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Group divisible designs with two associate 
classes 

C.A. Rodger 
(with H.L. Fu and D. Sarvate) 

1 Introduction 

The work in this research report was done while visiting The University of Canterbury, 
and was completed jointly in cooperation with H.L. Fu and D. Sarvate. These results 
follow upon previous efforts where we were investigating the existence of group divisible 
designs with first and second associates and with block size 3. Background information 
concerning this problem will be added to the final version which will incorporate all our 
work on the topic. 

Graph theoretically, we are looking for a partition of the edges of a graph H into 
copies of Ks (each Ks is also called a triple). In our case, H is the multigraph with 
vertex set V = V0 U V1 U ... U Vm-1, 111;1 = n for each i E Zm, in which two vertices 
are joined by A1 edges if they both occur in 11; for some i, and otherwise are joined 
by A2 edges. Edges joining vertices in the same or different groups are called pure or 
cross edges respectively. Such a decomposition of H into copies of Ks is called a group 
divisible design and is denoted by a GDD(n, m) of index (A1 , A2). Formally, such a GDD 
is represented by the ordered triple (V, {Vo, ... , Vm-i}, B), where B is the collection 
of triples. If m = 1 then the GDD is simply a triple system, so a GDD(n, 1) of index 
(A1, A2) is denoted more simply by a TS(n) of index A1. 

We have already completely solved this problem in the case where n, m ~ 3, proving 
the following result. 

Theorem 1.1 Let n, m ~ 3 and A1, A2 ~ 1. There exists a GDD(n, m) of index (A1, A2) 
if and only if 

(1) 2 divides A1(n - 1) + A2 (m - l)n, and 

(2) 3 divides A1n(n - 1) + A2m(m - l)n2
. 
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In this report, the case where m = 2 is completely solved. At first sight, this would 
seem to be quite simple to handle compared to the myriad of cases that have to be 
considered to prove Theorem 1.1. However, it turns out to be a very interesting case, 
requiring different solution techniques and another necessary condition. 

Lemma 1.2 If there exists a GDD(n, 2) of index (,~1 , .\2) then 

(1) 2 divides .X1(n - 1) + A2n, 

(2) 3 divides .\1n(n - 1) + .\2n 2, and 

(3) A1 2 Azn/2(n - 1). 

Proof: (1) and (2) follow because each vertex must have even degree, and the number 
of edges must be divisible by 3. (3) follows since any cross edge must be contained in 
a triple that contains another cross edge and a pure edge, so the number of pure edges 
must be at least half the number of cross edges. D 

We will now proceed to show that these three conditions are also sufficient for the 
existence of a GDD(n, 2) of index (.\1 , .\2). The main result is finally stated as Theorem 
3.7. 

2 Preliminary Results 

In this section we obtain several building blocks. In Section 3, these will be put together 
in various ways to obtain the main result. 

Lemma 2.1 Let n 2 3. There exists a GDD(n, 2) of index (n, 2n - 2). 

Proof: Define 

B = { {(a, 0), (b, 0), (c, 1)}, {(a, 1), (b, 1), (c, O)} IO :Sa< b :Sn - 1, c E Zn} . 

Then (Zn x Z2, {Zn x { i} Ii E Z 2}, B) is a GDD(n, 2) of index (n, 2n - 2). D 

The following is a result of Petersen. 
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Theorem 2.2 {1} Let H be a regular multigraph of even degree. Then there exists a 
2-factorization of H. 

Lemma 2.3 is a special case of a result of Rodger and Stubbs. 

Lemma 2.3 {3} Let),, n ~ 1. Suppose that O:::; x :::; ,\(n - 1), x is even, and 3 divides 
xn. Then there exists an x-regular multigraph of multiplicity at most ,\ with n vertices 
whose edges can be partitioned into triples. 

These two results can be combined to obtain Corollary 2.4. Let E(H) be the set of 
edges in H. 

Corollary 2.4 Suppose that,\, n ~ 1, 0 :::; x :::; ,\(n - 1), 3 divides xn, and ,\(n - 1) 
and x are even. Then there exists an x-regular multigraph H of multiplicity at most ,\ 
with n vertices whose edges can be partitioned into triples, such that ,\Kn - E(H) has a 
2-f actorization. 

