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Abstract 9 

Background: The stand productivity of fast-growing forest plantation varies across short distances 10 

depending on site and forest characteristics. This indicates that forest management would benefit from 11 

a site-specific approach. A tool to characterize such productivity variations are yield maps and a cost 12 

effective source of data is automatically collected by harvesters. To create such maps we need to 13 

understand the effect of geospatial accuracy of tree location recorded by the harvester. 14 

Methods: This study investigated data sets from four stands: two had very accurate tree location, and 15 

two were harvester data files that have inaccuracy associated with both the GNSS recording under 16 

forest canopy and the physical dislocation of the GNSS. The GNSS unit is on the cabin of the machine, 17 

but the tree is felled using a boom and could be up to 12 meters from the cabin. 18 

Results: We establish a spatial resolution for studying variations in stand productivty mean tree volume 19 

and stocking across stands to allow the development of forest yield maps from harvester data. 20 

Conclusions: Assessing variability across a range of cell sizes from 10 x10 m to 100 x 100 m, we conclude 21 

that a cell size between 30 and 40 m is suitable to use as a reference for calculating volume per hectare 22 

and mean stem volume, and 60 m cell is more suitable for evaluating stocking. The variability pattern is 23 

consistent for the various accuracy levels. When the trees’ position is relatively inaccurate, using mean 24 

tree volume and stocking per cell might be a method for mapping productivity from harvester data  25 

 26 

Key words: harvester data, forest yield map, Eucalyptus, Uruguay 27 

Background 28 

The length of rotation of fast-growing Eucalyptus ssp. plantations in many South America has been 29 

reduced due to intensive breeding programs and improvements in silvicultural practices. Brazil and 30 

Uruguay are two examples with rotation ages of 6-8 years and 9-12 years respectively for pulpwood 31 

plantations (Andreoni and Bussoni 2014; Gonçalves et al. 2013). This type of forest management is 32 

intensive in the use of agrochemicals (fertilizers, herbicides) and operations (agrochemical applications, 33 

soil preparation) in the establishment phase. Similarly to agricultural crops, forest productivity varies 34 

across short distances depending on both site (soil properties and topography) and forest (genotype, 35 

stocking, silvicultural practices) characteristics. 36 

Within stand variability (i.e. over short distances) have been quantified based on intensive sampling. 37 

Using Site Index (SI) as productivity potential evaluator, Ortiz et al. (2006) mapped and related the 38 

variability of productivity with soil and relief of a 6.3 ha stand of E. grandis clones in Sao Paulo, Brazil. 39 

They assessed the stand based on 41 sample plots and found a significant correlation of productivity 40 

with six soil properties and altitude. Barbosa et al. (2012) established and mapped a significant effect of 41 

soil pH in the productivity of Pinus caribaea var. hondurensis across a 3 ha stand using a grid of 121 42 
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points in the state of Mato Grosso do Sul, Brazil. A 3.6 ha surveyed stand of Pinus taeda located in 43 

Auburn Alabama US were divided in four management zones based on the variation in stocking and 44 

productivity across the stand (Brodbeck et al. 2007). These results indicate that forest management 45 

would benefit from a site-specific management approach to make the process more efficient with 46 

reduction in costs and reduction of environmental impact. 47 

The concept of site-specific management aims to acknowledge the site variability and adjust the 48 

silvicultural practices to it instead of managing stands based on average stand characteristics, which is 49 

the prevalent approach for forest plantations management. Several other researchers using different 50 

study techniques to assess the site variability have proven, or at least pointed out, the viability of the 51 

site-specific management approach (du Toit et al. 2010; Gonçalves et al. 2012; González Barrios et al. 52 

2015; Vergara 2004). The adoption of site-specific management has some limitations. For example, the 53 

assessment of variations of soil properties and forest variables through intensive sampling would be 54 

prohibitively expensive for large areas. In addition, forest managers would expect to see a clear benefit 55 

before considering implanting the additional complexity this approach supposes. 56 

