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Abstract

Confidence interval estimators for proportions using normal approximation have been
commonly used for coverage analysis of simulation output even though alternative approx-
imate estimators of confidence intervals for proportions were proposed. This is because
the normal approximation was easier to use in practice than the other approximate esti-
mators. Computing technology has no problem with dealing these alternative estimators.
Recently, one of the approximation methods for coverage analysis which is based on arcsin
transformation has been used for estimating proportion and for controlling the required
precision in [Raa95].

In this report, we compare three approximate interval estimators, based on a normal
distribution approximation, an arcsin transformation and an F -distribution approxima-
tion, of a single proportion. These have application in sequential coverage analysis, con-
ducted for assessing the quality of methods used in simulation output data analysis.

Keywords : sequential simulation, coverage analysis, confidence interval, proportion

1 Introduction

In many simulation studies, the analyst is interested not only in the point and interval
estimates but also in other characteristics of the simulation output. These characteristics
include the variance, quantiles or percentiles, and proportions or percentages. In this report,
we discuss confidence interval formulae for the estimation of a single proportion. These have
application in coverage analysis of simulation output, conducted for assessing the quality of
methods used in simulation output data analysis.

Sequential simulation is generally accepted as the way of producing the results which is
statistically reliable. Coverage analysis should be applied to a statistically sufficient number
of repeated simulation experiments to determine the proportion of experiments in which the
final confidence intervals cover the true value of the estimated parameter. Sequential coverage
analysis, however, has a problem that some of the simulation experiments may stop after an
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abnormally short run, because the stopping criterion for the sequential simulation has been
temporarily reached.

Considering of these matters, some rules for the proper experimental analysis of cov-
erage in sequential simulation have been formulated and applied for the (non overlapping)
batch means method and SA/HW method (Spectral Analysis in its version proposed by
Heidelberger and Welch [HW81]) using the M/M/1/∞ and M/D/1/∞ queueing systems in
[MPE96] and [PME98].

While some interesting results have been achieved in theoretical and experimental stud-
ies of coverage analysis (see for example [Gly82], [HW81], [MPE96], [PME98], [Sch80]), but
experimental analysis of coverage is still required for assessing the quality of practical imple-
mentations of methods used for determining confidence intervals in steady-state simulation.

Estimators based on normal approximations to estimate the exact values have been widely
used for coverage analysis (see for example [JBC97], [LK91], [MPE96], [PME98], [Sch80]).
Alternative approximate estimators of confidence intervals for proportions are proposed, but
the normal approximation has been commonly used for estimating proportions because the
normal distribution is easy to use in practice. Recently, one of the approximation methods
for coverage analysis which is based on an arcsin transformation has been used for estimating
proportions and for controlling the required precision in [Raa95], but we know of no paper
which compares these approximate estimators for coverage analysis.

Our motivation is finding the best interval estimator for coverage analysis in sequential
steady-state simulation. Thus, we compare three candidate interval estimators for coverage
analysis in this report. In Section 2 three interval estimators for coverage analysis are dis-
cussed. In Section 3 the numerical results of simulation are presented and conclusions are in
Section 4.

2 Interval Estimators for Coverage Analysis

In any performance evaluation studies of dynamic systems by means of stochastic discrete-
event simulation, the final estimators should be determined together with their statistical
errors, which are usually measured by the half-width of the final confidence intervals. Re-
stricting our attention to interval estimators of proportions, the point estimator of the pro-
portion p in a binomial experiment is simply given by the statistic

p̂ =
count of successes in sample

size of sample
=

x

n

which will be used as the point estimate for the parameter p.
The accuracy with which it estimates an unknown parameter proportion p can be assessed

by the probability
P (|p̂ − p| < ∆) = 1 − α

or
P (p̂ − ∆ ≤ p ≤ p̂ + ∆) = 1 − α

where ∆ is the half-width of the confidence interval for the estimator and (1 − α) is the
confidence level, 0 < α < 1. Thus, if the total width (2∆) of the confidence interval is found for
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an assumed confidence level of (1−α) and the simulation experiment were repeated a number
of times, the confidence interval (p̂−∆, p̂+∆) would contain the parameter p in 100(1−α)%
of cases. It is well known that if observations x1, x2, . . . , xn can be regarded as realizations
of independent and identically normally distributed random variables X1,X2, . . . ,Xn, then
∆ is estimated by

