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Abstract— In this study, nonlinear autoregressive exogenous 

(NARX) models of a heavy-duty single-shaft gas turbine (GT) are 

developed and validated. The GT is a power plant gas turbine 

(General Electric PG 9351FA) located in Italy. The data used for 

model development are three time series data sets of two different 

maneuvers taken experimentally during the start-up procedure. 

The resulting NARX models are applied to three other 

experimental data sets and comparisons are made among four 

significant outputs of the models and the corresponding measured 

data. The results show that NARX models are capable of 

satisfactory prediction of the GT behavior and can capture system 

dynamics during start-up operation.  
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Nomenclature 
f NARX model transfer function 

M mass flow rate  

n number  

N rotational speed  

p stagnation pressure 

PrC compressor pressure ratio  

RMSE root mean square error  

t time  

T temperature  

TIT turbine inlet temperature  

TOT turbine outlet temperature  

u externally determined input variable 

y output variable  

 

Subscripts 

01 compressor inlet section  

02 compressor outlet section 

04 turbine outlet section 

d data set 

f fuel 

in inlet 

m measured  

out outlet 

u externally determined input variable 

y output variable 

 

 
 

I. INTRODUCTION 

HITE-BOX and black-box models are considered as two 

main categories of gas turbine models respectively based 

on the fact that information about the physics of the system is 

enough or not. White-box models usually deal with coupled and 

complicated dynamic equations, thermodynamic relationships, 

energy balance, and linearization methods [1]. Black-box 

models such as nonlinear autoregressive exogenous (NARX) 

models are employed when access to the complicated dynamic 

equations of the system is not possible or struggling with them 

is difficult and undesirable [1]. To set up a reliable black-box 

model, different kinds of neural networks may be trained based 

on the values of different parameters of the system for its whole 

operational range. Before making a decision about the most 

suitable modeling approach, it is necessary to survey the whole 

system (in this paper, a gas turbine) including measureable 

parameters, monitoring system, sensors’ health and reliability, 

system history record, accessibility of the system data, 

availability of performance curves, technical characteristics. 

The chosen modeling method should also be compatible with 

research expectations. 

During recent decades, artificial neural networks (ANN) 

have been widely used for modeling and simulation of 

industrial systems. ANN, as a data-driven model, is one of the 

most significant methods in black-box modeling. It has been 

seen as a very good alternative to conventional approaches for 

system modeling. It is mainly used to disclose the relationships 

between variables of the system using the measured operational 

data from system performance or generated data by means of a 

physics-based model. ANN itself includes different approaches 

such as nonlinear autoregressive with exogenous inputs 

(NARX), adaptive network-based fuzzy inference system 

(ANFIS), feedforward multi-layer perceptron (MLP), nonlinear 

auto-regressive moving average with exogeneous inputs 

(NARMAX), backpropagation neural networks (BPNN), radial 

basis function(RBF), and B-spline.  

NARX model as a recurrent neural network has the capability 

of capturing dynamics of complicated systems such as gas 
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turbines. Such a model can be employed for optimization of 

design and manufacturing of gas turbines, as well as of the 

whole operation and maintenance activity of GTs.  

A range of ANN-based models have been built so far for 

different kinds of gas turbines. The plantunder investigation can 

be a micro gas turbine (MGT), an aero gas turbine, or an 

Industrial Power Plant Gas Turbine (IPGT) including heavy-

duty industrial gas turbines, which is the subject of this study. 

In the area of black-box models, specifically constructed for 

IPGTs, one can refer to the research activities carried out by 

Lazzaretto and Toffolo [2], Ogaji et al. [3], Arriagada et al. [4], 

Basso et al. [5], Bettocchi et al. [6-9], Spina and Venturini [10], 

Simani and Patton [11], Yoru et al. [12], Fast et al. [13-16], Fast 

and Palme [17] and Fast [18]. Each of these research activities 

in the field of modelling of gas turbines investigated the issue 

from a specific perspective and has some pros as well as some 

limitations. 

