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Abstract

Augmented reality (AR) systems that use head mounted displays to overlay syn-

thetic imagery on the user’s view of the real world require accurate viewpoint track-

ing for quality applications. However, achieving accurate registration is one of the

most significant unsolved problems within AR systems, particularly during dynamic

motions in unprepared environments. As a result, registration error is a major issue

hindering the more widespread growth of AR applications.

The main objective for this thesis was to improve dynamic orientation tracking

of the head using low-cost inertial sensors. The approach taken within this thesis

was to extend the excellent static orientation sensing abilities of accelerometers to

a dynamic case by utilising a model of head motion.

Head motion is modelled by an inverted pendulum, initially for one degree of

rotational freedom, but later this is extended to a more general two dimensional case

by including a translational freedom of the centre of rotation. However, the inverted

pendulum model consists of an unstable coupled set of differential equations which

cannot be solved by conventional solution approaches.

A unique method is developed which consists of a highly accurate approximated

analytical solution to the full non linear tangential ODE. The major advantage of

the analytical solution is that it allows a separation of the unstable transient part of

the solution from the stable solution. The analytical solution is written directly in

terms of the unknown initial conditions. Optimal initial conditions are found that

remove the unstable transient part completely by utilising the independent radial

ODE. Thus, leaving the required orientation.

The methods are validated experimentally with data collected using accelerom-

eters and a physical inverted pendulum apparatus. A range of tests were performed
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demonstrating the stability of the methods and solution over time and the robust

performance to increasing signal frequency, over the range expected for head motion.

The key advantage of this accelerometer model-based method is that the orien-

tation remains registered to the gravitational vector, providing a drift free solution

that outperforms existing, state of the art, gyroscope based methods. This proof of

concept, uses low-cost accelerometer sensors to show significant potential to improve

head tracking in dynamic AR environments, such as outdoors.



Chapter 1

Introduction

Access to computation and electronically stored information is moving beyond the

traditional desktop and into the everyday world. Computers are smaller, more

powerful, have more storage and are more connected than ever before. With this

proliferation of ubiquitous computing comes the challenge of designing intelligent

and intuitive interfaces for human-computer interaction.

Augmented Reality (AR) interfaces are intuitive interfaces that overlay virtual

content onto the real world. A key requirement for a compelling AR experience is

accurate registration of the virtual imagery. If the virtual imagery moves with the

users motion or drifts about, the illusion that it resides in the real environment or its

relationship to physical objects is quickly broken. Obtaining accurate registration is

one of the largest unsolved problems for AR systems, and is a major issue hindering

their growth.

To achieve accurate registration an AR system requires precise knowledge of

the users viewpoint. Many existing tracking methods perform poorly especially in

highly dynamic applications. This thesis seeks to improve the dynamic accuracy

of viewpoint tracking for AR using a low-cost solution. Thus, delivering the first

steps towards enabling new inexpensive and highly dynamic AR applications, such

as those in outdoor environments.

1.1 Augmented Reality

Azuma [1997] defines AR as the realtime superimposition of computer graphics
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on the real world. These virtual images supplement the real world rather than

completely replacing it as with Virtual Reality (VR). When accurately positioned

and oriented these generated images give the appearance that they coexist with real

objects in the environment. Specifically Azuma [1997] defines AR as requiring the

following three characteristics:

1. Combining real and virtual

2. Interactive in realtime

3. Images are registered in 3D

Milgram and Kishino [1994] use a Reality-Virtuality continuum shown in Figure

1.1 to place AR in the context of Mixed Reality. The continuum embodies all user

experiences. A position along the continuum represents the degree or amount that

the users experience is computer generated.

Real
Environment

Virtual
Environment

Augmented
Reality
(AR)

Augmented
Virtualtiy

(AV)

Mixed Reality
(MR)

Figure 1.1: The reality-virtuality continuum

On the left of the continuum there is the real environment where real experi-

ences take place, such as walking or eating etc. On the right is the immersive virtual

environment where the real environment has been substituted by a computer gener-

ated world. The region between these two extremes is known as Mixed Reality and

includes AR and Augmented Virtuality. AR is essentially a real world experience

enhanced by the addition of synthetic content. In contrast Augmented Virtuality

is an experience in a virtual world with real world elements such as video feeds

embedded.

Implementing AR in practice is a challenging problem. Any AR system relies on

two fundamental enabling technologies, tracking and display. Various display sys-

tems have been used; fixed displays, hand held displays, and head mounted displays

(HMD). This thesis focuses on enabling applications using the more intuitive HMD.

To achieve accurate registration of the virtual content for applications using

HMDs, the AR system needs relatively exact knowledge of the users viewpoint.
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The accuracy and timely delivery of this information is crucial to the quality and

practicality of the AR experience. Any error in the placement of the virtual objects

quickly destroys the illusion and thus, the usefulness of the data presented.

The successful implementation of AR technology has huge implications for en-

hancing perception and improving productivity, while reducing errors. These out-

comes would be achieved through the addition of contextual information that the

user can not detect with their own senses or is in a different form. Various ap-

plications have been developed illustrating these potential advantages for different

disciplines. Examples are discussed to support these concepts in the sections below.

1.1.1 AR Applications

Most applications have been developed by research groups to prove the concept and

potential uses of AR. Recent research has focused on showing new applications rather

than solving the underlying problems with the technology. Few of these examples

have reached the commercial world. However, they help illustrate the importance

and impact AR will have in the world.

Every application presents unique challenges for AR technology. Consideration

needs to be given in designing any application to the following factors:

• Display properties;

• The required registration accuracy, see Section 1.1.2;

• Cost limitations;

• Expected motion and dynamics;

• The working volume;

• The operating environment (prepared/unprepared, indoor/outdoor etc).

This thesis focuses on enabling low-cost highly dynamic AR applications through

improved tracking. The applications discussed in this section are listed below in

order of increasing dynamic motion, providing context to this work. The applications

range from medical applications, requiring high precision tracking of slow movements

in a small prepared volume, to fully dynamic outdoor gaming applications requiring

lower precision tracking in a very large unprepared environment.
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1. Medical: AR ultrasound imagery [Bajura et al., 1992]

Scenario: Doctors have “X-Ray” vision in a needle biopsy task using a medical

interface that overlays virtual ultrasound images onto a patient’s body.

2. Medical: Guided surgery [Soler et al., 2004]

Scenario: MRI and CT scans are used to reconstruct 3D patient specific im-

agery. Using AR this imagery is used to guide abdominal surgery.

3. Maintenance: Virtual instructions [Feiner et al., 1993]

Scenario: Users see virtual annotations appearing over a laser printer, showing

how to repair the machine.

4. Education: Augmented chemistry [Fjeld et al., 2003]

Scenario: Students use augmented tangible objects to help explain basic chem-

istry.

5. Industrial: AR factory visualisation, see Figure 1.2 [Appel and Navab, 2002]

Scenario: AR is used to visualise planned additions in place and check for

collisions or interference with existing structures. Industrial AR also allows

contractors to quickly find and understand unfamiliar machinery in often very

complex environments or processes.

Figure 1.2: Industrial example of AR. The image is augmented by a planned
addition (red pipes), and by an industrial drawing of what is beneath the floor
[Appel and Navab, 2002]
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6. Architectural: Civil construction [Behzadan and Kamat, 2005]

Scenario: Civil engineers view a virtual bridge during the construction and

planning of the real bridge.

7. Industrial: Subsurface visualisation [Roberts et al., 2002]

Scenario: Vast amounts of information on underground features reside in com-

puter databases. However this information is not readily accessible to engineers

and managers in the field. This AR system allows users to visualise subsurface

features such as gas and water pipe work.

8. Entertainment: Outdoor Gaming, AR Pacman [Cheok et al., 2004]

Scenario: 2D arcade Pacman is extended to involve humans as Ghosts or

Pacmen in an outdoor environment. Virtual cookies and tangible physical ob-

jects are incorporated providing seamless transitions between real and virtual

worlds.

9. Entertainment: Outdoor Gaming, AR Quake [Piekarski and Thomas, 2002]

Scenario: The existing desktop game Quake is developed into an outdoor AR

game. Users move in the physical world, and at the same time experience

computer-generated graphical monsters and objects.

These examples illustrate that AR can change perceptions, and improve per-

formance through visual enhancement of the real world. AR is moving from the

research environment into applications with commercial value. However, poor accu-

racy, robustness and high costs of the tracking technology impedes further commer-

cial development, especially for applications using HMDs. These tracking issues are

most notable in unprepared dynamic environments, such as outdoors. For AR to

become practical for industrial, gaming, architectural and other applications these

problems need to begin being addressed within a serious or rigorous framework. It

is such a framework and initial approach that is attempted in this thesis.

1.1.2 Registration Performance Requirements

Achieving accurate registration is the biggest problem in building effective AR sys-

tems [Azuma, 1997]. Any error or misalignment in the registration of virtual images

in an AR application will detract from the experience. The degree to which registra-

tion error can be tolerated is heavily dependent on the application being performed.
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For example, medical applications require far greater accuracy than outdoor gaming

applications. This concept is illustrated schematically in Figure 1.3. The example

applications from Section 1.1.1 are plotted against absolute registration accuracy

and their working range.
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Figure 1.3: Schematic illustrating the absolute registration accuracy and working
range of the example applications in Section 1.1.1.

Holloway [1997] analysed errors in AR systems and provides a clear definition

of registration error. He defines angular error (φ) as the angle at the eye point (E)

between two supposed coincidental points. Linear registration error is the length of

a 3D error vector between them. Depth position error can be masked by other depth

cues, such as size and head-motion parallax. Thus, registration errors in depth are

less important than registration errors that cause a clear visual separation. The

linear registration error can be broken down into the lateral error and depth error,

as shown in Figure 1.4, where P is the real point, P* is the displayed point, and

r is the distance to the viewed object. Lateral error (error) within AR systems is

more sensitive to orientation error than position error [Friedmann et al., 1992], as

orientation error is scaled by the distance to the viewed object.

Any registration error will ultimately be measured by the users visual system.

Humans are not tolerant of visual errors when compared with other sensory inputs.

This issue is known as visual capture, which is the tendency for the brain to believe

what is seen rather than what it feels or hears [Welch, 1978]. This tendency can be

an advantage for fully virtual environments, as small tracking errors go unnoticed.
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s = lateral error

t = depth error

E

P

P*

r

r

b = linear error
Ø/2

Figure 1.4: Lateral/depth registration error [Holloway, 1997]

However, in AR it becomes very important to minimise visual errors.

The human visual system is incredibly complex. AR tries to deceive the visual

system into thinking virtual images are in the real world. The resolution of the visual

system is defined by Static Visual Acuity (SVA) and Dynamic Visual Acuity (DVA)

for static and dynamic environments. Standard tests are available for SVA and form

a major part of any eye exam. Commonly SVA is measured using the Snellen chart

with reference to the Snellen fraction 20/20 ft. Thus, 20/20 vision requires that the

subject can view an optotype 20 feet away that covers an angle one minute of arc.

However, these results can also vary with contrast and illumination.

DVA is more complicated than SVA. There is no accepted standard test and it

is generally not measured. Human abilities vary widely and DVA can be improved

through training. Those used to tracking fast moving objects, such as athletes,

commonly show more ability. Measuring DVA is also complicated by the Vestibulo-

Ocular Reflex (VOR), an involuntary reflex where head movement is compensated

by opposing eye motion to stabilise the image on the retina [Schml et al., 2000]. This

stabilising reflex behaviour can be thought of as natural damping. Consequently,

quantifying these limits is not an easy task.

Dynamic registration also has different requirements than static registration.

When the head rotates at speed the world blurs as the brain can not process the

information from the eyes fast enough. Clearly, highly accurate registration is not

required in such situations. However, registration is still important, as it provides

directional context allowing the user to rapidly search their environment and slow

head motion when items of interest are detected.
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Figure 1.5 illustrates schematically the drop in visual acuity or increase in allow-

able registration error with increasing dynamics. Studies suggest this relationship

is a cubic function of optotype motion [Reading, 1972]. Existing registration tech-

niques unfortunately are far from achieving this limit. However, if techniques could

be improved such that registration was within the shaded region of the plot then

the user would be unable to detect any registration error. This challenge effectively

represents a “Holy Grail” for registration in AR systems.

Registration in AR is therefore, in its entirety, a very challenging problem. Ide-

ally, registration would meet the DVA line in Figure 1.5. However, this goal is

unachievable with current systems, and is not likely to be achieved in the near

future. Holloway [1995] suggests in the future work section of his thesis that to

achieve a registration error of 1mm, each error source should aim to achieve 0.1mm.

He then defines specifications for 0.1mm and 1mm registration error in terms of

tracking error alone. These specifications are summarised in Table 1.1.

Table 1.1: Tracking error specifications to achieve 1mm and 0.1mm registration
error [Holloway, 1995]

Registration Tracking Error Latency
Error Translational Angular (moderate head motion)

1.0 mm 0.5 mm 0.057 ◦ 3 ms
0.1 mm 0.05 mm 0.0057 ◦ 0.3 ms

1.1.3 Registration Error Sources within AR Systems

AR system errors are comprised of static and dynamic errors. Static errors occur

due to optical distortions, misalignments between system components, tracker errors

and incorrect viewing parameters. Dynamic errors are more complex, combining

the sources of static error with the error induced by the system latency. Latency

is the end to end time delay between finding the viewpoint and displaying the

corresponding image to the user.

Latency increases dynamic error when the user is in motion because the rendered

image no longer corresponds with the new viewpoint and thus, is no longer correctly

aligned to the real world. Figure 1.6 illustrates schematically the application loop

for a simple example of an AR system. The tracking system generates a 6DOF
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viewpoint. Next, any simulations or calculations required for the new image are

performed and passed on so the correct scene can be rendered. Lastly, the image

must be written to the display so it can be observed by the user.

Tracking
Calculate

Viewpoint

Simulation

Render

Scene

Draw to

Display

Application Loop

20Hz = 50ms 500Hz = 2ms 30Hz = 33ms 60Hz = 17ms

Total Delay = 50+2+33+17 = 102ms

x,y,z

roll

pitch

yaw

Figure 1.6: Latency in the AR system application loop

Examples of system latencies are shown in Figure 1.6. The total latency will con-

tribute according to the motion of the user. As a very general rule, 1ms contributes

to 1/3mm registration error. Thus, for this example the dynamic error would be

34mm. Latency can be reduced by using faster trackers, central processors (CPU),

graphics processors (GPU) and displays. However, while tracker speed and display

speed are not increasing quickly, the speed of CPUs and GPUs are improving very

rapidly. This shows promise for improved performance in the future.

Changes in the tracking error and the latency also adversely affect performance

of an AR system. This is termed jitter [Welch and Foxlin, 2002] and manifests itself

as the virtual image shaking or twitching, thus destroying the illusion of registration.

These changes are due to noise on the tracking signals or cycle to cycle variations

of the latency.

1.2 Tracking Hand and Body Motion

Using the human body as an input device is seen as a natural way of interaction.

This additional interaction can lead to a higher level of immersion and increased

efficiency, while reducing demands on the user. Various techniques to track or

interpret motion have been used. Gesture recognition is commonly performed using

optical tracking. However, Tangible User Interfaces (TUI) [Ullmer and Ishii, 2000]
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often utilise inertial tracking. An example of a recently commercialised TUI device

is the Wii gaming console from Nintendo [Nintendo, 2007]. The Wii system has

a wireless hand held remote that uses accelerometers and gyroscopes to sense the

user’s hand motion to control items in an interactive game.

With knowledge of the user’s location and activity, intelligent computing systems

can provide the user with relevant contextual information. Location based services

have already been developed for cell phones. In the past, human body motion

has commonly been captured using optical systems in the movie industry and in

the study of biomechanics for sports science. Though, these systems are fixed and

expensive, prohibiting collection of data in the natural environment.

Inertial sensors provide a cheap alternative. However, they do not provide the

same level of accuracy as expensive optical systems. This lower accuracy is not a sig-

nificant issue with detecting user activity (Randell [2000], Laerhoven and Cakmakci

[2000]). However, accurately tracking position with inertial sensors alone proves

extremely challenging. Most researchers combine inertial with some other form of

sensor to combat drift caused by the accumulation of errors and noise in inertial

measurements. Golding and Lesh [1999] use accelerometers and magnetometers

with environmental sensors (light and temperature) and machine learning. Kourogi

[2003] analyses human walking behaviour and matchs camera images to a database

to aid in position determination.

1.3 Head Motion

An important part of developing an accurate viewpoint and head tracking method is

understanding the dynamics of human head motion even in simplistic form. These

dynamics help define part of the specification for the tracker, namely the range of

motion required and maximum angular rates expected. Hardware designs can then

be tailored to this application, focusing the bandwidth of the device and increasing

the signal to noise ratio. Head motion analysis also has potential to aid in the devel-

opment of predictive tracking algorithms, by potentially recognising characteristic

signatures of head movement.

An adult human head weighs approximately 4.5-5kg and is supported by the

neck above the shoulders. Motion and stability is achieved by neck musculature and
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controlled by feedback from the muscles themselves and the visual and vestibular

systems. Attaching items such as HMDs to the head changes the inertia of the head

meaning the user must spend additional effort in turning the head [Shaw and Liang,

1992]. However, as technology improves it is expected that the hardware necessary

for AR will become lighter and less obtrusive.

Like the motion of any object in 3D space, head motion has three rotational

degrees of freedom and three translational degrees of freedom. Figure 1.7 shows

these schematically. The maximum voluntary head rotational rates define the limits

that any head tracking system must meet. However, values from the literature

vary greatly from 360◦/s [List, 1984], to 2000◦/s [Aliaga, 1997], again indicating

the difficulty in obtaining agreement for human measurements. These maximum

rotational rates are unlikely to allow the human visual system to produce an image.

Therefore, the demands for registration accuracy are greatly reduced from these

values.

Head motion is very dependent on the application being performed. For exam-

ple, a fighter pilot searching the sky for an enemy will have vastly different motion

from a surgeon operating on a patient. Head motion is also complex, it can be very

ordered one minute and very chaotic the next, making prediction very challenging.

In his dissertation Azuma [1995] measured head motion for the specific application

of people unfamiliar to HMDs walking through a room and handling interesting ob-

jects. His results for a fast and slow motion sequence are shown in Figure 1.8 as a

cumulative density plot of angular velocity. This data shows that, for this applica-

tion, most head motion is very slow with approximately 50% being below 10 degrees

per second. In their frequency domain analysis of head motion Azuma and Bishop

[1995] show that the majority of energy is below 2Hz, a result which is supported

by other research for similar applications.

No one has yet analysed in depth head motion for highly dynamic AR appli-

cations, perhaps because few examples exist. Grossman et al. [1988] analyses head

motion during locomotion. During running, median maximum head velocities did

not exceed 90◦/s and had predominant pitch frequency of 3.2Hz. During vigorous

voluntary head motion median frequencies for pitch and yaw are similar at 2.6Hz.

While walking or running, motion in the pitch axis is much faster than the other

two axes due to increased vertical acceleration acting on the head-neck system. Hi-

rasaki et al. [1999] notes that significant head pitch develops at walking speeds above
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Figure 1.7: Head motion, 6 degrees of freedom, 3 translational (x,y,z) and 3 rota-
tional (yaw, pitch, roll). Figure from Strickland [2007]
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Figure 1.8: Cumulative density plot of angular velocity for fast and slow head
motion sequences [Azuma, 1995]

1.2m/s. Clearly, tracking head pitch becomes very important for fully dynamic AR

applications.

If the mechanics of the head are considered further it is possible to infer other

characteristics of head motion. There is limited force that can be applied by the

neck musculature to the head which has mass and therefore inertia. Thus, it is

reasonable to expect that voluntary head motion will be smooth in nature. When

viewing different objects, the arc traced by the head is that of the shortest length

and therefore the most efficient path. The angular speed of the head illustrates that

head motion is symmetric [Shaw and Liang, 1992]. This is because the muscles used

to accelerate the head are also used to slow it down. Thus, the same amount of time

is taken.

1.3.1 Application of Head Motion Models

Head motion models have found some modest use in head tracking for AR. Kalman

(Azuma and Bishop [1995], Foxlin [1996]), extended Kalman [Chai et al., 1999],

unscented Kalman [Kraft, 2003] and Particle [Fakhr-eddine Ababsa, 2003] filters

have all been applied. These filters are used to combine noisy measurements from
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different sensors to estimate, and sometimes predict, the system states including

orientation. The filters require state or model equations from a head motion model.

The models used are generally very simplistic rigid body motion models assuming

constant angular rate or constant angular acceleration. To improve model accuracy

the equations of motion for the head could be developed. However, head motion is

driven by the forces from the neck muscles which are unknown. Thus, none of these

systems truly model head dynamics, all use very simple approximations instead.

Head motion models have found use in other areas of research. Most applica-

tions are medical and used to provide better understanding of traumatic injuries or

disorders that affect head motion. Gillies et al. [2003] uses an inverted pendulum

model to explore the dynamics of head motion. Such models are commonly applied

in studies of human posture and bipedal locomotion. Their model is verified with

some experimental data, although they fail to solve the model for rotational angle

over any useful time period. Specifically they state that large unphysiological val-

ues of orientation develop after 0.1s, but that these values would never be realised

because of anatomical constraints.

1.4 Motion Tracking Technology

A review of the literature shows that no single technology provides good position

and orientation for all applications. However, many different technologies and varied

approaches have been applied to the problem of tracking motion. Each technology

has its own strengths and weaknesses and these aspects ultimately drive the se-

lection for each application. For AR tracking, cost, required accuracy, expected

motion, required working volume, and the environment all impact on the selection

of a tracking technology. Table 1.2 surveys the various different technologies and

summarises their advantages and limitations in very general terms.