In the context of site-specific management, forest productivity maps are a useful resource to 57 

quantify and qualify the variations across forested areas. Several techniques were used to develop 58 

forest yield maps based on plot samples (Mello et al. 2005; Mello et al. 2009; Ortega et al. 2002), a 59 

combination of plots and Light Detention and Ranging (LiDAR) (Chen and Zhu 2012; Rombouts et al. 60 

2010), and trees survey (Brodbeck et al. 2007). A promising and cost effective source of data for 61 

mapping productivity is data automatically collected by harvesters when the trees are felled and 62 

processed. This topic has been discussed and its benefits explored for forestry plantations (Taylor et al. 63 

2006), however, is yet to be developed. 64 

Productivity maps based on harvester data are used in agriculture. The concept behind the 65 

usefulness of yield maps is to evaluate the variation in productivity across the area based on its real 66 

harvested production. Having this information at hand provides practitioners with useful information to 67 

manage sites specifically according to its characteristics (topography, soil water potentially available, 68 

fertility, etc.) and potential, improving profitability and reducing environmental impact through a more 69 

targeted application of fertilizers and or pesticides. The required equipment for collecting data for 70 

mapping productivity is a harvester equipped with a yield sensor (mass flow or volumetric method) and 71 

a GNSS, preferably with differential correction system to improve accuracy. (Bongiovanni and 72 

Lowenberg-DeBoer 2006; Griffin 2010; Zhang et al. 2002). 73 

Similar to agriculture harvesters, modern forest harvesters are equipped with a standard system to 74 

automatically record data during the operation called StanForD. Developed in Scandinavia in 1988, 75 

StanForD is now used in many countries (Skogforsk 2014), becoming a de facto standard. Harvesters 76 

than comply with the standard have been widely adopted in harvesting operations in Uruguay, Brazil 77 
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and Chile. In Uruguay, although there is no official data available, it is estimated that over 60% of the 10 78 

million cubic meters harvested each year (MGAP. DGF 2015) use harvesters. Hence, there is a real 79 

potential of using this source of data collection in these countries. When operating with StanForD, there 80 

are more than 20 types of files that record data from the operation and the forest, including pri 81 

(production individual files) and stm (individual stem data) (Skogforsk, as cited in Olivera and Visser 82 

(2014)). These files can be used by forestry companies and contractors to manage production aspects 83 

and have been used in numerous research applications (Olivera et al. 2014). Stem files (.stm), compress 84 

data for each individual harvested tree, including: stem identification number, DBH, diameter sections 85 

measured at 10 cm intervals along the stem, stem volume, individual log volume and logs classification. 86 

Moreover, when harvesters are equipped with a GNSS receiver, geographic coordinates of each tree at 87 

felling time are included in the files. Stm files also contain manual input information such as species and 88 

site identification. 89 

The data collection output of agriculture harvesters and forest harvesters are different. The results of 90 

data collected by agriculture harvesters is given in mass (tons or kg) per unit of area (hectare, acres) 91 

(Bragachini et al. 2006; Griffin 2010; Whelan and Taylor 2013). Then the development of yield maps can 92 

be achieved by cleaning the data and interpolating productivity values from the original machine 93 

records (Lyle et al. 2014; Robinson and Metternicht 2005). Forest harvesters on the other hand do not 94 

output units of volume per hectare; they record individual tree data and a spatial location that have two 95 

sources of errors: 96 

a) GNSS location, which is typically mounted in the cabin of the machine. The tree is felled by the 97 

harvester head, which is mounted at the end of the boom that can be up to 12 m long depending on 98 

make and model; thus, the tree is recorded at the location of the cabin of the machine at felling time. 99 

b) GNSS accuracy, which for common grade GNSS in similar conditions (i.e. forest environment with 100 

partial sky coverage) averages between 3 to 6 m with standard deviations up to 12 m (Veal et al. 2001; 101 

