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Abstract

We investigate the number of symmetric matrices of non-negative integers with zero diag-
onal such that each row sum is the same. Equivalently, these are zero-diagonal symmetric
contingency tables with uniform margins, or loop-free regular multigraphs. We determine
the asymptotic value of this number as the size of the matrix tends to infinity, provided
the row sum is large enough. We conjecture that one form of our answer is valid for all
row sums.

1. Introduction

Let M(n, ℓ) be the number of n×n symmetric matrices over {0, 1, 2, . . . }
with zeros on the main diagonal and each row summing to ℓ. Our interest
is in the asymptotic value of M(n, ℓ) as n → ∞ with ℓ being a function
of n. Alternative descriptions of the class M(n, ℓ) are: adjacency matrices
of loop-free regular multigraphs of order n and degree ℓ, and zero-diagonal
symmetric contingency tables of dimension n with uniform margins equal
to ℓ.

Very little seems to be known about this problem. The asymptotic value
of M(n, 3) was determined by Read in 1958 [12]. According to Bender and
Canfield [3], de Bruijn extended this to M(n, ℓ) for fixed ℓ but failed to
publish it. In any case, [3] generalised the result to bounded but possibly
non-equal row sums. By the method of switchings, Greenhill and McKay [7]
found the asymptotic number of matrices with given small row sums over a
range that includes M(n, ℓ) for ℓ = o(n1/2).

In this paper we treat the case of large ℓ and manage to find the asymp-
totics whenever ℓ > Cn/ logn for any C > 1

6 . We will use the multidi-
mensional saddle-point method, which was previously applied successfully
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n = 9

ℓ = 20

λ = ℓ
n−1 = 2.5

0 4 1 3 2 2 3 1 4
4 0 4 1 3 2 2 3 1
1 4 0 7 1 0 2 2 3
3 1 7 0 1 1 3 2 2
2 3 1 1 0 7 1 3 2
2 2 0 1 7 0 4 1 3
3 2 2 3 1 4 0 4 1
1 3 2 2 3 1 4 0 4
4 1 3 2 2 3 1 4 0

Figure 1. An example of a matrix counted by M(9, 20) = 1955487489759152410696.

to the corresponding {0, 1} problem by McKay and Wormald [11] and to
the corresponding non-symmetric problem by Canfield and McKay [5]. For
the non-symmetric problem with mixed row and column sums, see Barvinok
and Hartigan [1].

Our theorem is as follows.

Theorem 1.1. Let a and b be positive real numbers such that a+ b < 1
2 .

Let ℓ = ℓ(n) be such that ℓn is even and λ = ℓ/(n− 1) satisfies

λ ≥ 1

3a logn
. (1)

Then as n → ∞,

M(n, ℓ) =
√
2
(
2πn(1 + λ)−ℓ−n+2λℓ+1

)−n/2
exp

(
14λ2 + 14λ− 1

12λ(1 + λ)
+O(n−b)

)

=

(
λλ

(1 + λ)1+λ

)(n2)(n+ ℓ− 2

ℓ

)n√
2 e3/4

(
1 +O(n−b)

)
. (2)

In Section 2, we express M(n, ℓ) as an integral in n-dimensional complex
space and divide the domain of integration into three parts, then in Section 3
we estimate the integral in two of the parts. In Section 4, we show that the
third part is negligible in comparison provided ℓ is bounded by a polynomial
in n. We complete the proof for large ℓ in Section 5 using the theory of
Ehrhart quasipolynomials.

In Section 6, we show that the form of expression (2) is motivated by
a näıve probabilistic model. We also note that (2) agrees with [7], apart
from the error term, when 1 ≤ ℓ = o(n1/2), and closely matches many exact
values computed as described in Section 7. This leads us to suspect that (2)
is true whenever ℓ > 0, and we conjecture explicit bounds for M(n, ℓ) in
Conjecture 7.

Throughout the paper, asymptotic notation like O(f(n)) refers to the
passage of n to ∞. We will also use a modified notation Õ(f(n)). A function
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g(n) belongs to this class provided that

g(n) = O(f(n)naε),

for some numerical constant a that might be different at each use of the
notation.

2. An integral for M(n, ℓ)

We now express M(n, ℓ) as an integral in n-dimensional complex space
and outline a plan for estimating it.

We begin with a generating function in n variables x1, . . . , xn,

∏

1≤j<k≤n

(1− xjxk)
−1,

for which the coefficient of xℓ11 · · ·xℓnn is the number of n × n symmetric
matrices over {0, 1, 2, . . . } with zeros on the main diagonal and row sums
ℓ1, . . . , ℓn. In particular, M(n, ℓ) is the coefficient of xℓ1 · · ·xℓn.

Applying Cauchy’s Integral Formula we have

M(n, ℓ) =
1

(2πi)n

‹

∏
1≤j<k≤n(1− xjxk)

−1

xℓ+1
1 · · ·xℓ+1

n

dx1 · · · dxn, (3)

where each variable is integrated along a contour circling the origin once in
the anticlockwise direction. It will suffice to take the contours to be circles;
specifically, we will put xj = reiθj for each j, where, for reasons that will
become clear in Section 3, we choose

r =

√
λ

1 + λ
.

