
The Intersection of

Longest Paths in a Graph

Sarah Mark

A thesis

submitted in partial fulfilment

of the requirements for the degree

of

Doctor of Philosophy

in

Mathematics

School of Mathematics and Statistics

University of Canterbury

New Zealand

2022

Abstract

In this thesis we examine the famous conjecture that every three longest paths in a graph intersect,

and add to the classes of graphs for which it is known that this conjecture holds. This conjecture arose

from a question asked by Gallai in 1966, the question of whether all of the longest paths in a graph

intersect (Gallai’s question). In 1969, Walther found a graph in which the longest paths do not all

intersect, answering Gallai’s question. Since then, many other graphs in which the longest paths do not

all intersect have been found. However there are also many classes of graphs for which the longest paths

all intersect, such as series-parallel graphs and dually chordal graphs. Finding such classes of graphs is

an active area of research and in this thesis we add to these classes of graphs.

We begin by investigating Gallai’s question for a specific class of graphs. A theta graph is a graph

consisting of three paths with a pair of common endpoints and no other common vertices. A generalised

theta graph is a graph with at least one block that consists of at least three paths with a pair of common

endpoints and no other common vertices. We show that for a subclass of generalised theta graphs, all of

the longest paths intersect.

Next, we consider the conjecture that every three longest paths of a graph intersect. We prove that,

for every graph with n vertices and at most n+ 5 edges, every three longest paths intersect.

Finally, we use computational methods to investigate whether all longest paths intersect, or every

three longest paths intersect, for several classes of graphs. Two graphs are homeomorphic if each can be

obtained from the same graph H by a series of subdivisions. We show that, for every simple connected

graph G that is homeomorphic to a simple connected graph with at most 7 vertices, all of the longest

paths of G intersect. Additionally, we show that, for every simple connected graph G homeomorphic

to a simple connected graph with n vertices, n + 6 edges, and minimum vertex degree 3, all of the

longest paths of G intersect. We then show that for every graph with n vertices and at most n + 5

edges, every three longest paths intersect, independently verifying this result. We also present results

for several additional classes of graphs with conditions on the blocks, maximum degree of the vertices,

and other properties of the graph, showing that every three longest paths intersect or every six longest

paths intersect for these graphs.

Acknowledgements

I owe many thanks to my supervisors Jeanette McLeod, Brendan McKay, and Phillip Wilson. Their

guidance and wisdom were essential for completing this PhD, and I could not have done this without

their enduring support. The lessons I have learned from them extend far beyond mathematics.

My family has always encouraged me in everything I do, and I am extremely thankful for every one

of them. Special thanks to my parents Jayne and David for always being there for me, inspiring me to

do my best, and being unerringly supportive and loving. I am grateful to my fiancé Louis for taking care

of me, pushing me to be the best version of myself, and always loving me.

I am appreciative of the University of Canterbury for funding my research, and of the School of

Mathematics and Statistics for their support. My thanks to the other postgraduate students for bringing

me out of my shell; my life as a PhD student has been all the richer for your friendship.

Sarah Mark

3

Contents

Abstract 1

Acknowledgements 3

1 Introduction 8

1.1 Graphs . 8

1.1.1 Subgraphs . 9

1.1.2 Walks, paths, and cycles . 9

1.1.3 Connectivity . 11

1.1.4 Graph classes . 11

1.2 Overview of thesis . 12

1.3 Intersections of longest paths of a graph . 15

1.3.1 Sets of two longest paths . 16

1.3.2 Sets of three longest paths . 16

1.3.3 All longest paths . 17

1.3.4 Related results . 20

1.3.4.1 Longest path transversal . 22

1.3.4.2 A measure of the distance between longest paths 22

1.3.4.3 Vertices that are not in the vertex set of at least one longest path 23

1.4 Thesis structure . 23

2 Generalised theta graphs 25

4

2.1 Introduction . 25

2.1.1 Trees and the Helly property . 27

2.2 Graphs with more than one core . 29

2.3 Graphs with a unique core . 29

2.3.1 Two types of longest paths . 30

2.3.2 Case (1): paths of Type (A) . 30

2.3.3 Case (2): paths of Type (A) and Type (B) . 31

2.3.4 Case (3): paths of Type (B) . 32

2.3.4.1 Forbidden configurations of Type (B) longest paths 34

2.3.4.2 Properties of paths of Type (B) . 38

2.3.4.3 Proof of Lemma 2.10 . 46

2.3.5 Proof of Proposition 2.5 . 47

2.4 Proof of Theorem 2.1 . 47

2.5 Concluding remarks . 47

3 Graphs with cyclomatic number 6 50

3.1 Introduction . 50

3.2 Preliminaries . 51

3.2.1 The mod 2 sum operation . 51

3.2.2 Cycle decomposition of a graph . 52

3.2.3 Independent cycles . 55

3.2.4 Graph colouring . 55

3.3 Properties of a minimal counterexample . 57

3.3.1 Forbidden configurations in Ȟ . 58

3.3.2 The number of cycles of Ȟ . 60

3.4 Preliminary results on bi-coloured cycles . 61

3.5 Independence of cycles of Ȟ . 63

3.5.1 Sets of cycles of Ȟ . 63

3.5.2 The mod 2 sum of two cycles . 64

5

3.5.3 The mod 2 sum of three cycles . 68

3.5.4 The mod 2 sum of four cycles . 72

3.5.5 The mod 2 sum of five cycles . 76

3.5.6 Independent tri-coloured cycle . 77

3.5.7 Proof of Theorem 3.1 . 81

3.6 Concluding Remarks . 82

4 Computational Investigations 84

4.1 Introduction . 84

4.2 Theory . 85

4.2.1 Homeomorphic graphs . 86

4.2.2 Maximal walks and paths . 86

4.2.3 Polyhedra . 91

4.2.4 An optimisation . 94

4.2.5 Worked example . 95

4.3 Method of computation . 98

4.3.1 Overview . 98

4.3.2 Generating graphs . 99

4.3.3 Finding maximal walks . 100

4.3.4 Calculating the polyhedron . 100

4.3.5 Finding intersections of paths . 100

4.4 Results . 102

4.5 Linear programming . 104

4.5.1 Linear program . 104

4.5.2 Properties of a reduced graph . 106

4.5.3 Results . 110

4.5.3.1 Three longest paths . 110

4.5.3.2 Six longest paths . 111

4.6 Concluding remarks . 112

6

5 Conclusion 114

5.1 Results . 114

5.2 Methods and extensions . 116

Appendices 120

A Graph classes for which every graph has a Gallai vertex 121

B Python program maximalwalks.py 124

B.1 Program code . 124

B.2 Sample input . 128

B.3 Sample output: file for lrs . 129

C Python program postprocessing.py 130

C.1 Program code . 130

C.2 Sample input: file from lrs . 133

C.3 Sample output . 135

Bibliography 136

7

Chapter 1

Introduction

Over 50 years ago, Gallai asked whether the longest paths in a graph intersect [14] and, since then, many

related questions have been posed. For example, it has been conjectured that every three longest paths

in a graph intersect. While it is easy to show that every two longest paths in a connected graph intersect

the problem of three longest paths remains open. Not all graphs have the property that all of the longest

paths intersect, but there are classes of graphs for which it has been shown that all of the longest paths

intersect. In this thesis, we add to the classes of graphs for which every three longest paths intersect,

and to the classes of graphs for which all longest paths intersect.

1.1 Graphs

A graph G is a nonempty set V (G) of vertices together with a (possibly empty) set E(G) of unordered

pairs of vertices of G, called edges. For an edge e = {u, v} of G, where u, v ∈ V (G), we write e = uv

(or vu). Vertices u and v are the endpoints of edge e. These endpoints u and v are said to be incident

with edge e and e is incident with u and v. Two vertices u, v ∈ V (G) incident with an edge e ∈ E(G)

are adjacent, and, similarly, two edges e, f ∈ E(G) incident with a vertex v ∈ V (G) are adjacent. The

degree of v is the number of edges with which it is incident, denoted degG(v). A leaf of G is a vertex

of G with degree one. A loop of G is an edge e = uu where u ∈ V (G). For two vertices u, v ∈ V (G), if

there are two or more edges of G that each have endpoints u and v, then these edges are parallel edges.

8

A simple graph is a graph with no loops or parallel edges. Hereafter, all graphs are assumed to be simple

unless otherwise stated.

Two graphs G and G′ are isomorphic, written G ∼= G′, if there is a bijection φ : V (G)→ V (G′) such

that uv ∈ E(G) if and only if φ(u)φ(v) ∈ E(G′).

For two graphs G and G′, we denote by G ∪ G′ the graph with vertex set V (G) ∪ V (G′) and edge

set E(G) ∪E(G′). Similarly, we denote by G ∩G′ the graph with vertex set V (G) ∩ V (G′) and edge set

E(G) ∩ E(G′).

A graph labelling is the assignment of an identifier, or label, to each edge or vertex of a graph. A

labelled graph is a graph for which each vertex has a unique label. A partially labelled graph is a graph

for which some, but not necessarily all, vertices are labelled, and these labels are unique.

1.1.1 Subgraphs

A subgraph G′ of a graph G is a graph such that V (G′) ⊆ V (G) and E(G′) ⊆ E(G). If E(G′) is the

set of edges of G whose endpoints are vertices in V (G′), then G′ is an induced subgraph of G. If V (G′)

is the set of vertices of G that are endpoints of the edges in E(G′) then G′ is an edge-induced subgraph

of G. A spanning subgraph is a subgraph G′ of G such that V (G′) = V (G). For v ∈ V (G), the subgraph

of G obtained by deleting the vertex v and its incident edges is called a vertex-deleted subgraph of G,

denoted G− v.

For a set S of subgraphs of G, if there exists a vertex v ∈ V (G) such that v ∈ V (S) for each subgraph

S ∈ S, then the subgraphs in S have a common vertex.

1.1.2 Walks, paths, and cycles

Walks, paths, and cycles are central to this thesis. A walk W of a graph G is a non-empty, finite sequence

of vertices W = v1v2 . . . vk (k ≥ 1) for which vi ∈ V (G) for every i (1 ≤ i ≤ k) and vjvj+1 ∈ E(G)

for each j (1 ≤ j ≤ k − 1). The length of W , |W |, is k − 1. We define V (W) = {v1, v2, . . . , vk} and

E(W) = {vjvj+1 ∈ E(G) : 1 ≤ j ≤ k − 1}. We do not distinguish between walks v1v2 . . . vk−1vk and

vkvk−1 . . . v2v1. However, we may specify the order of a subset of the vertices of a walk, for example,

for a walk W we may say that vertices x, y, z ∈ V (W) are in the order x, y, z in W . This means that, if

9

W = v1v2 . . . vk−1vk, then x = vi, y = vj , and z = v` where 1 ≤ i ≤ j ≤ ` ≤ k. Two walks W1 and W2

of a graph are vertex-disjoint if V (W1) ∩ V (W2) = ∅ and are edge-disjoint if E(W1) ∩ E(W2) = ∅.

A path of G is a walk whose vertices are distinct. For a path P = v1v2 . . . vk of G, vertices v1 and

vk are the endpoints of P , and v2, . . . , vk−1 are internal vertices. We call P a v1vk–path. A subpath of

a path P = v1v2 . . . vk is a path vivi+1 . . . vj where 1 ≤ i ≤ j ≤ k, denoted viPvj . Two paths P and Q

of G are internally disjoint if P and Q do not have any common vertices that are internal vertices of P

or Q. This definition extends in the natural way to more than two paths — for a set P of paths of G,

these paths are internally disjoint if every pair of paths in P are internally disjoint. A spanning path of

G is called a Hamiltonian path.

A longest path of G is a path of maximum length. Some graphs have only one longest path while

others have many. For example, the graph in Figure 1.1(a) has only one longest path, while the graph in

Figure 1.1(b) has 60 longest paths. When we have said that a set of longest paths of a graph intersect,

we mean that these paths have at least one common vertex. In the rest of this thesis, we use the latter

terminology. Longest paths are central to this thesis.

(a) (b)
v1

v2

v3

v4

v5 v6

v1

v2

v3 v4

v5

Figure 1.1: (a) A graph with only one longest path, v1v2v3v4v5v6. (b) The graph K5, which has 60

longest paths.

For two paths P = v1v2 . . . vi and Q = vivi+1 . . . vj (1 ≤ i < j) of G that have a common

endpoint vi but have no other common vertices, the concatenation of these two paths is the path

PQ = v1v2 . . . vivi+1 . . . vj . We use similar notation for the concatenation of two internally disjoint

subpaths xRy and ySz of paths R and S (respectively) of G: if xRy ∪ ySz is a path, we denote the

concatenation of these paths by xRySz.

10

A cycle of G is a walk v1v2 . . . vk of length at least three where v1 = vk but v1, . . . , vk−1 are distinct.

If C1 and C2 are two cycles of G with E(C1) = E(C2), then C1 = C2. A graph G is Hamiltonian if it

has a cycle C where V (C) = V (G). A tree is a connected graph with no cycles. A forest is a graph in

which every connected component is a tree. Cycles are central to proving the main result of Chapter 3

of this thesis.

1.1.3 Connectivity

A graph G is connected if, for every pair of vertices u, v ∈ V (G), there exists a uv–path of G. Every

maximal connected subgraph of a graph G is a (connected) component of G. A graph G that is not

connected is disconnected. A vertex v ∈ V (G) is a cut vertex if deleting v increases the number of

connected components of G. The associated notion for edges is that of a bridge, which is an edge

e ∈ E(G) whose deletion increases the number of connected components of G. A bond of a connected

graph G is a minimal set E′ ⊆ E(G) such that deleting the edges in E′ from G results in a disconnected

graph. A block of G is a maximal connected subgraph with no cut vertices. A block consisting of a

vertex with degree zero or an edge and its endpoints is a trivial block, and all other blocks are non-trivial.

A graph G is k-connected if it has at least k + 1 vertices and remains connected when any set of fewer

than k vertices is deleted.

1.1.4 Graph classes

In this section, we define a number of classes of graphs which will be used later in this chapter when we

discuss for which classes all of the longest paths have a common vertex.

A planar graph is a graph that can be drawn on the plane such that no two edges meet at a point

other than a common endpoint. A complete graph is a graph for which every two vertices are adjacent.

A block graph is a graph in which every block is a complete graph. A graph is bipartite if its vertex set

can be partitioned into two sets V1 and V2 such that every edge of the graph has one endpoint that is

in V1 and one endpoint that is in V2. A cactus is a graph in which every non-trivial block is a cycle. A

chordal graph is a graph for which every cycle of length four or more has an edge that is not an edge

of the cycle but whose endpoints are vertices of the cycle. A series-parallel graph is a (not necessarily

11

simple) graph with two distinguished vertices s and t that can be reduced to the edge st by a sequence

of the following two operations: (i) replacement of a pair of parallel edges by a single edge with the same

pair of endpoints, and (ii) replacement of a pair of edges xy and yz, where y has degree two, s 6= y, and

t 6= y, by a single edge xz. The graph 2K2 is the disconnected graph consisting of two edges that do not

have a common vertex, and P4 is the path with four vertices.

Let {G1, G2, . . .} be a set of graphs. A graph is called (G1, G2, . . .)-free if it has no induced subgraph

isomorphic to a graph in {G1, G2, . . .}. A cograph is a P4-free graph.

A clique is a set of vertices of G such that every pair of vertices in the set is adjacent. A stable set

is the complementary concept, namely, a set of vertices of G such that no pair of vertices in the set is

adjacent. A split graph is a graph for which the vertices can be partitioned into a clique and a stable

set. The stability number of a graph is the maximum size of a stable set of the graph.

An intersection graph is a graph constructed from a set S of sets, where each vertex of the graph

corresponds to a set in S, and two vertices are adjacent if and only if the corresponding sets have

nonempty intersection. A circular arc graph is the intersection graph of a set of arcs on a circle. A dually

chordal graph is the intersection graph of the maximal cliques of a chordal graph.

Further terms will be defined as required.

1.2 Overview of thesis

In 1966, at a graph theory colloquium held in Tihany, Hungary, Gallai [14] asked the following question:

Question 1. (Gallai’s question) Do all of the longest paths of a connected graph have a common vertex?

Consequently, such a vertex (one that is in all of the longest paths of a graph) is called a Gallai vertex.

For example, in Figure 1.2, which shows an example of a graph and two of its longest paths, vertices

v2 and v5 are Gallai vertices. Gallai’s question was answered in the negative in 1969 when Walther [38]

found a connected graph on 25 vertices, and with 70 longest paths, that does not have a Gallai vertex.

Although Gallai’s question has been answered in the negative, there are graphs that do have a Gallai

vertex. It is then natural to ask: how can graphs with a Gallai vertex be characterised? This question

has been considered by many mathematicians, who have shown that there are several classes of graphs

12

v1 v2

v3

v4

v5

v6

v7

Figure 1.2: A graph and two of its longest paths, v1v2v3v5v6 (red dotted lines) and v4v2v3v5v7 (blue

dashed lines).

for which each graph has a Gallai vertex, as detailed in Section 1.3.3.

We ask a related question, paraphrased from Kensell [25] and Zamfirescu [44]: for an integer k (k ≥ 2),

do every k longest paths of a connected graph have a common vertex? In 1975, Schmitz [31] found a

planar graph on 17 vertices, shown in Figure 1.3, in which there is a set of only seven longest paths that

do not have a common vertex, showing that the answer is the negative for k = 7. In 1996, Skupien [33]

proved that, for every k where k ≥ 7, there is a graph that answers this question in the negative. On the

other hand, we know that the answer is the positive for k = 2 (see Lemma 1.1 in Section 1.3.1). However,

for k such that 3 ≤ k ≤ 6, the answer remains unknown. In particular, the question of whether every

three longest paths of a graph have a common vertex, attributed to T. Zamfirescu [17], has occupied

the minds of many mathematicians for over 30 years. This question remains unanswered, though the

following conjecture has been posed independently by Harris et al. [18, p. 69] and Kensell [25]. This

conjecture is known to hold for certain classes of graphs, including those for which every graph has a

Gallai vertex.

Conjecture 1. Every three longest paths of a connected graph have a common vertex.

This thesis adds to the classes of graphs for which it is known that Conjecture 1 holds and to the

classes of graphs for which each graph has a Gallai vertex.

First, we investigate a specific class of graphs and prove that each graph in this class has a Gallai

vertex. This class of graphs is described below, and detailed further in Section 2.1. A theta graph is a

graph consisting of three internally disjoint paths with a common pair of distinct endpoints, an example

of which is shown in Figure 1.4(i). A generalised theta graph is a graph G with at least one non-trivial

13

Figure 1.3: A planar graph on 17 vertices that does not have a Gallai vertex, found by Schmitz [31],

and a set of seven longest paths of the graph (shown with red solid lines, other graph edges shown

by black dashed lines) that do not have a common vertex. Observe that each vertex of the graph is

excluded by at least one of these seven longest paths.

block consisting of k ≥ 3 internally disjoint paths with a common pair of distinct endpoints. An example

of a generalised theta graph is shown in Figure 1.4(ii). We investigate a subclass of generalised theta

graphs and prove that every graph in this class has a Gallai vertex.

Next, we consider Conjecture 1 for graphs with n vertices and up to n+k edges for small k. We prove

that, for every graph with n vertices and at most n+ 5 edges, every three longest paths have a common

14

(i) (ii)

Figure 1.4: (i) A theta graph and (ii) A generalised theta graph.

vertex. This result also shows that a minimal (with respect to edges) counterexample to Conjecture 1

with n vertices has at least n+ 6 edges, adding the the known properties of such a graph.

Finally, we use computational methods to obtain results for Gallai’s question and Conjecture 1 for

specific classes of graphs. The subdivision of an edge uv of a graph G is the operation of deleting uv

and inserting a new vertex w and edges uw and wv. A graph obtained by performing a sequence of

subdivisions on edges of G is called a subdivision of G. Two graphs G and G′ are homeomorphic if

and only if there exists a subdivision of G that is isomorphic to a subdivision of G′. We present a

computational method of approaching Gallai’s question and obtain the following two results. We show

that, for every simple connected graph G that is homeomorphic to a simple connected graph with at

most 7 vertices, G has a Gallai vertex. We also show that every simple connected graph G homeomorphic

to a graph with n vertices, n+ 6 edges, and minimum vertex degree 3 has a Gallai vertex. We then use

an alternative computational method to show that for every graph with n vertices and at most n + 5

edges, every three longest paths have a common vertex, independently verifying the result in Chapter

3. We also present two additional classes of graphs for which every three longest paths have a common

vertex, and two classes of graphs for which every six longest paths have a common vertex.

1.3 Intersections of longest paths of a graph

In this section we examine the literature on Conjecture 1 and Gallai’s question, including graphs that

do not have a Gallai vertex. We also survey the literature on several closely related questions.

15

1.3.1 Sets of two longest paths

We state the result that every two longest paths of a connected graph have a common vertex, and provide

a proof. The proof given here illustrates a method that will be used frequently in Chapter 2.

Lemma 1.1. Every two longest paths of a connected graph have a common vertex.

Proof. Let P and Q be two longest paths of G. Assume that P and Q do not have a common vertex.

Then there exist internal vertices u ∈ V (P) and v ∈ V (Q), and a uv–path R of G of length at least one

such that V (P) ∩ V (R) = {u} and V (Q) ∩ V (R) = {v}. Let P1 and P2 be the two subpaths of P such

that u is an endpoint of both P1 and P2, and P = P1P2. Similarly, let Q1 and Q2 be the two subpaths

of Q such that v is an endpoint of both Q1 and Q2, and Q = Q1Q2. Let R1 = P1RQ1 and R2 = P2RQ2.

Since P is a longest path of G,

|P | ≥ |R1|

|P1P2| ≥ |P1RQ1|

|P2| ≥ |R|+ |Q1| (1.1)

Similarly, since Q is a longest path of G,

|Q| ≥ |R2|

|Q1Q2| ≥ |P2RQ2|

|Q1| ≥ |P2|+ |R| (1.2)

From 1.1 and 1.2, we have |R| ≤ 0, a contradiction. Therefore P and Q have a common vertex.

1.3.2 Sets of three longest paths

Of particular interest to this thesis is Conjecture 1, that every three longest paths of a graph have a

common vertex. While it is easy to show that every two longest paths of a graph have a common vertex

(Lemma 1.1), determining whether every three longest paths of a graph have a common vertex is far

more difficult. As discussed in Section 1.2, this question has not yet been answered.

Conjecture 1 holds for each graph that has a Gallai vertex. Such classes of graphs are discussed in

Section 1.3.3 and Appendix A. Additionally, it has been shown that Conjecture 1 holds for the class

16

of graphs for which all nontrivial blocks are Hamiltonian [10], though it is not known whether all of

the graphs in this class have a Gallai vertex. Figure 1.5 shows a number of classes of graphs for which

Conjecture 1 holds (shown in green) and classes for which it is currently unknown whether Conjecture 1

holds (grey), along with a selection of subclass to superclass relationships between these classes. Note

that this diagram does not include all relationships of the classes shown. We refer the reader to [5] for

the definitions of classes of graphs in Figure 1.5 that are not defined in this chapter or Appendix A.

Properties of a counterexample

One approach to proving Conjecture 1 is to assume that there exists a minimal counterexample and to

deduce results about its structure, aiming to obtain a contradiction. We outline a number of results from

Axenovich [2] and Kensell [25] about the structure of such a counterexample.

Let Ȟ be a minimal (with respect to edges) counterexample to Conjecture 1. Then Ȟ is a connected

graph in which there exist three longest paths, P0, P1, and P2, that do not have a common vertex. First

observe that, since Ȟ is minimal with respect to edges, Ȟ = P0 ∪ P1 ∪ P2. As noted by Kensell [25],

it follows that degȞ(v) ≤ 4 for each vertex v of Ȟ, since each of the three longest paths P0, P1, and

P2 has at most two edges incident with v, and v is a vertex of at most two of P0, P1, and P2. Kensell

additionally proved that Ȟ does not have a subgraph that is a cycle of length 3, among other more

technical results, the details of which can be found in [25]. Axenovich [2] proved that each union of any

two of the paths P0, P1, and P2 has at least two subgraphs that are cycles, a key result which will be used

to prove the main result in Chapter 3. Axenovich [2] describes two configurations that are forbidden in

Ȟ, and Kensell [25] describes a third; we refer the reader to the cited papers for details.

1.3.3 All longest paths

We first consider graphs that do not have a Gallai vertex, and then provide an overview of classes of

graphs for which each graph has a Gallai vertex.

