f̂Θ(θj)

]
.

We find |Zi| ≤ C1

nhd−1
∗

for some constant C1 > 0, and for some constant C2 > 0,

E
[
Z2
i

]
≤ C(h∗)

2

n2h2d−2
∗

∫
Sd−1

K2
(1− 〈θ′,θ〉

h2
∗

)
fΘ(θ′)dθ′ ≤ C2

n2hd−1
∗

using the boundedness of K and fΘ as well as the definition of C(h∗). Hence,
an application of Bernstein’s inequality yields with (4.8),

P

(
sup

θ∈Sd−1

∣∣f̂Θ(θ)−E
[
f̂Θ(θ)

]∣∣ > can

)
≤ 2M exp

( −a2nc
2/8

C2n−1h−d+1
∗ + cC1an(6n)−1h−d+1

∗

)
.

Since M is a polynomial power of n, the claim follows by choosing the constant
c large enough.

For (iii) one proceeds similarly with the choice an = (log(n) log log(n))−1

using the summability of the probabilities.
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To prove Lemma A.2, we make use of a slightly modified version of Proposi-
tion 2.2 in Giné and Guillou (2001) which we state below as Proposition A.1. If
F is a uniformly bounded class of measurable functions on a measurable space
(S,S) with a measurable and bounded envelope F , then F is said to be a mea-
surable uniformly bounded VC class of functions if there are constants A, v > 0
such that

sup
Q

N(F , L2(Q), ε‖F‖L2(Q)) ≤
(A
ε

)v

for all 0 < ε < 1, where N(T, d, ε) denotes the ε-covering number of the metric
space (T, d) and the supremum is taken over all probability measures on (S,S).
Proposition A.1. Let P be any probability measure on (S,S) and let ξi, i =
1, . . . , n, be independent with common law P . Let further F be a measurable
uniformly bounded VC class of functions and let σ2 and U be any numbers such
that σ2 ≥ supf∈F VarP f , U ≥ supf∈F ‖f‖∞ and 0 < σ ≤ U . Then there exist
universal constants C,K ′, L > 0 such that the exponential inequality

P

(
sup
f∈F

∣∣∣ n∑
i=1

(
f(ξi)− E[f(ξi)]

)∣∣∣ > t

)
≤ K ′ exp

(
− 1

K ′
t

U
log

(
1 +

tU(√
nσ + L

√
vU

√
log(AUσ−1

)2)) (4.9)

is valid for all t ≥ C(vU log(AUσ−1) +
√
vnσ

√
log(AUσ−1)).

In contrast to Proposition 2.2 in Giné and Guillou (2001), Proposition A.1
contains the explicit dependence of the right hand side of (4.9) on the constants
A and v.

Proof of Lemma A.2. Similarly as in the proof of Lemma A.1, it is enough to
consider the random coefficients model without intercept only and to work under
Assumption 3, (i)-(iii). If the design density is multivariate Cauchy, we can
derive the properties in a similar way for R× S

d−1
+ . An upper bound of the bias

can be derived similarly to Lemma A.1 (i). For the stochastic error

P

(
sup

(s,θ)∈R×Sd−1

∣∣∣f̂S,Θ(s,θ)− E
[
f̂S,Θ(s,θ)

]∣∣∣ > log log(n)−1 log(n)−2

)
we apply Proposition A.1 to the function class

Fn :=

{
(S,Θ) 
→ K

(1− 〈Θ,θ〉
h2
+

)
K
(S − s

h+

)
, (s,θ) ∈ R× S

d−1

}
,

which depends on n via h+. By the boundedness of K we find U, σ � 1. To show
that Fn is a VC class of functions, we introduce a discretization of R× S

d−1 as
follows: Let c > 0 be a sufficiently small constant only depending on the kernel
K. We chose a grid {θj : j = 1, . . . ,M1} of Sd−1 with grid width at most cεh2

+.

Obviously, this is possible with M1 � (ε−1h−2
+ )d−1. Moreover, introduce the set
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of intervals Ik = [k, k + 1), k ∈ Z. For each probability measure Q there are at
most �(cε)−2� sets Iij × S

d−1, j = 1, . . . , �(cε)−2�, such that Q(Iij × S
d−1) ≥

(cε)2. Let {sj : j = 1, . . . ,M2} be an equidistant grid of

Ĩh+ :=

{
s ∈ R : dist

(
s,

�(cε)−2
⋃
j=1

Iij

)
≤ 1

}

with grid width ch+ε and let sM2+1 denote an arbitrary point in ĨCh+
. Basic

calculations show M2 � ε−3h−1
+ . Moreover, the subset of Fn indexed by{

sj : j = 1, . . .M2 + 1
}
×
{
θj : j = 1, . . . ,M1

}
=:

{
(sj ,θj) : j = 1, . . . ,M1(M2 + 1)

}
is an ε-covering set of Fn. To see this, fix (s,θ) ∈ Ĩh+ × S

d−1. Then∫
R×Sd−1

∣∣∣K(1− 〈Θ,θ〉
h2
+

)
K
(S − s

h+

)
−K

(1− 〈Θ,θj〉
h2
+

)
K
(S − sj

h+

)∣∣∣2dQ(S,Θ)

� ‖θ − θj‖2
h4
+

+
|s− sj |2

h2
+

by the Lipschitz continuity of K. Hence, by construction of the set Ĩh+ × S
d−1

there exists j ∈ {1, . . . ,M1(M2 + 1)} such that

‖θ − θj‖2
h4
+

+
|s− sj |2

h2
+

< ε2.

For (s,θ) ∈ (Ĩh+ × S
d−1)C we obtain∫

R

∫
Sd−1

(
K
(S − s

h+

)
+K

(S − sM2+1

h+

))2

dQ(S,Θ) < ε2

since the support of K( ·−s
h+

) is compact and does not intersect with any of the

sets Iij ×S
d−1, j = 1, . . . , �(cε)−2� for h+ sufficiently small. A similar argument

applies to K(h−1
+ (· − sM2+1)). Hence,

N(F , L2(Q), ε) �
(
ε−1h

(−2d+1)/(d+2)
+

)d+2

and Fn is a VC class of functions with v = d+2 and A = An = h
(−2d+1)/(d+2)
+ .

An application of Proposition A.1 yields

P

(
sup

(s,θ)∈R×Sd−1

∣∣f̂S,Θ(s,θ)− E[f̂S,Θ(s,θ)]
∣∣ > log log(n)−1 log(n)−2

)
=P

(
sup
f∈Fn

∣∣∣ 2n∑
i=n+1

(
f(Si,Θi)− E[f(Si,Θi)]

)∣∣∣ > nhd
+

C(h+) log log(n) log(n)2

)

� exp

(
− 1

4K ′σ2C(h+)2
nh2d

+

log log(n)2 log(n)4

)
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for n sufficiently large. We have used that log(1 + x) = x(1 + o(1)) for x →
0. The last line of the equation converges to zero at a summable rate since
h+ ≥ log(n)3/dn−1/(2d) by assumption which concludes the proof of the uniform

almost sure convergence of f̂S,Θ.

Let us turn to the standard deviation

σt,h,v =
(∫

Sd−1

∫
R

〈θ,v〉2
(
(Hdφ̃

(d−1))(s)
)2 fS,Θ(〈t,θ〉+ hs,θ)

fΘ(θ)2
dsdθ

)1/2

(4.10)

and its estimator defined in (20). The following lemma shows that it is uniformly
bounded from above and below. The proof is deferred to Appendix B.

