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Abstract 

 

Despite the negative impacts invasive plants can impose on forest communities and 

the potential for these impacts to increase with global change, little has been done in 

New Zealand to examine what facilitates the establishment and spread of these 

species within native beech (Nothofagus solandri) forest. This study examines the role 

which forest canopy gaps and deer herbivory have on the dispersal, germination, 

establishment and spread of invasive plant species within the Nothofagus forests of 

the Hopkins and Huxley valleys, near Twizel, New Zealand. Propagule dispersal was 

enhanced by the presence of a gap in the above canopy, resulting in an increased 

number of seeds being caught on the sticky traps in these plots (159 compared to only 

2 in the control plots). Seed bank samples were assessed by germination in a 

glasshouse for one year. The invasive seed bank was larger in the fenced plots and 

conversely to the other results of this study, the presence of a canopy gap had no 

effect on the size of the seed bank. Aboveground cover of these invasive plants was 

primarily driven by the existence of a canopy gap, suggesting that canopy gaps are the 

main cause of plant invasions into Nothofagus forest (9% mean cover in the gap plots 

compared to 0% in the control and fence plots). However, there was a further increase 

in the aboveground cover of these invasive plants where a deer exclusion fence was 

situated around the perimeter of an open canopy plot (27.5% mean cover in the gap 

fence plots compared to 9% in the gap plots). Thus, suggesting that deer herbivory 

could be decreasing the abundance of invasive plants in areas of forest where gaps 

have been created. The canopy gaps allowed invasive plants to spread back into the 

forest away from the openings but only for a short distance, as in all cases invasive 

plants were absent by 6-7m from the plot edge. This localised establishment and 

spread of invasive plants where canopy gaps have been created could pose a threat to 

New Zealand’s native Nothofagus forests, as many small populations spread out 

across a landscape can cause more ecosystem adversity than larger single populations. 

If not kept in check these invaders could increase further with global change however, 

if herbivory is assisting in the control of plant invasions management strategies for 

both invasive plants and introduced deer may need to be revised. 
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Chapter 1: Introduction  

 

1.1 What makes a weed a weed? 

 

Whether these ‘undesirable’ species are referred to as weeds, exotics, noxious or nuisance 

species it is all due to the fact that they are present in a community or environment at a 

density where they are seen by humans as undesirable (Civeyrel and Simberloff, 1996; 

Davis and Thompson, 2001; Colautti and MacIsaac, 2004). However, there is a more 

scientific approach to this question, and in this research all introduced, ‘undesirable’ 

species will be referred to as invasive species. 

 

Invasive species must go through a series of processes or ‘filters’ before they can be 

classified as invasive species (Figure 1.1) (Colautti and MacIsaac, 2004). Firstly, for an 

invasive species to become invasive it must originate from propagules residing in a 

region outside the one that is going to be invaded, this region is called the “donor” region 

(Colautti and MacIsaac, 2004). The propagules must then survive the dispersal or 

transportation event to the site of invasion, either by individual dispersal mechanisms or 

human transportation. Once the propagules are successfully released into the introduced 

environment they have the potential to establish as an invasive species and increase in 

abundance (Colautti and MacIsaac, 2004). The final classification of the invasive species 

is determined by how abundant and widely distributed the species becomes in the 

introduced environment (Richardson et al., 2000). According to Colautti and MacIsaac 

(2004) an invasive species can either be localised and numerically rare (III), widespread 

but rare (IVa), localised but dominant (IVb) or widespread and dominant (V). Colautti 

and MacIsaac (2004) also suggest there are three determinants affecting the probability 

that a potential invader will pass through each filter: (A) propagule pressure; (B) 

physicochemical requirements of the potential invader; and (C) community interactions. 

These determinants may positively (+) or negatively (–) affect the number of propagules 

that successfully pass through each filter (Figure 1.1) (Colautti and MacIsaac, 2004).  

 

 



 2

 
Figure 1.1. The filters a species must pass through to establish as an invasive species 
ending at stage III-V depending on its final distribution and abundance in the introduced 
environment (after Colautti and MacIsaac, 2004). 
 

1.2 Biological invasion, a global phenomenon  

 

Biological invasions occur at varying scales from the large global invasions, for example 

the world wide spread of ungulates from their native range (Nugent et al., 2001a) right 

through to localised invasions, for example the invasion of small forest remnants by an 

invasive plant species (Ohlemüller et al., 2006). Each biological invasion has ecological 

effects on the environment or community being invaded and in most circumstances the 

effects will be negative. For example, the invasion of a species can increase the 

susceptibility of resident native species to biocontrol agents (Rand and Louda, 2004) or 

more commonly will increase the competition displaced on a native species (Ohlemüller 

et al., 2006). Contrary to this, there are situations where positive or beneficial effects can 

be associated with biological invasions. These positive effects can be directly related to 

the invasion, for example native plants increase resilience to herbivory in response to an 
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invasive herbivore (Bee et al., 2007). Indirect effects can also occur in response to 

biological invasions, for example a herbivore prefers an invasive species over a native 

species, therefore releasing the native species from herbivory (Piasentier et al., 2007). 

 

Invasive plants have historically been viewed as nuisance species that readily invade 

anthropogenically disturbed areas such as roadsides, croplands, and overgrazed pastures 

(Keeley et al., 2003). This biological phenomenon is prevalent all over the world with 

even the most geographically isolated countries, such as New Zealand, displaying 

multiple examples of plant invasions (Webb et al., 1988; Timmins and Williams, 1991; 

Treskonova, 1991; Jesson et al., 2000; Ohlemüller et al., 2006). In recent decades there 

has been greater world-wide focus on invasions of natural communities, where invasive 

species are increasingly recognised as threats to ecosystem structure and function 

(Vitousek, 1990; Mooney and Hobbs, 2000).  

 

1.3 Invasive species, high priority to New Zealand conservation  

 

It is becoming increasingly important for resource managers to be able to predict which 

species are likely invaders, which communities are most at risk, and how land 

management practices influence the invasion process (Keeley et al., 2003). Hence, in 

New Zealand it has been suggested that a comprehensive biodiversity management 

system be designed and made available to policy makers about the status of New 

Zealand’s forest biodiversity (Allen et al., 2003). There are three main reasons for 

constructing this type of system: assessing the effectiveness of management, reporting on 

the status of biodiversity under national and international requirements, and improving 

our knowledge of ecosystem dynamics for designing effective management systems 

(Allen et al., 2003).  

 

This type of management is highly relevant and important to the conservation of New 

Zealand’s biodiversity. The native biodiversity of this geographically isolated country 

that evolved for centuries without any invasive species has had to cope with increased 

competition and predation from a biologically diverse group of invasive species 



 4

(Caughley, 1984). Examples of native species having to cope with both invasive plant 

and animal species are present in the literature (e.g., Rand and Louda, 2004; Dolman and 

Waber, 2008). This ‘forcing’ is due to the multiple human introductions of species with 

native ranges outside of New Zealand, for example the many species of ungulates that are 

now widespread throughout New Zealand (Allen et al., 1984; Wardle et al., 2001).  

 

Over time, the accumulation of these invasive species in New Zealand has altered 

biological communities and interactions, especially increasing the negative impacts on 

native species (Jane, 1994; Nugent et al., 2001b; Rooney, 2001). Conservation 

management in New Zealand has had to adapt to this increase of negative impacts on 

native species, by implementing strategies that attempt to minimise these impacts 

(Ministry of Conservation, 2007). There are many examples some that are unique to New 

Zealand, such as the widespread control of possums (Trichosurus vulpecula) to minimise 

their impacts on native tree species or the widespread control of mustelids, especially 

stoats (Mustelia erminea) in an attempt to minimise their impacts on native avifauna 

(www.doc.govt.nz). 

 

Along with the concerns involving deer and other mammals, the number of invasive plant 

species now present in New Zealand and the potential negative impacts associated with 

these plants to native biodiversity is also of great concern (Mack et al., 2000). For 

example, the latest survey shows there are over 30,000 introduced plant species in New 

Zealand of which 2,500 have naturalised in New Zealand, meaning they have established 

and are reproducing in the wild. Of these naturalised plants more than 300 plants have 

become environmental weeds meaning they impact detrimentally on the structure, 

functions or composition of New Zealand's indigenous plant communities, waterways 

and fauna (New Zealand Plant Conservation Network, 2008). 

 

However, there are two conservation management strategies that are directly relevant to 

this research. Firstly, the management of invasive plant species in environments of high 

conservation importance, for example the management of Old Mans Beard (Clematis 

vitalba) in conservation national parks such as Kahurangi National Park. Secondly, the 
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management of introduced red deer (Cervus elaphus) in regions such as the Ruataniwha 

Conservation Park (RCP) where conservation of native tree species is of high importance. 

These examples illustrate how invasive species management is of high priority to 

conservation management in New Zealand, due to the threat they pose for native species. 

The management of deer in New Zealand is also evidence that conservation management 

has had to adapt over time with the change in status of particular species (Parkes et al., 

1996; Nugent et al., 2001b). 

 

1.4 The history of deer in New Zealand 

 

The deer family (Cervidae) is now considered to consist of a complex group of about 57 

species and almost 200 subspecies (Whitehead, 1993). There are seven deer species (red 

deer (Cervus elaphus scoticus), wapiti deer (Cervus elaphus nelsoni), sika deer (Cervus 

nippon), sambar deer (Cervus unicolor), rusa deer (Cervus timorensis), fallow deer 

(Dama dama), white-tailed deer (Odocoileus virginianus) from two subfamilies 

(Cervinae and Odocoilinae) present in New Zealand (Nugent et al., 2001a).  

 

Since being introduced in the 1850s, red deer are the most abundant and widespread 

species in New Zealand, having established multiple populations throughout New 

Zealand (Figure 1.2) (Nugent, 1992; Fraser et al., 2000). However, all introduced deer 

species appear to be colonising new areas and establishing new populations, with fallow 

deer establishing 42 new populations and sika deer establishing 27. By comparison, the 

minor species (wapiti, sambar, rusa, and white-tailed deer) comprise only 9% of 166 new 

deer populations identified during the 1990s. Most of these new populations have 

resulted from farm escapes (38%) and illegal liberations (26%), whereas natural dispersal 

accounts for relatively few (5%) new populations (Fraser et al., 2000). 
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Figure 1.2. Geographical distribution of the long established red deer populations in New 
Zealand (the shaded areas represent the presence of deer), from Fraser et al. (2000).  
 

Although many deer populations had increased to high levels in many areas by the mid 

1900s, various combinations of government-funded deer control, helicopter-based 

commercial harvesting, and recreational hunting have consequently reduced most deer 

populations by 75-95% (Caughley, 1983; Challies, 1985; Nugent, 1992; Parkes et al., 

1996). Despite this intensive control, red deer populations continued to expand in range 

in the last decade of the 20th century. They occupy around 120 000 km2, including 
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scattered areas of Northland, Auckland, Taranaki and the western King Country where 

red deer had not previously been recorded (Figure 1.2) (Fraser et al., 2000). 

 

The total breeding population of wild deer in New Zealand in the late 1980s was 

estimated at 250,000, of which some 81% were red deer (Nugent and Fraser, 1993). Most 

deer are now confined by helicopter-based hunting to around 60,000 km2 of taller 

shrubland or forest, suggesting a national average density of 3-4 red deer/ km2 (Nugent et 

al., 2001a). Deer densities appear to be lower in the South Island (typically 2-5 deer/km2) 

than in the North Island (more often 5-15 deer/km2) (Nugent et al., 2001a). Most of the 

large-scale variation is inversely correlated with the extent and continuity of forest cover, 

which in turn determines vulnerability to helicopter-based commercial hunting (Nugent 

and Sweetapple, 1989; Challies, 1991). 

 

Today there is ongoing importation of new genotypes that continues to broaden the 

genetic base of New Zealand's red deer populations. Recent introductions have included 

eastern European red deer and all the principal strains of North American wapiti. Within 

the commercial deer farming industry, cross-breeding between red deer and wapiti is a 

common practice (Pearse and Goosen, 1999). With numerous deliberate releases and 

accidental escapes of farmed deer into the wild (Fraser et al., 2000), and the recent 

reduction in large scale helicopter harvesting, it is inevitable that the genetic composition 

of wild red deer in New Zealand will gradually be modified (Nugent et al., 2001a). 

 

1.5 Background of canopy gap and exclosure experiments 
 

The use of exclosure experiments to examine the impacts of grazing mammals on the 

regeneration of tree species is a method that has been used since the late 1940s (New 

Zealand Forest Service, 1984; Rose and Burrows, 1985; Wardle et al., 2001). This 

method, which fully excludes ungulates from particular parts of forest, is now widely 

used both globally and in New Zealand, by fencing off areas usually around 10m x 10m 

(Kraft et al., 2004; Webster et al., 2008) or 20m x 20m (Stewart and Burrows, 1989; 
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Smale et al., 1995), however, in some circumstances this area can be on the scale of 

square kilometers (Kumar et al., 2006).  

 

The herbivore species that are being excluded will depend on what type of fence is set up 

which depends on what species are present and in some cases the aim will be to exclude 

more than one species, whether it is wild deer, goats or even grazing sheep and cattle 

(Kay and Bartos, 2000; Webster et al., 2005). For example, the aim of an experiment 

conducted in Utah, USA was not only to examine the impact of both grazing livestock 

and big-game browsing on the decline of aspen (Populus tremuloides), but also to be able 

to distinguish the varying impacts from the different species. Therefore, five of the 

exclosures consisted of a total-exclusion portion, a livestock-exclusion portion, and a no-

exclusion portion which permitted the effects of deer (Odocoileus hemionus) and elk 

(Cervus elaphus) herbivory to be measured separately from those of livestock (Kay and 

Bartos, 2000).  

 

In contrast, the aim of the experiment may be to examine the effects of a single species. 

For example, a study examined the impacts of white-tailed deer (Odocoileus virginianus) 

(the only deer species present on Stewart Island) on the regeneration of the coastal 

conifer-broadleaved hardwood forests of Stewart Island, New Zealand. Permanent 20m x 

20m quadrats were established in 1979 on deer-free Bench Island, matching quadrats 

were also established inside deer exclosures on Stewart Island. The quadrats were 

monitored for six years, after which the vegetation inside each quadrat was remeasured in 

1985 (Stewart and Burrows, 1989). 

 

The above examples both illustrate reasons why this method has been effective when 

used to study the impacts of browsing and/or grazing animals on the regeneration of 

vegetation. This method has been successful and widely used as it can be designed to fit 

the required time frame of the species that is being measured, whether it is a relatively 

short (Stewart and Burrows, 1989; Stroh et al., 2008), intermediate (Smale et al., 1995; 

Webster et al., 2008) or an extremely long period (Husheer et al., 2005). 
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Plant growth is highly variable between high and low light environments making light 

intensity a major factor in relation to the establishment of invasive plants in forested 

environments (Chacon and Armesto, 2005). Canopy gaps are a major source of this light 

variation in forested environments, therefore should be considered in regeneration 

experiments (Makana and Thomas, 2005). 

 

Studies involving canopy gaps have been published as far back as the 1970s, however the 

idea of factoring canopy gaps into plant regeneration studies appeared slightly later in the 

1980s (Chacon and Armesto, 2005; Makana and Thomas, 2005). Since these primary 

studies involving canopy gaps, there are now extensive examples in the literature. For 

example, a study conducted in the tropical forests of Africa which aimed to identify the 

factors that affected the regeneration of timber species after logging, found light to be a 

significant factor in enhancing regeneration of five out of six of these timber species 

(Makana and Thomas, 2005). More advanced studies have not only investigated the 

effect of the presence of light gaps in the canopy but also the size of these gaps (Baret et 

al., 2008). In their study Baret et al. (2008) examined how canopy gap size influenced the 

establishment success of particular species. They found that although plants could persist 

in the shade, a germination experiment revealed that canopy gaps were essential for 

seedling establishment and larger gaps increased the abundance of these species (Baret et 

al., 2008). This provides evidence that canopy gaps are an important driving factor and 

must be considered in canopy understory regeneration experiments (Kondani, 2001; Lof 

et al., 2007). 

 

1.6 Related research 

 

As stated above in section 1.5 the use of exclosure experiments has been around since the 

late 1940’s and tree gap experiments are slightly newer starting to be used in the 1980s. 

However, experiments that combine these two methods when investigating the 

regeneration of a species are rare in the literature. This rarity is due to the fact that 

globally, the idea of the interaction between canopy gaps and herbivory on forest 

regeneration is a relatively new concept, therefore has only been studied in recent times 



 10

in a small number of studies (Castleberry et al., 2000; Holladay et al., 2006). Of studies 

that have considered these two driving factors to interact, the majority have been 

conducted in America (Holladay et al., 2006) or Switzerland (Smit et al., 2006). For 

example, a study performed in South Carolina, USA examined the interactive effects of 

overstory gap size, canopy openness, herb layer competition, and mammalian (deer, 

swamp rabbits) herbivory on emergence and seedling bank formation of cherrybark oak, 

(Quercus pagoda) in experimental gaps created by mechanised logging. They concluded 

that canopy gaps had a larger effect on seedling regeneration than did mammalian 

herbivory (Collins, 2003). 

 

There is one New Zealand example where both canopy gaps and herbivory have been 

considered when investigating the regeneration of a species. In 1989 an experiment 

conducted on Stewart Island, New Zealand concluded that after deer exclusion, numbers 

of treeferns and tall seedlings of hardwoods increased, especially in treefall gaps and 

areas of partial canopy dieback. Under the influence of deer, tall seedlings of hardwood 

trees and shrubs were rare and were being eliminated by browsing (Stewart and Burrows, 

1989). This study did consider the interaction between canopy gaps and mammalian 

herbivory but failed to measure the effect of canopy gaps using a balanced factorial 

design. A more opportunistic approach was adopted by taking measurements where 

canopy gaps happened to be present within the study site (Stewart and Burrows, 1989). 

 

Although there have been experiments that have considered the interaction between these 

two factors, they have all focused on how these affect the regeneration of native species 

(Stewart and Burrows, 1989; Tripler et al., 2005). However, there are overseas studies 

that have investigated how the presence of canopy gaps affects the establishment of 

invasive species, but no New Zealand studies have examined this phenomenon. For 

example, a study performed on the volcanic island of Rèunion in the Indian Ocean 

investigated how gap dynamics in a tropical rain forest affected plant invasions. They 

found that the highest abundance of invasive species was beneath the larger of the 

examined canopy gaps (Baret et al., 2008). 
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Therefore, this study set out to study the combined effects of canopy gaps and herbivory 

on the establishment of invasive plants. This was achieved by a balanced factorial design 

that considered the large scale interaction of canopy gaps and mammalian herbivory on 

the establishment and spread of invasive plant species in New Zealand native beech 

(Nothofagus) forest. Forty six percent of New Zealand’s native forest is pure Nothofagus 

forest with another 22% being mixed Nothofagus, podocarp, angiosperm forest (Kelly et 

al., 2008). Nothofagus has a natural mortality rate of around 360 years (Wardle, 1984); 

this along with natural wind throw creates gaps in the forest canopy. If browsing 

mammals such as deer are present and suppress the natural regeneration of this species, 

this will present an opportunity for invasive species to establish in the forest understory 

(Coomes et al., 2003). 