Lazzaretto and Toffolo [2] investigated a zero-dimensional 

design and off-design modelling of a single-shaft gas turbine 

using ANN. They used analytical method and feedforward 

neural network (FFNN) as two different approaches to predict 

GT performance. Appropriate scaling techniques were 

employed to construct new maps for the gas turbine using 

available generalized maps of the compressor and turbine. The 

new maps were validated using the experimental data obtained 

from real plants. Off-design performance of the gas turbine was 

obtained using modifications of the compressor map according 

to variable inlet guide vane closure. Different sets of 

independent variables, that were selected according to the 

available data, allowed a high flexibility in the choice of the 

adjustment criteria. However, the effects of internal parameter 

variations on GT performance were not considered in the 

analytical approach. The resulting ANN model showed 

excellent prediction accuracy. The researchers emphasized the 

reliability of the ANN model in making accurate correlations 

between important thermodynamic parameters of complex 

thermal systems. 

Ogaji et al. [3] applied ANN for multi-sensor fault diagnosis 

of a stationary twin-shaft gas turbine using Neural Network 

Tool-Box in MATLAB. The required data for training the 

networks were derived from a nonlinear aero-thermodynamic 

model of the engine’s behaviour. The researchers presented 

three different ANN architectures. The first ANN was used to 

partition engine measurements into faults and no-faults 

categories. The second network was employed to classify the 

faults into either a sensor or a component fault. The third ANN 

was applied to isolate any single or dual faulty sensors and then 

to quantify the magnitude of each fault, via the difference 

between the network’s inputs and outputs. The results indicated 

that ANN could be used as a high-speed powerful tool for real-

time control problems.  

Arriagada et al. [4] used ANN for fault diagnosis of a single-

shaft industrial gas turbine. They obtained data sets from ten 

faulty and one healthy engine conditions. The data sets were 

employed to train a feedforward MLP neural network. The 

trained network was able to make a diagnosis about the gas 

turbine’s condition. The results showed that ANN could 

identify the faults and generate warnings at early stages with 

high reliability.  

Basso et al. [5] investigated a NARX model to identify 

dynamics of a small heavy-duty IPGT. Their objective was to 

make an accurate reduced-order nonlinear model using black-

box identification techniques. They considered two operational 

modes for the gas turbine; when it was isolated from power 

network as a stand-alone unit and when it was connected to the 

power grid. The parameter estimation of the NARX model was 

performed iteratively using Gram-Schmidt procedure. Both 

forward and step-wise regressions were investigated and many 

indices were evaluated and compared to perform subset 

selection in the functional basis set and to determine the 

structure of the nonlinear model. A variety of input signals were 

chosen for system identification and validation purposes.  

Bettocchi et al. [6-9] applied an ANN-based model of a 

single-shaft gas turbine and developed a multiple-input and 

multiple-output (MIMO) neural network approach for 

diagnostic purposes. They tried to explore the most appropriate 

ANN-based model in terms of computational time, accuracy 

and robustness, and observed that ANN could be very useful for 

the real-time simulation of GTs especially when there was not 

enough information about the system dynamics.  

In another research, Spina and Venturini [10] used field data 

sets and applied ANN to train operational data through different 

patterns in order to model and simulate a single-shaft gas 

turbine and its diagnostic system with a low computational and 

time effort. In fact, the authors outlined a procedure to identify 

a few data sets which proved extremely representative for ANN 

model training.  

Simani and Patton [11] developed a model-based approach 

to detect and isolate faults on a single-shaft industrial gas 

turbine prototype. They suggested the exploitation of a linear 

model in order to avoid nonlinear complexity of the system. For 

this purpose, black-box modelling and output estimation 

approaches were applied due to their particular advantages in 

terms of algorithmic simplicity and performance achievements. 

The suggested fault diagnosis strategy was especially useful 

when robust solutions were required for minimizing the effects 

of modelling errors and noise, while maximizing fault 

sensitivity. To verify the robustness of the obtained solution, 

the proposed FDI approach was applied to the simulated data 

from the GT in the presence of measurement and modelling 

errors.  

Yoru et al. [12] examined the application of ANN method to 

the exergetic analysis of gas turbines which supplied both heat 

and power in a cogeneration plant. They compared the results 

of the ANN method with exergy values from the exergetic 

analysis and showed that much closer exergetic results could be 

attained by using the ANN method.  