Proof: Choose H using Lemma 2.3, then apply Theorem 2.2 to ,\Kn - E(H). D 

We will need a companion result to Corollary 2.4 to cope with the situation where 
,\( n -1) is odd. Obtaining this result will require the following results, the first by Stern 
and Lenz, the second by Rees, and the third by Simpson. For any D ~ Z La/2J, let H[D] 
be the graph with vertex set Zn and edge set {{j,j + d}ld E D,j E Zn}, reducing the 
sum modulo n. 

Lemma 2.5 {5} There exists a 1-factorization of H[D] if and only if there exists a 
d E D such that d / gcd( n, d) is even. 

Notice that if d = n/2 ED then since d/ gcd(n, d) is even, H[D] has a 1-factorization. 

Theorem 2.6 [2} For all = 0 (mod 6) and for all even x with O :::; x < n except for 
(n,x) E {(12, 10), (6,4)}, there exists an x-regular simple graph Honn vertices whose 
edges can be resolvably partitioned into triples, such that Kn-E(H) has a 1-factorization. 

Theorem 2.7 [4} For any y ~ 1 and for some s E {3y, 3y + 1}, the integers in {y + 
1, y + 2, ... , 3y + 1} \ { s} can be partitioned into pairs ( ai, bi) with bi > ai such that 
{ bi - ai 11 :S i :S y} = { 1, 2, .. . , y}. 
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We can now present the companion to Corollary 2.4. It is probably a result that is 
of interest in its own right. 

Theorem 2.8 Suppose that A~ 1, n ~ 3, 0 :::;; x :::;; .X(n - 1), 3 divides xn and 2 divides 
n and x. Then 

{i) there exists an x-regular graph H on n vertices and of multiplicity at most A whose 
edges can be partitioned into triples, and 

{ii) such that .\Kn - E(H) has a 1-factorization. 

Proof: For each A ~ 1 and each even n ~ 3, let S(n, >.) be the set of integers x for which 
(i) and (ii) are true. Let£= 2 if n = 0 or 4 (mod 6) and let £ = 6 if n = 2 (mod 6). 

Since there exists a I-factorization of Kn, if x E S(n, .\) then x E S(n, .X') for 
all X ~ >.. Also, since there exists a TS(n) of index £, if x = yf(n - 1) + x' with 
0 ~ x' < >.(n - 1) and A :::;; £, and if x' E S(n, >.), then x E S(n, A+ yf). Therefore we 
need only consider the cases where x < f(n - 1). 

Suppose that n O (mod 6). We need only consider the cases where x < 2(n - 1). 
If x < n then the result follows from Theorem 2.6 unless (n, x) E {(12, 10), (6, 4)}. 
Fortunately, since we do not require the set of triples to be resolvable, we can obtain 
solutions in these cases too: for each m E {3, 6} the complement of the edges in the 
triples of a GDD(2,m) of index (0, 1) is a 1-factor. If n:::;; x:::;; 2n-4 then we can simply 
combine a solution where x' = n - 2 and .X' = 1 with a solution where x" = x - ( n - 2) 
and.\= 1. 

If n = 2 or 4 (mod 6) then since xis even and 3 divides xn, we have that x = 0 (mod 
6), so let x = 6y. If x = n - 2 then n = 2 (mod 6); since there exists a GDD(2, 3y + 1) 
of index (0, 1) we have that n - 2 E S(n, 1). If x < n - 2 then define s, ai and bi as 
in Theorem 2.7, and let T = {{j, ai + j, bi+ j}jj E Zn}, reducing sums modulo n. 
Then T is a set of triples that partition H = H[D'] where D' = {1, 2, ... , 3y + 1} \ { s }, 
and Kn - E(H) = H[D] where d = {1, 2, ... , n/2} \D. Since x < n - 2, n/2 E D, so 
Kn - E(H) has a I-factorization by Lemma 2.5. So it remains to consider x ~ n. 

If n = 4 (mod 6) then£= 2 so we can assume that x < 2(n-1); so n+2:::;; x:::;; 2n-8 
(since x - 0 (mod 6)). We can combine a solution where x' = n - 4 and X = 1 with a 
solution where x" = x - (n - 4) :::; n - 4 and .X" = 1. 

If n = 2 (mod 6) then £ = 6, so we can assume that x < 6(n - 1); so n + 4 :::;; x :::;; 
6n-12 (since x = 0 (mod 6)). Let£' be such that f'(n-2) < x:::;; (f'+l)(n-2). Combine 
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f' solutions where x' = n-2 and>..'= 1 with a solution where x" = x-C'(n- 2) ~ n- 2 
and)..."= 1. D 

It will be useful to define [x, y, zJ to denote the graph with vertex set Zn x Z2 in 
which two vertices ( u, i) and ( v, j) are joined by x edges if i = j = 0, by y edges if i # j, 
and by z edges if i = j = 1. 