Welch and Foxlin [2002] provide a more in depth overview of each technology.

They also consider the specification of an ideal tracking technology and note that

inertial trackers are the closest technology to an ideal solution. This conclusion was

developed because typical inertial sensors are small, inexpensive, have low latency,

are sourceless, and are immune to most interference. However, the biggest limitation

of inertial sensors and using them to derive displacement is that the results drift.
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The advent of small size, low cost MEMS (micro electro mechanical systems)

in the 1990’s revolutionised inertial tracking. This development was initially driven

by the automotive industry, although now MEMS inertial sensors are finding appli-

cation in areas from consumer electronics to footwear. In the competitive market

this technology is evolving rapidly. During the course of this doctorate several

high accuracy accelerometers prominent in others research have become obsolete

and more measurement axes than ever before are now available on one chip. For

example, Analogue Devices Analogue Devices Inc [2007] has developed a IMU on

a single IC chip that combines 3 orthogonal accelerometer axes with 3 orthogonal

rate gyroscope (gyro) axes. Though at the time of writing these devices were not

commercially available.

Drift is fundamental to the operation of inertial sensors. For MEMS gyros drift

can be measured in ◦/s. However, for larger more stable gyros drift is measured

in ◦/hour. Drift occurs because measurements from accelerometers and gyroscopes

require integration to obtain position and orientation. Numerical integration of noisy

signals accumulates the small errors and causes the results to drift. This drift has a

tendency to increase with the number of integrations performed. For rate gyros this

drift requires correction. However, with the accelerometer double integration causes

drift that corrupts the position measurement. Hence, inertial devices may only be

useful for tracking orientation in AR applications.

Accelerometers sense dynamic accelerations and also the static acceleration due

to gravity. This second aspect enables accelerometers to also be used as effective

tilt sensors. However, when other motion is introduced, the acceleration signal is

modified by the dynamic accelerations, leading to orientation errors.
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Table 1.2: Summary of tracking technologies

Technology and Description Advantages Limitations

Mechanical : The tracked target

remains connected to a reference

frame via a series of linkages. 6

DOF motion is measured

physically using incremental

encoders or potentiometers.

• Accurate

• Immune to

interference

• No line of sight issues

• Limited range

• Very intrusive,

affecting natural

motion

• Subject to

mechanical wear

• Expensive

Magnetic - active: A magnetic

field is generated by passing

current through orthogonal coils.

This field is pulsed using AC or

DC current. The sensor detects

its alignment to the magnetic

field, which is used to find 6 DOF

position.

• Accurate

• Inexpensive

• No line of sight issues

• Prone to

ferromagnetic and

electromagnetic

interference

• Range limited (room

size) as accuracy

reduces with

distance.

• High latencies

Magnetic - passive:

Magnetometers measure 3 DOF

orientation relative to the earths

magnetic field.

• Sourceless

• Inexpensive

• Small size

• No line of sight issues

• Accuracy limited

(1-3◦) as the earth’s

magnetic field is

inhomogeneous.

• Prone to

ferromagnetic and

electromagnetic

interference

Inertial : 3 DOF orientation is

determined from accelerometers

and rate gyroscopes.

Accelerometers sense acceleration

and gyroscopes sense the rate of

angular rotation. Inertial

Measurement Units (IMUs) offer

an integrated solution.

• Sourceless

• Fast

• Unlimited range

• Immune to

interference

• No line of sight issues

• Small size

• Inexpensive (MEMS)

• Drift

• Generally not good

for slow motion

Continued on Next Page. . .
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Table 1.2 – Continued

Technology and Description Advantages Limitations

Global Positioning System

(GPS): Calculates the range to

satellites using radio frequency,

then triangulates a 3 DOF

position. Real Time Kinematic

(RTK) GPS uses the higher

frequency carrier wave to get

better resolution.

• No drift

• Large range (approx

10km from RTK

base station)

• Environment already

prepared

• Multipath

interference.

• Requires line of sight

to satellites

• Large antenna

• Expensive

Optical : Often called vision

tracking, a camera(s) captures

2D images of the target and

image processing techniques are

used to determine 6 DOF. The

visual and infrared spectrums

(with active or passive targets)

are often used. Systems can be

arranged with the camera(s) in

the environment looking at the

target (outside-in) or the

camera(s) on the target looking

at the environment (inside-out).

• High accuracy

achieved with fixed

expensive systems

• Good with slow

motions

• Immune to magnetic

interference

• Fixed systems have

limited range

• Line of sight required

• Requires prepared or

semi prepared

environment (fiducial

markers)

Acoustic: The distance between

the emitters and microphones is

calculated and the receiver’s 3

DOF or 6 DOF position found

using triangulation. Ultrasonic

frequencies are used so that the

signals can not be heard.

• Inexpensive

• Immune to magnetic

interference

• Ultrasonic noise

interference

• Low accuracy due to

the variability of the

speed of sound in air

• Sensitive to

environmental

conditions

• Multipath

interference

• Line of sight required
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1.5 Overview of Head Tracking in Augmented Reality

Tracking head motion in AR is therefore a challenging problem. Many different

approaches have been applied using the technology introduced in Section 1.4. Com-

mercial solutions are available for; Magnetic: the Flock of Birds [Ascension Tech-

nology Corporation, 2007], Fastrak [Polhemus, 2008]; Optical: infra red ART sys-

tem [Advanced Realtime Tracking GmbH, 2008]; and Inertial: the InertiaCube3

[Inetersense Inc, 2007], 3d-Bird [Ascension Technology Corporation, 2007], MTx

[Xsens Technology, 2007], and the 3DM-DH [Micro Strain, 2007]. Computer vi-

sion techniques are also available in open-source software such as the ARToolKit

computer vision library [Kato, 1999].

Fixed optical tracking systems are perhaps one of the most accurate technologies.

These systems are ideal for highly controlled prepared environments, where they

offer relative flexibility of motion to the user within the limited working volume.

However, these systems are expensive and often cost prohibitive. Computer vision

is an intensive area of research. This area is slowly evolving from tracking fiducial

markers or matching images to a database to tracking natural features. However, for

general AR applications in undefined spaces it still does not offer adequate solutions.

MEMS based inertial measurement units (IMUs) for tracking 3 DOF orientation

have matured in recent years. The range of commercial options being evidence of

this maturation. These IMUs typically contain three rate gyroscopes, accelerome-

ters, and magnetometers. The gyros are used to determine orientation, while the

accelerometers and magnetometers are used to correct for drift. However, these

devices are a complex, and typically costly multi-sensor package.

In approaching simple, inertial based solutions, one approach is to take advan-

tage of the burst like nature of head motion, and correct for drift only during natural

pauses [Foxlin et al., 1998]. However, Luinge et al. [1999] shows that orientation is

improved using accelerometers to aid the gyro during human kinetic measurement,

but does not detail the motion. Some commercial IMUs do offer tailored filtering.

However, they are not optimised for individual applications. None are yet fully

proven in a highly dynamic environment.

These single technology approaches do not currently provide satisfactory track-

ing solutions for all applications.
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1.5.1 Compensating for Registration Error

Consistent static errors mentioned in Section 1.1.3 can be compensated by employing

various calibration techniques (Janin [1993], Bajura and Neumann [1995]). However,

this correction is not possible for dynamic errors. Both dynamic tracking error and

latency induced dynamic error can not be calibrated for, and thus must be addressed

in the data.

Various approaches have been taken to reducing or minimising the effect of

latency. As technology continues to improve, faster processors will reduce system

lag. Some researchers implement methods to reduce apparent lag by updating the

virtual image position [Kijima, 2002] or warping the image [Mark et al., 1997] after

it has been rendered. Therefore, they take greater advantage of more up to date

tracker information.

Video see through HMDs overlay the virtual content on a video of the real

world. A common technique employed with these displays is to delay the video

signal to match the system lag [Bajura and Neumann, 1995]. This approach reduces

registration error and can work well for slow motions. However, at faster speeds it

causes a sensory mismatch between the vestibular system and visual system. This

mismatch can become uncomfortable for the user and lead to simulator sickness,

which is a common problem in VR.

Predictive tracking aims to reduce this latency by predicting where the users

viewpoint will be ahead of time [Azuma and Bishop, 1995], enabling the correct

imagery to be rendered and displayed to the user coinciding with the actual view-

point. Prediction error increases roughly with the square of the prediction interval.

Prediction is also fundamentally limited by the inertia of the head and the torque

or force that can be applied to it. Holloway [1995] suggests this effect is limited

to 80ms considering the data from Azuma and Bishop [1995]. Even with increased

computing power, tracking and rendering will take a finite amount of time. Thus,

registration will always be improved by good prediction provided it can be imple-

mented effectively.
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1.5.2 Hybrid Tracking Systems

A great deal of recent development has been focused on developing hybrid tracking

systems, effectively exploiting and combining attributes of different technologies.

The objective of any hybrid tracking system is to provide a tracking solution with

better performance or more flexibility then each of the contributing technologies

possess individually. One of the most common approaches is to combine inertial

and vision technologies, effectively replicating human tracking with our visual and

vestibular systems. These technologies complement each other well with vision work-

ing well for slow motions and inertial tracking better at faster motions. Integration

also allows the inertial system to be used to reduce the search space for visual fea-

tures in subsequent frames. Both of these technologies can be sourceless showing

potential for use in unprepared environments.

Examples of vision-inertial hybrid trackers in prepared indoor environments are

given in Azuma and Bishop [1994], You and Neumann [2001], Lang et al. [2002],

Foxlin and Naimark [2003]; in unprepared indoor environments, Azuma et al. [1999],

You et al. [1999a]; and in unprepared outdoor environments You et al. [1999b], Satoh

et al. [2001], Ribo et al. [2002]. These systems are evolving as vision techniques

move from tracking fiducial markers or infra red LEDs to tracking natural features.

However, during highly dynamic motion the hybrid systems rely on the inertial

system, thus are reduced to the same issues described in Section 1.4.

For outdoor systems the addition of GPS position measurements can be useful.

Standard GPS in most consumer products has low accuracy, about 10m. This

accuracy can be improved using corrections to about 3m with differential GPS.

However, real time kinematic (RTK) GPS achieves centimetre precision. Currently,

these systems are very expensive, however some networks are being set up in some

cities, such as Sydney, Australia [Rizos et al., 2004].

However, GPS is reliant on line of sight to satellites, which can be disrupted in

urban environments. Tall buildings and structures can block satellites meaning no

position can be determined and reflected signals can cause multipath disturbance

giving an erroneous position. These issues along with the size of RTK GPS antennas

mean that GPS will not suit all outdoor applications. Outdoor applications using

GPS combined with inertial tracking include: Roberts et al. [2002] and Piekarski

and Thomas [2002].
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Other hybrid approaches researchers have taken include: Magnetic-Vision [State

et al., 1996], [Auer et al., 1999]; Inertial-Acoustic [Foxlin et al., 1998]. These ap-

proaches are limited to indoor prepared environments, and thus not suitable for the

targeted applications of this thesis.

With all hybrid approaches sensor fusion also becomes important. More specif-

ically, it addresses the issues of how to combine data from different sources, often

collected at different rates, to form one distinct position and orientation. Kalman

filters are the most popular approach in the literature to fusing data from different

sources. These filters utilise a state model, as discussed in Section 1.3.1. However,

the Kalman approach typically does not easily accommodate data at different rates.

Welch and Bishop [1997] develop a technique that utilises each low level measure-

ment, as it is made, offering higher update rates, lower latency and with improved

accuracy.

However, while hybrid systems can improve tracking performance and flexibility,

it is often at the expense of increased system complexity and cost. It also implies

a need for dependency on multiple sensor types. This thesis seeks to breech that

compromise by developing an inertial approach and initial methods for orientation

tracking of pitch and roll using only inertial data. As described it would have use in a

number of applications and systems, including hybrid sensor systems, if a reasonably

robust and accurate method, or approach to the same could be developed.

1.6 Preface

Many head or viewpoint tracking methods exist, although typically these perform

relatively poorly or are unsuitable in highly dynamic environments that many AR

applications seek to expand into. Thus, applications in these more challenging envi-

ronments, such as outdoors, are not well catered for by existing commercial tracking

solutions. To fully enable AR growth, what is required is low cost approaches based

on simple, existing sensor platform technologies.

The key objective for this thesis was to improve dynamic orientation tracking

of the head using low cost inertial sensors. However, a more general research ap-

proach is taken that does not limit the outcomes specifically to head tracking for

AR. The methods applied extend the excellent static orientation sensing abilities of
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accelerometers to a dynamic case by utilising a model of head motion. The inverted

pendulum model applied, and the solution methods are investigated and validated

for the case of a two dimensional system in the following chapters.





Chapter 2

Head Motion Modelling and Validation

As shown in Section 1.3, accurate models have not been applied to the head motion

tracking problem for a variety of reasons. In this chapter, a model of the fun-

damental dynamics involved in rotation of the head is developed and matched to

experimental sensor data. Given noisy or uncertain sensor data the use of the model

has the potential to significantly improve tracking performance, especially for highly

dynamic applications with or without limited sensor data or tracking technologies.

2.1 The Inverted Pendulum Model

An inverted pendulum model applies where a mass is balanced above an axis of

rotation. In this application, the mass is a human head, which is supported above

the shoulders by the cervical spine. This balanced equilibrium state is intrinsically

unstable. In the classical inverted pendulum problem, balance is maintained by

continuously moving the fulcrum under the centre of the pendulum mass. However,

head stability is maintained by moments applied by the neck musculature, a very

different situation.

The head-neck system is modelled using an inverted pendulum for one rotational

degree of freedom in a vertical plane. This simple model corresponds to either a

single pitch or roll motion of the head. A dual axis accelerometer is positioned along

the pendulum, aligned in the plane of rotation. Generally in most applications the

amplitude of head rotations are small as extreme displacements are uncomfortable.

An integral based fitting method that could be extended to find the optimal radius

is discussed in Section 2.3.2. For applications where extreme displacements are
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common the radius of rotation may be more accurately represented as a function of

the rotation. However, for this proof of concept, the assumption is made that the

radius of rotation for the head is fixed.

Figure 2.1 shows a schematic for the model. A particle at radius R undergoing

rotation θ(t) is subjected to tangential, centripetal and gravitational (g) accelera-

tions. These accelerations are sensed by the accelerometer axes Ay(t) and Ax(t)

oriented at a fixed angle λ to the tangent of rotation. With the pendulum near

vertical, optimal sensitivity to gravity for both accelerometer axes is achieved when

λ = π/4. This placement also ensures the dynamic components of accelerations are

sensed by both axes, thus averaging the effects of the noise on each independent

accelerometer measurement.

Figure 2.1: Acceleration vector diagram for a point at the end of an inverted
pendulum, length R, undergoing a rotation of θ. Note the sign convention for
rotation is positive in an anticlockwise direction from the vertical.

The accelerometer senses the acceleration of its proof mass relative to its casing.

Hence, dynamic accelerations contribute in the opposite direction to that shown in

Figure 2.1. Resolving acceleration in terms of g along the tangential and radial
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axes provides two independent ordinary differential equations (ODEs) for AT (t) and

AR(t). Note that all accelerations and rotations (θ̈ and θ(t)) are functions of time

and that the “(t)” is now dropped for clarity.

AT = (R/g)θ̈ − sin(θ), (2.1)

AR = (R/g)θ̇2 − cos(θ). (2.2)

The actual tangential (AT ) and radial (AR) accelerations are derived from the

measured accelerations:

AT = Ax cos(λ)− Ay sin(λ), (2.3)

AR = Ax sin(λ) + Ay cos(λ). (2.4)

It is important to note that Equations (2.1) and (2.2) are not equations of motion,

and thus are independent from any inertia, actuation force, damping or physiological

limits that may influence the motion. The effect of any such terms will directly

contribute to the measured acceleration and is therefore captured by this model.

This approach frees the problem from complex calibration or system identification

procedures.

2.2 Accelerometers

To implement and validate the model a MEMS accelerometer must be selected.

There is an extremely wide variety of these devices available. Most are currently

manufactured using surface micro-machining and operate by detecting the displace-

ment of a constrained proof mass with capacitive sensors. Analogue Devices Inc.

[Analogue Devices Inc, 2007] is a leading manufacturer of these devices.

An alternative to a constrained solid proof mass is to use a gaseous proof mass.

These are termed thermal accelerometers and examples are manufactured by MEM-

SIC Inc. [MEMSIC Inc., 2008]. Thermal accelerometers are less complex to man-

ufacture and overcome issues, such as stiction, when a solid proof mass is used.

These devices heat a small pocket of air and sense its movement within higher den-

sity surrounding air using thermopiles. Acceleration is then determined from the

temperature gradient.
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MEMS accelerometers continue to improve in accuracy and performance. There

is a clear trend to further integration with the first 3 axis accelerometers and more

recently 3 axis IMUs becoming commercially available. This continuous improve-

ment will allow even smaller and less obtrusive implementations which bodes well

for emerging applications for head tracking.

2.2.1 Static Tilt Sensing Using Accelerometers

Static tilt sensing using an accelerometer is a trivial problem. As the accelerom-

eter is stationary the only acceleration it senses is due to gravity. The amount of

gravitational acceleration sensed by the accelerometer axis indicates the angle of the

device to the gravitational vector. This situation is illustrated in Figure 2.2.

Figure 2.2: Using accelerometers to measure static tilt

Theoretically, only a single axis is required to sense tilt for one rotational degree

of freedom as in Equation (2.5). However, the change in acceleration per degree

reduces as the angle between the accelerometer axis and the gravitational vector

increases. The resolution changes from approximately 17.45mg/◦, when perpendic-

ular to gravity to only 0.15mg/◦ when the axis is parallel to gravity. This reduction

in resolution is not important if only small tilt angles are expected.

θ = arcsin(Ax) (2.5)
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Head motion can have large rotations. Using two axes to sense one degree of tilt,

as shown in Equation (2.6), provides a more robust result. This method maintains

optimal resolution through full rotation.

θ = arctan(Ax/Ay) (2.6)

Applying either of these simple equations to static or quasi-static rotations can

easily determine static pitch and roll. These simple techniques are being used in

PDAs and other devices to enhance user interfaces with new functionality, such as

tilt initiated scrolling.

2.2.2 Selection and Testing of Accelerometers

The head tracking application requires accelerometers with high accuracy when un-

dergoing small accelerations. This type of motion is challenging for inertial sensors.

Therefore, it is important to select an appropriate accelerometer. Key specifications

to consider include:

• measurement range which must be selected such that it does not saturate

during motion;

• sensitivity which is related to the measurement range. This parameter repre-

sents the amount of output signal per g;

• noise performance which is critical when working with small accelerations.

A range of suitable low acceleration accelerometers were selected. These sensors

included thermal and capacitive types along with digital and analogue outputs.

These are listed below and key specifications are summarised in Table 2.1.

• ADXL202; Low cost ±2g Dual Axis Accelerometer with Duty Cycle Output

from Analog Devices.

• ADXL203; Precision ±1.7g Dual Axis Accelerometer from Analog Devices.

• ADXL213; Low cost ±1.2g Dual Axis Accelerometer from Analog Devices.

• MXD2020E; Ultra Low Noise, Low offset Drift ±1g Dual Axis Accelerometer

with Digital Outputs from MEMSIC Inc.
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Table 2.1: Key specifications for the selected accelerometers

Device Output
Measurement Range

Sensitivity
Noise Density

(g) (µg/
√

Hz)

ADXL202 Digital 2.0 12.5%/g 200
ADXL203 Analogue 1.7 1000mV/g 110
ADXL213 Digital 1.2 30%/g 160

MXD2020E Digital 1.0 20%/g 200

Acceleration is calculated from the output signal of the accelerometers using the

general Equation (2.7). Thus, it is important to have accurate knowledge of the zero

g output and the sensitivity of the device axes.

Acceleration =
Output− ZeroG Output

Sensitivity
(2.7)

where Output is the the duty cycle or the voltage output and ZeroG Output is the

zero g duty cycle or voltage output.

Noise Performance

The bandwidth of the accelerometers was set to 10Hz by selecting the external

circuitry components. This choice tailored the devices to the low frequency head

tracking application. Two of each device (except the ADXL202, as only one was

available) were calibrated using the procedure described later in Section 2.2.3. The

theoretical noise floor was calculated using Equation (2.8) and compared to the

experimental noise floor of each device axis. These values are compared in terms of

g in Figure 2.3.

rmsNoise = (Noise Density)× (
√

BW × 1.6) (2.8)

where the Noise Density is listed in Table 2.1 and BW is the bandwidth the device

is set to.

The results show that it is difficult to achieve the noise performance specified for

the devices by their manufactures. Signals can be corrupted by many noise sources

within the laboratory environment. Generally, the Analogue Devices accelerometers

outperform the thermal accelerometers from MEMSIC. The ADXL202 accelerometer

clearly shows the best performance experimentally and is closest to its theoretical
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Figure 2.3: Comparison of theoretical and experimental accelerometer noise per-
formance

noise floor.

The failure of the x axis of the second ADXL213 accelerometer illustrates that

these MEMS accelerometers are fragile and need to be handled with care. The

MEMSIC devices are more robust in his respect, having greater shock survival rates.

Both manufacturers products show some disparity in the noise floor for each

axis. The layout of the accelerometers internal circuitry is likely to be the reason

for this disparity. This difference is most extreme with the MXD2020E, where the

x axis has approximately twice the noise of the y axis. Upon communication with

MEMSIC Inc., it eventuates that this difference is normal behaviour despite the

noise specification being the same for both axes.