This gives

M(n, ℓ) =
1

(2π)n
(
λ−λ(1 + λ)1+λ

)(n2) I(n),

where

I(n) =

ˆ π

−π
· · ·
ˆ π

−π

∏
1≤j<k≤n

(
1− λ(ei(θj+θk) − 1)

)−1

eil
∑n

j=1
θj

dθ. (4)

Let F (θ) be the integrand in (4).
The quantity (1− λ(ei(θj+θk) − 1))−1, and thus F (θ), has greatest mag-

nitude when θj + θk ∈ {0, 2π} for each distinct pair j, k. It is easy to
see that these constraints have only two solutions: θj = 0 for all j, and
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θj = π for all j. We will show that the value of I(n) comes mostly from the
neighbourhoods of these two points; specifically, it comes from two boxes
R0,Rπ ⊆ [−π, π]n defined, for sufficiently small ε, as

R0 = {θ : |θj | ≤ n−1/2+ε(1 + λ)−1 for all j }, and

Rπ = {θ : |θj + π| ≤ n−1/2+ε(1 + λ)−1 for all j },

where θj +π is taken mod 2π. Note that the operation θj 7→ θj +π for all j,
which maps R0 and Rπ onto each other, preserves F (θ) since nℓ is even.
Also note that R0 ∩Rπ = ∅. We denote the region outside of the boxes as

Rc = [−π, π]n \ (R0 ∪Rπ). (5)

If X ⊆ [−π, π]n, then we let IX(n) =
´

X F (θ) dθ. For λ = O(n5) we will
evaluate the integral I(n) defined in (4) in the following way:

I(n) = IR0
(n) + IRπ(n) + IRc(n)

= 2IR0
(n) +O(1)

ˆ

Rc

|F (θ)|dθ

= 2IR′(n) +O(1)

ˆ

Rc

|F (θ)|dθ (6)

for any R′ with R0 ⊆ R′ ⊆ [−π, π]n \ Rπ.

3. The main part of the integral

In this section we estimate the value of the integral I(n) in a convenient
region R′ that contains R0. We begin by quoting several results required
for the calculation.

The following theorem, simplified from [9], estimates the value of a cer-
tain multidimensional integral.

Theorem 3.1. Let ε′, ε′′, ε′′′, ε̌ be constants such that 0 < ε′ < ε′′ < ε′′′,
and ε̌ > 0. The following is true if ε′′′ is sufficiently small.

Let Â = Â(n) be a real-valued function such that Â(n) = Ω(n−ε′). Let

B̂ = B̂(n), Ĉ = Ĉ(n), Ê = Ê(n), F̂ = F̂ (n), Ĝ = Ĝ(n), Ĥ = Ĥ(n), and
Î = Î(n) be complex-valued functions of n such that B̂, Ĉ, Ê, F̂ , Ĝ, Ĥ, Î =
O(1). Suppose ε̂(n) satisfies ε′′ ≤ 2ε̂(n) ≤ ε′′′ for all n and define

Un =
{
z ⊆ R

n : |zj | ≤ n−1/2+ε̂(n) for 1 ≤ j ≤ n
}
.
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Suppose that for z = (z1, z2, . . . , zn) ∈ Un we have

f(z) = exp

(
−Ân

n∑

j=1

z2j + B̂n

n∑

j=1

z3j + Ĉ

n∑

j,k=1

zjz
2
k + D̂n−1

n∑

j,k,p=1

zjzkzp

+ Ên
n∑

j=1

z4j + F̂
n∑

j,k=1

z2j z
2
k + Ĝn1/2

n∑

j,k=1

zjz
3
k

+ Ĥn−1/2
n∑

j,k,p=1

zjzkz
2
p + În−3/2

n∑

j,k,p,q=1

zjzkzpzq + δ(z)

)
,

where δ(z) is continuous and δ(n) = maxz∈Un |δ(z)| = o(1). Then, provided

the O( ) term in the following converges to zero,

ˆ

Un

f(z) dz =

(
π

Ân

)n/2

exp
(
Θ1 +O

(
n−1/2+ε̌ + (n−3/4 + δ(n))Ẑ

))
,

where

Θ1 =
15B̂2

16Â3
+

3B̂Ĉ

8Â3
+

Ĉ2

16Â3
+

3Ê

4Â2
+

F̂

4Â2
, and

Ẑ = exp

(
15 Im(B̂)2 + 6 Im(B̂) Im(Ĉ) + Im(Ĉ)2

16Â3

)
.

The following lemma defines a linear transformation, adapted from [11].

Lemma 3.2. Define c and z = (z1, z2, . . . , zn) by

c = 1−
√

n− 2

2(n− 1)
= 1− 2−1/2 +O(n−1), (7)

(1 + λ) θj = zj −
c

n

n∑

k=1

zk (1 ≤ j ≤ n). (8)

The transformation θ = T (z) defined by (8) has determinant (1−c)/(1+λ)n.
For m ≥ 1, define µm =

∑n
j=1 z

m
j . Then we have the following translations.