The next four results are crucial building blocks in the construction of the GDD's in 
Section 3. 

Lemma 2.9 For each i E Z 2, let Ti be an xn-regular multigraph on the vertex set 
Zn x {i} that has a 1-factorization. Then there exists a set of triples whose edges 
partition the edges of [O, x, OJ + Ti· 

Proof: Partition the xn 1-factors in a 1-factorization of Ti into x sets So, S1, ... , Sn-i, 
each of size x. For each a E Zn and for each edge { ( u, i), ( v, i)} in a 1-factor in Sa, let 
B contain the triple {(u, i), (v, i), (a, i + 1)}, reducing the sum modulo 2. D 

Lemma 2.10 Let n be odd1 and let F be any 1-factor of [O, 1, OJ. Then there exists an 
edge-disjoint decomposition of [1, 1, OJ - F and of [O, 1, lJ - F into copies of Ks. 

Proof: Let (Zn, o) be a symmetric idempotent quasigroup of order n. Let i E Zn and let 
F' = {{(a, 0), (a, l)}la E Zn}· Let Bi= {{(a, i), (b, i), (a ob, i + l)}IO ~a< b ~ n -1}, 
reducing i + 1 modulo 2. Then clearly the triples in B' partition the edges in [1, 1, O] -F' 
or [O, 1, lJ-F' if i = 0 or 1 respectively. The first coordinate of the symbols in the triples 
in Bi whose second coordinate is i + 1 can easily be renamed to produce a set of triples 
Bi that partition the edges of [1, 1, OJ - For [O, 1, 1] - F as required. D 

Lemma 2.11 Let i E Z2, and let Hi be a 2x-regular graph on the vertex set Zn x {i}. 
Then there exists a 2x-regular multigraph T consisting of 2x 1-factors1 each being in 
[O, 1, OL such that there exists an edge-disjoint decomposition of Hi+ T into copies of 
Ks. 

Proof: By Theorem 2.2, Hi has a 2-factorization into x 2-factors T0 , T1, ... , Tx-1· For 
each j E Zx, Tx consists of vertex disjoint cycles which we can arbitrarily orient to 
form directed cycles; call the resulting directed graph TJ. Let HI be the corresponding 
directed graph. For each directed edge ( a, b) in TJ, let { ( a, i), (b, i + 1)} E F2j and 
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{ ( a, i), ( a, i + 1)} E F2j+l · Let T be the 2x-regular multigraph formed by the sum of 
F0 , ... , F2x-l· Then B = { {(a, i), (b, i), (b, i + l)}l(a, b) E E(HI)} is a set of triples 
whose edges partition the edges of Hi+ T. D 

Lemma 2.12 Let n 2: 4 be even. Let E = 0 if n = 0 (mod 4), E = 1 if n = 6 (mod 12}, 
and E = 3 if n = 2 or 10 ( mod 12}. For each i E Z 2 there exists a simple graph Hi on 
the vertex set Zn x { i} such that: 

(i} Ho is (n/2 + c)-regular and H1 is (n/2 - c)-regular, 

(ii} the edges of [O, 1, OJ+ H0 + H1, can be partitioned into triples, and 

(iii} there exists a 1-factorization of Kn - E(Hi), i E Z2. 

Proof: Let D = {2k - 111 S k S n/4}. Define 

{ 

D if E = 0, 
Do= DU {2} if E = 1, 

DU {2, 4} if E = 3, 

and define 

{ 

D if E = 0, 
D1 = (Du {2})\{n/2- 2} if E = 1, 

DU {n/2 - 4} if E = 3. 

In any case, define Hi= H[Di] on the vertex set Zn x { i}, for each i E Z 2 . Then clearly 
Hi satisfies (i), and since n/2 E Di it follows from Lemma 2.5 that (iii) is satisfied. 

If E = 0 then let B = { {(j, 0), (j + 2k - 1, 0), (j + k + n/4, 1)}, {(j, 1), (j + 2k -
1, 1), (j + k + n / 4 - 1, 0)} I j E Zn, 1 S k S n / 4}. 