∆̂ = tn−1,1−α/2σ̂[p̂],

where σ̂2[p̂] is an estimator of the variance of p̂ and tn−1,1−α/2 is the (1 − α/2) quantile of
the Student t-distribution with n − 1 degrees of freedom. For n > 30, the t-distribution can
be approximated by the standard normal distribution. Problems and solutions related with
estimating variance σ2 in steady-state simulations are well surveyed in [Paw90].

The robustness of any method is usually measured by the coverage of confidence intervals,
defined as the proportion p̂ with which the number of the final confidence interval (p̂−∆, p̂+∆)
contains the true value p. An estimator of variance σ̂2 used for determining the confidence
interval of the point estimate is considered as valid, i.e. producing valid 100(1−α)% confidence
intervals of the point estimate, if the upper bound of the confidence interval of the point
estimate p̂ equals at least (1−α) [Sau79]. Coverage analysis, however, is limited to analytically
tractable systems, since the theoretical value of the parameter of interest has to be known.

2.1 Approximated Interval Estimators for Coverage Analysis

Three approximate estimators of the confidence interval for the proportion p̂ are described
in following sections in detail.

2.1.1 Interval Estimator for Coverage Analysis : I

The inference procedure for finding a confidence interval for the binomial parameter p involves
two approximations:

• the normal approximation to the binomial distribution and

• the approximation of p by p̂ in the standard deviation.

If the unknown proportion p is not expected to be too close to 0 or 1, we can establish a
confidence interval for p by considering the sampling distribution of p̂. If each experiment for
coverage analysis is independent and identically distributed, with mean µ = p and variance
σ2 = p(1 − p), then an exact confidence interval for the estimated proportion p̂ is obtained
using the binomial distribution. However, by Theorem I (in Appendix IV), the sampling
distribution of p̂ is approximately normally distributed with mean µp̂ = p and variance
σ2

p̂ = p(1 − p)/n when n is large.
To find a confidence interval for p, we can assert that

P (−z1−α/2 < Z < z1−α/2) + 1 − α,

where
Z =

p̂ − p√
p(1 − p)/n
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and z1−α/2 is the (1−α/2) quantile of the standard normal distribution. Substituting for Z,
we write

P (−z1−α/2 <
p̂ − p√

p(1 − p)/n
< z1−α/2) = 1 − α

or

P (p̂ − z1−α/2

√
p(1 − p)

n
< p < p̂ + z1−α/2

√
p(1 − p)

n
) = 1 − α.

When n is large, very little error is introduced by substituting the point estimate p̂ for
the p under the radical sign. Then we can write

P (p̂ − z1−α/2

√
p̂(1 − p̂)

n
< p < p̂ + z1−α/2

√
p̂(1 − p̂)

n
) ' 1 − α.

Therefore, if the sample size n is sufficiently large(n ≥ 30), an approximate 100(1 - α)%
confidence interval for the binomial parameter p is given by

(p̂ ± z1−α/2 ∗
√

p̂(1 − p̂)
n

) (1)

where p̂ is the proportion of successes in a random sample of size n [LK91].
The accuracy of the normal approximations improves as the sample size n increases. They

are most accurate for any fixed n when p is close to 1/2, and least accurate when p is near 0
or 1. Therefore, although p̂ has a normal limiting distribution, the confidence interval based
on the normal approximation is not appropriate if p is close to 0 or 1[Raa95].