T. Zamfirescu [43] and Walther and Voss [39] independently found a graph with only 12 vertices, shown

in Figure 1.6, that does not have a Gallai vertex. This was confirmed to be the graph with the fewest

vertices that does not have a Gallai vertex when Brinkmann and van Cleemput [see 32] exhaustively

17

P
er

fe
ct

M
ey

ni
el

P
ar

ity

D
is

ta
nc

e-
he

re
di

ta
ry

C
ho

rd
al

B
ip

ar
ti
te

C
om

pa
ra

bi
lit

y

C
og

ra
ph

[2

2]

In
te

rv
al

[3

]

K
-t

re
es

Sp
lit

[2

6]

2-
tr

ee
s

[1
1]

Se
ri

es
-p

ar
al

le
l

(p
ar

ti
al

 2
-t

re
es

)
[1

0]

2-
te

rm
in

al

se
ri

es
-p

ar
al

le
l

O
ut

er
pl

an
ar

[1
1]

St
ro

ng
ly

ch

or
da

l

D
ou

bl
y

ch
or

da
l

C
ir

cu
la

r
ar

c
[3

, 2
3]

C
o-

co
m

pa
ra

bi
lit

y

P
er

m
ut

at
io

n

Su
n-

fr
ee

P
la

na
r

D
ua

lly

ch
or

da
l [

22
]

H
el

ly

ch
or

da
l

C
ir

cl
e-

po
ly

go
n

C
ir

cl
e

n-
go

n
(fi

xe
d

n)
P

la
na

r
pa

rt
ia

l 3
-

tr
ee

s

P
ar

ti
al

 3
-

tr
ee

s

Tr
ip

ar
ti
te

P
ar

ti
al

 k
-

tr
ee

s
3-

co
nn

ec
te

d

2-
co

nn
ec

te
d

4-
co

nn
ec

te
d

pl
an

ar4-
co

nn
ec

te
d k-
co

nn
ec

te
d,

k
≥
 5

(2
K

2)
-fr

ee

[1
7]

(6
,1

)-
ch

or
da

l

P
4-

sp
ar

se

[8
]

St
ar

lik
e

[8
]

Su
bs

ta
r

B
ip

ar
ti
te

pe

rm
ut

at
io

n
[7

]

Fu
ll

su
bs

ta
r

[7
]

H
am

ilt
on

ia
n

Tr
ee

s

C
ac

tu
s

E
ve

ry
 b

lo
ck

 is
 H

am
ilt

on
-

co
nn

ec
te

d,
 a

lm
os

t
H

am
ilt

on
-

co
nn

ec
te

d,
 o

r
a

cy
cl

e
[2

6]

M
at

ch
in

g
nu

m
be

r
at

m

os
t

th
re

e
[9

]

A
lm

os
t

hy
po

tr
ac

ea
bl

e
E

ve
ry

 b
lo

ck
 is

 a
 s

pl
it

gr
ap

h,
 in

te
rv

al
 g

ra
ph

, o
r

gr
ap

h
w

it
h

a
un

iv
er

sa
l

ve
rt

ex
 [8

]

(2
P

5,
K

1,
3)

-fr
ee

[9
]

Jo
in

 o
f t

w
o

gr
ap

hs
[8

]

(K
1,

3,
R

)-
fr

ee
 g

ra
ph

s

w
he

re
 R

 ∈
 {

C
3,

P
4,

P
5,

P
6,

Z 1
,

Z 2
,Z

3,
B

1,
1,

B
1,

2}
 [1

6]

B
lo

ck

H
yp

ot
ra

ce
ab

le

P
to

le
m

ai
c

(P
5,

K
1,

3)
-fr

ee

[1
8]

P
5-

fr
ee

A
ll

no
n-

tr
iv

ia
l

bl
oc

ks
 a

re

H
am

ilt
on

ia
n

[1
1]

F
ig

u
re

1
.5

:
A

d
ia

g
ra

m
sh

ow
in

g
a

n
u
m

b
er

o
f

g
ra

p
h

cl
a
ss

es
fo

r
w

h
ic

h
C

o
n
je

ct
u
re

1
h
o
ld

s
(g

re
en

)
a
n
d

cl
a
ss

es
fo

r
w

h
ic

h
it

h
a
s

n
o
t

y
et

b
ee

n

d
et

er
m

in
ed

w
h
et

h
er

C
o
n
je

ct
u
re

1
h
o
ld

s
(g

re
y
).

A
rr

ow
s

in
d
ic

a
te

su
b

cl
a
ss

to
su

p
er

cl
a
ss

re
la

ti
o
n
sh

ip
s.

T
h
is

d
ia

g
ra

m
d
o
es

n
o
t

in
cl

u
d
e

a
ll

su
ch

re
la

ti
o
n
sh

ip
s

o
f

th
e

cl
a
ss

es
sh

ow
n
.

18

checked that every graph with at most 11 vertices does not have a Gallai vertex. Additionally, this graph

has been confirmed to be unique by McKay [28], who checked all graphs on 12 vertices and found that

this is the only graph on 12 vertices with no Gallai vertex.

Figure 1.6: A graph with 12 vertices, 15 edges, and 42 longest paths that does not have a Gallai

vertex, found independently by T. Zamfirescu [43] and Voss and Walther [39].

The smallest known planar graph that does not have a Gallai vertex, shown in Figure1.3, was found

in 1975 by Schmitz [31] — a planar graph on 17 vertices in which there exists a set of seven of the 15

longest paths that do not have a common vertex, and hence the graph does not have a Gallai vertex.

This graph is also bipartite, and therefore there are both planar graphs and bipartite graphs that do not

have a Gallai vertex.

There exist infinite families of graphs such that each graph in the family does not have a Gallai

vertex. One such family of graphs is that of hypotraceable graphs. A graph G is hypotraceable if it does

not have a Hamiltonian path, but every vertex-deleted subgraph of G has a Hamiltonian path. Hence,

for every vertex v of a hypotraceable graph G, there exists a longest path P in G such that v 6∈ V (P).

Therefore, there exists no vertex of G that is in every longest path, and hence every graph in the family

of hypotraceable graphs does not have a Gallai vertex. The set of hypotraceable graphs was shown to

be an infinite family by Thomassen [35].

A number of classes of graphs have been found for which every graph has a Gallai vertex, including

trees ([see 10, 32]), series-parallel graphs [9], and circular arc graphs [3, 23]. Although there are planar

graphs that do not have a Gallai vertex [31], 4-connected planar graphs have a Gallai vertex (since such

graphs have a Hamiltonian path) [10]. It has also been shown that dually chordal graphs and connected

19

cographs have a Gallai vertex [22], along with 2K2-free graphs [16]. A list of these results and others is

given in Appendix A.

Figure 1.7 shows a number of classes of graphs for which every graph has a Gallai vertex (shown in

green), classes for which it is currently unknown whether every graph has a Gallai vertex (grey), and

classes for which there exists a graph that does not have a Gallai vertex (orange), along with a selection

of subclass to superclass relationships between these classes. Note that this diagram does not include all

relationships of the classes shown. As before, we refer the reader to [5] for the definitions of classes of

graphs in Figure 1.5 that are not defined in this chapter or Appendix A.

Note that if a graph has a Gallai vertex, then every subset of the longest paths of the graph also

have a common vertex. Hence, for the classes of graphs mentioned above that have a Gallai vertex, and

those listed in Appendix A, every k longest paths have a common vertex for every integer k ≥ 1 (where

k is at most the number of longest paths of the graph).

1.3.4 Related results

We provide an overview of several results and questions related to Gallai’s question.

For certain classes of graphs for which it is not known whether each graph has a Gallai vertex, results

have been proved about the existence of a subgraph that has a nonempty intersection with every longest

path of the graph. A directed graph D is a nonempty set V (D) of vertices together with a set A(D) of

ordered pairs of vertices of D, called arcs. Havet [20] proved that, for every directed graph with stability

number at most two, there exists a stable set S such that at least one vertex of each longest path of the

graph is in S. For chordal graphs, Balister et al. [3] claimed (without proof) that there exists a clique

Q such that at least one vertex of each longest path of the graph is in Q. Wei et al. [41] proved that

every connected graph has a bond E such that at least one edge of each longest path of the graph is

in E. Klavžar and Petkovšek [26] proved that G has a Gallai vertex if and only if, for each block B of

G, the longest paths of G with at least one edge that is an edge of B have a common vertex. Later, de

Rezende et al. [10] claimed, without proof, that the proof of Klavžar and Petkovšek’s result implies the

stronger result that, for a subset P of the longest paths of G, if the paths of P do not have a common

vertex, then there exists a block B of G such that E(B) ∩ E(P) 6= ∅ for each path P ∈ P.

20

P
er

fe
ct

M
ey

ni
el

P
ar

ity

D
is

ta
nc

e-
he

re
di

ta
ry

C
ho

rd
al

B
ip

ar
ti
te

[2
9]

C
om

pa
ra

bi
lit

y

C
og

ra
ph

[2

2]

In
te

rv
al

[3

]

K
-t

re
es

Sp
lit

[2

6]

2-
tr

ee
s

[1
1]

Se
ri

es
-p

ar
al

le
l

(p
ar

ti
al

 2
-t

re
es

)
[1

0]

2-
te

rm
in

al

se
ri

es
-p

ar
al

le
l

O
ut

er
pl

an
ar

[1
1]

St
ro

ng
ly

ch

or
da

l

D
ou

bl
y

ch
or

da
l

C
ir

cu
la

r
ar

c
[3

, 2
3]

C
o-

co
m

pa
ra

bi
lit

y

P
er

m
ut

at
io

n

Su
n-

fr
ee

P
la

na
r

[3
2]

D
ua

lly

ch
or

da
l [

22
]

H
el

ly

ch
or

da
l

C
ir

cl
e-

po
ly

go
n

C
ir

cl
e

n-
go

n
(fi

xe
d

n)
P

la
na

r
pa

rt
ia

l 3
-

tr
ee

s

P
ar

ti
al

 3
-

tr
ee

s

Tr
ip

ar
ti
te

P
ar

ti
al

 k
-

tr
ee

s
3-

co
nn

ec
te

d

2-
co

nn
ec

te
d

4-
co

nn
ec

te
d

pl
an

ar4-
co

nn
ec

te
d k-
co

nn
ec

te
d,

k
≥
 5

(2
K

2)
-fr

ee

[1
7]

(6
,1

)-
ch

or
da

l

P
4-

sp
ar

se

[8
]

St
ar

lik
e

[8
]

Su
bs

ta
r

B
ip

ar
ti
te

pe

rm
ut

at
io

n
[7

]

Fu
ll

su
bs

ta
r

[8
]

H
am

ilt
on

ia
n

Tr
ee

s

C
ac

tu
s

E
ve

ry
 b

lo
ck

 is
 H

am
ilt

on
-

co
nn

ec
te

d,
 a

lm
os

t
H

am
ilt

on
-

co
nn

ec
te

d,
 o

r
a

cy
cl

e
[2

6]

M
at

ch
in

g
nu

m
be

r
at

m

os
t

th
re

e
[9

]

A
lm

os
t

hy
po

tr
ac

ea
bl

e
E

ve
ry

 b
lo

ck
 is

 a
 s

pl
it

gr
ap

h,
 in

te
rv

al
 g

ra
ph

, o
r

gr
ap

h
w

it
h

a
un

iv
er

sa
l

ve
rt

ex
 [8

]

(2
P

5,
K

1,
3)

-fr
ee

[8
]

Jo
in

 o
f t

w
o

gr
ap

hs
[8

]

(K
1,

3,
R

)-
fr

ee
 g

ra
ph

s

w
he

re
 R

 ∈
 {

C
3,

P
4,

P
5,

P
6,

Z 1
,

Z 2
,Z

3,
B

1,
1,

B
1,

2}
 [1

6]

B
lo

ck

H
yp

ot
ra

ce
ab

le

P
to

le
m

ai
c

A
ll

no
n-

tr
iv

ia
l

bl
oc

ks
 a

re

H
am

ilt
on

ia
n

[1
1]

(P
5,

K
1,

3)
-fr

ee

[1
6]

P
5-

fr
ee

F
ig

u
re

1
.7

:
A

d
ia

g
ra

m
sh

ow
in

g
a

n
u
m

b
er

o
f

g
ra

p
h

cl
a
ss

es
fo

r
w

h
ic

h
ev

er
y

g
ra

p
h

h
a
s

a
G

a
ll
a
i

v
er

te
x

(g
re

en
),

cl
a
ss

es
fo

r
w

h
ic

h
it

h
a
s

n
o
t

y
et

b
ee

n
d
et

er
m

in
ed

w
h
et

h
er

ev
er

y
g
ra

p
h

h
a
s

a
G

a
ll
a
i

v
er

te
x

(g
re

y
),

a
n
d

cl
a
ss

es
fo

r
w

h
ic

h
th

er
e

ex
is

ts
a

g
ra

p
h

w
it

h
n
o

G
a
ll
a
i

v
er

te
x

(o
ra

n
g
e)

.

A
rr

ow
s

in
d
ic

a
te

su
b

cl
a
ss

to
su

p
er

cl
a
ss

re
la

ti
o
n
sh

ip
s.

T
h
is

d
ia

g
ra

m
d
o
es

n
o
t

in
cl

u
d
e

a
ll

su
ch

re
la

ti
o
n
sh

ip
s

o
f

th
e

cl
a
ss

es
sh

ow
n
.

21

1.3.4.1 Longest path transversal

A longest path transversal of a graph G is a set S ⊆ V (G) such that, for every longest path P of G,

S ∩ V (P) 6= ∅. The minimum size of a longest path transversal of a graph G is denoted by lpt(G).

Rautenbach and Sereni [30] asked (paraphrased): What is the smallest integer j (j ≥ 1) such that, for

every connected graph G, lpt(G) ≤ j? We know that j 6= 1 since there exist graphs that do not have a

Gallai vertex, and, additionally, we know that j 6= 2 [40]. Rautenbach and Sereni presented an upper

bound on j based on the number of vertices of G, proving that if G is a connected graph with n vertices

then lpt(G) ≤
⌈
n
4 −

n2/3

90

⌉
. Wei et al. [41] show that, for a connected graph G, lpt(G) ≤ max |C|, where

C is a bond of G.

It is natural to ask whether this bound can be reduced when restricted to a specific class of graphs.

Rautenbach and Sereni [30] proved, in 2014, that if G is planar and n ≥ 2, then lpt(G) ≤ 9
√
n log(n). In

2020, Cerioli et al. [6] showed that if G is a chordal graph then lpt(G) ≤ max{1, ω(G)− 2} where ω(G)

is the size of a largest clique in G. Harvey and Payne [19] showed that lpt(G) ≤ 4
⌈
ω(G)

5

⌉
for chordal

graphs, which improves the result of Cerioli et al. when ω(G) ≥ 27 or ω(G) ∈ {15, 19, 20, 23, 24, 25}.

Additionally, for 2-connected chordal graphs, Harvey and Payne proved that lpt(G) ≤ 2
⌈
ω(G)

3

⌉
, which

is an improvement on the result of Cerioli et al. when ω(G) ≥ 11 or ω(G) = 9.

1.3.4.2 A measure of the distance between longest paths

Fujita et al. [12] introduced a measure of the distance between longest paths in a graph, which they call

f(G,P) for a graph G and a subset P of the longest paths of G. With this measure, f(G,P) = 0 if

and only if the paths of P have a common vertex, and f(G,P) > 0 otherwise (see the cited paper for

details on calculating f(G,P)). Fujita et al. bounded f(G,P) for a connected graph G with n vertices

and a set P of three longest paths of G, showing that f(G,P) ≤ (n + 6)/13. Ekstein et al. [11] also

investigated bounds on f(G,P). They proved that, for every connected graph, every k longest paths

have a common vertex for 3 ≤ k ≤ 6 if and only if there exists a function g with certain properties such

that f(G,P) ≤ g(n) for every connected graph G of order n and every subset P of longest paths of G

with 3 ≤ |P| ≤ 6; we refer the reader to the cited paper for further details of this function.

22

1.3.4.3 Vertices that are not in the vertex set of at least one longest path

Let Gk be the set of k-connected graphs, k ≥ 1. For j ≥ 1, let Gjk ⊆ Gk be the set of connected graphs G

such that, for every set S ⊆ V (G) of j vertices, there exists a longest path P of G for which S∩V (P) = ∅.

The following question was posed by Zamfirescu [42] in 1972 (restated): What is min{|V (G)| : G ∈ Gjk},

for j, k ≥ 1? Following Zamfirescu’s notation, we denote this value P j
k and define P̄ j

k similarly with the

restriction that the graph is planar. If there exists no such graph then we write P j
k =∞. The graph on

12 vertices with no Gallai vertex, illustrated in Figure 1.6, shows that P 1
1 ≤ 12. As mentioned previously,

this is the smallest such graph with respect to the number of vertices, and hence P 1
1 = 12. The planar

graph on 17 vertices with no Gallai vertex, illustrated in Figure 1.3, shows that P̄ 1
1 ≤ 17. Other known

results include P 1
2 ≤ 26 (Skupien [33]) and P 1

3 ≤ 36 (Zamfirescu [43]) and, for planar graphs, P̄ 1
2 ≤ 32

(Zamfirescu [43]) and P̄ 1
3 ≤ 156 (Jooyandeh et al. [24]). The well-known theorem from Tutte [36] which

states that any 4-connected planar graph is Hamiltonian, shows that P̄ j
4 = ∞ for all j (j ≥ 1). For a

more comprehensive survey of these and related results, we refer the reader to Kensell [25] and Shabbir

et al. [32].

Note that many of the questions discussed in Section 1.3 have also been investigated for longest cycles

in a graph. The reader is referred to [21, 25, 30, 44] for more information.

1.4 Thesis structure

In this thesis, we answer Gallai’s question in the positive for a specific class of graphs, and prove that

Conjecture 1 holds for another class of graphs. We then use computational methods to approach Gallai’s

question and Conjecture 1 for several classes of graphs. The structure of this thesis is as follows.

In Chapter 2, we answer Gallai’s question for a subclass of generalised theta graphs, as discussed in

Section 1.2, showing that every graph of this class has a Gallai vertex. We categorise the longest paths

of such a graph into different types depending on their endpoints. We present preliminary results using

case analysis on these types of longest paths, before proving the main result of this chapter. In Chapter

4, we consider graphs with similar structure.

In Chapter 3, we prove that Conjecture 1 holds for graphs with n vertices and no more than n + 5

23

edges. We consider a minimal (with respect to edges) counterexample Ȟ to Conjecture 1, as decribed in

Section 1.3.2. We use a result of Axenovich [2] that, for such a graph Ȟ, each union of two of the longest

paths P0, P1, and P2 has two cycles. We present a number of preliminary results about such cycles, and

prove that the presence of these six cycles in Ȟ implies that Ȟ has at least n + 5 edges. Additionally,

we show that there exists a cycle of Ȟ that is a cycle of the union of paths P0, P1, and P2 but is not a

cycle of any pairwise union of these longest paths, and prove that Ȟ therefore has at least n+ 6 edges.

We conclude that, for any graph with n vertices and at most n+ 5 edges, every three longest paths have

a common vertex. In Chapter 4, we independently verify this result using computational methods.

Finally, in Chapter 4, we use computational methods to approach Gallai’s question and Conjecture 1

for several classes of graphs. We show that, for every simple graph G that is homeomorphic to a

simple graph with at most 7 vertices, G has a Gallai vertex. We also show that every simple graph

G homeomorphic to a simple graph with n vertices, n + 6 edges, and minimum vertex degree 3 has a

Gallai vertex. This extends the result in Chapter 3. Let G be a simple graph, and let G be the infinite

set of simple graphs homeomorphic to G. We use computational methods to find a finite set S ⊂ G

such that, if every graph in S has a Gallai vertex, then every graph in G has a Gallai vertex, and then

determine whether each graph in S has a Gallai vertex. Using this process, we obtain the above two

results. We then describe an alternative computational method and use this to obtain several classes of

graphs for which Conjecture 1 holds. One such class is the class of graphs with n vertices and at most

n+5 edges, independently confirming our result in Chapter 3. The other classes have a structure similar

to the graphs in Chapter 2; we investigate graphs with exactly one non-trivial block. We also impose

conditions on the numbers of vertices and edges of the graph, and the degrees of the vertices.

24

Chapter 2

Generalised theta graphs

2.1 Introduction

In this chapter, we investigate the class of generalised theta graphs, and show that generalised theta

graphs with particular properties have a Gallai vertex.

Recall that a generalised theta graph is a graph G with at least one non-trivial block consisting of

k ≥ 3 internally disjoint paths with a common pair of distinct endpoints. Note that for such a block B,

these two distinct endpoints are the only vertices v ∈ V (B) such that degB(v) ≥ 3. We call such blocks

the theta blocks of G. An example of a generalised theta graph is shown in Figure 2.1.

GB1

B2

Figure 2.1: A generalised theta graph G with two theta blocks B1 (with blue edges) and B2 (with red

edges).

25

In this chapter, we consider a subclass of generalised theta graphs. Let G be a generalised theta

graph. We say that G is a theta-Hamiltonian-tree graph if G has at least one theta block Ĝ such that

when we delete the edges of Ĝ from G to obtain subgraph G′, each connected component C of G′:

(i) has a Hamiltonian path with endpoint v, where V (C) ∩ V (Ĝ) = {v}, or

(ii) is a tree.

We call Ĝ a core of G. Furthermore, the components of G′ are the core-touching subgraphs of core Ĝ of

G, denoted C(v) where V (C(v)) ∩ V (Ĝ) = v. (Note that since Ĝ is block of G, |V (C(v)) ∩ V (Ĝ)| = 1.)

If V (C(v)) = {v}, we call C(v) a trivial core-touching subgraph of G.

An example of a theta-Hamiltonian-tree graph G with a unique core Ĝ is shown in Figure 2.2. The

theta block B of G is not a core of G, and is the core-touching subgraph C(a) of G. Subgraph C(a) has

a Hamiltonian path with endpoint a, and similarly C(h) has a Hamiltonian path with endpoint h, while

the core-touching subgraph C(c) is a tree. The remaining core-touching subgraphs have both properties

— for each x ∈ {b, d, e, f, g, u, v}, C(x) is a path (possibly of length 0) and therefore C(x) is a tree and

has a Hamiltonian path with endpoint x.

u v

G

a
b

c
d e

f

g h

u v

a
b

c
d e

f

g h

(i) (ii)
Ĝ

B

Ĝ

Figure 2.2: (i) A diagram of a theta-Hamiltonian-tree graph G with theta blocks Ĝ and B, where

block Ĝ is the core of G. (ii) The core Ĝ of G.

In this chapter, we prove the following result about theta-Hamiltonian-tree graphs.

Theorem 2.1. Every theta-Hamiltonian-tree graph has a Gallai vertex.

The structure of the proof of Theorem 2.1 is as follows. We first consider theta-Hamiltonian-tree

graphs with more than one core and prove that such graphs are Hamiltonian and therefore have a Gallai

26

vertex. Turning our attention to theta-Hamiltonian-tree graphs with a unique core, we classify the

longest paths of such a graph into two types: paths of Type (A) are paths of a core-touching subgraph

of the graph, while paths of Type (B) have at least one edge that is an edge of the core of the graph.

We then prove that if all of the longest paths of a theta-Hamiltonian-tree graph are of Type (A), or

if there is at least one longest path of Type (A) and at least one longest path of Type (B), then the

theta-Hamiltonian-tree graph has a Gallai vertex. This leaves the case in which all of the longest paths

are of Type (B); these paths are then further classified into five subtypes. We present two forbidden

configurations of Type (B) longest paths, then consider combinations of the subtypes of Type (B) longest

paths and prove properties of their intersection. Using these results, we prove that if all of the longest

paths of a theta-Hamiltonian-tree graph are of Type (B), then the graph has a Gallai vertex. The results

on Type (A) and Type (B) paths are then used to show that every theta-Hamiltonian-tree graph with a

unique core has a Gallai vertex.

2.1.1 Trees and the Helly property

Before turning to the proof of Theorem 2.1, we discuss our motivation for using trees as one of the options

for the core-touching subgraphs of a theta-Hamiltonian-tree graph. This is motivated by the result that

the set of paths of a tree has the Helly property, a property whose definition comes from set theory: a

set S of sets has the Helly property if, for every non-empty subset S ′ ⊆ S such that A1 ∩ A2 6= ∅ for all

A1, A2 ∈ S ′,
⋂

A∈S′ A 6= ∅. Restating this definition in terms of graphs, we let G be a graph and let H

be a set of subgraphs of G. The set S = {V (H) : H ∈ H} has the Helly property if, for every non-empty

subset S ′ ⊆ S such that V (H1) ∩ V (H2) 6= ∅ for all H1, H2 ∈ S ′,
⋂

H∈S′ V (H) 6= ∅. This means that,

if every two subgraphs in a set H′ ⊆ H have a common vertex, then all of the subgraphs in H′ have a

common vertex. For brevity, we say that the set H has the Helly property.

To illustrate the Helly property on graphs, consider the graph G1 in Figure 2.3(i). Let H =

{Q1, Q2, Q3}. Then H has the Helly property since every two paths in H have a common vertex and

V (Q1) ∩ V (Q2) ∩ V (Q3) = {v}. However, for the graph G2 in Figure 2.3(ii) with H = {R1, R2, R3},

the set H does not have the Helly property since every two paths in H have a common vertex but

V (R1) ∩ V (R2) ∩ V (R3) = ∅.

27

R3

Q1

Q2

v

Q3

R2

R1

(ii)(i) G1 G2

Figure 2.3: (i) A graph G1 with three paths Q1 (blue dashed lines), Q2 (red dotted lines), and Q3

(green dash-dotted lines) that have common vertex v. (ii) A graph G2 with three paths R1 (blue

dashed lines), R2 (red dotted lines), and R3 (green dash-dotted lines) that do not have a common

vertex.

The following result is restated from Golumbic [17, page 92].

Proposition 2.2. Every set of subtrees of a tree has the Helly property.

It follows from Proposition 2.2 that every set of paths of a tree has the Helly property. In fact, we

have the following result.

Proposition 2.3. Every set of paths of a graph G has the Helly property if and only if G is a tree.

Proof. (←) This follows directly from Proposition 2.2.