If E = 1 then let B = { {(j, 0), (j + 2k - 1, 0), (j + k + (n + 2)/4, 1)}, {(j, 0), (j + 
2, 0), (j + 1, 1)} IJ E Zn, 1 S k S ( n - 2) / 4} U {{ (j, 1), (j + 2k - 1, 1), (j + k + ( n + 
2)/4, O)}, {(j, 1), (j + 2, 1), (j + 2, O)} I j E Zn, 1 S k S (n - 6)/4}. 

If E = 3 then let B = { { (j, 0), (j + 2k - 1, 0), (j + k + ( n + 6) / 4, 1)} I j E Zn, 1 S k S 
(n - 2)/4} U { {(j, 0), (j + 2, 0), (j + 1, 1)}, {(j, 0), (j + 4, 0), (j + 2, 1)}, {(j, 1), (j + (n -
4)/2, 1), (j + (n - 4)/2, 0) I j E Zn} U { {(j, 1), (j + 2k - 1, 1), (j + k + (n - 2)/4, O)} I j E 

Zn, 1 S k S (n - 10)/4}. 

Then in each case, B is a set of triples which partition the edges of [ 0, 1, 0 J +HO + H 1. 

D 

The following structure will be needed in Section 3. 
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Let n be even, and let F be a partition of Zn into sets of size 2. A symmetric 
quasigroup (Zn, o) with holes F and of order n is an n x n array in which: cell (a, b) 
contains exactly pne symbol in Zn if { a, b} rf. F and no symbols if { a, b} E F; for each 
a E Zn row and column a contain each symbol in Zn exactly once except for symbols 
a and b, where { a, b} E F; and cells ( a, b) and (b, a) either contain the same symbol or 
are both empty, for O ~ a< b ~ n - 1. The following is well known. 

Lemma 2.13 For all even n ~ 6, there exists a symmetric quasigroup with holes F and 
of order n, where F is a partition of Zn into sets of size 2. 

Since maximum packings and minimum coverings of triple systems have been com
pletely determined, we have the following result. 

Lemma 2.14 Let n = 2 (mod 6), n ~ 8 and let L be a set of 2 independent edges 
in Kn. Then there exists an edge-disjoint decomposition of (6y + 2)Kn + 2L and of 
(6y + 4)Kn - 2L into copies of K3, for ally ~ 0. 

Finally, it will probably help enormously to list the values of n that satisfy conditions 
(1) and (2) of Lemma 1.2 for all values of .,\1 and >..2 . This is done in Table 1. 

A.2 0 1 2 3 4 5 
A.1 
0 any 0 0,3 even 0,3 0 

1 1,3 - 3 - 3,5 -

2 0,1,3,4 0 0,2,3,5 0,4 0,3 0,2 

3 odd - 3 - 3 -

4 0,1,3,4 0,2 0,3 0,4 0,2,3,5 0 

5 1,3 - 3,5 - 3 -

Table 1. The values of n (mod 6) for each value of .,\1 

(mod 6) and .,\2 (mod 6) that satisfy 
conditions (1) and (2) of Lemma 1.2. 
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3 The Main Results 

We begin with a result that helps us deal with condition (3) of Lemma 1.2. It allows us 
to focus on large values of n, so then this lower bound on .\1 will no longer be a moving 
target ( that is, a function of n). 

Proposition 3.1 If conditions (1-3) of Lemma 1.2 are sufficient for the existence of 
a GDD(n, 2) of index (.\1, .\2) whenever .\2 ~ 2(n - 1), then they are sufficient for all 
.\2 2::: 1. 

Proof: Suppose that n, .\1 and .\2 satisfy conditions (1-3) of Lemma 1.2, that 2x(n-1) < 
.\2 ~ (2x + 2)(n - 1), and that x 2::: 1. Then by (3), 

A > { .\2/2 + x + 1 if A2 is odd and .\2 > (2x + l)(n - 1), 
1 

- .\2/2 + x otherwise. 

Let E = 1 if .\2 is odd and .\2 > (2x+l)(n-1), and E = 0 otherwise. Since A~= .\2-2x(n-
1) ~ 2(n-1), and since A~= A1-xn 2::: .\2/2+x+E-xn = (.\2-2x(n-1))/2+c = A~;2+c, 
so .\1 2::: A~n/2(n - 1), (3) is satisfied by n, A~ and -\~, and (1) and (2) are easily seen 
to be satisfied too. Therefore, by our assumption there exists a GDD(n, 2) of index 
(-\1 - xn, -\2 - 2x(n - 1)). Also, by Lemma 2.1 there exists a GDD(n, 2) of index 
(xn,x(2n- 2)) for any x 2::: 1. So together these two GDD's form a GDD(n, 2) of index 
(-\1, -\2). D 

Therefore, it remains to consider the case where -\2 ~ 2(n - 1); or n 2::: -\2/2 + 1. 
Under this condition, (3) simply becomes -\1 2::: (-\2 + 1)/2. So throughout the rest of 
this paper we will assume that n and -\1 satisfy these lower bounds imposed by .\2 . 

