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Abstract 

 

Background: One approach to swallowing rehabilitation is skill rather than strength training. 

This study sought to improve the calibration process used in a skill training protocol 

(BiSSkiT) for swallowing rehabilitation. Calibrating an achievable target range is important 

to ensure that the task is achievable and promotes skill rather than strength training.  

 

Methods: This methodological study used a two-factor repeated measures design. Healthy 

participants completed normal and effortful swallows under two conditions: with and without 

visual feedback. The maximum amplitude as measured by sEMG was recorded for each 

swallow.  

 

Results: Data from 35 participants was analysed. A significance difference was found 

between swallowing tasks but not feedback conditions. Effortful swallowing resulted in 

higher amplitude than normal swallowing. Effortful swallowing also had a higher variability 

(mean SD=17.47) than normal swallowing (mean SD=9.69).  

 

Conclusion: The aim of this study was to determine the most consistent approach to 

calibrating a target range during skill training for swallowing rehabilitation. The presence or 

absence of visual feedback did not impact on sEMG measurements. The greater variability 

during effortful swallows suggests that normal swallowing should be used to calibrate a 

target range.  
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Chapter 1 - Literature Review 

 

Swallowing serves two main functions that are essential to survival: nutritional intake 

and protection of the airway (Humbert & Joel, 2012); Jean (2001). It is an incredibly complex 

and rapid action – the total swallowing duration for liquids is approximately 1.0-1.5 seconds 

(Daniels, Schroeder, DeGeorge, Corey, & Rosenbek, 2007; Dodds, Stewart, & Logemann, 

1990) depending on volume (Molfenter & Steele, 2012). The swallowing process can be 

interrupted by structural or neurological changes, resulting in swallowing difficulties or 

dysphagia (S. M. Shaw & Martino, 2013).  

1.1 Anatomy and physiology of swallowing 

The swallowing process has been described in three main phases: oral, pharyngeal, 

and oesophageal (Dodds et al., 1990; Ertekin & Aydogdu, 2003), but visual and olfactory 

stimuli during the pre-oral phase play an important role in readying the swallowing system 

(Leopold & Kagel, 1997; Maeda et al., 2004). 

1.1.1 Pre-oral stage. Visual and olfactory stimuli during the pre-oral stage play an 

important role in increasing salivation which is imperative for mastication and bolus transfer 

(Leopold & Kagel, 1997; Pedersen, Sørensen, Proctor, Carpenter, & Ekström, 2018). These 

stimuli also activate the cortical swallowing network readying it for the oral phase of 

swallowing (Leopold & Kagel, 1997). Factors such as cognition, attention, hunger, and motor 

skills also play an important role during the pre-oral phase (Leopold & Kagel, 1997; Shune, 

Moon, & Goodman, 2016).  
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1.1.2 Oral stage. During the oral stage for solids, the tongue transports the bolus and 

places it between the molar surfaces for mastication. The bolus is masticated and mixed with 

saliva until it has reached the appropriate consistency for swallowing (K. Matsuo & Palmer, 

2008; Pedersen et al., 2018). The soft palate does not continuously contact the base of tongue 

to create a palatoglossal seal for solid bolus textures (K. Matsuo, Hiiemae, & Palmer, 2005). 

However, during the oral stage for liquids, the bolus is prevented from prematurely spilling 

into the pharynx by the glossopalatal seal. The tongue tip then propels the bolus posteriorly 

while the soft palate moves up and the base of tongue moves anteriorly and inferiorly to 

facilitate bolus flow.  

1.1.3 Pharyngeal stage. Sensory perception through mechano- and chemoreceptors 

plays an important role in triggering the pharyngeal swallowing response (Alvarez-Berdugo 

et al., 2016). Sensory information is transmitted from the receptors lining the oropharyngeal 

mucosa via the trigeminal, facial, glossopharyngeal and vagus nerve to the sensory cortex and 

the brainstem (Alvarez-Berdugo et al., 2016). The beginning of the pharyngeal stage is 

typically determined by the initiation of hyoid movement (Gassert & Pearson, 2016; Nam, 

Oh, & Han, 2015).  

Overall, the pharyngeal stage consists of the following major physiological events: 

velopharyngeal closure, laryngeal vestibule closure, tongue base retraction, hyolaryngeal 

elevation, pharyngeal shortening and upper oesophageal sphincter opening 

As the base of tongue drops, the soft palate moves up and seals against the posterior 

pharyngeal wall while the pharyngeal constrictor muscles tense to seal against the lateral 

aspects of the soft palate. Velopharyngeal closure seals off the nasopharynx to create the 

increased pressure that is required for bolus propulsion through the pharynx (Dodds et al., 

1990; K. Matsuo et al., 2005; Koichiro Matsuo & Palmer, 2009; Perlman, Schultz, & 
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VanDaele, 1993). Elevation of the soft palate is achieved by contraction of the levator veli 

palatini and tensor veli palatini muscles which are innervated by the vagus and trigeminal 

nerve respectively (Belafsky & Lintzenich, 2013).  

The hyoid bone and the larynx are pulled anteriorly and superiorly while the base of 

tongue pushes the bolus down and the posterior pharyngeal wall comes forward (Miller, 

2008). The geniohyoid and anterior belly of the digastric elevate and pull the hyoid forward 

(Inokuchi et al., 2014) with the anterior belly of the digastric likely generating most of the 

force and the geniohyoid being responsible for the excursion (S. M. Shaw et al., 2017).  

Laryngeal vestibule closure protects the airway and is achieved by adduction of the 

vocal folds, adduction of the aryepiglottic folds and epiglottic deflection (Vose & Humbert, 

2018). The arytenoid cartilages move to adduct the vocal folds and the aryoepiglottic folds to 

protect the airway and decrease the size of the laryngeal inlet (Miller, 2008; Vose & 

Humbert, 2018). Laryngeal elevation, tongue base retraction, and pharyngeal constriction all 

facilitate epiglottic deflection which further protects the airway (Vose & Humbert, 2018). 

The epiglottis is a flexible thin cartilage that sits in between the base of tongue and the 

laryngeal vestibule. Inferiorly, the epiglottis attaches to the hyoid bone, the thyroid and the 

quadrangular membrane; during hyolaryngeal excursion the epiglottis moves from vertical to 

a horizontal position covering the laryngeal vestibule (Hennessy & Goldenberg, 2016). While 

epiglottic deflection is correlated with hyoid movement it is not necessarily dependent on it; a 

recent study investigating impaired epiglottic deflection found that the long pharyngeal 

muscles, styloglossus and hyoglossus likely play a more important role in epiglottic 

deflection than the submental muscles (W. G. Pearson, Jr., Taylor, Blair, & Martin-Harris, 

2016). However, the study did not include the contribution of the pharyngeal constrictor 

muscles and did not control for underlying aetiology of dysphagia.  
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Pharyngeal contraction serves two main purposes; it constricts the pharynx thereby 

increasing the pressure on the bolus facilitating its transfer through the pharynx and it 

shortens the pharynx thereby elevating the upper oesophageal sphincter towards the bolus 

(Hosseini, Tadavarthi, Bonnie, & Pearson, 2019; Leonard, Kendall, & McKenzie, 2004). 