2.1.2 Interval Estimator for Coverage Analysis : II

Another estimator of the confidence interval for the proportion is based on the arcsin trans-
formation which has been given by R. A. Fisher. On the basis of the relative between the
mean p and the variance p(1 − p)/n, for the sample proportion p̂ = x/n we may determine
a function ŷ = g(p̂) in such a manner that the variance of the transformed variable ŷ is
independent of p. Here, we can use the arcsin transform,

ŷ = 2 arcsin
√

p̂

with variance
V ar{ŷ} ' 1

n
,

to construct an approximate confidence interval for the proportion being estimated because
the arcsin transformation can produce the approximate values of the cumulative distribution
function(CDF) of the normal distribution.

If p̂ is approximately normally distributed with mean p and variance p(1 − p)/n, then
ŷ = 2 arcsin

√
p̂ is also approximately normally distributed with mean = 2 arcsin

√
p and

variance = 1
n , so that

Z = (2 arcsin
√

p̂ − 2 arcsin
√

p) ∗ √n (2)

is approximately normally distributed with parameters (0,1).
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By analogy with Equation(28), Equation(29) and Equation(30) in Appendix V, we obtain
that the CDF of the sample proportion p̂ is defined by

P{p̂} ' Φ((2 arcsin

√
p̂ +

1
2n

− 2 arcsin
√

p) ∗ √n), (3)

where Φ is the CDF of a normal random variable and by the relation Equation(2) and
Equation(29) we can write

2 arcsin

√
p̂ +

1
2n

' 2 arcsin
√

p +
z1−α/2√

n
.

Therefore, we obtain by applying Equation(3) the confidence interval for the proportion
p̂ which is based on the arcsin transform.

A 100(1 − α)% confidence interval for the proportion p̂ which is based on the arcsin
transform is (p̂L, p̂U ):

p̂L = sin(LC/2)2 (4)

and
p̂U = sin(UC/2)2 (5)

where
LC = 2 arcsin

√
p̂ − 1/(2n) − z1−α/2/

√
n

and
UC = 2 arcsin

√
p̂ + 1/(2n) + z1−α/2/

√
n

where p̂ is the proportion, z1−α/2 is the (1−α/2) quantile of the standard normal distribution
[Hal52].

2.1.3 Interval Estimator for Coverage Analysis : III

Confidence intervals for the proportion can also be formulated from the binomial distribution
itself as follows:

Let the probability of the event U be P{U} = p. If the probability of the event U is p at
each observation, irrespective of the outcome of previous observations, then the probability
that the event will occur exactly x times in n observations is

p{x} =
(

n
x

)
px(1 − p)n−x, x = 0, 1, . . . , n. (6)

Let the ratio of two successive terms of Equation(6) be

f(x) =
p{x + 1}

p{x} =
n − x

x + 1
p

1 − p
, x = 0, 1, . . . , n − 1. (7)

Hence f(x) is a decreasing function,

f(0) > f(1) > · · · > f(n − 1),

so the course of the probability density function(PDF) may be characterized as follows:
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1. The PDF is steadily decreasing if f(x) < 1 for all x, which leads to

f(0) =
np

1 − p
< 1 or p <

1
n + 1

.

2. The PDF is steadily increasing if f(x) > 1 for all x, i.e.,

f(n − 1) =
p

n(1 − p)
> 1 or p >

n

n + 1
.

3. The PDF first increases and then decreases if f(0) > 1 > f(n − 1), i.e.,

1
n + 1

< p <
n

n + 1
.

In the third case, the mode(x = r) of the PDF may be found from the inequality

f(r − 1) ≥ 1 > f(r), (8)

which is identical with the inequalities p{r} ≥ p{r−1} and p{r} > p{r+1}. Substitution
of Equation(7) into Equation(8) leads to

n − r + 1
r

p

1 − p
≥ 1 >

n − r

r + 1
p

1 − p
, (9)

which gives
(n + 1)p − 1 < r ≤ (n + 1)p.

The CDF P{x} is discontinuous. So the equation P{x} = P , or x = xP , can be solved
only for P = P{0}, P{1}, ..., P{n}, and for these values of P the solutions are xP = 0, 1, ..., n.