Proposition 3.2 Suppose that n is odd, -\1 2::: -\2/2 + 1 and n 2::: -\2/2 + 1. Let n, -\1 

and -\2 satisfy conditions (1) and (2) of Lemma 1.2. Then there exists a GDD(n, 2) of 
index (-\1, .\2), 

Proof: Since n is odd, -\2 is even (see Table 1). Let A= .\1 - -\2/2. So,\ 2::: 1. The result 
will follow if we can find an integer t that satisfies the following conditions: 

(i) 0 ~ 2t ~ .\(n - 1) and 3 divides (-\(n - 1) - 2t)n, and 

(ii) -\2 - -\(n - 1) ~ 2t ~ .\2, and 3 divides (-\(n - 1) - -\2 + 2t)n. 
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For, once these conditions are met, we can proceed as follows. Condition (i) ensures 
that the conditions of Corollary 2.4 are met when x = -\(n - 1) - 2t, so there exists 
a (-\(n - 1) - 2t)-regular graph Ho on the vertex set Zn x {O} such that there exists 
a set Bo of triples which partition the edges of H0 ; so ,\Kn - E(G0 ) is a 2t-regular 
graph. Similarly, condition (ii) ensures that the conditions of Corollary 2.4 are met with 
x = .\(n - 1) - ,\2 + 2t, so there exists a (-\(n - 1) - -\2 + 2t)-regular graph H1 on 
the vertex set Zn x {1} such that there exists a set B1 of triples which partition the 
edges of H1; so .\Kn - E(H1) is a (-\2 - 2t)-regular graph. Since A2 is even, by Lemma 
2.11 there exists a set F0 of 2t 1-factors and a set F1 of A2 - 2t 1-factors, each 1-factor 
being in [O, 1, OJ, such that for each i E Z 2 there exists a collection BI of triples which 
partition the edges of .\Kn - E(Hi) and the edges in the 1-factors in Fi. Finally, if Fis 
the .Xrregular multigraph consisting of all the edges in Fo and F1, then by Lemma 2.10 
there exists a collection B of triples that partition the edges of [.\2/2, .\2 , -\2/2] - E(F). 
Then each edge { ( u, i), ( v, i)} with i E Z 2 is contained in ,\ triples in Bi and Bi, and is 
in -\2/2 triples in B, and clearly each edge { ( u, 0), ( v, 1)} is in A2 triples, so the result 
will follow. So it remains to find an appropriate integer t. Recall that ,\ ~ 1. 

If .\2 = 6x + 2 and n = 3 (mod 6) then .\1 ~ 3x + 2 (since A1 ~ -\2/2 + 1) and 
n ~ 3x + 3 (since n ~ -\2/2 + 1). Choose t = f (3x + 1)/21. Then 2t::; n - 1, 3 divides 
n, and ,\2 - (n - 1) ::; 2t. 

If .\2 = 6x + 2 and n = 5 (mod 6) then .\1 = 2 (mod 3) (see Table 1), so;\ - 1 (mod 
3). 
If xis odd then n ~ 3x + 2, so choose t = (3x + 1)/2. 
If xis even then n ~ 3x + 5 (since n = 5 (mod 6)), so choose t = (3x + 4)/2. 

If .\2 = 6x + 4 and n = 3 (mod 6) then n ~ 3x + 3, so choose t = f(3x + 1)/21. 

If ,\2 = 6x + 4 and n = 5 (mod 6) then ,\1 - 1 (mod 3) (see Table 1). If x is even 
then n ~ 3x + 5, so choose t = (3x + 2)/2. If x is odd then n ~ 3x + 8, so choose 
t = (3x + 5)/2. 

If ,\2 = 6x and n = 1 (mod 6) then: if x is odd then n > 3x + 4, so choose 
t = (3x + 3)/2; if xis even then n ~ 3x + 1, so choose t = 3x/2. 

If ,\2 = 6x and n - 3 (mod 6) then n ~ 3x + 3, so choose t = f3x/2l. 