Temperature Compensation

Accelerometers are subject to thermal variation. For high accuracy applica-

tions the thermal drift in the zero g bias must be compensated. Application notes

are available from the manufacturers showing thermal compensation techniques

(Weinberg [2002], Dao [2002]). MEMSIC accelerometers have consistent thermal

behaviour for each model. However, each Analogue Devices iMEMS accelerometer

has a unique temperature characteristic that is approximately linear.
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A small temperature chamber was developed to test the zero g duty cycle tem-

perature drift. A thermoelectric Peltier element was used to provide heating and

cooling. Temperature was controlled using feedback from a thermocouple and the

dSPACETM rapid development suite in the lab. Figure 2.4 illustrates the drift for

each axis of the second ADXL213 accelerometer. All except one accelerometer axis

showed similar linear trends with temperature.

This work shows that temperature compensation of accelerometers is important

to deliver the robustness and accuracy required. Provided a temperature source is

available in the hardware this compensation would not be difficult to implement.

However, it will require calibration for each device and does make the system more

complex. At this early stage, more importance is placed on proving the concept that

motion can be tracked using accelerometers and the model developed. A simple yet

accurate way to account for the variation due to temperature, in this situation, is to

perform the calibration procedure in Section 2.2.3 each time data is collected. This

approach provides calibrated results for each axis of the device at the testing tem-

perature, avoiding the complexity of implementing a full temperature compensation

method.

Dynamic Performance

For the Analogue Devices ADXL series MEMS accelerometers, the dynamic per-

formance is dominated by the output filter response. The ADXL202 accelerometer

bandwidth is set to 10Hz by an external 0.47µF capacitor (C). The phase response

can be calculated using Equation (2.9) which is taken from application note AN-688

[Weinberg, 2004].

Phase Response = − arctan(ωRC) (2.9)

where ω = 2πf , and the internal resistor R = 32kΩ in this case.

Experiments were conducted to verify this response. The accelerometer was

mounted on a voice coil actuator as seen in Figure 2.6 and driven in a sinusoidal

motion at various frequencies. The x axis of the accelerometer was aligned with the

motion. A laser doppler system was used to measure velocity of the accelerome-

ter motion and upon integration provide an independent measure of acceleration.

Comparing the accelerometer reading to the acceleration derived from the laser mea-

surement system allows the phase lag and magnitude response to be determined.
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Figure 2.4: Zero g duty cycle drift with temperature for the second ADXL213
accelerometer. Note, that the y axis of each plot have different scales.
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Unfortunately, the voice coil does not follow the sinusoidal driving signal per-

fectly and suffers from some stiction. This causes small noise like disturbances in

the acceleration and velocity signals and is especially evident at slower frequencies.

However, filtering the acceleration from the accelerometer and the velocity from

the laser measurement system prior to differentiation allows comparison of smooth

acceleration signals.

A comparison of filtered signals was made for 1,2,5 and 10Hz excitation frequen-

cies, allowing the experimental magnitude and phase response to be determined. The

theoretical phase response can be calculated using Equation (2.9). These parame-

ters are compared in the Bode plot in Figure 2.5 and show good agreement between

experimental and theoretical phase shift.

2.2.3 Accelerometer Calibration Procedures

Due to the inevitable variation in manufacture, MEMS accelerometers require indi-

vidual calibration for optimal performance. The accelerometers selected have nom-

inal zero gravity outputs and sensitivity. However, for high accuracy applications

nominal values do not provide optimal performance. This simple calibration proce-

dure determines both the zero g output and sensitivity specific to each device axes.

The procedure works for both analogue and digital accelerometers. However, in this

case it is demonstrated for two digital ADXL213 accelerometers.

Equation (2.7) shows the reliance acceleration has on the zero g reference output

and the sensitivity of the device. Calibration to determine these values accurately

involves rotating the accelerometer axes in a precisely vertical plane. The rotation

must be performed very slowly to avoid any contribution from centripetal or tan-

gential accelerations. To achieve this rotation, an indexing table from a mechanical

workshop is used. Accelerometers are mounted to the surface as illustrated in Figure

2.7. When mounted on a level isolation table the high tolerances of the indexing

table ensure that the accelerometers are precisely in a vertical plane.

Winding the hand wheel causes the table to rotate and the data from the ac-

celerometers is collected. The slow motion means that each axis will pass directly

through the vertical axis. Thus, a full rotation will yield a measurement at 1g and

-1g. Assuming a linear sensitivity within the device then both the sensitivity and
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Figure 2.6: Dynamic response testing, ADXL202 accelerometer mounted on voice
coil actuator with laser doppler measurement equipment in the background

Figure 2.7: The indexing table with accelerometers attached for calibration



2.2 ACCELEROMETERS 37

zero g reference output can be determined. The mid point being the effective zero

g output and the range divided by 2g being the sensitivity.

Figure 2.8 plots the output from an ADXL213 accelerometer for the described

acceleration procedure. Calibration results for two ADXL213 accelerometers are

summarised in Table 2.2. The difference between the X and Y axes on the first

accelerometer illustrate how much variation can exist. Un-calibrated, these differ-

ences would propagate through acceleration as errors reducing the accuracy of the

orientation.
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Figure 2.8: The output from the first ADXL213 accelerometer during calibration
at 21 ◦C

Table 2.2: Calibration Results at 21◦C

Axis
Mean Duty Cycle Zero Gravity Sensitivity

1g -1g Duty Cycle (DC/g)

Accelerometer 1
X 0.78905 0.18780 0.4884 0.3006
Y 0.80370 0.20770 0.5057 0.2980

Accelerometer 2
X 0.80215 0.19920 0.5007 0.3015
Y 0.80190 0.20150 0.5017 0.3002

The accelerometer is the critical piece of hardware for the model based tracking

approach presented and used in this thesis. Initially, the ADXL202 was used for

experimental testing as it had the lowest noise floor. However, this accelerometer
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was damaged and substituted with the ADXL213 as it had the same digital out-

put. These accelerometers were readily available in the robotics laboratory used for

testing, so using them prevented delays in sourcing more ADXL202 accelerometers.

2.3 Verification of the Model Using the Inverted Pendulum

With the important accelerometer hardware selected the model developed in Section

2.1 can be evaluated. The goal is to verify that model Equations (2.1) and (2.2) fit

with experimental data collected using a physical inverted pendulum and attached

accelerometers.

2.3.1 Method

An existing inverted pendulum apparatus was used with an optical encoder providing

an independent measure of rotation, θen. The encoder used had a resolution and

nominal angular position error of 0.17◦. This setup is seen in Figures 2.9 and 2.10.

The cart position was fixed with a clamp to limit motion to the one rotational degree

of freedom of the pendulum.

The ADXL213 dual axis accelerometer was attached to the pendulum at radius

R = 0.3m, the approximate radius for a device mounted on top of the head, and

at an approximate angle λ = 45◦. It is important to accurately determine the

accelerometer orientation on the pendulum, as error in λ will cause an offset between

the orientation obtained from the encoder and that found via the accelerometer. The

following setup procedure is used:

1. Calibration data for the accelerometer is collected using the procedure in Sec-

tion 2.2.3. The zero g offset and sensitivity values can be applied to the

accelerometer outputs in post processing, meaning that all experimental data

can be collected in one session.

2. The encoder zero point is initialised by building the Simulink model to a

dSPACETM system with the pendulum hanging stationary under its own weight.
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Figure 2.9: The inverted pendulum laboratory equipment with accelerometer at-
tached

Figure 2.10: The inverted pendulum laboratory equipment showing the optical
encoder and cart clamped in place
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This procedure sets the direction straight down as θ = 0 for the encoder, which

can be modified to match the accelerometer model by adding π.

3. Attach the calibrated accelerometer to the pendulum at the desired radius and

approximate angle λ to the pendulum. The true λ can be calculated provided

that the pendulum is stationary using Equation (2.6) and the encoder angle.

However, it is important to ensure that the centre of the pendulum is inline

with the centre of the accelerometer package.

Data was collected while manually oscillating the pendulum in relatively slow

motions similar to typical head motions. Attaining exact frequencies was difficult.

However, performance improved markedly when aided by audible beeps. The fol-

lowing assumptions are made in this validation of the model:

• the point of rotation is fixed;

• the accelerometer is mounted exactly in the plane of motion;

• no out of plane motion occurs;

• the centre of the accelerometer is aligned with the centre of the pendulum.

2.3.2 Results and Discussion

Estimates of the true AR and AT were generated using θen and the model Equations

(2.1) and (2.2). To combat the buildup of noise due to the differentiation of θen, this

signal was filtered to smooth the steps caused by the finite resolution of the encoder.

The measured accelerations Ax and Ay were resolved along the tangential and radial

axes using Equations (2.3) and (2.4). A comparison of the model acceleration with

the measured accelerations is shown in Figure 2.11.

The mean, standard deviation (STD) and percentage errors are summarised in

Table 2.3. A percentage error of 5.4% relative to the mean amplitude shows a good

fit between the measured tangential acceleration and the model. However, 21.9%

shows the error is much worse for the radial acceleration due to poor sensitivity to

orientation when this axis is near vertical.

To determine the accuracy of the model fit to the experimental data in terms of
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Table 2.3: Angular and acceleration model error

Error
Measure

Acceleration Angular
AR (mg) AT (mg) θ (deg)

Mean 3.8 20.1 0.17
STD 3.4 13.7 0.04
Mean % 21.9 5.4 1.1

θ, independently from the solution method and noise, Equation (2.1) is integrated:

θ =
g

R

∫ t

0

∫ t

0

AT +
g

R

∫ t

0

∫ t

0

sin(θ) + tθ̇(0) + θ(0) (2.10)

Fitting Equation (2.10) to the experimental data determines the optimal initial

conditions θ̇(0) and θ(0). This method could also be used to find an optimal R value

for later calibration procedures, but here the measured R is used. Evaluating the

fit allows an estimate of the model error in terms of theta to be calculated.

The model error is evaluated for each subsequent 0.3 second period, as this is

the same period that the subsequent algorithm is commonly solved over for each

iteration. The final column in Table 2.3 shows the maximum mean error for any

section. This error is much less than 1◦ or 1.1% of the mean signal amplitude

in a highly dynamic situation and verifies that the inverted pendulum model does

capture the main dynamics for this situation. Explanations for the remaining model

error include:

• Missing dynamics due to finite encoder precision;

• Errors in the initial set up, placement and alignment of the accelerometer, and

zero position of the pendulum;

• Out of plane disturbances affecting the accelerometers.

2.4 Summary

An inverted pendulum model for head motion has been developed. This model is

defined by two equations that balance accelerations tangentially, Equation (2.1), and

radially, Equation (2.2). Consequently this model is free from unknown forces or
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inertial metrics. The model equations developed are experimentally verified using an

inverted pendulum apparatus, with an optical encoder providing the “true” measure

of rotation. The model presented is limited to one degree of rotational freedom.

However, provides a starting point to prove the concept of model based head tracking

using accelerometers.





Chapter 3

Difficulties in Solving the Model Equations

A simple model for head motion, based on an inverted pendulum with a fixed centre

of rotation, was presented in Figure 2.1 of Chapter 2. The model Equations (2.1)

and (2.2) describing the angular motion were validated experimentally, as seen in

Figure (2.11). For easy reference within this chapter these model equations are

repeated in Table 3.1.

Table 3.1: The model equations

AT = (R/g)θ̈ − sin(θ) (2.1)

AR = (R/g)θ̇2 − cos(θ) (2.2)

However, finding a stable solution to either Equation (2.1) or (2.2) proved dif-

ficult. This chapter will show that a conventional engineering approach fails to

produce a stable solution. The reasons for this unstable solution are investigated

through a linear representation of Equation (2.1). This simplification allows an ana-

lytical solution that approximates the solution to Equation (2.1) to be formed. This

analytical solution illustrates the specific reasons for the instability.

A Fourier series based approach is also applied as an initial attempt to stabilise

the solution. The method uses the assumption that the same frequencies that occur

within the acceleration signal, will also occur within the unknown θ signal. This ap-

proach is implemented to solve Equation (2.1) and shows improved results. However,

significant errors still remain, further demonstrating the challenge in stabilising the

solution to Equation (2.1) to obtain a suitable model-based head tracking method.
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3.1 A General Engineering Approach

To provide a solution for θ the tangential Equation (2.1) is initially considered. This

choice is made because AT has a higher sensitivity to θ when the accelerometer is

placed directly above the centre of rotation. This increased sensitivity results in

better quality signal for AT than AR, which is confirmed in the model verification

of Figure 2.11.

To investigate a solution from the tangential model Equation (2.1) a synthetic

signal for θ is generated using a simple sine wave. This signal is used to represent

the “true” θ, denoted θtrue, and is defined:

θtrue = a1 sin(ω1t) (3.1)

where:

a1 = 1/2

ω1 = 5 (3.2)

The signal θtrue of Equation (3.1) is substituted into Equation (2.1) to derive a

synthetic signal for AT,true:

AT,true = (R/g)θ̈true − sin(θtrue), (3.3)

Taking a general engineering approach and solving Equation (2.1) numerically

illustrates the instability present. Equation (2.1), where AT is given by AT,true of

Equations (3.1) – (3.3), was solved in Maple using the default initial value problem

(IVP) solver, a Fehlberg fourth-fifth order Runge-Kutta method, and in Matlab

using a similar solver. For two sets of initial conditions {θ0 = 0, θ̇0 = 0} and

{θ0 = θtrue(0), θ̇0 = θ̇true(0)}, both Maple and Matlab failed to produce a stable

solution.

The results for the two cases are presented in Figure 3.1. The solution from

the first case with initial conditions {θ0 = 0, θ̇0 = 0}, is seen to become unstable

immediately. The solution from the second case, with the true initial conditions,

performs better. However, the latter solution still only tracks the true solution
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of Equation (3.1), for two cycles before diverging, despite the unlikely perfectly

true initial conditions. These diverging results can be interpreted as the pendulum

spinning in the physical system.
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Figure 3.1: Numerical solutions to the tangential ODE given zero and true initial
conditions

A further test is done with an amplitude of θtrue that is one fifth of the signal

amplitude shown in Figure 3.1. The parameters a1 and ω1 in Equation (3.1) are

thus defined:

a1 = 1/10

ω1 = 5 (3.4)

Substituting the new θtrue, defined by Equations (3.1) and (3.4) into Equation (3.3)

provides the corresponding signal for AT,true.

Solving Equation (2.1), again numerically, with the true initial conditions {θ0 =

θtrue(0), θ̇0 = θ̇true(0)} and AT defined by the new AT,true of Equations, (3.1), (3.3)

and (3.4), illustrates some partial stability within the solution. This quasi-stability

is illustrated in Figure 3.2, where the solution oscillates around π although similar

oscillations have been observed at −π depending on the initial conditions chosen.
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The oscillatory solution in Figure 3.2 corresponds to the stable position of a physical

pendulum, where the pendulum hangs directly below the axis of rotation. Numerical

solutions with many different starting points have shown that including a damping

term, bθ̇ in the ODE of Equation (2.1) can stabilise this solution. However, adding

damping proves to be of no practical use in determining the true orientation θ, and

therefore the results are not shown.
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Figure 3.2: Numerical solution to the tangential ODE showing quasi-stability
present with small amplitude and true initial conditions

Due to the stiff nature of Equation (2.1) an implicit method, ode15s in Matlab,

was implemented in an attempt to increase the numerical stability of the method.

However, this method also fails, producing unstable results similar to those shown

in Figure 3.1.

Attempts to directly solve Equation (2.2) have been investigated by replacing

Equation (2.2) with the equations:

θ̇0 = +
√

g/R(AR + cos(θ), θ̇ > 0 (3.5)

= −
√

g/R(AR + cos(θ), θ̇ < 0 (3.6)

But the poor quality of the radial acceleration signal due to noise and a relatively

low signal, and the difficulty in handling the sign changes in Equations (3.5) and
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(3.6) gave unstable results. There is also no immediate, direct way of solving both

Equations (2.1) and (2.2) simultaneously.

3.2 The Linear System

To investigate the cause of the instability in the solution, shown in Figures 3.1 and

3.2, Equation (2.1) is linearised:

AT = (R/g)θ̈ − θ (3.7)

Equation (3.7) has an analytical solution of the form:

θ = θc + θp (3.8)

θc = C2e
√

g√
R

t
+ C1e

−
√

g√
R

t
(3.9)

where θc denotes the complimentary solution, C1 and C2 are arbitrary constants,

and θp is a particular solution to Equation (3.7).

The positive power in the C2 exponential term fully explains the instability

observed in the solutions of Figures 3.1 and 3.2. Typically, the transient solution

corresponding to Equation (3.9) would die away leaving the steady state solution

θp. However, the positive power of this exponential term results in an increasing

transient solution, which after only a short period of time completely dominates the

full solution.

Due to the large numerical value of the positive power exponential, the coeffi-

cient, C2 in Equation (3.9), must be found very precisely to determine an accurate

solution θ in Equation (3.8). Given the initial conditions determine C2, any small er-

ror in the initial conditions will be transferred to C2, and be greatly magnified in the

result. Thus, the solution of Equation (3.8) to the linear Equation (3.7) is extremely

sensitive to the initial conditions used, and hence is inherently ill-conditioned given

noisy measurements and uncertainty in any initial conditions for practical cases.

To illustrate this ill-conditioning for the linear Equation (3.7), consider a syn-

thetic acceleration signal AT,true,lin generated from θtrue, in Equations (3.1) and (3.2),
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as follows:

AT,true,lin = (R/g)θ̈true − θtrue (3.10)

Solving Equation (3.7) with AT determined from Equation (3.10), and using the

true initial conditions {θ0 = θtrue(0), θ̇0 = θ̇true(0)} provides a stable solution for

all time. However, introducing a small error ε to the θ̇0 initial condition makes the

solution unstable. For example, Figure 3.3 illustrates this ill conditioning when the

error ε = 1e−18, effectively machine zero or smaller computationally.
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Figure 3.3: Simulated linearised data, solved analytically using initial conditions

with a small additive error ε = 1e−18 applied to the true θ̇0 initial condition

3.3 A Frequency Based Solution

The numerical methods applied in the general engineering approach failed to produce

a stable solution to Equation (2.1), as seen in Figures 3.1 and 3.2. The failure of

this conventional approach means that a new method is required to solve Equation

(2.1) and provide a stable solution for θ. Thus, a unique frequency based method is

developed, and tested in this section.
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3.3.1 Method

The solution method presented, is based on the assumption that the frequencies

within an acceleration signal are generated by pure rotation, as is the case for the

model of Figure 2.1, and will also be present in rotation signal θ. This assumption

is utilised in the method constructed as follows.

Consider the following generic expression for θ denoted θsol, that is constructed

from sine and cosine curves:

θsol =

j∑
i=0

(ai sin(ωit) + bi cos(ωit)) (3.11)

where ai and bi are unknown constants, ωi denotes a rotational frequency present

in the signals, and j denotes the number of frequencies used to describe the signal

over a period ∆T .

Since AT is directly measured, the rotational frequencies ωi can be found using

the Fast Fourier Transform (FFT). This step may be avoided if typical head motion

can be described by a small set of ωi frequency terms. However, for this initial testing

the 10 largest frequencies, including the zero frequency, are selected by computing

the FFT over the selected signal period ∆T .

Substituting θsol from Equation (3.11), with known values of {ωi, i = 0, ..., j},
into the linear Equation (4.5), gives an expression for AT denoted AT,fit:

AT,fit =

j∑
i=0

(
aiĀi(t) + biB̄i(t)

)
(3.12)

where Āi(t) and B̄i(t) are functions of time defined in terms of ωi:

Āi(t) =
(− sin(ωit)−R/g sin(ωit)ω

2
i

)
(3.13)

B̄i(t) =
(− cos(ωit)−R/g cos(ωit)ω

2
i

)
i = 0, ..., j (3.14)

Setting AT,fit in Equation (3.12) equal to the measured data {AT (tk), k = 0, ..., N}
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yields the following matrix system:




Ā0(t0), B̄0(t0) · · · Āj(t0) B̄j(t0)

Ā0(t1), B̄0(t1) · · · Āj(t1) B̄j(t1)
...

...
...

...

Ā0(tN), B̄0(tN) · · · Āj(tN) B̄j(tN)







a0

b0

...

aj

bj




=




AT (t0)

AT (t1)
...

AT (tN)




(3.15)

where N denotes the number of sample time steps within the signal of length ∆T ,

and the parameters t0, t1, and tN denote individual time points.

The system in Equation (3.15) can be solved using a linear least squares method

to uniquely determine the constants { ai, bi, i = 0, ..., j}. Substituting the optimal

values of these coefficients into Equation (3.11), provides the solution for θ over the

whole period ∆T . The method is summarised in the flow-chart in Figure 3.4.

Tfrequencies        from A  
Determine the rotational   

sol to give  

Substitute 
Solution 

into 

Eq(3.11)
sol

Generate the Fourier Series  

Expression for   in terms of:  

Eq(3.11)

AT, fit

solSubstitute 

, Eq(3.12)

Into

Linear Model Eq(3.7) to give: 

AT, fit AT

Determine the optimal coefficients 

by a linear Least Squares fit of 

to the measured Eq(3.15) 

Figure 3.4: Flow-chart summarising the Fourier Series based method of solving
orientation.



3.3 A FREQUENCY BASED SOLUTION 53

3.3.2 Results and Discussion

The frequency method of Figure 3.4 is evaluated using signals collected experimen-

tally from the inverted pendulum of Figures 2.9 and 2.10. Two experiments were

conducted to test the method at different frequency motions. First, a slower motion

is investigated. The signal frequencies of the AT from the accelerometer and the

measured θ from the encoder denoted θen are analysed and compared. Figure 3.5

shows the frequency components of each signal for the same motion over a 10 second

period generated by using a FFT.

0 0.5 1 1.5 2
0

200

400

600

800

1000

1200

1400

1600

Frequency

M
ag

ni
tu

de

FFT of Tangential Acceleration
FFT of Theta

Figure 3.5: The FFT for both the measured AT and measured θen from the optical
encoder.