Lemma A.3. Under Assumptions 1-3 there exist universal constants C1, C2 >
0, and n0 > 0 such that for any n > n0,

C1 ≤ σt,h,v ≤ C2.

The proof is given in Appendix B. The consistency of the estimates f̂Θ and
f̂S,Θ shows that σ̂t,h,v is a consistent estimator of the standard deviation σt,h,v.

Lemma A.4. Under Assumptions 1- 3,

sup
(t,h,v)∈Tn

∣∣σ̂t,h,v − σt,h,v

∣∣ = O
(
log(n)−1

)
for n → ∞, almost surely.

Proof. By Lemma A.3,

∣∣σ̂t,h,v − σt,h,v

∣∣ ≤ ∣∣σ̂2
t,h,v − σ2

t,h,v

∣∣
σt,h,v

�
∫
R×Sd−1

〈θ,v〉2
(
(Hdφ̃

(d−1))(s)
)2∣∣∣fS,Θ(〈t,θ〉+ hs,θ)

fΘ(θ)2
− f̃S,Θ(〈t,θ〉+ hs,θ)

f̃Θ(θ)2

∣∣∣d(s,θ).
By Assumption 3, fΘ is uniformly bounded from below. Thus, f̃Θ is almost
surely uniformly bounded from below for sufficiently large n by Lemma A.1.
This shows that

fS,Θ(〈t,θ〉+ hs,θ)
∣∣∣ 1

fΘ(θ)2
− 1

f̃Θ(θ)2

∣∣∣
+

1

f̃Θ(θ)2

∣∣fS,Θ(〈t,θ〉+ hs,θ)− f̃S,Θ(〈t,θ〉+ hs,θ)
∣∣

= O
(
(log(n)−1

)
a.s..

Here we used the boundedness of fS,Θ and∣∣fS,Θ(〈t,θ〉+ hs,θ)− f̃S,Θ(〈t,θ〉+ hs,θ)
∣∣

≤
∣∣fS,Θ(〈t,θ〉+ hs,θ)− f̂S,Θ(〈t,θ〉+ hs,θ)

∣∣
+
∣∣f̂S,Θ(〈t,θ〉+ hs,θ)− f̃S,Θ(〈t,θ〉+ hs,θ)

∣∣
= O

(
log(n)−2

)
almost surely
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by Lemma A.2. The claim follows now from the integrability of
(
(Hdφ̃

(d−1))(s)
)2

proved in Lemma 3.1 (ii).

Lemma A.5. Under Assumptions 2 resp. 2’ and 3 we have

sup
(s,θ)∈R×Sd−1

∣∣∣√f̃S,Θ(s,θ)−
√

fS,Θ(s,θ)
∣∣∣ = O(log(n)−1) for n → ∞ a.s..

Proof. This is a direct consequence of

sup
(s,θ)∈R×Sd−1

∣∣∣f̃S,Θ(s,θ)− fS,Θ(s,θ)
∣∣∣ = O(log(n)−2) for n → ∞ a.s.

as shown in the proof of Lemma A.4 and

∣∣√f̃S,Θ(s,θ)−
√
fS,Θ(s,θ)

∣∣ = ∣∣f̃S,Θ(s,θ)− fS,Θ(s,θ)
∣∣√

f̃S,Θ(s,θ) +
√

fS,Θ(s,θ)

≤
∣∣f̃S,Θ(s,θ)− fS,Θ(s,θ)

∣∣
log(n)−1

.

We discussed in Section 3 that the test statistic Tt,h,v relies on the unknown

density fΘ and therefore we introduced the statistic T̂t,h,v, where the density

fΘ is replaced by the estimate f̃Θ. An important part of the proof of Theorem
3.2 consists of showing that this replacement is asymptotically negligible. To
this end, the bias of the estimate 1/f̃θ(θ) has to be controlled.

Lemma A.6. Under Assumption 3,

sup
θ∈Sd−1

∣∣∣ 1

fΘ(θ)
− E

[ 1

f̃Θ(θ)

]∣∣∣ = O
(
hγ
∗
)

for n → ∞.

Proof. Uniformly over θ ∈ Sd−1,

∣∣∣E[ 1

fΘ(θ)
− 1

f̃Θ(θ)

]∣∣∣ = ∣∣∣E[ f̃Θ(θ)− fΘ(θ)

f̃Θ(θ)fΘ(θ)

]∣∣∣
�
∣∣∣E[ f̃Θ(θ)− fΘ(θ)

fΘ(θ)2

]∣∣∣+ ∣∣∣E[ f̃Θ(θ)− fΘ(θ)

f̃Θ(θ)fΘ(θ)
1
{
∃θ′ : f̂Θ(θ′) ≤ fΘ(θ′)/2

}]∣∣∣
�
∣∣E[f̃Θ(θ)− fΘ(θ)

]∣∣+ log(n)h−d+1
∗ P

(
∃θ′ : f̂Θ(θ′) ≤ fΘ(θ′)/2

)
.

Following the line of arguments in the proof of Lemma A.1, it is easy to see that
P
(
∃θ′ : f̂Θ(θ′) ≤ fΘ(θ′)/2

)
decays at a rate which is faster than polynomial. In

particular, f̃Θ = f̂Θ except on a set with probability decaying faster than any
polynomial, which concludes the proof using Lemma A.1 (i).
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Appendix B: Proofs related to properties of the Radon transform

Proof of (16): Recall from the discussion subsequent to (4) that in the random
coefficients model with intercept

Θ1 = ζ1
(1, X1,2, X1,3, . . . , X1,d)

‖(1, X1,2, X1,3, . . . , X1,d)‖
,

where ζ1 is a Rademacher variable. Recall from Section 3.2 that in the random
coefficients model (1), the density fΘ can be expressed in terms of the density
fX via fΘ(θ) =

∫∞
0

rd−1fX(rθ)dr, which follows since

P (Θ ∈ SΘ) =

∫
{x |x/‖x‖∈SΘ}

fX(x)dx =

∫
SΘ

∫ ∞

0

rd−1fX(rθ)drdθ,

for any measurable set SΘ ⊂ θ. Let SΘ ⊂ S
d−1 be measurable. In the random

coefficients model with intercept (2), we find for ζ1 = 1 corresponding to θ1 > 0

P (Θ ∈ SΘ) =

∫
{x |x/‖x‖∈SΘ}

δ(x1 − 1)fX(x2, . . . , xd)dx

=

∫
SΘ

∫ ∞

0

δ(rθ1 − 1)fX(rθ2, . . . , rθd)r
d−1drdθ

=

∫
SΘ

∫ ∞

0

δ(r − 1)fX
(

r
θ1
θ2, . . . ,

r
θ1
θd
)rd−1

θd1
1{θ1 > 0}drdθ

=

∫
SΘ

fX
(
θ2
θ1
, . . . , θd

θ1

) 1

θd1
1{θ1 > 0}dθ,

where fX denotes the density of (X1,2, . . . , X1,d) and with u 
→ δ(u) the Dirac
delta function. To see why this makes sense, notice that we either have R

+ ⊂
π{1}({rSΘ | r > 0}) or R+∩π{1}({rSΘ | r > 0}) = ∅, where for j ∈ {1, . . . , d} the
function π{j} : Rd → R denotes the j-th projection map. This means in particu-
lar that either the cone {rSΘ | r > 0} contains a neighborhood of 1 in the first co-
ordinate or there exists a neighborhood of 1, which is disjoint to the projection of
the cone. Therefore, given ζ1 = 1, we find fΘ(θ) = fX

(
θ2
θ1
, . . . , θd

θ1

)
1
θd
1
1{θ1 > 0}.