Fast et al. [13-16] applied simulation data and ANN 

techniques to examine condition-based maintenance of gas 

turbines. They used real data obtained from an industrial single-

shaft gas turbine working under full load to develop a simple 

ANN model of the system with very high prediction accuracy 

and applied different ANN approaches for gas turbine condition 

monitoring, sensor validation and diagnosis. 
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Fast and Palmé [17] developed an ANN-based methodology 

for gas turbine sensor validation, in order to minimize the need 

for calibration of sensors and to decrease the percentage of 

shutdowns due to sensor failure.  

 

As it can be seen from the literature survey, further research 

still needs to be carried out to resolve unpredictable challenges 

that arise in the manufacturing processes or in the operation of 

gas turbines. Most black-box models have been built based on 

the steady-state operation of gas turbines, when GTs have 

already passed the start-up procedures and run in a stable mode. 

Instead, the literature lacks enough investigations about 

modeling and simulation of GT start-up procedure. In fact, there 

is a limited number of studies, directly or indirectly related to 

modeling of GT start-up procedures. Agrawal and Yunis [19] 

presented a generalized mathematical model of an aero gas 

turbine to estimate the engine performance in the starting 

regime. The model was capable of capturing system dynamics 

at any ambient temperature or altitude. Balakrishnan and 

Santhakumar [20] explored the start cycle performance of a 

typical aero gas turbine engine and the difficulties which may 

arise in developing a realistic fuzzy model of the engine during 

the start-up operation. Bianchi et al. [21] built a gas turbine 

component module library and compared the transient response 

of an industrial twin-shaft gas turbine to experimental data 

taken from literature. A comparative analysis of gas turbine 

engine start-up procedure was carried out by Beyene and 

Fredlund [22]. Kim et al. [23-25] performed a variety of 

research activities regarding the transient operation of a 

combined cycle power plant as well as modeling and simulation 

of start-up of a heavy-duty gas turbine. Shin et al. [26] analyzed 

the transient behavior of a combined-cycle power plant using 

dynamic simulation. In their mathematical model, the authors 

considered rapid changes and periodic oscillations of the gas 

turbine load. Steady state and transient aero-thermal models of 

a micro turbine were explored by Davison and Birk [27]. They 

presented the results for both acceleration and deceleration of 

the engine. Huang and Zheng [28] developed a new 

methodology by combining a stage-stacking method and testing 

data to calculate the low-speed characteristics of start-up 

operation for an aero gas turbine. The methodology could be 

used to estimate the starting characteristics. A novel 

parsimonious genetic programming (PGP) algorithm and a 

novel aero-engine optimum data-driven dynamic start process 

model based on PGP was suggested by Xunkai and Yinghong 

[29]. The proposed method was useful for modeling complex 

nonlinear systems by using little prior system knowledge. 

Cataldi et al. [30] used operational data to model and simulate 

the start-up of a large-size single-shaft gas turbine. Sanaye and 

Rezazadeh [31] studied a transient thermal model of heat 

recovery steam generators in combined cycle power plants. 

They compared the results from the model to the measured data 

collected from a cold start-up operation. A transient model of a 

gas turbine engine was explored by Corbett et al. [32]. Alobaid 

et al. [33] developed static and dynamic models of a combined 

cycle power plant and their applications to improve the start-up 

process of a combined cycle power plant. Transient 

thermodynamic model of a single-pressure combined cycle 

power plant under load reduction was investigated by 

Daneshvar et al. [34]. Sarkar et al. [35] analyzed the time-series 

data from an aero gas turbine engine and constructed a model 

for fault detection purposes. Finally, for the same heavy duty 

gas turbine considered in the current paper, two separate 

simulation models were developed in [36] by using both a 

physics-based and a black-box approach. In this case, different 

maneuvers taken experimentally during transient operation 

were used for model development and validation.  

There are also very useful white-box and black-box 

methodologies regarding simulation of transient behavior of 

individual components of gas turbines, such as compressors 

which can be effectively applied to gas turbines. For instance, 

one can refer to neural network techniques employed by 

Venturini [37, 38] to explore transient behavior of compressors. 

Similar efforts were carried out by Venturini [39] and Morini et 

al. [40, 41] by using white-box methods.  