 

It follows on from above that, (1) canopy gaps have been found to be major driving 

factors of plant invasion into native forests, (2) there are a large number of invasive 

plants that have naturalised in New Zealand, and (3) deer which are established and 

widespread throughout New Zealand have altered the composition and structure of 

vegetation substantially (Coomes et al., 2003). These three factors make New Zealand 

increasingly vulnerable to the establishment and spread of invasive plants in to native 

forest, making this present study highly important to New Zealand’s native ecosystems 

and biodiversity. 

 

1.7 The DOC experiment; how this present study was made possible 

 

The Department of Conservation (DOC) proposed a nation-wide experiment to examine 

if canopy gaps and deer herbivory are significantly affecting the growth and regeneration 

of Nothofagus forests. Part of this involved the construction of 32 randomly located 10m 

x 10m plots in the Hopkins (16) and Huxley (16) valleys situated in the Ruataniwha 

Conservation Park, near Twizel, New Zealand (RCP) (Figure 1.3). The location of these 

plots was achieved by randomly generating global positioning system (GPS) coordinates 

that were within the boundary of the study site. There are four treatments being used; 8 of 

the plots were left alone (controls), 8 had 2m high fences put around the outside (fence), 
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8 had 12m x 12m light gaps created in the above canopy by cutting down the canopy 

trees (gap) and 8 had fences and light gaps (gap fence). Each of the 32 plots was assigned 

a treatment (4 of each treatment in each valley) to control for the fact that deer were 

being managed in the Hopkins valley and not the Huxley. With the use of helicopters the 

fences were flown in to ground crews waiting at the forest plots and the experiment was 

constructed in 2006/07.  

 

 
Figure 1.3. Topographic map displaying the 32 randomly located 10m x 10m plots (the 
large black squares) situated within the Hopkins and Huxley valleys in the Ruataniwha 
Conservation Park, near Twizel, New Zealand. The grid lines are at 10km spacings. 
 

This presented a rare opportunity for me to design and work on an experiment of this 

scale, as without DOC and Landcare research this would have been far too expensive and 

time consuming to set up within the time constraints of a Masters of Science (MSc). I 

proposed to examine if these two factors (canopy gaps and deer herbivory) could affect 

the establishment and spread of invasive plants in Nothofagus forests by using the same 

plots. 

 

Before their experiment was constructed, DOC and Landcare Research conducted 

vegetation and site characteristic surveys on the parts of forest that were going to be used 
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for their experiment. These data were made available to me so I could compare the 32 

plots to examine if there was any significant variation between them before my 

experiment began.  

 

1.8 Research aims 

 

The aim of this research was to investigate if canopy gaps and herbivory by red deer 

significantly affect the abundance of invasive plants in New Zealand’s native Nothofagus 

forests, this was achieved by testing four hypotheses (Figure 1.4). Secondly, if there is a 

significant effect, is it due to only one of these factors (canopy gaps or herbivory) or is 

there an interaction between them? This is in attempt to ultimately increase scientific 

knowledge on how to protect native forests from the negative impacts of invasive species.  

 

 
 
Figure 1.4. Diagrammatic representation of the four hypotheses tested in this present 
study that were used to answer the main aims of this study.  
 

 

 

 

Is the dispersal of invasive seeds increased 
in forests when canopy gaps are created or 
herbivores excluded? (Chapter 4) 

Are there more seeds of invasive plant 
species in the seed banks from the gap 
plots or the fenced plots? (Chapter 5) 

Do invasive plants that are already present 
under forest canopy increase in growth after 
gaps or fences are created? (Chapter 6) 

Are invasive plants more 
abundant under canopy 
gaps and/or within fenced 
plots? (Chapter 6) 



 14

How this was achieved is described in the following chapters: 

 

1. Chapter 2 gives the history of the Ruataniwha Conservation Park (RCP) (where 

this present study was conducted) in relation to forest structure (canopy height, 

average tree diameter at breast height (dbh) and tree density) and vegetation 

composition, before this present study was set up. This information was used to 

establish a baseline for measuring changes during the course of the experiment. 

 

2. Chapter 3 measured the climatic conditions (relative humidity, ambient air 

temperature and soil temperature) of open and closed canopy plots to investigate 

if canopy openness significantly affected these climatic variables that have the 

potential to influence the establishment and growth of invasive plant species. 

 

3. Chapter 4, by the use of sticky seed traps, recorded the abundance of invasive 

seeds arriving at each plot (dispersal), to determine how treatment influenced the 

abundance of invasive seeds that arrived at each of the 32 plots.  

 

4. Chapter 5 compared the species diversity and individual abundance of seed bank 

samples taken from the 32 plots, under ‘ideal’ growing conditions (in the 

glasshouse). These results helped to determine how many invasive species had 

seeds present but dormant in the seed bank.  

 

5. Chapter 6 describes the variation of aboveground invasive plant abundance from 

the 32 plots, in relation to treatment. This was done by recording the vegetation 

present in, and 50m either side of each plot, 12 and 24 months after the DOC 

experiment was set up. This helped to determine the effect of treatment on the 

establishment and spread of invasive plants in this New Zealand native forest. 

 

6. The concluding chapter (chapter 7) links the various experiments together and 

explains how they all helped to answer the two main questions of this study. 
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Chapter 2: Site characteristics and history 

 

2.1 Introduction 

 

The Ruataniwha Conservation Park (RCP) is located at the north end of Lake Ohau in the 

Mackenzie Basin 300km south of Christchurch and encompasses two main valleys, the 

Hopkins and Huxley. Both valley floors are between 600-700m a.s.l, however, the 

altitudinal range of the 32 randomly located plots where this present study was 

performed, is between 680-1120m a.s.l, and the surrounding peaks reach 2590m. As the 

RCP is an eastern neighbour to the main divide of the Southern Alps it is comprised of 

steep, rugged terrain right from the valley floor up to the mountain tops above the tree 

line. The valley floors and riverbeds are farmed with grazing sheep and cattle as these 

components of the RCP are leased to the farmer by the crown. 

The RCP features a diverse range of vegetation from valley-floor grasslands and wetlands 

to hillside beech forests and alpine herbfields. In the higher rainfall valleys close to the 

main divide, silver beech (Nothofagus menziesii) and mountain beech (Nothofagus 

solandri var. cliffortioides) are the dominant tree species while in the lower valleys 

mountain beech, subalpine shrublands and tussockland predominate. The beech forests in 

the Huxley, Dobson and Temple valleys are New Zealand’s stronghold for the threatened 

tree Pittosporum patulum as well as some of the best sites for beech mistletoe (Peraxilla 

spp and Alepis flavida) in the country (www.doc.govt.nz).  

The beech forests situated on the western side of the Mackenzie Basin form part of a 

floristic gradient that begins on the eastern side of the main divide and extends over to the 

western interior of the south island (Wardle, 2001). At the eastern end of this gradient 

where rainfall decreases and the temperature range increases the species-rich forests of 

the west shift towards pure mountain beech forest (Wardle, 1984). However, there is still 

albeit, a small diversity of other species present in these forests for example, 

Phyllocladus alpinus, Podocarpus hallii and a range of ferns in parts where there is an 

increase in water availability (Wardle, 1984).  
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The pattern of forest distribution in this district has been remarkably stable since 

European activity began in the 1850s, despite fire, grazing by domestic and feral 

mammals, and some exploitation for timber (Wardle, 2001). Although these influences 

continue, the greatest threat may now be competition from introduced plants, including 

herbaceous species that may have been encouraged by episodes of fertiliser use and 

increased stocking, and, especially, introduced trees that are hardier and more vigorous as 

pioneers than native trees (Wardle, 2001). 

To accurately record the change of a study site over the duration of an experiment the 

initial state of that study site must be recorded before the experiment is constructed 

(Chacon and Armesto, 2005). The following data were collected before the DOC 

experiment was set up, which provided the information required to record the change of 

specific site characteristics over the duration of my present study. This initial recording of 

site characteristics is a method that is widely used (e.g. Smale et al., 1995; Fownes and 

Harrington, 2004; Lof et al., 2007; Seiwa, 2007) illustrating its importance in 

experiments that are involved with the change of communities over a certain time period. 

This information becomes increasingly important when the experiment involves the 

direct comparison of various plots within the study area (Ito and Hino, 2008). As the 

significant effect of this experiment was determined by the difference between these 

various plots; knowing if there was any significant difference between them before the 

experiment started was important.  

The aim of this survey was to investigate if there was any significant pre-existing 

variation between the plots and to give a full description of the plots before the 

experiment was set up. This was achieved by attempting to answer the following 

questions: 

 

1. What was the present vegetation composition and forest structure of the RCP 

before the present study began? 

2. Before the construction of the DOC experiment was there any significant 

difference between the areas of forest that were going to be used, in regards to 

forest structure and vegetation composition? 
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2.2 Methods 

 

2.2.1 Site descriptions 

 

Before the experimental plots were constructed (in late 2006, early 2007) a description of 

the 32 sites was undertaken. These site descriptions were carried out by members of the 

Department of Conservation and Landcare Research. The site characteristics were 

recorded to test whether there was any significant variation between the plots before the 

present study was set up. 

 

In total 18 site characteristics were recorded at each plot that were of interest to this 

present study and are separated in to three groups: 

 

Geographical characteristics 

• Altitude recorded with the use of a global positioning system (GPS)  

• Aspect was recorded with the use of a GPS and compass 

• The slope of each site was recorded by use of an abney level 

 

Biological characteristics 

• Ground cover composition of vegetation, moss, leaf litter, bare ground and rock 

were recorded in percentage cover of the plot area 

• The mean top height of the canopy trees was calculated by measuring all the 

canopy trees within each 10m x 10m plot 

• Estimations of canopy tree cover in the following height classes were also 

recorded 

- less than 30cm 

- 31cm to 1.99m 

- 2m to 4.99m 

- 4.99m to 12m 

- more than 12m 
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Geological characteristics 

• The percent cover of broken rock and soil at each plot were recorded by visual 

estimation. 

• Surface stability of each plot was recorded on a scale of 1-3, 3 being highly 

stable, this was dependant on what the surface was made up of whether it was 

broken rock, rock or Nothofagus forest floor comprised of soil and roots. 

 

2.2.2 Statistical analysis 

 

Firstly, I analysed in a principal component analysis (PCA) all 18 predictors that I 

considered to have the potential to produce any significant variation between the 32 plots, 

the PCA was performed in PC-ord4. The PCA compared all the 32 plots by the 18 

predictors along two axes to produce a visual comparison of any variation between the 

plots (Figure 2.1). To investigate this further all 32 axis one and axis two scores for each 

plot were analysed in a single factor ANOVA to examine if there was significant 

variation between each treatment (control, fence, gap, gap fence) in regards to the 18 site 

variables (Table 2.1).  

 

I then analysed the 5 most relevant predictors individually by the use of single factor 

ANOVAs, to investigate if any of these predictors were producing significant variation 

between the treatments (Table 2.2). This analysis was performed in R version 2.7.0.  

 

2.3 Results 

 

2.3.1 Principal component analysis 

 

It is evident from the principal component analysis that there appears to be some original 

variation between the plots before the experiment began (Figure 2.1).  
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Figure 2.1. Principal component analysis (PCA) of the differences among the 32 plots 
randomly located in the Hopkins and Huxley valleys, using the 18 site variables 
described above in the methods section (2.2). Plot labels are formatted as follows, 
catchment (Hopkins (ho) or Huxley (hu), treatment (control (c) fence (f) gap (g) gap 
fence (gf) and plot number. 
 

The two single factor ANOVAs comparing the axis one and axis two scores for all four 

treatments illustrated that there was no difference between all 32 plots along axis one and 

two (Table 2.1). 

 

Table 2.1. Results from the two single factor ANOVAs comparing the axis one and axis 
two scores for each treatment from the above PCA to evaluate if there was significant 
variation between the four treatments regarding the 18 site characteristics recorded from 
the Hopkins and Huxley valleys, 2007. 
 

Predictor Df Deviance 
Residual 
Df 

Residual 
Deviance F-value Pr(>F) 

NULL axis1     31 87.17     
treatment 3 3.66 28 83.8 0.37 0.77 
NULL axis2     31 158.28     
treatment 3 29.62 28 128.66 2.15 0.12 
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2.3.2 Similarity between the 4 treatments before this study began 

 

In support from what is illustrated in the PCA, the results from five single factor 

ANOVAs conclude that there is no significant variation between the four treatments in 

relation to these five most relevant site characteristics (Table 2.2). 

 

Table 2.2. Single factor ANOVA results that tested for significant variation between the 
four treatments in relation to the five most relevant site variables, from both the Hopkins 
and Huxley valleys, December 2007. 
 

Predictor Df Deviance
Residual 
Df 

Residual 
Deviance F-value Pr(>F) 

NULL total cover     31 13215.5     
treatment 3 1380.8 28 11834.8 1.089 0.37
NULL native cover     31 9729.5     
treatment 3 1294.2 28 8435.2 1.43 0.25
NULL altitude     31 488732     
treatment 3 52065 28 436667 1.11 0.36
NULL slope     31 4538.9     
treatment 3 282.6 28 4256.2 0.62 0.61
NULL mean top height     31 751.6     
treatment 3 130.6 28 621 1.96 0.14

 

Vegetation cover, altitude and ground cover were all non-significant across the four 

treatments (Table 2.2). Figures 2.2 – 2.4 show the ranges for each of these variables 

across the four treatments at the start of this experiment. 
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Figure 2.2. The variation in vegetation percent cover between the four treatments from 
both the Huxley and Hopkins valleys, December 2007. 
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Figure 2.3. The variation in altitude between the four treatments from both the Huxley 
and Hopkins valleys, December 2007. 
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Figure 2.4. Total ground cover variation between the four treatments from both the 
Hopkins and Huxley valleys, December 2007. 
 

2.4 Discussion 

 

2.4.1 Similarity in site characteristics due to random site selection 

 

When study plots are randomly selected and a wide range of site characteristics are 

considered such as, altitude or total vegetation cover it is highly likely that variation 

between plots will exist (Oheimb et al., 2005). However, the use of random allocation of 

treatments to plots should usually ensure that there is no systematic difference among 

treatments before the experiment starts. Also, as stated above, compositionally speaking, 

Nothofagus forests in this region are quite homogeneous (Wardle, 1984). In this situation, 

the homogeneity of the forest in the RCP influenced these results more than the 

suggestion by Oheimb et al. (2005). 
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Although this present study considered a wide range of site characteristics, not exhaustive 

to vegetation composition, there was no significant variation between these site 

characteristics over 32 study plots (Table 2.1 and 2.2). This is fortunate as it ensures that 

any results found in this study will be due to the treatment at each plot and not an 

underlying factor that was not accounted for. 

 

Even though it did not display significant variation, I thought the variation in altitude, had 

the potential to affect the final results of this study. However, there are two points to be 

made that provide evidence against this factor affecting the final results.  

 

Firstly, in their study of species assemblages, Masaki et al. (1992) recognised the 

presence of site specialists and site generalists, where the site-specialist species occurred 

along ridges and at the bottom of the valley, while the generalists were not restricted in 

their site selection. As the invasive species recorded in this present study were site 

generalists that have very long distance dispersal (up to 18.5km from its origin) the effect 

of altitude was probably small in this regard (Richardson and Pysek, 2006). Secondly, the 

altitudinal range covered by all the plots was not large enough to exceed the altitudinal 

limits of the species being recorded (personal observation, 2008). 

 

Therefore, the similarity between these 32 plots was due to the homogeneity of this 

Nothofagus forest in regards to vegetation composition as this was the most relevant or 

influential site characteristic to this present study. Lastly, the random location of the 32 

plots resulted in a good representation of this forest as they all displayed similarities for 

the recorded site characteristics (Table 2.2). 

 

2.4.2 Conclusions 

 

1. The Nothofagus forests of this region are quite homogeneous in regards to the 

site characteristics recorded in this present study. 
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2. The random allocation of treatments to plots has ensured that there were no 

important pre-existing differences between treatments; this is concluded from 

the single factor ANOVAs in table 2.2. 

3. The similarity between these plots before this study began helps to ensure that 

any variation found at the end of this study will be the result of the treatments 

applied to each of the plots.  
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Chapter 3: Microclimate comparisons between open and closed canopies 

 

3.1 Introduction 

 

The manner in which plant communities change through time and space has been a 

central concern of ecology, and the need to understand the patterns and processes in 

vegetation has, if anything increased in the face of ongoing and increasingly rapid 

environmental change. Projections of changing climate and incidence of climatic 

extremes in particular pose important questions in relation to likely ecosystem response 

(Easterling et al., 2000; Klein Tank, 2002; Greenland et al., 2003; Weltzin and 

McPherson, 2003; Hobbs et al., 2007), especially when coupled with changes in land use 

and disturbance regimes (Chapin et al., 2001). Davis (2005) recently suggested that 

contemporary ecology tends to consider vegetation change in a series of largely separate 

endeavors (for instance, succession ecology, invasion biology, gap/patch dynamics, and 

global change effects on plant communities) that focus on different causes of vegetation 

change, for example species introduced from other regions of the world, disturbances that 

create gaps and initi   ate succession, and global change. In reality, all these influences 

are likely to be important to a greater or lesser extent and will interact within any 

particular plant community (Shaw et al., 2002; Zavaleta et al., 2003), and an 

understanding of these influences and interactions is essential if we are to understand, 

manage, and restore ecosystems more effectively in the future (Hobbs et al., 2007). 

 

The establishment of invasive species often compromises the biodiversity, ecological 

functioning and economic value of invaded ecosystems (Ross et al., 2008; Mack et al., 

2000). Future global changes, such as climatic warming and an increased tendency 

towards human-dominated land use are likely to favour invasive species and exacerbate 

their impacts (Dukes and Mooney, 1999; Vilá et al., 2006). Correlative models suggest 

that climate is a major constraint on the distribution of many invasive plant species (e.g. 

