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▲ Figure 1. Region of interest, events, and simulation domain. (a) Horizontal surface projec-
tion of the simulation domain and location of the main cities within it. (b) Events used for evalu-
ation of the velocity models (indicated with star symbols). The Mw 5.4 2008 Chino Hills earth-
quake, which is used here as a benchmark, is highlighted with a larger, red stat (labeled as 
event X).

▲ Figure 2. Comparison between the southern California community velocity models consid-
ered. Left: free-surface shear wave velocity. Right: Vertical profiles of shear wave velocity  
along the segments AB and BC shown in the bottom left frame. Markers and labels at the top 
indicate crossings of the profiles through significant geological structures and seismic faults. 
The vertical scales of the profiles are unevenly exaggerated in three segments from 0 to 0.4 
km, 0.4 to 2 km and 2 to 8 km to highlight the differences between the models, especially near 
the surface.

▲ Figure 3. (a) Slip rate time functions (slip-rate) used in the point-source models. These 
source functions were estimated from empirical equations based on magnitude. The source 
functions of events W and X, corresponding to the 2014 Mw 5.1 La Habra and 2008 Mw 5.4 
Chino Hills earthquakes. These two events are the largest of all earthquakes considered. (b) 
Finite fault model used in additional simulations of the 2008 Mw 5.4 Chino Hills earthquake. 
The rupture description corresponds to the source inversion done by Shao et al. (2012). The 
star indicates the location of the hypocenter at 14.6 km in depth.

▼ Table 1. List of events considered in the evaluation of the velocity models. The location of 
the events is shown in Figure 1, and the source functions in Figure 3a.

▼ Table 2. Different combination of simulations for the particualr case of the 2008 Mw 5.4 
Chino Hills, California, earthquake, using variable: velocity models, minimum shear wave ve-
locity, number of points per wavelength, attenuation models, attenuation Qs-Vs relationships, 
source models, and deffects in the earthquake magnitude.

◄ Figure 4. Intrinsic attenuation is introduced 
using a viscoelastic model proposed by Bielak, 
Karaoglu and Taborda (BKT, 2011). The model 
uses 2 or 3 Maxwell elements and 1 Voigt element 
to mimic the effect of internal friction in geomateri-
als. The model can be adjusted to have a frequen-
cy dependent or frequency independent attenua-
tion quality factor according to the power law:

▼ Figure 5. (Left) Adjustment of the BKT model to an idealized model with frequency depen-
dent Q attenuation. (Right) Different Qs-Vs relationships used in the simulations in order to set 
the material properties in the model. 

▲ Figure 7. (a) Goodness-of-fit scores map obtained for the 2008 Chino Hills earthquake in 
the frequency range 0–1 Hz using the velocity model CVM-S4, i.e. simulation S1. (b) Same as 
before, but corresponding to results obtained using the model CVM-S4.26.M01, i.e. simula-
tion S2. (c) Difference between the previous two maps (or GOF residual map), where positive 
values indicate improvement in S2 with respect to S1. (d) Summary chart of the final average 
GOF scores obtained for all events in Figure 1b.

▲ Figure 8. Left and center: GOF maps for simulations S3 and S4, respectively, for different 
minimum Vs (see Table 2). Right: GOF residual map obtained between simulations S3 and S4. 
Positive values indicate improvement in the validation results.

▲ Figure 10. Similar to Figure 9 but now showing GOF residual maps obtained between sim-
ulations S4 and S5, and S11, S12 and S13. Left: effect of using an extended source model in-
stead of a point source (S5 – S4). Center: effect of scaling the magnitude of the earthquake to 
Mw 5.45 instead of 5.4 (S12 – S11). Right: effect of scaling the source to magnitude Mw 5.5
instead of 5.4 (S13 – S11).