The importance of the start-up procedure of gas turbines and 

its direct effect on their performance and life time is a strong 

motivation for researchers to work in this field. There are still 

many unforeseen events during start-up process which can arise 

from complicated dynamics of gas turbines. Accurate modeling 

would require the knowledge of bleed flows and IGV control. 

Moreover, the operational modes with modern DLN and DLE 

systems are very complex, also involving fuel splits and bleed 

action. Since such pieces of information are usually unknown 

or they are confidential manufacturer’s data, the use of a black-

box approach allows the implicit incorporation of all these 

phenomena in a simple simulation model.  

Therefore, many research activities should be still carried out 

to fill the existing information gaps in the literature and to 

develop such black-box models. On the basis of the literature 

review performed by the authors on this topic, this paper 

represents one of the few attempts to develop a dynamic model 

of the whole gas turbine (and in particular for the start-up 

maneuver) by means of NARX models and validate it against 

experimental data taken during normal operation by means of 

standard measurement sensors and acquisition system. Building 

the required models in this specific area can be very effective 

in understanding and analyzing gas turbine dynamics, and can 

also provide information about fault diagnostics.  

For this reason, NARX models of the start-up procedure of a 

heavy-duty gas turbine are constructed in this study. The 

modeling and simulation are carried out on the basis of the 

experimental time-series data sets obtained from a GT located 

in Italy. The results of this modeling approach, which uses as 

inputs only the variables at antecedent time steps (i.e. no 

information about the current time step is required), allow the 

set up of a powerful and easy-to-build simulation tool which 

can be used for real-time control and sensor diagnostics of gas 

turbines.  

The specifications of the gas turbine are described in the next 

section. Then, GT start-up procedure, the main steps for data 

acquisition, data preparation and NARX modeling are 

discussed. The paper ends up with the results of the comparison 
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of NARX predictions to experimental measurements. 

Concluding remarks and guidelines are also provided. 

II. GAS TURBINE SPECIFICATIONS 

The gas turbine modeled in this paper is the General Electric 

PG 9351FA. It is a heavy-duty single-shaft gas turbine used for 

power generation. The main specifications are summarized in 

Table I. 

 
TABLE I  

GAS TURBINE SPECIFICATIONS 

GT type: GE 9351FA 

number of shafts 1 

rotational speed 3000 rpm  

pressure ratio 15.8 

TIT  1327 °C  

TOT 599 °C  

air flow rate 648 kg/s  

power 259.5 MW 

heat rate  9643 kJ/kWh 

efficiency 37.3 % 

III. GAS TURBINE START-UP 

The start-up period is the operating period before the gas 

turbine reaches stable combustion conditions. To start to work, 

gas turbines need an external source, such as an electrical motor 

or a diesel engine. GTs use a starter until the engine speed 

reaches a specific percentage of the design speed. Then,  

engine can sustain itself without the power of starter. Gas 

turbine start-up procedure can be divided into four phases 

including dry cranking, purging, light-off and acceleration to 

idle [30, 42]. In dry cranking phase, the engine shaft is rotated 

by the starting system without any fuel feeding. In purging 

phase, residual fuel from previous operation or failed start 

attempts is purged out of the fuel system. In this phase, the 

rotating speed is kept constant at a value which ensures a proper 

mass flow rate through the combustion chamber, the turbine 

and the heat recovery steam generator.  

During light-off, fuel is fed to the combustor, and igniters are 

energized. This causes ignition to start locally within the 

combustor, followed by light-around of all the burners. Finally, 

in acceleration to idle phase, the fuel mass flow rate is further 

increased and the rotational speed increases towards idle value.  

IV. AVAILABLE FIELD DATA 

The data sets used in this study were taken experimentally 

during several start-up maneuvers and cover the whole 

operational range of the GT during start-up. Therefore, these 

data are expected to account for all the conditions related to this 

type of transient maneuver (e.g. bleed valve opening, IGV 

control, etc.). 

The whole available data sets for the GT can be categorized 

into three main groups as follows:  

• Cold start-up: the gas turbine was shut down some days 

before the start-up. 

• Warm start-up: the gas turbine was shut down some 

hours before the start-up. 

• Hot start-up: the gas turbine was shut down just few 

hours or less before the start-up. 

