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1. Motivation 4. Simulated and observed seismic response

Ground motion simulations offer the potential to significantly improve seismic hazard characterization, however their continued improvement
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Figure 2: Seven-story building considered.

Vibration period, T (s)

Figure 4: Spectral acceleration ratio of observed to simulated ground
motions (Razafindrakoto et al. 2017).

Figure 7: Seismic demand ratio of the building from simulated and observed ground
motions: (a) acceleration, and (b) drift of the center of mass.