Analogously, we find fΘ(θ) = fX
(
θ2
θ1
, . . . , θd

θ1

)
1

|θ1|d 1{θ1 < 0} for ζ1 = −1, which

yields

fΘ(θ) =
1

2|θ1|d
fX

(θ2
θ1

, . . . ,
θd
θ1

)
1{θ1 �= 0},

by conditioning on the events {ζ1 = 1} and {ζ1 = −1}. By Assumption 3 we

obtain that lim
θ1→0

1
2|θ1|d fX

(
θ2
θ1
, . . . , θd

θ1

)
exists and therefore

fΘ(θ) =
1

2|θ1|d
fX

(θ2
θ1

, . . . ,
θd
θ1

)
,

for the continuous extension.
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Proof of Lemma 3.1. By assumption, φt,h is radially symmetric and satisfies
(9). We fix a direction v ∈ S

d−1 and consider the directional derivative

∂vφt,h(b) =
1

hd+1 Vol(Sd−2)
φ′
(
‖b− t‖

h

)
〈b− t,v〉
‖b− t‖ ,

where φ′ is the usual derivative of φ. The Radon transform of this directional
derivative is

R(∂vφt,h)(s,θ) =

∫
〈b,θ〉=s

∂vφt,h(b)dμd−1(b)

=
1

hd+1 Vol(Sd−2)

∫
〈b,θ〉=s

φ′
(
‖b− t‖

h

)
〈b− t,v〉
‖b− t‖ dμd−1(b)

=
1

h2 Vol(Sd−2)

∫
〈b,θ〉=h−1(s−〈t,θ〉)

φ′ (‖b‖) 〈b,v〉‖b‖ dμd−1(b).

Set s̃ = h−1(s− 〈t,θ〉). For d > 2, using the definition of φ̃ in (13),

R(∂vφt,h)(s,θ) =
1

h2 Vol(Sd−2)

∫
〈b,θ〉=s̃

φ′ (‖b‖)
‖b‖ 〈b,v〉dμd−1(b)

=
1

h2 Vol(Sd−2)

∫ ∞

0

φ′(√s̃2 + r2
)

√
s̃2 + r2

∫
w⊥θ,‖w‖=r

〈θs̃+w,v〉dwdr

=
1

h2 Vol(Sd−2)

∫ ∞

0

φ′(√s̃2 + r2
)

√
s̃2 + r2

∫
w⊥θ,‖w‖=r

〈θs̃,v〉dwdr

=
〈θ,v〉
h2

∫ ∞

0

rd−2φ′
(√

s̃2 + r2
) s̃√

s̃2 + r2
dr

=
〈θ,v〉
h2

∫ ∞

0

rd−2 ∂

∂s̃
φ
(√

s̃2 + r2
)
dr

=
〈θ,v〉
h2

φ̃(s̃)

=
〈θ,v〉
h2

φ̃

(
s− 〈t,θ〉

h

)
.

For d = 2 let w ⊥ θ with ‖w‖ = 1 and write b = θs̃+ rw for r ∈ R. Then

R(∂vφt,h)(s,θ) =
1

h2 Vol(S0)

∫ ∞

−∞

φ′(√s̃2 + r2
)

√
s̃2 + r2

〈θs̃+ rw,v〉dr

=
1

h2 Vol(S0)

∫ ∞

−∞

φ′(√s̃2 + r2
)

√
s̃2 + r2

〈θs̃,v〉dr

=
〈θ,v〉
h2

∫ ∞

0

φ′
(√

s̃2 + r2
) s̃√

s̃2 + r2
dr,

as r 
→ φ′(
√
s̃2+r2)√

s̃2+r2
is an even function. Now we can proceed similarly as in the

case d > 2.
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If d is odd, the proof of the representation of A(∂vφt,h)(s,θ) is completed by
taking the (d − 1)-th derivative with respect to the variable s. If d is even, for
any function f : R → R, for any fixed z ∈ R, and for h > 0

Hd

(
s 
→ f

(s− z

h

))
(u) =

1

π
p.v.

∫ ∞

−∞
f
(s− z

h

) 1

u− s
ds

=
1

π
lim

ε→0+

∫
(−∞,u−ε]∪[u+ε,∞)

f
(s− z

h

) 1

u− s
ds

=
1

π
lim

ε→0+

∫
(−∞,(u−z)/h−ε]∪[(u−z)/h+ε,∞)

f(s)
1

(u− z)/h− s
ds

=
(
Hdf

)(u− z

h

)
for u ∈ R,

by substitution. We show below that Hdf exists for the choice f = φ̃(d−1).

Hence, we obtain A(∂vφt,h)(s,θ) = 〈θ,v〉h−d−1(Hdφ̃
(d−1))( s−〈t,θ〉

h ) for d even.

Next we prove ‖φ̃(k)‖∞ < ∞ for k = 0, . . . , d+ 1. The case k = 0 is obvious.
We use the chain rule for higher order derivatives given by Faà di Bruno’s
formula

dk

dzk
f1(f2(z)) =

∑
(m1,...,mk)∈Mk

k!

m1!...mk!
f
(m1+...+mk)
1 (f2(z))

k∏
j=1

(f (j)
2 (z)

j!

)mj

,

(4.11)
where Mk is the set of all k-tuples of non-negative integers which satisfy k =∑k

j=1 jmj . Since z 
→ φ(
√
z2 + r2) is a.e. (k + 1)-times continuously differen-

tiable, we can interchange the integral with the k-fold differentiation for the
variable z provided that∫ ∞

0

∣∣∣rd−2 ∂k+1

∂zk+1
φ
(√

z2 + r2
) ∣∣∣dr

exists for all k = 1, . . . , d + 1. Applying (4.11) with f1 = φ and f2 =
√
·2 + r2

gives

∂k+1

∂zk+1
φ
(√

z2 + r2
)
=

∑
(m1,...,mk+1)∈Mk+1

Cm1,...,mk+1
φ(M)

(√
z2 + r2

) k+1∏
j=1

(
f
(j)
2 (z)

)mj

for suitable constants Cm1,...,mk+1
and M =

∑k+1
j=1 mj . Applying the chain rule

to f
(j)
2 yields

f
(j)
2 (z) =

∑
{	j ,kj :	j+2kj=j}

C	j ,kjz
	j (z2 + r2)1/2−	j−kj

for non-negative integers �j , kl and suitable constants C	j ,kj . As φ is compactly
supported, it remains to show that each of the functions

z 
→
∫ √

1−z2

0

rd−2φ(M)
(√

z2 + r2
)
|z|

∑k+1
j=1 	jmj (z2 + r2)M/2−

∑k+1
j=1 (	j+kj)mjdr

(4.12)
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for |z| ≤ 1 is uniformly bounded, where �j , kj are arbitrary elements of the set
{�j , kj : �j + 2kj = j}, j = 1, . . . , k + 1. Notice that

M/2−
k+1∑
j=1

(�j + kj)mj =

k+1∑
j=1

(
1

2
− �j − kj)mj < 0.