Moreover, each of the data sets of the above categories may 

fall into different combinations of the following conditions: 

• If the starter is on or off: 1 or 0;  

• If the gas turbine is connected to the grid or not: 1 or 0; 

• If customer trip happens or not: 1 or 0; 

• If the flame is on or off: 1 or 0.  

In this paper, the data sets of cold start-up and the following 

two maneuvers were considered for developing the simulation 

models: 

• The starter is on: 1; 

• The gas turbine is connected to the grid or not: 1 or 0; 

• Customer trip does not happen: 0; 

• The flame is on: 1. 

The maneuvers can be classified as [1 1 0 1] or [1 0 0 1]. For 

instance, [1 1 0 1] refers to the situation when the starter is on, 

the gas turbine is connected to the grid, customer trip does not 

happen, and the flame is on.  

The measured time-series data sets which are used for 

training the NARX models are called TR1, TR2 and TR3. They 

cover the whole operational range of the gas turbine during the 

start-up procedure and they all refer to “cold” start-up. The time 

step for data acquisition is one second. 

A combination of TR1, TR2 and TR3, including more than 

1300 data sets of input and output parameters in total, was 

considered for training, in such a manner that the resulting 

model can be confidently generalized for GT “cold” start-up 

simulation. The choice of using only three transients for 

training is motivated by the fact that the model should be as lean 

as possible, so that this methodology can be replicated also in 

other field applications where the availability of recorded 

transient maneuvers is limited. Actually, increasing the number 

of training data sets may lead to a more accurate model, but will 

also increase the computational time. However, this is not a big 

issue, since the computational time for training the NARX 

models considered in this paper is in the order of one minute.  

The data sets TE1, TE2 and TE3 are the data which are 

employed for test and verification of the resulting models. The 

Table II shows more details about these data and the operational 

range for the input parameters of the available data sets.  
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TABLE II 
EXPERIMENTAL TIME SERIES DATA SETS 

Data 

set 

Number  

of data  

Operational range of the inputs 

T01 [K] p01 [kPa] Mf [kg/s] 

TR1 450 [289.8; 292.6] [101.6; 101.9] [0.73; 4.90] 

TR2 362 [281.5; 295.9] [102.3; 102.6] [0.98; 5.10] 

TR3 510 [305.4; 308.7] [101.6; 102.0] [0.28; 4.80] 

TE1 538 [295.9; 299.3] [100.6; 101.0] [0.37; 4.80] 

TE2 408 [299.8; 300.9] [100.6; 101.0] [0.49; 4.80] 

TE3 397 [298.7; 299.8] [100.6; 100.9] [0.52; 4.80] 

 

It can be seen that the values of compressor inlet temperature 

and pressure of the training data sets are different, since they 

were taken in different seasons during the same year (August, 

October, and December). This choice was made on purpose, 

with the aim to improve the generalization capability of the 

NARX models. Moreover, the range of variation of T01 for TE1, 

TE2 and TE3 is included in the range of variation of T01 of the 

training data sets.  

Figure 1 shows the trends over time of fuel mass flow rate. It 

can be seen that the trends of all maneuvers are similar, but the 

rate of change of the rotational speed to reach the full-speed/no-

load condition is different. In particular, TE1 is very close to 

TR3, while the trend of the fuel flow for TE2 and TE3 lies in 

the middle between TR1 and TR3.  

 

 
Fig. 1.  Trend over time of the fuel mass flow rate.  

V. GAS TURBINE START-UP MODELING BY USING 

NARX MODELS 

As mentioned, NARX is a nonlinear autoregressive network 

with exogenous inputs. It has a recurrent dynamic nature and is 

commonly used in time-series modeling. NARX includes 

feedback connections enclosing several layers of the network. 

The defining equation of the NARX model is as follows [43]:  

y(t) = f [u(t-1),…,u(t-nu),y(t-1),…,y(t-ny) ]                 (1) 

where y is the output variable and u is the externally 

determined variable. The next value of the dependent output 

signal y(t) is regressed on previous values of the output signal 

and previous values of an independent (exogenous) input 

signal.  