(1 + λ)
n∑

j=1

θj = (1− c)µ1,

(1 + λ)2
∑

1≤j<k≤n

(θj + θk)
2 = (n− 2)µ2,
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(1 + λ)3
∑

1≤j<k≤n

(θj + θk)
3 = (n− 4)µ3 +

(
3(1− 2c) + 12c/n

)
µ1µ2

+
(
(−6c+ 12c2 − 4c3)/n− 4c2(3− c)/n2

)
µ3
1,

(1 + λ)4
∑

1≤j<k≤n

(θj + θk)
4 = (n− 8)µ4 + 3µ2

2 +
(
4(1− 2c) + 32c/n

)
µ1µ3

−
(
24c(1− c)/n+ 48c2/n2

)
µ2
1µ2

+
(
8c2(1− c)(3− c)/n2 + 8c3(4− c)/n3

)
µ4
1.

From Taylor’s Theorem with remainder we have

Lemma 3.3. For all real X,

(
1− λ(eiX − 1)

)−1
=exp

(
λiX − 1

2λ(1 + λ)X2 − 1
6 iλ(1 + λ)(1 + 2λ)X3

+ 1
24λ(1 + λ)(1 + 6λ+ 6λ2)X4 +O((λ+ λ5)X5)

)
.

We now present the main result of this section.

Theorem 3.4. Under the conditions of Theorem 1.1, there is a region

R′ such that R0 ⊆ R′ ⊆ 3R0 ⊆ [−π, π]n \ Rπ and

IR′(n) =
1√
2

(
2π

λ(1 + λ)n

)n/2
exp

(
14λ2 + 14λ− 1

12λ(λ+ 1)
+O(n−b)

)
.

Proof. Consider the transformation θ = T (z) defined by (8). Define

Rz = {z : |zj | ≤ 2n−1/2+ε} and R′ = T (Rz).

From (8) we have

|θj | ≤ y for all j =⇒ |zj | ≤ (1 + λ)(1− c)−1y for all j,

|zj | ≤ y for all j =⇒ |θj | ≤ (1 + λ)−1(1 + c)y for all j.

These imply, for n ≥ 2, that T−1R0 ⊆ Rz and

R0 ⊆ R′ ⊆ 3R0.

From Lemma 3.3 we have, for θ ∈ R′,

F (θ) = exp

(
−A2

∑

1≤j<k≤n

(θj + θk)
2 − iA3

∑

1≤j<k≤n

(θj + θk)
3

+A4

∑

1≤j<k≤n

(θj + θk)
4 + Õ(n−1/2)

)
,

where A2 =
1
2λ(1+λ), A3 =

1
6λ(1+λ)(1+2λ), A4 =

1
24λ(1+λ)(1+6λ+6λ2).

The absence of a linear term is due to our particular choice of r in Section 2.
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Using Lemma 3.2, we perform the transformation θ = T (z). This diag-
onalizes the quadratic form in F (θ), and IR′ becomes:

1√
2

(
2π

λ(1 + λ)n

)n/2ˆ

Rz

F
(
T (z)

)
dz,

where

F
(
T (z)

)
=exp

(
−A2B2(1 + λ)−2µ2 − iA3B3(1 + λ)−3µ3

− iA3B1,2(1 + λ)−3µ1µ2 − iA3B1,1,1(1 + λ)−3µ3
1

+A4B4(1 + λ)−4µ4 +A4B2,2(1 + λ)−4µ2
2

+A4B1,3(1 + λ)−4µ1µ3 −A4B1,1,2(1 + λ)−4µ2
1µ2

+A4B1,1,1,1(1 + λ)−4µ4
1 + Õ(n−1/2)

)
,

where

B2 = n− 2,

B3 = n− 4,

B4 = n− 8,

B1,2 = 3(1− 2c) +
12c

n
= −3 + 3

√
2 +O(n−1),

B1,3 = 4(1− 2c) +
32c

n
= −4 + 4

√
2 +O(n−1),

B2,2 = 3,

B1,1,1 =
−6c+ 12c2 − 4c3

n
− 4c2(3− c)

n2
=

2− 2
√
2

n
+O(n−2),

B1,1,2 = −24c(1− c)

n
+

48c2

n2
= O(n−1),

B1,1,1,1 =
8c2(1− c)(3− c)

n2
+

8c3(4− c)

n3
= O(n−2).

In order to apply Theorem 3.1 we choose ε̂(n) = ε+log 2/ log n, ε′ = 1
2 ε,

ε′′ = ε, ε′′′ = 3ε, ε̌ = ε, δ(n) = Õ(n−1/2) and

Â =
A2B2

(1 + λ)2n
= − λ

2(1 + λ)

(
1− 2

n

)
,

B̂ = −i
A3B3

(1 + λ)3n
= −i

λ(1 + 2λ)

6(1 + λ)2
+O(n−1),

Ĉ = −i
A3B1,2

(1 + λ)3
= i

λ(1 + 2λ)(1−
√
2)

2(1 + λ)2
+O(n−1),

D̂ = −i
A3B1,1,1n

(1 + λ)3
= −i

λ(1 + 2λ)(1−
√
2)