The quantiles xP of the binomial distribution are approximated by the quantiles of the
F -distribution(see the Appendix I for proof), as

P{x} ' 1 − P{F (r1, r2) <
n − x

x + 1
p

1 − p
} =

1 − P{ (x + 1)F (r1, r2)
(n − x) + (x + 1)F (r1, r2)

< p}, (10)

where the degrees of freedom for F -distribution are r1 = 2(x + 1) and r2 = 2(n − x). Thus,
the equation P{xP } = P is identical with

P{F (r1, r2) <
n − xP

xP + 1
p

1 − p
} = 1 − P. (11)

The confidence intervals are functions of x, n, and P . The upper confidence interval p̄ is
determined so that the probability of frequencies, h, smaller than or equal to the one observed
frequency, h0 = x

n , is P for p = p̄, i.e., p̄ is determined from the equation

P{h ≤ h0; p = p̄} =
x∑

v=0

(
n
v

)
p̄v(1 − p̄)n−v = P, (12)

6



and similarly the lower confidence interval p is determined from the equation

P{h ≥ h0; p = p} =
n∑

v=x

(
n
v

)
pv(1 − p)n−v = 1 − P. (13)

These equations may be solved directly means of Equation(10) from which we obtain the
confidence interval for proportion.

From Equation(9), Equation(10), and Equation(12), a 100(1 − α)% upper confidence
interval for the proportion is

p̂U =
(x + 1)F1−α/2(r1, r2)

(n − x) + (x + 1)F1−α/2(r1, r2)
(14)

where n is the sample size, x is the number of events of interest occurring in the n observations
and F1−α/2(r1, r2) is the (1−α/2) quantile of the F distribution with r1 = 2∗ (x+1) degrees
of freedom for the numerator and r2 = 2 ∗ (n − x) degrees of freedom for the denominator.

Similarly, from Equation(9), Equation(10), and Equation(13), a 100(1 − α)% lower con-
fidence interval for the proportion is

p̂L =
x

x + (n − x + 1)F1−α/2(r3, r4)
(15)

where F1−α/2(r3, r4) is the (1 − α/2) quantile of the F distribution with r3 = 2 ∗ (n − x + 1)
degrees of freedom for the numerator and r4 = 2 ∗ x degrees of freedom for the denominator
[Hal52], [PW93].

3 Numerical Results

Implementing the interval estimators of sequential coverage analysis has been discussed in the
previous section. Our other implementation rules for sequential coverage analysis on a single
processor and multiple processors under MRIP (Multiple Replications In Parallel) scenario
of AKAROA ([PYM94] and [EPM98]) are adopted from [MPE96] and [PME98].

For finding a robust interval estimator for coverage analysis, we used the SA/HW method
applied to estimating the mean response times of M/M/1/∞ and M/D/1/∞ queueing sys-
tems. All numerical results in this paper were obtained by stopping the simulation experi-
ments when the final steady-state results reached a required precision of 5% or less, at the 0.95
confidence level, and 200 or more bad confidence intervals (to secure representativeness in the
analysed data) had been collected. All results were also filtered of strangely short simulation
runs after 200 bad confidence intervals are collected. As argued in [MPE96] and [PME98],
the filtering of short simulation runs guess a more realistic estimate of actual coverage likely
to be achieved under experimental conditions.

The results of sequential coverage analysis for SA/HW using three interval estimators on a
single processor are presented in Figure 1 for M/M/1/∞ and Figure 4 for M/D/1/∞ queueing
systems. In both simulation models, the half-width of confidence interval of proportions using
the normal distribution, the arcsin transformation and the F distribution is almost the same.

The simulation results of three estimators of confidence interval for coverage using 2 and 4
processors under MRIP scenario of AKAROA are also presented in Figure 2 and Figure 3 for
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M/M/1/∞ and Figure 5 and Figure 6 for M/D/1/∞. As we can see from these Figures, in
both M/M/1/∞ and M/D/1/∞ queueing systems, there is no significant difference between
these three estimators in this case, as well.