Pharyngeal constriction is the result of tongue base retraction and activation of the superior 

and middle pharyngeal constrictor muscles (Schwertner, Garand, & Pearson, 2016) while 

pharyngeal shortening is achieved by the long pharyngeal muscles (stylopharyngeus, 

palatopharyngeus, and salpingopharyngeus) (W. G. Pearson, Hindson, Langmore, & 

Zumwalt, 2013).  

The upper esophageal sphincter consists of the inferior pharyngeal constrictor 

muscles, the cricopharyngeous muscle, and the superior portion of the esophagus (K. Matsuo 

& Palmer, 2008). The upper esophageal sphincter opens by first relaxing and is then pulled 

open by hyolaryngeal excursion (K. Matsuo & Palmer, 2008; Miller, 2008) allowing the 

bolus to transit through. The force of the bolus also plays an important role in opening the 

upper esophageal sphincter (D. Shaw et al., 1995).  

1.2 Dysphagia  

As described above, swallowing is a complex process requiring the timely 

coordination of a multitude of movements of muscles, bones, and cartilages. Difficulties with 

swallowing, or dysphagia, can result from any type of structural or neural damage that 

interferes with these movements (S. M. Shaw & Martino, 2013). Dysphagia can have 

significant impact on health outcomes, quality of life, and place additional financial burden 

on the healthcare system (Arnold et al., 2016; Attrill, White, Murray, Hammond, & Doeltgen, 

2018; Eslick & Talley, 200; Patel et al., 2018).  
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1.2.1 Management of dysphagia. Management of dysphagia depends on the 

underlying cause but can be divided into two main categories: compensation and 

rehabilitation (Gonzalez-Fernandez, Ottenstein, Atanelov, & Christian, 2013). Historically, 

the focus of dysphagia management has been on the use of compensatory strategies during 

swallowing (Burkhead, Sapienza, & Rosenbek, 2007).  

1.2.1.1 Compensatory strategies. Compensatory strategies to manage dysphagia 

include postural changes during swallowing such as chin tuck and head turn, sensory 

enhancement such as carbonating fluids or changing temperature and flavour, manipulating 

viscosity and volume, breath-holding, and increasing volitional control by introducing a three 

second preparation stage before swallowing (Johnson, Herring, & Daniels, 2014). However, 

compensatory strategies do not have lasting effects; patients need to remember to employ the 

strategy every time they swallow (which can be especially challenging for patients with 

cognitive impairments), and the research base for these strategies is sparse (Huckabee & 

Hughes, 2013; Johnson et al., 2014).  

1.2.1.2 Rehabilitative strategies. 

Strengthening. Traditionally, swallowing rehabilitation has largely focused on 

retraining muscle strength (Easterling, 2017). Overall, the evidence supporting strengthening 

exercises  for swallowing rehabilitation is variable (Smaoui, Langridge, & Steele, 2019). 

Evaluation of strengthening research is confounded as research studies frequently use healthy 

volunteers instead of patients as participants or combine multiple exercises in one treatment 

protocol (Langmore & Pisegna, 2015). Considering that swallowing is a sub-maximal task 

(Nicosia et al., 2000), a strengthening approach might not be the most appropriate approach 

as prescription of strengthening exercises assumes that the underlying impairment is one of 

weakness.  
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While strength and muscle mass may increase following strength training, this does 

not necessarily result in a change of swallowing biomechanics or improve functional 

outcomes (Robbins et al., 2005; Robbins et al., 2007; Yano et al., 2019). Adherence to 

strength training protocols can also be poor (Wakabayashi et al., 2018). 

Skill training. Skill training is an emerging approach to dysphagia rehabilitation and is 

based on the idea that swallowing is a complex task requiring skill rather than strength (Miles 

& Allen, 2015). Skill training can take many forms but typically utilises a type of 

biofeedback.  Biofeedback involves the measurement of a physiological signal which is 

filtered, processed, and then converted to a visual or auditory signal (Peper, Harvey, & 

Takebayashi, 2009). Biofeedback aims to increase the ability to self-regulate physiological 

processes by developing awareness of those processes (Peper et al., 2009).  

Steele et al. (2013) modified a lingual strength training protocol (Robbins et al., 2005; 

Robbins et al., 2007) to include a component that could be considered skill training during 

which patients had to achieve a randomly selected pressure target between 20%-90% of their 

maximum isometric pressure. Tongue pressures improved for all participants and five out of 

six participants no longer aspirated thin liquids post intervention. However, post-swallow 

residues did not improve and worsened for some of the participants. Because this study used 

a single-subject research design due to the small number of participants, it is difficult to 

generalise these findings to the general population. The combination of treatments 

approaches makes it difficult to evaluate the effect of each treatment component individually. 

Furthermore, the participants had a range of brain injuries and three participants were only 

six months or less post-injury and spontaneous recovery in those participants cannot be 

excluded.  
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Martin-Harris et al. (2015) trained patients with dysphagia due to head and neck 

cancer to improve coordination of respiration and swallowing. The training consisted of three 

stages: patients first learned to identify correct breathing patterns, then received visual 

feedback about their own breathing patterns to acquire the correct pattern, and then had to use 

the correct pattern without feedback. Post intervention, laryngeal closure, tongue base 

retraction, pharyngeal residue, and penetration/aspiration improved significantly. These 

findings suggest that patients can learn to modulate aspects of their swallowing when given 

the appropriate feedback and hierarchy of learning tasks and that this results in changes in 

swallowing physiology.  While the treatment aim was to improve respiratory-swallowing 

coordination, other aspects such as tongue-base retraction also improved suggesting a 

generalisation effect. The study only included 30 participants, and only half of the 

participants were followed up after one month limiting conclusions regarding the long-term 

effects of treatment.  

 Carnaby-Mann and Crary (2008) investigated the use of transcutaneous 

neuromuscular electrical stimulation in conjunction with the McNeill dysphagia program 

using a case series design including six patients with dysphagia resulting from stroke, head 

and neck cancer, and traumatic brain injury. The McNeill dysphagia treatment consisted of 

hierarchical presentation of bolus volumes and consistencies that the patient was instructed to 

“swallow hard and fast with a single attempt”. A successful swallowing attempt was 

considered when the bolus was not expectorated and no signs of aspiration were observed by 

the clinician (signs of aspiration for each patient had been documented during pre-treatment 

VFSS). While the participants received neuromuscular electrical stimulation during the 

treatment sessions, this can be considered a type of skill training because of the hierarchical 

presentation of target boluses which depended on the participant’s performance. During each 

session, depending on the patient’s performance, the treating clinician decided whether they 
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would advance to the next level or return to the previous level specific. Four patients had 

clinically meaningful improved scores on a standardised clinical swallowing exam and a 

functional oral intake scale. Changes in hyoid and laryngeal elevation were variable across 

fluid consistencies and bolus volumes; only laryngeal elevation increased for 5ml nectar 

liquid post therapy. Gains made during treatment were maintained at 6 months post. 

However, the authors did not provide a detailed description of the intervention that would 

allow for replication. Furthermore, the combination of treatments makes it impossible to 

determine which treatment component caused these changes. Crary, Carnaby, Lagorio, and 

Carvajal (2012) then used the same McNeill treatment protocol with nine patients who had 

dysphagia due to head and neck cancer radiotherapy treatment, neurological condition or 

both. While four of the seven patients who were tube dependent had their feeding tubes 

removed post treatment, physiological changes were variable depending on bolus 

consistency. For example, hyoid and laryngeal elevation increased significantly only for thin 

consistencies.  However, the authors also did not provide a detailed description of the 

treatment protocol and the small sample size limited the power of the statistical analysis.   