A uniform bound for the integral on the right hand side of (4.12) can be found
easily when z is bounded away from zero. We can thus assume that |z| ≤√
1− z2. Splitting the integral

∫√
1−z2

0
=
∫ |z|
0

+
∫√

1−z2

|z| and using that by Taylor

expansion and Assumption 1,

φ(j)
(√

z2 + r2
)
� (z2 + r2)(3−j)/2 for j = 1, 2 and φ(M) � 1 for M ≤ d+ 2

as well as max{z2, r2} ≤ z2 + r2 ≤ 2max{z2, r2}, we obtain an upper bound
(up to some constant) for the integral on the right hand side of (4.12) by

|z|
∑k+1

j=1 	jmj+M−2
∑k+1

j=1 (	j+kj)mj+max{3−M,0}
∫ |z|

0

rd−2dr

+ |z|
∑k+1

j=1 	jmj

∫ √
1−z2

|z|
rd−2+max{3−M,0}+M−2

∑k+1
j=1 (	j+kj)mjdr

�|z|
∑k+1

j=1 	jmj+M−2
∑k+1

j=1 (	j+kj)mj+d−1+max{3−M,0} + 1.

By the use of �j + 2kj = j,
∑k+1

j=1 jmj = k + 1 and k ≤ d+ 1, we find that this

is bounded by z−3+M+max{3−M,0} + 1 which proves the result.
Next, we prove that Hdφ̃

(d−1) exists. Recall that ‖φ̃(d)‖∞ < ∞ and conse-

quently, φ̃(d−1) is Lipschitz continuous. For any Lipschitz continuous function f
with compact support,∣∣∣ ∫ u−1

−∞

f(x)

u− x
dx
∣∣∣ ∨ ∣∣∣ ∫ ∞

u+1

f(x)

u− x
dx
∣∣∣ ≤ ‖f‖∞λ( suppf),

where λ( suppf) denotes the Lebesgue measure of the support of f . Moreover,

lim
ε→0+

(∫ u−ε

u−1

f(x)

u− x
dx+

∫ u+1

u+ε

f(x)

u− x
dx
)
= lim

ε→0+

∫ 1

ε

f(u− x)− f(u+ x)

x
dx.

By the Lipschitz-continuity of f , |f(u− x)− f(u+ x)| � |x| such that the r.h.s.
can be bounded by a constant that does not depend on u. The result follows
with f = φ̃(d−1). This proves assertion (i) in the Lemma.

Finally, we prove (ii). As shown above, φ̃(d−1) is bounded. For odd dimension
d the claim therefore follows from substitution and the compact support of
φ̃(d−1). For d even, substitution and the fact that the Hilbert transform Hd

defines a bounded operator Lk(R) → Lk(R) for all 1 < k < ∞ yield the required
result.
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Proof of Lemma A.3. The existence of a uniform upper bound of σt,h,v follows
directly from the boundedness of fS,Θ. The uniform lower bound of fΘ follows

from Assumption 3. The integrability of
(
Hd(φ̃

(d−1))(s)
)2

is shown in the proof
of Lemma 3.1 (ii). For the lower bound of σt,h,v recall that

fS,Θ(〈t,θ〉+ hs,θ)

fΘ(θ)
= fS|Θ(〈t,θ〉+ hs,θ) =

∫
〈b,θ〉=〈t,θ〉+hs

fβ(b)dμd−1(b).

By Assumption 2, fβ(b) ≥ cβ > 0 for all b ∈ [a1,a2] and fβ is uniformly
continuous. Hence, there exists δ > 0, which does not depend on h, such that fβ
is uniformly bounded from below in the ball Bδ(t) of radius δ around any t ∈
[a1,a2], say, fβ(b) > cβ/2 for all b ∈

⋃
t∈[a1,a2]

Bδ(t). Define for s2 < δ2/(dh2)

Aδ,t,h :=

{
b ∈ R

d : b = t+ hsθ + ρ2θ
⊥
2 + . . .+ ρdθ

⊥
d , ρ

2
j <

δ2

d
, j = 2, . . . , d

}
,

where θ⊥
2 , . . . ,θ

⊥
d form an orthonormal basis of the orthogonal complement of

span{θ}. Clearly, μd−1(Aδ,t,h) = (2δ)d−1d(1−d)/2 > 0, and all b ∈ Aδ,t,h satisfy

‖t− b‖2 = (hs)2 + ρ22 + . . .+ ρ2d <
δ2

d
+ δ2

d− 1

d
= δ2 and 〈b,θ〉 = 〈t,θ〉+ hs.

In particular, Aδ,t,h ⊂ Bδ(t). Thus,∫
〈b,θ〉=〈t,θ〉+hs

fβ(b)dμd−1(b) ≥
∫
Aδ,t,h

fβ(b)dμd−1(b) ≥
cβ
2
μd−1(Aδ,t,h) > 0.

Hence, Rfβ(〈t,θ〉+hs,θ) is uniformly bounded from below for all a1+h ≤ t ≤
a2 − h, θ ∈ S

d−1 and |s| < δ/(
√
dh). Therefore,

σ2
t,h,v �

∫ δ/(
√
dh)

−δ/(
√
dh)

(
Hd(φ̃

(d−1))(s)
)2
ds ≥

∫ δ/(
√
dhmax)

−δ/(
√
dhmax)

(
Hd(φ̃

(d−1))(s)
)2
ds,

(4.13)
where the inequality holds uniformly over T .

In quantum homodyne tomography, Assumption 2’ (iii) yields∫
〈b,θ〉=〈t,θ〉+hs

fβ(b)dμd−1(b) ≥ cβ

for s2 < δ2/(dh2) if δ is sufficiently small. Hence, (4.13) holds in this case as

well. Furthermore, since Hd(φ̃
(d−1)) ∈ L2(R), we obtain

σ2
t,h,v �

∫
R

(
Hd(φ̃

(d−1))(s)
)2
ds+ o(1) for n → ∞.

If ‖Hd(φ̃
(d−1))‖2 �= 0 there exists n0 = n0(δ, d, φ) ∈ N such that

σ2
t,h,v � 1

2

∫
R

(
Hd(φ̃

(d−1))(s)
)2
ds =

1

2

∥∥φ̃(d−1)
∥∥2
2

for all n > n0. The equality on the r.h.s. is trivial for odd dimensions d and fol-
lows for even dimensions from the anti self-adjointness of the Hilbert transform
and HdHdf = −f .
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Appendix C: Proof of Theorem 3.2

If ‖φ̃(d−1)‖2 = 0, Theorem 3.2 obviously holds. In the following we assume

‖φ̃(d−1)‖2 �= 0 and define

at,h,v(s,θ) := hd+1Λ(∂vφt,h)(s,θ) = 〈θ,v〉(Hdφ̃
(d−1))

(s− 〈t,θ〉
h

)
,

where the equality follows from Lemma 3.1 (i).

C.1. Controlling the effect of density estimation in the test statistic

Theorem C.1. Under the assumptions of Theorem 3.2,

sup
(t,h,v)∈Tn

βh

√
n

∣∣|T̂t,h,v − E[Tt,h,v]| − |Tt,h,v − E[Tt,h,v]|
∣∣

σt,h,v
= oP(1), as n → ∞.