If .\2 = 6x and n = 5 (mod 6) then ,\1 = 0 (mod 3) (see Table 1) and so ,\ ~ 3, and 
n ~ 3x+2. If xis even then choose t = 3x/2, and if xis odd then choose t = (3x+3)/2. 

D 

It turns out that if ,\2 is odd then we need to consider the smallest value of .\1 by 
itself. 

9 



Proposition 3.3 Suppose that -\2 is odd and -\1 = (-\2 + 1)/2. Let n, A1 and A2 satisfy 
conditions (1-3) of Lemma 1.2. Then there exists a GDD(n, 2) of index (-\1 , -\2). 

Proof: By (3) of Lemma 1.2, n 2 -\2 + 1. Since -\2 is odd, n and -\1 are even (see Table 
1), so we can write -\1 = 6x + 2y, -\2 = 12x + 4y - 1, and n 2 12x + 4y, where y E Z 3 . 

So Table 1 shows that -\1 , -\2 and n are restricted even more: if -\1 == 0 (mod 6) then 
-\2 = 5 (mod 6) so n = 0 (mod 6); if -\1 = 2 (mod 6) then -\2 = 3 (mod 6) so n = 0 or 
4 (mod 6); and if -\1 _ 4 (mod 6) then -\2 = 1 (mod 6) son= 0 or 2 (mod 6). Notice 
that in every case 

(a) either n = 0 (mod 6) or n/2 - -\1 = 0 (mod 3). 
It will also be useful later to notice that if n = 2 or 10 (mod 12) then -\1 = 4 or 2 (mod 
6) respectively, and so since n/2 2 (-\2 + 1)/2 = -\1 we have: 

(b) if n = 2 or 10 (mod 12) then n/2 2 -\1 + 3; 
and if n = 6 (mod 12) then n/2 is odd, so we have: 

(c) if n = 6 (mod 12) then n/2 2 -\1 + 1. 

Let E be defined as in Lemma 2.12. By Lemma 2.12, for each i E Z 2 , there exists a 
simple graph Hi on the vertex set Zn x { i} satisfying (i-iii). Let Bo be a set of triples 
that partitions the edges of [O, 1, OJ+ H0 + H1 (see (ii)). By (iii), Kn - E(Hi) can be 
partitioned into n-1- (n/2 + (-l)iE) = n/2-1- (-l)iE 1-factors. 

We want to apply Theorem 2.8 with x = n/2 - ,\1 - (-l)iE and ,\ = 1, so we have 
some things to check. If n = 2 or 4 (mod 6) then E E {O, 3}, so by (a) we have that 3 
divides xn. In each case n/2 - (-l)iE is even, so xis even because -\1 is even. Clearly 
x::; n - 1, and by (b) and (c) we have that x 2 0. 

Therefore, by Theorem 2.8, for each i E Z 2 there exists a set of triples BI and there 
exists an (n/2 - -\1 - (-l)iE) - regular graph HJ with vertex set Zn x {i} whose edges 
are partitioned by the triple.s in BI such that Kn - E(HD has a 1-factorization into 
n - 1 - (n/2 - -\1 - (-l)iE) = n/2 + -\1 - 1 + (-l)iE 1-factors. 

Finally, for each i E Z 2 , since -\1 2 2 we can take the (-\1 - 2)(n - 1) 1-factors in a 
1-factorization of (-\1 - 2)Kn on the vertex set Zn x {i}. So for each i E Z 2 , altogether 
on the vertex set Zn x { i} we have defined (n/2-1- (-l)iE) + (n/2+ ,\1 -1 + (-l)iE) + 
(-\1 - 2)(n - 1) = n(-\1 - 1) = n(-\2 - 1)/2 1-factors. By Lemma 2.9, there exists a 
set B 1 of triples that partition the edges in these 1-factors together with the edges in 
[O, -\2 - 1, OJ. 

Then clearly the triples in B 0 , B 1 , Eb and B~ form a GDD(n, 2) of index (-\1 , -\2). D 
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Before presenting our last proposition, we need to deal with two exceptional cases. 

Lemma 3.4 Let n = 2 or 4 (mod 6}, A1 = 6y + 6 A2 = 12y + 9 and n ~ 6y + 6. Then 
there exists a GDD(n, 2) of index (A1, A2). 

Proof: If n = 2 (mod 6) then there exists a TS(2n) of index 2, and by Proposition 3.3 
there exists a GDD(n, 2) of index (6y+4, 12y+7), which together produce a GDD(n, 2) 
of index (6y + 6, 12y + 9). 