 Huckabee, Lamvik, and Jones (2014) utilised low resolution manometry to provide 

visual biofeedback to 16 patients that presented with dysphagia characterised by mis-

sequencing of pharyngeal pressures. The patients were shown a target pattern of manometric 

waveforms representing a normal swallow and were then able to see the manometric 

waveforms of their own swallows live on a screen. They were instructed to match their 

pattern to the target pattern. The pressures generated during swallowing remained unchanged 

while the duration between pressures generated in the base of tongue region and the laryngeal 

adductors increased indicating improved temporal coordination between these two events. 

Eleven patients returned to full oral intake, out of the five that did not return to oral intake, 

four completed only one week of treatment.   
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1.2.1.3 sEMG as biofeedback in skill training. Biofeedback frequently utilises EMG 

(Peper et al., 2009). The EMG signal quantifies the electrical activity that is generated during 

muscle activation (Reaz, Hussain, & Mohd-Yasin, 2006). The motor neurons generate 

electrical impulses which travel along the muscle fibres causing them to contract. Because the 

electrical field that is generated is close to the muscle surface it can be measured, processed, 

and displayed as a waveform over time (Moritani, Stegeman, & Merletti, 2005; Reaz et al., 

2006). The EMG signal can be measured from the skin surface or by inserting a needle into 

the muscle (Stepp, 2012).  

Submental EMG (sEMG) has been used in several studies to either assess swallowing 

or to provide feedback about swallowing; it has been used either as the sole type of 

biofeedback or used in conjunction with other types of biofeedback. sEMG most closely 

represents the activity of the mylohyoid, geniohyoid, genioglossus, and anterior belly of the 

digastric muscles; temporally activation of these muscles precedes hyoid movement and 

laryngeal elevation which is one of the first biomechanical events in swallowing (Crary, 

Carnaby, & Groher, 2006). The sEMG signal is typically plotted as a waveform line along an 

x-axis representing time and along a y-axis representing amplitude of muscle activity. As 

muscle activity increases during swallowing, a characteristic peak is generated which 

provides instant visual feedback about the timing and amplitude of each swallow.  

 Carnaby-Mann and Crary (2010) compared eight patients who received the McNeill 

dysphagia treatment protocol (as described previously) with 16 patients who received 

traditional swallowing therapy but learned the swallowing manoeuvres with sEMG 

biofeedback. All participants had chronic dysphagia due to head and neck cancer or because 

of a neurological cause. The study found that both groups had improved functional oral 

scores post treatment and aspiration was eliminated in 4/6 patients receiving the McNeill 

dysphagia treatment and in 4/11 patients receiving traditional swallowing therapy. 
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Additionally, 4/6 who received the McNeill dysphagia treatment and 3/11 patients who 

received traditional therapy no longer required tube feeding post treatment. However, the 

patients who received the McNeill dysphagia treatment also received daily mandatory home 

therapy while this was variable and not monitored for control subjects. The type of therapy 

the control subjects received and which manoeuvres they learned with sEMG biofeedback 

was not described. The authors conclude that their findings provide evidence to support the 

use of the McNeill dysphagia program. However, the study lacked a clear description of the 

treatment and the treatment comparison protocol and only compared two very small samples 

of very heterogeneous participants.  

 Stepp, Britton, Chang, Merati, and Matsuoka (2011) developed a videogame based 

system that utilised sEMG to provide visual feedback about timing and amplitude of 

swallowing. The sEMG signal was displayed as an animal character (e.g. a fish) which 

moved up and down depending on muscle activation. The participants aimed to move the fish 

to “swallow” the targets that appeared on the screen. The targets appeared at 33%, 66%, and 

100% of each participant’s maximal swallowing amplitude, making this both a skill and 

strength training task. The maximum amplitude was taken from saliva swallows at the 

beginning of the session; however, the authors did not specify what kind of instructions were 

given or how many swallows each participant completed. They trialled this system with an 

18year old patient who was six years post brainstem stroke and six healthy volunteers. 

However, neither the patient nor the healthy volunteers were required to swallow to hit the 

target – they could control muscle activation any way they chose and the electrodes 

measuring sEMG were placed on the anterior neck region to measure activation of the 

thyrohyoid, sternohyoid, and omohyoid muscles. The healthy volunteers participated in only 

one session, while the patient did three sessions in week 1 and another three sessions in week 

3. Each session consisted of 10 trials that were 2 minutes long with breaks in between. Both 
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the patient and the healthy volunteers were able to learn to play the game even though the 

patient presented with severe dysphagia and frequently required suctioning for secretion 

management. The study did not include any swallowing related outcome measures, but the 

patient reported better secretion management.  

BiSSkIT. Biofeedback in Strength and Skill Training (BiSSkiT) is a software-assisted 

treatment protocol that was developed for swallowing skill training. The BiSSkiT protocol 

utilises sEMG as a biofeedback tool. During skill training, the patient aims to place this 

swallowing peak into a target square. Because the target square changes position after each 

trial and also changes in size, the patient is constantly challenged to adapt the timing and 

amplitude of the swallow peak to hit the target. Stepp et al. (2011) placed some of the targets 

at 100% of the patient’s maximal swallowing amplitude. However, in the BiSSkiT protocol 

the targets are placed within a 30-70% range of the patient’s maximum swallowing amplitude 

to ensure that the task promotes skill rather than strength.  

Athukorala, Jones, Sella, and Huckabee (2014) investigated the BiSSkiT training 

protocol with 10 patients with Parkinson’s disease. Patients completed 10 one-hour sessions 

over two weeks. During each session they completed 100 swallow trials. Temporal aspects of 

swallowing as measured by sEMG and the timed water swallow and quality of life as 

measured by the SWAL-QOL questionnaire improved significantly and these improvements 

were maintained at two weeks post intervention. No significant changes were observed on the 

time that patients required to chew and swallow solids as measured by the Test of 

Mastication and Swallowing Solids. However, the study did not include an instrumental 

outcome measure such as videofluroscopy to detect changes in the swallowing biomechanics 

and pathophysiology and/or changes in aspiration. 
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 Perry, Sevitz, Curtis, Kuo, and Troche (2018) used the BiSSkiT software application 

skill training with a patient with multiple system atrophy who developed dysphagia 

characterised by delayed swallowing, aspiration, and post-swallow pharyngeal residue. The 

patient completed 6 x1hour sessions over 6 weeks with the BiSSKit software. He also 

completed home practice consisting of either swallowing “hard” or “soft” in response to 

prompts given via a videomodule. He reported completing about 60 swallows per week but 

compliance was not monitored. Accuracy as measured by hitting the target improved. The 

patient reported that his swallowing improved, and instrumental assessment showed that the 

delayed swallow and aspiration were eliminated, and post-swallow residue was reduced. The 

investigators concluded that the patient had learnt to reorganise their swallowing motor 

patterns which improved swallowing efficiency and safety.  