The results in Figure 3.5 show a good comparison in terms of the frequencies

represented within each signal. This result validates the underlying assumption

upon which this method is based. More specifically, Figure 3.5 shows that for the

physical inverted pendulum, acceleration and rotational signals do contain the same

frequency components, and are similar to what would be found in the intended

application space.

Figure 3.6 shows the results of the frequency method of Figure 3.4 for the first

case of slow motion. Figure 3.6 (A) shows the quality of the fit of the AT,fit ex-

pression of Equation (3.12) to the measured AT in Equation (3.15). Figure 3.6 (B)
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shows the resulting comparison to the true solution measured by the encoder, after

substituting the optimised variables {ai, bi, i = 0..j} into θsol of Equation (3.11).

Similar results are shown for the case of higher frequency motion in Figure 3.7.

The fits achieved in Figures 3.6 and 3.7 show a stable solution is found for θ.

The accuracy of the θ solution obtained by the method shows a good correlation

with the fit achieved to the corresponding AT signal over the same section. Although

poor results are typically achieved at the end of the signal. The value at tN would

correspond to the next unknown value for θ in a recursive approach applied for a

longer real time signal. The large error at this point would result in a poor estimate

of the true signal.

By including more ωi frequency terms in Equation (3.11) the results of Figures

3.6 and 3.7 can be improved. However, including more frequency terms in Equation

(3.11) increases the computation needed. In addition, a large number of frequency

terms in the method can result in instability, especially when shorter signals are

considered. This instability is explained due to insufficient information being avail-

able to accurately determine the coefficients in Equation (3.15) for a large number

of terms. Frequency terms in Equation (3.11) that are close to each other can effec-

tively trade off with each other, whether or not the frequency actually exists in the

measured AT signal. For example, if the frequencies within the terms are close and

the signal is short, a large value for the a1 coefficient, in Equation (3.15), may be

countered with a large a2 coefficient of the opposite sign. These competing terms

would result in a false representation of the magnitudes of the various frequencies,

leading to instability in the overall solution.

To limit the number of ωi terms, the basic method presented in Figure 3.4 was

extended to allow optimal ωi values, within a preset bound around the measured

frequencies in Figure 3.5. In other words, some freedom was allowed in the fre-

quencies to provide a good fit to the measured AT signal, without requiring a large

number of predefined frequencies. The essential idea was to have an objective func-

tion with the frequencies as the only inputs. For each fixed set of frequencies the

method of Figure (3.4) is applied to find the best coefficients {ai, bi, i = 0..j}. The

resulting least squares error is then computed between AT,fit of Equation (3.12) and

the measured AT . The set of frequencies that minimise the least squares error can

be determined by a standard non-linear optimisation. However, this extended new

method improved the fit to AT with fewer frequencies, it did not improve the result
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Figure 3.6: Acceleration fit and solution for slow motion using the frequency based
method
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for θ compared to Figures 3.6 and 3.7, therefore the details of this method and

results are not shown.

The reason that the these frequency based approaches fail is that only one

Equation (2.1) is used to find θ. As shown in Equation (3.8) there are in fact

infinitely many solutions, θ, that satisfy Equation (3.7) by choosing different C1 and

C2 constants. Forcing the solution to be of the form Equation (3.11), in principle

would seem to avoid the exponential terms in Equation (3.9) from entering the

solution to θ. The problem is that a low frequency sine wave could easily resemble

the positive exponential term in Equation (3.9) for a small C2 and restricted time

interval. Therefore, there is no constraint on Equation (3.11) that can completely

avoid some contribution from the C2 in Equation (3.9) and thus the final solution

for θ is corrupted and significant errors results, as shown in Figures 3.6 and 3.7.

3.4 Summary

Solving the model Equations (2.1) and (2.2) to provide a solution for the orientation

of the pendulum proves a very difficult and challenging problem in creating a model

based sensor for head tracking using only acceleration measurements. Applying a

general engineering approach, and solving the equations numerically produces un-

stable results, as illustrated in Figures 3.1 and 3.2. Linearising Equation (2.1) allows

an analytical solution to be formed. This analytical solution shows that the transient

part of the solution becomes unstable due to the presence of a positive exponential

power. Thus, the coefficient of the term containing this positive exponential power

must be very precisely known to provide a stable overall solution. Therefore, the

solution is ill-conditioned and is extremely sensitive to the initial conditions, and

thus measurement noise and other errors.

There is a unique solution to Equations (2.1) and (2.2) corresponding to the

true signal over the period considered. However, any explicit or implicit numerical

method that relies on initial conditions to start it off must start at precisely the

correct point otherwise the solution will move on an unstable transient of Equation

(2.1).

The difficulty of determining a solution, θ, to the inverted pendulum model

Equations (2.1) and (2.2) is supported in the literature by the fact that no stable
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solution over any reasonable length of time is presented. As discussed in Section

1.3.1, Gillies et al. [2003] do solve the tangential equation. However, their solution

is unstable over time, and they declare that it is of no use after a relatively very

short 0.1 seconds.

A method based on a Fourier series was developed and presented in Figure 3.4.

This method can produce stable results, as shown in Figures 3.6 and 3.7. However,

the method is restricted by the signal motion, selected frequencies, and the length

of signal solved over. Specifically this method fails to produce the required solution,

only providing one possible solution to Equation (3.7) that contains transient terms

from Equation (3.9). As a result, while the method can track a “true” solution, it is

not fully accurate. Hence, an improved approach, beyond this novel frequency ap-

proach, is required to create the accelerometer model-based sensor for head tracking

or similar applications.



Chapter 4

Initial Model Implementation

Finding a solution to Equation (2.1) is a challenging problem, with the conventional

approach of Figures 3.1 and 3.2 being unstable and other initial approaches shown in

Figures 3.6 and 3.7 producing stable, but inaccurate, results. The instability and ill

conditioning observed in the numerical solutions to Equation (2.1) and the linearised

model Equation (3.7), shown in Figures 3.1 – 3.3, is caused by the presence of a

positive exponential power in the transient portion of the solution.

Within this chapter a unique mathematical approach is developed based on

writing the analytical solution to the linearised model of Equation (2.1) in terms of

arbitrary constants C1 and C2 and assuming the initial conditions are unknown. The

independent radial Equation (2.2) is then utilised to find optimal and precise values

for the unknown constants, C1 and C2. Thus, providing an accurate measurement

of rotation.

Two methods are developed using different linearised expressions for sin(θ) in

Equation (2.1). The first method linearises Equation (2.1) over a period of 0.1s

[Keir et al., 2007b]. However, the results showed a large standard deviation in

the predicted versus the measured angle θ. To improve performance, a piecewise

solution method was developed allowing an approximate, but highly accurate, ana-

lytical solution to Equation (2.1) over the longer period of 0.3s [Keir et al., 2007a].

These two methods are presented, compared and evaluated using both simulated

and experimental data.
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4.1 Methods

4.1.1 Single Section

The linearisation, sin(θ) = θ, in Equation (3.7) of Section 3.2 is only valid for

small angles. It is thus not appropriate for representing the large rotations possible

with head motion. This simplification is improved by fitting a more general linear

relationship to sin(θ) over a range of theta within a short time period.

The sin(θ) linearisation is illustrated schematically in Figure 4.1. The parameter

θnew in Figure 4.1 (A) corresponds to the time t where θ is unknown, θold is a

previously stored vector of known or identified θ values, and θmax and θmin are

the maximum and minimum values of θold. These values of θmax and θmin define

a specific section of the sine curve shown in Figure 4.1 (B). To find the best fit to

sin(θ) in this section of Figure 4.1 (B), 10 points θ1, ..., θ10, are equally spaced in the

interval [θmin, θmax].

The linearisation of sin(θ) is defined:

sin(θ) ' (b1 + b2θ) (4.1)

Substituting θ = θi, where i = 1, ..., 10 into Equation (4.1) gives 10 equations in the

unknowns b1 and b2:

b1 + b2θi = sin(θi) i = 1, ..., 10. (4.2)

Equation (4.2) can be written as a matrix system:




1 θ1

1 θ2

...
...

1 θ10




[
b1

b2

]
=




sin(θ1)

sin(θ2)
...

sin(θ10)




(4.3)

This system can be solved by linear least squares to uniquely determine b1 and b2.

The length of time that the linear representation of sin(θ) in Equation (4.1) is

valid, is highly dependent on the dynamics of θ. Fast and large rotations will result
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Figure 4.1: Linearisation of sin(θ) over a short time period

in a wide range of θ between θmax and θmin and thus require a small period for ∆T

in Figure 4.1 (A) to ensure the accuracy of the linearised fit to the sine curve in

Figure 4.1 (B). For this method a time period of ∆T = 0.1s is used.

To get an idea of the error involved, consider the fast 2Hz head motion with

an amplitude of 15◦ in Figure 4.2 (A). The values of θmax and θmin define the

range of θ within ∆T = 0.1s as 17.6◦ at the steepest section of the signal. This

signal oscillates about π/2 thus, the range of θ coincides with a point of maximum

curvature for sin(θ) in Figure 4.2 (B). Using Equations (4.1) - (4.3) to linearise sin(θ)

gives {b1 = 0.9952; b2 = 0}. Therefore the maximum error of 0.007 is given for this

situation at θmax and θmin, and is representative of the worst case error.
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Figure 4.2: Maximum error in the sin(θ) linearisation where ∆T = 0.1s

The analytical solution of Equation (3.8) is incomplete, as the particular solution

θp, is not given. However, AT is measured at discrete times. Therefore, fitting a cubic

function to AT over the short time period allows θp to be analytically determined.

Thus, an analytical solution can be found over the time period of interest.
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The cubic functions approximating the measured tangential acceleration, AT ,

over the period of ∆T = 0.1s are defined:

AT,fit = u1 + u2t + u3t
2 + u4t

3 (4.4)

Note that in practice AT and AR consist of discrete points, measured at 100Hz in

this research. For the given time period of 0.1s the parameters u1, ..., u4 in Equation

(4.4) are determined by a linear least squares polynomial fitting algorithm. For

example, “polyfit” in Matlab.

Substituting Equations (4.1) and (4.4) into Equation (2.1) gives:

(R/g)θ̈ − (b1 + b2θ) = u1 + u2t + u3t
2 + u4t

3 (4.5)

The analytical solution to Equation (4.5) exists and can be found using Maple and

is defined:

θsol = C2e
(mt) + C1e

(−mt) + f(t) (4.6)

where C1 and C2 are unknown constants and:

m =

√
(b2g)√
R

f(t) =
1

b 2
2 g

(
− gb2(b1 + u1 + u2t + u3t

2 + u4t
3)− 2R(3u4t + u3)

)

The solution, θsol, in Equation (4.6) is very sensitive to the value of C2 due to the

positive e(mt) term, as demonstrated in Figure 3.3 of Section 3.2. Thus, optimal and

precise values of C1 and C2 are required to provide an accurate approximation of

the solution to the tangential Equation (2.1).

The radial ODE, Equation (2.2), is an independent model for describing θ and

thus, provides a means to solve for C1 and C2. However, Equation (2.2) contains

a nonlinear cosine term that prevents a simple analytical approach to determining

C1 and C2. A quadratic function is therefore fitted to this cosine term in a similar

way that the linear function was fitted to the sine term in Equations (4.1) – (4.3).

A quadratic function was chosen for increased accuracy and since there would al-

ready be a quadratic term due to the presence of the θ̇2 in Equation (2.2). This
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approximation to cos(θ) is defined:

cos(θ) ' c1 + c2θ + c3θ
2 (4.7)

where c1, c2, and c3 are evaluated by a linear least squares fit of the quadratic

function to cos(θ) over the range of θ within time period, using the method in

Equation (4.3). Substituting in cos(θ) from Equation (4.7), and θsol from Equation

(4.6) into Equation (2.2) provides an expression for AR in terms of C1 and C2,

defined:

AR,sol = (R/g)θ̇ 2
sol − (c1 + c2θsol + c3θ

2
sol)

=
R

g

(
C2me(mt) − C1me(−mt) + ḟ(t)

)2−

c3

(
C2e

(mt) + C1e
(−mt) + f(t)

)2−
c2

(
C2e

(mt) + C1e
(−mt) + f(t)

)− c1 (4.8)

where all terms have been defined previously.

The optimal values of C1 and C2 in Equation (4.6) could be defined theoretically

as the best least squares fit to the actual θ values. But in practice for the application

considered in this thesis, the measured θ is not available to constrain C1 and C2 in

the considered time interval. However, since AR,sol in Equation (4.8) is directly

derived from θsol in Equation 4.6, and the measured AR is directly determined from

the physical θ dynamics, Equations (4.6) and (4.8) are theoretically equivalent. In

other words, the optimal C1 and C2 that best fit θsol in Equation 4.6 to the measured

θ also correspond to the optimal C1 and C2 that best fit AR,sol in Equation (4.8) to

the measured AR. Note that in practice noise may prevent these optimal values of

C1 and C2 from perfectly coinciding.

The “best fit” of AR,sol in Equation (4.8) to the measured radial acceleration

AR is defined in a least squares sense over the short time period of ∆T = 0.1s, as

follows. First, consider the following objective function:

Ω(C1, C2) =
k∑

i=0

(
AR,sol(tk − i∆t)− AR(tk − i∆t)

)2

(4.9)

where k is the number of data points in the fitted period prior to the current time

point, t = tk, and ∆t is the fixed time interval between the points. Note that,
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∆T = 0.1s and ∆t = 0.01s corresponding to a measurement frequency of 100Hz and

k = 10. The minimum value of the surface Ω(C1, C2) in Equation (4.9) provides the

optimal value of the unknown constants C1 and C2, and occurs where the gradient

of Ω with respect to C1 and C2 is 0.

Setting the gradient ∇C1,C2Ω = 0 results in two equations:

∂

∂C1

( k∑
i=0

(
AR,sol(tk − i∆t)− AR(tk − i∆t)

)2
)

= 0 (4.10)

∂

∂C2

( k∑
i=0

(
AR,sol(tk − i∆t)− AR(tk − i∆t)

)2
)

= 0 (4.11)

Equations (4.10) and (4.11) are a coupled set of multivariate polynomials. After

computation in Maple, Equation (4.10) is order 4 in the variable C1 and order 3

in the variable C2, and Equation (4.11) the opposite, order 4 in the variable C2,

and order 3 in the variable C1. Solving Equations (4.10) and (4.11) in Maple thus

yields nine different pairs of solutions including complex solutions. These solutions

are denoted as {C(i)
1 , C

(i)
2 , i = 1, ..., 9}.

The correct solution corresponding to the global minima is defined:

{C(j)
1 , C

(j)
2 } = {C1,true, C2,true} (4.12)

where C
(j)
1 ε R, C

(j)
2 ε R and

Ω(C
(j)
1 , C

(j)
2 ) = min

i ε {1,...,9}

(
Ω(C

(i)
1 , C

(i)
2 )

)
(4.13)

In essence, the optimal solution is the pair {C(j)
1 , C

(j)
2 } that is real valued and has

minimal Ω.

The optimal C1 and C2 of Equation (4.12) are substituted into Equation (4.6)

to obtain θsol throughout the current time interval ∆T and thus find θ and the head

orientation at the current time tk. The parameter θold is then updated to include θsol

at time tk and the overall process is repeated for the next time step and solution.

Figure 4.3 summarises this method in a flow-chart.
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4.1.2 Multiple Piecewise Sections

The single section method of Equations (4.1) to (4.13) restricts the time interval

∆T in Figure 4.1 (A) to a sufficiently small length where the sin(θ) linearisation in

Equation (4.1) remains accurate. A small time interval ∆T corresponds to a small

time period of dynamic motion, which given noisy signals allows a lot of freedom for

the solution to move. As a result it provides less constraint on the optimal C1 and

C2. Extending the length of ∆T in Figure 4.1 (A) should provide more robustness

against noise. A linear piecewise function for sin(θ) would eliminate or ameliorate

this restriction of the single section method.

To enable an increase in ∆T , while still maintaining the quality of the sin(θ)

linearisation, a piecewise linear approximation is given. A simple analytical solution

is then developed across this approximation, using one C1 and C2 rather then a

separate C1 and C2 for each small time interval of ∆T = 0.1s as in the process

shown in Figure 4.3.

The piecewise linearisation of sin(θ) is extended from Figure 4.1 and is shown

in Figure 4.4. Figure 4.4 (A) plots the past values of theta against time with

θnew, denoted by an “*”, representing the unknown θ at the current time step. A

longer period of ∆T = 0.3s is divided into three equal sections of length δT = 0.1s.

The range of θ within each section is shown in Figure 4.4 (B). The best linear

approximation to sin(θ) over each period in Figure 4.4 (B) is found using an approach

similar to Equations (4.1) – (4.3). The method is described in detail for these three

sections, but can be easily extended to a higher number, with the trade off that

the simple cubic function may not be valid over longer periods of ∆T , especially at

higher frequencies.

With δT = 0.1s in Figure 4.4 the piecewise approximation to sin(θ) is defined:

sin(θ(t)) ' b1,i + b2,iθ 0.1(i− 1) 6 t 6 0.1i, i = 1, ..., 3 (4.14)

where b1,i and b2,i are found by solving Equation (4.3) over the ith section for

i = 1, ..., 3. A least squares cubic AT,fit defined by Equation (4.4) is now fitted

over ∆T = 0.3s. Substituting Equation (4.14) and the extended least squares cubic,

AT,fit for AT into Equation (2.1) yields a set of three differential equations describing
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Figure 4.4: A piecewise linearisation of sin(θ) allows the model to be fitted to a
longer period

the motion:

(R/g)θ̈ − (b1,1 + b2,1θ) = AT,fit 0.0 6 t 6 0.1 (4.15)

(R/g)θ̈ − (b1,2 + b2,2θ) = AT,fit 0.1 < t 6 0.2 (4.16)

(R/g)θ̈ − (b1,3 + b2,3θ) = AT,fit 0.2 < t 6 0.3 (4.17)

An analytical solution to θ in the set of Equations (4.15) - (4.17) can be found by

solving the first ODE analytically, then using the end point value of the resulting

solution as the initial condition for the second ODE, and so on up to the third ODE.

The solution θsol,1 to the first interval is given by Equation (4.6) with b1 and b2

replaced by b1,1 and b2,1 in Equation (4.15). However, the second and third solutions

θsol,2 and θsol,3 to Equations (4.16) and (4.17) are more difficult to write simply. With

the aid of Maple the general solution is constructed as follows:

θsol,i = (Ā1,iC1 + Ā2,iC2 + Ā3,i)e
mi(t−Ti−1)+

(B̄1,iC1 + B̄2,iC2 + B̄3,i)e
−mi(t−Ti−1)−

1

b 2
2,i g

(
b2,ig(b1,i + u1 + u2t + u3t

2 + u4t
3) + 2R(u3 + 3u4t)

)
(4.18)
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which has a differential of:

θ̇sol,i = mi(Ā1,iC1 + Ā2,iC2 + Ā3,i)e
mi(t−Ti−1)−

mi(B̄1,iC1 + B̄2,iC2 + B̄3,i)e
−mi(t−Ti−1)−

1

b 2
2,i g

(
b2,ig(u2 + 2u3t + 3u4t

2) + 6Ru4)
)

(4.19)

Note that the differential θ̇sol,i in Equation (4.19) is required to enable a piecewise

definition of all the unknown parameters in Equation (4.18) in terms of the unknown

constants C1 and C2. The parameters in Equations (4.18) and (4.19) are defined as

follows:

Ti = iδT

mi =
(b2,ig)1/2

R1/2

Ā1,i =
(b2,ig)1/2q1,i + dq1,iR

1/2

2(b2,ig)1/2

Ā2,i =
(b2,ig)1/2q2,i + dq2,iR

1/2

2(b2,ig)1/2

Ā3,i =
1

2b
5/2

2,i g3/2

(
(b2,ig)3/2(b1,i + u1 + u2Ti−1 + u3T

2
i−1 + u4T

3
i−1) + u2(b2,igR1/2)

+2u3((b2,ig)1/2R + b2,igR1/2Ti−1) + 3u4(+2R3/2 + 2(b2,ig)1/2RTi−1 + b2,igR1/2T 2
i−1)

+ q3,ib
5/2

2,i g3/2 + dq3,ib
2

2,i gR1/2
)

B̄1,i =
(b2,ig)1/2q1,i − dq1,iR

1/2

2(b2,ig)1/2

B̄2,i =
(b2,ig)1/2q2,i − dq2,iR

1/2

2(b2,ig)1/2

B̄3,i =
1

2b
5/2

2,i g3/2

(
(b2,ig)3/2(b1,i + u1 + u2Ti−1 + u3T

2
i−1 + u4T

3
i−1)− u2(b2,igR1/2)

+2u3((b2,ig)1/2R− b2,igR1/2Ti−1) + 3u4(−2R3/2 + 2(b2,ig)1/2RTi−1 − b2,igR1/2T 2
i−1)

+ q3,ib
5/2

2,i g3/2 − dq3,ib
2

2,i gR1/2
)

(4.20)

The unknown coefficients q1,i, q2,i, q3,i and dq1,i, dq2,i, dq3,i in Equations (4.20) are
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formulated such that:

θsol,i(Ti−1) = θsol,i−1(Ti−1) = q1,iC1 + q2,iC2 + q3,i

θ̇sol,i(Ti−1) = θ̇sol,i−1(Ti−1) = dq1,iC1 + dq2,iC2 + dq3,i i = 2, 3 (4.21)

In other words, q1,i, ..., dq3,i are the coefficients of C1 and C2 for each initial condition

of Equations (4.15) – (4.17). For the case where i = 1, q1,i, q2,i, q3,i and dq1,i, dq2,i,

dq3,i are defined by putting t = 0 into Equation (4.18) and (4.19):

θsol,1(0) = C1 + C2 − 1

b 2
2,i g

(b2,ig(b1,i + u1) + 2Ru3))

θ̇sol,1(0) = −miC1 + miC2 − 1

b 2
2,i g

(
b2,igu2 + 6Ru4)

)
(4.22)

giving:

q1,i = 1 dq1,i = −mi

q2,i = 1 dq2,i = +mi

q3,i = − 1

b 2
2,i g

(b2,ig(b1,i + u1) + 2Ru3)) dq3,i = − 1

b 2
2,i g

(
b2,igu2 + 6Ru4)

)

i = 1. (4.23)

For i = 2, 3 the coefficients, q1,i, q2,i, q3,i and dq1,i, dq2,i, dq3,i are defined recursively

for computational efficiency and ease of programming, as follows:

q1,i = Ā1,i−1e
mi−1(Ti−1−Ti−2) + B̄1,i−1e

−mi−1(Ti−1−Ti−2)

q2,i = Ā2,i−1e
mi−1(Ti−1−Ti−2) + B̄2,i−1e

−mi−1(Ti−1−Ti−2)

q3,i = Ā3,i−1e
mi−1(Ti−1−Ti−2) + B̄3,i−1e

−mi−1(Ti−1−Ti−2)−
1

b 2
2,i−1g

(
b2,i−1g(b1,i−1 + u1 + u2Ti−1 + u3T

2
i−1 + u4T

3
i−1 ) + 2R(u3 + 3u4Ti−1)

)

dq1,i = mi−1Ā1,i−1e
mi−1(Ti−1−Ti−2) −mi−1B̄1,i−1e

−mi−1(Ti−1−Ti−2)

dq2,i = mi−1Ā2,i−1e
mi−1(Ti−1−Ti−2) −mi−1B̄2,i−1e

−mi−1(Ti−1−Ti−2)

dq3,i = mi−1Ā3,i−1e
mi−1(Ti−1−Ti−2) −mi−1B̄3,i−1e

−mi−1(Ti−1−Ti−2)−
1

b 2
2,i−1 g

(
b2,i−1g(u2 + 2u3Ti−1 + 3u4T

2
i−1 ) + 6Ru4)

)

i = 2, 3 (4.24)

In summary, Equations (4.18) – (4.24) fully determine the analytical solution to
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Equations (4.15) – (4.17) in terms of the unknown parameters C1 and C2 in Equation

(4.18). The overall solution defined over the whole period ∆T is written more

compactly as follows:

θsol(t) =
3∑

i=1

θsol,i(t)
(
H(t− Ti)−H(t− Ti−1)

)
(4.25)

where H is the Heaviside function defined:

H(t− Ti) = 1, t < Ti

= 0, t ≥ Ti (4.26)

The piecewise solution θsol of Equation (4.25) is then substituted into Equation

(4.8) and C1 and C2 evaluated over ∆T = 0.3s in the same way as the single section

method over ∆T = 0.1s, using Equations (4.9) – (4.13). The method is summarised

in the same way as Figure 4.3 with Equations (4.1), (4.5) and (4.6) replaced with

Equations (4.14), (4.15) – (4.17) and (4.25), respectively. Hence the same flowchart

process of Figure 4.3 applies to this extended, potentially more robust approach.