3(1 + λ)2
+O(n−1),
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Ê =
A4B4

(1 + λ)4n
=

λ(1 + 6λ+ 6λ2)

24(1 + λ)3
+O(n−1),

F̂ =
A4B2,2

(1 + λ)4
=

λ(1 + 6λ+ 6λ2)

8(1 + λ)3
,

Ĝ =
A4B1,3

(1 + λ)4n1/2
= O(n−1/2),

Ĥ =
A4B1,1,2n

1/2

(1 + λ)4
= O(n−1/2),

Î =
A4B1,1,1,1n

3/2

(1 + λ)4
= O(n−1/2),

Ẑ = exp

(
nA2

3(15B
2
3 + 6B3B1,2n+B2

1,2n
2)

16B3
2A

3
2

)

= exp

(
(1 + 2λ)2

3λ(1 + λ)
+ Õ(n−1)

)
,

Θ1 =
2λ2 + 2λ− 1

12λ(1 + λ)
+ Õ(n−1).

Theorem 3.4 now follows from Theorem 3.1.

4. Concentration of the integral

In the previous section we proved that the contribution to I(n) from the
box R′ is

IR′(n) =

(
π

A2n

)n

exp
(
O(1 + λ−1)

)
.

We now consider the contribution to I(n) from the region Rc (defined in (5))
and show, provided λ is not too large, that it is negligible compared to
IR′(n).

First we import from [5] some useful lemmas.

Lemma 4.1. The absolute value of the integrand F (θ) of (4) is

|F (θ)| =
∏

1≤j<k≤n

f(θj + θk),

where

f(z) =
(
1 + 4A2(1− cos z)

)−1/2
.

Moreover, for all real z with |z| ≤ 1
10(1 + λ)−1,

0 ≤ f(z) ≤ exp
(
−A2z

2 + ( 1
12A2 +A2

2)z
4
)
. (9)
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Lemma 4.2. Define t = 1
60(1+λ)−1 and g(x) = −A2x

2+(34A2+9A2
2)x

4.

Then, uniformly for λ > 0 and K ≥ 1,

ˆ 2t

−2t
exp

(
Kg(x)

)
dx ≤

√
π/(A2K) exp

(
O(K−1 + (A2K)−1)

)
.

Theorem 4.3. Suppose that the conditions of Theorem 1.1 hold, and in

addition that λ = nO(1). Then

ˆ

Rc

|F (θ)| dθ = O(n−1)IR′(n).

Proof. The proof follows a similar pattern to that of [11, Theorem 1].
Define t and g(z) as in Lemma 4.2.

Define n0, n1, n2, n3, functions of θ, to be the number of indices j such
that θj lies in [−t, t], (t, π − t), [π − t, π + t], and (−π + t,−t), respectively.
Let R′′ be the set of all θ such that max{n0n2,

(
n1

2

)
,
(
n3

2

)
} ≥ n1+ε. Any

θ ∈ R′′ has the property that f(θj + θk) ≤ f(2t) for at least n1+ε pairs j, k.
Since f(z) ≤ 1 for all z, and the volume of R′′ is less than (2π)n, we have

ˆ

R′′

|F (θ)| dθ ≤ (2π)nf(2t)n
1+ε

.

Applying (9) and the assumption that λ = O(nO(1)), we find that

ˆ

R′′

|F (θ)| dθ = O(e−c1n1+ε/2
)IR′(n) (10)

for some c1 > 0.

For θ ∈ Rc \ R′′ we must have n1, n3 = O(n1/2+ε) and either n0 =
O(n1/2+ε) or n2 = O(n1/2+ε). The latter two cases are equivalent, so we
will assume that n2 = O(n1/2+ε), which implies that n0 = n−O(n1/2+ε).

Define S0, S1, S2, functions of θ, as follows.

S0 = { j : |θj | ≤ t },
S1 = { j : t < |θj | ≤ 2t },
S2 = { j : |θj | > 2t }.

Define si = |Si| for each i. Since s0 = n0, we know that s1+s2 = O(n1/2+ε).
Now we bound |F (θ)| in Rc \ R′′ using

f(θj + θk) ≤





f(t) ≤ exp

(
− λ

14400(1 + λ)

)
if j∈S0, k∈S2,

exp
(
−A2(θj + θk)

2 + ( 1
12A2 +A2

2)(θj + θk)
4
)
if j, k∈S0,

1 otherwise.
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Let I2(s2) be the contribution to I(n) from those θ ∈ Rc \R′′ with the given
value of s2, and let θ′ denote the vector (θj)j∈S0

. The set S2 can be chosen
in at most ns2 ways. Applying the bounds above, and allowing (2π)s1+s2 for
integration over θj ∈ S1 ∪ S2, we find

I(s2) ≤ ns2(2π)s1+s2 exp

(
− s0s2λ

14400(1 + λ)