(→) Assume that G is not a tree. Then G has at least one cycle C = v1v2 . . . vkv1, where k ≥ 3 and

v1, . . . , vk ∈ V (G). Let P1 = v1v2, P2 = v2v3, and P3 = v3 . . . vkv1. Then P1, P2, and P3 are three paths

of C such that every two of these paths have a common vertex, but V (P1) ∩ V (P2) ∩ V (P3) = ∅. Hence

not every set of paths of G has the Helly property.

In Section 2.3, we will require that for a theta-Hamiltonian-tree graph G, each core-touching subgraph

C(v), where v ∈ V (G), either has a Hamiltonian path with endpoint v or the set of paths of C(v) has

the Helly property. By Proposition 2.3, the latter condition is equivalent to the condition that C(v) is a

tree.

We now turn to the proof of Theorem 2.1, beginning with theta-Hamiltonian-tree graphs that have

more than one core.

28

2.2 Graphs with more than one core

By definition, theta-Hamiltonian-tree graphs may have more than one core. We have the following result

for such graphs.

Proposition 2.4. Every theta-Hamiltonian-tree graph with more than one core has a Gallai vertex.

Proof. Let G be a theta-Hamiltonian-tree graph with more than one core. We show that G has a

Hamiltonian path.

Let Ĝ1 be a core of G, and let x1, . . . , xk (k ≥ 4) be the vertices of Ĝ1. Then C(x1), . . . , C(xk)

are the core-touching subgraphs of core Ĝ1. By definition, each C(xi), 1 ≤ i ≤ k, is a tree or has a

Hamiltonian path with endpoint xi. Since G has more than one core, there exists another core Ĝ2 of G

and exactly one xi, 1 ≤ i ≤ k, such that Ĝ2 is a subgraph of C(xi). Since Ĝ2 is not a tree, C(xi) has

a Hamiltonian path H1 with endpoints xi and w, w ∈ V (G). It follows that core Ĝ2 has at most two

non-trivial core-touching subgraphs.

Let y1, . . . , y` (` ≥ 4) be the vertices of Ĝ2. Then C(y1), . . . , C(y`) are the core-touching subgraphs

of core Ĝ1. There exists exactly one yj , 1 ≤ j ≤ `, such that Ĝ1 is a subgraph of C(yj). Since Ĝ1 is

not a tree, C(yj) has a Hamiltonian path H2 with endpoints yj and z, z ∈ V (G). It follows that core

Ĝ1 has at most two non-trivial core-touching subgraphs. Let w be the other endpoint of H1, so that

H1 = xiH1w, and let z be the other endpoint of H2, so that H2 = yjH2z. An example of G with paths

H1 and H2 is shown in Figure 2.4. Then wH1xiH2z is a Hamiltonian path of G. Therefore G has a

Gallai vertex.

2.3 Graphs with a unique core

We can now restrict our attention to theta-Hamiltonian-tree graphs with a unique core. In this section,

we prove the following result.

Proposition 2.5. Every theta-Hamiltonian-tree graph with a unique core has a Gallai vertex.

29

Ĝ1

Ĝ2

Ĝ3

yjxi

H2

H1

w
z

Figure 2.4: A theta-Hamiltonian-tree graph with three cores Ĝ1, Ĝ2, and Ĝ3. Path H1 is shown by

blue dashed lines, and path H2 by red dotted lines.

2.3.1 Two types of longest paths

Let G be a theta-Hamiltonian-tree graph with unique core Ĝ. Let P be the set of longest paths of G.

For each path P ∈ P, we classify P as one of two possible types of longest paths. Either

Type (A): E(P) ∩ E(Ĝ) = ∅ or

Type (B): E(P) ∩ E(Ĝ) 6= ∅.

In order to prove Proposition 2.5, we consider the following three cases and prove that G has a Gallai

vertex in each case.

(1) Every longest path of G is of Type (A).

(2) At least one longest path of G is of Type (A) and at least one longest path of G is of Type (B).

(3) Every longest path of G is of Type (B).

2.3.2 Case (1): paths of Type (A)

We first require the following result.

Proposition 2.6. Let G be a theta-Hamiltonian-tree graph with unique core Ĝ, and let x ∈ V (Ĝ). If

the core-touching subgraph C(x) of G has a Hamiltonian path with endpoint x, then, for every Type (A)

longest path P of G, V (P) ∩ V (C(x)) = ∅.

30

Proof. Assume that C(x) has a Hamiltonian path with endpoint x. Assume that there is a Type (A)

longest path P of G such that V (P) ∩ V (C(x)) 6= ∅. Then P is a path of C(x) and, moreover, P is a

Hamiltonian path of C(x). Let Q be a Hamiltonian path of C(x) with endpoint x. Let w be a vertex of

Ĝ adjacent to x (which always exists since |V (Ĝ)| ≥ 4). Let Q′ be the path of G consisting of the path

Q and the edge xw. Then |Q′| > |P |, a contradiction since P is a longest path of G.

The proposition above therefore confines the Type (A) longest paths of G to core-touching subgraphs

of G which are trees.

Lemma 2.7. Let G be a theta-Hamiltonian-tree graph with a unique core. All of the Type (A) longest

paths of G have a common vertex.

Proof. Let P be the set of Type (A) longest paths of G, and let Ĝ be the unique core of G. Since every

two paths in P have a common vertex by Lemma 1.1, and the paths in P are of Type (A), the paths in

P are all paths of one core-touching subgraph C(x), for some x ∈ V (Ĝ). By Proposition 2.6, C(x) is a

tree. Hence, by Proposition 2.2, the paths in P have a common vertex.

Corollary 2.8. Let G be a theta-Hamiltonian-tree graph with a unique core. If every longest path of G

is of Type (A), then G has a Gallai vertex.

This follows directly from Lemma 2.7.

2.3.3 Case (2): paths of Type (A) and Type (B)

Let G be a theta-Hamiltonian-tree graph with unique core Ĝ. Let Q be a path of G with endpoint x. If

there exists a ∈ V (Ĝ)∩V (Q) such that x ∈ V (C(a)) and E(aQx) ⊆ E(C(a)) for core-touching subgraph

C(a) of G, then aQx is a tail of Q. We call a a base vertex of Q. Note that it may be the case that

a = x, in which case xQx is a trivial tail. Note that every Type (B) longest path of G has two tails, one

or both of which may be trivial. Figure 2.5 shows an example of a theta-Hamiltonian-tree graph G and

a path Q of G with trivial tail aQx = xQx and non-trivial tail bQy, where a and b are the base vertices

of Q and x and y are the endpoints of Q.

Lemma 2.9. Let G be a theta-Hamiltonian-tree graph with a unique core. If at least one longest path

of G is of Type (A) and at least one longest path of G is of Type (B), then G has a Gallai vertex.

31

G

b
Q

y x=a

Figure 2.5: A theta-Hamiltonian-tree graph G with path Q (blue dashed lines) that has tails aQx

and bQy.

Proof. Let Ĝ be the unique core of G. Let P = PA∪PB be the set of longest paths of G, where PA is the

non-empty set of paths of Type (A) and PB is the non-empty set of paths of Type (B). By Lemma 2.7, the

paths in PA have a common vertex and hence the paths in PA are paths of one core-touching subgraph

C(x), for some x ∈ V (Ĝ). By Lemma 1.1, each path in PB has a common vertex with each path in PA

and hence x ∈ V (P) for each path P ∈ PB , since there is at least one edge of P that is an edge of Ĝ.

If x ∈ V (Q) for each path Q ∈ PA, then x is a Gallai vertex of G and we are done. If this is not the

case, then there exists at least one path P1 ∈ PA that is a path of C(x)− x. Since each path in PB has

a common vertex with P1, each path in PB has a non-trivial tail that is a path of C(x). Let T be the

set of these tails, and let S = T ∪PA. Then S is a set of paths of C(x) and every two paths in S have a

common vertex. By Proposition 2.6, C(x) is a tree, and hence, by Proposition 2.2, the paths in S have

a common vertex. Therefore the paths in P have a common vertex.

2.3.4 Case (3): paths of Type (B)

Let G be a theta-Hamiltonian-tree graph with unique core Ĝ, and let u and v be the two vertices of Ĝ

such that degĜ(u) ≥ 3 and degĜ(v) ≥ 3. be the pair of common endpoints of the internally disjoint paths

whose union is Ĝ. Let P be a Type (B) longest path of G with tails aPx and bPy, where a, b ∈ V (Ĝ)

(a 6= b) and x and y are the endpoints of P . We classify Type (B) longest paths P as exactly one of five

possible subtypes:

32

(a) u, v 6∈ V (P);

(b) u, v ∈ V (P), and there exists a uv–path U1 such that a and b are internal vertices of U1;

(c) u, v ∈ V (P), and there exist uv–paths U2 and U3 such that U2 6= U3 and a and b are internal

vertices of U2 and U3 respectively;

(d) u ∈ V (P) but v 6∈ V (P); or

(e) v ∈ V (P) but u 6∈ V (P).

If a Type (B) longest path of G is of Subtype (a), we say that the path is of Type (B)(a), and similarly

for Subtypes (b) – (e). Examples of the five subtypes of Type (B) longest paths are shown in Figure 2.6.

y

u=b
v

(ii) a

u v

(i)
a b

u v

a

b

u v

a

b

u v

a

b

(iii) (iv) (v)

yx x

x x

y y

x

y

U1

U2

U3

P

P

P

PP

Type (B)(a) Type (B)(b)

Type (B)(c) Type (B)(d) Type (B)(e)

Figure 2.6: A selection of theta-Hamiltonian-tree graphs with examples of a Type (B) longest path

P (blue dashed line) of each of Subtypes (a) – (e) shown in (i) – (v) respectively. In (ii), path U1 is

the red dotted line and in (iii), path U2 is the green dash-dotted line and path U3 is the orange thick

solid line.

The main result of this section is the following lemma.

Lemma 2.10. Let G be a theta-Hamiltonian-tree graph with a unique core. If every longest path of G

is of Type (B), then G has a Gallai vertex.

33

We present two forbidden configurations of Type (B) longest paths, followed by several results on the

properties of Type (B) longest paths, before proving Lemma 2.10 at the end of this section.

2.3.4.1 Forbidden configurations of Type (B) longest paths

Let G be a theta-Hamiltonian-tree graph with unique core Ĝ. Let u and v be the two vertices of Ĝ such

that degĜ(u) ≥ 3 and degĜ(v) ≥ 3. We define two configurations whose existence is forbidden in G.

Configuration 1: Two Type (B) longest paths P1 and P2 such that there is an a1a2–path Q of G with

length at least one where a1 is a base vertex of P1 and a2 is a base vertex of P2, and V (Q)∩V (P1) = {a1}

and V (Q) ∩ V (P2) = {a2}.

Configuration 2: A Type (B)(d) longest path P1 and a Type (B)(e) longest path P2.

Examples of these two configurations are shown in Figure 2.7

u v

a2 P2

a1

P1

Q

u v

P1 P2

Configuration 1 Configuration 2

(i) (ii)

Figure 2.7: Examples of (i) Configuration 1 and (ii) Configuration 2 in a theta-Hamiltonian-tree graph,

where P1 is shown by the blue dashed line, P2 is shown by the red dotted line, and in Configuration

1, Q is the a1a2–path shown by the orange solid line.

Lemma 2.11. Let G be a theta-Hamiltonian-tree graph with a unique core. Then Configuration 1 does

not exist in G.

Proof. Let Ĝ be the unique core of G and let u and v be the two vertices of Ĝ such that degĜ(u) ≥ 3 and

degĜ(v) ≥ 3. Assume that Configuration 1 does exist in G and let P1, P2, a1, a2, and Q be as defined in

34

the definition of Configuration 1. Since P1 and P2 are both of Type (B), they each have two tails. Let

a1P1x1 and b1P1y1 be the tails of P1, where x1 and y1 are the endpoints of P1 and b1 ∈ V (Ĝ). Similarly,

let a2P2x2 and b2P2y2 be the tails of P2, where x2 and y2 are the endpoints of P2 and b2 ∈ V (Ĝ). An

example of G is shown in Figure 2.8(i).

QQ

u v

a2

b2

x2

y2

P2

a1

b1

x1

y1

P1

Q

u v

a2

b2

x2

y2

a1

b1

x1

y1

Q1

(i) (ii)

u v

a2

b2

x2

y2Q2

a1

b1

x1

y1

(iii)
P1

P2

Figure 2.8: Three diagrams of a theta-Hamiltonian-tree graph showing (i) longest paths P1 and P2

(blue dashed and red dotted lines respectively) and a1a2–path Q (orange solid line); (ii) path Q1

(green dash-dotted line) and paths P1 and Q; and (iii) path Q2 (green dash-dotted line) and paths P2

and Q.

Let Q1 be the path x2P2a2Qa1P1y1 of G and let Q2 be the path x1P1a1Qa2P2y2 of G; an example

of these paths is shown in Figure 2.8(ii) and (iii) respectively. Since P1 is a longest path of G,

|P1| ≥ |Q1|

|x1P1a1P1y1| ≥ |x2P2a2Qa1P1y1|

|x1P1a1| ≥ |x2P2a2|+ |Q|. (2.1)

Similarly, since P2 is a longest path of G,

|P2| ≥ |Q2|

|x2P2a2P2y2| ≥ |x1P1a1Qa2P2y2|

|x2P2a2| ≥ |x1P1a1|+ |Q|. (2.2)

However, from 2.1 and 2.2 we have |Q| ≤ 0, a contradiction since |Q| ≥ 1.

35

Lemma 2.12. Let G be a theta-Hamiltonian-tree graph with a unique core. Then Configuration 2 does

not exist in G.

Proof. Let Ĝ be the unique core of G and let u and v be the two vertices of Ĝ such that degĜ(u) ≥ 3

and degĜ(v) ≥ 3. Assume that Configuration 2 does exist in G and let P1 and P2 be as defined in

the definition of Configuration 2. Let a1P1x1 and b1P1y1 be the tails of P1, where x1 and y1 are the

endpoints of P1 and a1, b1 ∈ V (Ĝ). Similarly, let a2P2x2 and b2P2y2 be the tails of P2, where x2 and y2

are the endpoints of P2 and a2, b2 ∈ V (Ĝ). Since P1 is of Type (B)(d), u ∈ V (a1P1b1), and, since P2 is

of Type (B)(e), v ∈ V (a2P2b2). By Lemma 1.1, P1 and P2 have a common vertex, and hence there exists

a uv–path Q of G such that a1 or b1 is in V (Q) and a2 or b2 is in V (Q); suppose that a1, a2 ∈ V (Q)

without loss of generality. Then a1Qa2 is a subpath of both P1 and P2. Note that b1, b2 6∈ V (Q)\{u, v}

and that it is possible that a1 = a2.

There are two cases to be considered: (i) there exist two uv–paths S1 and S2 of G (S1 6= S2) such that

b1 ∈ V (S1) and b2 ∈ V (S2) and (ii) there exists a uv–path R1 of G such that b1, b2 ∈ V (R1). Examples

of these two cases are shown in Figure 2.9.

u v

a2

b2

a1

b1

x2 x1

y1

y2

u v

a2

b2

a1

b1

x2 x1

y1y2

P1

P2

P1 P2

S1

S2

(i) (ii)

Q

R1

Q

Figure 2.9: Two examples of a theta-Hamiltonian-tree graph showing longest paths P1 of Type (B)(d)

(blue dashed line) and P2 of Type (B)(e) (red dotted line) along with uv–path Q (orange solid line),

where b1 and b2 are (i) vertices of uv–paths S1 and S2 respectively (purple and brown solid lines

respectively) and (ii) vertices of uv–path R1 (purple solid line).

First consider case (i). Since v 6∈ V (P1), |b1S1v| ≥ 1. Let Q1 be the path x2P2vS1b1P1y1 of G, an

36

example of which is shown in Figure 2.10(i). Since P2 is a longest path of G,

|P2| ≥ |Q1|

|x2P2vP2y2| ≥ |x2P2vS1b1P1y1|

|vP2y2| ≥ |vS1b1|+ |b1P1y1|. (2.3)

Let Q2 be the path x1P1b1S1vP2y2 of G, an example of which is shown in Figure 2.10(ii). Since P1 is a

longest path of G,

|P1| ≥ |Q2|

|x1P1b1P1y1| ≥ |x1P1b1S1vP2y2|

|b1P1y1| ≥ |b1S1v|+ |vP2y2|. (2.4)

From 2.3 and 2.4 we have |b1S1v| ≤ 0, a contradiction.

S1

S2

Q

S1

S2

Q

u v

a2

b2

a1

b1

x2 x1

y1

y2
P2

Q1

u v

a2

b2

a1

b1

x2 x1

y1

y2

P1

Q2

(i) (ii)

Figure 2.10: Two diagrams of a theta-Hamiltonian-tree graph showing (i) longest path P2 of Type

(B)(e) (red dotted line) and path Q1 (green dash-dotted line) and (ii) longest path P1 of Type (B)(d)

(blue dashed line) and path Q2 (green dash-dotted line). In both diagrams, paths Q, S1, and S2 are

uv–paths of the graph (orange, purple, and brown solid lines respectively).

Next, consider case (ii). By Lemma 2.11, path b1R1b2 is a subpath of both P1 and P2. Let R2 be a

uv–path of Q of maximum length, with R2 6= Q and R2 6= R1 (if there exists more than one such path

of G, we pick one without loss of generality). Note that |R2| ≥ 1 since u 6= v.

Let Q3 be the path x2P2vR2uP1y1 of G, an example of which is shown in Figure 2.11(i). Since P2 is

37

R1

Q

u v

a2

b2

a1

b1

x2 x1

y1y2

P1 Q4

u v

a2

b2

a1

b1

x2 x1

y1y2

P2
Q3

(i) (ii)

R2 R2

R1

Q

Figure 2.11: Two diagrams of a theta-Hamiltonian-tree graph showing (i) longest path P2 of Type

(B)(e) (red dotted line) and path Q3 (green dash-dotted line) and (ii) longest path P1 of Type (B)(d)

(blue dashed line) and path Q4 (green dash-dotted line). In both diagrams, paths Q, R1, and R2

(orange, purple, and brown solid lines respectively) are uv–paths of the graph.

a longest path of G,

|P2| ≥ |Q3|

|x2P2vP2y2| ≥ |x2P2vR2uP1y1|

|vP2y2| ≥ |vR2u|+ |uP1y1|. (2.5)

Let Q4 be the path x1P1uR2vP2y2 of G, an example of which is shown in Figure 2.11(ii). Since P1 is a

longest path of G,

|P1| ≥ |Q4|

|x1P1uP1y1| ≥ |x1P1uR2vP2y2|

|uP1y1| ≥ |uR2v|+ |vP2y2|. (2.6)

From 2.5 and 2.6 we have |uR2v| = |R2| ≤ 0, a contradiction. We conclude that P2 is not of Type (B)(e).

An analogous argument can be used to show that if P1 is of Type (B)(e), then there does not exist a

longest path of G of Type (B)(d).

2.3.4.2 Properties of paths of Type (B)

Lemma 2.13. Let G be a theta-Hamiltonian-tree graph with a unique core and let P1 and P2 be Type

(B) longest paths of G. Let a1 and b1 be the base vertices of P1 and let a2 and b2 be the base vertices of

38

P2. If P1 and P2 are both of Subtype (a), then a1P1b1 is a subpath of a2P2b2 or a2P2b2 is a subpath of

a1P1b1.

Proof. Assume that P1 and P2 are Type (B)(a) longest paths of G. Let Ĝ be the unique core of G

and let u and v be the two vertices of Ĝ such that degĜ(u) ≥ 3 and degĜ(v) ≥ 3. Since P1 and P2

have a common vertex by Lemma 1.1 and are of Type (B)(a), paths a1P1b1 and a2P2b2 are subpaths

of a uv–path Q of G and have at least one common vertex. Without loss of generality, we assume that

a1 ∈ V (uQb1) and a2 ∈ V (uQb2).

Assume that E(a1P1b1)\E(a2P2b2) 6= ∅ and E(a2P2b2)\E(a1P1b1) 6= ∅. Then a2 ∈ V (a1Qb1) or

b2 ∈ V (a1Qb1). Suppose that a2 ∈ V (a1Qb1); then a1 6= a2 and b2 6∈ V (a1Qb1). An example of G is

shown in Figure 2.12(i). Note that it may be the case that a2 = b1. Additionally, since P1 and P2 are of

Type (B)(a), a1 6= u and b2 6= v.

P2

u v

a2

b2a1

b1

x2

x1

y1

y2P2P1

u v

a2

a1

x2

x1

Q1

(ii)

u v

a2

a1

x2

x1

Q2

(iii)

b2

b1

y1

y2

b2

b1

y1

y2 P1

(i)

Q Q

RR

Figure 2.12: Three diagrams of a theta-Hamiltonian-tree graph showing (i) two longest paths P1 and

P2 of Type (B)(a) (blue dashed and red dotted lines respectively), (ii) path Q1 (green dash-dotted

line) and path P2, and (iii) path Q2 (green dash-dotted line) and path P1. In all three diagrams,

paths Q and R (orange and purple solid lines respectively) are uv–paths of the graph.

Let a1P1x1 and b1P1y1 be the tails of P1, where x1 and y1 are the endpoints of P1. Similarly, let

a2P2x2 and b2P2y2 be the tails of P2, where x2 and y2 are the endpoints of P2. Let R be a uv–path of G

where R 6= Q. Let Q1 be the path x2P2b2QvRuQa1P1x1 of G, an example of which is shown in Figure

39

2.12(ii). Since P2 is a longest path of G,

|P2| ≥ |Q1|

|x2P2b2P2y2| ≥ |x2P2b2QvRuQa1P1x1|

|b2P2y2| ≥ |b2QvRuQa1|+ |a1P1x1|. (2.7)

Let Q2 be the path y2P2b2QvRuQa1P1y1 of G, an example of which is shown in Figure 2.12(iii). Since

P1 is a longest path of G,

|P1| ≥ |Q2|

|x1P1a1P1y1| ≥ |y2P2b2QvRuQa1P1y1|

|x1P1a1| ≥ |y2P2b2|+ |b2QvRuQa1|. (2.8)

From 2.7 and 2.8 we have |b2QvRuQa1| ≤ 0. However, b2 6= u, a1 6= u, and |R| ≥ 1, hence |b2QvRuQa1| ≥ 3,

a contradiction. An analogous argument can be used to obtain a contradiction when a1 ∈ V (a2Qb2),

with a1 6= a2, and b1 6∈ V (a2Qb2).

Lemma 2.14. Let G be a theta-Hamiltonian-tree graph with unique core Ĝ. If P1, . . . , Pk (k ≥ 2)

are Type (B)(a) longest paths of G, then there exists a vertex x ∈ V (Ĝ) that is a common vertex of

P1, . . . , Pk. Furthermore, x is a base vertex of each of P1, . . . , Pk.

Proof. Assume that P1, . . . , Pk (k ≥ 2) are Type (B)(a) longest paths of G. Let P = {P1, . . . , Pk} and

let u and v be the two vertices of Ĝ such that degĜ(u) ≥ 3 and degĜ(v) ≥ 3. Let ai, bi ∈ Ĝ be the base

vertices of Pi, 1 ≤ i ≤ k.

We first prove that every pair of paths in P have a common base vertex. Without loss of generality,

consider paths P1, P2 ∈ P. Since P1 and P2 have a common vertex by Lemma 1.1 and are of Type

(B)(a), paths a1P1b1 and a2P2b2 are subpaths of a uv–path Q of G and have at least one common

vertex. Without loss of generality, we assume that a1 ∈ V (uQb1) and a2 ∈ V (uQb2). By Lemma 2.13,

a1P1b1 is a subpath of a2P2b2 or a2P2b2 is a subpath of a1P1b1. Suppose that a2P2b2 is a subpath of

a1P1b1, an example of which is shown in Figure 2.13(i). Note that, since P1 and P2 are of Type (B)(a),

a1 6= u and b1 6= v.

40

Q

R

Q

R
Q2Q1

P2

u v

a2

a1

x2

x1

b1

b2

y2

y1

(ii)

u v

a2

a1

x2

x1

b1

b2

y2

y1

P2
(iii)

u v

a2

b1a1

b2

x2

x1

y2

y1

P2

P1

(i)

Figure 2.13: Three diagrams of a theta-Hamiltonian-tree graph showing (i) longest paths P1 and P2

of Type (B)(a) (blue dashed and red dotted lines respectively) (ii) path Q1 (green dash-dotted line)

and path P2 and (iii) path Q2 (green dash-dotted line) and path P2. In all three diagrams, paths Q

and R (orange and purple solid lines respectively) are uv–paths of the graph.