A NARX model can be implemented by using a feedforward 

neural network to approximate the function f  [43]. NARX 

models can be used for nonlinear filtering of noisy input signals 

or prediction of the next value of the input signal. However, the 

most significant application of NARX networks is to model 

nonlinear dynamic systems [43].  

As it can be noticed from Eq. (1), the NARX models 

developed in this paper use as inputs only the variables at 

antecedent time steps. In fact, the exogenous input variable at 

the current time step u(t) is not an input. This characteristic is 

remarkable since this modeling approach allows the set up of a 

software tool which, for instance, may also be used for real-time 

control optimization and gas turbine sensor diagnostics to be 

run in parallel with the considered gas turbine.  

In this study, the Neural Network Toolbox in MATLAB was 

employed to build NARX models for a combination of the 

measured time-series data sets of TR1, TR2 and TR3 in such a 

manner that the resulting model will cover the whole 

operational range of the gas turbine start-up operation. The 

resulting models were obtained after carrying out a thorough 

sensitivity analysis on NARX parameters (i.e. number of 

neurons in the hidden layer, number of feedback connections, 

NARX architecture and number of delayed time points), in 

order to get as reliable and accurate models as possible in terms 

of accuracy of the trends and RMSE for the output parameters. 

At the same time, the structure of the models was kept as simple 

as possible by considering the minimum required number of 

neurons and delayed time points. The models were tested 

against TE1, TE2 and TE3 maneuvers separately. Figures 2 and 

3 show the closed-loop structure of the NARX models and the 

block diagram of the complete NARX model used for GT 

simulation, respectively.  

 

 
 

Fig. 2.  Closed-loop structure of a single NARX model. 

 

 

 
Fig. 3.  Block diagram of the complete NARX model.  

 

As Figure 3 shows, the model includes three inputs and four 

outputs. The input variables (u) are compressor inlet 

temperature T01, compressor inlet stagnation pressure p01, and 

NARX1

NARX4

NARX2

NARX3

T01

T02

T04

PrC

N

Mf

p01
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fuel mass flow rate Mf. These quantities were selected, since 

they are always available, even in poorly instrumented GTs. 

The output variables (y) are compressor outlet temperature T02, 

turbine outlet temperature T04, compressor pressure ratio PrC 

and rotational speed N. Figure 3 also shows that the complete 

NARX model has a multi-input single-output structure, 

according to [8]. 

The NARX model for each output parameter was trained 

separately by using different numbers of neurons in order to get 

the most accurate prediction. Each model was trained by using 

the Levenberg-Marquardt backpropagation (trainlm) as the 

training function, one hidden layer and a tapped delay line with 

delays from 1 to 2 at the input. In fact, the NARX model with 

regressed outputs y(t-1) and y(t-2) at time points (t-1) and (t-2) 

proved to be most accurate solution, by using a lean structure. 

With regard to the optimal number of neurons in the hidden 

layer, the best results for all the outputs were obtained by using 

twelve neurons in the hidden layer. 

The parameter used for the comparison of the measured data 

ym to the predictions of NARX models, i.e. y, is the root mean 

square error (RMSE) defined according to Eq. (2). 

2
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                             (2) 

where nd is the number of data of each data set (see Table II). 

VI. NARX MODEL TRAINING 

The Figure 4 reports the results of the training phase in terms 

of RMSE. To account for the initial delay of the NARX models 

to work correctly, the values corresponding to the first ten 

seconds of each data set are not used for RMSE calculation. The 

RMSE values slightly depend on the considered training curve, 

with the exception of N for TR3 (RMSE equal to 12.0%). The 

RMSE values for T02, T04, PrC and N vary in the range 0.7%-

4.1%, 0.8%-2.6%, 4.6%-5.6% and 3.0%-12.0%, respectively. 

Given that the NARX models are trained with merely three 

input measurements from experimental data and can generally 

reproduce the physical behavior, the RMSE values were 

considered acceptable and the training phase was considered 

satisfactory. 

 
Fig. 4.  RMSE of the NARX models for the training maneuvers TR1, TR2 and 

TR3. 