Wing 2008; Wing et al. 2005; Yoshimura and Hasegawa 2003). These errors make accurately evaluating 102 

the distribution of volume and stocking per hectare a challenging task.  103 

The overall objective of this study is to improve our understanding of spatial resolution for studying 104 

variations in volume and stocking across forested stands, and establish guidance for actual spatial 105 

resolution that would allow the development of fit-for-purpose forest yield maps from harvester data. 106 

Methods 107 

Study sites 108 

To improve our understanding of spatial resolution to develop productivity maps from harvester 109 

data, four sets of data comprising trees’ individual information are analysed. Two stands (1 and 2) have 110 
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very accurate tree position and two stands (3 and 4) have a much lower level of geospatial accuracy with 111 

the use data automatically collected by a harvester.  112 

Stand 1 is a surveyed stand located 9.6 km north of Auburn Alabama in the United States. Each tree’s 113 

position within the stand was measured with sub-centimetre accuracy as described in Brodbeck et al. 114 

(2007). The information contained in this dataset was tree identity; X, Y and Z coordinates; and diameter 115 

at breast height (DBH). With this information we calculated for each tree height and volume using the 116 

same equations for pulpwood described by Brodbeck et al. (2007) shown as equations 1 and 2 117 

respectively. For both equations, DBH is in cm. 118 

 Height (m) = 12.689 + 0.253 * DBH (1) 119 

 Volume (m3) = 0.23233 * DBH2 * height (2) 120 

Stand 2 was artificially created in ArcGIS 10.2.2 using the same boundary of stand 3. Initial tree 121 

spacing was uniform with 3.5 m between rows and 2.15 m between trees in the same row, resulting in a 122 

theoretical stocking of 1328 trees ha-1. This was randomly reduced by 27% to 967 trees ha-1 to simulate a 123 

typical level of mortality. In addition, to create a level of in-stand variation individual tree volume was 124 

increased in the direction northeast to southwest, to deliberately create a spatial variation trend. 125 

Stem records for stands 3 and 4 were obtained from .stm files from a single-grip harvester equipped 126 

with a combined GSM-GNSS antenna fitted on the cabin for geospatial data collection and 127 

communication. The control system is Opti4G 4.715, which complies with the StanForD standard. These 128 

two stands are both even-aged, first rotation Eucalyptus ssp. forest plantations located in the northern 129 

part of the Rio Negro department in Uruguay. All harvested trees are debarked and cross-cut for 130 

pulpwood logs. 131 

The difference between surveyed stand data and harvester data can be readily seen in Figure 1. 132 

Stands 1 and 2 clearly show the trees in planted rows. Stands 3 and 4, in addition to the two sources of 133 

location error, also show the path of the harvester as the trees are felled. Table 1 presents more 134 

information of the stands. The analysis variables are volume per hectare in m3, stocking (trees ha-1) and 135 

mean tree volume. The stands that have accurate trees position serve as models for the analysis of a 136 

suitable spatial resolution to study these three variables. Further studies based on harvester data then 137 

apply the concepts. 138 

Figure 1 139 

Table 1 140 
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Cell size analysis  141 

Using the trees’ position, a map showing productivity variation can be generated directly by dividing 142 

the area in equal size cells and adding the volume of all trees within each cell. To determine a suitable 143 

cell size for productivity mapping, a cell size analysis was carried out dividing each stand in square cells 144 

of increasing size: 10 m, 20 m, 30 m, 40m, 60 m and 100 m (Fig. 2). This analysis was done in two steps; 145 

first using the tool point to raster in ArcGis 10.2.2 (Esri Inc., 2014), which converts a point vector layer 146 