Figure 7 to Figure 9 for M/M/1/∞ and Figure 10 to Figure 12 for M/D/1/∞ depict the
results obtained from sequential coverage analysis of SA/HW for the three interval estimators
when the simulations were run using P = 1, 2 and 4 processors under MRIP scenario of
AKAROA. Using more processors usually produces narrow confidence intervals for heavier
loaded systems whatever interval estimator is used. For lighter loaded systems, however, using
more processors sometimes produces narrower confidence intervals and sometimes produces
wider confidence intervals because the required coverage has actually been reached by the
actual coverage with sufficiently small confidence intervals using single processor.

Confidence intervals of proportions using the normal, the arcsin, and the F distribution at
α = 0.001 and sample size n = 50 are depicted in Figure 13 and the upper limits of confidence
intervals of proportions from 0.5 to 1 using the normal, the arcsin, and the F distribution are
in Table 1. The figures confirm the theoretical claims, that interval estimators of proportion
based on the arcsin transformation and the F distribution never exceed the practical lower
and upper limits of confidence intervals. On the other hand, it shows that the upper limit of
the interval estimator of proportion based on the normal distribution can exceed 1.0, making
it inappropriate in simulation coverage analysis.

4 Conclusions

While some interesting results have been achieved in theoretical and experimental studies of
coverage analysis, experimental analysis of coverage is still required for assessing the quality
of practical implementations of methods used for determining confidence intervals in steady-
state simulation.

We have experimented with three interval estimators, based on the normal distribution
approximation, the arcsin transformation and the F distribution, for sequential coverage
analysis for the SA/HW method of M/M/1/∞ and M/D/1/∞ queueing systems on a single
and multiple processors. Although the results obtained show that they are basically equiv-
alent, being concerned about their validity, we would point at the estimators based on the
arcsin transformation and the F distribution as more appropriate one in coverage studies,
especially if higher value of confidence level is assumed.

Confidence interval estimators for proportions using the (symmetric) normal approxi-
mation have been commonly used for coverage analysis of simulation output even though
alternative estimators of (asymmetric) confidence intervals for proportions have been pro-
posed in the past. This is probably because the normal approximation had been easier to use
in practice than the other estimators. But, the current computing technology has no longer
a problem with dealing with alternative estimators. Even confidence intervals for coverage
analysis based on the F distribution can be calculated easily by a standard computer. They
also guarantee that the upper limits of confidence intervals for proportions do not exceed 1.0.
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Appendix I : Relationship between Binomial and F -Distributions

When deriving Equation(10) we consider the integral
∫ 1

p
yx(1 − y)n−x−1dy, x = 0, 1, . . . , n

which by integration by parts gives
∫ 1

p
yx(1 − y)n−x−1dy =

1
n − x

px(1 − p)n−x +
x

n − x

∫ 1

p
yx−1(1 − y)n−xdy

If reduction of the integral is continued by successive applications of this formula, we obtain,

after multiplication by n

(
n − 1

x

)
,

n

(
n − 1

x

)∫ 1

p
yx(1 − y)n−x−1dy =

x∑
v=0

(
n
v

)
pv(1 − p)n−v = P{x}. (16)

This result may be expressed by the incomplete Beta-function(see the Appendix III),
which according to Equation(24) may be written as

Bp(x + 1, n − x) =
∫ p

0
yx(1 − y)n−x−1dy.

Substitution into Equation(16) leads to

P{x} =
B(x + 1, n − x) − Bp(x + 1, n − x)

B(x + 1, n − x)
= 1 − Ip(x + 1, n − x), (17)

see Equation(23) and Equation(25).
Furthermore, according to Equation(26) the CDF of F distribution for the variable (see

the Equation(20) in Appendix II)

y =
r1F (r1, r2)

r2 + r1F (r1, r2)

is
P{y} = Iy(

r1

2
,
r2

2
)

from which we - after comparison with Equation(17) - see that

P{x} = 1 − P{y}
for

y =
r1F (r1, r2)

r2 + r1F (r1, r2)
= p

and
r1 = 2(x + 1), r2 = 2(n − x).
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This result may also be written

P{x} ' 1 − P{ (x + 1)F (r1, r2)
(n − x) + (x + 1)F (r1, r2)

< p} (18)

or as
P{x} ' 1 − P{F (r1, r2) <

(n − x)
(x + 1)

p

1 − p
}[Hal52].