Current BiSSkiT calibration process. Setting targets for intervention and consequently 

establishing treatment intensity can be difficult, (Baker, 2012) but is an important 

consideration when applying the principles of neuroplasticity to an intervention (Robbins et 

al., 2008). During the BiSSkiT training protocol, to ensure that the task is achievable and 

promotes skill, rather than strength, the target square is placed within a 30-70% range of the 

patient’s maximum swallowing amplitude (i.e. the range of the y-axis). The range of the y-

axis is calibrated from the mean amplitude generated during five effortful swallows prior to 

the training protocol. Maximum strength is measured is by asking the patient to complete five 

effortful swallowing manoeuvres. However, for patients with swallowing difficulties, 

effortful swallowing can be a challenging and not always achievable task.  

The effortful swallow manoeuvre is typically used as a strengthening task to increase 

tongue base retraction (Pouderoux & Kahrilas, 1995) and tongue base to posterior pharyngeal 

wall movement (Fritz, Cerrati, & Fang, 2014; Lazarus, Logemann, Song, Rademaker, & 

Kahrilas, 2002). The effortful swallow alters normal swallowing parameters resulting in 
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increased oral pressures, longer and higher hyoid excursion, longer laryngeal vestibule 

closure, delayed onset of pharyngeal pressures and upper esophageal sphincter relaxation, 

prolonged duration of pharyngeal pressures and upper esophageal sphincter relaxation (Hind, 

Nicosia, Roecker, Carnes, & Robbins, 2001; Hiss & Huckabee, 2005).  

Currently patients receive visual feedback during the calibration phase. External cues 

can influence the swallowing process; for example, (Daniels et al., 2007) found that verbal 

cues to swallow a bolus decrease the total swallow duration in healthy individuals. Studies 

examining cortical control of swallowing have found that visual feedback results in different 

cortical activation patterns and greater functional connectivity between brain regions 

involved in swallowing (Humbert & Joel, 2012; Humbert & McLaren, 2014; Kawai et al., 

2009). However, the effect of visual feedback during the calibration process on swallowing 

amplitude has not been investigated. 

1.3 Conclusion and aim of research 

In summary, while swallowing rehabilitation is beginning to shift from strength to skill 

training and utilising sEMG as a biofeedback tool, there are inherent challenges in setting the 

target range so that the task promotes skill rather than strength. Currently, effortful swallows 

are used to calculate a maximum swallowing amplitude and the target range is set in relation 

to this maximum amplitude in the BiSSkiT protocol. However, performing this manoeuvre 

has to be learned and patients with dysphagia may have difficulty performing this manoeuvre 

correctly and consistently. The current study sought to determine whether normal or effortful 

swallowing resulted in less variability in healthy individuals and therefore could be used as a 

calibration task. The current study also examined the effect of visual feedback, i.e. seeing the 

sEMG signal, on variability and amplitude of swallowing to determine whether visual 

feedback should be given during the calibration process.   
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1.3.1 Research Questions. The current study sought to answer the following research 

questions:  

1. Does the swallowing task (normal versus effortful swallowing) affect swallowing 

amplitude?  

2. Does visual feedback (seeing the sEMG signal during swallowing versus not seeing 

it) during calibration affect swallowing amplitude?  

3. Which swallowing task and feedback condition results in the least amount of 

variability?
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Chapter 2 – Method 

 

2.1 Ethics 

Ethics consent was granted by the University of Canterbury Human Ethics Committee 

(HEC 2019/15/LR-PS).  

2.2 Design 

This methodological study used a two-factor repeated measures design. All 

participants completed two different swallowing tasks: normal swallowing and effortful 

swallowing. Each task was performed under two conditions: with and without visual 

feedback. The order of the conditions was the same for all participants (no visual feedback 

followed by visual feedback) but the order of the tasks was counterbalanced across 

participants within each condition. This means that participant 1 started with the normal 

swallowing task, participant 2 started with the effortful swallowing task and so forth. All 

participants started with no visual feedback to ensure that their performance during the no 

visual feedback condition was not influenced by previous exposure to visual feedback.   

2.3 Participants 

A required sample size of 36 participants based on a small effect size of 0.2 and a 

power of 0.8 was calculated a-priori using G*Power, a statistical analysis software program 

(Faul, Erdfelder, Buchner, & Lang, 2009; Faul, Erdfelder, Lang, & Buchner, 2007). 

Participants had to be aged 18 years or older and able to give informed consent to participate 

in the study. Participants with self-reported dysphagia or with a neurological condition or 

injury that could affect their swallowing were excluded (see Appendix 1 and Appendix 2).  
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2.4 Procedures 

All participants provided informed consent prior to participating in the study. 

Participants attended one session which lasted approximately 20-30 minutes. Participants 

were seated comfortably in a chair. Before attaching sEMG electrodes, the submental skin 

was cleansed with an alcohol wipe to optimise skin-electrode impedance and reduce noise in 

the EMG signal (Clancy, Morin, & Merletti, 2002). Male participants were asked to be clean-

shaven to be able to participate in the study. A self-adhesive triode electrode patch was 

placed under the chin so that the two recording electrodes were aligned with the midline of 

the submental muscles. The ground electrode was placed laterally (either right or left) to the 

midline.  

All participants completed two tasks (five normal and five effortful swallows) under 

two conditions (without and with visual feedback). All participants completed 20 swallows in 

total, with approximately 30 seconds between swallows. Participants were offered breaks and 

sips of water as required. 

2.4.1 Swallowing tasks. For the normal swallowing tasks, participants were 

instructed to ‘swallow when you are ready’. For the effortful swallowing task, participants 

were instructed to ‘swallow with as much effort as you can when you are ready’.  

2.4.2 Feedback conditions. Each participant first completed a set of effortful and 

normal swallows without visual feedback. This was achieved by facing the computer monitor 

displaying the sEMG signal away from the participant so that it was only visible to the 

experimenter. Each participant completed the remaining two sets with visual feedback; the 

monitor was turned so that the participant could see the sEMG signal displayed.  
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2.4.3 sEMG signal processing. The raw sEMG signal was automatically processed 

by the BiSSkiT software. Artefact in the signal was removed by using the ‘remove DC offset’ 

function in the software. 

2.4.4 Identification of swallowing peak. The researcher conducting the experiment 

observed the participant swallowing and manually marked the waveform peak that 

corresponded to each swallow. The swallowing amplitude for each swallow as marked by the 

researcher was recorded and saved at the end of each session.  
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Chapter 3 – Results 

 

In total, 36 participants were recruited for the study. One participant was excluded 

from the data analysis due to a measurement error which could have been due to incomplete 

contact between the skin and the electrode. Of the 35 participants’ whose data were included 

in the analysis, 27 were female and 8 were male. The mean age was 26.17 years (range=18-

44years).  

3.1 Task conditions: Amplitude and variability 

The individual data measurements for all participants for each swallowing task and 

feedback conditions are included in Appendix 3. The descriptive data across all participants 

Table 1 

Amplitude Measurements for All Participants by Feedback Condition and Swallowing Task  

Task Mean sd median max min 

Condition 1 (No visual feedback) 

Effortful 68.59 38.07 63.65 197.83 7.29 

Normal 31.17 23.78 24.16 168.71 5.20 

Condition 2 (Visual feedback) 

Effortful 81.82 51.14 69.01 281.83 10.29 

Normal 31.77 23.82 25.20 185.84 5.41 
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are summarised in Table 1. Overall, effortful swallowing resulted in a higher amplitude 

during both feedback conditions.  