 

As a proof that the NARX models are actually capable of 

reproducing the physical behavior, Figures 5 through 8 show 

the variations of the four output parameters during the gas 

turbine start-up process of the maneuvers TR1, TR2, and TR3 

for the real system (measured data sets) and the trained NARX 

models. It should be noted that the training data sets TR1, TR2 

and TR3 are supplied as a sequence to the NARX models, as 

required for the training phase. Instead, the simulation results 

in Figures 5 through 8 were obtained by simulating these 

maneuvers one by one. It can be observed that the most 

significant deviations between measured and simulated values 

occur during the initial phase of the data sets. This means that 

the NARX models require a time frame of approximately one 

minute to stabilize and correctly reproduce the gas turbine 

behavior (this delay is also clearly highlighted in Figures 10-12 

for T04). Figures 5 through 8 also show that the NARX models 

can follow the physical behavior when the trend remains almost 

stationary. Moreover, the NARX models tend to smooth the too 

rapid variations, as shown in Figure 6 for T04.  

           
Fig. 5.  Variations of compress outlet temperature T02 for the training maneuvers 

TR1, TR2 and TR3. 

 

 

           
Fig. 6.  Variations of turbine outlet temperature T04 for the training maneuvers 

TR1, TR2 and TR3. 

 

 

       
Fig. 7.  Variations of compressor pressure ratio PrC for the training maneuvers 

TR1, TR2 and TR3. 
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Fig. 8.  Variations of rotational speed N for the training maneuvers TR1, TR2 

and TR3. 

The only noticeable deviation occurs for the pressure ratio in 

Fig. 7, where the steady-state value is underestimated in all the 

training curves. In fact, the change of the slope of the pressure 

ratio curves, which occurs at a rotational speed of about 2600 

rpm, may not only be due to the increase in the fuel mass flow 

rate (see Figure 1). In fact, the analysis of the complete data set 

highlights that a rapid opening of variable inlet guide vanes 

(VIGVs) also occurs at about 2600 rpm. This makes the 

pressure ratio increase faster, but this phenomenon is not fully 

grasped by the NARX model since the VIGV angle is not an 

input of the NARX model. As discussed, this choice was made 

to build a very lean simulation model.  

VII. NARX MODEL VALIDATION 

For validation, the NARX models were tested against three 

other available experimental time-series data sets which are 

indexed as TE1, TE2 and TE3. It should be noted that, during 

the simulation phase, the NARX models are fed with the 

regressed outputs at time points y(t-1) and y(t-2) estimated by 

the NARX model itself at antecedent time steps.  

The Figure 9 summarizes the results in terms of RMSE for 

the testing maneuvers. Also in this case, to account for the 

initial delay of the NARX model to work correctly, the values 

corresponding to the first ten seconds of each data set are not 

used for RMSE calculation. A different behavior can be 

observed for compressor and turbine outlet temperatures, 

compared to pressure ratio and rotational speed. In fact, RMSE 

values for temperatures are always lower than approximately 

3.5%. Otherwise, the RMSE maximum values of PrC and N are 

almost twice (7.4% for PrC and 7.1% for N). As observed for 

the training data sets, the RMSE values slightly depend on the 

considered training curve. 
 

 
Fig. 9.  RMSE of the NARX models for the testing maneuvers TE1, TE2 and 

TE3. 

 

Figures 10 through 12 show the trend-over-time of TE1, TE2 

and TE3, respectively. In all cases, the trends of the real system 

and the NARX models are very similar. This means that the 

NARX models can follow the changes in GT parameters, even 

though they are subject to significant changes. In fact, as an 

example, N is varied from 500 rpm to 3000 rpm in about six 

minutes and consequently PrC increases from 1 to about 7.  

At the same time, the NARX models can also reproduce less 

significant changes, as, for instance, can be observed in the 

trends of turbine outlet temperature T04. Finally, the stable 

operation can also be reproduced very satisfactorily, as it can 

be clearly seen during the last minutes of each transient 

maneuver (in particular, in Figure 10). Unfortunately, there are 

just two cases with a noticeable deviation of the measured and 

predicted trends, i.e. the compressor pressure ratio PrC for TE2 

and TE3 (see Figures 11 and 12), as already discussed for the 

training data sets. In any case, as shown above, the overall 

deviation can still be acceptable. Therefore, it can be concluded 

that the NARX models reproduced the three testing transients 

TE1, TE2 and TE3 with a good accuracy. 