Kriticos et al., 2005; Dunlop et al., 2006). Whilst several studies have suggested likely 

range shifts based on such analyses (e.g. McDougall et al., 2005; Thuiller et al., 2005), 

independent measurement of the key climatic variables (light intensity and duration, air 
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and soil temperature and relative humidity) that assist in establishing invasive species has 

not been well covered in New Zealand Nothofagus forest. Thus, disentangling the relative 

importance of these climatic variables on the potential for invasion under a future warmer 

climate requires experimental rather than solely biogeographical (Thuiller et al., 2005) or 

observational (Becker et al., 2005; McDougall et al., 2005) approaches (Ross et al., 

2008). 

 

A study by Fernández and Fetcher (1991) concluded that different disturbances create 

different types of gaps, and these different gaps modify many abiotic factors. For 

example, in tropical environments where hurricanes occur frequently and create gaps, 

severe canopy damage defoliates the surrounding canopy which may result in higher 

solar radiation than would occur with a treefall gap. Fernández and Fetcher (1991) also 

suggest that landslides affect the distribution of litter by removing it from the upslope and 

concentrating it on the downslope area of the slide. These differences will impact both 

the temperature and moisture conditions present at each gap site depending on what 

environmental forces created the gap (Everham et al., 1996).  

 

An accurate way to simulate natural disturbance experimentally is to apply methods that 

have the potential to change the environmental microsite conditions of the forest for 

example, by admitting more light, increasing both the maximum and daily fluctuation in 

temperature and by altering the amount of relative humidity present at each microsite 

(Everham et al., 1996). The resulting spatial/temporal heterogeneity of microsites as they 

function as germination cues, coupled with the known variation in species germination 

requirements, can show which climatic variables are important in determining the post-

disturbance patterns of invasive species (Everham et al., 1996).  

 

Previous studies on canopy gaps have demonstrated that, over a diurnal period, due to the 

increase in sunlight availability, soil and air temperature increase in gaps and 

microclimate variation is greater within gaps compared to the forest understory (Phillips 

and Shure, 1990). The availability of light within gaps increases the soil temperature and 

air temperature which decreases the relative humidity (Barik et al., 1992). In addition to 
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canopy cover, latitude has also been found to influence the distribution of light within 

gaps (Canham et al., 1990). Interestingly, few studies have examined microclimate and 

vegetation patterns in the same experiment (Raymond et al., 2006). 

 

Therefore, this chapter set out to answer the following questions: 

 

1. How did the canopy gaps created in 16/32 plots in Nothofagus forest at Lake 

Ohau affect climatic variables such as, relative humidity, soil temperature and 

air temperature?  

2. If significant variation is detected, what specific climatic variables are 

producing this variation and how does this vary by time of day or season?  

3. Also to help investigate what effect these climatic variables have on the 

abundance and composition of invasive plant species found at each plot. 

 
 
3.2 Methods 

 

The aim of this experiment was to test for any significant variation in the climatic 

conditions between the two treatments that were tested (open vs. closed canopies). 

Whether the plots were fenced or not was thought not to be relevant to this part of the 

study as the presence of a fence was assumed to have no effect on these three climatic 

variables. 

 

3.2.1 Experimental design 

 

The climatic variables that were of interest in this experiment were: air temperature (°C), 

soil temperature (°C) and percent of relative humidity (RH). To examine these variables I 

used a paired design, having one data logger placed in an open canopy plot and over the 

same 14 day period another data logger in a closed canopy plot nearby. After 14 days the 

data loggers were relocated to another pair of open and closed canopy plots. All three 

variables were recorded 8 times; twice in both treatments during autumn (11/4/2008 - 

9/5/2008) and again in summer (18/12/2008 - 16/01/2009). This method produced four 
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replications for each of the two treatments, with eight plots being used to gather these 

data (Figure 3.1). 

 

 
Figure 3.1. Topographic map of the 8 plots (black squares) used to record the climatic 
variables in the Hopkins and Huxley valleys during 2008 and 2009 (white squares 
illustrate the plots that were not used). 
 

The three climatic variables were sampled at different intervals, because soil temperature 

and relative humidity (RH) were less variable than air temperature. Therefore, soil 

temperature and relative humidity were recorded once every 60 seconds and air 

temperature was recorded every 3 seconds. These individual values were used to produce 

a mean value for each variable for every hour and these hourly mean values were used for 

input into the analysis. 

 

3.2.2 Data logger set up 

Each data logger (CR10X measurement and control module from Campbell Scientific 

INC) had two recording instruments connected to it; a soil temperature probe (109SS-L 
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stainless steel temperature probe) and another probe that measured both RH and air 

temperature (Vaisala INTERCAP® humidity and temperature probe HMP50). 

The depth of the soil temperature probe and the height of the air temperature/RH probe 

were kept constant. The soil probe was inserted into the ground, parallel to the soil 

surface at a depth of 3cm; as most seeds from wind dispersed invasive species germinate 

from the upper soil layers (Behenna and Vetter, 2008; Bond and Honig, 1999). The air 

temperature/RH probe was set at 1.4 metres (m) (breast height) from the ground to match 

the height of standard meteorological recording. An opaque plastic cover with small 

(0.5cm in diameter) holes in the side was placed over the air temperature/RH probe to 

allow air flow around the probe, to stop it from getting wet and to shield it from direct 

sunlight that may cause it to record incorrect measurements. 

 

3.2.3 Statistical analysis 

 

As the data were paired (one data logger in a closed canopy plot and another in a nearby 

open canopy plot at the same time) all three measured climatic variables (air and soil 

temperature and relative humidity) were analysed by the use of paired t-tests (paired two 

sample for means). The analysis compared the mean value between the open and closed 

canopy plots during the day (0600-1700) and night (1800-0500) in summer and again in 

autumn, from the Hopkins and Huxley valleys. These tests were performed in Microsoft 

Excel XP. 

 

The day and night values were analysed separately due to the nature of the contrasting 

canopy structures (open vs. closed). Parts of forest that are under shade during the day 

will be cooler than parts that are exposed to direct sunlight, however at night this heat is 

allowed to escape faster where the canopy is open than from parts of the forest where the 

canopy is closed (Brooks and Kyker-Snowman, 2008; Jennings et al., 1999). This 

contrast in diurnal heat cycling between open and closed canopies had the potential to 

produce opposite changes in temperature, this was controlled for by treating the day and 

night values separately. 
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The mean values that each paired t-test compared were derived from two sets of 

recordings each being 14 days in duration. The hourly recordings were used to generate 

mean values for every day and night that was recorded. This produced 28 values for both 

day and night in open and closed canopy plots during summer and autumn, 224 in total. 

These 12-hour means were averaged to give the final value for each climatic variable in a 

particular season (autumn or summer) at a given time (day or night) and specific 

treatment (open or closed canopy) (Table 3.1). 

 

3.3 Results 

 

It is evident that the open canopy plots recorded higher soil and air temperatures. 

Therefore, relative humidity was lower in the open plots compared to the closed canopy 

plots as, in this forest environment, these two climatic variables are inversely correlated 

(Table 3.1). The following sections test whether these differences were significant. 

 
Table 3.1. Comparison of the open and closed plots in relation to temperature and RH 
(%), during the day (0600-1700) and night (1800-0500), over autumn and summer, from 
the Hopkins and Huxley valleys. The night and day mean values have also been 
combined to produce season values, taking away the diurnal effect. 
 

  Air temp Air temp Soil temp Soil temp RH RH 
   Open closed open closed open closed
Day autumn 5.94 4.31 7.24 7.00 70.24 86.17 
  summer 17.74 15.40 15.49 14.00 76.10 80.19 
Night autumn 4.91 3.50 7.32 7.18 74.07 88.19 
  summer 16.90 14.55 15.34 13.85 77.91 82.00 
Season autumn 5.43 3.91 7.28 7.09 72.16 87.14 
  summer 17.33 14.98 15.42 13.93 77.00 81.10 

 

Paired t-test comparing air temperature between the open and closed canopy plots over 

night (1800-0500) and daily (0600-1700) periods illustrated that air temperature varied 

significantly between these treatments. During autumn there was no significant difference 

in air temperature, however in summer the air temperature was significantly higher in the 

open canopy plots over both day and night periods (Table 3.2). 
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Table 3.2. Paired t-tests comparing the average air temperature between the open and 
closed canopy plots in summer and autumn during the day (0600-1700) and night (1800-
0500), from the Hopkins and Huxley valleys. 
 
  d.f t Stat t critical two-tail P(T<=t) 
Night autumn 54 1.59 2.005 0.117
  summer 54 2.21 2.005 0.031
Day autumn 54 1.82 2.005 0.075
  summer 54 2.18 2.005 0.034

 

Soil temperature between the open and closed canopy plots over night (1800-0500) and 

daily (0600-1700) periods did not vary significantly between these treatments. During the 

summer soil temperature was slightly higher in the open canopy plots, however in 

autumn the opposite occurred where the closed canopy plots recorded higher soil 

temperatures than the open canopy plots during both the day and night periods (Table 

3.3). 

 

Table 3.3. Paired t-tests comparing the average soil temperature between the open and 
closed canopy plots in summer and autumn during the day (0600-1700) and night (1800-
0500), from the Hopkins and Huxley valleys. 
 
  d.f t Stat t critical two-tail P(T<=t) 
Night autumn 54 0.35 2.005 0.774
  summer 54 1.76 2.005 0.085
Day autumn 54 0.57 2.005 0.57
  summer 54 1.51 2.005 0.137

 

From the results of the paired t-tests that compared the relative humidity between the 

open and closed canopy plots over night (1800-0500) and daily (0600-1700) periods 

illustrated that relative humidity varied significantly between these treatments. During the 

summer relative humidity was slightly lower in the open canopy plots, however this 

difference was insignificant. In autumn significantly higher relative humidity was 

recorded in the closed canopy plots during both the day and night periods (Table 3.4). 
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Table 3.4. Paired t-tests comparing the average relative humidity between the open and 
closed canopy plots in summer and autumn during the day (0600-1700) and night (1800-
0500), from the Hopkins and Huxley valleys. 
 

  d.f 
T 
Stat t critical two-tail P(T<=t) 

Night Autumn 54 -4.65 2.005 <0.0001
  Summer 54 -1.24 2.005 0.219
Day Autumn 54 -4.21 2.005 <0.0001
  Summer 54 -0.87 2.005 0.388

 

3.4 Discussion 

 

3.4.1 Is air temperature significantly affected by canopy gaps? 

 

The presence of canopy gaps significantly affected the air temperature that was recorded 

between the open and closed canopy plots. However, differences in air temperature 

between the open and closed plots during the autumn (March – May) were non-

significant. Therefore, during the summer (December – January) there was a positive 

relationship between canopy openness and increased air temperature during the day 

(0600-1700) and night (1800-0500) (Table 3.2). This result is due to the amount of 

sunlight reaching each plot as this is the only contrasting factor between the open and 

closed canopy plots. This is determined by the amount of shade cover present at each plot 

which is controlled by the canopy cover (Dai, 1996). A study by Everham et al. (1996) 

supports this result, as they found when comparing regeneration success of five tropical 

tree species, that canopy gaps had increased temperatures compared to other shaded 

(closed canopy) parts of the same forest.  

 

De Freitas and Enright (1995) studied the microclimates situated within temperate 

rainforests of northern New Zealand. They compared microclimates that were present in 

the forest understory with parts of the forest where canopy gaps of varying sizes had 

formed. The mean daytime (0700-1700) air temperature in the gap sites was 84.3% 

greater than the air temperature recorded in the understory microclimates (de Freitas and 

Enright, 1995). They concluded this to be the direct result of the amount of sky exposure 
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present at each site, therefore increasing sunlight availability in the more exposed (gap) 

sites (de Freitas and Enright, 1995). 

 

However, an American study on the responses of coastal Douglas fir (Pseudotsuga 

menziesii) to gap formation found that there were only slight increases in air temperature 

after the gaps were created (Gray et al., 2002). To present stronger contrast to the general 

trend and further support to the previous finding, a study by Clinton (2003) on 

microclimate responses to small canopy gaps in the southern Appalachians, concluded 

that there was no significant difference in air temperature between the gap and non-gap 

sites. He went on to further suggest that topography, aspect and evergreen understory are 

the primary determinants of spatial and temporal heterogeneity in understory 

microclimates (Clinton, 2003). 

 

The results from this present experiment have further importance to the whole study as it 

has been widely suggested that invasive plant abundance increases with an increase in 

temperature (Cicek and Tilki, 2006; Vilà et al., 2006; Dukes and Mooney, 1999; 

Thompson et al., 1997) even in artic tundra regeneration has been seen to increase with 

temperature (Hobbie and Chapin, 1998). Therefore, with canopy gaps increasing the air 

temperature of the surrounding microclimates, the increase of invasive diversity in to 

natural forests may be able to persist in the long term.  

 

3.4.2 Do canopy gaps affect soil temperature? 

 

There was no difference in soil temperature between the open and closed plots with the 

largest variation being less than two degrees celcius, which was recorded at night during 

the summer (Table 3.3). Therefore, illustrating that although the increase in sunlight 

availability significantly increased the air temperature it was not of high enough intensity 

to significantly increase the soil temperature (Table 3.3).  

 

In a study involving the responses of herb layer species to experimental canopy gaps in a 

northern hardwood forest Collins and Pickett (1988) also detected no difference in soil 
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temperature between the gap and non-gap plots. They concluded that canopy height and 

density were the two major determinants influencing soil temperature between gap and 

non-gap plots, but also admit that this result could vary spatially over forests at a global 

scale. 

 

However, studies have illustrated that canopy gaps can significantly change (decrease, 

increase or make more variable) present soil temperatures to that of the surrounding 

understory soil temperatures. For example, Sariyildiz (2008) who studied the effect of 

various gap size classes on long-term litter decomposition rates in northeast Turkey, 

concluded that the large (diameter of more than 30m) gaps significantly reduced litter 

decomposition rates by changing environmental conditions, especially by decreasing soil 

temperature (Sariyildiz, 2008).  

 

In contrast, studies have illustrated the more obvious trends, for example where a canopy 

gap has been created and there is an increase in sunlight reaching the forest floor, 

therefore increasing the soil temperature compared to the neighbouring understory forest 

floor (Ewel et al., 1998; Schmidt et al., 1998). Another example is where canopy gaps 

have significantly increased the diurnal variability in soil temperature due to the exposed 

ground increasing in temperature during the day, resulting in more dramatic cooling at 

night (Abe et al., 2002). Canopy gaps increase the heat of the forest floor from sunlight 

during the day but increase heat lose by night especially on calm, clear nights (Ritter et 

al., 2005; Barik et al., 1992). Therefore, cloud and wind can both reduce these effects, 

but overall canopy gaps have an increased temperature variation compared to closed 

canopy forest (Brooks and Kyker-Snowman, 2008). 

 

3.4.3 Did relative humidity vary between the open and closed canopy plots? 

 

During the summer the variance between the open and closed canopy plots was non-

significant irrespective to whether it was day or night. However, in autumn relative 

humidity decreased significantly in the open canopy plots compared to the closed canopy 

plots, this variation was detected during both the night and day (Table 3.4).  
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Wang et al. (2008) when studying the thinning effects on the microclimate and ground 

vegetation in a Taiwan plantation forest also found a significant difference in relative 

humidity between the open and closed canopy plots. However, there is a slight difference 

between the results obtained by Wang et al. (2008) and the present study; as they stated 

that there was a very significant difference during the day, but no significant difference 

was found during the night among treatments (Wang et al., 2008). Thus, suggesting a 

diurnal effect may influence the difference in relative humidity between open and closed 

canopy sites. Danehy and Kirpes (2000) agree with this suggesting when they compared 

the relative humidity gradients across riparian areas. They found that over 0-5m (0 being 

the stream edge or open area and 5 being 5m back into the forest) there were significant 

changes in relative humidity but by 10m from the stream edge relative humidity had 

returned to upland understory levels. One of their final conclusions was that the diurnal 

pattern of air temperature (increase during the day and decrease during the night) is the 

dominant driver of relative humidity in these eastside forests as these two climatic 

variables are inversely correlated (Danehy and Kirpes, 2000).  

 

The findings from an earlier study by Zarnowiecki (1994) that estimated air humidity 

relations in the forest communities also found that the mean relative humidity in all the 

forest communities was greater than in the open areas. As Danehy and Kirpes (2000) 

concluded Zarnowiecki (1994) also put this variation down to the lower mean air 

temperature recorded in the forested plots, therefore increasing the relative humidity in 

these forest plots. 

 

Brooks and Kyker-Snowman (2008) also found the effect of time of day on relative 

humidity to be significant. However, in contrast to the pre-mentioned findings they found 

there only to be quite small (generally <1%) differences in relative humidity between 

paired control and harvest sites. In fact, unlike my present study, they found the largest 

average differences in relative humidity occurred at the forest floor position in the 

afternoon of the summer. This result is in total contrast as, my present study found no 

significant difference in relative humidity between the open and closed canopy plots 

during the summer (Table 3.4). 
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3.4.4 What about light availability? 

 

The other factor that must be considered is the increase in light availability at the open 

canopy plots and the decrease of light as distance from the forest edge increases back into 

the forest interior. This is crucial to the understanding of forest ecology especially when 

investigating the spread of invasive species into the forest interior (Valladares and 

Guzman, 2006).  

 

Buckley et al. (2003) realised this importance and constructed a model using multi-level, 

mixed-effects statistics on growth, survival, fecundity and damage, incorporating intrinsic 

plant variables, environmental variables, herbivory and spatial and temporal stochasticity. 

They found that populations in shaded and open sites had different dynamics and 

responses to control strategies. Shaded populations took longer to reach infestation 

densities and were less affected by herbivory and reductions in survival than open 

populations. Open populations increased faster in response to increases in rainfall, but 

this was not so for shaded populations. 

 

A more specific example comes from a study by Cole and Weltzin (2005) who 

investigated how light availability created the patchy distribution of an invasive grass in 

eastern American deciduous forests. They concluded that light reduction by the canopy 

was the environmental constraint that prevented establishment of Microstegium vimineum 

beneath the tree canopy. Whereas, overstory tree canopy apparently facilitates the 

establishment of this shade-tolerant grass, the interaction of overstory canopy with mid-

story canopy interferes with M. vimineum by reducing the availability of sun flecks at the 

ground layer. 

 

Although brief, these examples illustrate the importance of sunlight present in a given 

part of forest when investigating the establishment and spread of invasive plants in to 

native forests after the creation of gaps in the forest canopy (Raymond et al., 2006). 
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3.4.5 Conclusions 

 

After comparing the results of this research with the wider literature, the following 

conclusions can be made: 

 

1. Canopy gaps significantly affected the air temperature that was recorded 

between the open and closed plots during the summer. 