4.1.3 Analysis and Performance Metrics

The two methods of Equations (4.1) – (4.13) and Equations (4.14) – (4.25) are vali-

dated using both synthetic and experimental data. Due to the generally symmetric

nature of head motion [Shaw and Liang, 1992], it is reasonable to use a modified

sine wave as a basic representation of head motion. This simplification allows the

algorithms to be easily tested with different dynamics and noise. The main goals of

this validation testing include:

• An analysis using synthetic data to determine the robustness to noise and

accuracy of these algorithms;

• To determine and evaluate the robustness and performance of the methods to

dynamic motion over the range typically experienced during head motion;

• To test these methods with experimental data, collected using the inverted

pendulum apparatus in Figures 2.9 and 2.10.
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For the synthetic data, an artificially generated θ represents the “true” head

motion and is used to generate the “measured” acceleration signals using the model

Equations (2.1) and (2.2). For the experimental data, the true head motion is the

angular motion of the inverted pendulum as recorded by the optical encoder mea-

surement. The acceleration signals are directly measured using an accelerometer. In

both cases, the error is represented by the absolute error in degrees and the relative

percentage error between the calculated θ using the two methods of Equations (4.1)

– (4.13) and Equations (4.14) – (4.25), and the “true” θ. The results are summarised

by reporting the mean, standard deviation and maximum error. These performance

metrics are calculated after any initial transient behaviour in the solution has died

away.

4.2 Results and Discussion

4.2.1 Robustness to Noise

A synthetic θ signal is generated using modified sine waves to represent typical head

motion. This signal is used to represent the “true” θ, denoted θtrue and is defined

here as:

θtrue = 0.128 + 0.16 sin(4t + 1.6) + 0.16e−(t+0.4) cos(2t + 0.8) (4.27)

θtrue is substituted into the model Equations (2.1) and (2.2) to derive synthetic

signals for AT,true and AR,true:

AT,true = (R/g)θ̈true − sin(θtrue), (4.28)

AR,true = (R/g)θ̇ 2
true − cos(θtrue). (4.29)

However, to accurately simulate real acceleration, signal noise must be added.

Artificial noise is generated to approximate the experimental noise in Table 2.3,

which was measured during model validation. The noise on the measured acceler-

ation signals AT and AR is comprised of two sources. The first source is a high

frequency raw noise from the accelerometer and circuitry. The second source is a

lower frequency modelling error, for example out of plane motion that is not cap-
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tured by the encoder. Both sources of noise can be simulated by high and low

frequency sine waves. Normalised noise signals modelled on the experimental noise

are defined:

AT,noise = 0.48 cos(63.3t) + 0.40 cos(105.7t) + 0.32 sin(213t) (4.30)

AR,noise = 0.40 cos(63.3t) + 0.26 sin(63.3t)− 0.35 cos(105.7t)−
0.20 sin(105.7t)− 0.30 cos(213t)− 0.10 sin(213t) (4.31)

where the frequencies 63.3, 105.7 and 213 were determined by fitting to experimental

noise signal. The noise signals of Equations (4.30) and (4.31)are added to AT,true

and AR,true from Equation (4.28) and (4.29). The resulting functions of time are

sampled every 0.01s providing a representation of the “real” measured accelerations

AT,real and AR,real:

AT,real = AT,true + εT ĀT,trueAT,noise (4.32)

AR,real = AR,true + εRĀR,trueAR,noise (4.33)

where εT and εR define three different noise amplitudes:

εT = 0%, 5.4%, 10.8% (4.34)

εR = 0%, 21.9%, 43.8% (4.35)

and ĀT,true and ĀR,true are the mean absolute signal amplitudes given by:

ĀT,true =
1

n

n∑
i=1

|AT,true,i| (4.36)

ĀR,true =
1

n

n∑
i=1

|AR,true,i| (4.37)

where n defines the number of points within the total length of the 4.0s signal tested.

For simplicity in the results that follow, the three noise levels of Equations (4.34)

and (4.35) are refereed to as 0, Mean, and 2×Mean, with the Mean refereing to the

mean experimental percentage errors of 5.4% on AT and 21.9% on AR first derived

in Table 2.3. Thus, these three levels represent typical, no error and outlying noise

cases.

The single section method of Equations (4.1) – (4.13) is denoted Method A, and
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the piecewise method of Equations (4.14) – (4.25) is denoted Method B. Both meth-

ods are tested with the synthetic acceleration signals derived in Equations (4.32)

and (4.33), at the three noise levels, corresponding to Equations (4.34) and (4.35).

Method A is implemented with an interval of 0.1s and Method B was implemented

using three equal sections over 0.3s. The algorithm of Figure 4.3 is applied over time

steps of 0.01s from an initial time 0s to an end time of 4.0s, which covers several

motion cycles.

The results are shown in Table 4.1 and plotted for the Mean noise case in

Figure 4.5. A calculation of rotation using the static tilt method of Equation (2.6)

in Section 2.2.1 is also included in the figure for comparison. However, clearly this

static method should not perform well, as it fails to take into account the effects of

acceleration due to motion.

Table 4.1: Error response to the presence of noise

Noise Max (deg) STD (deg) Mean (deg) %

(A) None 0.14 0.01 0.001 0.02
Mean 2.0 0.39 0.42 6.8
2×Mean 2.9 0.56 0.63 10.0

(B) None 0.17 0.02 0.005 0.08
Mean 1.1 0.19 0.17 2.8
2×Mean 1.6 0.28 0.30 4.7

In the zero noise case, Table 4.1 shows that Methods A and B perform extremely

well finding the correct solution for θ with a maximum error of 0.14◦, which is due

to discretisation and round off error. The results deteriorate, as expected, when

noise is applied to the simulated data. Both methods have a mean error of less than

1◦ for each noise case. However, Method B shows superior performance with the

maximum, mean and standard deviation of the error being approximately half that

of Method A for the same synthetic signal.

The results in Table 4.1 thus suggest Method B is a significantly more accurate

method than Method A. The increase in accuracy of Method B is due to solving

over a longer period, which increases the amount of motion signal relative to the

noise present, thus further constraining the solution via an improved signal to noise

ratio.

Also illustrated by Figure 4.5 is the robustness of the methods to unknown
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Figure 4.5: Response to the Mean noise added to simulated data using the single
section method, Method A, and piecewise section method, Method B. The methods
both track quickly to the true solution, despite non a non zero initial condition, and
θold = 0 value.
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starting conditions. Each method requires knowledge of prior θ values to make

accurate approximations to the sine and cosine curves. In the absence of such

information the initial θold vector is set to 0. However, as seen in Figure 4.5, both

methods quickly track to the true solution and any transient dynamics due to the

wrong initial conditions die away after a short period of time.

Accelerometer Placement

Further improvements can be achieved by optimising the accelerometer place-

ment. Aligning AR with gravity gives poor sensitivity to static rotations along this

axis. This poor sensitivity is illustrated in Figure 2.11 with the measured AR having

a very small amplitude and a large mean error of 21.9%. Table 4.2 shows the results

using Method A and B for the same signals used for the results in Table 4.1, but

shifting θ by adding 45◦. Note that the settling time of the initial transient section

(not shown) is increased due to the large difference between the true θ and the initial

assumption that θold = 0. Shifting the placement of the accelerometer in this way

reduces the mean absolute percentage error by a degree of magnitude.

Table 4.2: Error response when accelerometer placement is shifted

Noise Max (deg) STD (deg) Mean (deg) %

(A) Mean 0.38 0.083 0.085 0.79
(B) Mean 0.20 0.022 0.030 0.28

Using the same absolute noise for a change in the accelerometer placement may

not be truly representative of a real case. However, the results of Table 4.2 illustrate

the potential for improved performance by carefully positioning the accelerometer

so that it is not directly above the centre of rotation. This approach would thus

separate the vertical and radial axes in Figure 2.1. In practice, optimal accelerometer

placement may be restricted by physical constraints imposed by the application.

4.2.2 Dynamic Performance

One of the key drivers for this work is to improve orientation accuracy in a fully

dynamic application. To quantify the dynamic performance of the algorithms of

Equations (4.1) – (4.13) and Equations (4.14) – (4.25), a synthetic signal θtrue is
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generated using a simple sine wave:

θtrue = ā
π

180
sin(2πf̄t) (4.38)

where the amplitude ā = 10◦ and frequency f̄ is varied from 0.1Hz to 2Hz. The

AT,true and AR,true signals are generated by substituting Equation (4.38) into Equa-

tions (2.1) and (2.2) as was done in Equations (4.28) and (4.29). The “real” AT

and AR signals AT,real and AR,real are then represented by putting εT = 5.4% and

εR = 21.9% into Equations (4.32) and (4.33), corresponding to the mean noise case

in Table 4.1. The resulting functions are then discretised as function of time, to

match a 100Hz sampling rate. Method A of Equations (4.1) – (4.13), Method B of

Equations (4.14) – (4.25), and the static tilt method of Equation (2.6) from Section

2.2.1, are compared by plotting the percentage error in the solution against each

frequency, f̄ , from 0.1Hz to 2Hz in Figure 4.6.
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Figure 4.6: The response of the methods presented to increasing dynamics

The results for the static tilt method in Figure 4.6 confirm that it’s use is rightly

limited to stationary or near stationary orientation measurements. Note that the

result at 0.1Hz is perhaps unfairly represented. The poor result is largely due to

the noise on AT , as no smoothing or fitting takes place with the implementation of
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this method. However, the general trend is that this method cannot account for the

increased dynamics and the performance thus quickly drops away as frequency is

increased.

The key result in Figure 4.6 is that fitting the model to more data, which is

made feasible by the piecewise Method B, improves performance. However, this

performance is still limited at higher frequencies by the approximations to AT and

sin(θ) given by Equations (4.1), (4.14) and (4.4). The limitations are described as

follows.

1. The cubic fit of Equation (4.4) to AT over the whole period limits the dynamics

of AT permissable within the period. With a 3Hz signal this approach would

result in fitting the cubic to almost a complete sine wave period. Consequently,

the piecewise method in its current form fails to produce useful results at these

higher frequency dynamic inputs.

2. The sine linearisation made in Equations (4.1) and (4.14) for each method

becomes less accurate as the range of θ within the fixed 0.1s time periods

increases with frequency.

The first limitation could be overcome by, for example, fitting piecewise polynomials

over AT . The second limitation could be overcome by fitting more sections for the

same period of time, ∆T . For example, if the number of sections is chosen to be

N = 4 in Equation (4.14), and ∆T = 0.28, giving shorter sections of δT = 0.07s,

then with the same cubic AT , the results are improved as also shown in Figure 4.6.

Both of these extensions are investigated in detail in the following chapter.

4.2.3 Experimental Results

Results so far have been based only on simulated data and noise. To validate the

methods experimentally in a real environment, the inverted pendulum apparatus of

Figures 2.9 and 2.10 is used with an encoder to provide the “true” measure of θ for

comparison of Method B and the static tilt method. Method A is ignored based on

the simulated data results.

Three experiments were conducted using different frequencies and amplitudes
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to cover a wide range of potential head motion. The acceleration data collected was

solved for rotation using the piecewise algorithm Method B, of Equations (4.14) –

(4.25), with N = 3, δT = 0.1s sections. A comparison of the output solution from

Method B to the reference encoder signal is shown in Figure 4.7 and error metrics

are given in Table 4.3.

All three data sets have a mean error less than 1◦, including the extreme case

of Figure 4.7(C), which oscillates between −36◦ and +63◦. Although the maximum

error was 3.5◦ in this case, it is due to the excessively large θ seen. The maximum

percentage error relative to the range of motion is 14.70%, with a mean of 3.79%.

These overall results validate the premise that an accelerometer combined with an

accurate system model can be used to accurately determine dynamic orientation.

Table 4.3: Experimental error results

Data Max (deg) STD (deg) Mean (deg) %

A (≈ 0.75Hz) 1.7 0.40 0.61 4.25
B (≈ 1Hz) 0.91 0.23 0.27 5.23
C (random) 3.5 0.65 0.92 3.79

4.3 Summary

This chapter presents two methods for solving dynamic rotation using an accelerom-

eter for single degree of rotational freedom. The first method, Method A of Equa-

tions (4.1) to (4.13), uses a single section to linearise the sine function in terms of θ

within the model equations. However, this restriction limits the length of data that

the model can be fitted to in the solution process. The second method, Method B

of Equations (4.14) to (4.25), uses a piecewise approach to the linearisation. This

approach allows more data to be fitted improving the overall orientation result. The

two main contributions included within the chapter are:

• The presentation of an entirely unique and innovative method to solve the

unstable tangential ODE, Equation (2.1).

• Validation of the methods and results in simulation and an experimental set-

ting proving the concept that in principle, dynamic model-based orientation

tracking can be achieved using an accelerometer.
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Figure 4.7: Experimental results using the three section piecewise method for (A),
(B), and (C) data sets compared to θen
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Comparisons between the methods were made using simulated data with differ-

ent noise levels applied, and the results given in Tables 4.1 to 4.2 and Figure 4.5.

Further comparisons were made with respect to different frequency signals as shown

in Figure 4.6. The final Method B was validated with experimental data collected

using an accelerometer and an inverted pendulum apparatus. The approximated

angle was compared to the true rotational angle measured by an optical encoder

and found to be consistently accurate with errors typically well less than 1◦.

The piecewise Method B outperforms the single section Method A, with much

lower standard deviation and approximately half the error in θ as shown in Table 4.1

and Figure 4.6. However, these results are limited to lower frequency signals, less

than 2Hz, by the linearisation period of sin(θ) and the fit of the cubic function to

AT . The methods need further improvement to reach the expected dynamic range

of head motion, of up to 3Hz.



Chapter 5

Optimised Method and Comparisons

Chapter 4 presented two initial methods described in Equations (4.1) – (4.13) and

Equations (4.14) – (4.25) for identifying rotation using the model of Equations (2.1)

and (2.2). These methods overcame the instability and ill conditioning discussed

in Chapter 3 where conventional approaches failed to achieve accurate results. The

methods in Equations (4.1) – (4.13) and Equations (4.14) – (4.25) work perfectly

when no noise is present and in experimental tests achieve results with mean absolute

errors less than 1◦. However, their application is limited to lower frequencies by the

polynomial fits made in the algorithmic approaches taken.

Figure 4.6 illustrated the advantages of fitting the model to more data and

improving the linearisation of the sine term in Equation (2.1), especially at higher

frequency motion. In this chapter these concepts are extended to a more generic

method, eliminating the restrictions imposed on the signals by polynomial fitting

to the data. This change also broadens the potential uses of the method to other

applications that have more dynamic motion than head motion.

5.1 Method

5.1.1 Initial Improvements

Increasing dynamic motion has two major limiting effects on the performance of

the piecewise method described by Equations(4.14) – (4.25). Firstly, the range of

θ within the interval δT shown in Figure 4.4 increases, demanding a linear fit over

a greater portion of the sine curve, and thus reducing the validity of the linearised
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approximation in Equation (4.14). Secondly, higher frequency motion results in

more complex signals within the period ∆T also shown in Figure 4.4. The simple

cubic function of Equation (4.4) fitted to AT is limited in its ability to fit these

more complex signal characteristics. Therefore, to overcome these limitations, the

following approach is taken.

The three section approach of Equations (4.14) – (4.25) is first extended to an

arbitrary number of sections. For the nth section, the length, δTn, is defined:

δTn = Tn − Tn−1 (5.1)

where Tn is the time at the end of the section and is chosen so that the range of θ,

δθn, within each section is limited as follows:

δθn = θmax,n − θmin,n < 0.1rad (5.2)

Linear expressions are fitted to sin(θ) for each period δTn using the approach in

Equations (4.1) – (4.3). The piecewise representation across the whole period ∆T

in Equation (4.14) then becomes:

sin(θ(t)) ' b1,n + b2,nθ Tn−1 6 t 6 Tn, n = 1, ..., N (5.3)

where N is the number of sections. Thus, Equations (5.2) – (5.3) define a new ap-

proach to improving the sin(θ) linearisation by choosing small enough time intervals

that restrict the range of θ within each section.

Figure 5.1 compares the θ ranges for the old method of Equation (4.14) where the

sections are of constant length δT , against this new adaptive approach of Equations

(5.2) – (5.3). Figure 5.1 (A) shows that during rapid motion large changes of θ can

occur within the sections of fixed length δT . However, this behaviour is eliminated

by the new approach shown in Figure 5.1 (B).

To address the issue arising from the limited ability of the cubic function to fit

more complex AT signals over the whole period ∆T , a continuous piecewise cubic

function [Ichida and Kiyono, 1977] is fitted to AT across the sections defined by

Equation (5.2). The resulting approximation to AT is defined:

AT,fit,new = Sn(t) Tn−1 6 t 6 Tn, n = 1, ..., N (5.4)
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Figure 5.1: Two methods of determining the sin(θ) linearisation range; (A) Using
a constant δT for each section, (B) Limiting δθ within each section

where each Sn is a cubic function defined:

Sn(t) = yn−1 + mn−1(t− Tn−1) + wn(t− Tn−1)
2 + zn(t− Tn−1)

3

Tn−1 6 t 6 Tn, n = 1, ..., N (5.5)

where y and m denote the values of the approximating function S(t) and its deriva-

tive S ′(t) at the knots. For the nth section, the condition for continuity of S(t) and

its derivative at Tn−1 is:

yn−1 = Sn−1(Tn−1) = yn−2 + mn−2(δTn−1) + wn−1(δTn−1)
2 + zn−1(δTn−1)

3

mn−1 = S ′n−1(Tn−2) = mn−2 + 2wn−1(δTn−1) + 3zn−1(δTn−1)
2

n > 2 (5.6)

The initial conditions for the first section y0 and m0 in Equation (5.5) with n = 1

and the constants wn and zn for n = 1, ..., N , are unknown parameters. These

parameters are found by a least squares fit of Sn for n = 1, ..., N in Equation (5.5)

to the measured AT over the whole period, ∆T . Figure 5.2 schematically illustrates

the resulting polynomials over two sections of different lengths δT .

A comparison of the approximating function AT,fit for AT from Equation (4.4)

is made with AT,fit,new in Equation (5.4). This comparison is illustrated in Figure

5.3 for the synthetic acceleration signal AT,true generated from Equation (4.38) and

(4.28) where θ has an amplitude ā of 10◦ and a frequency f̄ of 3Hz. AT,fit from

Equation (4.4), which uses a single cubic section over the period ∆T = 0.3s, performs

poorly at such a high frequency, having a mean error of 8.5%. However, AT,fit,new
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from Equation (5.4), which uses multiple cubic sections performs much better with

a mean error of 0.5%.