)
I ′(s0), (11)

where

I ′(s0) =

ˆ t

−t
· · ·
ˆ t

−t

∏

j,k∈S0,j<k

f(θj + θk) dθ
′

≤
ˆ t

−t
· · ·
ˆ t

−t
exp

(
−A2

∑

j,k∈S0,j<k

(θj + θk)
2

+ ( 1
12A2 +A2

2)
∑

j,k∈S0,j<k

(θj + θk)
4
)
dθ′

≤
ˆ t

−t
· · ·
ˆ t

−t
exp

(
−A2(s0 − 2)

∑

j∈S0

θ2j

+ 8(s0 − 1)( 1
12A2 +A2

2)
∑

j∈S0

θ4j

)
dθ′

≤
(
ˆ t

−t
exp

(
−(s0 − 2)g(z)

)
dz

)s0
, for s0 ≥ 10,

≤
(√

π

A2(s0−2)
exp

(
O(1 + λ−1)n−1

))s0

≤
(

π

A2n

)n/2

exp
(
O(n1/2+2ε)

)
.

The third line of the above follows from the bounds

∑

1≤j<k≤p

(xj + xk)
2 ≥ (p− 2)

p∑

j=1

x2j and
∑

1≤j<k≤p

(xj + xk)
4 ≤ 8(p− 1)

p∑

j=1

x4j

valid for all x1, x2, . . . , xp. The fifth line follows from Lemma 4.1, and the
last line follows from s0 = n−O(n1/2+ε). Substituting this bound into (11)
we find that ∑

s2≥1

I2(s2) = O
(
exp(−c2n/ logn)

)
IR′(n) (12)

for some c2 > 0.
With the cases of (10) and (12) excluded, we are left with the problem

of bounding the contribution of θ ∈ [−2t, 2t]n \R′. Let u = n−1/2+ε/(1+λ).
First note that, by arguing as above, we have that

|F (θ)| ≤
n∏

j=1

exp
(
(n− 2)g(θj)

)
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for all θ ∈ [−2t, 2t]n. Also note that, by Lemma 4.2,

ˆ 2t

−2t
exp

(
(n− 2)g(z)

)
dz ≤

√
π/(A2n) exp

(
O(1 + λ−1)n−1

)
. (13)

The function g(z) has at most one minimum in [u, 2t], and g(2t) < g(u) for
sufficiently large n, so

(
ˆ −u

−2t
+

ˆ 2t

u

)
exp

(
(n− 2)g(z)

)
dz ≤ 4t exp

(
(n− 2)g(u)

)

≤ exp

(
− λ

4(1 + λ)
nε

)
. (14)

Let J1, J2 be the right sides of (13) and (14), respectively. Then

ˆ

[−2t,2t]n\R
|F (θ)| dθ ≤

n∑

q=1

(
n

q

)
Jq
2J

n−q
1

= Jn
1

(
(1 + J2/J1)

n − 1
)

= O
(
e−c3nε)

IR′(n) (15)

for some c3 > 0.

The lemma now follows from (10), (12) and (15).

5. Proof of Theorem 1.1

In the case that λ = nO(1), Theorem 1.1 follows from Theorem 3.4 and
Theorem 4.3. For larger λ, the method used in the proof of Theorem 4.3 is
insufficient so we need a new approach.

Let us assume that we already proved Theorem 1.1 for λ = O(n5). Now
we want to show that it must be true for larger λ as well. First note that
for such large λ (indeed for λ/n → ∞), Theorem 1.1 is equivalent to

M(n, ℓ) =
√
2
(
λ+ 1

2

)n(n−3)/2 e(
n
2)+7/6

(2πn)n/2
(
1 +O(n2/λ2 + n−b)

)
. (16)

Let Pn be the polytope of symmetric n × n real non-negative matrices
with zero diagonal whose rows sum to 1. Then M(n, ℓ) is the number of
integer points in ℓPn. That is, M(n, ℓ) is the Ehrhart quasipolynomial of Pn.

According to [4, Theorem 8.2.6], the vertices of Pn are the adjacency
matrices of graphs whose components are either isolated edges of weight 1
or odd cycles with edges of weight 1

2 . That is, the coordinates of the vertices
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are multiples of 1
2 . By a result of Ehrhart (see [2, Ex. 3.25]), there is a

polynomial fn(z) with non-negative integer coefficients such that

∑

ℓ≤0

M(n, ℓ)zℓ =
fn(z)

(1− z2)d+1
, (17)

where d is the dimension of Pn. By [13], d = n(n−3)/2.

By applying the binomial expansion to (1−z2)−d−1 in (17), we find that
M(n, ℓ) is a polynomial in ℓ for even ℓ and a possibly-different polynomial in
ℓ for odd ℓ. Explicitly, there are non-negative integers h0, . . . , hd (dependent
on n and the parity of ℓ) such that

M(n, ℓ) =
d∑

i=0

hd−i

(
ℓ+ i

d

)
.