(stem records) into a raster layer giving the value of a single variable to each cell; this step was repeated 147 

for each combination of variable (3) cell size (6) and stand (4) (72 times). This information was then 148 

analysed in an Excel spreadsheet and for each stand and cell size the variability of the three variables 149 

were studied. This analysis assesses how the coefficient of variation (CV) of each variable changes as the 150 

cell size increases within the stand. As the cell size increases, the CV is expected to decrease until it 151 

reaches the size and the overall average of the stand. It is expected that the CV stabilizes and then 152 

indicate that the variability due to a cell size is small and the remaining variability is of the stand itself. 153 

Figure 2 154 

Results and discussion 155 

Cell size distribution  156 

Volume per hectare and stocking per hectare are calculated only from cells that are completely 157 

within the stand boundaries (Fig. 2). This is because these variables are related to the total cell area and 158 

expressed per hectare. For calculating mean stem volume from 20 to 100 m cell all cells comprising 30 159 

or more stem records are used, even though they can fall partially outside the stand. Table 2 160 

summarizes the number of cells included from each stand for each variable. As the cell size increases the 161 

proportion of useable cells for calculating volume and stocking decreases because of the increasing 162 

number of cells that fall partially outside of the stand (Fig. 2). Conversely, the proportion of useable cells 163 

for calculating mean stem volume stays stable for all cell sizes.  164 

Table 2 165 

At 10 m cell size there are a large number of empty cells in stands 3 and 4. This clearly does not 166 

represent the reality because the area is a plantation forest and there should be very few, if any empty 167 

cells. For these two stands, there are also 20 m empty cells. At the 60 and 100 m cell size on the other 168 

hand, the results are similar to the overall average of the whole stand and the number of cells that fall 169 

completely inside the stand decreases to a point that only one 100 m cells fall completely inside stand 1 170 

(Fig. 2). 171 
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Volume per hectare 172 

The increment in cell size only slightly affects the averages, maintaining its value within ± 10% in the 173 

majority of cases (22 out of 24) (Tabs. 1 and 3). However, as the cell size increases the CV of volume per 174 

hectare decreases consistently for all stands independently of the kind of records they are (Fig. 3). The 175 

range of the CV as the cell size changes is different for the different stand types. Both stands that have 176 

accurate tree location (stands 1 and 2) have a lower CV at 10 m cell size (32 – 33%) than the harvester 177 

data stands (67 – 77%). The CV decreases rapidly as the cell size augment to 20 m for all stands. The 178 

values of CV continue decreasing at similar rate for 30 m cell in stand 3 and 4, whereas for Stands 1 and 179 

2 the decrease asymptotes. Between 30 m and 60 m cell size, the CV decreases steadily in all stands. The 180 

pattern of variation suggests that the variability due to cell size contributes more to the overall 181 

variability at 10 m to 20 m cell. Whereas, between 30 m to 60 m cell size the variability can be attributed 182 

to other causes from the environment or the forest such as soil characteristics, topography, stocking and 183 

even tree location accuracy for stands 3 and 4. At 60 m cell however, the number of cells that fit in a 184 

small stand –Stand 1 for example– is reduced, resulting in a coarse resolution for further analysis of 185 

volume. For 100 m cell, the CV is the lowest for Stands 2 to 4 as the area of each cell represents more 186 

the average of the stand and the number of cells are reduced (Tab. 2). 187 

Figure 3 188 

As such, when tree locations are accurately recorded, using a cell size between 30 m and 40 m 189 

constitutes a reasonable unit size to subdivide a stand to study the volume variation (productivity) 190 

across its area.  191 

Stocking 192 

CV values of stocking for all stands follow a similar pattern as volume; the CV diminishes as cell size 193 

increases and the averages are stable for stands 2, 3 and 4, and similar to the overall average (Tabs. 1 194 

and 3, and Fig. 4). For stand 1, all cell sizes overestimate the average stocking between 11 to 20% 195 

because the edges of the stand that have the lower stocking (Figs. 1 and 2) are excluded from the 196 

analysis as they are not totally within the stand. 197 

Table 3 198 

The variability decreases rapidly from 10 m to 30 m cell for stands 1, 3 and 4, whereas for stand 2 it 199 

happens from 10 m to 20 m cell size. For the latter, lower values of CV, ranging from 19 to 1%, across 200 

the different cell sizes reflects the evenly distributed stocking across the stand. There is however an 201 

effect of cell size at 10 m and even at 20 m for this stand reflected in the higher CV. In the case of stand 202 