Figure 1 shows the outliers for each participant per swallowing task and feedback 

condition. All but one participant had outliers for at least one swallowing task. The difference 

between mean and median sEMG amplitude suggested that the data was not normally 

distributed. The asymmetric and varying heights of the lower and upper quartiles also 

indicate that the data did not follow a normal distribution. Modelling using maximum 

likelihood estimation showed that homoskedasticity was not met and consequently non-

parametric testing was used to investigate interaction between task and feedback condition. A 

non-parametric Friedman rank sum test of difference among repeated measures was 

Table 2  

Standard Deviation for the Amplitude across all Participants for Each Condition and Each 

Swallowing Task.  

Task mean max median min 

Condition 1 (No visual feedback) 

Effortful 15.23 59.98 11.55 2.35 

Normal 9.58 59.29 6.22 1.84 

Condition 2 (Visual feedback) 

Effortful 19.70 53.71 17.08 3.24 

Normal 9.80 68.58 5.41 0.89 
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completed and rendered a Chi-square value of 71.853 which was significant (p<0.05) 

between swallowing tasks but not between feedback conditions.  

To explore the variability in task performance Table 2 specifically displays the mean 

and the range for the standard deviation.  Overall, effortful swallowing resulted in a larger 

standard deviation than normal swallowing, but the coefficient of variation was smaller for 

the effortful swallowing condition (Table 3). 

3.2 Feedback conditions: Amplitude and variability 

 As reported above, the Friedman rank sum test showed no significance difference in 

amplitude between feedback conditions. The standard deviation for effortful swallowing with 

visual feedback was slightly larger than for effortful swallowing without visual feedback 

Table 3 

Coefficient of Variation for the Amplitude across all Participants for Each Condition and 

Each Swallowing Task.  

Task mean max median min 

Condition 1 (No visual feedback) 

Effortful 0.23 0.74 0.22 0.05 

Normal 0.29 0.64 0.26 0.14 

Condition 2 (Visual feedback) 

Effortful 0.24 0.59 0.19 0.07 

Normal 0.29 0.94 0.25 0.08 
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(Table 2) but there was no difference in the coefficient of variation between conditions (Table 

3).  
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 Figure 1. Boxplots of sEMG amplitude per task and feedback condition for each participant. 
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Chapter 4 – Discussion 

 

Establishing the appropriate target for intervention is often difficult as intensity, 

frequency, length of intervention and the type of intervention all need to be considered 

(Baker, 2012). This study sought to improve the calibration process used in the BiSSkiT 

protocol as patients with dysphagia often have great difficulty completing an effortful 

swallow. Calibrating an achievable target range is important to ensure that the task promotes 

skill rather than strength training.  

4.1 Effect of feedback condition and swallowing task 

This study examined the effect of visual feedback and swallowing task on sEMG 

amplitude. There was only a difference between swallowing tasks but not feedback 

conditions. Normal swallowing occurred at approximately 41% of effortful swallowing 

which is consistent with other findings (Ng, 2018). However, Ng (2018) normalised sEMG 

readings while the current study used raw sEMG readings, making it difficult to compare 

findings across studies. Using raw sEMG signals also severely limited the ability to compare 

measurements across participants in the current study (Halaki & Ginn, 2012).  A recent study 

examined the effect of increasing the load on the submental muscles by using kinesiology 

taping to restrict movement of the hyolaryngeal complex (Park, Jung, Kim, & Lee, 2020). 

The authors hypothesized that restricting hyolaryngeal movement would increase the 

resistance the submental muscles have to overcome during swallowing. The study used 

sEMG to measure activation of the submental muscles during swallowing. The results 

suggest that submental muscle activation was significantly higher during the tape condition 

compared to the no-tape condition. Furthermore, muscle activation increased again 

significantly when a higher resistance tape was used. Mean sEMG during normal swallowing 
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(µV32.15) was very similar to the current findings (µV31.77). However, even with the higher 

resistance tape, mean sEMG was lower than during the effortful swallowing condition in the 

current study.  

The presence or absence of visual feedback during the task did not impact on sEMG 

readings. Maeda et al. (2004) found that drink-related visual stimuli resulted in faster 

initiation of voluntary swallowing than unrelated visual stimuli but the type of visual stimulus 

did not impact on swallowing amplitude as measured by sEMG. However, their comparison 

did not include a swallowing condition without a visual stimulus. The current findings 

suggest that the presence or absence of visual feedback does not impact on muscle activation 

as measured by sEMG. This consistent with findings from a recent study examining the effect 

of visual feedback on muscle activation during an elbow flexion task (Gentil et al., 2017). 

However, another study found that visual feedback did not impact on EMG amplitude 

variability during a finger pinching task it did so on during a jaw clenching task (Iida et al., 

2013).  A possible explanation for this discrepancy is that these studies examined different 

tasks that require different muscles and specific patterns of muscle activation and are 

influenced in different ways by visual stimuli.   

4.2 Variability within swallowing tasks 

The current study sought to identify the swallowing task that would be the most 

consistent and therefore the most appropriate to use during the calibration process. The 

coefficient of variation represents the standard deviation in relation to the mean; a greater 

coefficient of variation suggest greater variability of measurements (Norman & Streiner, 

2014). The task with the smallest mean coefficient of variation and median coefficient of 

variation was the effortful swallowing task. However, the mean and median for effortful 

swallowing was also more than double the mean and median of normal swallowing. 

Therefore, the coefficient of variation for effortful swallowing is likely smaller because the 
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measurements are higher. Analysis of the boxplots of individual participants’ data showed 

that normal swallowing had fewer outliers and lower IQRs suggesting that the normal 

swallowing task had less variability than the effortful swallowing task.  

The number of outliers shows the great variability in both normal and effortful 

swallowing. For example, one participant’s (participant 18) minimum amplitude during 

effortful swallowing was 70.40V while the maximum was 161.41V (more than double the 

minimum). Ding, Logemann, Larson, and Rademaker (2003) also found large variability of 

sEMG swallowing amplitudes within healthy individuals even when controlling for bolus 

size and restricting head movements during swallowing. 

Many of the participants required sips of water during the tasks suggesting that 

perhaps they did not have sufficient saliva to initiate a swallow. Lack of saliva and a dry 

mouth may have impacted on the effort required to initiate both a normal and an effortful 

swallow. Healthy individuals complete a spontaneous saliva swallow approximately once per 

minute (Crary, Sura, & Carnaby, 2013; Pehlivan et al., 1996). To ensure that the normal 

swallowing task was as natural as possible, the interval between swallows should have been a 

minimum of 60 seconds instead of 30 seconds. The amount of saliva swallowed could not be 

measured or influenced and as bolus size impacts muscle activation the differing amounts of 

saliva may have also contributed to the variability within tasks.  

The variability during effortful swallows could also be due to inconsistent 

performance of the manoeuvre by the participants.  The participants were not given training 

in performing an effortful swallow but just instructed to “swallow hard”. However, effortful 

swallows can be executed in different ways. Huckabee and Steele (2006) found that when 

healthy individuals were instructed to focus on tongue to palate contact during effortful 

swallowing this resulted in a higher sEMG amplitude measurement than a focus on no tongue 
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to palate contact. The impact of intrinsic lingual muscle activity on measurements was not 

controlled for in the current study and could have influenced measurements as participants 

may have even been exploring and trying to ‘learn’ this new movement i.e. using tongue to 

palate contact inconsistently.  