2. The difference in soil temperature between the open and closed plots was non-

significant with the largest variation being less than two degrees celcius which 

was recorded at night during the summer. 

3. In autumn relative humidity decreased significantly in the open canopy plots 

compared to the closed canopy plots. 

4. The amount of sunlight that reaches a site is an important factor that must be 

considered when investigating the establishment and spread of invasive plants 

in to native forests, after a gap has been created in the forest canopy. 
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Chapter 4: Seed dispersal 

 

4.1 Introduction 

 

Causes and consequences related to the distribution of invasive vegetation have always 

been of high interest in ecology, especially when implementing management strategies to 

decrease the adverse effects on native species (Nuttle and Haefner, 2005). Seed dispersal 

is widely recognised to be a fundamental process shaping population and community 

dynamics and all subsequent ecological interactions (e.g., Schupp and Fuentes, 1995; 

Howe and Miriti, 2000; Nathan and Muller-Landau, 2000) and determining, to a large 

extent, local and regional patterns of vegetation (Hubbell, 2001; Tuomisto et al., 2003).  

 

Research to understand and predict the spread of invasive species has become 

increasingly urgent in recent decades, as the widespread effects of invasive species cause 

ever more prominent problems. Management planning and implementation require 

improved information to be effective, especially given the constraints of limited 

resources. However, studies of seed dispersal and population spread are relatively 

difficult to carry out, compared to localised demographic studies (Skarpaas and Shea, 

2007).  

 

The use of seed traps to examine the dispersal of seeds to a specific site can be difficult 

especially in alpine environments. Artificial traps are often not easily accessible in 

remote field sites when repeat visits are required and traps must withstand the harsh 

conditions if left out for long periods (Larsson, 2003). However, when performed 

accurately this approach is very effective at supplying quantitative data on which species 

are arriving at a site, the abundance of each species and the preference shown by species 

to particular sites for example, where canopy light gaps are present (Larsson, 2003). This 

last point is especially important and highly relevant to invasive species, as it is often 

advantageous for invasive species to disperse their seeds into light gaps where offspring 

mortality is lower and the growth of seedlings is enhanced (Augspurger and Franson, 

1988). Although recognised, this ‘dispersal advantage’ has not been tested thoroughly 
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with the use of a well balanced design encompassing a large scale, in New Zealand beech 

forest.  

 

A pioneering study by Augspurger and Franson (1988) examined the input of wind-

dispersed seeds into light-gaps and forest sites in a tropical forest. They concluded that at 

the community level nearly twice as many wind-dispersed seeds were collected from 

light-gaps as from a comparable area of intact forest (Augspurger, 1988). At the other end 

of the time scale a study by Skarpaas and Shea (2007) examined the speed of invasion 

waves and related these to species traits and environmental conditions. They concluded 

that over a wide range of realistic conditions, mechanistic spread rate estimates were 

most sensitive to high winds and low seed settling velocities. However, there are limited 

examples of this type of research in New Zealand and the most relevant one to this study 

comes from work done by McAlpine and Jesson (2008). Their study aimed to understand 

the factors and processes influencing recruitment of the invasive species Berberis 

darwinii (Darwin’s barberry). They examined both temporal and spatial patterns of seed 

dispersal, germination and seedling establishment and found that newly emerged 

seedlings largely reflected patterns of seed rain, but seedling survival was significantly 

affected by distance from the source population, seedling density and light environment, 

therefore concluding that recruitment of B. darwinii is dependent on dispersal of seeds to 

favourable microsites. 

  

The aim of this part of my research was to investigate the invasive species seed 

composition arriving in each plot for all treatments (control, fence, gap, gap and fence), 

in an attempt to examine how the four treatments affect seed dispersal. We might expect 

canopy gaps to have a larger effect on dispersal than the wire netting fences, but the 

design of the experiment allowed both to be tested. 

 

This was achieved by answering the following questions: 
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1. Is the abundance of seeds (from all present species) arriving at a site significantly 

increased when there is a gap in the above forest canopy or a fence around the 

plot? 

2. Are seeds of invasive plant species widespread throughout New Zealand 

Nothofagus forest or do they disperse in when canopy gaps or 10m x 10m fences 

are created in these forests? 
 

* “Of course, some of the seeds caught in seed traps may come from plants growing in the plots rather than 

from longer distance dispersal; this aspect will be examined in chapter 6.” 

 

4.2 Methods 

     

4.2.1 Seed trap design 

 

This experiment used sticky sheets placed flat on the ground surface to trap arriving 

seeds. The seed traps were constructed from a clear A4 acetate sheet (210 x 296mm) that 

was attached to a plastic frame (250 x 350mm) so the trap could be pegged to the ground 

(Figure 4.1). The acetate sheet was then painted with an adhesive substance called 

“Tanglefoot” that the seeds would fall on and get stuck to. This design was used as it 

produced a uniform method across all of the 32 plots independent of treatment type, and 

was thought to be the most suitable for the target species (small seeded wind dispersed 

species) (Larsson, 2003).  

 

 
  
Figure 4.1. A seed trap attached to the plastic frame, coated in “Tanglefoot” and then 
pegged face up to the ground. 
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4.2.2 Seed trap layout 

 

Each 10m x 10m plot contained two seed traps; one trap was placed half-way along the 

top edge and the other trap was placed half-way along the bottom edge (Figure 4.2). The 

64 seed traps (2 traps x 32 plots) were set up and left out for a one month period from the 

15th of April to the 15th May 2008, as autumn is the main period for seed dispersal. 

  

 
Figure 4.2. Diagrammatic representation illustrating the position of the two seed traps 
within the larger 10m x 10m plots. Traps were positioned to avoid disturbing the DOC 
experiment (black area across the middle). 
 

4.2.3 Extracting and counting the seeds 

 

After the one month period the seed traps were collected and brought back to the lab so 

the seeds could be extracted from the traps and counted. Each trap was placed under a 

large, well lit magnifying glass and each seed was then extracted with tweezers. Each trap 

was re-examined until it was evident that there were no seeds left on the trap. The seeds 

were then individually examined under a microscope so all seeds caught in each sticky 

trap could be identified, this was achieved with reference to the New Zealand seed atlas 

(Webb and Simpson, 2001) 
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The seeds caught in each plot were combined whether they were from the bottom trap or 

the top. This was done as the level of replication of interest was the 32 plots, not traps 

within plots 

 

The analysis used two different approaches; seeds per square metre (m2), calculated from 

the number of seeds from both seed traps, and the proportion of the total that was 

comprised of seeds from invasive species. To calculate the number of seeds per m2, the 

total ground area over which the seeds were caught was calculated, this total area (1260 

cm2) was divided into 1m2 which equalled 0.1260m2, the seed totals from each plot were 

multiplied by this to give a m2 value. 

 

4.2.4 Statistical analysis 

 

Poisson ANOVAs were used to analyse all the data that were generated from actual 

counts of seeds as these data displayed poisson distributions. Total seeds present for each 

treatment were analysed with gap, fence and the gap x fence interaction as the three 

predictors (Table 4.2). The total seed counts of the three most common species were also 

analysed separately with gap, fence, catchment and the gap x fence interaction (Table 4.6, 

4.7 and 4.8). All statistics were performed in R version 2.7.0. 

 

Catchment was not used in the analysis for the total seeds present in each treatment as it 

was only of interest which treatment was having an effect not if catchment was driving 

the seed abundance at each plot. However, this was important for the abundance of 

specific species to conclude whether each species found specific treatments more 

favourable or if they were just locally more abundant in one catchment compared with 

the other so catchment was included as a predictor. 

 

The analysis of the highest proportion of invasive seeds used a linear mixed model as it is 

proportion data, but the estimated scale was too high (4.21 instead of close to 1), 

therefore the analysis type was changed to quasibinomial. The model tested these data 

against fence, gap and the fence x gap interaction (Table 4.4). This resulted in all three 
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predictors having a significant effect; the models were then run separately. Significance 

was tested between the models (fence only, gap only, gap and fence) by comparing the 

model with the predictor included with one from which the predictor had been removed. 

The best model was selected using a likelihood ratio test using the Akaike Information 

Criterion (AIC) and a Chi square statistic (Table 4.5).  

 

4.3 Results 

 

These results have been separated into three sections. The first section investigated what 

effect treatment had on the total number of seeds that were present at each plot. The 

second section examined what effect treatment had on the total proportion of invasive 

seeds found in each plot. Thirdly, I investigated how some species tend to favour one 

treatment over another. Section three examined the individual abundance of three more 

common species that had a high number of seeds caught over all the plots. 

 

4.3.1 Total number of seeds (native and invasive) per plot across all treatments 

 

The 64 sticky traps caught a total of 1012 seeds from 14 species, with only one species 

(Nothofagus solandri) being native. Thirteen of the 14 species that had seeds caught in 

these sticky traps were wind dispersed, the only species that is not wind dispersed was 

(Solanum nigrum), note this species only had 2 seeds caught in all 64 sticky traps (Table 

4.1). 
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Table 4.1. Summary of all the seeds (native and invasive) caught in 64 sticky traps 
(0.063m2 exposed for one month) across all treatments, from both the Hopkins and 
Huxley valleys, April 2008. 
 

  Control Fence Gap Fence and Gap Grand totals 
Crepis capillaris 0 0 21 11 32
Carduus nutans 0 0 13 41 54
Echium vulgare 0 5 39 22 66
Cerastium glomeratum 0 0 0 5 5
Holcus lanatus 0 2 48 17 67
Agrostis capillaris 0 0 21 0 21
Senecio jacobaea 1 0 0 0 1
Urtica dioica 1 0 0 3 4
Hydrocotyle americana 0 0 0 13 13
Epilobium brachycarpum  0 0 0 7 7
Danthonia pilosa 0 0 0 38 38
Solanum nigrum 0 0 0 2 2
Agrostis gigantea 0 3 23 110 136
Nothofagus solandri 161 59 262 84 566
Total species 3 4 7 12 14
Total seeds 163 69 427 353 1012
Total invasive seeds 2 10 159 269 446
Invasive seeds/m2 1.98 9.92 157.74 266.87 442.46
Percentage of invasives 1.23 14.49 37.24 76.2 43.48

 

The Poisson ANOVA on total number of seeds recorded for each treatment showed that 

the presence and absence of a canopy gap was the main predictor to significantly affect 

total seed catches, explaining most of the variation; however fence and the gap x fence 

interaction was also significant (Table 4.2). This suggests that when a gap is created in 

the above canopy it increases the number of seeds arriving at a site (Figure 4.3 and Table 

4.2). These results were also found for the total number of invasive seeds recorded at 

each plot (Figure 4.4 and Table 4.3).  
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Figure 4.3. The total number of seeds caught from all 64 sticky traps (0.063m2), exposed 
for one month in the 16 gap and 16 no gap plots, from both the Hopkins and Huxley 
valleys, April 2008. 
 

Table 4.2. Poisson ANOVA on the total number of seeds caught in sticky traps from the 
16 gap (gap and, gap fence) and the 16 no gap (control and fence) plots, from both the 
Hopkins and Huxley valleys, April 2008. 
 
Predictor Df Deviance Residual Df Residual Deviance P (> Chi) 
NULL    31 1168.84   
gap 1 273.14 30 895.7 < 0.0001
fence 1 29.81 29 865.89 < 0.0001
gap:fence 1 34.11 28 831.78 < 0.0001
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Figure 4.4. Total number of invasive seeds caught from all 64 sticky traps (0.063m2), 
exposed for one month in the 16 gap and 16 no gap plots, from both the Hopkins and 
Huxley valleys, April 2008. 
 

Table 4.3. Poisson ANOVA on the total number of invasive seeds caught in sticky traps 
from 16 gap and 16 no gap plots, from both the Hopkins and Huxley valleys, April 2008. 
 

Predictor Df Deviance Residual Df Residual Deviance P (> Chi) 
NULL     31 1029.81   
gap 1 358.82 30 670.99 < 0.0001 
fence 1 15.49 29 655.49 < 0.0001 
gap:fence 1 22.52 28 632.98 < 0.0001 
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4.3.2 The total proportion of invasive seeds per plot 

 

The linear mixed model on the total proportion of invasive seeds present in each plot 

showed that gap, fence and the gap x fence interaction all had a significant effect (Table 

4.4). The gap plots had a higher percentage of invasive seeds than the closed canopy plots 

with the gap and fence plot having the highest percentage overall (Figure 4.5).  
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Figure 4.5. Total proportion of invasive seeds present in all plots across the four 
treatments from both the Hopkins and Huxley valleys, April 2008. 
 

Table 4.4. The linear mixed model on which predictors increased the total proportion of 
invasive seeds present in each plot, from both the Hopkins and Huxley valleys, April 
2008. 
 
Predictor Estimate Std. Error z value P (>z) 
fence 0.71 0.33 2.11 < 0.035
gap 1.59 0.29 5.44 <0.0001
fence:gap 1.47 0.42 3.51 <0.0001
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Further analysis was performed on these data to determine which of these three predictors 

was most likely explaining this phenomenon (Table 4.5). 

 

Table 4.5. Akaike Information Criterion test that compared all three models with each 
other to explain which predictor was driving the total invasive proportion of seeds caught 
in sticky traps from the 32 plots, from both the Hopkins and Huxley valleys, April 2008. 
 

Model Df AIC BIC Chi square P (>Chi) 
fence 4 1513.53 1522.16     
gap  4 1498.85 1507.48    
fence:gap 6 1470.38 1483.33 47.151 < 0.0001 

  

After comparison of the three models, it was evident that the model fence:gap had the 

lowest Akaike Information Criterion (AIC) score, therefore the model with fence, gap 

and fence x gap interaction was clearly best. 

 

4.3.3 Trends of individual species 

 

The last section of these results investigated if any predictors were driving the abundance 

of any specific individual species across the varying treatments. The raw data were 

observed for any trends where species may have been favouring one treatment over 

another and these species were investigated further (Table 4.1). The three species 

(Carduus nutans (8), Echium vulgare (8) and Holcus lanatus (9)) that occurred in the 

highest number of the 32 plots were tested to determine what was driving the increase in 

seed abundance from these 3 species (Figure 4.6, 4.7 and 4.8). 

 

The number of Carduus nutans seeds were significantly increased by gap, fence and 

catchment (higher in Huxley), however the gap x fence interaction was non-significant 

(Figure 4.6, Table 4.6). 
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Figure 4.6. Total individual abundance of Carduus nutans seeds across the four 
treatments, from both the Hopkins and Huxley valleys, April 2008. 
 

Table 4.6. Results summary from the Poisson ANOVA, displaying which predictors had 
a significant effect on the individual abundance of Carduus nutans seeds in each plot, 
from both the Hopkins and Huxley valleys, April 2008. 
 

Predictor Df Deviance Residual Df Residual Deviance P (>Chi) 
NULL     31 237.93   
gap 1 74.86 29 147.82 <0.0001
fence 1 15.25 28 222.68 <0.0001
catchment 1 29.56 27 118.27 <0.0001
gap:fence 1 0 26 118.27 1.00

 

The number of Echium vulgare seeds recorded at each plot was significantly increased by 

canopy gaps and the gap x fence interaction; however fence and catchment had no effect 

(Table 4.7). There were no E. vulgare seeds recorded in the control plots and only 1 fence 

plot had E. vulgare seeds caught in the sticky traps (Figure 4.7). 
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Figure 4.7. Total individual abundance of Echium vulgare seeds across the four 
treatments, from both the Hopkins and Huxley valleys, April 2008 
 

Table 4.7. Results summary from the Poisson ANOVA, displaying which predictors had 
a significant effect on the individual abundance of Echium vulgare seeds in each plot, 
from both the Hopkins and Huxley valleys, April 2008. 
  
Predictor Df Deviance Residual Df Residual Deviance P (> Chi) 
NULL    31 287.069   
gap 1 56.082 30 230.99 < 0.0001 
fence 1 2.194 29 228.79 0.139 
catchment 1 0.972 28 227.82 0.324 
gap:fence 1 9.54 27 218.28 0.002 

 

The number of Holcus lanatus seeds caught at each plot significantly increased with gap, 

fence and the gap x fence interaction (Figure 4.8 and Table 4.8). Catchment also had a 

significant effect on the abundance of Holcus lanatus seeds, as there were an increased 

number of seeds in the Huxley catchment compared to the Hopkins catchment (Table 

4.8). 
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Figure 4.8. Total number of seeds caught per plot of Holcus lanatus seeds across the four 
treatments, from both the Hopkins and Huxley valleys, April 2008. 
 

Table 4.8. Results summary from the Poisson ANOVA, displaying which predictors had 
a significant effect on seed abundance of Holcus lanatus in each plot, from both the 
Hopkins and Huxley valleys, April 2008. 
 
Predictor Df Deviance Residual Df Residual Deviance P (> Chi) 
NULL    31 287.069   
gap 1 74.9 30 200.66 < 0.0001 
fence 1 12.98 29 187.68 < 0.0001 
catchment 1 14.91 28 172.77 < 0.0001 
gap:fence 1 5.2 27 167.56 0.023 
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4.4 Discussion 

 

4.4.1 The total number of seeds and the proportion of invasive seeds affected by 

treatment 

 

4.4.1.1 Total number of seeds 

 

There was a significant treatment effect in determining the total number of seeds and the 

total number of invasive seeds caught at each plot from the four treatments (Table 4.2). 

The total seed abundance increased where the plots contained a gap in the above canopy 

(all species by 3.36 fold and invasive species by 35.7 fold); compared to the closed 

canopy plots thus; illustrating the positive effect that canopy openness has on seed 

abundance (Figure 4.3). Furthermore, the total number of invasive seeds also increased 

when there was a gap in the above canopy (Figure 4.4). 

 

This result has support in the wider literature; for example Augspurger and Franson 

(1988) found that nearly twice as many seeds were recorded from sites that were situated 

under canopy gaps compared to sites under intact forest. Twenty years ago their study 

hypothesised five explanations to describe this phenomenon: (1) the seed source is 

situated closer to gaps, (2) there maybe a greater fecundity associated with the individuals 

that are present in these high light environments, (3) seeds fall easily to the ground as 

there are no branches to catch them before they reach ground level, (4) gaps alter wind 

patterns (speed and direction) drawing seeds into gaps (Geiger, 1965) and (5) the 

aerodynamic properties of seeds make them unstable when encountering changing wind 

conditions, drawing seeds into gaps (Augspurger and Franson, 1988).  