Appendix II : Relationship between Beta and F -Distributions

The F -distribution may be expressed by the well-known Beta function in the following
way(For detail, see the pp.381-384 in [Hal52]): The probability density function of F -distribution
is

p{z} =
Γ( r1+r2

2 )
Γ( r1

2 )Γ( r2
2 )

r
r1
2

1 r
r2
2

2

z
r1
2
−1

(r2 + r1z)
r1+r2

2

, (0 ≤ z < ∞), (19)

for z = F (r1, r2).
Introducing the variable y by the transformation

F (r1, r2) =
r2

r1

y

1 − y
(0 ≤ y ≤ 1),

i.e.,

y =
r1F (r1, r2)

r2 + r1F (r1, r2)
(20)

and
1 − y =

r2

r2 + r1F (r1, r2)
(21)

we obtain from Equation(19) the following equation

p{y} =
Γ( r1+r2

2 )
Γ( r1

2 )Γ( r2
2 )

y
r1
2
−1(1 − y)

r2
2
−1 (0 ≤ y ≤ 1), (22)

which is called the Beta-distribution.

Appendix III : Beta Function and Incomplete Beta Function

Beta function is

B(s, t) =
∫ 1

0
ys−1(1 − y)t−1dy =

Γ(s)Γ(t)
Γ(s + t)

(23)
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Incomplete Beta function is the integral

By(s, t) =
∫ y

0
ys−1(1 − y)t−1dy, (0 ≤ y ≤ 1) (24)

The ratio between the complete and the incomplete Beta function is

Iy(s, t) =
By(s, t)
B(s, t)

. (25)

From Equation(22)-(25) it follows that

P{y} = Iy(
r1

2
,
r2

2
) (26)

so that the quantiles of the y-distribution - and therefore also of the F -distribution - may be
computed from complete and incomplete Beta function.

Appendix IV : Theorem I

If X is a binomial random variable with mean µ = np and variance σ2 = np(1− p), then the
standardized variable

Z =
X − np√
np(1 − p)

, (27)

as n → ∞, is approximately the standardized normal distribution n(0,1).

Appendix V : Relationship between Binomial and Normal Distribution

Dividing both numerator and denominator of Equation(27) of Appendix IV by n, we obtain

Z =
p̂ − p√
p(1−p)

n

,

i.e., the proportion p̂ = x/n is approximately normally distributed with mean p and variance
p(1 − p)/n.

In most applications of the binomial distribution it is not a single value of p{x} which is
required, but sums of p{x} of the form

P{x1 ≤ x ≤ x2} =
x2∑

x=x1

p{x}.
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The areas of the corresponding to this sum may be approximated by the area of the normal
distribution from x1 − 1

2 to x2 + 1
2 , so that

P{x1 ≤ x ≤ x2} =
x2∑

x=x1

p{x} ' 1√
2πσ

∫ x2+
1
2

x1− 1
2

e−
(x−ξ)2

2σ2 dx =

Φ(
x2 + 1

2 − ξ

σ
) − Φ(

x1 − 1
2 − ξ

σ
),

where Φ is the CDF of a Gaussian random variable with ξ = np and σ =
√

np(1 − p). For
x = x1 = x2, we obtain an approximation to p{x}, namely,

p{x} ' Φ(
x + 1

2 − ξ

σ
) − Φ(

x − 1
2 − ξ

σ
).