4.3 Calibration process for skill training 

sEMG can be a valuable tool for providing biofeedback in skill training for 

swallowing rehabilitation. Currently, the BiSSkiT training protocol utilizes sEMG to 

challenge the patient to control both the amplitude and timing of swallowing.  

The effortful swallow task resulted in larger variability in swallowing amplitudes 

compared to the normal swallowing task. This finding suggests that normal swallowing 

should be used for calibrating the target range for skill training. This could take the form of 

placing the target within the range of normal swallows or within a certain distance from the 

average of five normal swallows. Currently, the target is set between 30-70% of effortful 

swallowing. However, considering the large standard deviation and the large range for 

normal swallowing, it is very difficult to determine the range the target should be in. The 

observed variability suggests that perhaps the timing aspect during skill training is more 

important than the amplitude aspect.  

4.4 Limitations  

The size of screen was automatically adjusted depending on the highest sEMG 

reading. Participants who started with no visual effortful swallowing and then were given 

visual feedback during the next set of swallows and asked to perform normal swallows would 

have perhaps felt that their normal swallow appeared small compared to the screen size and 

then subconsciously adjusted their swallowing.  



32 

 

Even though the required sample size was calculated a-priori and the required number 

was recruited, one participant was excluded from the analysis. The sample consisted mostly 

of young female participants which makes it difficult to generalise findings to the overall 

population.    

4.5 Conclusion  

The presence or absence of visual feedback did not impact on sEMG measurements. 

However, there was great variability within participants during both normal and effortful 

swallowing. Considering the greater variability within effortful swallows, the challenge of 

executing the effortful swallowing manoeuvre correctly, and the inherent difficulties in 

measuring a ‘true’ effortful swallow, the target range during skill training with the BiSSkiT 

protocol should be calibrated based on the range of normal swallowing.   

4.6 Future directions 

Future research should focus on establishing a range for normal saliva swallowing so 

this can be utilised in the calibration process for skill training using BiSSkiT and investigate 

how spontaneous swallowing tasks impact amplitude as measured by sEMG. Measuring the 

sEMG amplitude of unconscious saliva swallows and comparing these to cued normal 

swallows may provide more insight into the variability of swallowing. 
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Appendix 1 

Department: Department of Communication Disorders/ Rose Centre for Stroke 

Recovery and Research 

Telephone: +64 3 369 2385       

Email: Rebecca.streith@pg.canterbury.ac.nz 

15.04.2019 

HEC Ref: HEC 2019/15/LR-PS 
 

 

BiSSkiT Calibration Study 

Information Sheet for Participants 

 
My name is Rebecca Streith and I’m a PhD candidate at the Rose Centre for Stroke Recovery and 

Research at the University of Canterbury under the supervision of Professor Maggie-Lee 

Huckabee.  

 

My PhD research focuses on swallowing rehabilitation for adults. Traditionally, rehabilitation for 

swallowing has involved strength training. An emerging approach to swallowing rehabilitation is 

skill training which focuses on increasing the timing, precision, and coordination of the muscles 

involved in swallowing. Because swallowing is difficult to visualise, the Rose Centre has 

developed an application called BiSSkiT which utilises surface electromyography to provide 

visual feedback about swallowing to patients. Surface electromyography is a non-invasive 

procedure that measures the electric activity of muscles at rest and during movement. Because the 

muscles under the chin play an important role in swallowing, BiSSkiT measures their activity and 

displays this activity as a line on a screen. The line moves up or down as muscle activity increases 

or decreases and forms a characteristic peak during swallowing. During skill training, patients aim 

to hit a moving target with this peak. This research study will examine how the screen range is 

best calibrated before training because the range of the screen plays an important role in making 

the training tasks achievable for patients.  

 

If you choose to take part in this study, your involvement in this project will require that you 

attend one session which will last approximately 20-30 minutes. You will be seated comfortably 

in a chair and a sticky patch with electrodes will be attached to the skin area under your chin. If 

you have a beard you will be asked to shave the area under your chin before participating in the 

study. Before attaching the sticky patch the skin area under your chin will also be wiped with an 

alcohol wipe. You will then be asked to do five swallows (approximately one every 30 seconds) 

under four different conditions. This means you will be asked to do a total of 20 swallows. You 

will be offered breaks and sips of water in-between the four conditions. 
 

There are no known risks associated with the performance of the tasks and application of the 

procedures.  
 

Participation is voluntary and you have the right to withdraw at any stage without penalty. You 

may ask for your raw data to be returned to you or destroyed at any point. If you withdraw, I will 

remove information relating to you. However, once analysis of raw data starts, it will become 

increasingly difficult to remove the influence of your data on the results. 
 

The results of the project may be published, but you may be assured of the complete 

confidentiality of data gathered in this investigation: your identity will not be made public without 

your prior consent. To ensure anonymity and confidentiality, your data will be de-identified and 

stored securely in password protected electronic form at the Rose Centre for Stroke Recovery and 

Research at the University of Canterbury. It will be kept for ten years and then destroyed. It is 

likely that the data collected will be published as part of a thesis. A thesis is a public document 
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and will be available through the UC Library. 
 

If you would like to receive a copy of the summary of results of the project, please indicate this to 

the researcher on the consent form and provide your email address. 
 

The project is being carried out as part of a PhD research project by Rebecca Streith under the 

supervision of Professor Maggie-Lee Huckabee, who can be contacted by emailing maggie-

lee.huckabee@canterbury.ac.nz. She will be pleased to discuss any concerns you may have about 

participation in the project. 
 

This project has been reviewed and approved by the University of Canterbury Human Ethics 

Committee, and participants should address any complaints to The Chair, Human Ethics 

Committee, University of Canterbury, Private Bag 4800, Christchurch (human-

ethics@canterbury.ac.nz). 
 

If you agree to participate in the study, you are asked to complete the consent form and return it to 

the researcher in person before participating in the study.  

mailto:human-ethics@canterbury.ac.nz
mailto:human-ethics@canterbury.ac.nz
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Appendix 2  

Department: Department of Communication Disorders/ Rose Centre for Stroke 

Recovery and Research 

Telephone: +64 3 369 2385       

Email: rebecca.streith@pg.canterbury.ac.nz 
 
 

 

 

 

BiSSkiT Calibration Study 

Consent Form for Participants 
 

□ I have been given a full explanation of this project and have had the opportunity to ask 

questions. 

□ I understand what is required of me if I agree to take part in the research. 

□ I understand that participation is voluntary and I may withdraw at any time without 

penalty. Withdrawal of participation will also include the withdrawal of any 

information I have provided should this remain practically achievable. 

□ I understand that any information or opinions I provide will be kept confidential to the 

researcher and their supervisor and that any published or reported results will not identify the 

participants. I understand that a thesis is a public document and will be available through the 

UC Library. 

□ I understand that all data collected for the study will be kept in locked and secure facilities 

and/or in password protected electronic form and will be destroyed after ten years.  

□ I understand the risks associated with taking part and how they will be managed. 

□ I understand that I can contact the researcher Rebecca Streith or supervisor Professor 

Maggie-Lee Huckabee for further information. If I have any complaints, I can contact the 

Chair of the University of Canterbury Human Ethics Committee, Private Bag 4800, 

Christchurch (human-ethics@canterbury.ac.nz) 

□ I would like a summary of the results of the project.  

□ By signing below, I agree to participate in this research project. 