 

These are all plausible explanations, however the one of particular note is (4) that has 

gained support in the literature since the original study by Geiger (1965) (e.g. Augspurger 

and Franson, 1988; Nuttle and Haefner, 2005). A recent study by Panferov and Sogachev 

(2008) also confirms this theory, illustrating that this alteration can draw seeds into sites 

where canopy gaps are present (Figure 4.9). As the wind flow reaches the canopy gap the 
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wind changes sharply and moves in a downwards direction instead of continuing its 

normal path where it flows parallel to the forest canopy, thus drawing the seeds down to 

ground level, therefore increasing the abundance of wind dispersed seeds which settle 

into these closed canopy sites (Panferov and Sogachev, 2008). 

 

 
Figure 4.9. Systematic representation of the wind direction as it passes across a canopy 
gap, note the sharp downward movement as the wind encounters the canopy gap; drawing 
the seeds down to ground level. X-axis represents the horizontal dimension and the y-axis 
represents the height function. Solid black lines indicate the vegetation border and the 
grey zones indicate the areas of maximum wind force on the forest canopy (after, 
Panferov and Sogachev, 2008). 
 

The majority of evidence supports this, however there is evidence that suggests updrafts 

occur where the leaf density and the height of the canopy is significantly decreased and 

this increases the distance seeds can disperse away from a site (Bohrer et al., 2008). 

Although in this example the canopy may not be absent altogether it still illustrates the 

possibility that wind dispersed seeds may be carried further when released from these 

sites. From their results Bohrer et al. (2008) hypothesised this change in turbulence can 

affect seed travel and these sites where strong updrafts occur will increase the chance of 

long distance seed dispersal as the seeds have a greater chance of escaping the canopy, 

therefore travelling further. This suggests that the presence of a canopy gap is the key 

when determining if there is a sharp downwards change in the wind direction which 

draws these wind dispersed seeds down to the ground (Augspurger and Franson, 1988; 

Nuttle and Haefner, 2005). 
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4.4.1.2 Proportion of invasive seeds 

 

The mean invasive proportion recorded for each treatment increased from 0.11 in the 

control plots to 0.56 in the gap fence plots (Figure 4.5). This is explained with reference 

to the above section; as the wind flow changes in a downwards direction when it 

encounters a canopy gap, therefore drawing wind dispersed seeds down to ground level  

(Geiger, 1965; Augspurger and Franson, 1988). Thus, 13 of the 14 invasive species 

recorded in the sticky traps were wind dispersed, so were likely to be more abundant at 

plots that were situated under canopy gaps.  

 

4.4.2 Occurrence of the three most common species in relation to treatment 

 

Carduus nutans, Echium vulgare and Holcus lanatus were the three species that had 

seeds caught in the highest number of sticky traps from the 32 plots. The number of seeds 

from these three species that were caught in the sticky traps was determined by gap, 

fence, catchment and the gap x fence interaction (Table 4.6, 4.7 and 4.8). I will discuss 

the reasons why fence, gap and catchment were the predictors that determined the 

number of seeds caught in the sticky traps from these three species (Table 4.9). 

 
Table 4.9. Summary of which predictors were driving the number of seeds caught in the 
sticky traps for Carduus nutans, Echium vulgare and Holcus lanatus, from both the 
Hopkins and Huxley valleys in April 2008. The positive (+) symbols represent an 
increase in the number of seeds and a “0” where a predictor had no effect on the 
corresponding species.  
 
  gap fence catchment gap x fence 
Carduus nutans + + Huxley + 0 
Echium vulgare + 0 0 + 
Holcus lanatus + + Huxley + 0 

 

Firstly, the presence of a canopy gap increasing the abundance of these species is directly 

related to what has been discussed in 4.4.1. As the wind flow reaches the canopy gap the 

wind changes sharply and moves in a downwards direction instead of continuing its 

normal path where it flows parallel to the forest canopy, thus drawing the seeds down to 



 55

ground level, increasing the abundance of wind dispersed seeds into these closed canopy 

sites (Bohrer et al., 2008; Panferov and Sogachev, 2008; Webster et al., 2005). 

 

The reason for the presence of a fence increasing the abundance of these species is not 

clear, but may be explained by the fence deterring seed predators. Studies have illustrated 

that some predators are deterred by certain structures such as fences for example (Mayer 

and Ryan, 1991; Jackson, 2001). The deterrent can simply be because the structure 

prevents the predator from reaching the food source, for example a cage around a seed 

source will prevent birds reaching the seeds. Secondly, the seed predator may be unsure 

of the risk associated with the structure due to its unfamiliarity, therefore will stay away 

from it and gather resources from a less risky site (Mayer and Ryan, 1991; Jackson 

2001). However, it is unlikely the seed predators present in the RCP, for example rodents 

and small avifauna would be deterred by the presence of the fence therefore this may be a 

spurious result. 

 

Catchment was the third predictor that significantly affected the number of seeds that 

were caught in the sticky traps from these three species. The seeds of these species were 

more abundant in the Huxley valley compared to the Hopkins valley (C. nutans (46, 8) E. 

vulgare (37, 29) H. lanatus (47, 18)) respectively. As described in chapter 2 the two 

catchments encompass two separate valleys where the further most point can be over 

15km from each other and differ in aspect.  

 

There are three reasons why catchment can have an effect on the number of seeds caught 

in sticky traps: Firstly, varying conditions between the two catchments described in 

chapter 2 can drive the occurrence of these two species. As a study by Pyšek et al. (2005) 

illustrates that basic environmental and climatic conditions present at specific sites can 

drive the occurrence of certain species when the specific species find these conditions 

favourable (1). Secondly, as a recent study by Skarpaas and Shea (2007) and others 

(Nathan and Muller-Landau, 2000; Landenberger et al., 2007) describes the combined 

importance of the parental seed source location (2) and relation to the prevailing wind (3) 

when explaining the occurrence of wind dispersed species. Therefore, the seed source of 
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these three species may have been situated closer to one catchment than the other or were 

positioned favourably in relation to the prevailing wind, thus increasing the number of 

seeds reaching the Huxley plots.  

 

4.4.3 Conclusions 

 

From the results of this research and evidence from the wider literature the following 

conclusions can be made: 

 

1. There was a very low rate of arrival of invasive seeds into control plots, with only 

a single seed of each of 2 invasive species caught in the 8 plots over 1 month. 

2. From all of the predictors tested, the presence or absence of a canopy gap directly 

above each plot was the main predictor driving the number and proportion of 

invasive seeds caught at each plot. 

3. The presence of a fence was involved in explaining the high number of seeds 

caught in the sticky traps for the 3 species that were analysed, however this did 

not affect the total number of seeds caught in all 64 sticky traps. 

4. Canopy gaps alter the local wind currents and seed movements in to forests; this 

form of disturbance has the potential to increase the number of seeds that arrive 

on the forest floor. 
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Chapter 5: Seed bank samples 

 

5.1 Introduction 

 

Many invasive species are able to grow in forests when a gap has been created in the 

forest canopy, either by dispersing in after the gap has been created, or by being present 

in a dormant state in the seed bank and germinating in response to increased light (Cone 

and Kendrick, 1986; Mancinelli, 1994; Buhler, 1997).  

 

Two attributes are instrumental to the success of a plant population: (1) an early 

emergence time in relation to that of its competitor(s); and (2) to have a capacity to 

establish a large number of seedlings (Harper, 1977). These attributes are the reason why 

assessment of both timing and the extent of emergence are so important when studying 

the seed banks of invasive species (Benech-Arnold et al., 2000). Temperature (as a 

function of light intensity, availability and duration), water availability and the gaseous 

environment are the important factors known to modulate or determine the emergence of 

invasive plants (Benech-Arnold et al., 2000). When investigating the emergence (timing 

and composition) of invasive seed banks in a controlled environment (e.g. glasshouse) 

these factors can be measured and the quantity that is available to each seed bank can be 

considered when analysing the emergence of these invasive seed banks (Leon and Owen, 

2004). 

 

A study by Leon and Owen (2004) also makes note of the importance between using 

artificial (a known number of seeds sown into a growing medium) or natural seed banks 

(a soil sample taken directly from the study site, this was the method used in my 

research), stating that, “artificial weed seed banks are practical for studying seed bank 

depletion and weed seedling emergence because the number, depth, and species 

composition of seed banks can be managed”. However, they concluded that the 

distribution of emergence with time differed (was lower) in the natural seed banks 

compared with the artificial seed banks (Leon and Owen, 2004). These differences were 

attributed to the artificial seed banks having a lower soil bulk density and greater 
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temperature fluctuation than the natural seed bank, therefore illustrating the importance 

of increased temperatures on the emergence of these invasive plant species (Leon and 

Owen, 2004). 

 

With global climate change becoming a ‘hot’ topic over a relatively short time, it has 

generated considerable debate (e.g. Houghton and Woodwell, 1989; Mitchell, 1989; 

Schneider, 1990; Short and Neckles, 1999; Kriticos et al., 2003). These impacts of 

increased atmospheric carbon dioxide, elevated land and sea temperatures, increasing sea 

level, increasing UV radiation and a host of secondary changes will alter the conditions 

for and rate of growth in both terrestrial and aquatic plants (Watson et al., 1996). 

 

Increasing temperature will directly affect plant metabolism and the maintenance of a 

positive carbon balance (Evans et al., 1986; Marsh et al., 1986; Bulthuis, 1987; 

Zimmerman et al., 1989), which may result in changes in seasonal and geographic 

patterns of species abundance and distribution (McMillan, 1984; Walker, 1991). The 

direct effects of increased temperature will depend on the individual species' thermal 

tolerances and their optimum temperatures for photosynthesis, respiration, and growth 

(Short and Neckles, 1999). As invasive plant species have the potential to react positively 

to warmer temperatures by increasing seed emergence, compared to individuals situated 

in cooler environments. Global climate change has the credentials to increase biotic 

invasions, which have now been added to the list of important factors driving global 

change (Mack et al., 2000). 

 

This experiment was conducted to test the following question: 

 

1. Is there a significant difference in the seed banks (diversity and abundance) of all 

invasive species, between the four treatments (control, fence, gap, gap and fence) 

from the Hopkins and Huxley valleys? 



 59

5.2 Methods 

 

The aim of this chapter was to compare the variation in seed bank composition between 

the four treatments, to determine if treatment type significantly affected which species 

were present in the seed bank. 

 

5.2.1 Sampling method 

 

This seed bank sampling experiment was set up at the end of February 2008 with all the 

seed bank samples being taken from within the large 10m x 10m plots. Four seed bank 

samples were taken per plot; one sample half-way along each of the four edges (Figure 

5.1). The size of each sample was kept uniform across the whole experiment by the use of 

a cylindrical core soil sampler. The soil sampler was 65mm in diameter, which equates to 

33.2 cm2 of soil surface area per sample equalling 132.8 cm2 for each plot (33.2 per 

sample x 4 samples per plot); this is consistent with other studies of this nature (Rahman 

et al., 1997; Bàrberi and Cascio, 2001; Funes and Basconcelo, 2003; Graham and 

Florentine, 2004). Each sample was removed from the ground and placed in a bag that 

was labelled with the plot number and a letter from A-D, this letter corresponded to the 

location in the plot where the sample had been taken from as all four samples were 

combined into a single trap for each plot (Figure 5.1).   
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Figure 5.1.  Diagrammatic representation illustrating the location of the four soil samples 
within the 10m x 10m plots. Note the soil samples are not drawn to scale as this makes it 
easier to see where they were taken from. 
 

5.2.2 Set up in the glasshouse 

 

The four samples from each plot were laid out in a plastic tray (22.5 x 29 x 6cm); non-

fertilised potting mix was added to each container to increase the growing medium, so 

when the soil samples were added there was an average soil depth of 3.5cm. The trays 

were laid out in a glasshouse that had a diurnal temperature range of 18-21 degrees 

celcius (ºC) decreasing to 13 ºC over night (Figure 5.2). Instead of grouping the samples 

by treatment, they were arranged randomly to eliminate any possible differences in the 

sunlight duration received in the glasshouse by each sample. Control trays, containing 

only the potting mix used with the samples, were placed at each end of the seed bank 

samples (Figure 5.2). This was done to measure contamination by seeds being dispersed 

into the trays in the glasshouse.  

10 

10

 
 

 

 

 

Seed bank samples 

Seed bank samples 
A 

B 

C 

D 



 61

 
(Figure 5.2). Photograph illustrating how the seed bank sample trays were set up in the 
glasshouse; note the glasshouse control tray at either end of the samples. 
 

5.2.3 Data recording 

 

For the first four months the sample trays were checked on a fortnightly basis, to observe 

when individuals started to grow above the soil surface. After the first four months (mid 

June 2008), seedlings were identified to species and counted for each sample tray. This 

was performed again at the eight month stage and finally at the end of the twelve month 

period. Throughout the chapter I will refer to “seeds” and the “seed bank”, however this 

also includes all plants which emerged from the sample trays, including non-seed plants 

like ferns.  

 

5.2.4 Statistical analysis 

 

The individual abundance and the species diversity data were all analysed using Poisson 

ANOVAs. All statistics were performed in R version 2.7.0. 

 

Poisson ANOVAs were used for the total individual counts as these data displayed 

poisson distributions, therefore violated the assumption of normally distributed data. The 
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mean individuals present within each tray were analysed with gap, fence, catchment and 

the gap x fence interaction (Table 5.2).  

 

The species diversity data (number of species per tray) also displayed poisson 

distributions. This Poisson ANOVA analysed species diversity against catchment, gap, 

fence and the interaction between these two predictors (Table 5.3). 

 

5.3 Results  

 

Firstly, to note at the end of the experiment there were no plants in the blank trays that 

were positioned at either end of the sample trays, therefore concluding that there was no 

contamination of the sample trays.  

 
From the summary table below it is evident that over the 12 month period there was low 

species diversity across all treatments (Table 5.1). However, the total number of seeds 

present in the seed banks was reasonably high with the gap fence treatment having a total 

of 170. At the species level, trends and contrasts are apparent for example, Paesia 

scaberula (an invasive fern native to New Zealand) was present in all treatments and both 

catchments, on the other hand Craspedia was only found in the Hopkins valley and 

Cardamine hirsuta was present only in the fence gap plots (Table 5.1). 
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Table 5.1. Summary table of the total invasive individuals and diversity recorded over the 12 month period from the seed banks 
collected from 32 plots, with 132.8 cm2 of soil surface sampled per plot, from the Huxley and Hopkins valleys in February 2008. 
 
  Control Fence Gap Gap and Fence  

Species 
Native or 

Exotic Hopkins Huxley Hopkins Huxley Hopkins Huxley Hopkins Huxley 
Total 
individuals 

Paesia scaberula Native 6 24 16 76 2 42 8 74 248 
Epilobium ciliatum Exotic 4 0 2 4 4 2 16 16 48 
Lepidium africanum Exotic 0 4 0 0 0 0 14 0 18 
Craspedia sp Native 0 0 2 0 0 0 14 0 16 
Juncus articulatus Exotic 0 4 0 0 4 0 6 0 14 
Carduus nutans Exotic 0 0 0 0 0 0 10 0 10 
Cardamine hirsuta Exotic 0 0 0 0 0 0 4 2 6 
Agropyron repens Exotic 0 2 0 0 0 0 2 2 6 
Urtica diocia Exotic 0 0 0 0 0 0 0 2 2 
Epilobium sp Exotic 0 0 0 2 0 0 0 0 2 
Echium vulgare Exotic 2 0 0 0 0 0 0 0 2 
Total individuals 
per treatment    46  102  54  170 372 
Individuals per m2  4.89 10.85 5.75 18.01 39.58 
Species per 
treatment   6 4 3 9  
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5.3.1 Total invasive individuals in the seed bank samples  

 

The seed banks from the two fenced treatments (fence and gap fence) displayed an 

increase compared to the unfenced treatments (control and gap) (Figure 5.3). 

The total number of invasive individuals per tray (plot) was significantly increased by 

the fence plots and which catchment the samples were taken from. However, in 

contrast to expectations the gap plots had no effect on the total number of invasive 

individuals present in the seed banks (Table 5.2). 
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Figure 5.3. The number of invasive individuals per plot for each treatment, from the 
seed bank samples that were taken from both the Huxley and Hopkins valley in 
February 2008. 
 
Table 5.2. Results from the poisson ANOVA on the number of invasive individuals 
in the seed bank sample for each plot in relation to gap, fence, catchment and the gap 
x fence interaction, from the 32 plots from both the Huxley and Hopkins valleys, 
February 2008. 
 
Predictor Df Deviance Residual Df Residual Deviance P (> Chi) 
NULL    31 187.32   
gap 1 0.56 30 186.76 0.46
fence 1 34.95 29 151.82 <0.0001
catchment 1 26.34 28 125.48 <0.0001
gap:fence 1 0.4 27 125.07 0.53
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5.3.2 Species diversity of the seed bank samples 

 

There was no difference in species diversity between the 4 treatments as all of the 

treatments displayed low diversity over the 12 month period (Figure 5.4). This was 

reinforced by the ANOVA analysis that illustrated the species diversity within the 

seed bank samples was not significantly affected by gap, fence, catchment or the gap 

x fence interaction (Table 5.3).  
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Figure 5.4. The number of invasive species per plot from the seed bank samples for 
each of the four treatments, taken from both the Huxley and Hopkins valley in 
February 2008. 
 
Table 5.3. Poisson ANOVA results on the number of invasive species per plot, 
recorded from the seed bank samples for gap, fence catchment and the gap x fence 
interaction, from both the Huxley and Hopkins valleys, February 2008. 
 
Predictor Df Deviance Residual Df Residual Deviance P (> Chi) 
NULL    31 17.28   
gap 1 1.05 30 16.23 0.31
fence 1 1.05 29 15.19 0.31
catchment 1 0.19 28 14.99 0.66
gap:fence 1 2.21 27 12.78 0.14
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This non-significant result is also determined by the generally low number of species 

recorded across the 32 plots, for example the most species recorded in a sample tray 

for a single plot was three from a gap fence plot (Figure 5.4). 

 

5.4 Discussion 

 

5.4.1 Total number of invasive individuals 

 

The total number of invasive individuals in each seed bank was significantly affected 

by fence and catchment (Table 5.2). The seed banks from the two treatments that had 

fences around each plot (fence and gap fence) displayed an increase compared to the 

treatments without fences around the plots (control and gap) (Figure 5.3). This result 

can also be observed visually from the actual seed bank sample set up in the 

glasshouse (Figure 5.5). 

 

   

               
Figure 5.5. Visual comparison of the seed bank samples, from left to right; 4 months, 
8 months and 12 months at the top, with typical forest plot examples of the four 
different treatments (control, fence, gap, gap fence) underneath from the Huxley and 
Hopkins valleys, 2008. 
 