Proof. By the triangle inequality∣∣|T̂t,h,v − E[Tt,h,v]| − |Tt,h,v − E[Tt,h,v]|
∣∣ ≤ Ut,h,v + Vt,h,v

with Ut,h,v := |T̂t,h,v−Tt,h,v−E[T̂t,h,v−Tt,h,v]| and Vt,h,v := |E[T̂t,h,v−Tt,h,v]|.
We first bound Vt,h,v using

Vt,h,v =
∣∣∣ 1√

h

∫
Sd−1

∫
R

at,h,v(s,θ)E
[ 1

f̃Θ(θ)
− 1

fΘ(θ)

]
fS,Θ(s,θ)dsdθ

∣∣∣
and∫

R

∣∣at,h,v(s,θ)fS,Θ(s,θ)
∣∣ds � h

∫
R

∣∣(Hdφ̃
(d−1))(s)

∣∣fS,Θ(hs+ 〈t,θ〉,θ)ds

� h log(h)2.

(4.14)

The last inequality follows for odd dimension d by the boundedness of fS,Θ and

the integrability of φ̃(d−1). For even dimension, recall that Hdφ̃
(d−1) is bounded

as shown in the proof of Lemma 3.1. Notice that∫ 4/h2

2

∣∣(Hdφ̃
(d−1))(s)

∣∣
log(s)2

log(s)2fS,Θ(hs+ 〈t,θ〉,θ)ds � log(h)2

by |(Hdφ̃
(d−1))(s)| � (1 + s2)−1/2 (which holds for any function with com-

pact support and bounded Hilbert transform) and the integrability of (1 +
s2)−1/2 log(s)−2 for s ≥ 2. For the remainder, we find∫ ∞

4/h2

∣∣(Hdφ̃
(d−1))(s)

∣∣
log(s)2

log(s)2

log(hs+ 〈t,θ〉)2 log(hs+〈t,θ〉)2fS,Θ(hs+〈t,θ〉,θ)ds � 1
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by the boundedness of s 
→ log(|s|)2fS,Θ(s,θ) for all |s| ≥ 2, θ ∈ S
d−1, and

log(s)

log(hs+ 〈t,θ〉) ≤ log(s)

log(hs/2)
=

log(s)

log(h/2) + log(s)
≤ 2,

as log(h/2) ≥ − log(s)/2 for s ≥ 4/h2. A similar argument can be used to bound

the integral
∫ −2

−∞ |at,h,v(s,θ)fS,Θ(s,θ)|ds. Applying Lemma A.6 with bandwidth

h∗ = log(n)7/(d−1)n−1/(d−1) gives

sup
(t,h,v)∈Tn

Vt,h,v � log(hmax)
2
√

hmax log(n)
7γ/(d−1)n−γ/(d−1). (4.15)

Next, we prove ρn := P(sup(t,h,v)∈Tn
Ut,h,v ≥ δn) → 0 as n → ∞, where

δn := (n log(n))
−1/2

. If for some positive constant c

An :=
{
(Si,Θi)i=n+1,...,2n : sup

θ∈Sd−1

∣∣f̃Θ(θ)− E[f̃Θ(θ)]
∣∣ ≤ c

√
logn

nhd−1
∗

}
,

then by Lemma A.1

ρn ≤ E

[
P

(
sup

(t,h,v)∈Tn

Ut,h,v ≥ δn
∣∣ (Si,Θi)i=n+1,...,2n

)
1(An)

]
+ P(Ac

n)

≤
∑

(t,h,v)∈Tn

E

[
P

(
Ut,h,v ≥ δn

∣∣ (Si,Θi)i=n+1,...,2n

)
1(An)

]
+ o(1)

for sufficiently large c. Now we apply Bernstein’s inequality to

Ut,h,v =
∣∣∣ n∑
i=1

{ 1

n
√
h
at,h,v(Si,Θi)

(
1

f̃Θ(Θi)
− 1

fΘ(Θi)

)
− 1

n
E[T̂t,h,v − Tt,h,v]

}∣∣∣.
By Lemma 3.1 (i), |at,h,v(s,θ)| can be bounded by a constant uniformly over
(s,θ) ∈ R× S

d−1. Moreover,

∣∣∣ 1

f̃Θ(θ)
− 1

fΘ(θ)

∣∣∣ ≤ ∣∣f̃Θ(θ)− E[f̃Θ(θ)]
∣∣+ ∣∣E[f̃Θ(θ)]− fΘ(θ)

∣∣
f̃Θ(θ)fΘ(θ)

.

The inequality f̃Θ ≥ log(n)−1, the uniform lower bound of fΘ, f̃Θ = f̂Θ almost
surely for n sufficiently large, Lemma A.1, and the definition of h∗ imply that
each summand in Ut,h,v is bounded on An by

≤ C
log(n)

n
√
h

(√ log(n)

nhd−1
∗

+ hγ
∗

)
≤ C1

1

n
√
hmin log(n)2

for some constants C,C1 > 0. By a change of variables in the integral for the
variable s, the uniform boundedness of fS,Θ, and the integrability of a2t,h,v as
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shown in Lemma 3.1 (i), we find for the conditional variance with a similar
argument as above

Var
(
Ut,h,v | (Si,Θi)i=n+1,...,2n

)
≤ C

1

n2
sup

θ∈Sd−1

(
1

f̃Θ(θ)
− 1

fΘ(θ)

)2

≤ C2n
−2 log(n)−4

with some constants C,C2 > 0. Bernstein’s inequality yields

ρn �|Tn| exp
(
− δ2n/2

C2n−1 log(n)−4 + C1δn
3n

√
hmin log(n)2

)
+ o(1)

=|Tn| exp
(
− (n log(n))−1/2

C2n−1 log(n)−4 + C1

3n3/2
√
hmin log(n)5/2

)
+ o(1) = o(1),

as hmin ≥ n−1. Finally, the claim follows from βh �
√

log(n)

log log(n) and the bounded-

ness from below of σt,h,v shown in Lemma A.3.

C.2. Approximation of the limit statistic

Define the process

Xt,h,v = h−1/2

∫
Sd−1

∫
R

〈θ,v〉(Hdφ̃
(d−1))

(
s− 〈t,θ〉

h

) √
fS,Θ(s,θ)

fΘ(θ)
W (dsdθ).

Note that Xt,h,v corresponds to the process X̂t,h,v where the density estimators
have been replaced by the true densities. The proof of Theorem 3.2 relies on a
recently obtained Gaussian approximation result which is reproduced here for
convenience.

Theorem C.2 (Chernozhukov et al. (2017), Proposition 2.1). Let X1, . . . ,Xn

be independent random vectors in R
2p with E[Xi,j ] = 0 and E[X2

i,j ] < ∞ for
i = 1, . . . , n, j = 1, . . . , 2p. Moreover, let Y1, . . . ,Yn be independent random
vectors in R

2p with Yi ∼ N(0,E[XiX
�
i ]), i = 1, . . . , n. Let b, q > 0 be some

constants and let Bn ≥ 1 be a sequence of constants, possibly growing to infinity
as n → ∞. Denote further by A′

2p the set of all hyperrectangles in R2p of the

form A =
{
x ∈ R

2p : a ≤ x ≤ b
}
for −∞ ≤ a ≤ b ≤ ∞. Assume that

(i) n−1
∑n

i=1 E[X
2
i,j ] ≥ b for all 1 ≤ j ≤ 2p;

(ii) n−1
∑n

i=1 E[|Xi,j |2+k] ≤ Bk
n for all 1 ≤ j ≤ 2p and k = 1, 2;

(iii) E
[(

max1≤j≤2p |Xi,j |/Bn

)q] ≤ 2 for all i = 1, . . . , n
and define

D(1)
n :=

(B2
n log

7(2pn)

n

) 1
6

, D(2)
n,q :=

(B2
n log

3(2pn)

n1−2/q

) 1
3

.
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Then there exists a constant C only depending on b and q, such that

sup
A∈A′

2p

∣∣∣P( 1√
n

n∑
i=1

Xi ∈ A
)
− P

( 1√
n

n∑
i=1

Yi ∈ A
)∣∣∣ ≤ C(D(1)

n +D(2)
n,q).