Substituting Equations (5.3) and (5.4) into Equation (2.1), where S is the fitted

AT , produces a set of linear ODEs similar to those in Equations (4.15) – (4.17).

(R/g)θ̈ − (b1,n + b2,nθ) = Sn Tn−1 6 t 6 Tn, n = 1, ..., N (5.7)

Equation (5.7) is solved using the method of Equations (4.18) to (4.25) generating

a piecewise solution for θsol in terms of C1 and C2. The optimal value of C1 and

C2 are then determined using Equations (4.7) – (4.13) over the whole period ∆T .

Evaluating the solution at t = TN provides the θ for the current time step.

However, the method of Equations (5.2) – (5.7) is still fundamentally limited

by the fact that the sin(θ) linearisation of Equation (5.3) and the cubic function

of Equation (5.4) are represented over the same period of length δTn of Equation

(5.2). Merely limiting the range of theta as shown in Figure 5.1 does not necessarily

provide a good fit for AT,fit,new in Equation (5.4) over the same section. For example,

very small oscillations in θ would not suggest that any sections within ∆T are

required. However, small oscillations of θ would result in a complex acceleration

signal resulting in a poor cubic fit to the measured AT . This approach could be

extended to prevent such situations. For example, a threshold could be set on the

mean fitting error to the measured AT data. However, such approaches can get

increasingly complex, computationally intensive and a consistent threshold would

be hard to find.
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5.1.2 Generalised Approach

The piecewise methods of Equations (4.14) – (4.25) and Equations (5.2) – (5.7) are

refined where the length of each section, δT , is equal to the resolution of the sample

rate, ∆t, and the number of sections, N , is equal to the number of time steps, k.

Thus, an individual linear ODE of the form in Equation (4.15) is constructed for

each sampling step. When the combined set of these linear ODEs are solved analyt-

ically based on the formulas in Equations (4.18) – (4.25) the solution approximates

that of the original non linear ODE, Equation (2.1). This concept is illustrated in

Figure 5.4, where i is used to denote an individual time step or section. Figure 5.4

(A) describes the measured tangential acceleration AT , Figure 5.4 (B) shows the

previously calculated θold vector and the the next point θnew which is to be deter-

mined, and Figure 5.4 (C) illustrates the linearisation of sin(θ) about the mean of

each section.

Equation (4.4) from the piecewise method presented in Chapter 4 used a cubic

fit to the measured acceleration to enable an analytical solution and aid in filter-

ing. In this method, the raw acceleration measurements are used with a linear

expression defining AT between the measurements. For a given set of measure-

ments AT,0, ..., AT,k taken at points t0, ..., tk shown in Figure 5.4 (A), the resulting

approximation is defined:

AT,fit =
k∑

i=1

AT,fit,i

(
H(t− ti)−H(t− ti−1)

)
(5.8)

where substituting Ti = ti into Equation (4.26) redefines H, the Heaviside function

as:

H(t− ti) = 1, t < ti

= 0, t ≥ ti (5.9)

and AT,fit,i defines the linear expression for AT over the ith section:

AT,fit,i = u1,i + u2,it i = 1, ..., k (5.10)

where:

u1,i = AT,i − (i− 1)(AT,i − AT,i−1)

u2,i =
AT,i − AT,i−1

∆t
(5.11)



5.1 METHOD 87

1

si
n(

  )

m,k-1

sin
(   

)

m,2 m,1

Linear Taylor approximations

tionabout the mean    of each sec

Time (s)

A
  
  
(g

)
T

AT,k
AT,0

AT,1

Multiple sections 

t  = 0

i = 1

i = k-1

i = ki = 2

t  = k

i = 3 to k-2

0 k

t

t

(A)

(B)

Time (s)

*

new

m mean=

m,2

m,k-1

m,1

0

old Vector

Multiple sections 

t

i = 1

i = k-1

i = ki = 2
i = 3 to k-2

t  = 00 t  = kk t

(C)
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A new approach to linearising sin(θ) is shown in Figure 5.4. This new approach

is required for the case where θi and θi+1 are the same. In this limiting case, only

a point is defined on the sine curve making a linear least squares fit, as was done

in Equations (4.1) – (4.3), impossible. It is assumed that there is only a very small

range of θ within each section of length ∆t. Thus, the sine curve can be linearised

by the tangent to the curve about the mean θ. The mean θ, θm,i is therefore defined:

θm,i =
(θi−1 + θi)

2
(5.12)

The linear tangent is generated using a first order Taylor series approximation in

Equation (5.13).

f(a) +
f ′(a)

1!
(x− a) (5.13)

where f denotes a function of x to be fitted about a point a. Evaluating Equation

(5.13) for the sine function about θm,i defines sin(θ) for each section. The expression

for sin(θ) over the solution period is represented as follows:.

sin(θ)i = b1,i + b2,iθ i = 1, ..., k (5.14)

where:

b1,i = sin(θm,i)− cos(θm,i)θm,i

b2,i = cos(θm,i) (5.15)

For the kth section θk = θnew is unknown, as shown in Figure 5.4 (B). Thus, the

approximation to sin(θ) with i = k in Equation (5.14) is made with the assumption:

b1,k = b1,k−1

b2,k = b2,k−1 (5.16)

In other words, the linearisation of sin(θ) in the (k − 1) section is extended to the

kth section.

Substituting Equations (5.10) and (5.14) into the model Equation (2.1) provides

a set of linear ODEs, describing the motion over the solution period:

(R/g)θ̈ − (b1,i + b2,iθ) = AT,fit,i i = 1, ..., k (5.17)

where AT,fit,i is defined in Equation (5.10).



5.1 METHOD 89

The analytical solution to Equation (5.17) is the same as Equation (4.18) –

(4.25) except u1, u2, u3, u4 are defined as follows:

u1 = u1,i

u2 = u2,i

u3 = 0

u4 = 0 i = 1, ..., k (5.18)

In addition the time that denotes the end of each section Ti of Figure 4.4 and

Equation (4.18) is changed to ti to be equivalent to sampling time.

However, to better physically and geometrically interpret the parameters C1 and

C2, and allow a computationally faster solution method, the solution to the set of

Equations (5.17) is represented in terms of the initial conditions θ0 and θ̇0.

To perform this reformulation, the parameters of Equation (5.18) are substituted

into Equations (4.18) and (4.19) and evaluated at t = 0 for i = 1, which yields:

θsol,1(0) = θ0 = C1 + C2 − 1

b2,1

(b1,1 + u1,1) (5.19)

θ̇sol,1(0) = θ̇0 = −m1C1 + m1C2 − u2,1

b2,1

(5.20)

Solving Equations (5.19) and (5.20) for C1 and C2 gives:

C1 =
1

2
θ0 − 1

2m1

θ̇0 +
1

2b
3/2

2,i g1/2

(
(b2,ig)1/2(b1,1 + u1,1)− u2,1R

1/2
)

C2 =
1

2
θ0 +

1

2m1

θ̇0 +
1

2b
3/2

2,i g1/2

(
(b2,ig)1/2(b1,1 + u1,1) + u2,1R

1/2
)

(5.21)

Equations (5.21) along with the parameters of Equation (5.18) are then substituted

into the solution of Equations (4.18) and (4.19). These manipulations provide the

required solution θsol in terms of θ0 and θ̇0.

For ease of future reference, this reformulated solution is summarised as follows:

θsol(t) =
k∑

i=1

θsol,i(t)
(
H(t− ti)−H(t− ti−1)

)
(5.22)
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where:

θsol,i(t) ≡ Equation (4.18)

{u1, ..., u4} ≡ Equation (5.18)

{C1, C2} ≡ Equation (5.21)

(5.23)

and H is the Heaviside function defined in Equation (5.9). For completeness, the full

expressions for θsol are derived independently from the solution of Equation (4.18)

in Appendix A.

Another change to the approach of Equations (4.14) – (4.25) is to replace the

cos(θ) approximation in Equation (4.7) by the following linear expression:

cos(θ)i = c1,i + c2,iθ i = 1, ..., k (5.24)

where c1,i and c2,i are derived using the same approach as for b1,i and b2,i in Equation

(5.14), and are defined:

c1,i = cos(θm,i) + sin(θm,i)θm,i

c2,i = − sin(θm,i) (5.25)

With small sections, the cosine curve is close to linear. Therefore, Equation (5.24)

is an accurate approximation as well as minimising computation due to the simpler

linear expression.

In a similar way to Equation (5.16), the linearisation of cos(θ) in the (k − 1)th

section is extended to the kth section as follows:

c1,k = c1,k−1

c2,k = c2,k−1 (5.26)

Substituting Equations (5.22) – (5.24) into Equation (2.2) gives a new expression

for AR:

AR,sol =
k∑

i=1

AR,sol,i

(
H(t− ti)−H(t− ti−1)

)
(5.27)

where AR,sol,i defines an expression for AR over the ith section:

AR,sol,i = (R/g)θ̇ 2
sol,i − (c1,i + c2,iθsol,i) i = 1, ..., k (5.28)
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and H is the Heaviside function defined in Equation (5.9).

AR,sol in Equation (5.27) is now in terms of the unknown θ0 and θ̇0 values in

Equation (5.22). Finding the optimal θ0 and θ̇0 values follows a similar approach

to the method of Equations (4.9) – (4.13) for finding the optimal C1 and C2 values.

More specifically, the θ0 and θ̇0 values that enable the best least squares fit of AR,sol

in Equation (5.27) to the measured radial acceleration AR from Equation (2.4) are

found. The time points in Equation (5.27), t0, ..., tk, are where AR is measured, with

tk defined as the time point where θ is unknown as shown in Figure 5.4.

Consider the following objective function:

Ω(θ0, θ̇0) =
k∑

i=0

(
AR,sol(tk − i∆t)− AR(tk − i∆t)

)2

(5.29)

where AR,sol is defined by Equations (5.27) and (5.28) and ∆t is the sampling period

of the measured AR. Note that AR,sol(tk − i∆t) only requires θsol,i and θ̇sol,i at the

measured points which correspond to all the initial conditions of Equations (4.21) –

(4.24) combined with Equation (5.23), all of which have already been calculated and

stored as a result of constructing the solution θsol in Equations (5.22) and (5.23).

Thus, using these precalculated values along with θsol,k, an analytical expression

for the objective function in Equation (5.29) can be readily derived with minimal

computation.

Setting the gradient ∇θ0,θ̇0
Ω = 0 of Equation (5.29) yields:

∂

∂θ0

( k∑
i=0

(
AR,sol(tk − i∆t)− AR(tk − i∆t)

)2
)

= 0 (5.30)

∂

∂θ̇0

( k∑
i=0

(
AR,sol(tk − i∆t)− AR(tk − i∆t)

)2
)

= 0 (5.31)

However, continually evaluating all 9 solutions of the coupled set of multivariate

polynomials in Equations (5.30) and (5.31) is time consuming. Furthermore in

practice, it is only one of these solutions that minimises the objective function in

Equation (5.29) which is required. Given that the algorithm moves forward with

only small time steps of 0.1s, a close approximation to the optimal θ0 and θ̇0 values is

already known from the previous time step. Based on this observation, the following
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simplification can be made.

Given a computed x0 = θ0,old and y0 = θ̇0,old from the previous time step the

following approximate objective Ω̄(θ0, θ̇0) function is defined:

Ω̄(θ0, θ̇0) = Ω|x0,y0 +
∂

∂θ0

(Ω)|x0,y0(θ0 − θ0,old) +
∂

∂θ̇0

(Ω)|x0,y0(θ̇0 − θ̇0,old)+

∂

2∂θ 2
0

(Ω)|x0,y0(θ0 − θ0,old)
2 + (θ0 − θ0,old)

∂

∂θ0∂θ̇0

(Ω)|x0,y0(θ̇0 − θ̇0,old)+

∂

2∂θ̇ 2
0

(Ω)|x0,y0(θ̇0 − θ̇0,old)
2 (5.32)

Setting the gradient ∇θ0,θ̇0
Ω̄ = 0 now yields two first order multivariate polynomial

equations in θ0 and θ̇0:
∂

∂θ0

Ω̄ = 0 (5.33)

∂

∂θ̇0

Ω̄ = 0 (5.34)

There is now only one solution of Equations (5.33) and (5.34) to compute which is

a significant saving computationally.

This estimated solution is the optimal solution which minimises Ω̄ of Equation

(5.32) and is denoted {θ0,est, θ̇0,est}. To ensure the estimate corresponds closely to the

true global minima of the surface Ω in Equation (5.29), {θ0,est, θ̇0,est} are denoted as

{θ0,old, θ̇0,old} in Equation (5.32). Solving Equations (5.33) and (5.34) now defines a

new estimate for {θ0,est, θ̇0,est}. This iterative process is repeated until the change in

the objective function, Ω(θ0,est, θ̇0,est), is less than 0.001 or 10 iterations have passed.

This method converges to the solution very quickly, typically in 2 or 3 iterations,

providing significant computational savings.

The final optimal solution {θ0,opt, θ̇0,opt} is then substituted into Equations (5.22)

and (5.23) and θsol evaluated at the time t = tk in Figure 5.4 to obtain θ = θnew.

The value for θold is then updated to include θnew at time tk and the overall pro-

cess is repeated again for the next time step and solution. The final algorithm is

summarised in the flowchart of Figure 5.5.
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5.2 Results and Discussion

5.2.1 Dynamic Performance

The dynamic performance of the generalised method of Equations (5.8) – (5.34)

and Figure 5.5 is compared to the single section method of Equations (4.1) – (4.13)

and the piecewise method of Equations (4.14) – (4.25) from Chapter 4. Synthetic

signals are generated for θtrue from Equation (4.38) where the amplitude ā = 10◦

and frequency f̄ is varied from 0.1 – 3Hz. This approach is designed to test the

generalised method up to the highest frequency expected in head motion.

The acceleration signals, AT,true and AR,true, are derived by substituting θtrue

into Equations (2.1) and (2.2). The “real” AT,real and AR,real signals are generated

from Equations (4.32) and (4.33), where the noise is defined in Equations (4.30)

and (4.31) and scaled to the mean experimental noise by setting εT = 5.4% and

εR = 21.9% in the respective equations. The resulting functions for Equations

(4.32) and (4.33) are then discretised to achieve a sample rate of 100Hz as before.

The signals generated from 0.1 – 2Hz are the same as those used to generate the

results over this range shown in Figure 4.6. Hence, a direct comparison between the

methods is enabled over this range, but not for 2 – 3Hz. The generalised method is

therefore applied over a 4 second signal length, using the time period of ∆T = 0.3s.

The results of the generalised method of Equations (5.10) – (5.34) are given in

Figure 5.6, which also plots the performance of the single 0.1s section and the 3

piecewise 0.1s section methods, which are repeated here from Figure 4.6. Figure 5.6

shows that the generalised method is a significantly more accurate method over all

frequencies, with improved robustness to increasing dynamics. However, Figure 5.6

also shows that the method’s accuracy decreases with increasing frequency. This

trend is due to the measurement frequency staying fixed at ∆t = 0.01s at higher

motion frequencies. Thus, less information is captured for each cycle.

In principle this trend could be prevented by a higher measurement frequency,

but in practice this rate may be limited by the hardware and, equally importantly,

the signal to noise ratio. Noise defined by Equations (4.30) and (4.31) has been

applied independently of the signal frequencies during this testing. This approach
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is unlikely to completely and accurately represent experimental results. However, it

does provide an initial test of the methods prior to experimental validation.

For example, in an extreme case a full cycle of a 10Hz signal is only captured

by 10 noisy measurements when sampled at 100Hz. Sampling the 10Hz at signal

at 1000Hz would effectively give no difference in error to a 1Hz signal sampled at

100Hz. Hence, the results of Figure 5.6 can be readily scaled within reason, in this

fashion.

A further practical consideration is that at higher frequencies the centripetal

component of acceleration in Equation (2.2) can be significant. Centripetal accel-

eration is derived from the rotational velocity θ̇. Thus, in terms of the pendulum

model, the centripetal acceleration reaches a maximum at the centre, and is zero at

the stationary end points of the manual oscillatory cycle. This behaviour can result

in the radial acceleration AR being double the frequency of the tangential accelera-

tion AT if the frequency of oscillation is high enough. Therefore, the measured AR

can become a very poor quality signal at higher frequencies of motion.
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5.2.2 Experimental Results and Comparisons

To further validate the new method and Figure 5.6, experimental data is collected

for the simple one degree of rotational freedom case using the inverted pendulum

apparatus of Figures 2.9 and 2.10. These experiments were conducted in a similar

way to those used to verify the piecewise method of Equations (4.14) – (4.25). These

experiments also utilised an ADXRS150 MEMS gyroscope [Analogue Devices Inc,

2007] and an Inertia Cube 3 [Inetersense Inc, 2007] to provide a means of comparison

with inertial systems commonly utilised to determine orientation.

The Inertia Cube 3 is an expensive and specialised item of equipment. To gain

the best results from this device, its enhancement setting was set to option “2” and

the prediction feature disabled. The heading of the device was reset at the start of

each experiment to ensure that the reported pitch agreed with the in plane motion

of the pendulum. The gyro was also attached so that its axis sensitive to rotation

was in the plane of motion. The gyro, Inertia Cube 3, and accelerometer are seen

attached to the pendulum in Figure 5.7.

Figure 5.7: Sensing devices used for comparisons attached to the pendulum. From
left to right, the gyroscope, accelerometer, and Inertia Cube 3 (black box)

The manual oscillation of the pendulum was synchronised to audible signals,

covering a range frequencies from 0 – 3Hz. This procedure provided accurate rota-
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tion frequencies, and corresponding acceleration signals. This approach enabled the

validation and comparisons of the generalised method of Equations (5.8) – (5.34)

to be made with other devices over a broad dynamic range. A signal of length 4

seconds is utilised. The results from the generalised method along with the Inertia

Cube 3, and Analogue Devices gyro are summarised in Table 5.1. The performance

metrics include the maximum, mean, and standard deviation of the absolute error,

and the relative mean percentage error. The mean absolute percentage error for

each measurement device or method is plotted against the frequency in Figure 5.8.

Table 5.1: Generalised method experimental error results for frequency

Frequency Max (deg) STD (deg) Mean (deg) %

Generalised
Method

≈ 0.25Hz 0.49 0.11 0.13 1.43
≈ 0.50Hz 0.53 0.12 0.17 1.40
≈ 1.00Hz 0.51 0.13 0.22 1.46
≈ 2.00Hz 0.72 0.18 0.25 3.78
≈ 3.00Hz 1.02 0.28 0.43 13.6

Inertia Cube 3

≈ 0.25Hz 0.71 0.15 0.23 2.48
≈ 0.50Hz 1.06 0.25 0.46 2.87
≈ 1.00Hz 1.36 0.21 0.30 4.12
≈ 2.00Hz 1.39 0.23 0.28 5.58
≈ 3.00Hz 1.48 0.26 0.40 9.72

Gyroscope

≈ 0.25Hz 1.32 0.31 0.37 4.01
≈ 0.50Hz 0.78 0.21 0.31 4.26
≈ 1.00Hz 0.70 0.19 0.28 4.04
≈ 2.00Hz 0.83 0.19 0.32 6.45
≈ 3.00Hz 0.91 0.22 0.36 9.12

Figure 5.8 illustrates the strength of the performance of the generalised method.

This method outperforms both the Inertia Cube 3 and a simple MEMS gyro at

frequencies below 2Hz. However, at the higher frequency of 3 Hz the experimental

results show the same trend observed with synthetic results in Figure 5.6. This

latter result is partly explained by the noise and sampling rate, as discussed earlier.

However, direct manual oscillation of the pendulum, without inducing any out

of plane disturbances is a challenging task, especially at higher frequencies. These

other disturbances contribute to increased modelling error within the acceleration

signals at higher frequencies and therefore are a potentially less suitable test for the

method. Further work in the future should extend the model and methods to out

of plane motions.
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Figure 5.8: Experimentally derived frequency response and comparisons of the
generalised method with the Inertia Cube 3 and Gyroscope.

Overall, due to significant modelling error, particularly at higher frequencies,

the results do not reach the same levels of performance as those demonstrated with

the synthetic data in Figure 5.6. However, the mean absolute percentage error of

1.4% and 1.46% at 0.5Hz and 1Hz compares very favourably with the experimental

results for the piecewise method of Equations (4.14) – (4.25), which achieved errors

of 4.25% and 5.23% for 0.75Hz and 1Hz respectively, as shown in Table 4.3 and

Figure 4.7.

The gyro and Inertia Cube show a similar trend in Figure 5.8. This similarity in

the trend occurs because the Inertia Cube 3 relies heavily on its gyros during highly

dynamic motion. For the short 4 second section of signals analysed and compared

in the results of Table 5.1 and Figure 5.8, the gyro performs well. Over longer

durations, the drift as discussed in Section 1.4, corrupts the results. The Inertia

Cube 3 compensates for this drift by using its accelerometers and magnetometers.

However, at continued high frequency motion some drift can be observed in the

orientation solution from the Inertia Cube 3.
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Results from each device for a random motion signal are shown for a much longer

15 second signal in Figure 5.9. The corresponding absolute error for each result is

plotted in Figure 5.10 and the performance metrics of the absolute error summarised

in Table 5.2.

Table 5.2: Generalised method experimental error results for a 15 second signal

Device/Method Max (deg) STD (deg) Mean (deg) %

Generalised Method 2.51 0.41 0.42 2.61
Inertia Cube 3 3.70 0.87 0.97 5.98
Gyroscope 12.4 4.00 5.62 19.11

Over the 15 second signal, the generalised method shows greater accuracy than

the other devices. The generalised method has a mean absolute percentage error of

2.61% which is approximately half the error of the Inertial Cube 3 having a mean

absolute percentage error 5.98%. The generalised method and the Inertia Cube

3 both perform much better than the gyroscope, which performs poorly over the

longer signal due to drift. The general method shows superior performance because

the method remains inherently registered to gravity, while the Inertia Cube 3 and

gyro experience drift. Thus in this case the generalised method is more robust.