1, the CV falls up to the 40m cell and then stabilizes at a value around 21%, showing the real variation in 203 

stocking across the stand; variation that is clear in Figures 1 and 2. Stand 3 presents a CV value that 204 

decreases as cells size augment up to 60 m, whereas stand 4 stabilizes between 30 m and 60 m.  205 
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Figure 4 206 

For stand 1, which has accurate tree location and uneven stocking, the most suitable cell for stocking 207 

analysis is 40 m to 60 m as the CV is stable over this range and suggests that the remaining variation (CV 208 

of 21%) is independent of cell size. For stand 2, which has homogeneous stocking across the stand and 209 

accurate tree location, a cell size of 30 m or higher is suitable. If however the distribution is not known a 210 

priori (like harvester data), working with 60 m cell is a suitable option for mapping stocking. Evidence of 211 

this is seen in stand 3 where stocking stabilizes at 60 m cell size. Stand 4 CV is stable (20 – 26%) between 212 

30 m and 60 m cell, suggesting that a cell size in this range would be suitable for stocking analysis. The 213 

stable pattern for these two stands also shows that at this level of resolution, the errors in GNSS 214 

accuracy affecting the variability may be negligible.  215 

Another important factor to consider is the size of the stand (or area evaluated); stands smaller than 216 

4 ha, such as stand 1, would fit a very low number of 60 m cells (Fig. 2 and Tab. 2). This is not desirable if 217 

there is a variation in stocking across the stand. Then the use of 40 m cell is advisable. 218 

Mean tree volume  219 

As for volume and stocking, mean tree volume varies considerably at 10 m cell (Fig. 5). This variation 220 

decreases dramatically by the 20 m cell size and falls steadily up to 100 m. Even at 100 m, there is 221 

variation, which suggests there is an effect from the environment or the forest itself affecting stem 222 

mean volume in all four stands. These results suggest a cell size between 20 m and 40 m is suitable for 223 

further analysis. At smaller cell size, the high CV and low number of trees per cell would bias any analysis 224 

as the cell size affects the variation. Over this range, the cell sizes are too large to capture the variation 225 

across the stand due to the large proportion of the stand each cell represents (Tab. 2). 226 

Figure 5 227 

Conclusions  228 

Based on the changes in CV across the studied range of cell sizes, we conclude that a cell size 229 

between 30 and 40 m is a suitable cell size to use as reference for calculating volume per hectare 230 

(productivity) and mean stem volume to further compare and develop the concepts of forest 231 

productivity maps. 232 

For evaluating stocking, the use of 60 m cell is more suitable in situations where the variation in 233 

stocking across the area is unknown such us when using harvester data. For stands smaller than 4 ha a 234 

40 m cell might be used to obtain a greater number of points. 235 

The pattern of CV variation is consistent in both type of stands (accurate tree location and harvester 236 

data) for all three variables. However, there is still some uncertainty of what proportion of the variation 237 

that can be attributed to the environment and the tree location accuracy for stands 3 and 4. However, 238 
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this study has shown that even if the trees’ position is not accurate, using mean tree volume and 239 

stocking per cell can be a method for mapping productivity from harvester data. An idealised future 240 

study would fully survey all trees in a stand and then capture the corresponding harvester data set. This 241 

would allow a more complete understanding of what variation is attributable to the geospatial 242 

inaccuracy of the harvester versus the actual variation in the stand. 243 
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Lis of Figures 348 