As fences are not known to increase the size of the forest seed bank the reason as to 

why an increased number of invasive individuals was recorded in the fence plot seed 

banks is unclear. Although, as shown in figure 4.5 the proportion of invasive seeds 
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was high and variable across all treatments, thus illustrating that invasive plant 

species are well dispersed and can be found in the seed banks of open and closed 

canopy plots. However, at the same time if deer are consuming the seed heads of 

these plants (for the increased nutritional value) this would decrease the amount of 

seeds present in the unfenced plots, thus increasing the effect the fences are having on 

the seed bank (Table 5.2).  

 

The larger seed banks in the gap fence plots might be caused by a combination of 

factors. Firstly, as illustrated in figure 4.9 inward dispersal is increased when canopy 

gaps are created, thus allowing an increased amount of seeds to reach the forest floor 

when there is a gap in the above canopy (Augspurger and Franson, 1988; Panferov 

and Sogachev, 2008). Secondly, the micro-environmental factors (e.g. space 

availability) of the gap plots can be different to the closed canopy plots (Gray and 

Spies, 1997) and even soil conditions could differ significantly (Wright et al., 1998). 

Species that can adapt to these heterogeneous micro-environmental factors, with 

different characteristics of regeneration and dispersal (Grubb, 1977; Grime, 2001) can 

be present in these varying environments with different proportions or increases in 

individuals (Zang et al., 2008). For example, Zang et al. (2007) found species 

belonging to different functional groups existed in the forest community with 

different densities and distribution patterns, dispersing seed rains that produced 

different densities across the entire gap zone (Zang et al., 2007). Thus, resulting in a 

higher number of individuals in the seed banks of the gap plots compared to the 

closed canopy plots (Zang et al., 2007).  

 

5.4.2 Invasive species diversity  

 

There was no difference in the invasive plant species diversity between the four 

treatments (Table 5.3). The gap fence treatment produced the highest diversity with 9 

while the gap treatment recorded the lowest diversity of 3 species from the 8 sample 

trays, and the combined number of invasive species from all treatments was only 11 

(Table 5.1). Therefore, even at both extremes of the scale, the species diversity across 

all treatments was generally low and this result may be responsible for the non-

significant variation between the four treatments. 
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So why was there such low species diversity in the seed banks? Firstly, did I sample 

an area large enough to produce an accurate representation of the forest seed bank? 

This is important to consider as the area taken from all the plots may not have been 

enough to collect all the invasive seeds present in the forest seed bank. However, 

according to other studies of this nature the area sampled was sufficient to produce an 

accurate representation of the forest seed bank (Bàrberi and Cascio, 2001; Funes and 

Basconcelo, 2003; Graham and Florentine, 2004). Therefore, the fact that there is 

relatively low invasive species diversity throughout most of New Zealand’s 

Nothofagus forest and the pattern of forest distribution has been remarkably stable 

since European activity began in the 1850s must also be considered (Wardle, 2001).  

 

The second factor to consider is the breaking of the dormancy in the seed bank 

samples. This suggests that these seed bank samples have the potential to produce 

higher species diversity if the dormancy of all the species present in these samples 

was broken. A study by Benech-Arnold et al. (2000) suggested that changes in 

dormancy during burial of seeds have been reported for a number of species. In some 

studies, seeds were in primary dormancy at the moment of burial. In the course of one 

year, the seeds passed through a pattern of change in dormancy that started with 

alleviation of dormancy followed by a period of germinability under several test 

conditions and was concluded by a re-induction of dormancy (secondary dormancy). 

Seasonal fluctuations in dormancy were observed in both summer and winter annuals. 

Seeds of some summer annuals are dormant in autumn, lose dormancy in winter, and 

recover it in summer, whereas some winter annuals pass through these stages in 

spring, summer and winter, respectively (Benech-Arnold et al., 2000). 

 
Moreover, adverse incubation conditions (constant temperature and low water 

content) can induce secondary dormancy in invasive seeds. Martinez-Ghersa et al. 

(1997) concluded when seeds were incubated at temperatures high enough for a high 

emergence rate, 70% of seeds that were incubated in open boxes emerged before the 

soil reached a condition that would cause the seeds to wilt. Thus, leaving almost one 

third of the seeds dormant even in optimal germination conditions, if this is correct it 

appears slightly on the contrary to the previous result in section 5.4.1. 
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5.4.3 Conclusions  

 

After comparing the findings form this research with the wider literature the following 

conclusions can be made: 

 

1. Species diversity of the seed bank in February 2008 was not affected by 

treatment (control, fence, gap and gap fence). 

2. Total number of invasive individuals from the seed bank samples did vary 

significantly in respect to which treatment the samples were taken from. 

3. The presence of a fence surrounding the plot from where the seed bank 

samples were taken was the main predictor driving an increase in the number 

of invasive individuals in each seed bank, however the number of invasive 

individuals also increased in the gap fence plots. 
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Chapter 6: Vegetation surveys 

 

6.1 Introduction 
 

The spread of invasive plants into native forests provides an environmental problem 

in most regions of the world; increased human mobility over the last three hundred 

years has led to an alteration of the biosphere, increasing the exchange of species 

between biogeographically separated habitats and has increased their susceptibility to 

invasion (Weber, 1998). Invasive species are viewed in the context of global change 

drivers as they have the potential to reduce biodiversity and alter community structure 

and functioning (D’Antonio and Vitousek, 1992).  

 

The spread and range expansion of invasive plants can be rapid compared with natural 

large-scale plant migrations (Perrins et al., 1993). However, the mechanisms driving 

successful plant invasions are poorly understood and the prediction of a successful 

invasion remains difficult (Crawley, 1986). Therefore, studying the establishment and 

spread of these species will help to understand the success of the species in particular 

landscapes. This allows for predictions about future spread rates, thus assisting 

management strategies that attempt to decrease the spread of invasive species (Weber, 

1998). 

 

The number of invasive plants that will establish is proportional to the probability of 

propagules finding safe sites and the number of founder populations (Weber, 1998). 

Auld and Tisdell (1986) have shown that the increase in total area occupied by a 

species increases faster when several small populations are expanding compared with 

a single large population. Besides genetic and ecological attributes of an invader 

(Baker, 1974; Crawley, 1986), opportunity and timing of introduction and dispersion 

by man make an equal, if not more important, contribution to the success of an 

invasion (Mack, 1986; Di Castri, 1989). The natural and anthropogenic factors 

determine whether an invasive species will spread quickly or slowly, and whether it 

will achieve a large or small range (Weber, 1998). 

 

The spread of an invasive plant species into an area where it was absent before its 

introduction consists both of ecological and biogeographical components. There are 



 71

four steps that can be distinguished: (1) the arrival of the species and the local 

introduction of individuals in a habitat, (2) the formation of a persistent founder 

population by growth and reproduction, (3) deriving of new populations by transport 

of propagules to safe sites and (4) range expansion by increases in the number and 

sizes of populations (Weber, 1998). Thus, to detect these invasions over time it is 

important to accurately record the arrival of invasive species into forests where 

previously they did not exist.  

 

This particular research focused on stages 2 and 4 which are outlined in chapter 1 

(Figure 1.4). These processes (plant establishment and spread) can be examined by 

performing accurate measurements of the vegetation present over a given time period 

(1 year). Secondly, these processes were deemed to be the most important processes 

to measure when attempting to investigate the establishment and spread of invasive 

plant populations into New Zealand’s native Nothofagus forest. 

 

This chapter aims to answer the following questions: 

 

1. Are invasive plants present in native beech forest and if so, are there 

established populations that have the potential to spread within these forests? 

2. Is the percent cover of these invasive plants affected by canopy openness and 

deer exclosures?  

3. If present, does the percent cover of these invasive plants increase 

significantly over the 1 year period? 

4. Is red deer (Cervus elaphus) herbivory significantly decreasing the abundance 

of these invasive plants and if so does this present management implications 

for both of these invasive groups? 

5. If these invasive plants are establishing how far are they spreading into the 

forest and does canopy openness affect the spread of these species? 

 



 72

6.2 Methods 

 

This experiment is comprised of two parts: Firstly, the plot vegetation surveys that 

were performed inside the 10m x 10m plots (Figure 6.1) and secondly, the transect 

vegetation surveys that were performed outside the plots along a 50 x 1m transect that 

extended perpendicular on each side of the 10m x 10m plots (Figure 6.2).  

 

6.2.1 Plot vegetation surveys  

 

The aim of the first part of this experiment was to record all the invasive species 

present in each plot; twelve and 24 months after the plots had been created. This was 

performed to examine the effect treatment had on the establishment of invasive 

species.  

 

6.2.1.1 Plot design and location 

 

The plot vegetation survey experiment was conducted within two 9m x 3m sub plots 

which were situated within the larger 10m x 10m plots. The reason for the vegetation 

survey plots being 9m x 3m is due to the experimental design of the 10m x 10m plots 

(Figure 6.1). The two metre section across the middle of the plot that is divided up in 

to five 2m x 2m sub plots is being used by the Department of Conservation (Figure 

6.1). Therefore, the vegetation survey plots were designed to keep a half metre gap 

between these sub plots and the boundary of the 10m x 10m plot. The two 9m x 3m 

sub plots were placed at either end of each 10m x 10m plot so there was one sub plot 

at the bottom and one sub plot at the top (Figure 6.1). To avoid pseudo-replication the 

data from these two sub plots were combined so there were a total of 32 (one for each 

10 x 10m plot); 4 treatments (control, fence, gap, gap fence) x 4 replicates x 2 

catchments = 32 plots. 
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Figure 6.1. Diagrammatic representation of the plot design and the location of the 9m 
x 3m sub plots; note the section across the middle is the part being used by the 
Department of Conservation for seedling monitoring.  
 

6.2.1.2 Recording the invasive species in each plot 

 

Once the vegetation sub plots had been marked out, all the invasive species present in 

these sub plots were recorded. Each invasive species was recorded in two ways: 

Firstly, each species that was present in the vegetation plot was recorded for 

individual abundance (number of individuals per 9m x 3m plot) and clonal species 

were recorded by defined clumps present in each sub plot. Secondly, the total cover 

percentage of each species (percentage area of the 9m x 3m plot occupied by each 

species) was recorded. These two measurements were taken twice; the first was from 

25th-29th of February 2008 and the second was conducted at the beginning of January 

2009. These two methods were used as they are the most effective methods for 

detecting any trends in the establishment and spread of plant species within a defined 

area over a defined time period (Dullinger et al., 2007). 
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6.2.2 Transect vegetation surveys 

 

The second part of this experiment aimed to examine the effect each treatment had on 

the spread of invasive species from the plot edge into the forest understory, and to 

determine whether the source of any invaders inside the plots was from plants already 

growing out in the undisturbed forest. 

 

6.2.2.1 Transect design and location 

 

For this part of the experiment only the two side edges of each 10m x 10m plot were 

used (Figure 6.2). This was to ensure the measurements were taken across the slope 

and not up and down the slope, in attempt to eliminate any variation in the vegetation 

that may have been caused by any changes in gradient or altitude. Each transect 

started half-way down the side of each plot (5m from both corners) on the plot edge, 

extending out perpendicular from this edge 50m into the forest (Figure 6.2). This 

method was chosen as it was thought to produce the best representation of the 

undisturbed vegetation near each plot beyond where the experiment was set up. 

 

 
Figure 6.2. Diagrammatic representation (not to scale) of the 50 x 1m transect design 
and location used at each of the 10m x 10m plots. 
 

6.2.2.2 Recording the invasive species along each transect 

 

To record the invasive species cover along this 50 x 1m transect it was divided up into 

the following sections: 

• 1m x 1m sections for the first 6 metres 

• 2m x 1m sections from 6 metres to 10 metres (6-8m, 8-10m) 

50m 50m
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• 5m x 1m sections from 10 metres to 20 metres (10-15m, 15-20m) 

• 10m x 1m sections from 20 metres to 50 metres (20-30m, 30-40m, 40-50m) 

 

The size of each section increased with distance from the plot edge due to the 

decrease in invasive plant abundance. At each section of transect, the total cover 

percentage for all invasive species was recorded. This was performed on both 

transects and the data was recorded separately under left or right transect. As for the 

plot vegetation surveys the 2 transects from each 10 x 10m plot were then combined 

to avoid pseudo-replication giving a total of 32 replicates. 

 

6.2.3 Statistical analysis 

 

The total percent cover of invasive plants present inside the 32 plots in 2008 and 2009 

were analysed separately using poisson ANOVAs. The abundance of invasive plants 

recorded outside the 32 plots was analysed using a generalised linear model (GLM). 

All statistics were performed in R version 2.7.0. 

 

Poisson ANOVAs were used to analyse the invasive plant percent cover data that was 

recorded inside the 32 plots because the data were very non-normal with many zeros. 

The 2 years of measurement (2008 and 2009) were analysed separately because an 

attempted repeated measures analysis including both years proved to be unstable. 

Plant cover for each plot was analysed with gap, fence, catchment and the gap x fence 

interaction. The data on the abundance of invasive plants in relation to the transects 

were analysed in a generalised linear model (GLM). The transects were separated into 

two categorical groups; either close (0-7m) and far (7-50m) however, as all far values 

were 0 only the close values were analysed. Like the percent cover data these data 

also displayed a poisson distribution, so a poisson GLM was used. This GLM 

analysed the abundance data against five predictors; percent cover of invasive plants 

inside each plot, gap, fence, catchment and the gap x fence interaction (Table 6.5). 
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6.3 Results 

 

Invasive plant species were more abundant in the plots that had open compared to 

closed canopies (Table 6.1). In fact there were no invasive plants recorded in any of 

the 16 plots without a canopy gap. It is also evident that while most species did not 

change in abundance over the two years, some species increased in abundance while 

some even decreased in abundance for example, Carduus nutans decreased from 16 to 

12% in the gap and fence sites (Table 6.1). 

 

Table 6.1. Summary table of the mean percent cover per plot of all invasive species 
for the 4 treatments, from both the Hopkins and Huxley valleys, summer 2008 and 
2009 (both years are displayed in the same box and are separated by a comma i.e. 
2008, 2009). 
 
 Treatment Catchment 
Species Control Fence Gap Gap and Fence Huxley Hopkins
Crepis capillaris 0,0 0,0 2,2 15,15 14,14 3,3 
Trifolium repens 0,0 0,0 11,11 3,3 3,3 11,11 
Carduus nutans 0,0 0,0 8,8 16,12 7,3 17,17 
Echium vulgare 0,0 0,0 6,6 13,13 7,7 12,12 
Cerastium glomeratum 0,0 0,0 6,6 12,12 1,1 17,17 
Holcus lanatus 0,0 0,0 9,9 10,10 5,5 14,14 
Agrostis capillaris 0,0 0,0 3,3 14,14 3,3 14,14 
Senecio jacobaea 0,0 0,0 2,2 3,3 2,2 3,3 
Hordeum sp 0,0 0,0 1,1 12,12 1,1 12,12 
Alopecurus aequalis 0,0 0,0 10,10 8,8 4,4 14,14 
Urtica diocia 0,0 0,0 1,1 9,9 2,2 8,8 
Hydrocotyle americana 0,0 0,0 1,1 11,11 0,0 12,12 
Epilobium brachycarpum  0,0 0,0 3,3 15,15 9,9 9,9 
Danthonia pilosa 0,0 0,0 1,1 13,13 3,3 11,11 
Solanum nigrum 0,0 0,0 0,0 3,5 2,4 1,1 
Pseudognaphalium luteoalbum 0,0 0,0 0,0 2,2 1,1 1,1 
Lagenifera sp 0,0 0,0 0,0 7,7 5,5 2,2 
Agrostis gigantea 0,0 0,0 8,8 32,33 0,1 40,40 
Taraxacum officinale 0,0 0,0 0,0 0,14 0,14 0,0 
Bromus willdenowii 0,0 0,0 0,0 0,5 0,5 0,0 
Mean percent cover per plot 0 0 9 27.5 11.4 25.13 
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6.3.1 Invasive plant abundance in relation to treatment over the two years 

 

Poisson ANOVAs on the total cover percentage of invasive plants in relation to 

treatment illustrated that the abundance of invasive plants in all plots was significantly 

determined by gap, fence and catchment, in both 2008 and 2009 (Table 6.2 and 6.3). 

The presence of a gap explained most of the variation that increased the abundance of 

the invasive plants. There was no difference in the abundance of these invasive 

species between the two years for all four treatments (Figure 6.3 and Table 6.4). 

control yr1 control yr2 fence yr1 fence yr2 gap yr 1 gap yr2 gapfence yr 1 gapfence yr2
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Figure 6.3. Total percent cover of all invasive species in relation to treatment, from 
both the Hopkins and Huxley valleys, for 2008 (yr1) and 2009 (yr2). 
 

Table 6.2. Poisson ANOVA results on the percent cover of all invasive species in 
relation to gap, fence, catchment and the gap x fence interaction, from both the 
Hopkins and Huxley valleys in 2008. 
 
Predictor Df Deviance Residual Df Residual Deviance P (> Chi) 
NULL    31 596.94   
gap 1 368.75 30 228.18 <0.0001 
fence 1 58.1 29 170.08 <0.0001 
catchment 1 72.93 28 97.15 <0.0001 
gap:fence 1 0.00004 27 97.15 1 
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Table 6.3. Results from the poisson ANOVA on the percent cover of all invasive 
species in relation to gap, fence, catchment and the gap x fence interaction, from both 
the Hopkins and Huxley valleys in 2009. 
 
Predictor Df Deviance Residual Df Residual Deviance P (> Chi) 
NULL    31 670.95   
gap 1 404.8 30 266.16 <0.0001 
fence 1 78.61 29 187.55 <0.0001 
catchment 1 42.48 28 145.07 <0.0001 
gap:fence 1 0.00004 27 145.07 1 

 

It is evident that gap, fence and catchment had a significant effect on the percent 

cover of all invasive species; in both 2008 and 2009 these three predictors produced 

highly significant results (Table 6.2 and 6.3). The two analyses are not independent, 

as some of the same plants were counted in both surveys, but both are presented to 

show the pattern did not change greatly over the year between surveys, this is also 

shown in table 6.4. 

 

Table 6.4. Results from the poisson ANOVA comparing the invasive species percent 
cover in the 32 plots from 2008 with the invasive species percent cover from 2009, 
from the Hopkins and Huxley valleys.   
 
Predictor Df Deviance Residual Df Residual Deviance P (> Chi) 
NULL     63 1269.1   
year 1 1.21 62 1267.89 0.27 

 

6.3.2 Invasive plant abundance outside each plot in relation to treatment (gap 

and fence) and distance from the plot edge 

 

A generalised linear model (GLM) on the total percent cover of invasive plants 

outside each plot illustrated that the cover of invasive plants inside each plot, gap and 

catchment had a highly significant effect on invasive plant abundance (Table 6.5). 