 
 
Name:_________________________Signed:___________________________Date:__________ 
 

□ I would like a summary of results when prepared. Please email to:  
 

Email address (for report of findings, if applicable): 

  
 

Please return this form in person to the researcher Rebecca Streith before participating in the 

study. 

mailto:human-ethics@canterbury.ac.nz
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Appendix 3 

 

Table 1 

Descriptive statistics for each participant across feedback condition and swallowing task.  

Feedback Task Participant mean SD median max min CV IQR 

NO Effortful 01 32.87 7.75 33.87 42.87 21.87 0.24 6.00 

NO Effortful 02 34.92 11.28 38.32 43.32 15.32 0.32 5.00 

NO Effortful 03 74.49 19.01 73.29 95.29 47.29 0.26 22.00 

NO Effortful 04 49.37 8.09 47.37 62.37 42.37 0.16 8.00 

NO Effortful 05 43.08 9.48 41.68 57.68 32.68 0.22 8.00 

NO Effortful 06 41.11 4.18 42.11 45.11 34.11 0.10 2.00 

NO Effortful 08 86.98 59.98 62.78 192.78 45.78 0.69 14.00 

NO Effortful 09 67.56 17.26 62.56 96.56 50.56 0.26 5.00 

NO Effortful 10 87.22 15.39 85.82 109.82 71.82 0.18 19.00 

NO Effortful 11 74.97 12.36 77.57 87.57 61.57 0.16 23.00 

NO Effortful 12 38.15 10.83 34.75 56.75 29.75 0.28 6.00 

NO Effortful 13 79.20 9.92 79.20 93.20 65.20 0.13 2.00 

NO Effortful 14 61.41 11.55 58.01 77.01 48.01 0.19 14.00 
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Table 1 

Descriptive statistics for each participant across feedback condition and swallowing task.  

Feedback Task Participant mean SD median max min CV IQR 

NO Effortful 15 14.58 2.35 15.58 16.58 11.58 0.16 4.00 

NO Effortful 16 39.01 5.17 38.21 47.21 34.21 0.13 5.00 

NO Effortful 17 52.86 9.24 50.46 63.46 42.46 0.17 15.00 

NO Effortful 18 105.00 34.50 99.40 161.40 70.40  0.33 21.00 

NO Effortful 19 49.33 4.06 49.33 53.33 44.33 0.08 7.00 

NO Effortful 20 165.03 22.40 157.83 197.83 141.83 0.14 26.00 

NO Effortful 21 51.90 14.83 54.90 68.90 32.90 0.29 21.00 

NO Effortful 22 46.56 34.67 35.31 95.31 20.31 0.74 36.75 

NO Effortful 23 21.96 5.67 22.16 30.16 16.16 0.26 7.00 

NO Effortful 24 89.22 12.52 86.02 102.02 72.02 0.14 16.00 

NO Effortful 25 12.29 4.30 10.29 17.29 7.29 0.35 6.00 

NO Effortful 26 87.95 32.06 86.75 128.75 50.75 0.36 46.00 

NO Effortful 27 100.95 26.03 107.55 130.55 63.55 0.26 28.00 

NO Effortful 28 130.04 13.65 131.84 150.84 115.84 0.10 12.00 

NO Effortful 29 75.20 9.63 73.80 89.80 63.80 0.13 7.00 
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Table 1 

Descriptive statistics for each participant across feedback condition and swallowing task.  

Feedback Task Participant mean SD median max min CV IQR 

NO Effortful 30 74.73 6.47 72.13 86.13 70.13 0.09 1.00 

NO Effortful 31 126.35 17.98 116.55 150.55 111.55 0.14 28.00 

NO Effortful 32 94.01 27.56 89.41 139.41 69.41 0.29 21.00 

NO Effortful 33 69.24 15.69 69.44 87.44 44.44 0.23 6.00 

NO Effortful 34 30.31 6.80 26.71 37.71 24.71 0.22 13.00 

NO Effortful 35 109.70 26.66 103.50 148.50 82.50 0.24 33.00 

NO Effortful 36 78.86 3.85 79.26 84.26 74.26 0.05 4.00 

NO Normal 01 16.07 3.35 15.87 19.87 11.87 0.21 5.00 

NO Normal 02 8.78 2.61 8.32 12.32 5.62 0.30 3.00 

NO Normal 03 17.29 4.64 17.29 23.29 10.29 0.27 1.00 

NO Normal 04 23.57 6.69 22.37 30.37 15.37 0.28 11.00 

NO Normal 05 10.68 2.55 9.68 14.68 8.68 0.24 3.00 

NO Normal 06 31.51 7.06 30.11 41.11 24.11 0.22 10.00 

NO Normal 08 51.18 24.71 54.78 83.78 23.78 0.48 34.00 

NO Normal 09 19.56 3.94 17.56 25.56 16.56 0.20 5.00 
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Table 1 

Descriptive statistics for each participant across feedback condition and swallowing task.  

Feedback Task Participant mean SD median max min CV IQR 

NO Normal 10 24.62 4.44 22.82 29.82 19.82 0.18 7.00 

NO Normal 11 22.72 5.85 22.52 31.52 16.52 0.26 6.00 

NO Normal 12 37.75 6.63 38.75 47.75 30.75 0.18 6.00 

NO Normal 13 15.40 6.22 17.20 20.20 5.20 0.40 6.00 

NO Normal 14 22.01 11.14 17.01 35.01 12.01 0.51 20.00 

NO Normal 15 19.58 4.24 19.58 23.58 13.58 0.22 6.00 

NO Normal 16 27.41 8.96 24.21 43.21 21.21 0.33 2.00 

NO Normal 17 26.46 5.79 24.46 34.46 21.46 0.22 9.00 

NO Normal 18 62.66 14.52 56.26 84.26 48.26 0.23 16.00 

NO Normal 19 49.33 21.85 44.33 87.33 33.33 0.44 9.00 

NO Normal 20 15.23 6.02 13.83 24.83 9.83 0.40 6.00 

NO Normal 21 34.30 12.46 31.90 53.90 22.90 0.36 13.00 

NO Normal 22 12.11 4.38 10.31 17.31 8.31 0.36 8.00 

NO Normal 23 19.16 7.58 15.16 31.16 13.16 0.40 8.00 

NO Normal 24 34.22 4.66 37.02 38.02 27.02 0.14 5.00 
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Table 1 

Descriptive statistics for each participant across feedback condition and swallowing task.  

Feedback Task Participant mean SD median max min CV IQR 

NO Normal 25 12.09 1.92 12.29 14.29 9.29 0.16 2.00 

NO Normal 26 38.75 12.47 34.75 53.75 22.75 0.32 15.00 

NO Normal 27 15.55 2.92 16.55 17.55 10.55 0.19 2.00 

NO Normal 28 76.59 20.22 70.34 105.84 59.84 0.26 15.25 

NO Normal 29 59.80 18.17 51.80 89.80 45.80 0.30 16.00 

NO Normal 30 34.33 5.50 35.13 42.13 28.13 0.16 6.00 

NO Normal 31 67.15 14.15 68.55 87.55 48.55 0.21 8.00 

NO Normal 32 33.61 6.38 32.41 41.41 25.41 0.19 8.00 

NO Normal 33 11.04 4.88 10.44 18.44 5.44 0.44 4.00 

NO Normal 34 92.71 59.29 77.71 168.71 28.71 0.64 89.00 

NO Normal 35 48.10 7.16 45.50 60.50 42.50 0.15 3.00 

NO Normal 36 8.74 1.84 9.26 11.26 6.56 0.21 1.90 

YES Effortful 01 38.27 6.07 36.87 45.87 30.87 0.16 8.00 

YES Effortful 02 41.72 18.88 41.32 59.32 14.32 0.45 25.00 

YES Effortful 03 94.09 26.26 101.29 120.29 51.29 0.28 17.00 
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Table 1 

Descriptive statistics for each participant across feedback condition and swallowing task.  