Assume that there does not exist a vertex of Ĝ that is a base vertex of both P1 and P2. Then a1 6= a2

and b1 6= b2. Let R be a uv–path of G where R 6= Q. Let Q1 be the path x2P2b2QvRuQa1P1x1 of G

and let Q2 be the path y1P1b1QvRuQa2P2y2 of G, examples of which are shown in Figure 2.13(ii) and

(iii) respectively. Since P2 is a longest path of G,

|P2| ≥ |Q1|

|x2P2b2|+ |b2P2y2| ≥ |x2P2b2|+ |b2Q1x1|

|b2P2y2| ≥ |b2Q1x1|. (2.9)

Similarly,

|P2| ≥ |Q2|

|x2P2a2|+ |a2P2y2| ≥ |y1Q2a2|+ |a2P2y2|

|x2P2a2| ≥ |y1Q2a2|. (2.10)

41

Therefore

|P2| = |x2P2a2|+ |a2P2b2|+ |b2P2y2|

≥ |y1Q2a2|+ |a2P1b2|+ |b2Q1x1| by 2.9 and 2.10

= |y1P1b1|+ |b1Q2a1|+ |a1P1a2|+ |a2P1b2|+ |b2P1b1|+ |b1Q1a1|+ |a1P1x1|

= |P1|+ 2|b1Q2a1| since |b1Q2a1| = |b1Q1a1|

> |P2|

since |P1| = |P2| and |b1Q2a1| > 0, a contradiction. Hence P1 and P2 have a common base vertex. A

similar argument shows that P1 and P2 have a common base vertex when a1P1b1 is a subpath of a2P2b2.

Therefore, every pair of paths in P have a common base vertex.

We now prove that all of the paths in P = {P1, . . . , Pk} have a common base vertex when k ≥ 3.

Since every two paths in P have a common vertex by Lemma 1.1 and each path in P is of Type (B)(a),

there exists a uv–path Q of G such that aiPibi is a subpath of Q for all i, 1 ≤ i ≤ k. Consider paths

P1, P2 ∈ P. By the above argument, P1 and P2 have a common base vertex. Without loss of generality,

suppose that a1 = a2. By Lemma 2.13, a1P1b1 is a subpath of a2P2b2 or a2P2b2 is a subpath of a1P1b1.

Suppose that a2P2b2 is a subpath of a1P1b1, an example of which is shown in Figure 2.14(i).

Q

u v
=a2

b2

a1 b1

P2

P1

u v
=a2

b2

a1 b1

P2

P1

Pj

=aj

=bj

(i) (ii)

Q

Figure 2.14: Examples of a theta-Hamiltonian-tree graph showing (i) two longest paths P1 and P2 of

Type (B)(a) (blue dashed and red dotted lines respectively) that have a common base vertex, and (ii)

another longest path Pj of Type (B)(a) (green dash-dotted line) that has a common base vertex with

each of P1 and P2. In both diagrams, path Q (orange solid line) is a uv–path of the graph.

Suppose that there exists a path Pj ∈ P, 3 ≤ j ≤ k, such that aj 6= a1 and bj 6= a1. By the above

42

argument, Pj has a common base vertex with each of P1 and P2. Without loss of generality, suppose

that aj = b1 and bj = b2, an example of which is shown in Figure 2.14(ii). Since ajPjbj is a subpath

of Q, a2 6∈ V (Pj) and aj 6∈ V (P2). However, by Lemma 2.13, ajPjbj is a subpath of a2P2b2 or a2P2b2

is a subpath of ajPjbj , a contradiction. Hence, for every path Pj where 3 ≤ j ≤ k, aj = a1 or bj = a1.

Therefore a1 is a base vertex of each path in P. A similar argument shows that the result holds when

a1P1b1 is a subpath of a2P2b2.

Lemma 2.15. Let G be a theta-Hamiltonian-tree graph with unique core Ĝ and let P1 and P2 be Type

(B) longest paths of G. Let a1, b1 ∈ V (Ĝ) be the two base vertices of P1. If P1 is of Subtype (a) and P2

is of Subtype (d) or (e), then a1, b1 ∈ V (P2). Furthermore, a1P1b1 is a subpath of P2.

Proof. Assume that P1 is of Type (B)(a). Let u and v be the two vertices of Ĝ such that degĜ(u) ≥ 3

and degĜ(v) ≥ 3. Since P1 is of Type (B)(a), there exists a uv–path Q of G such that a1P1b1 is a subpath

of Q. Without loss of generality, we assume that a1 ∈ V (uQb1). Suppose that P2 is of Type (B)(d).

Since P2 is of Type (B), P2 has two base vertices a2, b2 ∈ V (Ĝ). Since P1 and P2 have a common vertex

by Lemma 1.1 and P2 is of Type (B)(d), it follows that a1 ∈ V (P2). Then a2 ∈ V (Q) or b2 ∈ V (Q).

Without loss of generality, suppose that a2 ∈ V (Q). Let R be the uv–path of G such that b2 ∈ V (R).

An example of G is shown in Figure 2.15.

R

Q

u v

a2

b2P2

a1

b1

P1

Figure 2.15: An example of a theta-Hamiltonian-tree graph with longest paths P1 of Type (B)(a)

(blue dashed line) and P2 of Type (B)(d) (red dotted line). Paths Q and R (orange and purple solid

lines respectively) are uv–paths of the graph.

Suppose that b1 6∈ V (P2). Then there exists a b1b2–path of G, namely b1QvRb2, such that V (P1) ∩

43

V (b1QvRb2) = {b1} and V (P2) ∩ V (b1QvRb2) = {b2}, a contradiction by Lemma 2.11. Therefore

b1 ∈ V (P2). Since v 6∈ V (P1)∪V (P2), it follows that b1 6∈ V (uP2b2). Hence b1 ∈ V (uP2a2) and therefore

a1P1b1 is a subpath of P2. A similar argument shows that the result holds when P2 is of Type (B)(e).

Lemma 2.16. Let G be a theta-Hamiltonian-tree graph with unique core Ĝ and let P1 and P2 be Type

(B) longest paths of G. Let a1, b1 ∈ V (Ĝ) be the two base vertices of P1. If P1 is of Subtype (a) and P2

is of Subtype (b), then a1, b1 ∈ V (P2).

Proof. Assume that P1 is of Type (B)(a) and P2 is of Type (B)(b). Let u and v be the two vertices of

Ĝ such that degĜ(u) ≥ 3 and degĜ(v) ≥ 3. Since P1 is of Type (B)(a) and u, v 6∈ V (P1), there exists a

uv–path Q of G such that a1P1b1 is a subpath of Q. Without loss of generality, we assume that these

vertices are in the order u, a1, b1, v in Q. Since P2 is of Type (B)(b), u, v ∈ V (P2) and P2 has two

base vertices a2, b2 ∈ V (Ĝ). Without loss of generality, we assume that these vertices are in the order

a2, u, v, b2 in P2. If Q is a subpath of P2, then a1, b1 ∈ V (P2) and we are done. It remains to consider

the case in which E(Q)\E(P2) 6= ∅.

u v

a2

b2a1

b1

P1

P2

Q

Figure 2.16: An example of a theta-Hamiltonian-tree graph with longest path P1 (blue dashed line)

of Type (B)(a) and longest path P2 (red dotted line) of Type (B)(b). Path Q (orange solid line) is a

uv–path of the graph.

Since P2 is of Type (B)(b), a2 and b2 are vertices of one uv–path of G. Since P1 and P2 have a

common vertex by Lemma 1.1, then a2, b2 ∈ V (Q) and a1 ∈ V (P2) or b1 ∈ V (P2); assume without loss

of generality that a1 ∈ V (P2) and b1 6∈ V (P2). Then uP2a2 is a subpath of Q, and a1 ∈ V (uP2a2). An

example of G is shown in Figure 2.16. If b1 6∈ V (P2), then there exists a b1b2–path of G, namely b1Qb2,

such that V (P1)∩V (b1Qb2) = {b1} and V (P2)∩V (b1Qb2) = {b2}, which is a forbidden configuration by

44

Lemma 2.11. Therefore a1, b1 ∈ V (P2).

Lemma 2.17. Let G be a theta-Hamiltonian-tree graph with unique core Ĝ and let P1 and P2 be Type

(B) longest paths of G. Let a1, b1 ∈ V (Ĝ) be the two base vertices of P1. If P1 is of Subtype (a) and P2

is of Subtype (c) then a1, b1 ∈ V (P2). Furthermore, a1P1b1 is a subpath of P2.

Proof. Assume that P1 is of Type (B)(a) and P2 is of Type (B)(c). Let u and v be the two vertices of Ĝ

such that degĜ(u) ≥ 3 and degĜ(v) ≥ 3. Since P1 is of Type (B)(a), there exists a uv–path Q of G such

that a1P1b1 is a subpath of Q. If Q is a subpath of P2, then a1P1b1 is a subpath of P2 and we are done.

It remains to consider the case in which Q is not a subpath of P2.

QQQ

u v

a2

x2

y2

P2

a1

b1x1

y1
P1

b2

u v

a2

x2

y2

Q1

a1

b1x1

y1
P1

b2

u v

a2

x2

y2

P2

a1

b1x1

y1

Q2

b2

(i) (ii) (iii)(ii)

Figure 2.17: Three diagrams of a theta-Hamiltonian-tree graph showing (i) longest path P1 of Type

(B)(a) (blue dashed line) and longest path P2 of Type (B)(c) (red dotted line), (ii) path Q1 (green

dash-dotted line) and path P1, and (iii) path Q2 (green dash-dotted line) and path P2. In all three

diagrams, path Q (orange solid line) is a uv–path of the graph.

Let a1P1x1 and b1P1y1 be the tails of P1, where x1 and y1 are the endpoints of P1. Without loss of

generality, we assume that a1 ∈ V (uQb1). Let a2P2x2 and b2P2y2 be the tails of P2, where x2 and y2 are

the endpoints of P2 and a2, b2 ∈ V (Ĝ). Since P1 and P2 have a common vertex by Lemma 1.1 and P2 is

of Type (B)(c), it follows that uQa1 or vQb1 is a subpath of P2. Suppose that uQa1 is a subpath of P2.

Then a2 ∈ V (Q) or b2 ∈ V (Q); without loss of generality, we assume that a2 ∈ V (Q). An example of G

is shown in Figure 2.17(i).

Suppose that b1 6∈ V (P2). Let Q1 be the path x1P1b1QvP2y2 of G, an example of which is shown in

45

Figure 2.17(ii). Since P1 is a longest path of G,

|P1| ≥ |Q1|

|x1P1b1P1y1| ≥ |x1P1b1QvP2y2|

|b1P1y1| ≥ |b1Qv|+ |vP2y2|. (2.11)

Let Q2 be the path x2P2vQb1P1y1 of G, an example of which is shown in Figure 2.17(iii). Since P2 is a

longest path of G,

|P2| ≥ |Q2|

|x2P2vP2y2| ≥ |x2P2vQb1P1y1|

|vP2y2| ≥ |vQb1|+ |b1P1y1|. (2.12)

From 2.11 and 2.12 we have |vQb1| ≤ 0, a contradiction since v 6∈ V (P1). Hence b1 ∈ V (P2). Since

v 6∈ V (P1), then b1 6∈ V (uP2b2), and hence b1 ∈ V (uP2a2). Therefore a1P1b1 is a subpath of P2. An

analogous argument shows that the result holds when vQb1 is a subpath of P2.

2.3.4.3 Proof of Lemma 2.10

Recall that Lemma 2.10 states that if all of the longest paths of a theta-Hamiltonian-tree graph G with

a unique core are of Type (B), then G has a Gallai vertex.

Proof of Lemma 2.10. Let G be a theta-Hamiltonian-tree graph and let Ĝ be the unique core of G. Let

u and v be the two vertices of Ĝ such that degĜ(u) ≥ 3 and degĜ(v) ≥ 3. Let P be the set of longest

paths of G, and assume that every path in P is of Type (B). We consider the subtypes of the paths in P.

First, by Lemma 2.12, there does not exist both a path of Subtype (d) and path of Subtype (e) in P.

Suppose that there does not exist a path in P of Subtype (e), so each path in P is of Subtype (a), (b),

(c), or (d).

We then consider two cases: (i) there is no path in P of Subtype (a) and (ii) there is at least one

path in P of Subtype (a). In case (i), u is a common vertex of all of the paths in P, and we are done.

Consider case (ii) and let P ′ ⊆ P be the set of longest paths of G of Subtype (a). By Lemma 2.14, there

exists a vertex x ∈ V (Ĝ) that is a base vertex of each path P ∈ P ′. If P ′ = P, that is, every path in P

46

is of Subtype (a), then x is a common vertex of all of the paths in P, and we are again done. Suppose

instead that there is at least one path in P\P ′. Each of the longest paths in P\P ′ is of Subtype (b), (c),

or (d). By Lemmas 2.15 to 2.17, for each path Q ∈ P\P ′, x ∈ V (Q). Hence x is a Gallai vertex of G.

An analogous argument shows that the result holds when there does not exist a path in P of Sub-

type (d).

2.3.5 Proof of Proposition 2.5

We return to Proposition 2.5, and prove that every theta-Hamiltonian-tree graph with a unique core has

a Gallai vertex.

Proof of Proposition 2.5. Let G be a theta-Hamiltonian-tree graph with a unique core. Then the longest

paths of G are all of Type (A), all of Type (B), or at least one of Type (A) and at least one of Type (B).

Then, by Corollary 2.8, Lemma 2.10, and Lemma 2.9, G has a Gallai vertex, as required.

2.4 Proof of Theorem 2.1

We return to Theorem 2.1, and prove that every theta-Hamiltonian-tree graph has a Gallai vertex.

Proof of Theorem 2.1. Let G be a theta-Hamiltonian-tree graph. If G has more than one core, then by

Proposition 2.4, G has a Gallai vertex. If G has a unique core, then by Proposition 2.5, G has a Gallai

vertex.

2.5 Concluding remarks

In this chapter, we proved that every theta-Hamiltonian-tree graph has a Gallai vertex (Theorem 2.1).

There are two natural avenues for further investigation. We can consider other subclasses of generalised

theta graphs similar to theta-Hamiltonian-tree graphs, where the cores are theta blocks but the core-

touching subgraphs may have different properties, for example where the core-touching subgraphs may

be series-parallel graphs or cactus graphs. We can also consider graphs similar to theta-Hamiltonian-tree

graphs where the cores are not theta graphs but, for example chordal graphs or series-parallel graphs.

47

Another possibility is to combine the two options above, defining a class of graphs similar to theta-

Hamiltonian-tree graphs where the cores are of a different class of graphs and the core-touching subgraphs

have different properties. In Chapter 4, we consider graphs similar to theta-Hamiltonian-tree graphs in

which the cores of the graph are non-trivial blocks, and the core-touching subgraphs are all trees. Such

graphs have a unique core, and it follows that this class is the class of graphs that have exactly one non-

trivial block. We use computational methods to investigate Conjecture 1 for these graphs, restricting

number of vertices with particular degree in the core of the graph. For example, we consider such graphs

where the core has at most 9 vertices of degree 3 or more (in the subgraph consisting of the core), and

find that every three longest paths have a common vertex in these graphs.

We investigated a class of graphs defined similarly to theta-Hamiltonian-tree graphs with the addition

of an edge inserted into the core, however, our methods do not naturally extend to this class of graphs.

Let G be a theta-Hamiltonian-tree graph, and consider the case in which G has a unique core Ĝ. Let u

and v be the two vertices of Ĝ such that degĜ(u) ≥ 3 and degĜ(v) ≥ 3, and let Q be the set of internally

disjoint paths of Ĝ with endpoints u and v. Let G′ be the graph obtained from G by inserting an edge

xy into Ĝ, where x and y are interior vertices of distinct uv–paths in Q. An example of such a graph is

shown in Figure 2.18(i). Note that G is a subgraph of G′ and so Q is a set of internally disjoint paths

of G′.

x

y
u v u v

G′(i) (ii) G′′

Figure 2.18: (i) A graph G′ that is a theta-Hamiltonian-tree graph with an inserted edge xy (blue

dashed line). (ii) A graph G′′ that is a theta Hamiltonian-tree graph with an inserted edge (blue

dashed line) whose endpoints are internal vertices of one uv–path of G′′.

48

We can define two types of longest paths of G′ analogous to those defined in Section 2.3.1 for a

theta-Hamiltonian-tree graph, where Type (A) longest paths of G′ have no edge that is an edge of the

core of G′, and Type (B) longest paths of G′ have at least one edge that is an edge of the core of G′.

We can then also define five subtypes of Type (B) longest paths of G′ analogous to Subtypes (a) – (e)

defined in Section 2.3.4 for theta-Hamiltonian-tree graphs. However, there are more cases for each of

these subtypes of Type (B) longest paths of G′ than there were for G, due to the additional edge xy. It

may be possible to use the techniques of this chapter on these cases, however, careful consideration of

these new cases is needed to obtain inequalities similar to those used in the proof in Section 2.3.4. New

methods may perhaps be required for these cases, if indeed such graphs G′ have a Gallai vertex.

Graphs that may be more amenable to our approach are theta-Hamiltonian-tree graphs G with an

edge inserted whose endpoints are internal vertices of one of the uv–paths of G, as shown in the example

in Figure 2.18(ii). More generally, the class of graphs similar to theta-Hamiltonian-tree graphs where

the cores are two-terminal series-parallel graphs may be approachable using the methods in this chapter.

49

Chapter 3

Graphs with cyclomatic number 6

3.1 Introduction

In this chapter, we add to the classes of graphs for which Conjecture 1 holds, that is, the classes of graphs

for which every three longest paths have a common vertex.

The cyclomatic number of a graph G is |E(G)|−|V (G)|+1 and is also known as the circuit rank, cycle

rank, or nullity of the graph. Hence, a graph with n vertices and cyclomatic number c has (n−1)+c edges

or, equivalently, c more edges than its spanning tree. An equivalent definition is that the cyclomatic

number of a graph G is the minimum size subset of edges of E(G) whose removal from G produces a

tree. The cyclomatic number of a graph relates to the number of cycles of the graph, as we will explore

below and in Section 3.2. In the rest of this chapter, all graphs are connected unless stated otherwise.

The main result of this chapter is the following theorem.

Theorem 3.1. Let G be a graph. If G has cyclomatic number at most 6 then every three longest paths

of G have a common vertex.

The relationship between a graph’s cyclomatic number and its number of cycles is central to this

chapter. Let S be a set of subgraphs of a graph G. The graphs in S are independent if, for each S1 ∈ S,

there exists e ∈ E(S1) such that e 6∈ E(S2) for every S2 ∈ S\{S1}. Theorem 3.1 relies on the result

that the maximum number of independent cycles in a graph is exactly its cyclomatic number [see 4,

p. 27–29]. In order to prove Theorem 3.1, we suppose that there is a minimal (with respect to edges)

50

counterexample Ȟ to Conjecture 1 and show that such a graph has at least seven independent cycles.

The graph Ȟ has three longest paths that do not have a common vertex and is the union of these three

longest paths. In Section 3.3 we use a result from Axenovich [2] to show that Ȟ has a set C of at least

six cycles, two in each pairwise union of its three longest paths. We then show that there is a seventh

cycle C that is not in any pairwise union of the three longest paths of Ȟ. Lemmas 3.16, 3.18, 3.19

and 3.20 in Section 3.5 show that any three, four, five, or six of the cycles in C are independent, and then

Lemma 3.21 shows that the seventh cycle C is also independent of the cycles of C. Hence, a minimal

counterexample to Conjecture 1 has at least seven independent cycles, and Theorem 3.1 follows.

We begin with some preliminary definitions and results.

3.2 Preliminaries

3.2.1 The mod 2 sum operation

In this section, we define an operation on subgraphs of a graph which will be used throughout this

chapter, particularly with regard to the cycles of a graph, the mod 2 sum (or symmetric difference)

operation. First note that the set of subgraphs of a graph together with this mod 2 sum operation forms

an abelian group [see 34] where the identity element is the graph with no vertices or edges and the inverse

of a subgraph is itself.

Let G be a graph. For two subgraphs G1 and G2 of G, the mod 2 sum of G1 and G2 is G1⊕G2 = S,

where S is the edge-induced subgraph of G with edge set E(S) = (E(G1) ∪ E(G2)) \ (E(G1) ∩ E(G2)),

that is, the edges of G that are edges of G1 or G2, but not both. For convenience, we define the mod 2

sum of a single subgraph G1 of G to be G1.

Consider the graph in Figure 3.1(i) with cycles C1 = v2v3v4v5v2 (blue dashed line), C2 = v3v6v5v4v3

(red dotted line), and C3 = v2v3v6v5v2, (green dash-dotted line). In this graph, C1 ⊕ C2 = C3.

Since each subgraph is its own inverse, if G1 ⊕ G2 = G3, then G1 ⊕ G3 = G2 and G2 ⊕ G3 = G1,

as seen for cycles C1, C2, and C3 in the example in Figure 3.1(i). This property will be used frequently

throughout this chapter.

If subgraphs G1 and G2 of G are edge-disjoint, then G1⊕G2 = G1∪G2. An example of this is shown

51

in Figure 3.1(ii), with cycles C1 = v1v2v4v3v1 (blue dashed line) and C2 = v5v6v7v5 (red dotted line),

where C1 ⊕ C2 = C1 ∪ C2.

C3

C1
C2

v1 v2

v3

v4

v5

v6

v7

v8

(i)

C1 C2v1

v2

v3

v4 v5

v6

v7

v8
(ii)

Figure 3.1: (i) A graph with three cycles C1, C2, and C3 (shown with blue dashed, red dotted, and

green dash-dotted lines respectively), with C1 ⊕ C2 = C3. (ii) A graph with two cycles C1 and C2

(shown with blue dashed and red dotted lines respectively), with C1 ⊕ C2 = C1 ∪ C2.

Let G1, G2, . . . , Gk (k ≥ 3) be subgraphs of G. The mod 2 sum of G1, G2, . . . , Gk is (((G1 ⊕ G2) ⊕

G3) ⊕ · · · ⊕ Gk) = Sk where Sk is the edge-induced subgraph of G with edge set E(Sk) = (E
(
((G1 ⊕

G2)⊕G3)⊕ · · ·⊕Gk−1

)
∪E(Gk)) \ (E

(
((G1⊕G2)⊕G3)⊕ · · ·⊕Gk−1

)
∩E(Gk)). Equivalently, the mod

2 sum of the subgraphs G1, G2, . . . , Gk of G is the subgraph of G consisting of exactly the edges of G

that are edges of an odd number of the subgraphs G1, G2, . . . , Gk. Note that the order in which we take

the mod 2 sum of the subgraphs G1, G2, . . . , Gk does not matter as the mod 2 sum operation is both

commutative and associative.

Consider the graph in Figure 3.2(i), with cycles C1 = v1v2v4v5v1 (shown by the blue dashed line),

C2 = v2v3v6v4v2 (shown by the red dotted line), C3 = v4v6v7v5v4 (shown by the green dash-dotted line),

and C4 = v1v2v3v6v7v5v1 (shown by the yellow solid line). In this graph, C1⊕C2⊕C3 = C4. The graph

in Figure 3.2(ii) has cycles C1 = v1v2v3v4v5v1 (shown by the blue dashed line), C2 = v3v6v4v3 (shown

by the red dotted line), C3 = v2v7v5v4v3v2 (shown by the green dash-dotted line), and C4 = v1v2v7v5v1

(shown by the yellow solid line). In this graph, C1 ⊕ C2 ⊕ C3 = C2 ∪ C4.

3.2.2 Cycle decomposition of a graph

A graph G has a cycle decomposition if there is a set C of pairwise edge-disjoint cycles of G such that

E(G) =
⋃

C∈C E(C). For example, the graph in Figure 3.3(i) has a cycle decomposition consisting of the

cycles C1 = v1v2v4v1 (blue dashed lines), C2 = v2v3v5v2 (red dotted lines), and C3 = v4v5v6v4 (green

52

v1

v1

v2
v2v3

v3v4

v4v5

v5

v6

v6

v7

v7

(i) (ii)

C1 C2

C3

C4 C1 C2

C3
C4v3

Figure 3.2: (i) A graph with cycles C1, C2, C3, and C4 (shown with blue dashed, red dotted, green

dash-dotted, and yellow solid lines respectively), with C1 ⊕ C2 ⊕ C3 = C4. (ii) A graph with cycles

C1, C2, C3, and C4 (shown with blue dashed, red dotted, green dash-dotted, and yellow solid lines

respectively), with C1 ⊕ C2 ⊕ C3 = C2 ∪ C4.

dash-dotted lines). However, the graph in Figure 3.3(ii) does not have a cycle decomposition since there

is no set C of pairwise edge-disjoint cycles of the graph in which every edge of the graph is an edge of a

cycle in C.

v1

v2

v3

v4 v5

v6

(i)

C1 C2

C3

v1

v2

v3

v4 v5

(ii)

Figure 3.3: (i) A graph with cycle decomposition {C1, C2, C3} (blue dashed, red dotted, and green

dash-dotted lines respectively). (ii) A graph with no cycle decomposition.

The following theorem is due to Veblen [37].

Theorem 3.2. A graph G has a cycle decomposition if and only if every vertex of G has even degree.

We use this theorem to prove the following lemma.

Lemma 3.3. Let G be a graph. For every non-empty set C of cycles of G, the mod 2 sum G′ of the

cycles in C has a cycle decomposition.

Proof. We show that every vertex of G′ has even degree, using induction on the size of C. If |C| = 1 then

G′ is a cycle, and hence every vertex of G′ has degree two.

53

Assume that if 1 ≤ |C| ≤ k, then every vertex of G′ has even degree. Now suppose that |C| = k + 1.

Let C ∈ C, and let A be the mod 2 sum of the k cycles in C\{C}. By our earlier assumption, every

vertex of A has even degree. If A and C are vertex-disjoint then A⊕C = A∪C and hence every vertex

of A⊕ C has even degree. It remains to consider the case in which A and C have at least one common

vertex.