Arguing as in [5], we infer that there is a function α(n, ℓ) such that

M(n, ℓ) =

(
ℓ

d

)( d∑

i=0

hi

)(
1 + α(n, ℓ)/ℓ

)
(18)

α(n, ℓ) ≥ 0 for ℓ ≥ d (19)

α(n, ℓ+ 2) ≤ α(n, ℓ) for ℓ ≥ d. (20)

Equations (16) and (18) both apply for ℓ = Θ(n5), so for m ∈ {n5, n5 + 1},

M(n, 3m)

M(n,m)
= 3d

1 + 1
3α(n, 3m)/m5

1 + α(n,m)/m5

(
1 +O(n−1)

)
= 3d

(
1 +O(n−b)

)
,

where the first estimate comes from (18) and the second comes from (16).
Comparing these two estimates, and noting from (19) and (20) that 0 ≤
α(n, 3m) ≤ α(n,m), we conclude that α(n,m) = O(n5−b). By (20), this
implies that α(n, ℓ) = O(n5−b) for all ℓ ≥ n5. Now we can see from (18)
that

M(n, ℓ) = M(n,m)
M(n, ℓ)

M(n,m)
= M(n,m)

(
ℓ

m

)d(
1 +O(n−b)

)

and apply (16) to M(n,m). This shows that (16) holds for all ℓ ≥ n5. The
proof of Theorem 1.1 is now complete.

12



6. Näıve Thinking

In this section we consider a “näıve” model of random matrix and show
how it motivates our estimate for M(n, λ).

Define Gλ to be the geometric distribution with mean λ. That is, for a
random variable X distributed according to Gλ, we have

Prob(X = j) =
1

1 + λ

(
λ

1 + λ

)j

(21)

for j ≥ 0.
Define S = S(n, ℓ) to be the probability space of n × n non-negative

symmetric integer matrices with zero diagonal, where each element of the
upper triangle is independently chosen from Gλ. Define events on S:

Ej : row j has sum ℓ

Eall :
n⋂

j=1

Ej

E0 : the whole matrix has sum nℓ.

Note that Eall ⊆ E0. Also note that each matrix in E0 has the same proba-
bility, namely

P0 =

(
1

1 + λ

)(n2)( λ

1 + λ

)nℓ/2
.

(Proof: Apply (21) to each entry in the upper triangle and use the assumed
independence of the entries there. The result is independent of the actual
matrix entries.) Therefore,

M(n, ℓ) =
Prob(Eall)

P0
.

Now make a näıve assumption that the events Ej are independent.
By symmetry, Prob(Ej) is independent of j, so we get a näıve estimate of
M(n, ℓ):

Mnaive(n, ℓ) =
Prob(E1)

n

P0
. (22)

Now consider Prob(E1). The number of possible first rows is
(
n+ ℓ− 2

ℓ

)
.

(This is the number of ways of writing ℓ as the sum of n − 1 non-negative
integers.) In space S, each such first row has probability

(
1

1 + λ

)n−1( λ

1 + λ

)ℓ

.

13



Therefore,

Prob(E1) =

(
n+ ℓ− 2

ℓ

)(
1

1 + λ

)n−1( λ

1 + λ

)ℓ

.

Substituting this value into (22), we get

Mnaive(n, ℓ) =

(
λλ

(1 + λ)1+λ

)(n2)(n+ ℓ− 2

ℓ

)n

Therefore, formula (2) in Theorem 1.1 can be written

M(n, ℓ) = Mnaive(n, ℓ)
√
2 exp

(
3
4 +O(n−b)

)
.

Note that
√
2 e3/4 ≈ 2.9939.

7. Exact values

As noted in Section 5, M(n, ℓ) is the number of integer points in ℓPn,
where Pn is the polytope defined in that section. Lattice point enumeration
techniques such as the algorithm in [6] therefore allow the exact computation
of M(n, ℓ) for small n. In practice this is feasible for n ≤ 9 or with difficulty
n ≤ 10, almost irrespective of ℓ.

By interpolating the computed values, we obtain the Ehrhart quasi-
polynomial for small n. Recall that M(n, ℓ) is a polynomial Me(n, ℓ) for
even ℓ and a polynomial Mo(n, ℓ) for odd ℓ. We have Mo(n, ℓ) = 0 if n is
odd, and the following.