We investigate the accuracy of deterministic, regional-scale ground motion simulations of 
moderate magnitude earthquakes in southern California, and the influence that the models in-
volved have on synthetic results when compared to data. Nowadays, advances in earthquake 
ground motion simulation algorithms and models, and growth of high performance computing 
systems and applications facilitate regional-scale simulations of earthquake ground motion 
using numerical approaches. However, before simulations can be used in engineering prac-
tice, much work is needed to confirm the robustness of models and simulation methods. This 
requires a continuous effort on simulation validation through comparisons with data. We eval-
uate the accuracy of simulations using quantitative metrics of physical meaning to both seis-
mologists and engineers. We show that validation results are significantly controlled by the 
choice of the models, including crustal velocity models, attenuation models and parameters, 
and source models. We focus our attention on the selection of the appropriate velocity model 
by performing a large set of simulations for multiple past events in southern California, using 
the different community velocity models available for this region. After identifying the model 
that consistently yields the best possible approximations, we investigate the influence of dif-
ferent attenuation viscoelastic models, and that of the definition of attenuation parameters and 
quality factors, as well as the relative influence of point versus extended source models. We 
concentrate on moderate events in the greater Los Angeles basin area for which there are 
significant number of high-quality data. We analyze the results through quantitative good-
ness-of-fit measures and shed light on the relative weight of these factors with respect to each 
other, and how they influence validation results, and thus simulations as a whole.

Upon performing a collection of simulations with varying velocity models for a large col-
lection of events, and with varying attenuation and source models for the case of the 
2008 Mw 5.4 Chino Hills, California, earthquake, we find that the results obtained from 
quantitative validation analysis using goodness-of-fit metrics are significantly sensitive to 
the modeling and simulation parameters. Initial statistical analysis ran on these results 
not included here for brevity indicate that the GOF scores within any given simulation 
tend to exhibit standard deviations of about ±1 GOF points. This means that under any 
given conditions, the GOF scores may oscillate within a range of about 2-points. Consid-
ering the GOF scale used here categorizes the quality of the fit from poor to excellent in 
2-point bins, this variability helps to constrain the level of uncertainty on the parameters 
used for (physics-based) ground simulation.

We evaluate the accuracy of simulations based on quantitative validation between synthetics 
and data at locations where records were available for the simulated events. The validation 
process is done using the goodness-of-fit (GOF) method proposed by Anderson (2004), with 
minor modifications by Taborda and Bielak (2013). The method compares synthetics against 
data using eleven individual parameters: Arias intensity integral (C1), energy integral (C2), 
Arias intensity value (C3), total energy (C4), peak acceleration (C5), peak velocity (C6), peak 
displacement (C7), response spectrum (C8), Fourier amplitude spectrum (C9), cross correla-
tion (C10), and strong-phase duration (C11). Each parameter is mapped onto a numerical 
scale ranging from 0 to 10, where a score of 10 corresponds to a perfect match. The scores 
are computed for different frequency bands, and ultimately combined into a final score.

The simulations are done with Hercules, a software for earthquake ground motion simulation, 
which implements a finite element solution to the 3D anelastic wave equation.

Q = Q0(f/f0)λ.

◄ Figure 11. Similar to Figurs 9 and 10 but now showing the 
GOF residual map obtained for simulations S8 – S11. These 
residuals show the effect of using double the number of 
points per wavelength in the generation of the finite element 
mesh.
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▲ Figure 9. GOF residual maps obtained between simulations S2 and S3, and S5, S6 and 
S7.  Left: effect of using Qs = 50Vs versus 100Vs (S3 – S2). Center: effect of using the models 
BKT2 versus BKT3 under frequency independent attenuation (S6 – S5).  Right: effect of using 
frequency dependent attenuation with an exponential slope of λ = 0.8 with respect to the case 
of frequency independent Q (S7 – S6).

▲ Figure 6. Comparison of synthetics for a subset of the simulations described in Table 2, for 
the east-west component of motion at a sample station near downtown Los Angeles.
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