Let G′ = A ⊕ C. Let A′ = A ∩ G′ and let C ′ = C ∩ G′. Then G′ = A′ ∪ C ′. Let v ∈ V (G′). If v ∈

V (A′)\V (C ′) then degG′(v) = degA(v) which is even. If v ∈ V (C ′)\V (A′) then degG′(v) = degC(v) = 2.

Suppose v ∈ V (A′) ∩ V (C ′).

C′ C′ C′

. . .

A′ A′

even number of edges

v

.

vv

A′

(i) (ii) (iii)

Figure 3.4: Examples of a vertex v ∈ V (A′) ∩ V (C′) and its incident edges, which are edges of A′

(black solid lines), edges of C′ (blue dashed lines), or edges of neither A′ nor C′ (red dotted lines), in

the cases where (i) degC′(v) = 2, (ii) degC′(v) = 1, and (iii) degC′(v) = 0.

The value of degC′(v) is 0, 1, or 2. First, suppose that degC′(v) = 2. Then there exists no edge

e ∈ E(G) incident with v such that e ∈ E(A) ∩ E(C), as shown in the example in Figure 3.4(i). It

follows that degG′(v) = degA′(v) + degC′(v) = degA(v) + degC(v) = degA(v) + 2 which is even. Next,

suppose that degC′(v) = 1. Then there exists exactly one edge e ∈ E(G) incident with v such that

e ∈ E(A) ∩ E(C), as shown in the example in Figure 3.4(ii). It follows that degG′(v) = degA′(v) +

degC′(v) = degA(v) − 1 + degC(v) − 1 which is even. Finally, suppose that degC′(v) = 0. Then there

exist exactly two edges e, f ∈ E(G) incident with v such that e, f ∈ E(A)∩E(C), as shown in the example

in Figure 3.4(iii). If degA(v) = 2 then v 6∈ V (G′), a contradiction. If degA(v) > 2 then v ∈ V (G′) and

degG′(v) = degA′(v) + degC′(v) = degA(v)− 2 + degC(v)− 2 = degA(v)− 2 which is even.

Therefore, every vertex of G′ has even degree, and hence, by Theorem 3.2, G′ has a cycle decompo-

sition, as required.

54

3.2.3 Independent cycles

We return to the relationship between the number of cycles of a graph and its cyclomatic number.

We redefine the independence of a set of cycles in terms of the mod 2 sum operation on cycles. Let

G be a graph with at least one cycle. A set C = {C1, C2, . . . , Ck} (k ≥ 1) of cycles of G is dependent

if there exists a cycle Ci ∈ C (1 ≤ i ≤ k) such that Ci is the mod 2 sum of all of the cycles in C\{Ci}.

Otherwise, the set of cycles C is independent. For example, in Figure 3.1, the set of cycles {C1, C2, C3}

is dependent since C1 ⊕ C2 = C3, but each pair of these cycles is independent.

The following lemma is from [4, p. 27-29].

Lemma 3.4. The cyclomatic number of a graph G is equal to the maximum number of independent

cycles of G.

For example, in Figure 3.1(i), the graph has two independent cycles and has cyclomatic number

9 − 8 + 1 = 2, and in Figure 3.2(i), the graph has three independent cycles and cyclomatic number

9− 7 + 1 = 3.

Note that a maximum-size set of independent cycles of a graph G need not be unique. For example,

in Figure 3.1(a), each pair of the three cycles C1, C2, and C3 is a maximum size set of independent cycles

of the graph.

3.2.4 Graph colouring

In this chapter we use a broader definition of graph colouring than is usual. In a partial colouring of a

graph G, each edge and vertex of G is either left uncoloured or assigned one or more colours from a set of

colours. Such a graph is called a partially coloured graph. If G has no edges or vertices left uncoloured,

then this is a colouring of G and G is a coloured graph. In a painting of G with colour c, each edge and

vertex of G is assigned the colour c. Such a graph is called a painted graph, and G is said to be painted

with colour c. Hence if G is painted with one or more colours, G is a coloured graph.

In a (partially) coloured graph G, for each e ∈ E(G), let col(e) be the set of colours assigned to e,

and for each v ∈ V (G), let col(v) be the set of colours assigned to v. Our notion of colouring allows the

colour set of an edge of G to be different to the colour sets of its endpoints. Moreover, if e = uv and G

55

is (partially) coloured by painting one of more of its subgraphs, then col(e) ⊆ col(v) and col(e) ⊆ col(u).

The colour set of G is

col(G) =

(⋃
e∈E(G)

col(e)

)
∪

(⋃
v∈V (G)

col(v)

)
.

Suppose that G is a coloured graph. If there exists S ⊆ col(G) such that every edge and vertex of G is

coloured with at least one colour from S, thenG is an S–graph. For example, if col(G) = {blue, red, green}

and every edge and vertex of G is coloured blue or red, then G is a {blue, red}–graph. If G is coloured in

such a way that G is also painted with each of the colours of S, then G is a totally S–graph. So a graph

G which is painted red and painted blue is a totally {blue, red}–graph. If G is an S–graph for some

S ⊆ col(G) and |S| = 1, then G is uni-coloured ; if |S| = 2, then G is bi-coloured ; and if |S| = 3, then G

is tri-coloured. If G is a totally S–graph, then G is totally uni-coloured, totally bi-coloured, and totally

tri-coloured respectively in these three cases. These definitions naturally extend to subgraphs of G.

The graph in Figure 3.5 is a {blue, red}–graph. The path tuv is a totally {blue, red}–path, and the

path vxz is a {red}–path.

zy
x

wv

u

ts

Figure 3.5: A {blue, red}–graph (blue line dashed, red line dotted).

If G is a {c1, c2}–graph, for some colours c1 and c2, that has j maximal {c1}–paths and k maximal

{c2}–paths, j, k ≥ 1, then G is a [j-c1, k-c2]–graph. For example, in Figure 3.5, the cycle tuvxt is a

[1-blue, 1-red]–cycle. When the number of maximal paths of a particular colour is not known or not

relevant, the prefix may be omitted.

In the remaining figures in this chapter, we may show some, but not necessarily all, vertices or edges

of a graph. Additionally, only a subset of the colour set of each vertex or edge may be shown.

56

3.3 Properties of a minimal counterexample

In our approach to proving Theorem 3.1, we consider the properties of a minimal (with respect to edges)

counterexample Ȟ to Conjecture 1. Recall that Ȟ is a connected graph with three longest paths, P1, P2,

and P3, that do not have a common vertex, and since Ȟ is minimal, Ȟ is the union of these three longest

paths; that is, Ȟ = P1 ∪ P2 ∪ P3. We prove that Ȟ has at least seven independent cycles and therefore

cyclomatic number at least seven.

Throughout the rest of this chapter, we use a colouring of Ȟ obtained by painting P1, P2, and P3

with the colours blue, red, and green respectively. The following proposition summarises some basic

properties of Ȟ.

Proposition 3.5.

(i) Ȟ has no tri-coloured vertices and no tri-coloured edges.

(ii) Ȟ has no uni-coloured cycles.

(iii) Let v ∈ V (Ȟ) and let E′ ⊆ E(Ȟ) be the set of edges incident with v. Then the colour set of v is

the union of the colour sets of its incident edges, that is, col(v) =
⋃

e∈E′ col(e).

(iv) For each vertex v ∈ V (Ȟ), 1 ≤ |col(v)| ≤ 2, and for each edge e ∈ E(Ȟ), 1 ≤ |col(e)| ≤ 2.

Proof.

(i) Since P1, P2, and P3 do not have a common vertex, Ȟ has no tri-coloured vertices or tri-coloured

edges.

(ii) Since P1, P2, and P3 are paths painted with distinct colours, Ȟ has no uni-coloured cycles.

(iii) Paths P1, P2, and P3 each have length at least one since they do not all have a common vertex and

Ȟ is connected. Therefore, by the colouring of Ȟ, if c ∈ col(v) for some c ∈ col(Ȟ), then there

exists at least one edge e ∈ E′ such that c ∈ col(e). Additionally, since P1, P2, and P3 are painted,

then col(e) ⊆ col(v) for every e ∈ E′. Hence col(v) =
⋃

e∈E′ col(e).

(iv) Since Ȟ = P1 ∪ P2 ∪ P3, then |col(v)| ≥ 1 for each v ∈ V (Ȟ) and |col(e)| ≥ 1 for each e ∈ E(Ȟ).

By (i), |col(v)| ≤ 2 for each v ∈ V (Ȟ) and |col(e)| ≤ 2 for each e ∈ E(Ȟ).

57

3.3.1 Forbidden configurations in Ȟ

Let G be a graph and let P1, P2, and P3 be three longest paths of G. Suppose that these three paths do

not have a common vertex. Recall that, for a path P and vertices x, y ∈ V (P), xPy denotes the subpath

of P with endpoints x and y. Axenovich [2] defines two configurations that are forbidden in the union

of these three longest paths of G, restated here.

Configuration 1: A cycle of G which is the union of three internally disjoint subpaths S1, S2, and S3

of P1, P2, and P3 respectively, such that

(i) for every interior vertex u of S1 or S3, u 6∈ V (S2), and

(ii) for every interior vertex v of S2 or S3, v 6∈ V (P1).

Configuration 2: A subpath xP1y of P1 such that

(i) x ∈ V (P2), y ∈ V (P3);

(ii) for every internal vertex v of xP1y, v 6∈ V (P2) ∪ V (P3); and

(iii) P2 − x is the union of two paths P ′2 and P ′′2 , and P3 − y is the union of two paths P ′3 and P ′′3 , such

that V (P ′2 ∪ P ′3) ∩ V (P ′′2 ∪ P ′′3) = ∅ or V (P ′2 ∪ P ′′3) ∩ V (P ′′2 ∪ P ′3) = ∅.

Examples of these two forbidden configurations are shown in Figure 3.6. The following lemma is

restated from [2, Lemma 1].

Lemma 3.6. Let G be a graph and let P1, P2, and P3 be three longest paths of G. Suppose that these three

paths do not have a common vertex. Then P1 ∪ P2 ∪ P3 does not have a subgraph with Configuration 1

or Configuration 2.

We colour G by painting P1 blue, P2 red, and P3 green and define another configuration that is

forbidden in the union of paths P1, P2, and P3 of G.

Configuration 3: A path Q of G that is a subpath of a {c1, c2}–cycle and a {c1, c3}–cycle, where

c1, c2, c3 ∈ col(G), such that:

(i) there is at least one vertex u ∈ V (Q) with col(u) = {c2, c3} and

(ii) there is at least one vertex v ∈ V (Q) with c1 ∈ col(v).

58

S3

S1

S2

x y

Configuration 1

Configuration 2

P

P ′
2

P ′′
2

P ′
3

P ′′
3

(i) (ii)

x

y

z

Figure 3.6: Subpaths of P1, P2, and P3 shown by blue dashed, red dotted, and green dash-dotted lines

respectively. (i) An example of Configuration 1, where S1 is the {blue}–path with endpoints x and

y, S2 is the {red}–path with endpoints x and z, and S3 is the {green}–path with endpoints y and z.

(ii) An example of Configuration 2.

An example of this configuration is shown in Figure 3.7.

u v

Q

Configuration 3

a b

Figure 3.7: Subpaths of P1, P2, and P3 shown by blue dashed, red dotted, and green dash-dotted lines

respectively. This figure shown an example of Configuration 3 where c1, c2, and c3 are blue, red, and

green respectively. Path Q, with endpoints a and b, is a subpath of a {blue, red}–cycle and a subpath

of a {blue, green}–cycle.

Lemma 3.7. Let G be a graph and let P1, P2, and P3 be three longest paths of G. Suppose that these

three paths do not have a common vertex. Colour G by painting P1 blue, P2 red, and P3 green. Then

59

P1 ∪ P2 ∪ P3 does not have a subgraph with Configuration 3.

Proof. Assume that P1∪P2∪P3 has a subgraph with Configuration 3. Let path Q and vertices u and v be

as defined in the definition of Configuration 3, and assume without loss of generality that c1, c2, and c3 are

blue, red, and green respectively. Let uQw, w ∈ V (uQv), be the maximal totally {red, green}–subpath

of uQv with endpoint u. Since v is not a tri-coloured vertex of G by Proposition 3.5(i), then w 6= v. It

follows that there exists an edge e ∈ E(wQv) incident to w. Then col(e) 6= {red, green} since uQw is

maximal. Additionally, col(e) 6= {green} since uQv is a path of a {blue, red}–cycle, and col(e) 6= {red}

as uQv is a path of a {blue, green}–cycle. Hence blue ∈ col(e) and therefore w is a tri-coloured vertex of

G, a contradiction.

3.3.2 The number of cycles of Ȟ

Using Configurations 1 and 2, Axenovich proves the lemma restated below [2, Lemma 3], This is a key

result which is used throughout this chapter.

Lemma 3.8. Each pairwise union of P1, P2, and P3 of Ȟ has at least two bi-coloured cycles.

We have the following result regarding tri-coloured cycles of Ȟ.

Lemma 3.9. There exists at least one cycle of Ȟ that is a tri-coloured cycle but is not a bi-coloured

cycle.

Proof. Every two of the longest paths P1, P2, and P3 of Ȟ have a common vertex by Lemma 1.1. Let

x, y, z ∈ V (Ȟ) be three such vertices where, without loss of generality, we assume col(x) = {blue, red},

col(y) = {blue, green}, and col(z) = {red, green}. Then there exists a tri-coloured cycle C of Ȟ that is

the union of the {blue}–path xP1y, the {red}–path xP2z, and the {green}–path yP3z, an example of

which is shown in Figure 3.8.

Suppose that C is also a bi-coloured cycle. Without loss of generality, suppose that C is a {blue, red}–

cycle. Consider the {green}–path yP3z of C. For each edge e ∈ E(yP3z), either col(e) = {blue, green}

or col(e) = {red, green}. If col(e) = {blue, green} for every edge e ∈ E(yP3z), then z is a tri-coloured

vertex of Ȟ, a contradiction by Proposition 3.5(i). Similarly, if col(e) = {red, green} for every edge

e ∈ E(yP3z), then y is a tri-coloured vertex of Ȟ, a contradiction. Finally, if there is at least one edge

60

x

y z

xP1y

yP3z

xP2z

C

Figure 3.8: Subpaths of P1, P2, and P3 shown by blue dashed, red dotted, and green dash-dotted

lines respectively. An example of the tri-coloured cycle C that is the union of {blue}–path xP1y,

{red}–path xP2z, and {green}–path yP3z.

e ∈ E(yP3z) with col(e) = {blue, green} and at least one edge f ∈ E(yP3z) with col(f) = {red, green},

then there exists an interior vertex v of yP3z such that v is tri-coloured, a contradiction. We conclude

that cycle C is not a bi-coloured cycle of Ȟ, as required.

3.4 Preliminary results on bi-coloured cycles

In this section, we present three results about the bi-coloured cycles of Ȟ.

Lemma 3.10. Let C be a bi-coloured cycle of Ȟ. Let c1, c2, c3 ∈ col(G). If C is a {c1, c2}–cycle, then

C is neither a {c1, c3}–cycle nor a {c2, c3}–cycle.

Proof. Assume without loss of generality that c1, c2, and c3 are blue, red, and green respectively, and that

C is a {blue, red}–cycle. By Lemma 3.8, cycle C will always exist. By Proposition 3.5(i) and (ii), there

exists an edge e ∈ E(C) such that col(e) = {red}, and hence C is not a {blue, green}–cycle . Similarly,

there exists an edge f ∈ E(C) such that col(f) = {blue}, and hence C is not a {red, green}–cycle.

Lemma 3.11. Let C be a bi-coloured cycle of Ȟ. Let c1, c2 ∈ col(H). If C is a [k-c1, c2]–cycle for k ≥ 1,

then C is the mod 2 sum of two or more [1-c1, c2]–cycles of Ȟ.

For example, in Figure 3.9, the [2-blue, red]–cycle S1∪S3∪S2∪S5 is the mod 2 sum of the [1-blue, red]–

cycle S2 ∪ S4 and the [1-blue, red]–cycle S1 ∪ S3 ∪ S4 ∪ S5.

Proof. Assume without loss of generality that c1 and c2 are blue and red respectively and that C is a

[k-blue, red]–cycle. By Lemma 3.8, cycle C will always exist. Cycle C is a [k-blue, red]–cycle of Ȟ for

61

S1

S2

S3 S5S4v1
v2 v3

v4

Figure 3.9: Subpaths of P1 and P2 shown by the blue dashed and red dotted lines respectively. A

graph with {red}–paths S1 and S2 and {blue}–paths S3, S4, and S5, where S1 has endpoints v1 and

v4, S2 has endpoints v2 and v3, S3 has endpoints v1 and v2, S4 has endpoints v2 and v3, and S5 has

endpoints v3 and v4.

some k ≥ 1. Note that a maximal {blue}–path of C may be a single vertex. In Figure 3.10(i), the cycle

C has four maximal {blue}–paths, Q1, Q2, Q3, and Q4, where Q2 is a single vertex.

C

Q1

Q2

P

Q1

Q2

Q4

Q3

(i) (ii)

y

x

Figure 3.10: Subpaths of P1 and P2 shown by the blue dashed and red dotted lines respectively. (i)

An example of a [4-blue, red]–cycle C where Q1, Q2, Q3, and Q4 are the four maximal {blue}–paths

of C, one of which is a single vertex (Q2). (ii) A {blue}–path P that has a common endpoint x with

Q1 and a common endpoint y with Q2.

We use proof by induction on k. If k = 1, then C is a [1-blue, red]–cycle.

For k ≥ 2, assume that every {blue, red}–cycle of Ȟ that has at most k − 1 maximal {blue}–paths

is the mod 2 sum of [1-blue, red]–cycles. Suppose that C is a [k-blue, red]–cycle, and let Q be the set

of k maximal {blue}–paths of C. Let P 6∈ Q be a {blue}–path of Ȟ such that there exists Q1, Q2 ∈ Q

where P has a common endpoint x with Q1 and a common endpoint y with Q2 and, for every Q ∈ Q,

(V (P)\{x, y}) ∩ V (Q) = ∅. An example of this is shown in Figure 3.10(ii). Note that such paths P,Q1,

and Q2 always exist as the paths in Q are vertex-disjoint subpaths of the {blue}–path P1 of Ȟ.

62

Let R1 and R2 be the two paths of cycle C with endpoints x and y, such that C = R1 ∪ R2. Let

C1 = R1 ∪ P and C2 = R2 ∪ P . Then C1 and C2 are two cycles of Ȟ, where C = C1 ⊕ C2. Let k1

(1 ≤ k1 ≤ k) be the number of maximal {blue}–paths of R1. Let R′1 (respectively R′′1) be the maximal

{blue}–path of R1 with endpoint x (respectively y). Then R′1PR
′′
1 is a maximal {blue}–path of cycle C1,

and hence C1 has k1 − 1 ≤ k − 1 maximal {blue}–paths. An analogous argument can be used to show

that cycle C2 has at most k − 1 maximal {blue}–paths. Then, by our earlier assumption, cycles C1 and

C2 are each the mod 2 sum of [1-blue, red]–cycles. Hence C = C1 ⊕C2 is the mod 2 sum of two or more

[1-blue, red]–cycles, as required.

Corollary 3.12. Let S be a maximal bi-coloured subgraph of Ȟ and suppose, without loss of generality,

that S is a {blue, red}–subgraph of Ȟ. Then S has two cycles that are [1-blue, red]–cycles and two cycles

that are [blue, 1-red]–cycles.

In Figure 3.11, A and B are [1-blue, red]–cycles, and A⊕B and B are [blue, 1-red]–cycles.

A

B
v1 v2

v3 v4

Figure 3.11: Subpaths of P1 and P2 are shown by the blue dashed and red dotted lines respectively.

An example of a [1-blue, 2-red]–cycle A = v1v3v2v1 and a [1-blue, 1-red]–cycle B = v2v3v4v2, where

A⊕B is a [2-blue, 1-red]–cycle.

3.5 Independence of cycles of Ȟ

In this section, we show that Ȟ has seven independent cycles — six bi-coloured cycles, and one tri-

coloured cycle.

3.5.1 Sets of cycles of Ȟ

By Lemma 3.8, Ȟ has at least two bi-coloured cycles in each pair of its longest paths P1, P2, and P3.

From Corollary 3.12, we have the following proposition.

63

Proposition 3.13. There is at least one set B of bi-coloured cycles of Ȟ consisting of two {blue, red}–

cycles, two {blue, green}–cycles, and two {red, green}–cycles where, for each pair c1, c2 ∈ col(G), the two

{c1, c2}–cycles in B are both [1-c1, c2]–cycles or both [c1, 1-c2]–cycles.

An example of Ȟ and such a set B of six bi-coloured cycles of Ȟ is shown in Figure 3.12, where A and

B are [1-blue, 1-red]–cycles, C and D are [1-blue, green]–cycles, and E and F are [1-red, 1-green]–cycles.

v1 v2
v3 v4

v5

v6 v7
v8

v9 v10
v11

A B

C

D

E

F

Figure 3.12: An example of Ȟ where P1, P2, and P3 are shown by the blue dashed, red dotted, and

green dash-dotted lines respectively. The figure shows two [1-blue, 1-red]–cycles A = v5v2v3v4v8v7v6v5

and B = v8v11v10v9v8, two [1-blue, green]–cycles C = v7v8v9v7 and D = v6v7v8v9v10v6, and two

[1-red, 1-green]–cycles E = v1v2v5v1 and F = v3v4v3.

Let B be the set of all such sets B of bi-coloured cycles of Ȟ. We will prove that for each set B ∈ B

the cycles in B are independent. We do this by proving that there does not exist a cycle A ∈ B that is

the mod 2 sum of two, three, four, or five of the cycles in B\{A}.

Next, by Proposition 3.9, there exists a cycle of Ȟ that is a tri-coloured cycle but not a bi-coloured

cycle. We show that there exists such a cycle of Ȟ that is independent of the cycles of a set B ∈ B, and

hence there is a set of seven independent cycles of Ȟ. Lastly, we put these results together to obtain the

main result, Theorem 3.1.

3.5.2 The mod 2 sum of two cycles

Let C be a set of six bi-coloured cycles of Ȟ consisting of two {blue, red}–cycles, two {blue, green}–cycles,

and two {red, green}–cycles. In this section, we show that no cycle in such a set C is the mod 2 sum of

two other cycles in the set, and hence every set of three cycles in C is independent.

64

Lemma 3.14. Let A and B be two bi-coloured cycles of Ȟ, where A is a {c1, c2}–cycle, and B is a

{c1, c3}–cycle for c1, c2, c3 ∈ col(Ȟ). If A ∩B is a path of Ȟ with length at least one, then A⊕B is not

a bi-coloured subgraph of Ȟ.

Proof. Assume without loss of generality that c1, c2, and c3 are blue, red, and green respectively. By

Lemma 3.8, cycles A and B will always exist. Assume that A∩B is a path of Ȟ with length at least one

and A⊕B is a bi-coloured subgraph of Ȟ. Then A⊕B is a cycle. By Corollary 3.10, A⊕B is neither

a {blue, red}–cycle nor a {blue, green}–cycle and hence A⊕B is a {red, green}–cycle.

Let P be the path of Ȟ with edge set E(A)\E(B) and let Q be the path of Ȟ with edge set

E(B)\E(A). Let u and v be the common endpoints of P and Q. Then A⊕B = P ∪Q.

Q Q

u

A

B

(i)

v u

(ii)

v u

(iii)

v

P

Q

P P

A

B

A

B

Figure 3.13: Subpaths of P1, P2, and P3 shown by the blue dashed, red dotted, and green dash-dotted

lines respectively. Examples of cycles A and B where A∩B is a path, path P has edge set E(A)\E(B),

path Q has edge set E(B)\E(A), and u and v are the common endpoints of P and Q. In (i) P is a

{red}–path P , in (ii) A ∩B is a {blue}–path, and in (iii) Q is a {green}–path.

By Proposition 3.5(i) and (ii), there exists at least one edge e ∈ E(A) such that col(e) = {red}. Since

A∩B is a path of {blue, green}–cycle B, then e 6∈ E(A∩B), and hence e ∈ E(P). By Lemma 3.7, since

P is a path of both {blue, red}–cycle A and {red, green}–cycle A⊕B, it follows that P is a {red}–path,

as shown in Figure 3.13(i).

Similarly, by Proposition 3.5(i) and (ii), there exists at least one edge f ∈ E(A) such that col(f) =

{blue}. Since P is a {red}–path, then f 6∈ E(P), and hence f ∈ E(A ∩B). By Lemma 3.7, since A ∩B

is a path of both {blue, red}–cycle A and {blue, green}–cycle B, it follows that A ∩B is a {blue}–path,

as shown in Figure 3.13(ii).

65

Again, by Proposition 3.5(i) and (ii), there exists at least one edge g ∈ E(B) such that col(g) =

{green}. Since A∩B is a {blue}–path, then g 6∈ E(A∩B), and hence g ∈ E(Q). By Lemma 3.7, since Q

is a path of both {blue, green}–cycle A and {red, green}–cycle A⊕B, it follows that Q is a {green}–path,

as shown in Figure 3.13(iii). However, u and v are now tri-coloured vertices of Ȟ, a contradiction by

Proposition 3.5(i).

Lemma 3.15. Let A and B be two bi-coloured cycles of Ȟ, where A is a {c1, c2}–cycle and B is a

{c1, c3}–cycle for c1, c2, c3 ∈ col(Ȟ). If A ∩ B is a disconnected graph whose components are all paths,

then A⊕B is not a bi-coloured subgraph of Ȟ.