Me(3, ℓ) = 1

Me(4, ℓ) = Mo(4, ℓ) =
1
2
ℓ2 + 3

2
ℓ+ 1

Me(5, ℓ) =
5

256
ℓ5 + 25

128
ℓ4 + 155

192
ℓ3 + 55

32
ℓ2 + 47

24
ℓ+ 1

Me(6, ℓ) =
19

120960
ℓ9 + 19

5376
ℓ8 + 143

4032
ℓ7 + 5

24
ℓ6 + 4567

5760
ℓ5 + 785

384
ℓ4 + 10919

3024
ℓ3

+ 955
224

ℓ2 + 857
280

ℓ+ 1

Mo(6, ℓ) = Me(6, ℓ)− 5
256

Me(7, ℓ) =
533

3633315840
ℓ14 + 533

86507520
ℓ13 + 279413

2335703040
ℓ12 + 9233

6488064
ℓ11

+ 3076459
265420800

ℓ10 + 151339
2211840

ℓ9 + 4679131
15482880

ℓ8 + 9367
9216

ℓ7 + 43502617
16588800

ℓ6

+ 478009
92160

ℓ5 + 71076539
9123840

ℓ4 + 661673
76032

ℓ3 + 1712147
246400

ℓ2 + 9649
2640

ℓ+ 1
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Me(8, ℓ) =
70241

5088422500761600
ℓ20 + 70241

72691750010880
ℓ19 + 18703309

585359881666560
ℓ18

+ 12330581
18582853386240

ℓ17 + 428460619
44144787456000

ℓ16 + 33009749
310542336000

ℓ15

+ 90842880341
100429391462400

ℓ14 + 5580172163
910924185600

ℓ13 + 1110632463421
33108590592000

ℓ12

+ 4381892419
29196288000

ℓ11 + 304644862903
551809843200

ℓ10 + 22001378209
13138329600

ℓ9

+ 262880239845943
62768369664000

ℓ8 + 12867890603299
1494484992000

ℓ7 + 3890196991231
269007298560

ℓ6

+ 9530810537
485222400

ℓ5 + 76295531167
3592512000

ℓ4 + 1100694281
61776000

ℓ3

+ 50787821048
4583103525

ℓ2 + 135038369
29099070

ℓ+ 1

Mo(8, ℓ) = Me(8, ℓ)− 35
1048576

ℓ5 − 1225
2097152

ℓ4 − 13685
3145728

ℓ3 − 17885
1048576

ℓ2

− 233261
6291456

ℓ− 78057
2097152

Me(9, ℓ) =
863924282670630091

7732694804887618394297204736000000
ℓ27

+ 863924282670630091
71599025971181651799048192000000

ℓ26

+ 10311705659720524879
16522852147195765799780352000000

ℓ25

+ 44159888290330963
2145824954181268285685760000

ℓ24 + 44603828594214317123
91793623039976476665446400000

ℓ23

+ 4134171051301720697
472621628924364010291200000

ℓ22 + 2139768518991928638127
17143275449165567282380800000

ℓ21

+ 2365877475528196499
1632692899920530217369600

ℓ20 + 167364777037473990001
12005094852356839833600000

ℓ19

+ 43210221809651966023
383621452048996761600000

ℓ18 + 7598908879241416557943
9846283935924250214400000

ℓ17

+ 78473046995519797477
17375795181042794496000

ℓ16 + 2690417378247820105229333
118589802110617072435200000

ℓ15

+ 12598164604216578106061
128343941678157004800000

ℓ14 + 39802237244716247322233
108598719881517465600000

ℓ13

+ 183315648883655207683
155141028402167808000

ℓ12 + 11492891877126624163867
3496549693154918400000

ℓ11

+ 20646561932994651460327
2622412269866188800000

ℓ10 + 12699041960623534314853039
784756871757456998400000

ℓ9

+ 3536936635157608410019
124564582818643968000

ℓ8 + 602776622158017864239297
14273025114636288000000

ℓ7

+ 8959111748174759872739
169916965650432000000

ℓ6 + 62149609860286754066479
1139859644571648000000

ℓ5

+ 416558573311485749
9089789829120000

ℓ4 + 7739053944610908107
254233401117696000

ℓ3

+ 1309315468639693
85753329742080

ℓ2 + 94565099767
17847429600

ℓ+ 1

The same method would yield M(10, ℓ) with a plausible but large amount
of computation. For completeness, we also give the Ehrhart series Ln(x) =∑

ℓ≥0M(n, ℓ)xℓ for n ≤ 9.

(1− x2)L3(x) = 1

(1− x)3L4(x) = 1

(1− x2)6L5(x) = (x8 + 1) + 16 (x6 + x2) + 41x4

(1− x)10(1 + x)L6(x) = (x6 + 1) + 6 (x5 + x) + 30 (x4 + x2) + 40x3
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(1− x2)15L7(x) = (x24 + 1) + 807 (x22 + x2) + 81483 (x20 + x4)

+ 1906342 (x18 + x6) + 15277449 (x16 + x8)

+ 50349627 (x14 + x10) + 74301542x12

(1− x)21(1 + x)6L8(x) = (x20 + 1) + 90 (x19 + x) + 4726 (x18 + x2)

+ 107050 (x17 + x3) + 1261121 (x16 + x4)

+ 8761248 (x15 + x5) + 39187016 (x14 + x6)

+ 119662536 (x13 + x7) + 259344246 (x12 + x8)

+ 408811676 (x11 + x9) + 475095180x10

(1− x2)28L9(x) = (x48 + 1) + 52524 (x46 + x2)

+ 169345602 (x44 + x4)

+ 78276428212 (x42 + x6)

+ 10217460516057 (x40 + x8)

+ 527531262668208 (x38 + x10)

+ 13016462628712186 (x36 + x12)

+ 172410423955058664 (x34 + x14)

+ 1322251960254170931 (x32 + x16)

+ 6176715510750440488 (x30 + x18)

+ 18182086106689738044 (x28 + x20)

+ 34470475812807166836 (x26 + x22)

+ 42606701216240491693x24

For larger n, Pn has too many vertices for this method to be useful, but
we can use the technique of [8] and [5]. Define f(z) = 1 + z + z2 + · · ·+ zℓ.
Then M(n, ℓ) is the coefficient of xℓ1x

ℓ
2 · · ·xℓnynℓ/2 in

∏
1≤j<k≤n f(xjxky).