Figure 1: Maps of the four stands with details of location and tree records pattern. Stand 1 has 349 

accurate tree location and uneven stocking, stand 2 has accurate tree location and even stoking, and 350 

stands 3 and 4 are plotted from stm files. 351 

Figure 2: Detail of stand 1 divided in six cell sizes as indicated in each map. Values refer to the range 352 

of number of trees per cell. 353 

Figure 3: Changes in the range of volume per hectare and its coefficient of variation as cell size 354 

increases from 10 m to 100 m for the four stands. No values for 100 m cell in stand 1 because there is 355 

only on cell. 356 

Figure 4: Changes in the range of stocking per hectare and its coefficient of variation as cell size 357 

increases from 10 m to 100 m for the four stands. No values for 100 m cell in stand 1 because there is 358 

only one cell 359 

Figure 5: Changes in the range of mean stem volume and its coefficient of variation as cell size 360 

increases from 10 m to 100 m for the four stands. 361 
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Tables 362 

Table 1: Characteristics of the four studied stands. 363 

  Stand 1 Stand 2 Stand 3 Stand 4 

Location 
Auburn AL - 

US 
-- 

Rio Negro - 
Uruguay 

Rio Negro - 
Uruguay 

Species 
Pinus taeda 

(L.) 
-- 

Eucalyptus dunnii 
(Maiden) 

Eucalyptus 
maidenii (F. Muell) 

Age (years) 25 -- 19 19 

Year of data collection -- -- 2014 2014 

Area (ha) 3.6 6.65 6.65 8.05 

Average stocking (trees ha-

1) 
661 967 967 899 

Thinned at age 16 no no no 

Volume studied Total volume 
Commercial 

volume  
Commercial 

volume 
Commercial 

volume 

Average volume m3ha-1 157 506 464 213 

Mean stem volume (m3) 0.24 0.52 0.48 0.24 

Note: Commercial volume refers to volume of commercial logs only.  
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Table 2: Detail of cell divisions for the four stands and six cell sizes. 364 

  Cell size (m) 10 20 30 40 60 100 

Stand 1 

Number of cells 359 103 52 29 15 6 

Number of cells - no edges 311 67 27 13 3 1 

Number of empty cells 1 0 0 0 0 0 

Cells used for mean volume calculation 311 63 34 24 15 6 

Stand 2 

Number of cells 699 188 88 53 23 11 

Number of cells - no edges 621 146 58 32 11 3 

Number of empty cells 0 0 0 0 0 0 

Cells used for mean volume calculation 621 161 76 47 22 11 

Stand 3 

Number of cells 562 174 83 51 22 9 

Number of cells - no edges 551 166 61 29 13 4 

Number of empty cells 72 2 0 0 0 0 

Cells used for mean volume calculation 562 166 75 47 22 9 

Stand 4 

Number of cells 791 241 122 75 36 15 

Number of cells - no edges 791 207 71 33 14 4 

Number of empty cells 93 2 0 0 0 0 

Cells used for mean volume calculation 791 207 95 59 33 13 

Table 3: Average values of the three variables for each stand and each cell size. 365 

  Cell size (m) 10 20 30 40 60 100 

Stand 1 

Volume per hectare (m3) 168 169 167 168 170 -- 

Stocking (stems ha-1) 733 760 770 793 792 -- 

Mean stem volume (m3) 0.26 0.25 0.25 0.25 0.26 0.26 

Stand 2 

Volume per hectare (m3) 507 513 512 509 523 531 

Stocking (stems ha-1) 968 966 968 966 961 957 

Mean stem volume (m3) 0.52 0.53 0.53 0.52 0.52 0.51 

Stand 3 

Volume per hectare (m3) 556 459 462 450 455 451 

Stocking (stems ha-1) 1162 981 974 952 977 1006 

Mean stem volume (m3) 0.50 0.48 0.48 0.48 0.47 0.45 

Stand 4 

Volume per hectare (m3) 217 200 196 193 184 203 

Stocking 914 842 826 809 778 850 

Mean stem volume (m3) 0.24 0.24 0.24 0.24 0.23 0.24 

 366 
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