Proof. By Lemma 3.8, cycles A and B will always exist. Assume without loss of generality that c1, c2, and

c3 are blue, red, and green respectively. Assume that A ∩B is a disconnected graph whose components

are all paths and that A ⊕ B is a bi-coloured subgraph of Ȟ. By Lemma 3.10, A ⊕ B is neither a

{blue, red}–subgraph nor a {blue, green}–subgraph of Ȟ, and hence A ⊕ B is a {red, green}–subgraph

of Ȟ.

Let R1, R2, . . . , Rk, k ≥ 2, be the components of A∩B, each of which is a path (possibly of length 0),

and let R = {R1, R2, . . . , Rk}. Note that the endpoints of each path in R are vertices of A ⊕ B. Let

A′ be the edge-induced subgraph of Ȟ with edge set E(A)\E(B). Then A′ consists of k maximal paths

S1, S2, . . . , Sk such that each Si, 1 ≤ i ≤ k, has no internal vertex that is a vertex of a path in R. Let

S = {S1, S2, . . . , Sk}. Cycle A then consists of the k paths in R alternating with the k paths in S. Let

B′ be the edge-induced subgraph of Ȟ with edge set E(B)\E(A). Then B′ consists of k maximal paths

Q1, Q2, . . . , Qk such that each Qi, 1 ≤ i ≤ k, has no internal vertex that is a vertex of a path in R. Cycle

B then consists of the k paths in R alternating with the k paths in Q. Let Q = {Q1, Q2, . . . , Qk}. Now

A⊕B =
⋃

1≤i≤k Si ∪Qi. Since the paths in R are the k components of A ∩B, no two paths in R have

a common vertex, and hence each path in S or Q has length at least one.

For each Ri ∈ R, if Ri has length at least one, then each endpoint of Ri is the endpoint of one path

in S and one path in Q. If Ri has length zero, then Ri is a single vertex that is the endpoint of two

paths in S and two paths in Q.

We next make an observation about {blue}–vertices and {blue}–paths of Ȟ. Let R ∈ R and let u be

an endpoint of R. Suppose blue ∈ col(u). By Lemma 3.7, since every path in R is a path of {blue, red}–

66

cycle A and {blue, green}–cycle B, then R is a {blue}–path. Let S ∈ S and Q ∈ Q with endpoint u.

Since u ∈ E(A ⊕ B), which is a {red, green}–subgraph of Ȟ, then red ∈ col(u) or green ∈ col(u),

and hence col(u) = {blue, red} or col(u) = {blue, green}. Suppose that col(u) = {blue, red}. Then by

Lemma 3.7, since Q is a path of {blue, green}–cycle B and {red, green}–subgraph A⊕B of Ȟ, it follows

that Q is a totally {blue, red}–path. Suppose that col(u) = {blue, green}. Then by Lemma 3.7, since

S is a path of {blue, red}–cycle A and {red, green}–subgraph A ⊕ B of Ȟ, it follows that S is a totally

{blue, green}–path. Using this, we show that Ȟ has a {blue}–cycle.

v1

v2

R1

R2

R3

v3v4

R4

v1

v2

R1

R2

R3

v3v4

R4

P P

(i) (ii)

Figure 3.14: Subpaths of P1 shown by blue dashed lines. Examples of cycle A⊕B, which is the outer

cycle in (i) and (ii), and paths R1, . . . , R4 of A ∩ B, showing (i) a {blue}–path v1R1v2Pv3R2v4 of

A ∪B and (ii) a {blue}–path of A ∪B with subpaths R1, . . . , R4.

Since A is a {blue, red}–cycle, by Proposition 3.5(i) and (ii) there exists an edge e ∈ E(A) such that

col(e) = {blue}. Then e 6∈ E(A ⊕ B), and hence e ∈ E(A ∩ B). Without loss of generality, let R1 be

the path in R such that e ∈ E(R1). Since R1 is a path of A ∩ B, it follows by Lemma 3.7 that R1

is a {blue}–path. Let v1 and v2 be the endpoints of R1. As observed previously, there exists at least

one {blue}–path in Q ∪ S with endpoint v2. Let P be such a path, and let v3 be the other endpoint

of P . Without loss of generality, let R2 be the path in R with endpoint v3, and let v4 be the other

endpoint of R2. Similarly to R1, R2 is a {blue}–path. An example of Ȟ is shown in Figure 3.14(i). If

V (R2) ∩ V (R1) 6= ∅, then Ȟ has a blue cycle, a contradiction by Proposition 3.5(ii). As before, there

exists at least one {blue}–path in Q ∪ S with endpoint v4. Continuing in this manner, we follow a

{blue}–path of Ȟ consisting of paths in R alternating with paths in Q∪S, an example of which is shown

67

in Figure 3.14(ii). We stop when we return to a path in R that is already a subpath of this {blue}–path.

Since there are a finite number of paths in R, this will always occur. Then Ȟ has a {blue}–cycle, a

contradiction by Proposition 3.5(ii).

Lemma 3.16. Let C be a set of six bi-coloured cycles of Ȟ consisting of two {blue, red}–cycles, two

{blue, green}–cycles, and two {red, green}–cycles. Let c1, c2 ∈ col(Ȟ). Let C ∈ C be a {c1, c2}–cycle,

and let A,B ∈ C\{C}. Then A⊕B is not a {c1, c2}–subgraph of Ȟ.

Proof. By Lemma 3.8, set C and cycles A,B, and C will always exist. Assume without loss of generality

that c1 and c2 are red and green respectively. Since there is exactly one {red, green}–cycle in C\{C}, at

least one of A or B is a {blue, red}– or {blue, green}–cycle. Without loss of generality, suppose that A

is a {blue, red}–cycle. If A and B are edge-disjoint, then A ⊕ B = A ∪ B. By Lemma 3.10, A is not a

{red, green}–cycle, and hence A⊕B is not a {red, green}–subgraph of Ȟ.

Suppose instead that A and B are not edge-disjoint. Suppose that B is a {blue, red}–cycle. Then

A⊕B is a {blue, red}–subgraph of Ȟ, and hence, by Lemma 3.10, A⊕B is not a {red, green}–subgraph

of Ȟ. Next, suppose that B is a {red, green}–cycle. By Proposition 3.5(i) and (ii), there exists an edge

e ∈ E(A) such that col(e) = {blue}. However, e 6∈ E(B), and hence e ∈ E(A⊕B). Therefore A⊕B is not

a {red, green}–subgraph of Ȟ. Finally, suppose that B is a {blue, green}–cycle. Then, by Lemmas 3.14

and 3.15, A⊕B is not a {red, green}–subgraph of Ȟ, as required.

3.5.3 The mod 2 sum of three cycles

In this section, we show that no cycle in a set B ∈ B of six bi-coloured cycles of Ȟ is the mod 2 sum of

three other cycles in the set.

Lemma 3.17. Let A,B, and C be three bi-coloured cycles of Ȟ and let c1, c2, c3 ∈ col(Ȟ). Let A and

B be {c1, c2}–cycles and let C be a {c1, c3}–cycle that is a [1-c1, c3]–cycle, a [c1, 1-c3]–cycle, the mod

2 sum of two [1-c1, c3]–cycles, or the mod 2 sum of two [c1, 1-c3]–cycles. Then A ⊕ B ⊕ C is not a

{c2, c3}–subgraph of Ȟ.

Proof. By Lemma 3.8, cycles A,B, and C will always exist in Ȟ. Assume without loss of generality that

c1, c2, and c3 are blue, green, and red respectively. Assume that A⊕ B ⊕ C is a {red, green}–subgraph

68

of Ȟ. There are two possible configurations of cycle C.

(a) There exists a maximal {blue}–path Q1 of C and a maximal {red}–path R1 of C such that C =

Q1 ∪R1.

(b) There exist two maximal {blue}–paths Q1 and Q2 in C and two maximal {red}–paths R1 and R2

in C such that C = Q1 ∪R1 ∪Q2 ∪R2. Additionally, C does not have Configuration (a).

Examples of these two configurations are shown in Figure 3.15.

R1

Q1

Q2

R2Q1

R1

C C

Configuration (a) Configuration (b)

(i) (ii)

Figure 3.15: Subpaths of P1 and P2 shown by the blue dashed and red dotted lines repectively.

Examples of (i) Configuration (a) of cycle C and (ii) Configuration (b) of cycle C.

To aid exposition in the proof, if C has Configuration (b), then we assign the labels Q1, Q2, R1, and

R2 to paths of C as follows. Let Q1 and Q2 be the two maximal {blue}–paths of C that each have at

least one edge e where col(e) = {blue}. Then there exists a {blue}–path Q of Ȟ that has a common

endpoint with Q1 and a common endpoint with Q2, such that the other endpoints of Q1 and Q2 are not

in V (Q). Let q and r be the endpoints of Q1, where q ∈ V (Q). Let R1 be the maximal {red}–path of C

such that r ∈ V (R1) and let R2 be the maximal {red}–path of C such that q ∈ V (R2), as shown in the

example in Figure 3.16.

q

r Q

R1

Q1

Q2

R2

Figure 3.16: Subpaths of P1 and P2 shown by the blue dashed and red dotted lines repectively.

An example of a {blue, red}–cycle C with Configuration (b) and {blue}–path Q, showing maximal

{blue}–paths Q1 and Q2 of C, endpoints q and r of Q1, and maximal {red}–paths R1 and R2 of C.

69

In the remainder of this proof, we simultaneously consider the case where C has Configuration (a)

and the case where C has Configuration (b), noting differences where required.

Consider cycle C, which may have Configuration (a) or (b). Let u be an endpoint of the path R1

where u ∈ V (Q1). Let e1 = uv be the edge of Q1 incident to u where e1 6∈ E(R1). Then col(e1) = {blue}.

It follows that e1 6∈ E(A⊕B⊕C), and hence e1 ∈ E(A) without loss of generality. Let P be the maximal

path of A ∩ C such that e1 ∈ E(P), and let w and x be the endpoints of P , where these vertices are in

the order w, u, v, x in P (note that we may have w = u or x = v). An example of this is shown in Figure

3.17(i). By Lemma 3.7, since P is a path of {blue, red}–cycle C and a path of {blue, green}–cycle A,

then P is a {blue}–path. Hence P is a subpath of Q1.

w

u
v

f u=w

v
x

f
yCw

u v
x

e1A

R1

Q1
x

(i) (ii) (iii)

C C

A A

Q

e1

e1

P

Figure 3.17: Subpaths of P1 and P2 shown by the blue dashed and red dotted lines respectively.

Examples of cycle C with edge e1 = uv where col(e) = {blue} along with (i) path P of A ∩ C

with endpoints w and x, maximal {blue}–path Q1 of C, and maximal {red}–path R1 of C; (ii) edge

f ∈ E(A)\E(C) incident to w; and (iii) totally {blue, red}–path Q of A with endpoints y and w.

By Proposition 3.5(i) and (ii), there exists an edge e2 ∈ E(R1) such that col(e2) = {red}. Then

R1 is not a subpath of P since P is a {blue}–path. Hence w is an internal vertex of R1 or w = u. It

follows that the path wPu is a path of Q1 ∩ R1 and is a totally {blue, red}–path. Let f ∈ E(A)\E(C)

be incident to w. Since col(w) = {blue, red}, then green 6∈ col(f), and since A is a {blue, green} cycle,

then blue ∈ col(f), as shown in the example in Figure 3.17(ii). We consider two cases: (1) f 6∈ E(B)

and (2) f ∈ E(B).

First, consider case (1), where f 6∈ E(B). Let Q be the maximal path of cycle A such that f ∈ E(Q)

and no interior vertices of Q are vertices of B∪C. Then Q is a path of A⊕B⊕C and has endpoints w and

y, where y ∈ V (Ȟ). Since Q is a path of {blue, green}–cycle A and {red, green}–subgraph A⊕B⊕C of Ȟ,

it follows by Lemma 3.7 that Q is a totally {blue, red}–path, as shown in the example in Figure 3.17(iii).

70

Consider vertex y. First, suppose that y ∈ V (C). If y ∈ V (R1) (or if y ∈ V (R2) in the case where C has

Configuration (b)) then there is a {blue}–cycle in Ȟ, a contradiction by Proposition 3.5(ii). If, instead,

y is an interior vertex of Q1 (or of Q2 in the case where C has Configuration (b)), then y is incident with

three {red}–edges, a contradiction by the colouring of Ȟ. Next, suppose that y 6∈ V (C). Then y ∈ V (B)

and there exist two edges g1, g2 ∈ E(B) incident to y, where g1, g2 6∈ E(Q). Since col(y) = {blue, red},

then, without loss of generality, col(g1) = {red}, a contradiction since B is a {blue, green}–cycle.

It remains to consider case (2), in which f ∈ E(B). Recall that P is a {blue}–path with endpoints

w and x and that blue ∈ col(f), as shown in the example in Figure 3.17(ii). Let h1 ∈ E(B) be incident

to w, where h1 6= f . Since col(w) = {blue, red}, then green 6∈ col(h1), and since B is a {blue, green}

cycle, then blue ∈ col(h1). Since w is incident to at most two {blue}–edges, and P is a {blue}–path,

then h1 ∈ E(P). Recall that col(e1) = {blue}. If e1 ∈ E(B), then e1 ∈ E(A ⊕ B ⊕ C), a contradiction

since A⊕B⊕C is a {red, green}–subgraph of Ȟ. Hence there exists a vertex z ∈ V (wPu), where z 6= w,

with incident edge h2 ∈ E(B)\E(A ∪C). Since wPu is a totally {blue, red}–path, then green 6∈ col(h2),

and since z is an interior vertex of P , then blue 6∈ col(h2). Hence col(h2) = {red}, a contradiction since

h1 ∈ E(B).

Lemma 3.18. Let B ∈ B be a set of six bi-coloured cycles of Ȟ. Let D ∈ B be a {c1, c2}–cycle of Ȟ

where c1, c2 ∈ col(Ȟ), and let A,B,C ∈ B\{D}. Then A⊕B ⊕ C is not a {c1, c2}–subgraph of Ȟ.

Proof. By Proposition 3.13, set B and cycles A,B,C, and D will always exist. Assume without loss of

generality that c1 and c2 are red and green respectively. Let C = {A,B,C} and let S = A⊕B ⊕ C.

First suppose that one of the cycles in C is a {red, green}–cycle, say C without loss of generality. Since

A⊕B⊕C = S, then A⊕B = C ⊕S. Since C and S are both {red, green}–subgraphs of Ȟ, then C ⊕S

is also a {red, green}–subgraph of Ȟ. However, by Lemma 3.16, A ⊕ B is not a {red, green}–subgraph

of Ȟ, a contradiction.

Suppose, instead, that none of the cycles in C is a {red, green}–cycle. IfA andB are both {blue, green}–

cycles, and C is a {blue, red}–cycle, then, by Lemma 3.17, S is not a {red, green}–subgraph of Ȟ.

Similarly, if A and B are {blue, red}–cycles, and C is a {blue, green}–cycle, then S is not a {red, green}–

subgraph of Ȟ, as required.

71

3.5.4 The mod 2 sum of four cycles

In this section, we show that no cycle in a set B ∈ B of six bi-coloured cycles of Ȟ is the mod 2 sum of

four other cycles in the set.

Lemma 3.19. Let B ∈ B be a set of six bi-coloured cycles of Ȟ. Let E ∈ B be a {c1, c2}–cycle where

c1, c2 ∈ col(Ȟ) and let A,B,C,D ∈ B\{E}. Then A⊕B ⊕ C ⊕D is not a {c1, c2}–subgraph of Ȟ.

Proof. By Proposition 3.13, set B and cycles A,B,C,D, and E will always exist. Assume without loss

of generality that c1 and c2 are red and green respectively. Let C = {A,B,C,D}. Let S be the mod 2

sum of the cycles in C and assume that S is a {red, green}–subgraph of Ȟ.

First suppose that one of the cycles in C is a {red, green}–cycle, say D without loss of generality.

Since A⊕B ⊕ C ⊕D = S, then A⊕B ⊕ C = S ⊕D, which is a {red, green}–subgraph of Ȟ. However,

by Lemma 3.18, A⊕B ⊕C is not a {red, green}–subgraph of Ȟ, a contradiction. It remains to consider

the case in which none of the cycles in C is a {red, green}–cycle. Then, without loss of generality, A and

B are {blue, red}–cycles, and C and D are {blue, green}–cycles.

If E(A) ∩ E(B) 6= ∅, then by Lemma 3.17, S is not a {red, green}–subgraph of Ȟ, a contradiction.

We similarly obtain a contradiction if E(C) ∩ E(D) 6= ∅. Suppose instead that cycles A and B are

edge-disjoint, and cycles C and D are edge-disjoint.

Cycle A has a maximal {blue}–path A1 and a maximal {red}–path A2 such that A = A1 ∪ A2.

Similarly, cycle B has a maximal {blue}–path B1 and a maximal {red}–path B2 such that B = B1 ∪B2.

Cycle C has a maximal {blue}–path C1 and a maximal {green}–path C2 such that C = C1∪C2. Similarly,

cycle D has a maximal {blue}–path D1 and a maximal {green}–path D2 such that D = D1 ∪D2.

We next show that there is exactly one maximal path of A∩C such that every edge e of A∩C with

col(e) = {blue} is an edge of this path. Similarly for A ∩ D, B ∩ C, and B ∩ D. We will refer to this

as Property 1. Suppose that A ∩ C is a disconnected graph, and note that each component of A ∩ C

is a path. Suppose that two of the maximal paths of A ∩ C, R1 and R2, each have at least one edge

e such that col(e) = {blue}. Let R′1 be a maximal subpath of R1 where, for every edge e ∈ E(R′1),

col(e) = {blue}. Similarly define a subpath R′2 of R2. Then, by definition of A1 and C1, paths R′1

and R′2 are subpaths of A1 and subpaths of C1. It follows that there exists a {blue}–subpath A′1 of A1

72

(respectively C ′1 of C1) such that A′1 (C ′1) has a common endpoint with R′1 and a common endpoint with

R′2 and no other vertices of R′1 or R′2 are vertices of A′1 (C ′1). If A′1 = C ′1 then R′1 and R′2 are subpaths

of one maximal {blue}–path of A∩C, a contradiction. Hence E(A′1)\E(C ′1) 6= ∅ and E(C ′1)\E(A′1) 6= ∅.

Therefore, R′1 ∪ R′2 ∪ A′1 ∪ C ′1 has a {blue}–cycle, a contradiction by Proposition 3.5(ii). An analogous

argument can be used to show that Property 1 holds for A ∩D, B ∩ C, and B ∩D.

We now show that there is a blue cycle in Ȟ by considering the colours of the edges of cycles A,B,C,

and D. Recall that S = A ⊕ B ⊕ C ⊕D is a {red, green}–subgraph of Ȟ. First consider cycle A. Let

x be an endpoint of A2, and let w be the vertex adjacent to x such that e1 = wx ∈ E(A1)\E(A2).

Then col(e1) = {blue}. It follows that e1 6∈ E(S) and, since A and B are edge-disjoint, then e1 ∈ E(C)

without loss of generality. Let R1 be the maximal path of A∩C such that e1 ∈ E(R1) and let v1 and v2

be the endpoints of R1, where these vertices are in the order v1, w, x, v2 in R1 (note that we may have

v1 = w or v2 = x), as shown in the example in Figure 3.18. By Lemma 3.7, R1 is a {blue}–path, and

hence xR1v2 is a totally {blue, red}–path.

v1

v2

A

R1

x

w
Ce1

Figure 3.18: Subpaths of P1 and P2 shown by the blue dashed and red dotted lines respectively. An

example of cycles A and C and the {blue}–path R1 of A ∩ C with endpoints v1 and v2.

Consider the edges of E(C)\E(R1). By Proposition 3.5 (i) and (ii), there exists an edge f1 ∈

E(C)\E(R1) such that col(f1) = {green}. Then, since col(v2) = {blue, red}, it follows by Proposition 3.5

(i) that there exists an edge e2 ∈ E(C)\E(R1) such that col(e2) = {blue}. Edge e2 6∈ E(A) by Property 1,

e2 6∈ E(D) since C and D are edge-disjoint, and e2 6∈ E(S) since S is a {red, green}–subgraph of Ȟ.

Hence e2 ∈ E(B).

Let R2 be the maximal path of C ∩ B such that e2 ∈ E(R2), and let v3 and v4 be the endpoints of

R2, where these vertices are in the order v1, v2, v3, v4, v1 in C. By Lemma 3.7, R2 is a {blue}–path. Let

73

Q1 (respectively Q2) be the path of C with endpoints v1 and v4 (respectively v2 and v3) that has no

interior vertices that are vertices of R1 or R2. Then C = R1 ∪Q2 ∪R2 ∪Q1.

v1

v2

A R1 C R2

v3

v4

Q1

Q2

B

x =

Figure 3.19: Subpaths of P1, P2, and P3 shown by the blue dashed, red dotted, and green dash-dotted

lines respectively. An example of cycles A,B and C. The {blue}–paths R1 and R2 are maximal paths

of A ∩C and C ∩B respectively. Also shown are the {green}–path Q1 of C and {blue, red}–path Q2

of C, which are internally disjoint from R1 and R2.

By Property 1, there does not exist an edge e ∈ E(Q1 ∪ Q2) such that col(e) = {blue}. Since

col(v2) = {blue, red} and C is a {blue, green}–cycle, it follows by Proposition 3.5 (i) that Q2 is a totally

{blue, red}–path. Recall that col(f1) = {green}. Since f1 6∈ E(R1) ∪ E(R2) ∪ E(Q2), then f1 ∈ E(Q1).

It follows by Proposition 3.5 (i) that Q1 is a {green}–path. An example of cycles A,B, and C is shown

in Figure 3.19. Note that Q2 may be a single vertex, and that E(Q1∪Q2)∩E(A∪B) may be non-empty.

Next, we follow a similar line of deductions for cycle B. Consider the edges of E(B)\E(R2). By

Proposition 3.5 (i) and (ii), there exists an edge e3 ∈ E(B)\E(R2) such that col(e3) = {blue}. Since

e3 6∈ E(A)∪E(C)∪E(S), then e3 ∈ E(D). Let R3 be the maximal path of B ∩D such that e3 ∈ E(R3),

and let v5 and v6 be the endpoints of R3, where these vertices are in the order v3, v4, v5, v6, v3 in B.

By Lemma 3.7, R3 is a {blue}–path. Let Q3 (respectively Q4) be the path of B with endpoints v3

and v6 (respectively v4 and v5) that has no interior vertices that are vertices of R2 or R3. Then

B = R2 ∪Q3 ∪R3 ∪Q4.

By Property 1, there does not exist an edge e ∈ E(Q3) ∪ E(Q4) such that col(e) = {blue}. Since

col(v4) = {blue, green} and B is a {blue, red}–cycle, it follows by Proposition 3.5 (i) that Q4 is a totally

{blue, green}–path. By Proposition 3.5 (i) and (ii), there is an edge f2 ∈ E(B) such that col(f2) = {red}.

74

v1

v2

A R1 C R2

v3

v4

Q1

Q2

B

v5

v6

R3

Q4

Q3

D

Figure 3.20: Subpaths of P1, P2, and P3 shown by the blue dashed, red dotted, and green dash-dotted

lines respectively. An example of cycles A,B,C and D. The {blue}–paths R1, R2, and R3 are maximal

paths of A∩C, C ∩B, and B ∩D respectively. The paths Q1, . . . , Q4 and R1, . . . R3 are all internally

disjoint. The colours of paths Q1 and Q2 of C and paths Q3 and Q4 of B are also shown.

Then f2 ∈ E(Q3) and hence Q3 is a {red}–path. An example of cycles A,B,C, and D is shown in Figure

3.20. Note that Q4 may be a single vertex, and that E(Q3 ∪Q4) ∩ E(C ∪D) may be non-empty.

Next, consider the edges of E(D)\E(R3). As with cycle C and path R1, there exists an edge e4 ∈

E(D)\E(R3) such that col(e4) = {blue}. Since e4 6∈ E(C) ∪ E(B) ∪ E(S), then e4 ∈ E(A). Let R4 be

the maximal path of D∩A such that e4 ∈ E(R4), and let v7 and v8 be the endpoints of R4, where these

vertices are in the order v5, v6, v7, v8, v5 in D. By Lemma 3.7, R4 is a {blue}–path. Let Q5 (respectively

Q6) be the path in D with endpoints v5 and v8 (respectively v6 and v7) that has no interior vertices that

are vertices of R3 or R4. Then D = R3 ∪Q6 ∪R4 ∪Q5.

By Property 1, there does not exist an edge e ∈ E(Q5 ∪Q6) such that col(e) = {blue}. Similarly to

paths Q2 and Q1 respectively, Q6 is a {blue, red}–path and Q5 is a {green}–path. Note that Q6 may be

a single vertex, and that E(Q5 ∪Q6) ∩ E(A ∪B) may be non-empty.

Let Q7 (respectively Q8) be the path in A with endpoints v7 and v2 (respectively v8 and v1) that has

no interior vertices that are vertices of R4 or R1. Then A = R1∪Q7∪R4∪Q8. Similarly to path Q4, Q8

is a totally {blue, green}–path. An example of cycles A,B,C, and D is shown in Figure 3.21. However,

now Ȟ has a blue cycle v1R1v2Q2v3R2v4Q4v5R3v6Q6v7R4v8Q8v1, a contradiction.