If q is any integer greater than max{nℓ/2, n2(n − 1)/2 − nℓ/2}, then
M(n, ℓ) is the coefficient of the only term in

y−nℓ/2x1 · · ·xn
∏

1≤j<k≤n

f(xjxky)

in which each xj appears with a power that is a multiple of ℓ + 1 and y
appears with a power that is a multiple of q. Now let p be a prime number
for which p− 1 is a multiple of both ℓ+1 and q. Let α and β be a primitive
(ℓ+ 1)-th root and a primitive q-th root of unity in Zp, respectively. Then,
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modulo p,

M(n, ℓ) =
n!

q(ℓ+ 1)n

×
∑

r0+···+rd=n

d∏

i=0

αiri

ri!

q−1∑

k=0

β−knℓ/2
d∏

i=0

f(α2iβk)(
ri
2
)

∏

0≤i<j≤d

f(αi+jβk)rirj ,

where the first summation is over all non-negative integers r0, r1, . . . , rd
which sum to n. Using sufficiently many primes p, we can extract the exact
value of M(n, ℓ) using the Chinese Remainder Theorem. As an example of
a value computed using this method, we have

M(19, 10) = 613329062511931789477677176839174642138032757885191693120,

which is about 2% higher than the estimate of Theorem 1.1.

Machine-readable versions of these exact formulas, along with many
other exact values of M(n, ℓ), can be found at [10].

After observing a large number of exact values, we have noted that (2)
appears to have an accuracy much wider than we can prove. We can even
guess extra terms. We express our observations in the following conjecture.

Conjecture. For even nℓ, define ∆(n, ℓ) by

M(n, ℓ) = Mnaive(n, ℓ)
√
2 exp

(
3

4
+

3ℓ+ 1

12ℓ(n− 1)
+

∆(n, ℓ)

n(n− 1)

)
.

Then |∆(n, ℓ)| < 1 for n ≥ 5, ℓ ≥ 1.

8. The minimum entry

In this section we note a simple corollary of Theorem 1.1. Choose X
uniformly at random from the set M(n, ℓ) of zero-diagonal symmetric non-
negative integer matrices of order n and row sums ℓ. Let Xmin be the least
off-diagonal entry of X. If Xmin ≥ k for integer k ≥ 0, we can subtract k
from each entry to make a matrix of row sums ℓ− (n−1)k. This elementary
observation shows that

Prob(Xmin ≥ k) =
M(n, ℓ− (n− 1)k)

M(n, ℓ)
.

Theorem 1.1 can thus be used to estimate this probability whenever it applies
to the quantities on the right. We can provide some information even in
other cases; note that (1) is not required for the following.
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Theorem 8.1. Let k = k(n) ≥ 0 and ℓ = ℓ(n) ≥ 0 with nℓ even. Define

a = kn3/ℓ. Then, as n → ∞,

Prob(Xmin ≥ k)

{
→ 0 if a → ∞
∼ e−a/2 if a = O(1).

Proof. We begin with a case incompletely covered by Theorem 1.1,
namely ℓ = o(n3). Define M0,M1 to be the sets of those matrices in
M(n, ℓ) with no off-diagonal zeros, and exactly two or four off-diagonal
zeros, respectively. Given X ∈ M0, choose distinct q, r, s, t and replace
aqr, ars, ast, atq (and arq, asr, ats, aqt consistently) by aqr − δ, ars + δ, ast −
δ, atq + δ, where δ = min{aqr, ast}. This can be done in Θ(n4) ways and
creates an element of M1. Alternatively, if X ∈ M1, choose distinct q, r, s, t
such that either aqr or ast or both are 0. Then replace aqr, ars, ast, atq
(and arq, asr, ats, aqt consistently) by aqr + δ, ars − δ, ast + δ, atq − δ, where
1 ≤ δ ≤ min{ars, atq} − 1. If this produces an element of M0, it is the
inverse of the previous operation. Given a choice of aqr = 0, s and δ can be
chosen in at most ℓ ways since

∑
s ars = ℓ, then t can be chosen in at most

n ways. Similarly for qst = 0. Therefore, this operation can be done in at
most O(ℓn) ways. It follows that either |M0| = 0 or |M0| = o(|M1|), which
completes this case since Prob(Xmin ≥ k) ≤ Prob(Xmin ≥ 1) for k ≥ 1.

In case ℓ = Θ(n3), define k′ = min{k, ⌊ℓ/(2n)⌋} and estimate the value
of Prob(Xmin ≥ k′) using (16). This gives the desired result when k = k′.
For k > k′ the value obtained tends to 0, so again the desired result follows
by monotonicity with respect to k.

9. Concluding remarks

In this paper we have begun the asymptotic enumeration of dense sym-
metric non-negative integer matrices with given row sums, by considering
the special case of uniform row sums and zero diagonal. Further cases, which
can be approached by the same method, are to allow the row sums to vary,
and to allow diagonals other than zero. The structure of random matrices in
the class can also be investigated by specifying some forced matrix entries.
We hope to return to these problems in the future.
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