The cover inside each plot accounted for the majority (72%) of the deviance and gap 

accounted for the majority of the rest (Table 6.5). Overall, the gap and gap fence plots 

were the only ones that had invasive species outside of the plots. However, the 

abundance of these invasive species decreased as distance from the plot edge 

increased, with every transect having zero values by 6-7m (Figure 6.4). Therefore, 
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only the close (0-7m) section of each transect was analysed and these results are 

displayed in table 6.5. 

 

 
Figure 6.4. Total percent cover of invasive plants in relation to distance from the plot 
edge, for each treatment (control, fence, gap and gap and fence), from both the 
Hopkins and Huxley valleys for 2008 and 2009. 
 

Table 6.5. GLM results explaining the percent cover of invasive plants outside each 
plot (along transects) in relation to the invasive plant cover inside each plot, gap, 
fence, catchment and the gap x fence interaction, from both the Hopkins and Huxley 
valleys in 2008 and 2009. 
 
Predictor Df Deviance Residual Df Residual Deviance P (> Chi) 
NULL    31 811.15  
cover inside plot 1 582.1 30 229.05 <0.0001
gap 1 113.37 29 115.68 <0.0001
fence 1 2.82 28 112.86 0.09
catchment 1 61.59 27 51.27 <0.0001
gap:fence 1 0.00005 26 51.27 1

 

6.4 Discussion 

 

6.4.1 Is the percent cover of invasive plants within each plot affected by 

treatment? 

 

There was a significant treatment effect that determined the total percent cover of 

invasive plants recorded at each plot in 2008 and 2009 (Table 6.2 and 6.3). The 

percent cover of invasive plants increased where there was a gap in the canopy 

directly above the plot, thus illustrating a positive relationship between canopy 
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openness and increased invasive plant abundance (Figure 6.3). Dickinson et al. 

(2004), found as canopy openness increased, the proportion of individuals that 

occurred in these felled gaps also increased, however most of the individuals were 

shade-intolerant species.  

 

In clear-felled gaps (similar to the gaps used in this study), this effect can be ascribed 

to increased canopy openness because the proportion of the ground area that was 

disturbed did not increase with gap size (Dickinson et al., 2004). In contrast to felling 

gaps, natural gaps displayed no relationship between the proportion of new 

individuals and canopy openness (Dickinson et al., 2004). The absence of a 

significant relationship in natural gaps is likely related to a combination of low levels 

of understory and substrate disturbance and a lack of large gaps with high canopy 

openness (Dickinson et al., 2004). Invading individuals must also contend with the 

negative competitive effects by larger seedlings and pre-existing individuals. Soil 

disturbance, litter removal and the creation of dispersal barriers for native vegetation 

have been described as key conditions to assist invasive plants trying to establish from 

seed (Brandani et al., 1988; Raich and Christensen, 1989; Denslow, 1995; Grubb, 

1996) and may also contribute to increased abundances of shade intolerant species in 

felled gaps (Dickinson et al., 2004). 

 

With (2001) hypothesised that canopy gaps or ‘fragmentation’ may affect plant 

migration rates more through a reduction in source strength of the native vegetation 

(the number of propagules produced) than through the creation of dispersal barriers, 

once some threshold is exceeded (Malanson and Cairns, 1997). Thus, landscape 

effects on demography involve factors that affect the fecundity or survivorship of 

invasive species (population vital rates), which may affect establishment and govern 

the rate of invasion. For example, consider how landscape structure might affect 

population vital rates in plants; habitat destruction and fragmentation may increase 

resource availability (such as light) that can be exploited by invasive species directly 

or indirectly by mediating competition with native plants (Luken et al., 1997). This in 

turn may increase the performance of invasive species in disturbed areas such as, 

canopy gaps by increasing germination, growth, or seed set. 
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6.4.2 The “spill over” of invasive plants in to the forest from the open canopy 

plots 

 

There was no relationship between invasive plant abundance and distance from the 

plot edge at the closed canopy plots (Figure 6.4). This result is purely due to the 

absence of any invasive species at these plots, illustrated in (Figure 6.3 and 6.4) and 

discussed in 6.4.1. However, at the open canopy plots (12m x 12m light gaps), the 

abundance of invasive plants decreased exponentially as distance from the plot edge 

(into forest with less canopy openness) increased (Figure 6.4). Also the invasive plant 

cover inside each plot significantly affected the invasive plant cover outside each plot 

(Table 6.5). Therefore, illustrating the “spill over” of these invasive species into the 

native forest until the canopy structure returns to a more undisturbed state where the 

spread of these invasive plants decreases to zero (Figure 6.5).  

 

 
 
Figure 6.5. Diagrammatic representation, illustrating the abundance or “spill over” of 
invasive plants from the edge of a gap (open) and fence plot with distance back in to 
Nothofagus forest; note the decrease in abundance through the “transition zone”.  
 

There are two reasons why this “spill over” of invasive plants into the undisturbed 

forest that is near the canopy gaps is suggested instead of invasive plants colonising 
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this undisturbed part of forest from a longer distance. This suggestion has been made 

because there is zero density of invasive plants in all non-gap plots and there is zero 

density of invasive plants in all transect sections >7m from a plot edge (Figure 6.4). If 

invasive plants are in the undisturbed forest (as would be required for them to be a 

source of invasion into new nearby clearings) they are at undetectably low densities. 

Therefore, it seems much more likely they disperse into the gap from a further 

distance, grow there and ‘spill over” into the first 7m from the plot edge (Figure 6.4 

and 6.5). 

 

This result agrees with the findings of a study by Lambrinos (2006), who found that 

the abundance of the invasive tussock grass Cortaderia jubata decreased 

exponentially as distance from the edge back into closed canopy increased. His 

findings were very clear and occurred over a very short distance of only two metres 

(Figure 6.6). 

 
Figure 6.6. The exponential decrease in seedling density of the invasive tussock grass 
Cortaderia jubata, as distance from the stand edge back into closed canopy forest 
increased (from Lambrinos, 2006). 
 

Lambrinos’s result was due to the flux of the invasive propagules reaching the soil 

surface being a lot greater along the edge than under the stand canopy due to the 

contrasting environments. A study by Cadenasso and Pickett (2001) that investigated 

the flux of propagules from invasive species into the forest interior from the forest 

edge also recorded very similar findings. In some examples from Cadenasso and 

Pickett (2001), propagules decreased from 20 per transect to 0 within 17m from the 

forest edge. As with the study by Lambrinos (2006), Cadenasso and Pickett (2001) 
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also concluded that the abrupt decrease in invasive abundance over such short 

distances from the forest edge was in response to the presence of the forest edge and 

canopy. 

 

In support of these results a study by Buckley et al. (2003) comparing populations of 

the invasive plant Hypericum perforatum in shaded environments with populations in 

open environments found the shaded populations took longer to reach infestation 

densities and were less affected by herbivory and reductions in survival than open 

populations. Open populations had higher densities and increased faster in response to 

increases in rainfall, but this was not so for shaded populations, showing that 

population size increased more rapidly in open environments (Buckley et al., 2003). 

 

6.4.3 Is herbivory decreasing the abundance of these invasive plants? 

 

The abundance of these invasive plants increased further when a 2m deer fence was 

surrounding plots that already had a gap in the above canopy (Figure 6.3). In fact with 

reference to table 6.1 there are 12 out of 20 species (10 all palatable to deer) that 

increase in percent cover by 5 fold or more from the gap to the gap fence plots. Not 

only does this result reinforce the positive relationship between canopy openness and 

invasive plant abundance, but it also introduces the question of; are some of these 

invasive plant species being limited by herbivores?  

 

A study by Carpenter and Cappuccino (2005) found that the invasive species present 

at their study sites were less damaged than their native counterparts. However, plant 

origin, native or exotic, explained only a small (5.6%) percentage of the variance in 

herbivore damage. Although some invasive species were virtually damage-free, others 

suffered more leaf damage than any of the native plants. The large variance in 

herbivory corresponded to expectations, given the mixed results of previous tests 

examining the enemy release hypothesis (Keane and Crawley, 2002; Agrawal and 

Kotanen, 2003). Therefore, invasive plants were not expected to enjoy a strong 

advantage in terms of escaping from herbivory (Carpenter and Cappuccino, 2005). In 

contrast, from the same study, Carpenter and Cappuccino (2005) also found that, less 

invasive plants always displayed some form of leaf damage resulting from herbivory. 

They suggested the high level of leaf herbivory on the less invasive plants is a result 
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of the herbivores contributing to the control of these plants and preventing them from 

becoming more abundant in natural areas (Carpenter and Cappuccino, 2005).  

 

The result from figure 6.3 gains further support from a study by Fagan and Bishop 

(1999) with their research, that involved long-term demographic studies of Mount St. 

Helens lupins (Lupinus lepidus var. lobbii). They documented extreme levels of 

herbivory and accompanying depression of population growth rates in some portions 

of the lupin population since 1986 and in the edge of the lupin population since 1990 

(Bishop and Schemske, 1998). In the context of classical theories of biological 

invasions, herbivore-mediated decreases in lupin population growth rate in the edge 

region would translate into decreased rates of lupin spread across the landscape, 

which they quantified using diffusion models. 

 

As mentioned on page 82, more recent support of the result from figure 6.3 comes 

from a study by Lambrinos (2006). His study illustrated that herbivory posed a strong 

barrier to the establishment of the invasive tussock grass Cortaderia jubata. Part of 

this resistance was provided by generalist mammalian herbivores. In their study, the 

herbivores reduced the establishment success of transplants to zero, mirroring the 

same result obtained in a previous experiment conducted in an adjacent stand of 

maritime chaparral (Lambrinos, 2002). Spatial variation in herbivore resistance, rather 

than resource competition with native shrubs, appeared to be the principal factor 

influencing the distribution of C. jubata at this site. When transplants were protected 

from herbivory, the spatial differences in survival disappeared further supporting the 

evidence towards herbivore mediated distribution and survival of this species 

(Lambrinos, 2006). 

 

6.4.4 Conclusions 

 

After comparing the results of my present study with the wider literature, the 

following conclusions can be made: 

 

1. No invasive plants were detected inside or outside any of the non-gap (control 

and fence) plots or along any transect more than 7m from a gap (gap and gap 

fence) plot. 
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2. Where there was a canopy gap above the plot, the abundance of invasive 

plants increased significantly within the plot compared to the closed canopy 

plots. 

3. When there was a 2m deer fence surrounding an open canopy plot the 

abundance of invasive plants increased further. Notably however, plots with a 

fence but no gap did not result in any invasive plants being present, thus 

suggesting that some of these invasive species are being consumed by 

herbivores.  

4. The best predictor of invasive plant cover outside a plot was invasive plant 

cover inside the plot, this and zero abundance in all areas away from a gap 

suggests “spill over” outside the gap plots spreads from within the plots and 

not in the other direction. 

5. The dominant predictor of plant invasions in these plots is the creation of a 

canopy gap, with the protection from herbivores being a secondary predictor. 
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Chapter 7: Overview and main findings of this study 

 

7.1 Which invasive species were recorded in each experiment? 

 

This research conducted three experiments in attempt to detect and record the invasive 

species that are present (arriving, dormant and actually growing) in the forests of the 

Huxley and Hopkins valleys in 2008 and 2009 (Figure 1.4). These experiments were 

designed to answer four hypotheses that are all linked to one another in relation to 

propagule dispersal, germination and population establishment and spread (Figure 

7.1). 

 

 
Figure 7.1. Diagrammatic representation of the four hypotheses and the answers to 
these hypotheses from the results of this present study. 
 

Firstly, seed traps were set to record which species were dispersing propagules into 

and around these forests (arriving). Secondly, seed bank samples were taken to 

observe which species had seeds in the soil dormant, waiting for good germination 

conditions. Lastly, vegetation surveys were conducted, once at the beginning of this 

research and again after one year, to monitor species diversity and individual 

abundance over this time frame (spreading). Some species were present in all three 

experiments; however there were various species present in more than one experiment 

and some interesting trends became apparent (Table 7.1). 

Is the dispersal of invasive seeds increased 
in forests when canopy gaps are created or 
herbivores excluded? (Chapter 4) Yes. 

Are there more seeds of invasive plant 
species in the seed banks from the gap 
plots or the fenced plots? (Chapter 5) 
More in the fenced plots. 

Do invasive plants that are already present under 
the forest canopy increase in growth after gaps or 
fences are created? (Chapter 6) Yes. 

Are invasive plants more 
abundant under canopy 
gaps and/or within fenced 
plots? (Chapter 6) Yes. 
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Firstly, the most interesting result is the fact that all 13 species that had seeds in the 

seed traps were also recorded in the vegetation surveys, yet not all in the same plots. 

However, only 4 of these 13 species were also present in the seed bank samples, 

making these the 4 most ubiquitous species (first four species listed in table 7.1). 

Secondly, there were 7 species that were not present in the seed traps or vegetation 

surveys but were recorded in the seed bank samples. This suggests that, some species 

that disperse seeds into these forests need more ‘optimal’ conditions to germinate, 

thus being the species that would benefit most from climate change (Kriticos et al., 

2003). The last group from this table is the 8 species that were present only in the 

vegetation surveys (Table 7.1). Therefore, the seeds of these species were not caught 

in any of the seed traps and were not found in the seed bank but they were growing 

within the forest plots (Table 7.1). The only plausible explanation for this result is 

that, these species are present within the Hopkins and Huxley valleys at such a low 

density that the seeds were not picked up in the seed traps or the seed bank samples. 

This explanation is supported with reference to the raw data on the vegetation surveys 

which displays that these species had very low numbers of individuals per plot 

(Appendix 1). 
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Table 7.1. Summary table of the species recorded in each of the three experiments. 
The absence of a species is illustrated by a blank square and presence by a ‘P’, for the 
vegetation surveys each year is separated by a comma (2008, 2009). 
 
Species Seed traps Seed banks Vegetation surveys 
Carduus nutans P P P,P 
Echium vulgare P P P,P 
Epilobium brachycarpum  P P P,P 
Urtica diocia P P P,P 
Agrostis capillaris P   P,P 
Agrostis gigantean P   P,P 
Cerastium glomeratum P   P,P 
Crepis capillaries P   P,P 
Danthonia pilosa P   P,P 
Holcus lanatus P   P,P 
Hydrocotyle americana P   P,P 
Senecio jacobaea P   P,P 
Solanum nigrum P   P,P 
Cardamine hirsute   P   
Craspedia sp   P   
Epilobium ciliatum   P   
Juncus articulatus   P   
Cynodon dactylon   P   
Lepidium africanum   P   
Paesia scaberula   P   
Alopecurus aequalis     P,P 
Danthonia pilosa     P,P 
Hordeum sp     P,P 
Lagenifera sp     P,P 
Pseudognaphalium luteoalbum     P,P 
Trifolium repens     P,P 
Bromus willdenowii       ,P 
Taraxacum officinale       ,P 
Total species              28 13 11 21 

 

7.2 Which treatment and experiment recorded the highest diversity of invasive 

species? 

 

Invasive plant abundance increased significantly where a gap was present in the above 

canopy but increased further when a fence was also present at plots that had a gap in 

the above canopy (Table 7.2). This result occurred throughout the three vegetation 
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experiments illustrating the positive influence the fence and gap plots had on the 

abundance of the invasive species (Table 7.2).  

 

Table 7.2. Results table summarising the statistical analyses from the three vegetation 
experiments, illustrating which treatments had no effect (>0.05) (NS), a significant 
effect (<0.05) (S) or a highly significant effect (<0.0001) (HS) in each experiment. 
 
 fence gap fence gap 
Seed traps S HS HS
Seed banks HS NS NS
Plant cover within plots HS HS NS
Plant cover outside plots NS HS NS

 

The experiment that recorded the highest number of species was the vegetation 

surveys, recording almost double the diversity in both the gap and ‘gap fence’ plots 

(Table 7.3). Furthermore, note the zeros in the ‘control’ and ‘fence’ columns for the 

vegetation surveys, which for obvious reasons coincide with the results from chapter 

6; zero abundance equals zero diversity. 

 

Table 7.3. Summary table of the invasive species diversity found in each experiment 
for each of the four treatments, from the Hopkins and Huxley valleys from 2008-
2009. 
 
  control fence gap fence gap 
Seed traps 2 3 6 11
Seed banks 6 4 3 9
Vegetation surveys 0 0 15 20
Total species diversity  5 4 22 27

 

Firstly, these summary results suggest one finding not intended to be presented, this 

being that, vegetation surveys recorded up to twice as many species when 

investigating invasive plant establishment and spread in specific forests (Table 7.3) 

(Meentemeyer and Moody, 2000; Vittoz and Guisan, 2007). These summary results 

also support the previous findings from chapters 4, 5 and 6, that all suggest that 

invasive species will become more prevalent (abundant or diverse) when a gap is 

created in the above canopy (Table 7.3). This was the main driver of invasive 

abundance due to the opening of the canopy that increased the dispersal of invasive 

propagules and increased the above ground growth of invasive plants in the gap plots 
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(Figure 7.2) (Panferov and Sogachev, 2008). In addition, they also give further 

support to the results that suggest these invasive species become even more prevalent 

when there is a deer exclusion fence around the plot, thus presenting the idea that deer 

may be consuming some of these plants. 

 

 
Figure 7.2. Diagrammatic representation of how the dispersal, seed banks and above 
ground growth of invasive plants change when a gap is created in the forest canopy 
and a 10 x 10 x 2m wire fence is constructed in the Hopkins and Huxley valleys. 
 

7.3 Disturbance, one main driver of global change relevant to this study 

 

Definitions of disturbance vary, from Grime's (1979) view of disturbance as a process 

removing or damaging biomass, to White and Pickett's (1985) definition of "any 

relatively discrete event in time that disrupts ecosystem, community or population 

structure and changes resources, substrate availability, or the physical environment”. 

Petraitis et al. (1989) expand the definition further to include any "process that alters 

the birth and death rates of individuals present in the patch, by directly killing 

individuals or by affecting resource levels, natural enemies, or competitors in ways 

that alter survival and fecundity”. Temporal and spatial scale are also important when 

recognising the "discreteness" of a disturbance event, as nearly any ecological or 

biogeochemical process might fall under the last, most inclusive definition. Pickett et 

•Low rate of invasive dispersal into plot 
•Low density of seeds in seed bank  
•No aboveground growth of invasive 
plants  

Undisturbed forest (control plots) 

•No change 

•Greatly increased dispersal into plots 
•No immediate increase of seeds in 
seed bank 
•Abundant aboveground growth  
•Spill over into nearby forest  

•No significant increase of dispersal 
into plots 
•Increase of seeds in seed bank 
•Further increase in aboveground 
growth  
•No increase in spill over into nearby 
forest  

gap 

fence fence 
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al. (1989) define a disturbance as a change in structure caused by factors external to 

the hierarchical level of the system of interest; this is necessary to distinguish 

disturbance from other changes in the system. Therefore, disturbances to plant 

communities include such events as earthquakes, fires, storms, and floods; but other 

changes such as altered grazing regimes or light and nutrient inputs would also be 

classed as disturbance if they affected resource levels and demographic processes 

(Hobbs and Huenneke, 1992). 