75

v1

v2

A
R1 C R2

v3

v4

Q1

Q2

B

v5

v6

R3

Q4

Q3

DD R4

v7

v8

Q5

Q6

Q8

Q7

Figure 3.21: Subpaths of P1, P2, and P3 shown by the blue dashed, red dotted, and green dash-dotted

lines respectively. An example of cycles A,B,C and D, where D is the outer cycle, showing a {blue}

cycle in the graph. The {blue}–paths R1, R2, R3, and R4 are maximal paths of A∩C, C ∩B, B ∩D,

and D ∩A respectively. The paths Q1, . . . , Q8 and R1, . . . , R4 are all internally disjoint.

3.5.5 The mod 2 sum of five cycles

In this section, we show that no cycle in a set B ∈ B of six bi-coloured cycles of Ȟ is the mod 2 sum of

the other five cycles in the set.

Lemma 3.20. Let B ∈ B be a set of six bi-coloured cycles of Ȟ. Let F ∈ B be a {c1, c2}–cycle where

c1, c2 ∈ col(Ȟ) and let A,B,C,D,E ∈ B\{F}. Then A⊕B⊕C⊕D⊕E is not a {c1, c2}–subgraph of Ȟ.

Proof. By Proposition 3.13, set B and cycles A,B,C,D,E, and F will always exist. Assume without

loss of generality that c1 and c2 are red and green respectively. Without loss of generality, let E be the

{red, green}–cycle in B\{F}. Let S = A⊕B⊕C⊕D⊕E and let S′ = A⊕B⊕C⊕D. By Lemma 3.19, S′

is not a {red, green}–subgraph of Ȟ. Then there is an edge e ∈ E(S′) with col(e) = {blue}. However, e is

not an edge of cycle E, and hence e is an edge of S = S′⊕E. Therefore S is not a {red, green}–subgraph

of Ȟ.

76

3.5.6 Independent tri-coloured cycle

We now consider a tri-coloured cycle of Ȟ (which always exists by Lemma 3.9) and prove that this cycle

is independent of a set B ∈ B of six bi-coloured cycles of Ȟ.

Lemma 3.21. There exists a tri-coloured cycle T of Ȟ that is not a bi-coloured cycle and there exists a

set B ∈ B of six bi-coloured cycles of Ȟ such that B ∪ {T} is independent.

Proof. By Lemma 3.9 and Proposition 3.13 respectively, cycle T and set B will always exist in Ȟ. By

Lemma 1.1, each pair of the longest paths P1, P2, and P3 have a common vertex. Let x, y, z ∈ V (Ȟ)

be three such vertices, where, without loss of generality, we assume that col(x)={blue, red}, col(y) =

{blue, green}, and col(z) = {red, green}. Then there is a tri-coloured cycle T of Ȟ that is the union of

{blue}–path xP1y, {red}–path xP1z, and {green}–path yP2z, which are internally disjoint. An example

of cycle T is shown in Figure 3.22 (which is the same as Figure 3.8, repeated here for reference).

x

y z

T
xP1y

yP3z

xP2z

Figure 3.22: Subpaths of P1, P2, and P3 shown by the blue dashed, red dotted, and green dash-dotted

lines respectively. An example of cycle T consisting of {blue}–path xP1y, {red}–path xP2z, and

{green}–path yP3z.

By Lemma 3.9, cycle T is not a bi-coloured cycle. We call cycles that are the union of a {blue}–path,

a {red}–path, and a {green}–path, but are not bi-coloured, 3-segment cycles.

Assume that it is not the case that there exists a tri-coloured cycle T of Ȟ and a set B ∈ B of six

bi-coloured cycles of Ȟ such that B ∪ {T} is independent. Then for every tri-coloured cycle T of Ȟ and

every set B ∈ B of of six bi-coloured cycles of Ȟ, the set B ∪ {T} is dependent, that is, T is the mod 2

sum of a subset of the cycles in B.

Consider Ȟ and 3-segment cycle T . Let C be the set of all bi-coloured cycles of Ȟ Let the endpoints

of path P1 of Ȟ be u1 and v1. Consider the maximal {blue}–path of T with subpath xP1y, and let its

77

endpoints be x1 and y1, where these vertices are in the order u1, x1, x, y, y1, v1 in P1, as shown in the

example in Figure 3.23. Similarly define u2, v2, x2, and z2 for P2, where these vertices are in the order

u2, x2, x, z, z2, v2 in P2. Similarly define u3, v3, y3, and z3 for P3, where these vertices are in the order

u3, y3, y, z, z3, v3 in P3.

x

y z

xP1y

yP3z

xP2zT

x1

y1

u1

v1

Figure 3.23: Subpaths of P1, P2, and P3 shown by the blue dashed, red dotted, and green dash-dotted

lines respectively. An example of cycle T and {blue}–path P1, showing vertices x1 and y1 that are

the endpoints of the maximal {blue}–path of T with subpath xP1y and endpoints u1 and v1 of the

path P1.

Note that ys1 ∈ V (yP3z). Let e1 ∈ E(y1P3z2) incident to y1; then col(e1) = {green}. Let C be

a bi-coloured cycle of Ȟ such that e1 ∈ E(C). Such a cycle exists since T ∪ B is dependent for every

B ∈ B. We consider all configurations of this cycle, and show that, in each case that is possible, there is

a 3-segment cycle T1 such that T = T1 ⊕ C ⊕ S where S is a (possibly empty) set of bi-coloured cycles

in C\{C}. Since there is a set of at most six bi-coloured cycles in C such that T is the mod 2 sum of

these cycles, then T1 is the mod 2 sum of at most five bi-coloured cycles in C\{C}. We then repeat this

process for T1 and subsequent 3-segment cycles, obtaining a 3-segment cycle that is (the mod 2 sum of)

a bi-coloured cycle.

Case 1: Suppose that C is a {red, green}–cycle. Since y3P3y1 is a totally {blue, green}–path, neither

x2P2u2 nor z2P2v2 has a vertex that is a vertex of y3P3y1. Therefore there is a maximal subpath of

y3P3u3 with endpoint y3 that is a subpath of C. Let w be the other endpoint of this subpath. Then

w ∈ V (P2).

Case 1a: Suppose that w ∈ V (x2P2z2). Let t ∈ V (x2P1y3)∩V (y3P3w) where V (x2P1t)∩V (y3P3w) = {t}.

Then C = wP2zP3w and T1 = wP3tP1xP2w. An example of cycles T, T1, and C in this case is shown in

78

Figure 3.24(i).

y1=y

w

C

T T1

t

e1

x=x1=x2

=y3
z=z2
=z3

t1=y3

x=x1=x2

y1=y z=z2

w

(iii)

C

T T1

t1=y3

e1

(iv)

y1=y

w
C

T

T1

e1

x=x1=x2

z=z2
=z3=s

t2

=z3

=t2

s

t1=y3

y1=y

w
C

T

T1

e1

x=x1=x2

z=z2
=z3=s

t2

(ii)

Case 1b

Case 1c

Case 1a

Case 1b

(i) x=x1=x2x=x1=x2

Figure 3.24: Subpaths of P1, P2 and P3 shown by the blue dashed, red dotted, and green dash-dotted

lines respectively. Examples of cycle T (outer cycle in (i) – (iv)), {red, green}–cycle C, and 3-segment

cycle T1 in (i) case 1a, (ii) and (iii) case 1b, and (iv) case 1c.

Case 1b: Suppose that w ∈ V (z2P2v2). Let t1 ∈ V (x2P1y3) ∩ V (y3P3w) where V (x2P1yy) ∩

V (t1P3w) = {t1}. Let t2 ∈ V (x2P1y3) ∩ V (x2P2w) where V (t1P1t2) ∩ V (x2P2w) = {t2}. Let s ∈

V (z2P2w)∩V (y3P3z2) where V (sP2w)∩V (y3P3z2) = {s}. Then C = wP2sP3w and T1 = wP3t1P1t2P2w.

Two examples of cycles T, T1, and C in this case are shown in Figure 3.24(ii) and (iii).

Case 1c: Suppose that w ∈ V (x2P2u2). Let t1 ∈ V (x2P1y3) ∩ V (y3P3w) where V (x2P1y3) ∩

V (t1P3w) = {t1}. Let t2 ∈ V (x2P1y3) ∩ V (x2P2w) where V (t1P1t2) ∩ V (x2P2w) = {t2}. Let s ∈

V (x2P2w)∩V (y3P3z2) where V (sP2w)∩V (y3P3z2) = {s}. Then C = wP2sP3w and T1 = wP3t1P1t2P2w.

An example of cycles T, T1, and C in this case is shown in Figure 3.24(iv)s.

Case 2: Suppose that C is a {blue, green}–cycle.

Case 2a: Suppose that E(z3P3v3)∩E(x2P1y3) 6= ∅. Then there is a vertex w ∈ V (z3P3v3)∩V (x2P1y3)

where V (z3P3w)∩V (x2P1y3) = {w}. Let t ∈ V (x1P2z3)∩V (z3P3w) where V (x1P2t)∩V (y3P3w) = {t}.

Then C = wP1yP3w and T1 = wP3tP2xP1w. An example of cycles T, T1, and C in this case is shown in

79

Figure 3.25(i).

=y3
y1=y

w

C

T
T1

e1

x=x1=x2

z=z2
=z3

t

(i)

=y3

(ii)

y1=y
w

C

T

T1

e1

x=x1=x2

z=z2
=z3

t

=y3
y1=y

w

C

T

T1

e1

x=x1=x2

z=z2
=z3

t

(iii)

(iv)

=y3
y1=y

w
C

T

T1

e1

x=x1=x2

z=z2
=z3=t2

t1

(v)

=y3
y1=y

w
C

T

T1

e1

x=x1=x2

z=z2
=z3=t2

t1

Case 2a

Case 2b Case 2c

Case 2d Case 2e

Figure 3.25: Subpaths of P1, P2, and P3 shown by the blue dashed, red dotted, and green dash-dotted

lines respectively. An example of cycle T (outer cycle in (i) – (v)), {blue, green}–cycle C, and 3-

segment cycle T1 in each of cases 2a – 2e, shown in (i) – (v) respectively.

Case 2b: Suppose that V (x1P1u1) ∩ V (y1P3z2) 6= ∅ and case 2a does not occur. Then there is a

vertex w ∈ V (x1P1u1)∩V (y1P3z2) where V (y1P3z2)∩V (x1P1w) = {w}. Let t ∈ V (x1P2z3)∩V (x1P1w)

where V (z3P2t) ∩ V (x1P1w) = {t}. Then C = wP1yP3w and T1 = wP3zP2tP1w. An example of cycles

T, T1, and C in this case is shown in Figure 3.25(ii).

Case 2c: Suppose that V (y3P1v1)∩V (y1P3z2) 6= ∅ and cases 2a and 2b do not occur. Then there is a

vertex w ∈ V (y3P1v1)∩ V (y1P3z2) where V (y1P3z2)∩ V (y3P1w) = {w}. Let t ∈ V (x1P2z3)∩ V (y3P3w)

where V (z3P2t) ∩ V (y3P3w) = {t}. Then C = wP1yP3w and T1 = wP3zP2tP1w. An example of cycles

80

T, T1, and C in this case is shown in Figure 3.25(iii).

Case 2d: Suppose that V (x1P1u1) ∩ V (z2P3v2) 6= ∅ and cases 2a, 2b, and 2c do not occur. Then

there is a vertex w ∈ V (x1P1u1)∩V (z2P3v2) where V (x1P1w)∩V (z2P3v2) = {w}. Let t1 ∈ V (x1P1w)∩

V (x1P2z3) where V (t1P1w) ∩ V (x1P2z3) = {t1}. Let t2 ∈ V (z3P3w) ∩ V (x1P2z3) where V (t2P3w) ∩

V (x1P2z3) = {t2}. Then C = wP1yP3w and T1 = wP3t2P2t1P1w. An example of cycles T, T1, and C

in this case is shown in Figure 3.25(iv).

Case 2e: Suppose that V (y1P1v1) ∩ V (z2P3v2) 6= ∅ and cases 2a, 2b, 2c, and 2d do not occur.

Then there is a vertex w ∈ V (x1P1u1) ∩ V (z2P3v2) where V (y1P1w) ∩ V (z2P3v2) = {w}. Let t1 ∈

V (y1P1w) ∩ V (x1P2z3) where V (t1P1w) ∩ V (x1P2z3) = {t1}. Let t2 ∈ V (z3P3w) ∩ V (x1P2z3) where

V (t2P3w) ∩ V (x1P2z3) = {t2}. Then C = wP1yP3w and T1 = wP3t2P2t1P1w. An example of cycles

T, T1, and C in this case is shown in Figure 3.25(v).

If there is a {blue, green}–cycle C2 with e1 ∈ E(C2) such that there is an edge f ∈ E(C2) with

f ∈ E(y3P3u3) and f 6∈ E(P1) ∪ E(P2), then one of the previous subcases of case 2 also occurs.

Now, in every case, there is a bi-coloured cycle C and a 3-segment cycle T1 such that T = T1⊕C⊕S

where S is a (possibly empty) set of bi-coloured cycles in C\{C}. Since there is a set of at most six

bi-coloured cycles in C such that T is the mod 2 sum of these cycles, then T1 is the mod 2 sum of at

most five bi-coloured cycles in C\{C}. Repeating this process for T1 and subsequent 3-segment cycles,

we obtain a 3-segment cycle that is (the mod 2 sum of) a bi-coloured cycle, a contradiction.

3.5.7 Proof of Theorem 3.1

We first prove the following theorem.

Theorem 3.22. The graph Ȟ has cyclomatic number at least 7.

Proof. By Proposition 3.13 there exists at least one set B ∈ B of six bi-coloured cycles of Ȟ consisting

of two {blue, red}–cycles, two {blue, green}–cycles, and two {red, green}–cycles such that, for each pair

c1, c2 ∈ col(Ȟ), the two {c1, c2}–cycles in B are both [1-c1, c2]–cycles or both [c1, 1-c2]–cycles. Let

F ∈ B be a {red, green}–cycle without loss of generality. By Lemmas 3.16 and 3.18 to 3.20, there is no

B′ ⊆ B\{F} such that F is the mod 2 sum of the cycles in B′. Hence the six cycles in B are independent

for every set B ∈ B. By Lemmas 3.9 and 3.21 there is a tri-coloured cycle C of Ȟ that is not a bi-coloured

81

cycle and there exists a set B ∈ B such that C is independent of the cycles in B. Then by Lemma 3.4,

Ȟ has cyclomatic number at least 7.

We now return to the main result of this chapter, restated below.

Theorem 3.1. Let G be a graph. If G has cyclomatic number at most 6 then every three longest paths

of G have a common vertex.

Proof. Assume that there exist three longest paths P1, P2, and P3 of G that do not have a common

vertex. Let G′ be the subgraph P1 ∪ P2 ∪ P3 of G. Then G′ is a counterexample to Conjecture 1.

By Theorem 3.22, a minimal (with respect to edges) counterexample to conjecture Conjecture 1 has

cyclomatic number at least 7, and hence G′ has cyclomatic number at least 7. Since G′ is a subgraph of

G, then G also has cyclomatic number at least 7. Therefore, in every graph with cyclomatic number at

most 6, every three longest paths have a common vertex.

3.6 Concluding Remarks

In this chapter, we have shown that Conjecture 1 holds for graphs with cyclomatic number at most 6,

that is, we have proved that in a graph with n vertices and at most n + 5 edges, every three longest

paths have a common vertex. In the course of proving this, we also prove that a minimal (with respect

to edges) counterexample to Conjecture 1 has cyclomatic number at least 7.

We first observe that our result cannot be extended to all longest paths. The graph shown in Figure

3.26, which was found by Schmitz [31] and is discussed in Section 1.2, has cyclomatic number 3 and does

not have a Gallai vertex.

It is natural to ask whether our result can be extended to graphs with higher cyclomatic number.

Recall that Ȟ is a graph that is the union of its three longest paths, P1, P2, and P3, and these paths do

not have a common vertex. There are two steps to extending the methods used in this chapter: first,

proving that there are more cycles in Ȟ and, second, proving that these cycles are independent of the

existing set of seven independent cycles of Ȟ.

Step 1: One way to show that there are more cycles in Ȟ is to show that there is a seventh bi-coloured

cycle in Ȟ, that is, to show that there are at least three cycles in at least one pair of the three longest

82

Figure 3.26: A planar graph with cyclomatic number 3 that does not have a Gallai vertex, found by

Schmitz [31].

paths of Ȟ. This would extend Axenovich’s result, Lemma 3.8, that there are at least two cycles in

every pair of the longest paths of Ȟ. However, from our initial investigations, this result is not easily

extended. Another way to show that there are more cycles in Ȟ would be to show that there is more

than one tri-coloured cycle of Ȟ that is not a bi-coloured cycle.

Step 2: If it can be proved that there are more cycles in Ȟ, it then remains to prove that these

cycles are independent of the existing set of seven independent cycles of Ȟ. This gets progressively more

difficult the more cycles Ȟ has. For additional bi-coloured cycles, results are required for the sum of

more than five bi-coloured cycles. There are also extra configurations to be considered in several of the

existing results in Section 3.5, which become increasingly complex and numerous, and the methods used

in this chapter do not easily extend to these cases. The proof that there is a tri-coloured cycle in Ȟ that

is independent of a set of six bi-coloured cycles of Ȟ is also not easily extended to more tri-coloured

cycles. Since the mod 2 sum of a tri-coloured cycle and a bi-coloured cycle that are not edge-disjoint is a

tri-coloured cycle, which is central to the proof of Lemma 3.21, proving that there is a tri-coloured cycle

of Ȟ that is independent of the existing seven independent cycles of Ȟ requires a different approach.

Therefore, additional techniques are required to show that there are more than seven independent cycles

of Ȟ.

In Chapter 4, we develop techniques that allow us to independently verify Theorem 3.1 using com-

putational methods.

83

Chapter 4

Computational Investigations

4.1 Introduction

In this chapter, we use computational methods to determine whether every graph has a Gallai vertex

for two specific classes of graphs, and whether every three or six longest paths have a common vertex

for several other classes of graphs. In 2013, Brinkman and van Cleemput (see [32]) used computational

methods to show that every graph with at most 11 vertices has a Gallai vertex. Additionally, McKay

[28] has used computers to show that there is only one graph with 12 vertices that does not have a Gallai

vertex, the graph discussed in Section 1.3.3.

Our approach allows us to obtain results about an infinite set of graphs by testing a finite subset

of that set. Recall that two graphs G1 and G2 are homeomorphic if there exists a subdivision of G1

that is isomorphic to a subdivision of G2. Equivalently, G1 and G2 are homeomorphic if there exists a

graph H such that G1 and G2 are subdivisions of H. An example of such graphs is shown in Figure

4.1. Note that this implies that G1 and H are homeomorphic, as are G2 and H. All graphs in this

chapter are connected unless stated otherwise. Let G be a graph and let G be the set of graphs that are

homeomorphic to G. If H is the smallest (with respect to edges) simple graph in G, then we call H a

simple reduced graph. A simple reduced graph H of a set G can be used to represent all of the simple

graphs in G by assigning a weight to each of its edges, as described further in Section 4.2.1.

Let G be a graph, let G be the set of simple graphs homeomorphic to G, and let H be a simple

84

G1 G2

H

Figure 4.1: Two homeomorphic graphs G1 and G2 that are subdivisions of the graph H.

reduced graph of G. We generate a set of inequalities on the weights of the edges of H and walks of H

that are maximal with respect to particular properties, and use a program that enumerates the vertices

of the polyhedron satisfying this set of inequalities. We then check each vertex of the polyhedron, which

corresponds to a graph in G, to determine whether the longest paths of the graph have a common vertex.

If every graph corresponding to a vertex of the polyhedron has a Gallai vertex, then every simple graph

in G has a Gallai vertex. If this is not the case, we can investigate further to determine which of the

graphs in G do not have a Gallai vertex. The theory behind this method is detailed further in Section

4.2, with a summary of the implementation in Section 4.3, and results presented in Section 4.4.

In Section 4.5, we describe an alternative method that uses linear programming instead of the vertex

enumeration of a polyhedron. We provide a number of properties of a (not necessarily simple) reduced

graph that has a subdivision G with three longest paths that have no common vertex and where G is

minimal with respect to edges. We then present several results using this linear programming method.

Lastly, we provide concluding remarks in Section 4.6.

4.2 Theory

Let G be a simple graph. The opposite of subdivision, smoothing a degree two vertex w ∈ V (G), is

the operation of deleting w and its incident edges uw and wv and inserting an edge uv. A chain of G

is a path of G whose interior vertices have degree two. Two distinct chains of G are parallel if they

have a pair of common endpoints. Note that two parallel chains are internally disjoint by definition of a

chain. Let G1 be a simple graph homeomorphic to G such that G is a subdivision of G1. Then G can

85

be obtained from G1 by deleting each edge e = uv of G1 and inserting a chain Q of length at least one

with endpoints u and v. We say that edge e of G1 corresponds to chain Q of G, and Q corresponds to

e. Note that V (G1) ⊆ V (G) and degG1
(v) = degG(v) for all v ∈ V (G1).

4.2.1 Homeomorphic graphs

Let G be a simple graph and let H be a simple reduced graph homeomorphic to G. The graph H can

be obtained from G by repeatedly smoothing degree two vertices of G where such smoothing does not

result in a non-simple graph. Additionally, H is unique, up to isomorphism. To see this, observe that

the only case in which the order of smoothing vertices of degree two matters is when smoothing degree

two vertices of a set of parallel chains. Suppose that G has a set of k ≥ 2 parallel chains with a pair

of common endpoints u, v ∈ V (G) and that there is no edge uv ∈ E(G). Then one of these k chains

corresponds to the edge uv of H, while the remaining k − 1 chains correspond to chains of length two

of H. However, regardless of which of these chains of G corresponds to the edge uv of H, H has an edge

uv and k − 1 chains of length two with a pair of common endpoints u and v, and therefore H is unique

up to isomorphism.

Suppose that H has n vertices and m edges, and let e1, . . . , em be the edges of H. Assign to each edge

ei ∈ E(H) (1 ≤ i ≤ m) a positive integer weight w(ei). Let GH be the set of simple graphs homeomorphic

to H, and let G ∈ GH . The graph G corresponds uniquely to a set of positive integer edge weights w

on the edges of H, where G can be obtained from H by replacing each edge e ∈ E(H) with a chain of

length w(e). For example, in Figure 4.2, the graphs G1 and G2 correspond to the edge weighted graphs

directly below. To obtain G1 from H, the edge with weight 3 is replaced by a chain of length 3. Note

that every set of positive integer edge weights on H corresponds uniquely to a graph in GH .

We next define a set of walks of H that corresponds to a set of maximal paths of a graph in GH .

4.2.2 Maximal walks and paths

Let H be a simple reduced graph. We consider walks W = v1v2 . . . vk of H (k ≥ 1) where the vertices

and edges of W are unique except that:

(i) v1 is one of v2, . . . , vk−1 unless it is a leaf,

86

G1 G2

3

1

1

1
1

1

2
2

Figure 4.2: The two graphs G1 and G2 in GH from Figure 4.1, along with their corresponding edge

weights on the graph H.

(ii) vk is one of v2, . . . , vk−1 unless it is a leaf, and

(iii) we may have v1v2 = vk−1vk.

We define W(H) to be the set of such walks W that are maximal with respect to these conditions. Let

W ∈ W(H). If (iii) holds for W , we say that the ends of W overlap. Note that we do not have v1 = vk

as then W is not maximal; we instead have v1 = vk−1 and vk = v2. An endpoint of W that is not a leaf

is repeated.

We differentiate five types of walks in W(H) based on properties of their endpoints. For a walk

W = v1v2 . . . vk (k ≥ 1) in W(H):

(a) both v1 and vk are leaves,

(b) v1 or vk is a leaf and the other is repeated,

(c) both v1 and vk are repeated and v1 = vk,

(d) both v1 and vk are repeated but v1 6= vk and the ends of W do not overlap, or

(e) both v1 and vk are repeated and the ends of W overlap.

Figure 4.3 shows examples of these five different types of walks in W(H) for a graph H.

Let GH be the set of simple graphs homeomorphic to H. Let G ∈ GH and let W ∈ W(H). Then

there is a walk WG of G corresponding to the walk W of H, obtained by replacing each edge of W with

the corresponding chain of G. Examples of this are shown in Figure 4.4 in the left and middle columns.

Let W(G) be the set of such walks of G obtained from the walks in W(H). Note that the five types

of walks in W(H) can be defined analogously for the walks in W(G), and that a walk W ∈ W(H) and

87

u1 u2

u3

u4

u5

u6 u7 u1 u2

u3

u4

u5

u6 u7

u1 u2

u3

u4

u5

u6 u7

u1 u2

u3

u4

u5

u6 u7

u1 u2

u3

u4

u5

u6 u7

(i) (ii)

(iii)

(iv) (v)

W = u1u2u4u6u7 W = u4u3u2u4u6u7

W = u4u3u2u4u6u5u4

W = u6u3u2u4u6u5u4 W = u6u3u2u5u6u3

Type (a) Type (b)

Type (c)

Type (d) Type (e)

Figure 4.3: Examples of the five different types of walks (a) – (e) in W(H) shown in (i) – (v)

respectively for a graph H (walks shown with blue dashed lines).

the corresponding walk WG ∈ W(G) are of the same type. To obtain the walk W ∈ W(H) from the

corresponding walk WG ∈ W(G), replace each minimal subpath of WG whose endpoints are in V (H)

with an edge.