If n = 4 (mod 6) then define E as in Lemma 2.12. By Lemma 2.12, for each i E Z 2 

there exists a simple graph Hi on the vertex set Zn x { i} that is (n/2 + (-l)iE)-regular, 
such that there exists a set B of triples that partition the edges of [O, 1, O] +Ho+ H 1 , and 
such that Kn -E(Hi) has a 1-factorization into a set F1(i) of n/2-1- (-l)iE 1-factors. 
Since 6 divides x = 3n/2 - 6y- 6- (-l)iE and O :s; x :s; n - l, by Theorem 2.8, for each 
i E Z 2 there exists a set Bi of triples and an x-regular graph Hi in (6y + 5)Kn defined 
on the vertex set Zn x { i} whose edges are partitioned by the triples in Bi, such that 
(6y+ 5)Kn -E(H) has a 1-factorization into a set F2(i) of (6y + 5)(n-1) -x 1-factors. 
In F1 (i) and F2(i), i E Z 2 there are a total of (6y+4)n 1-factors, which altogether with 
the edges in [O, 12y + 8, OJ can be partitioned into a set B' of triples (by Lemma 2.9). 

Clearly the triples in B, B', Bo and B1 together form a GDD(n, 2) of index (6y + 
6, 12y + 9). 

D 

Lemma 3.5 Let ;\1 = 4 (mod 6}, A2 = 1 and n = 2 (mod 6}. Let n, ;\1 and ;\2 satisfy 
conditions (1-3} of Lemma 1.2. Then there exists a GDD(n, 2) of index (;\1 , ;\2 ). 

Proof: Let A1 = 6y+4. Let F = {{2a, 2a+l} I a E Zn;2 } and Fo = {{(a, 0), (b, O)}l{a, b} E 
F}. Let L = { {O, 1}, {2, 3} }, and for each i E Z 2 let Li= { {(a, i), (b, i)} I {a, b} EL}. 

Let (Zn, o) be a symmetric quasigroup with holes F and of order n (see Lemma 
2.13). Define 

B = { {(a, 0), (b, 0), (a ob, 1)} IO :s; a< b :s; n - l, {a, b} \t F} U 

{ {(2a, 0), (2a + 1, 0), (2a, 1)}, {(2a, 0), (2a + 1, 0), (2a + 1, 1)} I 2 :s; a :s; n/2} U 

{ {(2a, 0), (2a, 1), (2a + 1, 1)}, {(2a + 1, 0), (2a, 1), (2a + 1, 1)} IO :s; a :s; 1} . 

Then the triples in B contain: each edge { ( a, 0), ( b, 0)} exactly once if { a, b} \t F, exactly 
twice if { a, b} E F\L, and not at all if { a, b} E L; each edge { ( a, 0), (b, 1)} exactly once; 
and each edge { ( a, 1), (b, 1)} exactly twice if { a, b} E L, and otherwise not at all. 

11 



Using Lemma 2.14, let Bo be a collection of triples that partition the edges of (6y + 
2)Kn +2L0 on the vertex set Zn x {O}, and let B1 be a collection of triples that partition 
the edges of (6y + 4)Kn - 2L1 on the vertex set Zn x {1}. 

Finally, let (Zn x {O}, F0 , B') be a GDD(n, 2) of index (0, 1). 

Then the triples in B, B', Bo and B1 together form a GDD(n, 2) of index (6y + 4, 1). 
D 

Proposition 3.6 Suppose that n is even, ..\1 ?.: ..\2/2 + 1 and n ?.: ..\2/2 + 1. Let n, ..\1 
and ,\2 satisfy conditions {1) and {2) of Lemma 1.2. Then there exists a GDD(n, 2) of 
index (..\1, ..\2). 

Proof: The result will follow if we can find an integer t that satisfies the following 
conditions: 

(i) 0::; t, nt::; ..\1(n - 1), and 3 divides (..\1(n - 1) - tn)n, and 

(ii) t::; ..\2, (..\2 - t)n::; ..\1(n - 1), and 3 divides (..\1(n - 1) - (..\2 - t)n)n. 

For, once these conditions are met, we proceed as follows. 