Theorem C.3. Under the assumptions of Theorem 3.2,(
βh

(√
n
|Tt,h,v − E[Tt,h,v]|

σt,h,v
− αh

))
(t,h,v)∈Tn

↔
(
βh

( |Xt,h,v|
σt,h,v

− αh

))
(t,h,v)∈Tn

.

Proof. To take absolute values into account, we introduce the set

T ′
n := Tn ∪

{
(t, h,−v) : (t, h,v) ∈ Tn

}
=:

{
(tj , hj ,vj) : j = 1, . . . , 2p

}
. (4.16)

Moreover, for i = 1, . . . , n, let Xi := (Xi,1, . . . ,Xi,2p)
� with

Xi,j := Υj(Si,Θi)− E[Υj(Si,Θi)], and Υj(s,θ) :=
atj ,hj ,vj (s,θ)

σtj ,hj ,vj

√
hjfΘ(θ)

for j = 1, . . . , 2p. Notice that
∑n

i=1 Xi,j = nσ−1
tj ,hj ,vj

(Ttj ,hj ,vj − E[Ttj ,hj ,vj ]). In

a first step, we show that for Z ∼ N(0,E[X1X
�
1 ]),

sup
A∈A′

2p

∣∣∣P( 1√
n

n∑
i=1

Xi ∈ A
)
− P

(
Z ∈ A

)∣∣∣ → 0. (4.17)

Observe that by (4.14) and the uniform lower bound of σtj ,hj ,vj established
in Lemma A.3, ∣∣E[Υj(S1,Θ1)]

∣∣ � log(hj)
2
√

hj . (4.18)

Because of this bound, the expectation E[Υj(S1,Θ1)] in the definition of Xi,j

will only provide terms of negligible order if we check the conditions of Theorem
C.2. In particular, condition (i) is a direct consequence of the definition of
σtj ,hj ,vj in (4.10). By Lemma 3.1 (ii), the uniform lower bound of σtj ,hj ,vj in
Lemma A.3, the lower bound of fΘ, and the boundedness of fS,Θ, we find for

k = 1, 2, maxj=1,...,2p E[|Υj(S1,Θ1)|2+k] � h
−k/2
min . This implies condition (ii) of

Theorem C.2 with Bn � h
−1/2
min .

Lemma 3.1 (i) implies maxj=1,...,2p |Xi,j | � h
−1/2
min which proves assertion (iii)

in the theorem for any q > 0 and Bn = ch
−1/2
min , provided that the constant c

is chosen sufficiently large. Consequently, Theorem C.2 applies and for Z ∼
N(0,E[X1X

�
1 ])

sup
A∈A′

2p

∣∣∣P( 1√
n

n∑
i=1

Xi ∈ A
)
−P

(
Z ∈ A

)∣∣∣ � (h−1
min log

7(n)

n

) 1
6

+
(h−1

min log
3(n)

n1−2/q

) 1
3

.

The right hand side goes to 0 by Assumption 4, when q is chosen large enough.
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In a second step, we show that there exists a version of the Gaussian noise
W such that

max
j=1,...,2p

∣∣Zj −W (Υj

√
fS,Θ)

∣∣ = OP

(
| log(hmax)|3

√
hmax

)
.

To this end, we define the Gaussian process (W̃ (f))f∈L∞(Z) indexed by L∞(Z)
as the centered Gaussian process with covariance function∫

Z
f1(s,θ)f2(s,θ)fS,Θ(s,θ)dsdθ

−
∫
Z
f1(s,θ)fS,Θ(s,θ)dsdθ

∫
Z
f2(s,θ)fS,Θ(s,θ)dsdθ.

Thus, there exists a version of W̃ (f) such that Z =
(
W̃ (Υ1), . . . , W̃ (Υ2p)

)�
. Re-

call that (W (f))f∈L2(ν) defines a Gaussian process whose mean and covariance
functions are 0 and

∫
Sd−1

∫
R
f1(s,θ)f2(s,θ)dsdθ, respectively. Basic calculations

show that there exists a version of W such that

W̃ (f) = W (f
√
fS,Θ)−

∫
Sd−1

∫
R

f(s,θ)fS,Θ(s,θ)dsdθ W (
√

fS,Θ).

Hence,∣∣W̃ (Υj)−W (Υj

√
fS,Θ)

∣∣ = ∣∣∣ ∫
Sd−1

∫
R

Υj(s,θ)fS,Θ(s,θ)dsdθ W (
√
fS,Θ)

∣∣∣
and by (4.18), |

∫
Sd−1

∫
R
Υj(s,θ)fS,Θ(s,θ)dsdθ| � log(hj)

2
√
hj . Furthermore,

W (
√

fS,Θ) ∼ N(0, 1) which implies

E

[
max

j=1,...,2p
|W̃ (Υj)−W (Υj

√
fS,Θ)|

]
� log(hmax)

2
√

hmax.

An application of Markov’s inequality finally proves

max
j=1,...,2p

∣∣W̃ (Υj)−W (Υj

√
fS,Θ)

∣∣ = OP

(
| log(hmax)|3

√
hmax

)
.

The insertion of the bandwidth normalization terms has no influence on the
convergence as translation and multiplication preserve the interval structure.

C.3. Boundedness of the limit statistic

Recall from Lemma A.3 that σt,h,v is uniformly bounded from below whenever
h is sufficiently small, where the upper bound h for h only depends on φ, d and
fβ. We therefore introduce the set

T :=
{
(t, h,v) ∈ T : h ≤ h

}
.
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Theorem C.4. Under the assumptions of Theorem 3.2,

sup
(t,h,v)∈T

βh(|Xt,h,v|/σt,h,v − αh)

is almost surely bounded.

Proof. We apply Theorem 6.1 in Dümbgen and Spokoiny (2001) to the non-
normalized process

Yt,h,v :=
1

σt,h,v

∫
Sd−1

∫
R

〈θ,v〉(Hdφ̃
(d−1))

(s− 〈t,θ〉
h

)√fS,Θ(s,θ)

fΘ(θ)
W (dsdθ).

Denote by ρ the canonical pseudo-metric on T , induced by Yt,h,v

ρ :

⎧⎨⎩T × T → R
+
0(

(t, h,v), (t′, h′,v′)
)

→

(
E
∣∣Yt,h,v − Yt′,h′,v′

∣∣2) 1
2

.