For the cumulative distribution function P{x} we have

P{x} ' Φ(
x + 1

2 − np√
np(1 − p)

), (28)

which leads to
x1−α/2 + 1

2 − np√
np(1 − p)

' Z1−α/2,

or
x1−α/2 ' np − 1

2
+ Z1−α/2

√
np(1 − p),

and by division by n

p̂1−α/2 ' p − 1
2n

+ Z1−α/2

√
p(1 − p)

n
,

or

p̂1−α/2 +
1
2n

' p + Z1−α/2

√
p(1 − p)

n
, (29)

or
p̂1−α/2 + 1

2n − p√
p(1−p)

n

' Z1−α/2. (30)
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Figure 1: Half-Width of Confidence Interval of Coverage Using Normal Distribution Approx-
imation, Arcsin Transformation and F-Distribution Approximation in M/M/1/∞ Queueing
System (P = 1)
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Figure 2: Half-Width of Confidence Interval of Coverage Using Normal Distribution Approx-
imation, Arcsin Transformation and F-Distribution Approximation in M/M/1/∞ Queueing
System (P = 2)
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Figure 3: Half-Width of Confidence Interval of Coverage Using Normal Distribution Approx-
imation, Arcsin Transformation and F-Distribution Approximation in M/M/1/∞ Queueing
System (P = 4)
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Figure 4: Half-Width of Confidence Interval of Coverage Using Normal Distribution Approx-
imation, Arcsin Transformation and F-Distribution Approximation in M/D/1/∞ Queueing
System (P = 1)
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Figure 5: Half-Width of Confidence Interval of Coverage Using Normal Distribution Approx-
imation, Arcsin Transformation and F-Distribution Approximation in M/D/1/∞ Queueing
System (P = 2)
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Figure 6: Half-Width of Confidence Interval of Coverage Using Normal Distribution Approx-
imation, Arcsin Transformation and F-Distribution Approximation in M/D/1/∞ Queueing
System (P = 4)
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Figure 7: Half-Width of Confidence Interval of Coverage Using 1, 2, and 4 Processors in
Normal Distribution Approximation of M/M/1/∞ Queueing System
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Figure 8: Half-Width of Confidence Interval of Coverage Using 1, 2, and 4 Processors in
Arcsin Transformation of M/M/1/∞ Queueing System
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Figure 9: Half-Width of Confidence Interval of Coverage Using 1, 2, and 4 Processors in
F -Distribution Approximation of M/M/1/∞ Queueing System
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Figure 10: Half-Width of Confidence Interval of Coverage Using 1, 2, and 4 Processors in
Normal Distribution Approximation of M/D/1/∞ Queueing System
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Figure 11: Half-Width of Confidence Interval of Coverage Using 1, 2, and 4 Processors in
Arcsin Transformation of M/D/1/∞ Queueing System
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Figure 12: Half-Width of Confidence Interval of Coverage Using 1, 2, and 4 Processors in
F -Distribution Approximation of M/D/1/∞ Queueing System
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Figure 13: Confidence intervals of proportions using normal, arcsin, and F distribution (α =
0.001 & n = 50)
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Table 1: Upper limits of confidence inter-
vals of proportions using normal, arcsin,
and F distribution (α = 0.001 & n = 50)

Proportion Normal Arcsin F
0.5 0.733 0.733 0.728
0.52 0.753 0.751 0.745
0.54 0.772 0.768 0.762
0.56 0.791 0.785 0.778
0.58 0.81 0.801 0.794
0.6 0.828 0.817 0.809
0.62 0.846 0.833 0.824
0.64 0.863 0.848 0.839
0.66 0.88 0.863 0.854
0.68 0.897 0.877 0.868
0.7 0.913 0.891 0.881
0.72 0.929 0.905 0.894
0.74 0.944 0.918 0.907
0.76 0.959 0.93 0.919
0.78 0.973 0.942 0.931
0.8 0.986 0.953 0.942
0.82 0.999 0.963 0.953
0.84 1.01 0.973 0.963
0.86 1.02 0.982 0.972
0.88 1.03 0.989 0.98
0.9 1.04 0.995 0.987
0.92 1.05 0.999 0.993
0.94 1.05 1 0.997
0.96 1.05 0.997 0.999
0.98 1.05 0.983 1
1 1 0.956 1
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