5.3 Summary

This chapter presented approaches to overcome the limitations of the single section

method of Equations (4.1) – (4.13) and piecewise method of Equations (4.14) –

(4.25) that were presented in Chapter 4. These limitations restricted the perfor-

mance at the higher frequencies of 1–2Hz, likely to be encountered in head tracking

applications. Various approaches to improving this dynamic performance were dis-

cussed. The generalised method of Equations (5.8) – (5.34) and Figure 5.5 provides

a simple and robust solution.

This generalised method extended the method of Equations (4.14) – (4.25) to a

solution that is constructed over each sampling time step. This construction forms

a linear ODE for each small period ∆t which improves the accuracy of the lineari-

sation and avoids complex adaptive solutions. Solving the set of ODEs provides a

highly accurate and robust solution for θ across the range of frequencies that this

application is concerned with.
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The generalised method is validated first using synthetic data, and compared to

the previous methods in Figure 5.6. The comparison in Figure 5.6 shows improved

performance in both accuracy and robustness to higher signal frequencies. Experi-

mental comparisons to an Inertia Cube 3, MEMS gyroscope and optical encoder on

the inverted pendulum, validate the new method, outperforming the other devices

at frequencies below 2Hz, as seen in Figure 5.8. The typical absolute errors that

occurred were in the order of 1.4%. At higher frequencies the method does not

perform as well due to a low sampling rate, and increased model error and noise.

Another advantage was illustrated for a longer more realistic signal in Figures 5.9

and 5.10, where the method is seen to be more robust in terms of drift, which the

gyroscope, and at high frequencies, the Inertia Cube 3 can suffer from.

The results shown in Figures 5.8, 5.9 and 5.10 prove that tracking orientation

using an accelerometer and model not only works but works well exceeding the

performance of the other inertial orientations sensing devices. However, this proof

is only achieved for the relatively simple case of a single degree of rotational freedom.

The challenge addressed in the next chapter is whether this model can be further

extended, by introducing additional dynamics.



Chapter 6

Extension to Full 2D Dynamics

Chapters 4 and 5 clearly showed that accurate orientation can be determined for

a dynamic system using a non stationary accelerometer above a fixed centre of

rotation. This proof of concept was derived for an inverted pendulum model of one

degree of rotational freedom. Thus, the generalised method of Equations (5.8) –

(5.34) can only be applied to applications with a fixed point of rotation.

However, for practical use in tracking head motion, other dynamics must be

included in the methods. In this chapter, the model for one degree of rotational

freedom described by Equations (2.1) and (2.2) is extended to include translation of

the pivot point in the plane of motion. This motion would cover the practical case of

tracking head motion for a walking individual. This extension is achieved through

the inclusion of a second accelerometer measuring the translational acceleration

and then applying an extended method, similar to the generalised method, to the

effective relative acceleration at the end of the pendulum.

6.1 Extending the Model

The inverted pendulum model for head motion of Figure 2.1 and Equations (2.1) and

(2.2) is extended by including translation of the pivot within the plane of motion.

The schematic in Figure 2.1 is expanded in Figure 6.1 to include a second accelerom-

eter, Accelerometer 2, with axes Ax,2(t) and Ay,2(t) at angle λ2 to the horizontal

axis, AH . The accelerations, Ah(t) and Av(t), which are due to the horizontal and

vertical translational motion of the centre of rotation, are also included.
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The first accelerometer, Accelerometer 1, is mounted at a point of radius R

from the pivot on the pendulum. It has axes denoted Ax,1(t) and Ay,1(t). This

accelerometer senses the combined acceleration due to both the rotation and the

translation of the centre of rotation.

Although Accelerometer 2 is schematically shown in Figure 6.1 at the centre of

rotation, this accelerometer can, in theory, be placed anywhere on the rigid body

that supports the pendulum. This placement will provide the acceleration at the

centre of rotation. Thus, for head tracking, this accelerometer can be placed at

the centre of the back inline with the shoulders, within a tight fitting backpack

containing other components of the wearable computing system required for AR

systems.

The new model that extends Equations (2.1) – (2.2) is developed by resolving

acceleration in terms of g along each respective axis, AT , AR, AV , AH in Figure

6.1. Note that the measured dynamic accelerations due to tangential, centripetal,

Av and Ah, will contribute in the opposite direction to that shown in Figure 6.1, as

before. Also note that all accelerations and rotations (θ(t), θ̇(t)) remain functions of

time. However, the “(t)” is dropped for clarity. Thus, including the additional Ah

and Av acceleration components along the AT and AR axes, and new expressions

defining Ah and Av along the AV and AH axes provides the extended model:

AT = (R/g)θ̈ − sin(θ)− Ah cos(θ)− Av sin(θ) (6.1)

AR = (R/g)θ̇2 − cos(θ) + Ah sin(θ)− Av cos(θ) (6.2)

AH = −Ah (6.3)

AV = −Av − 1 (6.4)

Equations (6.3) and (6.4) are limited to the case where λ2 is constant in Figure

6.1. However, Equations (6.1) and (6.2) provide general model equations for any

translation of the centre of rotation, provided that Ah and Av can be measured.

Thus, it is possible to extend this model to multiple inverted pendulum sections,

with accelerometers placed at the pivots of each respective pendulum. These ac-

celerometers provide the necessary Ah and Av accelerations to determine the relative

acceleration at the end of the each pendulum.

In this chapter, the extended model of Figure 6.1 with a constant λ2 is used
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Figure 6.1: Schematic of the extended inverted pendulum model, including rotation
and translation of the centre of rotation in a 2 dimensional plane



106 CHAPTER 6 EXTENSION TO FULL 2D DYNAMICS

to prove the concept. Thus, the actual tangential (AT ), radial (AR), vertical (AV )

and horizontal (AH) accelerations are derived from the measured accelerations of

Accelerometers 1 and 2 in the same way as Equations (2.3) and (2.4) and are defined:

AT = Ax,1 cos(λ1)− Ay,1 sin(λ1) (6.5)

AR = Ax,1 sin(λ1) + Ay,1 cos(λ1) (6.6)

AH = Ax,2 cos(λ2)− Ay,2 sin(λ2) (6.7)

AV = Ax,2 sin(λ2) + Ay,2 cos(λ2) (6.8)

A comparison of AT and AR from the model Equations (6.1) and (6.2) is made with

the experimentally measured AT and AR of Equations (6.5) and (6.6) in Section

6.3.1 to verify that this extended model is valid.

6.2 Method

The method presented in this section extends the generalised method of Equations

(5.8) – (5.34) and the piecewise method of Equations (4.14) – (4.25) to the extended

model of Figure 6.1 for one degree of rotation and one degree of translation. Note

that this method accurately determines the orientation θ in the presence of a dis-

ruptive translation to the centre of rotation. However, the method is not concerned

with determining the translation itself.

The addition of translational motion to the pendulum pivot in the model intro-

duces an Ah cos(θ) and Av sin(θ) term to the tangential acceleration model Equation

(6.1). The Ah and Av parameters are found by rearranging Equations (6.3) and (6.4)

in terms of the measured AH and AV :

Ah = −AH (6.9)

Av = −AV − 1 (6.10)

where the parameters AH and AV are derived directly from the measured accelera-

tions of Accelerometer 2 in Equations (6.7) and (6.8).

The same piecewise approach of the generalised method is applied to each indi-

vidual time step, ∆t, within this extended method. Thus, AT is defined in Equations
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(5.8) – (5.11). Similarly Ah and Av are piecewise defined:

Ah,fit =
k∑

i=1

Ah,fit,i

(
H(t− ti)−H(t− ti−1)

)
(6.11)

Av,fit =
k∑

i=1

Av,fit,i

(
H(t− ti)−H(t− ti−1)

)
(6.12)

where H is the Heaviside function defined in Equation (5.9) and Ah,fit,i and Av,fit,i

define the linear expressions for Ah and Av over the ith section:

Ah,fit,i = h1,i + h2,it i = 1, ..., k (6.13)

Av,fit,i = v1,i + v2,it i = 1, ..., k (6.14)

where h1,i, h2,i and v1,i, v2,i are defined for Equations (6.13) (6.14) as follows:

h1,i = Ah,i − (i− 1)(Ah,i − Ah,i−1)

h2,i =
Ah,i − Ah,i−1

∆t

v1,i = Av,i − (i− 1)(Av,i − Ah,i−1)

v2,i =
Av,i − Av,i−1

∆t
(6.15)

The trigonometric terms within Equation (6.1) are linearised in Equations (5.14)

and (5.24) for sin(θ) and cos(θ) respectively. However, to improve robustness, and

counter any increased noise in θold caused by the second accelerometer, the mean θ

for each section, θm,i, in Equations (5.15) and (5.25) is redefined:

θm,i =
1

4

i+1∑
i=i−2

θi i = 2, ..., k − 2 (6.16)

θm,1 = θm,2 (6.17)

θm,k−1 = θm,k−2 (6.18)

θm,k = θm,k−2 (6.19)

Substituting the linear expressions for AT , Ah, Av, sin(θ) and cos(θ) from the

respective Equations (5.10), (6.13), (6.14), (5.14) and (5.24), for the ith section,
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into Equation (6.1) and collecting terms gives a linear, non homogeneous differential

equation:

(R/g)θ̈ + E(t)θ = F (t) (6.20)

where:

E(t) = E1,i + E2,it ti−1 6 t 6 ti

F (t) = F1,i + F2,it ti−1 6 t 6 ti i = 1, ..., k (6.21)

and the linear coefficients E1,i, E2,i, F1,i, and F2,i defined:

E1,i = −b2,i − h1,ic2,i − v1,ib2,i

E2,i = −h2,ic2,i − v2,ib2,i

F1,i = u1,i + b1,i + h1,ic1,i + v1,ib1,i

F2,i = u2,i + h2,ic1,i + v2,ib1,i (6.22)

Note that when the pivot of the pendulum is stationary, all Ah,i and Av,i pa-

rameters are zero. Substituting Ah,i = 0 and Av,i = 0 into Equations (6.20) –

(6.22) reproduces the same set of ODEs defined in Equation (5.17) of the gener-

alised method. For the case where the centre of rotation undergoes translation and

Ah,i and Av,i are no longer zero, the method becomes more advanced as described

here.

An analytical solution to Equation (6.20) does not exist. However, an analytical

solution does exist to the homogeneous equation, which is derived by setting F (t) =

0 in Equation (6.20). The resulting equation is defined:

(R/g)θ̈ + (E1,i + E2,it)θ = 0 i = 1, ..., k (6.23)

The analytical solution to Equation (6.23) can be readily computed in Maple and

is defined:

yc,i(t) = C1AiryAi(Mi) + C2AiryBi(Mi) i = 1, ..., k (6.24)

where:

Mi =

(
− E

1/3
2,i

(
E1,i + E2,i(t)

)

E2,iR1/3

)
(6.25)
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and AiryAi and AiryBi are wave functions related to Bessel functions and are built

into both Maple and Matlab.

The standard solution to a linear non homogeneous ODE is a linear combination

of the complementary and particular solutions. Following this standard theory, the

solution is constructed as follows.

θsol,i = yc,i(t) + yp(t) i = 1, ..., k (6.26)

where yc,i(t) is the the complementary solution of Equation (6.23) and yp(t) is a

particular solution to the linear ODE in Equation (6.20).

The complementary solution yc,i(t) in Equation (6.26) represents the transient

response and only applies over ith section defined by the period ti−1 < t < ti. The

particular solution yp(t) is a numerical solution of the full linear ODE of Equa-

tion (6.20) with essentially arbitrary initial conditions. For simplicity, these initial

conditions are set to zero.

In many engineering problems the particular solution yp(t) represents the steady

state solution which is independent of the initial conditions. The problem as dis-

cussed in earlier chapters is that yp(t) is highly sensitive to initial conditions, as the

transient solution yc(t) in Equation (6.26) does not die away. If the initial condi-

tions for θsol,i are known very precisely there is no need for yc,i(t) in Equation (6.26).

However, initial conditions are never known precisely in practice.

It is vital to separate the solutions yc,i(t) and yp(t) to accurately determine θsol,i

in Equation (6.26). A further fundamental point is that the underlying differential

equation must be linear to allow a solution of the form of Equation (6.26). This

point emphasises the importance of the formulation of Equation (6.20) as no such

construction can be applied to the full non linear model of Equations (6.1) and (6.2).

The analytical solution of yc,i(t) is substituted into Equation (6.26) and the

solution arranged in terms of the unknown initial conditions, θ0,i and θ̇0,i. The

expression is formed similarly to Equation (4.18) as:

θsol,i = (Â1,iθ0,i + Â2,iθ̇0,i + Â3,i)y1,i(t)+

(B̂1,iθ0,i + B̂2,iθ̇0,i + B̂3,i)y2,i(t) + yp(t) (6.27)
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where y1,i(t) and y2,i(t) are formed using the AiryAi and AiryBi basis functions:

y1,i(t) = AiryAi(Mi) (6.28)

y2,i(t) = AiryBi(Mi) (6.29)

where Mi defined in Equation (6.25). The parameters Â1,i, Â2,i, Â3,i, B̂1,i, B̂2,i, B̂3,i,

θ0,i, and θ̇0,i are defined recursively as follows:

Â1,i =
ẏ2,i(ti−1)

y1,i(ti−1)ẏ2,i(ti−1)− y1,i(ti−1)y2,i(ti−1)

Â2,i =
y2,i(ti−1)

y1,i(ti−1)ẏ2,i(ti−1)− y1,i(ti−1)y2,i(ti−1)

Â3,i =
ẏ2,i(ti−1)yp(ti−1)− y2,i(ti−1)ẏp(ti−1)

y1,i(ti−1)ẏ2,i(ti−1)− y1,i(ti−1)y2,i(ti−1)

B̂1,i =
ẏ1,i(ti−1)

y1,i(ti−1)ẏ2,i(ti−1)− y1,i(ti−1)y2,i(ti−1)

B̂2,i =
y1,i(ti−1)

y1,i(ti−1)ẏ2,i(ti−1)− y1,i(ti−1)y2,i(ti−1)

B̂3,i =
ẏ1,i(ti−1)yp(ti−1)− y1,i(ti−1)ẏp(ti−1)

y1,i(ti−1)ẏ2,i(ti−1)− y1,i(ti−1)y2,i(ti−1)

θ0,i = θsol,i−1(ti−1), i ≥ 2

θ̇0,i = θ̇sol,i−1(ti−1), i ≥ 2

θ0,1 = θ0

θ̇0,1 = θ̇0 (6.30)

For given points t0, ..., tk over the whole period ∆T , θsol,i can be summarised as

follows:

θsol(t) =
k∑

i=1

θsol,i(t)
(
H(t− ti)−H(t− ti−1)

)
(6.31)

where H is the Heaviside function defined in Equation (5.9), and θsol,i is given in

Equation (6.27).

To improve the robustness of the solution, given noisy accelerometer data for

AT , Ah, and Av, used in forming the linear ODE, Equation (6.20), the solution

period is increased from ∆T = 0.3s in the generalised method of Equations (5.8) –

(5.34) to ∆T = 0.45s. This extra data provides more information to fit to the model,

and constrain the solution. The length of ∆T is limited by the size of the numeric

solution yp(t) and the rounding issues this can introduce at very large values.
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Another trade off of extending ∆T is that it reduces the responsiveness of the

method to the last accelerometer measurements. In other words, finding the op-

timal initial conditions to minimise the objective function in Equation (5.29) over

the whole period ∆T may not provide the optimal value for θnew when the initial

conditions are substituted into Equation (6.31). Thus, the objective function of

Equation (5.29) is modified to optimise the fit to the radial acceleration over only

the last K = 30 time points:

Ω̂(θ0, θ̇0) =
K∑

i=0

(
AR,sol(tk − i∆t)− AR(tk − i∆t)

)2

(6.32)

where AR,sol is defined by Equations (5.27) and (5.28). Note that K in Equation

(6.32) is less than k, which denotes the total number of sections within ∆T as

illustrated in Figure 5.4.

Setting the gradient ∇θ0,θ̇0
Ω̂ = 0 of Equation (6.32) yields:

∂

∂θ0

(Ω̂) = 0 (6.33)

∂

∂θ̇0

(Ω̂) = 0 (6.34)

The solutions to Equations (6.33) and (6.34) correspond to the stationary points

of the Ω̂ surface in Equation (6.32). The global minimum solution of Equations

(6.33) and (6.34) corresponds to the optimum θ0 and θ̇0 and can be found using the

method described in Equations (4.12) and (4.13), where C1 and C2 are replaced by

θ0 and θ̇0. This method of selecting the optimal initial conditions was found to be

more robust for the more complex surface generated by this extended method than

the approximated surface method of Equations (5.32) – (5.34).

Finally, note that the actual ∆T value selected can be based on the dynamics

of the system being measured, in this case head motion. It is also a compromise

versus the lag induced and thus the AR or other system requirement. The overall

point is that the algorithms are readily generalised to meet any specific application

need.
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6.3 Results and Discussion

6.3.1 Model Validation

The extended model of Equations (6.1) – (6.10) is verified in a similar fashion as

that the initial model of Equations (2.1) – (2.2) in Section 2.3. Again, the inverted

pendulum apparatus is used. However, unlike the initial model validation where the

cart was clamped in place, for this case it is permitted to move.

Optical encoders provide an independent measure of rotation and horizontal cart

position. Figures 6.2 and 6.3 show the accelerometers mounted on the apparatus.

Note that the second accelerometer is mounted on the pendulum at the pivot, rather

than on the cart. This placement is used because initial testing showed that when

mounted on the cart significant noise was generated by the cart motion on the

track due to un-modelled dynamics resulting from slack within the pivot bearing

arrangement and a rough guide track

The parameters AH and AV of Figure 6.1 are derived from the second accelerom-

eter on the pendulum using the known encoder measurement of rotation, θen:

AH = Ax,2 cos(θen + λ2a)− Ay,2 sin(θen + λ2a) (6.35)

AV = Ax,2 sin(θen + λ2a) + Ay,2 cos(θen + λ2a) (6.36)

where λ2a is the fixed angle the accelerometer x axis makes with the pendulum,

similar to λ1 for Accelerometer 1. Thus, the required accelerations for the centre of

rotation of the pendulum are found without the need to fix the inadequacies of the

experimental apparatus to prove the method.

An experiment was undertaken that captured measurements from the two cal-

ibrated accelerometers, a gyroscope, and an Inertia Cube 3. The accelerometers

were calibrated using the procedure described in Section 2.2.3 and the Inertia Cube

3 was used with zero heading and enhancement set to option 2, as before in Section

5.2.2. These devices can be seen in the apparatus set up shown in Figures 5.7, 6.2

and 6.3.

The experimental measurements were collected while manually moving both the



6.3 RESULTS AND DISCUSSION 113

Figure 6.2: The inverted pendulum apparatus with two accelerometers attached
and cart free to move, also attached is the Inertia Cube 3 and gyroscope

Figure 6.3: Close up view of cart system of the inverted pendulum with Accelerom-
eter 2 mounted on the pendulum, at the centre of rotation in this case
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cart and pendulum. Figure 6.4 shows the cart displacement and total acceleration,

AH and AV , for a 10 second period of motion. The cart displacement of approx-

imately 15cm is measured using the optical encoder attached to the cart running

to the track, and AH and AV are derived from Accelerometer 2 measurement in

Equations (6.35) and (6.36).

The measured AH and AV of Figure 6.4 are filtered and substituted into Equa-

tions (6.9) and (6.10) to find the accelerations Ah and Av that are due to only the

motion of the cart. The values for Ah and Av along with θen, can be substituted into

the model Equations (6.1) and (6.2) to generate values for AT and AR. Figure 6.5

shows the comparison of AT and AR derived from the model Equations (6.1) and

(6.2) with the measured values from Accelerometer 1 in Figure 6.1 and Equations

(6.5) and (6.6).

The quality of the fit for the experimentally measured data to the model is sum-

marised in by the mean, standard deviation, and mean percentage of the absolute

error in Table 6.1. These results show a good general fit to AT with 4.6% mean ab-

solute error. However, AR suffers from poor signal quality when near vertical giving

20.7% mean absolute error. These values compare well to the respective mean ab-

solute error percentages of 5.4% and 21.9% for AT and AR from the previous model

validation when the cart was fixed, summarised in Table 2.3.

Table 6.1: Acceleration model error

Error Measure
Acceleration

AR (mg) AT (mg)

Mean 3.1 9.3
STD 3.0 7.3
Mean % 20.7 4.6

The measured acceleration results remain a good fit to the model, despite the

increased noise caused by the cart motion on the track. This noise is much higher

than would be expected during head tracking. However, because the method utilises

the acceleration for the top accelerometer relative to the bottom, motion experienced

by both accelerometers is effectively removed from the model. These results confirm

the validity of the model to this experimental set up.
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Figure 6.4: Cart displacement and total acceleration: (A) Measured displacement
via cart encoder; (B) Measured horizontal acceleration, AH , via Accelerometer 2
and Equation (6.35); (C) Measured vertical acceleration, AV , via Accelerometer 2
and Equation (6.36)
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6.3.2 Experimental Results and Comparisons

The extended method of Equations (6.9) – (6.34) is used to solve for orientation for

a case of full two dimensional translation and rotation. The same data from the

model validation of Section 6.3.1 is used. More specifically, the unfiltered measured

signals of AH and AV seen in Figure 6.4 (B) and (C) derived from Accelerometer

2, and AT and AR seen in Figure 6.5 from Accelerometer 1. The method is applied

over the 10 second, 100Hz sampled signal with the period in the algorithm set to

∆T = 0.45s, and a shorter fit period of the last 0.3s to the measured AR defined by

setting K = 30 in Equation (6.32).