In the next step, we prove

ρ
(
(t, h,v), (t′, h′,v′)

)
�
(
‖v − v′‖2 + ‖t− t′‖+ |h− h′|

)1/2
. (4.19)

By the uniform lower and upper bound for σt,h,v,∣∣Yt,h,v − Yt′,h′,v′
∣∣2

�
∣∣σt,h,vYt,h,v − σt′,h′,v′Yt′,h′,v′

∣∣2 + ∣∣Yt′,h′,v′
∣∣2∣∣σt′,h′,v′ − σt,h,v

∣∣2. (4.20)

In order to bound the expectation of the first term on the right hand side of
(4.20), we use the boundedness properties of fΘ and fS,Θ

E
∣∣σt,h,vYt,h,v − σt′,h′,v′Yt′,h′,v′

∣∣2
�
∫
Sd−1

∫
R

∣∣∣∣〈θ,v − v′〉(Hdφ̃
(d−1))

(
s− 〈t,θ〉

h

)∣∣∣∣2 ds dθ
+

∫
Sd−1

∫
R

∣∣∣∣(Hdφ̃
(d−1))

(
s− 〈t,θ〉

h

)
− (Hdφ̃

(d−1))

(
s− 〈t′,θ〉

h

)∣∣∣∣2 ds dθ
+

∫
Sd−1

∫
R

∣∣∣∣(Hdφ̃
(d−1))

(
s− 〈t′,θ〉

h

)
− (Hdφ̃

(d−1))

(
s− 〈t′,θ〉

h′

)∣∣∣∣2 ds dθ
=: ρ1 + ρ2 + ρ3.

We show that the three terms can be bounded by the squared r.h.s. in (4.19).
From Lemma 3.1 (ii) we obtain ρ1 � h‖v−v′‖2. For ρ2, we distinguish between
the cases ‖t− t′‖ > h and ‖t− t′‖ ≤ h. In the first case, the triangle inequality
and Lemma 3.1 (ii) give ρ2 � h < ‖t − t′‖. In the second case, the integral
w.r.t. the variable s in ρ2 is equal to

2h

∫
R

(
(Hdφ̃

(d−1))(s)
)2
ds

− 2h

∫
R

(Hdφ̃
(d−1))(s)(Hdφ̃

(d−1))
(
s+

〈t,θ〉 − 〈t′,θ〉
h′

)
ds.
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Recall that the Hilbert transform and the differentiation operator commute.
Therefore, using the differentiability of φ̃(d−1) which has been shown in the
proof of Lemma 3.1, we find that

h(Hdφ̃
(d−1))

(
s+

〈t,θ〉 − 〈t′,θ〉
h

)
= h(Hdφ̃

(d−1))(s) + 〈t− t′,θ〉(Hdφ̃
(d))(ξ)

for some ξ between s and s+ 〈t−t′,θ〉
h . Hence,

ρ2 � ‖t− t′‖
∫
R

(Hdφ̃
(d−1))(s)(Hdφ̃

(d))(ξ)ds � ‖t− t′‖
∫
R

(
1 + (s/2)2

)−1
ds

� ‖t− t′‖.

Here, we used the boundedness of Hdφ̃
(d−1) shown in Lemma 3.1 (i), |ξ| ≥ |s|/2

for all |s| ≥ 2 in the case ‖t − t′‖ ≤ h, and |(Hdφ̃
(d))(u)| � (1 + u2)−1. The

latter is obvious for d odd. For d even we find that φ̃ is an odd function and
therefore φ̃(d) is an odd function. Moreover, for any odd function f such that
Hdf exists, we have, up to some constant,

(Hdf)(u) =

∫ 0

−∞

f(x)

u− x
dx+

∫ ∞

0

f(x)

u− x
dx =

∫ ∞

0

f(x)
( −1

u+ x
+

1

u− x

)
dx =∫ ∞

0

2xf(x)

u2 − x2
dx.

Here all integrals are understood in the principal value sense. Finally, a similarly
argument as in the proof of Lemma 3.1 shows that Hdφ̃

(d) exists and that
|(Hdφ̃

(d))(u)| � (1 + u2)−1 by the compact support of φ̃.

We finally turn to ρ3. Without loss of generality, we may assume h ≤ h′. We
study the cases h ≤ h′/2 and h > h′/2, separately. In the first case, the triangle
inequality and Lemma 3.1 (ii) give ρ3 � h+ h′ � |h′ − h|. If h′/2 < h ≤ h′, we
argue as for the upper bound of ρ2 and find

ρ3�(h′ − h)

∫
R

(
(Hdφ̃

(d−1))(s)
)2
ds− 2h

(
h
h′ − 1

)∫
R

(Hdφ̃
(d−1))(s)s(Hdφ̃

(d))(ξ)ds

for some ξ between s and h
h′ s. Recall that |(Hdφ̃

(d))(u)| � (1 + u2)−1 and

|(Hdφ̃
(d−1))(u)| � (1 + u2)−1/2. Thus,∫

R

∣∣(Hdφ̃
(d−1))(s)s(Hdφ̃

(d))(ξ)
∣∣ds � ∫

R

(
1 + s2

)−1/2|s|
(
1 + (s/2)2

)−1
ds < ∞,

where we used that |ξ| ≥ h
h′ |s| > |s|/2. Finally, |h2/h′ − h| ≤ h′ − h implies

ρ3 � |h′ − h|.
For the second term on the right hand side of (4.20) we use that Var(Yt,h,v) =

h. Using again the uniform boundedness from above and below of σt,h,v and the
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fact that |√x−√
y|2 ≤ |x− y| for all x, y ≥ 0 gives

E
∣∣Yt′,h′,v′

∣∣2|σt,h,v − σt′,h′,v′ |2

=h′
∣∣∣ (E|σt,h,vYt,h,v|2)1/2√

h
− (E|σt′,h′,v′Yt′,h′,v′ |2)1/2√

h′

∣∣∣2
�E

∣∣σt,h,vYt,h,v

∣∣2∣∣∣√h′
√
h

− 1
∣∣∣2 + ∣∣(E|σt,h,vYt,h,v|2)1/2 − (E|σt′,h′,v′Yt′,h′,v′ |2)1/2

∣∣2
�|h− h′|+ E

∣∣σt,h,vYt,h,v − σt′,h′,v′Yt′,h′,v′
∣∣2.

For the second term in the last line, the bounds above apply which completes
the proof for (4.19).

Set σ2(t, h,v) := h and ρ̃
(
(t, h,v), (t′, h′,v′)

)
:=

(
‖v − v′‖2 + ‖t− t′‖ +

|h− h′|
)1/2

, such that

σ2(t, h,v)− σ2(t′, h′,v′) ≤ ρ̃2
(
(t, h,v), (t′, h′,v′)

)
for all ((t, h,v), (t′, h′,v′)

)
∈ T ×T . For fixed

(
(t, h,v), (t′, h′,v′)

)
∈ T ×T , the

random variable Yt,h,v − Yt′,h′,v′ follows a normal distribution with mean zero
and variance bounded by a constant multiple of ρ̃2

(
(t, h,v), (t′, h′,v′)

)
. Thus,

there exists a constant M > 0 such that for any η > 0,

P
(
|Yt,h,v − Yt′,h′,v′ | ≥ ρ̃((t, h,v), (t′, h′,v′))η

)
� exp(−η2/M).

Furthermore, P
(
Yt,h,v >

√
hη
)
� exp(−η2/2), as h−1/2Yt,h,v corresponds to a

standard normal distributed random variable. Thus, conditions (i) and (ii) of
Theorem 6.1 in Dümbgen and Spokoiny (2001) are satisfied. As in Eckle et al.
(2017) one shows that condition (iii) of Theorem 6.1 in Dümbgen and Spokoiny
(2001) holds with V = (3d − 1)/2 and that the process Yt,h,v is almost surely

continuous on T with respect to ρ. The boundedness of sup(t,h,v)∈T
(
βh

|Xt,h,v|
σt,h,v

−
αhβh

)
follows by an application of Theorem 6.1 and Remark 1 in Dümbgen and

Spokoiny (2001).