 

Preservation of natural communities has historically consisted of measures protecting 

them from physical disturbance, for example the harvesting of native timber and 

grazing of livestock are usually excluded from preserves (Hobbs and Huenneke, 

1992). This is not to ignore that many forms of disturbance are important components 

of natural systems. Many plant communities and species are dependent on 

disturbance, especially for regeneration (Pickett and White, 1985). However, in native 

plant or forest communities, disturbance acts in another way, by promoting the 

establishment of invasive plants (Ewel, 1986; Hobbs, 1991). Forest fragmentation or 

more specifically to this present study, the removal of the forest canopy in random 

locations, is one disturbance that can promote the establishment of these invasive 

plants. By influencing edge effects and the likelihood of movement of nutrients, 

propagules, and fauna from adjacent patches, fragmentation affects disturbance 

regimes in forests and remnant patches of vegetation (Hobbs, 1987; Saunders et al. 

1991).  

 

But how can such a relatively small disturbance (12m x 12m canopy gap) have any 

effect on a large forest? If the part of forest that has been disturbed is small does this 

necessarily constrain the diversity of species that might invade the disturbed part of 

forest (Hobbs and Huenneke, 1992)? Quinn and Robinson (1987) and Robinson and 

Quinn (1988) used an experimental approach to this question, subdividing annual 

grassland into fenced patches separated by heavily grazed zones; species richness was 

substantially higher in the more subdivided treatments. Single species frequently 

came to dominate single plots, so if a region (or forest) has a greater number of 

patches (or canopy gaps) it can support both more dominant species (alternate 

dominants in different plots) and more edge species (growing where the forest and the 

open environment meet). Therefore, the point that fragmentation will lead to an 
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increase of invasive species is important (Hobbs and Huenneke, 1992). From a 

conservation management perspective, one would want to know just which species 

are being favoured by edge effects. High total species richness could be primarily due 

to an increased number of invasive species of low conservation value to a high 

number of legitimate community members (Hobbs and Huenneke, 1992). 

 

Disturbance, thus presents a conundrum to conservation management: the continued 

existence of particular species or communities often requires disturbance of some type 

and hence disturbance regimes must be integrated with management plans but 

disturbance may simultaneously lead to the degradation of natural communities by 

promoting invasions (Hobbs and Huenneke, 1992). 

 

7.4 Deer: facilitators or obstacles to invasive plants?  

 

The negative impacts of introduced deer on forests around the world and more 

specifically to this study, the native forests of New Zealand are well documented 

throughout the literature (Wallis and James, 1972; Allen et al., 1984; Jane, 1994; 

Husheer et al., 2003; Dolman and Waber, 2008). However, the idea that these 

introduced ruminant species could actually play a positive role in the native 

Nothofagus forests of New Zealand has to my knowledge, not been suggested before. 

Yet the results from experimental research carried out in this study suggest this some 

what controversial idea is possible. As the results from the vegetation surveys in 

chapter 6, illustrate an increase in invasive plant cover within the plots where there 

was a gap in the above canopy and a 2m deer exclusion fence around the outside of 

the forest plot (Figure 6.3).  

 

Since the cover of these invasive species increased in these plots it prompted the 

suggestion that red deer could be keeping the abundance of these species in check in 

these specific parts of Nothofagus forests. So could these ruminants be ‘gardeners’ of 

canopy gaps in New Zealand’s Nothofagus forests? To my knowledge the only similar 

New Zealand example comes from a study by Lord (1990) who examined the 

maintenance of a short tussock (Poa cita) grassland by sheep (Ovis aries), however 

more relevant examples from the wider literature are present. Maron and Vilà (2001) 

when studying how herbivores affect plant invasions, presented evidence from 
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California, USA of deer consuming the introduced iceplant (Carpobrotus edulis) 

where 90% of the seedlings and almost 40% of experimentally transplanted cuttings 

were consumed (Vilà and D’Antonio, 1998). Further support comes from a recent 

Argentinean example, Nuñez et al. (2008) when examining the invasion of two 

conifers (Pseudotsuga menziesii and Pinus ponderosa) concluded that the low rates of 

invasion currently observed can result from high densities of exotic deer, which, 

despite consuming native species as well, can prevent the establishment of invasive 

species. 

 

It may be that by dispersing seeds, changing competitive interactions and creating soil 

disturbance, some herbivores have more of a facilitating than inhibiting affect on 

exotic plant invasion (Schiffman, 1997). On the other hand are these negative affects 

outweighed by the consistent consumption of invasive plant species decreasing the 

spread of these species into native forests that if not kept in check, could increase over 

time along with the positive effects of climate change (Buckland et al., 2001)? My 

results from chapter 6 suggest the net impact of introduced deer decreases the spread 

of invasive plants from parts of forest where a canopy gap has been created, however 

further research is required to definitively understand the possibility of this 

controversial idea (Schiffman, 1997). 

 

7.5 What are the potential effects of climate change on the spread of invasive 

plant species in New Zealand’s Nothofagus forests? 

 

The pattern of New Zealand forest distribution has been remarkably stable since 

European activity began in the 1800s (Wardle, 2001), despite fire, grazing by 

domestic and feral mammals, and some exploitation for timber. Although these 

influences continue, the greatest threat may now be climate change in conjunction 

with competition from introduced plants, including herbaceous species that may have 

been encouraged by episodes of fertiliser use and increased stocking, and, especially, 

introduced trees that are hardier and more vigorous as pioneers than native trees 

(Wardle, 2001). 

 

Alterations in atmospheric chemistry and changes in climate have long been 

recognised as major components of global change (Kriticos et al., 2003). More 
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recently, biotic invasions have been added to the list of important factors driving 

global change (Mack et al., 2000). This along with an increased frequency of mild 

winters, droughts, storms and floods provides compelling evidence of global climate 

change. As a result, concerns are developing about the potential impacts on both 

agriculture (Hanson et al., 1993; Chakraborty et al., 1998) and wildlife (Markham, 

1996; Coley, 1998). In particular, where climate is known to govern the distribution 

of plants and animals (Pigott and Huntley, 1981; Beerling, 1993), climate change is 

likely to alter current limits of distribution (Buckland et al., 2001). 

 

An example of this comes from a study by Kriticos et al. (2003) who investigated the 

potential distribution of the invasive plant, Acacia nilotica in relation to climate 

change. Global climate change is likely to increase markedly the potential distribution 

of A. nilotica in Australia, significantly increasing the area at risk of invasion. The 

driving factors are the expected increases in water-use efficiency of A. nilotica due to 

increased atmospheric CO2 concentrations, allowing it to invade more xeric sites 

further inland and increased temperatures, allowing it to complete its reproductive life 

cycle in more southern locations (Kriticos et al., 2003). 

 

More specifically, a New Zealand study by Leathwick (2001) presents the other issue 

that must be addressed to successfully protect the longevity of New Zealand’s 

Nothofagus forests. This study examined New Zealand’s potential forest pattern as 

predicted from current species-environment relationships and presented two 

conclusions relevant to this discussion. Firstly, Nothofagus is much more dominant in 

cooler environments, as in the forests of the North Island’s central volcanoes and 

main axial ranges (Elder, 1962, 1965; Franklin, 1969) and of the South Island 

(Wardle, 1974; Wardle et al., 1973). Secondly, much less Nothofagus forest survives 

in the drier eastern parts of New Zealand due to the warmer temperatures and the 

decrease in soil moisture availability. These are two changes that are said to occur in 

the face of climate change (Mackey, 1997; Short and Neckles, 1999; Kriticos et al., 

2003), thus illustrating the significance of climate change to the native Nothofagus 

forests of New Zealand in two ways; one is the decrease in abundance of Nothofagus 

in drier, warmer climates and secondly, the fact that invasive species increase in 

abundance and spread in these such climates (Mack et al., 2000). 
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7.6 Management implications and future research 

 

Understanding the effects of red deer browsing on a range of plant communities is 

important for formulating guidelines for the management of forestry plantations, 

nature reserves and deer hunting enterprises (Clutton-Brock and Albon, 1989), each 

of which may have different objectives (Virtanen et al., 2002). In nature reserves 

(such as the Ruataniwha conservation park used in my present study), where the 

regeneration of trees is desirable, deer browsing is generally regarded as having a 

negative effect (Scott et al., 2000), and deer proof fences or culling are implemented 

to achieve low deer densities and encourage tree recruitment (Booth, 1984; Gong et 

al., 1991). However, on the contrary some browsing by deer can help maintain 

species diversity and keep the spread of invasive plant species in check (Ball, 1974; 

Crawley, 1997).  

 

But when is enough, enough, as, when deer densities are too high they may also be 

detrimental to nature conservation (Virtanen et al., 2002).  Modeling studies of 

Buckland et al. (1996), suggest achieving a sustainable stag harvest may be possible 

with much lower overall deer densities (achieved through increased hind culls). Thus, 

conflicts in management objectives between deer-stalking enterprises and other land 

uses (e.g. nature conservation) may be reconciled (Virtanen et al., 2002). 

 

One of the concerns associated with the exclusion of herbivores or reduced herbivore 

densities in upland plant communities is a reduction in plant species richness and 

increased dominance of a few species (Ball, 1974; Wood, 2000). A study by Virtanen 

et al. (2002) indicates that this is a valid concern in productive communities (e.g. 

Agrostis–Festuca grasslands) but of less importance in unproductive communities 

(e.g. Calluna–Molinia wet heath), where effects of exclusion are small. There has also 

been concern that very high grazing pressure by deer or other domestic livestock can 

have negative impacts on plant biodiversity. However, a study by (Virtanen et al., 

2002), illustrated that the high deer densities of an unculled deer population were not 

associated with negative impacts on plant biodiversity they also found that none of the 

herbivore exclusion or culling policies had any measurable effect on tree regeneration. 
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What about the invasive plants? The success of plant invasions, may not only depend 

on the absence of specialist natural enemies in the invaded ecosystem, but also on 

available resource niches, competition with neighbouring plants and the grazing 

intensity of generalist herbivores (Shea and Chesson, 2002; van Ruijven et al., 2003; 

Huston, 2004).  

 

According to the enemy-release hypothesis, specialist herbivores should be more 

abundant in native plant populations than in uncontrolled populations in the invaded 

range (Keane and Crawley, 2002). Therefore, key insights into the role of natural 

enemies on the population dynamics of the plant, and their potential for biological 

control, could be gained from examination of the population dynamics in the native 

range (Jongejans et al., 2006). Most studies of the population dynamics of invasive 

plants in general (Lonsdale et al., 1995; Buckley et al., 2005), have, however, focused 

on the invaded range (Jongejans et al., 2006). Native range studies, in this context, 

have been pioneered by Paynter et al. (1998) and Grigulis et al. (2001), and recent 

reviews have called for more such studies (Hinz and Schwarzlaender, 2004; Hierro et 

al., 2005). 

 

Where should future research effort be directed, to increase the management 

efficiency of these invasive species? First and foremost, the idea that red deer could 

be playing a beneficial role towards the management of invasive plants in New 

Zealand’s forests needs to be compared with the known adverse effects of this species 

to found out if the negatives outweigh the positives. Once this is achieved, a precise 

management plan can be formulated to determine what density, deer must be kept at, 

to maximise native biodiversity. Importantly, this must be done in a manner that 

allows everyone who uses these resources to be involved (including hunters, 

landowners and the wider public) and in depth discussions are undertaken to insure all 

parties are satisfied with the final outcome. Implementing this approach will help to 

improve the relationship between government departments and the wider public, a 

relationship that has deteriorated over time and needs serious attention. 

 

Obviously nothing can be done to stop trees falling down and creating canopy gaps in 

the forests, however decreasing the establishment success of any invasive species can 

to a degree, be mitigated. As suggested by Jongejans et al. (2006), specific studies at a 
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species level on the invasive plants of these forests need to be carried out. More 

specifically, the investigation of the population dynamics that occur in the native 

range of these species should be performed in attempt to decrease the adverse effects 

these species have on New Zealand’s native Nothofagus forests. 
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catchment plot treatment fence gap cover 08 cover 09 crecap trirep carnut echvul cerglo taroff browil agrcap hollan 
huxley hu96 control control closed 0 0 0 0 0 0 0 0 0 0 0 
huxley hu109 control control closed 0 0 0 0 0 0 0 0 0 0 0 
huxley hu131 control control closed 0 0 0 0 0 0 0 0 0 0 0 
huxley hu60 control control closed 0 0 0 0 0 0 0 0 0 0 0 
huxley hu104 fence fence closed 0 0 0 0 0 0 0 0 0 0 0 
huxley hu94 fence fence closed 0 0 0 0 0 0 0 0 0 0 0 
huxley hu123 fence fence closed 0 0 0 0 0 0 0 0 0 0 0 
huxley hu70 fence fence closed 0 0 0 0 0 0 0 0 0 0 0 
huxley hu36 gap control gap 2 2 0 0 1 0 0 0 0 0 0 
huxley hu9 gap control gap 0 0 0 0 0 0 0 0 0 0 0 
huxley hu16 gap control gap 0 0 0 0 0 0 0 0 0 0 0 
huxley hu25 gap control gap 5 5 1 1 0 1 0 0 0 1 1 
huxley hu52 gapfence fence gap 0 0 0 0 0 0 0 0 0 0 0 
huxley hu18 gapfence fence gap 1 1 0 0 0 0 0 0 0 0 1 
huxley hu42 gapfence fence gap 29 48 11 1 2,6 3 1 0,10 0,5 1 3 
huxley hu37 gapfence fence gap 28 35 2 1 0 3 0 0,4 0 1 0 
hopkins ho238 control control closed 0 0 0 0 0 0 0 0 0 0 0 
hopkins ho190 control control closed 0 0 0 0 0 0 0 0 0 0 0 
hopkins ho244 control control closed 0 0 0 0 0 0 0 0 0 0 0 
hopkins ho189 control control closed 0 0 0 0 0 0 0 0 0 0 0 
hopkins ho249 fence fence closed 0 0 0 0 0 0 0 0 0 0 0 
hopkins ho186 fence fence closed 0 0 0 0 0 0 0 0 0 0 0 
hopkins ho165 fence fence closed 0 0 0 0 0 0 0 0 0 0 0 
hopkins ho188 fence fence closed 0 0 0 0 0 0 0 0 0 0 0 
hopkins ho9 gap control gap 17 17 1 0 1 5 0 0 0 0 7 
hopkins ho22 gap control gap 18 18 0 10 6 0 0 0 0 0 0 
hopkins ho161 gap control gap 15 15 0 0 0 0 5 0 0 0 1 
hopkins ho107 gap control gap 15 15 0 0 0 0 1 0 0 2 0 
hopkins ho57 gapfence fence gap 30 30 0 0 0 0 0 0 0 10 0 
hopkins ho124 gapfence fence gap 37 37 1 0 1 0 10 0 0 0 1 
hopkins ho110 gapfence fence gap 35 35 1 1 7 7 1 0 0 0 0 
hopkins ho151 gapfence fence gap 34 34 0 0 2 0 0 0 0 2 5 

Appendix 1 – raw data from the vegetation surveys for 2008 and 2009 
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catchment plot treatment fence gap senjac horspp aloaeq urtdio hydame epibra danpil solnig pselut lagspp agrgig 
huxley hu96 control control closed 0 0 0 0 0 0 0 0 0 0 0 
huxley hu109 control control closed 0 0 0 0 0 0 0 0 0 0 0 
huxley hu131 control control closed 0 0 0 0 0 0 0 0 0 0 0 
huxley hu60 control control closed 0 0 0 0 0 0 0 0 0 0 0 
huxley hu104 fence fence closed 0 0 0 0 0 0 0 0 0 0 0 
huxley hu94 fence fence closed 0 0 0 0 0 0 0 0 0 0 0 
huxley hu123 fence fence closed 0 0 0 0 0 0 0 0 0 0 0 
huxley hu70 fence fence closed 0 0 0 0 0 0 0 0 0 0 0 
huxley hu36 gap control gap 1 0 0 0 0 0 0 0 0 0 0 
huxley hu9 gap control gap 0 0 0 0 0 0 0 0 0 0 0 
huxley hu16 gap control gap 0 0 0 0 0 0 0 0 0 0 0 
huxley hu25 gap control gap 0 0 0 0 0 0 0 0 0 0 0 
huxley hu52 gapfence fence gap 0 0 0 0 0 0 0 0 0 0 0 
huxley hu18 gapfence fence gap 0 0 0 0 0 0 0 0 0 0 0 
huxley hu42 gapfence fence gap 1 1 4 1 0 0 0 0 0 0 0 
huxley hu37 gapfence fence gap 0 0 0 1 0 9 3 2,4 1 5 1 
hopkins ho238 control control closed 0 0 0 0 0 0 0 0 0 0 0,1 
hopkins ho190 control control closed 0 0 0 0 0 0 0 0 0 0 0 
hopkins ho244 control control closed 0 0 0 0 0 0 0 0 0 0 0 
hopkins ho189 control control closed 0 0 0 0 0 0 0 0 0 0 0 
hopkins ho249 fence fence closed 0 0 0 0 0 0 0 0 0 0 0 
hopkins ho186 fence fence closed 0 0 0 0 0 0 0 0 0 0 0 
hopkins ho165 fence fence closed 0 0 0 0 0 0 0 0 0 0 0 
hopkins ho188 fence fence closed 0 0 0 0 0 0 0 0 0 0 0 
hopkins ho9 gap control gap 0 0 0 0 1 1 0 0 0 0 1 
hopkins ho22 gap control gap 0 0 0 1 0 0 1 0 0 0 0 
hopkins ho161 gap control gap 1 1 5 0 0 2 0 0 0 0 0 
hopkins ho107 gap control gap 0 0 5 0 0 0 0 0 0 0 7 
hopkins ho57 gapfence fence gap 0 0 0 0 0 0 10 0 0 0 10 
hopkins ho124 gapfence fence gap 0 10 0 0 1 0 0 0 1 0 12 
hopkins ho110 gapfence fence gap 2 0 4 0 0 0 0 0 0 2 10 
hopkins ho151 gapfence fence gap 0 1 0 7 10 6 0 1 0 0 0 
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