The extended method results are compared to the results from the Inertia Cube

3 and gyroscope, similar to the generalised method validation in Chapter 5. Results

are shown for each method or device in Figure 6.6 with the corresponding absolute

error plotted in Figure 6.7. These results are summarised by the metrics describing

the absolute error in Table 6.2.

Table 6.2: Extended method experimental error results for the 10 second signal

Device/Method Max (deg) STD (deg) Mean (deg) %

Extended Method 1.63 0.30 0.36 3.82
Inertia Cube 3 1.62 0.41 0.61 6.58
Gyroscope 3.24 0.79 1.08 11.06

The extended method performs better than the Inertia Cube 3 and gyroscope for

this signal. More specifically, a mean absolute percentage error of 3.82% is achieved,

compared with 6.58% and 11.06% for the Inertia Cube 3 and gyroscope respectively.

However, the resulting signal is not as smooth as was the case for pure rotation seen

in Figure 5.9. This increased noise within the solution can be attributed to the, now

three, linear fits to noisy acceleration signals AT , Ah, and Av, within the linearised

model Equation (6.20). Solving over a longer period ∆T = 45 does reduce these

abberations. However, increasing this time period further does not continue this

improved trend, and merely increases computation and potential lag.

Further comparison with the results in Table 5.2 for the pure rotation case shows

that, even with the less dynamic signal of Figure 6.6 (compared to Figure 5.9), the

accuracy attained by the generalised method for the stationary cart achieves a lower

mean absolute percentage error of 2.61% compared to 3.82% for the moving cart.
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However, this result is expected given the added complexity and room for error

within the extended method.

The Inertia Cube 3 performs similarly for both cases with approximately dou-

ble the error of the generalised and extended methods. The gyroscope appears to

perform better within these results. However, this result is simply explained by the

shorter signal used in this case not allowing as much time for its result to drift.

6.4 Summary

The generalised method of Equations (4.14) – (4.25) presented in Chapter 5 is lim-

ited to finding orientation for a case of one degree of rotational freedom. For head

tracking, other dynamics due to motion of the user would clearly corrupt the ac-

celerometer signals due to rotation alone. The inverted pendulum model of Figure

2.1 and Equations (2.1) and (2.2) solved in the generalised method is extended to in-

clude motion of the pivot. The resulting accelerations from this motion, Ah and Av,

are used to generate new model Equations (6.1) and (6.2) for the relative tangential

and radial accelerations at the end of the inverted pendulum.

The generalised method of Equations (4.14) – (4.25) is modified to generate

a solution to the new model Equations (6.1) and (6.2). The linearised tangential

Equation (6.20) unfortunately does not have a analytical solution. Thus, this new

extended method of Equations (6.9) – (6.34) presented, utilises the analytical ho-

mogeneous solution, combined with the numerical solution, to form the solution θsol

in terms of unknown initial conditions θ0 and θ̇0.

Both the model of Equations (6.1) and (6.2) and the extended method for the

solution of θ from Equations (6.9) – (6.34) were validated experimentally. This

validation was achieved by moving both the cart and pendulum of the inverted

pendulum apparatus, with accelerometers measuring AT , AR, Ah, and Av. The fit

of the measured accelerations AT and AR to the model Equations (6.1) and (6.2)

shows good agreement, as seen in Figure 6.5, similar to the initial validation for the

fixed pivot system in Section 2.3.

The extended method was also compared to the Inertia Cube 3 and Analogue

Devices gyroscope in Figures 6.6 and 5.10. The extended method, although not as
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accurate as it was for the stationary cart, still outperforms the other devices. In

particular it achieves a mean absolute percentage error of 3.82% over the 10 second

signal tested.

The extended method of Equations (6.9) – (6.34) presented in this chapter clearly

shows that accurate orientation can be determined for the inverted pendulum model

of head motion while undergoing dynamic rotation and translation of the pivot in a

single vertical plane. This case and method cover a far more general scenario then

a single rotational degree of freedom case. It, also provides an approach that can be

readily generalised to other vertical head motion planes.





Chapter 7

Conclusions

Achieving precise and accurate image registration is one of the most significant

unsolved problems within AR systems, particularly under any significant speed or

frequency of motion. As a result, registration error is a major issue hindering the

more widespread growth of AR applications. Overcoming the challenges that accu-

rate viewpoint tracking presents within AR systems will improve performance for

existing applications, and enable new AR development.

Many tracking methods exist, although typically these perform relatively poorly

or are unsuitable in highly dynamic environments that many AR applications seek

to expand into. Thus, applications in these more challenging environments, such

as outdoors, are not well catered for by existing commercial tracking solutions. To

fully enable AR growth, accurate but, low cost approaches based on simple, existing

sensor platform technologies are required.

7.1 Objectives and Approach

The key objective for this thesis was to improve dynamic orientation tracking of

the head using low cost inertial sensors. The approach taken was to extend the

excellent static orientation sensing abilities of accelerometers to a dynamic case by

utilising a model of head motion. Other approaches to sensing dynamic orientations

using inertial devices rely heavily on rate gyroscopes. However, these gyroscopes

suffer from inherent drift due to the required integration of noisy rotational rate

measurements to determine orientation. These approaches then apply methods that

intermittently correct for the drift, often utilising accelerometers. Generally devices
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using these approaches produce good results for relatively slow or lower frequency

motions. However, their performance drops significantly during motions with faster

dynamics due to the inability to accurately correct for drift in these situations. Thus,

they cannot address the needs of emerging AR application spaces.

The approach presented in this thesis is restricted to motion in a vertical plane.

Thus, applying to pitch and roll orientations of head motion. Importantly, it is

these orientations that are most perturbed during walking or running. The relatively

simple model-based sensor approach developed to represent head motion is based

on an inverted pendulum with a dual axis accelerometer attached in the plane of

motion. This positioning corresponds to attaching the accelerometer to a helmet or

other type of head gear, as is the case with existing inertial orientation devices.

Initially, the case of a single degree of rotational freedom is considered. ODEs

describing the rotational motion of the pendulum were formed by resolving the

tangential and radial accelerations at the point that the accelerometer is attached to

the pendulum. These model equations, proved difficult and unstable to solve, with

conventional engineering approaches and other initial methods failing to produce

stable solutions for orientation. Although it is a well defined model, solving the

equations for orientation is not typical, and no stable solution over any useful time

period was found in the literature. The analytical solution to the linear tangential

ODE illustrated that the instability present in the solutions is due to the presence of

a positive exponential power in the transient solution. This solution is essentially ill-

conditioned with any error in the initial conditions, leading to error in the coefficient

of the exponential terms, resulting in instability. As a result, novel methods are

required to develop the solutions in a stable and accurate form.

7.2 The Unique Solution Method

A unique mathematical approach to solving the model equations simultaneously

to give orientation was presented. This method is based around constructing a

linear piecewise approximation to the non linear tangential ODE. The first piecewise

section is solved in terms of unknown initial conditions. Each subsequent piecewise

section has its initial conditions defined by the solution of the previous section,

represented in terms of the original unknown initial conditions form the beginning
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of the period. Thus, a piecewise analytical solution is achieved in terms of unknown

initial conditions that approximates the solution to the non linear tangential ODE.

This approximate solution for orientation is then substituted into the indepen-

dent radial ODE and the unknown initial conditions optimised by fitting the gener-

ated expression to the measured radial acceleration. The optimal initial conditions

are then substituted into the solution of the tangential ODE providing orientation.

Thus, the method effectively allows a solution to a nonlinear ODE to be generated

in terms of unknown initial conditions, that are then optimally determined from a

second independent ODE.

This unique approach overcomes the instability and ill-conditioning that resulted

in all other attempted solution methods applied to the model equations failing.

This important result forms the significant contribution of this thesis. The method

provides a means to a solution for a coupled set of unstable independent nonlinear

ODEs that are not solvable by any other conventional method. This method, or parts

of the method, may well find useful application within other research areas. However,

more specifically, this thesis presents the stable and accurate solution for orientation

from the inverted pendulum model equations, not found within the literature over

any significant time period. This result alone could prove useful in areas involving

other physiological measures and studies where the inverted pendulum model is

often applied, or other similar inherently or innately unstable systems.

7.3 Validation of the Methods

The methods were validated experimentally with data collected using accelerometers

and an inverted pendulum apparatus over a range frequencies from 0 – 3Hz, typical

for pitch and roll head motions. For a fixed cart the best method developed achieved

absolute percentage errors of approximately 1.4% for signal frequencies of 1Hz or

less. Higher frequencies resulted in a reduction in performance. However, increasing

the sampling rate should dramatically reduce this effect.

The extended method operates on the acceleration of the pendulum relative to

the centre of rotation. Thus, this method relies on a second accelerometer to measure

the acceleration at the centre of rotation. Initial validation of the extended method

achieved by moving the cart and pendulum shows a reduction in performance from
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an absolute percentage error of 2.61% for the stationary cart to 3.82% for the moving

cart over the signals tested. This is not surprising given that the relative acceleration

would effectively double the noise present.

Within these limited two dimensional validation tests, the accelerometer model-

based method outperforms the Inertia Cube 3, the best existing multi-sensor plat-

form solution, with the results approximately half the mean absolute percentage

error of the Inertia Cube 3 results for frequencies less than 2Hz. The gyroscope

performs relatively well over such short signal lengths. However, as expected drifts

significantly over longer periods.

The key advantage of the accelerometer model-based method presented within

this thesis is that the orientation solution remains registered to the gravitational

vector at all times as described by the model equations. Thus, this method is

immune to drift that can be observed at high frequencies with the Inertia Cube 3

and clearly with gyroscope based solutions, and does not need to rely on any other

sensing modality.

7.4 Potential Application Benefits

The accelerometer model-based method presented within this thesis proves the con-

cept, in two dimensions, that accelerometers combined with an accurate motion

model can accurately determine orientation within a dynamic system. Theoreti-

cally, this two dimensional model can easily be extended to the more general three

dimensional case. Hence, it can be readily applied to head tracking within AR ap-

plications. The same advantages of this method apply in the three dimensional case

as applied in the two dimensions examined here.

The accurate performance demonstrated by the method in two dimensions will

be maintained given that the relationship of the accelerometer axes to gravity de-

scribed in the the model equations still holds. Increasing sampling rate within

the method will improve the dynamic performance, providing more data points to

describe the measured acceleration signals. Real-time application of the methods

presents no significant challenge given an increase in speed of 100 to 1000 times is

typically attained for optimised code running on a digital signal processor (DSP).

Therefore, the objective of improving the dynamic performance of head tracking for
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AR applications can be realistically expected to be achieved.

The accuracy of the methods presented still remain far from the ideal perfor-

mance of 0.0057◦ suggested in the literature which is a very challenging requirement.

This value is suggested as a target to achieve a resultant 1mm registration error with

all error sources and delays are included within the AR system. These levels are

unattainable with the current inertial MEMS technology. Importantly, the method

presented is independent of any specific hardware.

However, this ideal accuracy noted is not required for all applications. Assum-

ing similar results to those presented in the validation of the methods for the two

dimensional system will be achieved in the three dimensional system, then these

methods would mark a very significant improvement in the state of the art. In par-

ticular, they are almost twice as good as a leading commercial MEMS based IMU,

the Inertia Cube 3, which costs in the order of US$1000.

7.5 Summary

A robust method to determine pitch or roll orientation for highly dynamic head

motion was developed, based on an inverted pendulum model of head motion, and

accelerometer measurements. A unique approach is required, and was developed, to

solve the unstable coupled set of differential model equations. The key advantage

of this accelerometer model-based method is that the orientation remains registered

to the gravitational vector, providing a drift free solution that outperforms exist-

ing, state of the art, gyroscope based methods. This proof of concept uses low-cost

accelerometer sensors to show significant potential to improve head tracking in dy-

namic AR environments, such as outdoors.





Chapter 8

Future Work

The model-based methods for tracking orientation presented offer significant, stable

and accurate improvements over the state of the art. However, there are still several

avenues of potential improvement that have arisen in the latter course of this work.

These directions and possibilities are outlined in this chapter.

8.1 Further Validation Methods

The extended method of Equations (6.9) – (6.34), presented in Chapter 6, was

validated experimentally using the inverted pendulum apparatus. However, due to

slack within the pivot bearing mechanism, and the relatively large noise induced by

the motion of the cart along the track, Accelerometer 2 of Figure 6.1 was actually

placed upon the pendulum at the centre of rotation. The values for the measured

Ah and Av, required to determine the relative acceleration were then derived using

the measured θen from the encoder. Modifications to the apparatus would rectify

these issues and allow the second accelerometer to be placed more realistically upon

the cart, and the extended method more successfully implemented.

8.1.1 Using the Method in a Nested Approach

A further extension and validation of the extended method in two dimensions would

illustrate the application within a nested approach. This implementation would

determine the orientation of the second pendulum in a double pendulum system,

as shown schematically in Figure 8.1. The determination of the orientation of the
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first pendulum section would be required to find Ah and Av for the second system.

Thus, the extended method is radially extensible to more complex systems. Such

an array of accelerometers could be positioned in a wearable computing system, for

example, on the hips, shoulders, and head, to provide orientation for total human

body motion.

Figure 8.1: The nested system for two pendulum sections

This extended physical approach could be easily experimentally verified using an

extended inverted pendulum apparatus, with optical encoders providing the true

orientation for the system for comparison.

8.1.2 Controlling the Inverted Pendulum

To validate the approach presented in the extended method, the solution for orienta-

tion of the pendulum could be implemented within a control system to stabilise the

inverted pendulum in real time. The successful implementation of such an approach

would provide undisputable validation of the accuracy and real time application of

the orientation result from the method. As such it presents a difficult, but well

known, benchmark problem for the results developed here.
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8.1.3 Head Motion Validation

The validation approaches applied here do not specifically validate the method for

actual head motion. Given that improving dynamic head tracking is the ultimate,

and intended application of this work, it is important to validate the method specif-

ically for this case. Such validation requires a highly accurate and independent

measure of head orientation. An infra-red optical tracking system, as introduced in

Section 1.4, should provide a good measure of truth for such validation. However,

it is expected that better performance will be achieved from the method for this

case when implemented in three dimensions. This expectation exists because un-

modelled out of plane disturbances will have a detrimental effect on the performance

of the method in any given two dimensional plane and it would be very difficult to

implement and capture head motion data without inducing such effects.

8.2 Extensions of the Methods and Algorithms

8.2.1 Extension to Three Dimensional Motion

The methods developed and provisionally validated within this thesis are based on

proving the concept that using accelerometers combined with a model can provide

accurate orientation that is immune to drift. Now that this concept has been initially

validated, the method and approach can be extended to three dimensions, providing

a robust solution for tracking pitch and roll head orientations within highly dynamic

AR applications that motivated this work.

8.2.2 Integrating a Gyroscope into the Methods

The approach presented in this thesis utilises only accelerometers, combined with

a model of the motion. However, this work approaches the limits of the accuracy

attainable with only accelerometers due to noise and model error. Accelerometers

have the advantage that they sense the gravitational acceleration. This gravita-

tional acceleration provides reference for accelerations from resulting orientations.

However, rate gyroscopes sense rotational rate, which, upon integration, yields ori-
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entation. This orientation result is unreferenced and suffers from considerable drift,

but is generally quite smooth.

Introducing a gyroscope to the method offers significant synergies. The ac-

celerometer model-based method will provide stability to the drift prone gyroscope

over the medium and long term. Conversely, the gyroscope can provide stability to

the accelerometer method over the short term providing additional robustness to

this method with respect to noise and un-modelled disturbances. This combination

has more potential for an improved result than other approaches that simply correct

the drift of the gyroscope sporadically.

The inclusion of the gyroscope within the method could also result in a significant

computational saving. As the gyroscope directly measures θ̇, the radial equation

used to optimise the initial conditions by fitting to the measured AR becomes linear

in θ. Thus, the surface describing the optimal θ0 and θ̇0 only has one solution,

making a solution much simpler and faster.

Thus, combining a gyroscope into the new methods developed in this thesis

effectively provides dynamic drift correction applied at every measurement time

point. This combination could potentially provide a significant improvement in the

solution for θ, by as much as 10 times. This new result would be much closer to the

ideal performance suggested to achieve 1mm registration error within an AR system

that is provided in Table 2.1. It would also even more significantly outperform

current multi-sensor platforms like the Inertia Cube 3 due to the major advantages

captured by the methods developed in this thesis.

8.2.3 Investigate and Implement Prediction

Prediction, discussed in Section 1.5.1, is an approach to reduce dynamic registration

error caused by latency within and AR system. The application of more accurate

head motion models, such as the inverted pendulum model presented and solved

within this thesis, offer potential to improve the performance of the prediction.

Improved prediction performance, would result in an increased feasible prediction

interval, as well as a more accurate estimate. Thus, to some extent negating the

effect the latency has on the registered image within an AR application.



Appendix A

Full Solution to the Generalised Approach

In this appendix the solution to Equation (5.17) of the generalised method is con-

structed in terms of the initial conditions θ0 and θ̇0 independently from the solution

in of the piecewise method of Equations (4.18) – (4.25) which are in terms of C1

and C2. Solving the linear Equation (5.17) gives the analytical expression:

θsol,i = (Ā1,iθ0 + Ā2,iθ̇0 + Ā3,i)e
mi(t−ti−1)+

(B̄1,iθ0 + B̄2,iθ̇0 + B̄3,i)e
−mi(t−ti−1) − (b1,i + u1,i + u2,it)

b2,i

(A.1)

which has a differential of:

θ̇sol,i = mi(Ā1,iθ0 + Ā2,iθ̇0 + Ā3,i)e
mi(t−ti−1)−

mi(B̄1,iθ0 + B̄2,iθ̇0 + B̄3,i)e
−mi(t−ti−1) − u2,i

b2,i

(A.2)
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where for both Equations (A.1) and (A.2) the following variables are redefined:

ti = iδt

mi =
(b2,ig)1/2

R1/2

Ā1,i =
(b2,ig)1/2q1,i + dq1,iR

1/2

2(b2,ig)1/2

Ā2,i =
(b2,ig)1/2q2,i + dq2,iR

1/2

2(b2,ig)1/2

Ā3,i =
(b2,ig)1/2(b1,i + u1,i + u2,iti−1) + u2,iR

1/2 + b
3/2

2,i g1/2q3,i + dq3,iR
1/2b2,i

2b
3/2

2,i g1/2

B̄1,i =
(b2,ig)1/2q1,i − dq1,iR

1/2

2(b2,ig)1/2

B̄2,i =
(b2,ig)1/2q2,i − dq2,iR

1/2

2(b2,ig)1/2

B̄3,i =
(b2,ig)1/2(b1,i + u1,i + u2,iti−1)− u2,iR

1/2 + b
3/2

2,i g1/2q3,i − dq3,iR
1/2b2,i

2b
3/2

2,i g1/2

where the q1,i, q2,i, q3,i and dq1,i, dq2,i, dq3,i terms define the initial conditions at ti−1

for the ith section in terms of the initial conditions at at t0, θ0 and θ̇0. Continuity

is maintained as before, with these constants representing the coefficients of θ0 and

θ̇0 within the solution, evaluated at the end of the previous section. This definition

is shown in Equation (A.3).

θsol,i(ti−1) = θsol,i−1(ti−1) = q1,iθ0 + q2,iθ̇0 + q3,i

θ̇sol,i(ti−1) = θ̇sol,i−1(ti−1) = dq1,iθ0 + dq2,iθ̇0 + dq3,i i = 2, ..., k (A.3)

However, at t0 the initial conditions are already defined. Thus, for the case where

i = 1, q1,i, q2,i, q3,i and dq1,i, dq2,i, dq3,i are defined such that:

θsol,1(0) = θ0

θ̇sol,1(0) = θ̇0 (A.4)
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giving:

q1,i = 1 dq1,i = 0

q2,i = 0 dq2,i = 1

q3,i = 0 dq3,i = 0

i = 1 (A.5)

Beyond the first section, q1,i, q2,i, q3,i and dq1,i, dq2,i, dq3,i are defined by recursive

expressions where:

q1,i = Ā1,i−1e
mi−1(ti−1−ti−2) + B̄1,i−1e

−mi−1(ti−1−ti−2)

q2,i = Ā2,i−1e
mi−1(ti−1−ti−2) + B̄2,i−1e

−mi−1(ti−1−ti−2)

q3,i = Ā3,i−1e
mi−1(ti−1−ti−2) + B̄3,i−1e

−mi−1(ti−1−ti−2) − (b1,i−1 + u1,i−1 + u2,i−1ti−1)

b2,i−1

dq1,i = mi−1Ā1,i−1e
mi−1(ti−1−ti−2) −mi−1B̄1,i−1e

−mi−1(ti−1−ti−2)

dq2,i = mi−1Ā2,i−1e
mi−1(ti−1−ti−2) −mi−1B̄2,i−1e

−mi−1(ti−1−ti−2)

dq3,i = mi−1Ā3,i−1e
mi−1(ti−1−ti−2) −mi−1B̄3,i−1e

−mi−1(ti−1−ti−2) − u2,i−1

b2,i−1

i = 2, ..., k (A.6)

The solution given in Equation (A.1) can be used to solve the set of ODEs in

Equation (5.17) describing the motion over the whole solution period, ∆T . This

solution can be represented in more compact form as follows:

θsol(t) =
k∑

i=1

θsol,i(t)
(
H(t− ti)−H(t− ti−1)

)
(A.7)

where H is the Heaviside function defined in Equation (5.9) and θsol,i is given in

Equation (A.1).
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