C.4. Replacing the true densities in the limit process by estimators

Theorem C.5. Under the assumptions of Theorem 3.2,

sup
(t,h,v)∈Tn

βh

∣∣|Xt,h,v| − |X̂t,h,v|
∣∣

σt,h,v
= oP(1) for n → ∞.

Proof. Recall the definition of the symmetrized set T ′
n in (4.16) and let

F̂ (s,θ) :=

√
f̃S,Θ(s,θ)

f̃Θ(θ)
−

√
fS,Θ(s,θ)

fΘ(θ)
.
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Lemma A.5 together with an argument as in the proof of Lemma A.4 show that
sup(s,θ)∈R×Sd−1

∣∣F̂ (s,θ)
∣∣ = O(log(n)−1) for n → ∞ almost surely. Define

Δt,h,v := Xt,h,v − X̂t,h,v

=
1√
h

∫
Sd−1

∫
R

〈θ,v〉(Hdφ̃
(d−1))

(
s− 〈t,θ〉

h

)
F̂ (s,θ) dWs,θ

and Δ∞,t,h,v := log(n)−1Xt,h,v. We write P̃ and Ẽ for the probability and

expectation conditionally on (Si,Θi), i = n + 1, . . . , 2n. Under P̃, the vectors
(Δt,h,v)(t,h,v)∈T ′

n
and (Δ∞,t,h,v)(t,h,v)∈T ′

n
are centered and normally distributed

with

Ẽ
(
Δt,h,v −Δt′,h′,v′

)2
+ Ẽ

(
Δ∞,t,h,v −Δ∞,t′,h′,v′

)2 � log(n)−2

for all (t, h,v), (t′, h′,v′) ∈ T ′
n almost surely. Hence, an application of Theorem

2.2.5 in Adler and Taylor (2007) gives∣∣∣Ẽ( sup
(t,h,v)∈T ′

n

Δt,h,v

)
− Ẽ

(
sup

(t,h,v)∈T ′
n

Δ∞,t,h,v

)∣∣∣ = O
(
log(n)−1/2

)
a.s.

Moreover, since sup(t,h,v)∈T ′
n
βh(|Xt,h,v|/σt,h,v − αh) is almost surely bounded

asymptotically as proven in Theorem C.4, we have |Ẽ(sup(t,h,v)∈T ′
n
Δ∞,t,h,v)| =

O(log(n)−1/2) almost surely. Finally, for some constant C > 0,

P̃

(
sup

(t,h,v)∈Tn

βh
|Δt,h,v|
σt,h,v

> log log(n)−1/2
)

≤ P̃

(
sup

(t,h,v)∈T ′
n

Δt,h,v > C log log(n)1/2log(n)
−1/2

)
= O

(
log log(n)−1/2

)
for n → ∞ almost surely, by Markov’s inequality. The constants introduced
above do not depend on the second sample (Si,Θi), i = n + 1, . . . , 2n and
therefore the claim follows by an application of the law of iterated expectations.

C.5. Replacement of the standard deviation by an estimator

Theorem C.6. Under the assumptions of Theorem 3.2,

(i) sup(t,h,v)∈Tn
βh

√
n|T̂t,h,v−E[Tt,h,v]|

∣∣∣ 1
σ̂t,h,v

− 1
σt,h,v

∣∣∣ = oP(1) for n → ∞;

(ii) sup(t,h,v)∈Tn
βh|X̂t,h,v|

∣∣∣ 1
σ̂t,h,v

− 1
σt,h,v

∣∣∣ = oP(1) for n → ∞.

Proof. We only prove (i) as (ii) follows by a similar argument. By Lemma A.3
and Lemma A.4, σt,h,v and σ̂t,h,v are almost surely uniformly bounded from
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below for all sufficiently large n. Thus,

sup
(t,h,v)∈Tn

βh

√
n|T̂t,h,v − E[Tt,h,v]|

∣∣∣ 1

σ̂t,h,v
− 1

σt,h,v

∣∣∣
� sup

(t,h,v)∈Tn

βh

(√
n
|T̂t,h,v − E[Tt,h,v]|

σt,h,v
− αh

)
sup

(t,h,v)∈Tn

|σt,h,v − σ̂t,h,v|

+
log(n)

log log(n)
sup

(t,h,v)∈Tn

|σt,h,v − σ̂t,h,v|

almost surely. The claim follows from Lemma A.4, Theorems C.1 and C.3 and
the almost sure boundedness of sup(t,h,v)∈Tn

βh(|Xt,h,v|/σt,h,v−αh) established
in Theorem C.4.

Appendix D: Proofs of Theorems 3.3 and 3.4

Proof of Theorem 3.3. We have

P

(
∃(t, h,v) ∈ Tn :|T̂t,h,v| > κt,h,v

n (α)
)

= 1− P

(
sup

(t,h,v)∈Tn

βh

(√
n
|T̂t,h,v|
σ̂t,h,v

− αh

)
≤ κn(α)

)
= 1− P

(
sup

(t,h,v)∈Tn

βh

( |X̂t,h,v|
σ̂t,h,v

− αh

)
≤ κn(α)

)
+ o(1)

≤ α+ o(1)

for n → ∞. Here we used (21) for the first equality and Theorem 3.2 for the
second.

Proof of Theorem 3.4. We assume in the following that cd > 0. The case cd < 0
can be treated similarly. The following statement can be derived similarly as
in the proof of Theorem 3.3 in Eckle et al. (2017). For a null sequence 0 <
(αn)n∈N < 1 converging sufficiently slowly and for the set T ′

n ⊆ Tn of all triples
for which the inequality∫

Rd

φt,h(b)∂vfβ(b) db < −2c−1
d h−d−1/2κt,h,v

n (αn) (4.21)

is satisfied it holds that

P

(
T̂t,h,v > κt,h,v

n (αn) for all (t, h,v) ∈ T ′
n

)
= 1− o(1).

Hence, the hypotheses (12) are rejected simultaneously on the set of scales T ′
n

with asymptotic probability one. Moreover, for a mode b0 in (a1,a2) of fβ and
any triple (t, h,v) ∈ T b0

n , one can prove that ∂vfβ(b) � −h for all b ∈ suppφt,h

by following the arguments in the proof of Theorem 10 in Eckle et al. (2018).
Consequently,

∫
Rd φt,h(b)∂vfβ(b) db � −h.
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As seen in Appendices C.3-C.5∣∣∣∣ sup
(t,h,v)∈Tn

βh

(
|X̂t,h,v|
σ̂t,h,v

− αh

)
− sup

(t,h,v)∈Tn

βh

(
|Xt,h,v|
σt,h,v

− αh

)∣∣∣∣ = oP(1)

for n → ∞ and sup(t,h,v)∈Tn
βh(

|Xt,h,v|
σt,h,v

− αh) is finite almost surely for n suffi-

ciently large. Moreover, σ̂t,h,v is almost surely uniformly bounded by Lemmas
A.3 and A.4 for n sufficiently large, such that

h−d−1/2κt,h,v
n (αn) �

√
log n

n
h−d−1/2 almost surely.

In order to verify (4.21), we need to pick h such that hd+3/2 � (log(n)/n)1/2.

Thus, (4.21) holds for h ≥ C log(n)
1

2d+3n− 1
2d+3 with some sufficiently large con-

stant C > 0.
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