Since n is even ,\1 is even, so (..\1(n - 1) - tn) is even. Therefore, by Theorem 2.8 and 
using (i), there exists a (..\1(n - 1) - tn)-regular graph Ho on the vertex set Zn x {O} 
of multiplicity at most ,\1 and there exists a set Bo of triples such that: these triples 
partition the edges of H0 ; and To= ..\1Kn-E(H0 ) has a 1-factorization into tn 1-factors. 
Similarly, by Theorem 2.8 and (ii), there exists a (..\1(n - 1) - (..\2 - t)n)-regular graph 
H1 on the vertex set Zn x {1} and there exists a set B1 of triples such that: these triples 
partition the edges of H1; and T1 = ,\Kn - E(H1) has a 1-factorization into (..\2 - t)n 
1-factors. Finally, by Lemma 2.9, there exists a set B of triples which partition the 
edges of (0, ..\2 , OJ + T0 + T1. Then clearly the triples in B0 , B1 and B together form a 
GDD(n, 2) of index (..\1, ..\2). So it remains to find a suitable value oft in each case. 

In the following, to check that nt ::; ,\1 ( n - 1) it is easiest to check that t ::; ( ,\1 -
t)(n - 1). Also, we will choose t so that t?.: ..\2/2, in which case nt::; ,\1(n - 1) implies 
that (..\2 - t)n::; ..\1(n - 1). 

If ,\2 = 6x then ,\1 ?.: 3x + 1 and n ?.: 3x + 1. Choose t = 3x. From Table 1, 3 divides 
..\1, n or n - 1, and since 3 divides t, the divisibility by 3 conditions in (i-ii) are met. 

If ,\2 = 6x + 1 and n = 0 (mod 6) then ,\1 ?.: 3x + 2 and n ?.: 3x + 2. Choose 
t = 3x + 1. 

12 



If A2 = 6x + 1 and n = 2 (mod 6), then A1 = 4 (mod 6) (see Table 1), so A1 ~ 3x + 4 
and n ~ 3x + 2. Choose t = 3x + 2. Then all conditions in (i-ii) are met except that 
if x = 0 then ).2 < t; but then we seek a GDD(n, 2) of index (6y + 4, 1) which was 
constructed in Lemma 3.5. 

If A2 = 6x + 2 then A1 ~ 3x + 2 and n ~ 3x + 2. Choose t = 3x + 1. 

If A2 = 6x + 3 and n = 0 (mod 6) then A1 ~ 3x + 3 and n ~ 3x + 3. Choose 
t = 3x + 2. 

If A2 = 6x + 3 and n = 2 (mod 6) then A1 = 0 (mod 6) (see Table 1), so A1 ~ 3x + 3 
and n ~ 3x + 5. Choose t = 3x + 3. Then all conditions in (i-ii) are met except 
that if ).1 = 3x + 3 then nt > A1(n - 1). However, if A1 = 3x + 3 then we can write 
Ai = 6y + 6, A2 = 12y + 9 and n - 2 (mod 6), so we can use Lemma 3.4. 

If ). 2 = 6x+3 and n _ 4 (mod 6) then A1 ~ 3x+3 and n ~ 3x+4. Choose t = 3x+3. 
Then all conditions in (i-ii) are satisfied unless A1 = 3x + 3, for then nt > A1(n - 1). If 
).1 = 3x + 3 then again the GDD can be obtained from Lemma 3.4. 

If A2 = 6x + 4 then A1 ~ 3x + 3 and n 2:, 3x + 3. Choose t = 3x + 2. 

If A2 = 6x + 5 and n = 0 (mod 6) then A1 ~ 3x + 4 and n ~ 3x + 6. Choose 
t = 3x + 3. 

If A2 = 6x + 5 and n = 2 (mod 6) then A1 = 2 (mod 6) (see Table 1), so A1 ~ 3x + 5 
and n ~ 3x + 5. Choose t = 3x + 4. D 

Finally, we can present the main result. 

Theorem 3.7 Let n 2:. 3 and A1 , A2 ~ 1. There exists a GDD(n, 2) of index (A1, A2) if 
and only if 

(1) 2 divides >.1 (n - 1) + A2n, 

(2) 3 divides A1n(n - 1) + A2n2 ,and 

(3) Ai~ >.2n/2(n - 1). 

Proof: By Proposition 3.1, it suffices to consider the case where A2 < 2(n - 1), so 
n 2:. >.z/2 + 1 and therefore by (3) A1 ~ (A2 + 1)/2. 

If n is odd (so ).2 is even) the result follows from Proposition 3.2. 

13 



If ,\1 = (>.2 + 1)/2 then the result follows from Proposition 3.3. 

If n is even and ,\1 2:: >.2/2 + 1 then the result follows from Proposition 3.6. D 
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