Feedback Task Participant mean SD median max min CV IQR 

YES Effortful 04 57.97 9.76 58.37 73.37 47.37 0.17 6.00 

YES Effortful 05 47.48 8.41 48.68 54.68 33.68 0.18 7.00 

YES Effortful 06 33.31 5.93 34.11 42.11 26.11 0.18 4.00 

YES Effortful 08 63.58 23.25 60.78 98.78 33.78 0.37 7.00 

YES Effortful 09 84.56 7.11 84.56 92.56 73.56 0.08 5.00 

YES Effortful 10 116.62 17.20 117.82 136.82 90.82 0.15 14.00 

YES Effortful 11 105.97 38.60 97.57 168.57 73.57 0.36 37.00 

YES Effortful 12 54.35 29.72 37.75 103.75 32.75 0.55 24.00 

YES Effortful 13 122.40 11.90 127.20 134.20 108.20 0.10 20.00 

YES Effortful 14 68.21 20.66 64.01 101.01 44.01 0.30 6.00 

YES Effortful 15 28.18 5.03 29.58 34.58 22.58 0.18 7.00 

YES Effortful 16 35.21 4.74 36.21 39.21 27.21 0.13 3.00 

YES Effortful 17 55.26 3.63 56.46 58.46 50.46 0.07 6.00 

YES Effortful 18 161.66 46.31 148.26 219.26 119.26 0.29 81.00 

YES Effortful 19 53.53 8.07 57.33 60.33 41.33 0.15 10.00 
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Table 1 

Descriptive statistics for each participant across feedback condition and swallowing task.  

Feedback Task Participant mean SD median max min CV IQR 

YES Effortful 20 188.43 53.55 168.83 281.83 152.83 0.28 27.00 

YES Effortful 21 56.70 10.94 51.90 72.90 47.90 0.19 15.00 

YES Effortful 22 23.31 7.31 20.31 33.31 15.31 0.31 9.00 

YES Effortful 23 19.16 3.24 17.16 23.16 16.16 0.17 5.00 

YES Effortful 24 154.62 27.78 146.02 201.02 134.02 0.18 24.00 

YES Effortful 25 16.49 6.42 14.29 26.29 10.29 0.39 7.00 

YES Effortful 26 90.35 53.71 55.75 156.75 46.75 0.59 89.00 

YES Effortful 27 99.55 31.90 102.55 134.55 55.55 0.32 42.00 

YES Effortful 28 152.24 32.75 163.84 183.84 114.84 0.22 59.00 

YES Effortful 29 63.60 6.76 60.80 71.80 56.80 0.11 11.00 

YES Effortful 30 93.53 17.08 90.13 114.13 75.13 0.18 28.00 

YES Effortful 31 115.15 21.62 117.55 135.55 79.55 0.19 14.00 

YES Effortful 32 87.41 16.82 83.41 108.41 64.41 0.19 16.00 

YES Effortful 33 84.04 21.78 80.44 113.44 58.44 0.26 27.00 

YES Effortful 34 64.31 24.91 52.71 102.71 42.71 0.39 28.00 
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Table 1 

Descriptive statistics for each participant across feedback condition and swallowing task.  

Feedback Task Participant mean SD median max min CV IQR 

YES Effortful 35 193.10 48.60 184.50 273.50 149.50 0.25 35.00 

YES Effortful 36 99.26 12.81 94.26 116.26 88.26 0.13 21.00 

YES Normal 01 35.47 33.25 20.87 94.87 17.87 0.94 2.00 

YES Normal 02 18.92 4.98 20.32 24.32 12.32 0.26 7.00 

YES Normal 03 33.09 9.52 33.29 46.29 20.29 0.29 7.00 

YES Normal 04 28.17 6.94 26.37 40.37 23.37 0.25 2.00 

YES Normal 05 16.88 3.11 17.68 20.68 13.68 0.18 5.00 

YES Normal 06 24.11 5.57 23.11 33.11 19.11 0.23 5.00 

YES Normal 08 61.78 17.61 56.78 82.78 38.78 0.28 21.00 

YES Normal 09 22.76 5.02 21.56 27.56 15.56 0.22 6.00 

YES Normal 10 26.22 5.41 26.82 32.82 17.82 0.21 2.00 

YES Normal 11 19.57 7.04 16.57 31.57 13.57 0.36 3.00 

YES Normal 12 33.15 5.46 33.75 38.75 25.75 0.16 8.00 

YES Normal 13 46.80 26.35 38.20 89.20 25.20 0.56 27.00 

YES Normal 14 18.41 5.08 19.01 25.01 11.01 0.28 3.00 
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Table 1 

Descriptive statistics for each participant across feedback condition and swallowing task.  

Feedback Task Participant mean SD median max min CV IQR 

YES Normal 15 13.98 3.97 12.58 20.58 10.58 0.28 3.00 

YES Normal 16 26.21 8.43 23.21 41.21 21.21 0.32 1.00 

YES Normal 17 24.86 4.39 24.46 31.46 20.46 0.18 5.00 

YES Normal 18 52.26 4.85 50.26 60.26 48.26 0.09 4.00 

YES Normal 19 30.53 6.46 33.33 38.33 23.33 0.21 9.00 

YES Normal 20 26.43 13.13 24.83 47.83 14.83 0.50 11.00 

YES Normal 21 23.50 5.41 24.90 27.90 14.90 0.23 6.00 

YES Normal 22 9.87 4.45 9.31 17.31 5.41 0.45 1.30 

YES Normal 23 10.76 0.89 10.16 12.16 10.16 0.08 1.00 

YES Normal 24 31.42 3.29 32.02 35.02 28.02 0.10 6.00 

YES Normal 25 8.97 4.76 7.29 17.29 5.69 0.53 2.00 

YES Normal 26 23.55 7.12 18.75 32.75 17.75 0.30 11.00 

YES Normal 27 16.95 2.70 18.55 19.55 13.55 0.16 4.00 

YES Normal 28 83.84 68.58 40.84 185.84 28.84 0.82 84.00 

YES Normal 29 42.20 4.22 42.80 46.80 35.80 0.10 4.00 
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Table 1 

Descriptive statistics for each participant across feedback condition and swallowing task.  

Feedback Task Participant mean SD median max min CV IQR 

YES Normal 30 33.13 4.06 35.13 36.13 26.13 0.12 2.00 

YES Normal 31 40.35 10.45 37.55 58.55 32.55 0.26 4.00 

YES Normal 32 26.21 3.11 25.41 31.41 23.41 0.12 2.00 

YES Normal 33 23.04 1.82 23.44 25.44 20.44 0.08 1.00 

YES Normal 34 76.71 27.50 66.71 124.71 58.71 0.36 14.00 

YES Normal 35 84.90 8.02 84.50 97.50 77.50 0.09 8.00 

YES Normal 36 17.06 10.18 12.26 35.26 12.26 0.60 1.00 

 

 