In conclusion, the results show that the NARX models have 

the potential to simulate and predict gas turbine dynamic 

behavior. However, Figures 4 and 9 highlight that general 

guidelines about the order of magnitude of the errors are 

difficult to draw, since they may change as a function of the 

considered maneuver and measurable quantity. Moreover, 

unfortunately, such deviations cannot usually be minimized 

contemporarily. The results reported here represent a good 

compromise on the NARX model prediction capability of the 

four selected output variables. In fact, the comparison to 

experimental data was mainly intended to evaluate the 

agreement of the trends, rather than the numerical values. 

According to the modeling hypotheses made in this study, 

the structure of the NARX models was kept as simple as 

possible, so that only three usually available variables were 

supplied as inputs. Moreover, the differences in the numerical 

values can also be attributed to the accuracy of the gas turbine 

experimental measurement system.  

VIII. CONCLUSIONS 

The main objective of this research was to investigate the 

dynamic behavior of gas turbines during the start-up phase. For 

this reason, NARX models of a heavy-duty single-shaft gas 
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turbine were constructed by using three measured time-series 

data sets. The resulting NARX models were tested against three 

other available experimental data sets for verification of the 

models. For this purpose, four important outputs from the 

models and their corresponding values from the measured data 

sets were compared, i.e. compressor and turbine outlet 

temperature, compressor pressure ratio and rotational speed, as 

a function of compressor inlet temperature and pressure and 

fuel mass flow rate.  

According to the results, the NARX models actually have the 

capability of capturing and predicting GT dynamics during 

start-up. In most cases, the deviation between measured and 

simulated values is acceptable (e.g. lower than approximately 

3.5% for compressor and turbine outlet temperatures), but it can 

also be considerably higher for compressor pressure ratio and 

rotational speed (maximum deviations equal to 7.4% and 7.1%, 

respectively).  

In general, the physical behavior is well grasped by the 

NARX models (with the exception of the steady state value of 

compressor pressure ratio) and the influence of the considered 

data set is negligible.  

One of the strong points of this research is the simplicity of 

the developed NARX models. It is clear that accurate modeling 

(e.g. through a physics-based approach) does need many pieces 

of information (e.g. bleed flows and IGV control logic), which 

can be unknown, confidential manufacturer’s data or simply 

unavailable. For this reason and in order to overcome this lack 

of information, NARX models were employed as a black-box 

tool to model the gas turbine for the whole range of start-up 

operation. The resulting NARX models can reproduce a very 

complicated and usually difficult-to-model unsteady behavior 

and can capture system dynamics with acceptable accuracy. It 

was shown that, in spite of all the controversial issues about the 

application of neural networks for modeling of industrial 

systems, they can be considered a reliable alternative to 

conventional methods in system identification and modeling.  

Although the NARX models in this study were only applied 

to a single-shaft GT, the results of this modeling approach allow 

the set-up of a powerful and easy-to-build simulation tool which 

may be used for real-time control and sensor diagnostics of 

different types of gas turbines. In fact, all gas turbines have the 

same basic structure and follow similar dynamic equations. 

Besides, the results revealed that the NARX models have 

enough capability to discover the complex relationships among 

vital input and output parameters of the GTs and therefore can 

be extended to other types of gas turbines. Moreover, the black-

box approach to transient analysis may also have the potential 

to provide diagnostic information for the whole gas turbine.  

The future efforts in this area will deal with the investigation 

of NARX model capability as a multi-step ahead predictor, with 

the final aim to optimize design, operation and maintenance of 

gas turbines. 

 

 

 

 

 

 
Fig. 10.  Variations of compressor outlet temperature T02, turbine outlet 

temperature T04, compressor pressure ratio PrC and rotational speed N for the 

testing maneuver TE1. 
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Fig. 11.  Variations of compressor outlet temperature T02, turbine outlet 

temperature T04, compressor pressure ratio PrC and rotational speed N for the 

testing maneuver TE2. 

 

 

 

 
Fig. 12.  Variations of compressor outlet temperature T02, turbine outlet 

temperature T04, compressor pressure ratio PrC and rotational speed N for the 

testing maneuver TE3. 
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