We obtain a path P of G from a walk WG ∈ W(G) by the following operations, performed once each

in order.

(1) If the ends of WG do not overlap, then for each of the two endpoints of WG, if the endpoint is

repeated, then remove the endpoint, as shown in the examples in Figure 4.4(i) and (ii).

(2) If the ends of WG overlap, then we have the case v1 = vk−1 and vk = v2. Remove vertices

alternately from the two ends of WG, stopping when no vertices are repeated, as shown in the

example in Figure 4.4(iii). If there is more than one possible resulting path, pick one without loss

of generality (as discussed later, in Lemma 4.3).

We say that P is a path of G corresponding to W and WG. Note that the vertices in V (H) ∩ V (W) are

also vertices of WG and P . Let P(G) be the set of all such paths P that are maximal paths of G.

Note that not all paths P obtained by performing operations (1) and (2) on a walk in W(G) are

88

maximal paths of G. If at least one endpoint of P is a vertex of V (H) that is not a leaf of G, then P

may not be a maximal path of G. This may occur when at least one end of WG is repeated but the

ends do not overlap, and when the ends of WG overlap and the chain of G with endpoints v1 and v2 has

length at most two. An example of the latter situation is shown in Figure 4.4(iv). However, if P is not a

maximal path of G, there is a maximal path Q of G such that P is a subpath of Q. Furthermore, there

exists such a Q where Q ∈ P(G). To see this, we construct a walk W1 of G such that W1 corresponds to

a walk W2 ∈ W(H) and corresponds to path Q. Let y1 and y2 be the endpoints of Q. If y1 is a leaf, let

Q1 = y1. If y1 is an interior vertex of a minimal chain of G whose endpoints are in V (H), let Q1 be this

chain. If y1 is a vertex of V (H), then since Q is maximal there is a vertex x1 of G incident to y1 such

that x1 ∈ V (H)∩ V (Q). In this case, let Q1 = y1x1. Similarly define Q2 for y2. Now W1 = Q1y1Qy2Q2

is a walk of G whose endpoints are in V (H), and the corresponding walk W2 of H satisfies the conditions

of a walk in W(H).

To obtain a walk in W(H) corresponding to a path in P(G), we reverse this process. Let P ∈ P(G),

and let its two endpoints be u and v. First note that since G is a subdivision of H, then V (H) ⊆ V (G).

Since P is a maximal path of G, then every vertex of G adjacent to u is in V (P). Let x ∈ V (G) be

adjacent to u with xu 6∈ E(P). If x 6∈ V (H), then x has degree two, hence x is not an interior vertex

of P , and x = v. Therefore x ∈ V (H) or x = v. Note that if P has length one, then G = K2 = H and

every graph homeomorphic to H has a Gallai vertex, so we do not consider this case. We obtain a walk

WG ∈ W(G) from P as follows:

(1) If uv ∈ E(G)\E(P), then we have the case in which the ends of WG overlap. Let Q be the path of

G with u, v ∈ V (Q) and endpoints y, z ∈ V (H) where V (Q)∩ V (H) = {y, z}, and assume without

loss of generality that these vertices are in the order y, u, v, z in Q. (Note that it may be the case

that u = y or v = z.) Then let WG be the walk zQuPvQy.

(2) If uv 6∈ E(G), then we have one of the other four types of walks in W(G). If u is not a leaf of G,

let y ∈ V (G) adjacent to u where uy 6∈ E(P). By our earlier reasoning, y ∈ V (H). If there is more

than one such vertex y, pick one without loss of generality (as discussed later, in Lemma 4.3). Let

W1 be the walk P ∪ uy. If u is a leaf of G, let W1 = P . If v is not a leaf of G, define z similarly to

y, and let WG be the path W1 ∪ vz. As before, if there is more than one such vertex z, pick one

89

u1 u2

u3

u4

u5

u6 u7

u1 u2

u3

u4

u5

u6 u7

u1 u2

u3

u4

u5

u6 u7

(i)

(ii)

(iii)

u1 u2

u3

u4

u5

u6 u7 u1 u2

u3

u4

u5

u6 u7

u1 u2

u3

u4

u5

u6 u7 u1 u2

u3

u4

u5

u6 u7

u1 u2

u3

u4

u5

u6 u7 u1 u2

u3

u4

u5

u6 u7

u1 u2

u3

u4

u5

u6 u7

H

H

H

G1

G2

G3

G1

G2

G3

G4

W = u4u3u2u4u6u7

W = u6u3u2u4u6u5u4

W = u6u3u2u5u6u3

Graph H and
a walk in W(H)

Corresponding walk
in a graph in GH

Corresponding path

(iv)
u1 u2

u3

u4

u5

u6 u7

H

W = u6u3u2u5u6u3

u1 u2

u3

u4

u5

u6 u7

G4

Figure 4.4: (i), (ii), (iii), and (iv) show walks in W(H) in the graph H (left, walks shown with blue

dashed lines), the corresponding walks in the graphs G1, G2, G3, and G4 in GH respectively (middle;

only the vertices of H are labeled), and the corresponding paths in G1, G2, G3, and G4 (right).

without loss of generality. If v is a leaf of G, let WG = W1.

Now WG is a walk in W(G) corresponding to P .

90

4.2.3 Polyhedra

In this section, we describe a system of linear inequalities representing the edge weights of the graph

H and the walks in W(H). We then describe a geometrical object defined by these inequalities, whose

properties are crucial to our method.

We first require the following definition. A set X of vectors in Rn is a (convex) polyhedron if X =

{x | Ax ≤ b} for some matrix A and vector b. We say that Ax ≤ b determines or defines X.

For a walk W = v1v2 . . . vk in W(H) (k ≥ 1), let α(W) ∈ {0, 1, 2} be defined by:

α(W) =



0 if both v1 and vk are leaves;

1 if exactly one of v1 or vk is a leaf, or the ends of W overlap;

2 otherwise.

As discussed in Section 4.2.1, a set of values for the weight variables w(e), e ∈ E(H), corresponds to a

graph G ∈ GH . For a walk W ∈ W(H), the length of a path of G corresponding to W is
∑

e∈W w(e)−

α(W). We also require another variable `, representing an upper bound on the length of the paths of G.

We now have the following system of inequalities representing the graph H and the set of walks W(H).

Definition 1. The polyhedron of H is the set of vectors in Rm+1, where m = |E(H)|, satisfying the

following system of inequalities (constraints).

Variables: w(e) for each e ∈ E(H), and `

Constraint 1: w(e) ≥ 1 for each edge e of H,

Constraint 2: ` ≥ 1,

Constraint 3:
(∑

e∈W w(e)
)
− α(W) ≤ ` for each walk W ∈ W(H).

By the well-known decomposition theorem for polyhedra (see [45, Theorem 1.2], for example), a

polyhedron is determined by its set of vertices vi (i ≥ 1) and its set of rays rj (j ≥ 0). Then, a point x

in the polyhedron of H can be expressed as the sum of a convex combination of the vertices and a linear

combination of the rays of the polyhedron:

x =
∑
i

λiv
i +
∑
j

µjr
j

where λi ≥ 0,
∑

i λi = 1, and µj ≥ 0.

91

Let the edges of H be e1, e2, . . . , em (m ≥ 1). A point x in the polyhedron is an (m+ 1)-dimensional

vector (w(e1), . . . , w(em), `). A walk W ∈ W(H) is extremal at x if Constraint 3 is satisfied with equality

for W and the values of w(ek) in x.

For a point x in the polyhedron whose entries are all positive integers, the values of the w(ek) in x

correspond to a unique graph Gx ∈ GH , and the value of ` in x, denoted `x (= xm+1), is an upper bound

on the length of the paths of Gx. If `x is a tight upper bound on the length of the paths of Gx, that is,

there is at least one extremal walk W ∈ W(H) at the point x, then the set of walks in W(H) that are

extremal at x corresponds to the set of all longest paths of Gx.

Note that for each graph G ∈ GH , there is a point y in the polyhedron such that Gy = G and `y is

the length of the longest path(s) of G (that is, `y is a tight upper bound on the lengths of the paths

of G). For a walk W ∈ W(H), let sx(W) be the length of the corresponding walk in W(Gx), that is,

sx(W) =
∑

k:ek∈W

xk.

Then the length of the corresponding path in P(Gx) is

sx(W)− α(W) =
(∑
k:ek∈W

xk
)
− α(W).

From this, we can determine which of the paths in P(Gx) are of length `x and then determine whether

these paths have a common vertex.

The following lemma is essential to our method as it allows us to restrict our interest to the vertices

of the polyhedron, a finite subset of the points in the polyhedron.

Lemma 4.1. Let H be a simple reduced graph. Let the polyhedron of H have vertices vi (i ≥ 1) and

rays rj (j ≥ 0). Let x be a point in the polyhedron of H,

x =
∑
i

λiv
i +
∑
j

µjr
j

where λi ≥ 0,
∑

i λi = 1, and µj ≥ 0.

For each i, if λi > 0, then the set of walks in W(H) that are extremal at x is a subset of the set of

walks in W(H) that are extremal at vi.

Proof. Let W ∈ W(H). Let

fW (x) = `x − sx(W)

92

and note that this function is linear. Suppose that W is extremal at x. Then

`x − (sx(W)− α(W)) = 0

and therefore

fW (x) + α(W) = 0.

Note that, for every point w in the polyhedron, since `w is a upper bound on sw(W)−α(W), it is always

the case that fW (w) + α(W) ≥ 0.

Suppose that the vertices and rays defining the polyhedron include at least one ray. Let λi ≥ 0,∑
i λi = 1, and µj ≥ 0 and let x1 be the point in the polyhedron

x1 =
∑
i

λiv
i +
∑
j

µjr
j .

We show that the set of walks in W(H) that are extremal at x1 are extremal at
∑

i λiv
i. Suppose that

there is at least one ray rj , j ≥ 1, such that µj 6= 0. Consider another point in the polyhedron

x2 =
∑
i

λiv
i + 2

∑
j

µjr
j .

Then fW (x2) + α(W) ≥ 0 since this is true everywhere. Now consider the point in the polyhedron

x3 =
∑
i

λiv
i

and consider fW (x3). First observe that x3 = 2x1 − x2. Then

fW (x3) = fW (2x1 − x2)

= 2fW (x1)− fW (x2) since fW is linear

= −2α(W)− fW (x2) since fW (x1) + α(W) = 0

≤ −2α(W) + α(W) since fW (x2) ≥ −α(W)

= −α(W).

Now fW (x3) ≤ −α(W) and hence fW (x3) + α(W) ≤ 0. However, fW (w) + α(W) ≥ 0 for all w in the

polyhedron, and hence fW (x3) + α(W) = 0 and W is extremal at x3. Therefore every walk W ∈ W(H)

that is extremal at x1 is extremal at x3. Hence, we only need to consider the case in which µj = 0 for

all j.

93

Suppose that x =
∑

i λiv
i where λi ≥ 0 and

∑
i λi = 1, and let W ∈ W(H) be extremal at x. Then

fW (x) + α(W) = 0

so

fW
(∑

i

λiv
i
)

+ α(W) = 0.

Then (∑
i

λifW (vi)
)

+ α(W) = 0

since fW is linear, and then ∑
i

λi(fW (vi) + α(W)) = 0

since
∑

i λi = 1. Recall that fW (w) + α(W) ≥ 0 for every point w in the polyhedron, and that λi ≥ 0

for all i (i ≥ 1). Therefore, for each i, if λi > 0, then fW (vi) +α(W) = 0. Hence, every walk W ∈ W(H)

that is extremal at x is extremal at vi for each i where λi > 0.

4.2.4 An optimisation

Lemma 4.2. Let H be a simple reduced graph, and let W,X ∈ W(H). For each simple graph G

homeomorphic to H, the walks W and X have a common vertex if and only if the corresponding paths

in P(G) have a common vertex.

Proof. Let WG, XG ∈ P(G) correspond to W and X respectively. Suppose that W and X have a common

vertex v ∈ V (H). Then v ∈ V (WG) ∩ V (XG), as required. Suppose that WG and XG have a common

vertex u ∈ V (G) and there is no vertex x ∈ V (H) where x is a common vertex of WG and XG. Let Q be

the minimal chain of G with u ∈ V (Q) whose endpoints are vertices of H. Then the endpoints of Q are

vertices of WG and XG (by definition of WG and XG, whether or not WG and XG are maximal paths

of G), a contradiction. Hence there is a vertex x ∈ V (H) where x ∈ V (WG) ∩ V (XG) and therefore

x ∈ V (W) ∩ V (X).

Corollary 4.3. Let H be a simple reduced graph, and let G be a simple graph homeomorphic to H. Let

W,X ∈ W(H) and let P,Q,R ∈ P(G) where P and Q correspond to W , and R corresponds to X. Paths

P and R have a common vertex if and only if paths Q and R have a common vertex.

94

Lemma 4.4. Let H be a simple reduced graph. Let W,X ∈ W(H). If E(W) = E(X) then α(W) = α(X).

Proof. Assume that E(W) = E(X). Then V (W) = V (X) and, for each v ∈ V (W), degW (v) = degX(v).

First suppose that α(W) = 0. Then W is a maximal path of H, and hence X = W and therefore

α(X) = 0. Next, suppose that α(W) = 1. Then W has exactly one leaf or the ends of W overlap. In the

former case, X also has exactly one leaf, and hence α(X) = 1. In the latter case, E(W) is the edge set

of a cycle in H, and similarly for E(X). Therefore the ends of X overlap, and hence α(X) = 1. Lastly,

suppose that α(W) = 2. Then there exists v ∈ V (W) with degW (v) = 4 or there exist y, z ∈ V (W) with

degW (y) = degW (z) = 3. These vertices have the same degree in X. In either case, both ends of X are

repeated, but the ends do not overlap, and hence α(X) = 2.

By Corollary 4.3 and Lemma 4.4, if the edge set of a walk X ∈ W(H) is a subset of the edge set

of a walk W ∈ W(H), then, since H is simple, replacing the set of walks W(H) with the set of walks

W(H)\{X} does not change the polyhedron of H or affect whether G contains a Gallai vertex or satisfies

Conjecture 1. Therefore, in the previous sections, instead ofW(H), we can use a subsetW ′(H) ofW(H)

where there is no walk in W ′(H) whose edge set is a subset of, or equal to, another walk in W ′(H), and,

for each walk W ∈ W(H), there is a walk W ′ ∈ W ′(H) such that E(W) ⊆ E(W ′).

4.2.5 Worked example

In this section, we work through an example of the entire process, from the graph H, to the polyhedron

of H, to the intersection of maximal paths in graphs in GH . This example is a very simple one but it

serves to illustrate the process without being unduly long or complicated.

Consider the graph G in Figure 4.5 and the smallest simple graph homeomorphic to G, the graph H

in the same figure. Let GH be the set of simple graphs homeomorphic to H, a few of which are shown in

Figure 4.5.

Consider the set W(H) of walks in H, as defined previously, and let W,X ∈ W(H). By Lemma

4.2, for each graph G ∈ GH , the walks W and X have a common vertex of H if and only if their

corresponding paths of G have a common vertex. As mentioned previously, if E(X) ⊆ E(W), we can

consider the subset W(H)\{X} instead of W(H) without changing, for any graph G ∈ GH , whether G

contains a Gallai vertex or satisfies Conjecture 1. LetW ′(H) ⊆ W(H) be a set of walks as defined in the

95

v1

v2

v3

v4 v5

H

v1

v2

v3

v4 v5
v1

v2

v3

v4 v5

v1

v2

v3

v4 v5

G

Figure 4.5: A graph H and three of the graphs in GH homeomorphic to H.

previous section. For the graph H in Figure 4.5, we do not need to consider the walk v5v4v3v1v2v4, for

example, since its edge set is equal to that of the walk v5v4v2v1v3v4. The set W ′(H) therefore consists

of five walks. Without loss of generality, let these five walks be W1 = v5v4v2v3v4, W2 = v5v4v2v1v3v2,

W3 = v3v4v2v1v3v2, W4 = v5v4v2v1v3v4, and W5 = v5v4v3v2v1v3, as shown in Figure 4.6.

Let the six edges of H be e1 = v1v2, e2 = v1v3, e3 = v2v3, e4 = v2v4, e5 = v3v4, and e6 = v4v5. For

the graph and walks in Figure 4.6, the inequalities are as follows:

w(ei) ≥ 1 for i where 1 ≤ i ≤ 6

` ≥ 1

w(e3) + w(e4) + w(e5) + w(e6)− 1 ≤ `

w(e1) + w(e2) + w(e3) + w(e4) + w(e6)− 1 ≤ `

w(e1) + w(e2) + w(e3) + w(e4) + w(e5)− 2 ≤ `

w(e1) + w(e2) + w(e4) + w(e5) + w(e6)− 1 ≤ `

w(e1) + w(e2) + w(e3) + w(e5) + w(e6)− 1 ≤ `

This results in a polyhedron with two vertices v1 and v2, and nine rays r1, . . . , r9, shown in the table

below.

96

v1

v2

v3

v4 v5

v1

v2

v3

v4 v5
v1

v2

v3

v4 v5

v1

v2

v3

v4 v5
v1

v2

v3

v4 v5
v1

v2

v3

v4 v5

e1

e2

e3

e4

e5

e6

e1

e2

e3

e4

e5

e6

e1

e2

e3

e4

e5

e6
e1

e2

e3

e4

e5

e6
e1

e2

e3

e4

e5

e6

e1

e2

e3

e4

e5

e6

W1 W2

W3 W4 W5

H

Figure 4.6: An example of a graph H and five walks in W ′(H) (shown with blue dashed lines),

where W1 = v5v4v2v3v4, W2 = v5v4v2v1v3v2, W3 = v3v4v2v1v3v2, W4 = v5v4v2v1v3v4, and W5 =

v5v4v3v2v1v3.

e1 e2 e3 e4 e5 e6 `

v1 1 1 1 1 1 1 4

v2 1 1 2 2 2 1 6

r1 1 0 0 0 0 0 1

r2 0 1 0 0 0 0 1

r3 0 0 1 0 0 0 1

r4 0 0 0 1 0 1 1

r5 0 0 0 0 1 0 1

r6 0 0 0 0 0 1 1

r7 0 1 1 1 1 1 4

r8 1 0 1 1 1 1 4

r9 0 0 0 0 0 0 1

Vertices v1 and v2 correspond to the graphsGv1 andGv2 in Figure 4.7. InGv1 , the walksW2,W4,W5 ∈

W ′(H) correspond to the paths P2, P4, P5 ∈ P(Gv1) respectively, each of which has length `v1(= 4), as

97

v1

v2

v3

v4 v5
v1

v2

v3

v4 v5

Gv1 Gv2

Figure 4.7: Graphs Gv1 and Gv2 , where only the vertices that are also in H are labeled.

shown in Figure 4.8. Since W2,W4, and W5 have a common vertex, then the corresponding paths

P2, P4, and P5 have a common vertex. Therefore Gv1 has a Gallai vertex. Similarly, in Gv2 , the walks

W1,W2,W3,W4,W5 ∈ W ′(H) correspond to paths in P(Gv2) of length `v2(= 6), as shown in Figure 4.9,

and since these five walks have a common vertex, then the corresponding paths have a common vertex.

Therefore Gv1 has a Gallai vertex. Now, at every vertex v of the polyhedron, the graph Gv has a Gallai

vertex, and hence every graph in GH has a Gallai vertex.

v1

v2

v3

v4 v5

Gv1

v1

v2

v3

v4 v5
v1

v2

v3

v4 v5
v1

v2

v3

v4 v5

Figure 4.8: Graph Gv1 and the paths in P(Gv1) of length `v1 .

4.3 Method of computation

4.3.1 Overview

We present a method of examining classes of graphs to determine whether every graph in the class has

a Gallai vertex. We first generate a set of simple graphs using the geng program written by McKay

[29], which is part of the nauty package. We then generate, for each graph H in this set, all of the

98

v1

v2

v3

v4 v5

Gv2

v1

v2

v3

v4 v5
v1

v2

v3

v4 v5

v1

v2

v3

v4 v5
v1

v2

v3

v4 v5
v1

v2

v3

v4 v5

Figure 4.9: Graph Gv2 and the paths in P(Gv2) of length `v2 , where only the vertices that are also

in H are labeled.

walks inW(H) described in Section 4.2.2, and from these generate a set of inequalities. Next, we use the

program lrslib written by Avis [1] to calculate, for each graph H, the vertices and rays of the polyhedron

satisfying the set of inequalities for H. Our final program then processes each vertex of each polyhedron

to determine which paths of the corresponding graph are of maximum length, and check whether these

paths have a common vertex. Each of these steps is detailed more thoroughly in the following sections.

We started by examining connected graphs with just four vertices, and then increasing the number of

vertices, up to the limits of the computational time available.

4.3.2 Generating graphs

The first step is to generate a set of simple graphs. To do this, we use two programs that can be found

in the nauty package written by McKay and Piperno [29]. We first use geng to generate graphs with

a specified number of vertices (and other conditions as necessary), and then use listg to output the

graphs to a file as a list of adjacencies. This output is then used by the next program.

99

4.3.3 Finding maximal walks

This step uses the maximalwalks.py Python 3 program in Appendix B. It takes as input a file from

the previous program, containing the adjacency lists of a set of graphs. The program outputs two files

for each graph. One file contains a set of inequalities representing the lengths of maximal paths of the

graph, to be used by the next program, lrslib. The other file contains the graph and a set of its walks,

output using the pickle library in Python 3, so that these walks can be recovered later in the same data

structures and do not have to be recalculated or processed from a text file. A sample input file and

sample output file for lrslib are shown in Appendix B.

Algorithm 1 below gives an overview of the maximalwalks.py program. We note a few things about

this algorithm. In line 3, if a graph H has a degree two vertex whose neighbours are not themselves

adjacent, then H is homeomorphic to the simple graph obtained by smoothing this degree two vertex,

and so its set of homeomorphic graphs has already been considered when we examined graphs with fewer

vertices. In line 7, finding the walks in W(H) uses a modification of a standard recursive function for

finding the maximal paths of the graph H, with some adjustments to allow for repeated or overlapping

ends, as described in Section 4.2.2. If all of the walks in W(H) have a common vertex, then we can stop

since all of the maximal paths in every simple graph homeomorphic to H have a common vertex. In line

16, we obtain the set W ′(H) from W(H) as discussed in Section 4.2.4

4.3.4 Calculating the polyhedron

The files of inequalities generated by the previous program are now processed using the programs lrs

and mplrs (the multithreaded version of lrs) in the package lrslib written by Avis [1]. For each graph

H, lrs calculates the polyhedron satisfying the system of inequalities, and outputs a file containing the

vertices and rays of the polyhedron of H. Note that the vertex enumeration of a polyhedron is slow, and

this step is the limiting factor in our computations. The complexity of lrs is discussed in [1].

4.3.5 Finding intersections of paths

The last step is to process the output from lrs, using the postprocessing.py Python 3 program in

Appendix C. Let H be a simple reduced graph and consider the polyhedron of H. Note that the program

100

Algorithm 1 maximalwalks.py

Input: File of graphs, containing a list of adjacencies for each graph

Output: For each graph, a file of inequalities and a pickled file of the graph and its maximal walks

1: for each graph H in the input file do

2: read list of adjacencies of H into an array

3: if H has a degree two vertex whose two neighbours are not themselves adjacent then

4: return

5: end if

6: for each vertex v in H do

7: find all walks in W(H) starting at v

8: end for

9: if all walks in W(H) have a common vertex then

10: return

11: end if

12: assign each edge of H a unique index from 0 to |E(H)| − 1

13: for each walk W in W(H) do

14: turn W into a binary vector representing which edges of H are in W

15: end for

16: remove walks from W(H) whose edge set is a subset of another walk in W(H)

17: call the resulting set of walks W ′(H)

18: if all walks in W ′(H) have a common vertex then

19: return

20: end if

21: for each walk W in W ′(H) do

22: calculate α(W) as in Section 4.2.3

23: turn the set of edges of W and the value α(W) into an inequality, as in Section 4.2.3

24: write this inequality to the inequalities output file for H

25: end for

26: write H and the walks in W ′(H) to a pickled file for H

27: end for

101

lrs finds the vertices of the polyhedron of H exactly, even if they have non-integer rational coordinates.

We analyse the vertices using floating-point arithmetic with a generous allowance for rounding error.

For each vertex v of the polyhedron of H, we calculate the set S ⊂ W ′(H) of walks of H that are

extremal at v. We then check whether the walks in S have a common vertex and, if they do not, we

then investigate whether every three walks in S have a common vertex.

The program postprocessing takes a file containing the output from lrslib for a graph H and

another file containing its pickled walksW ′(H). The output is a file containing the graph H and vertices

of the polyhedron of H for which the set of extremal walks in W ′(H) do not have a common vertex, or

for which a set of three extremal walks do not have a common vertex, and a list of these walks for each

such vertex of the polyhedron. A sample input file from lrslib and a sample output file are shown in

Appendix C.

Algorithm 2 gives an overview of the post-processing program. This program contains a function (not

included in the algorithm) that uses the multiprocessing Python 3 library to parallelise the processing

of the vertices of the polyhedron in order to speed up the program, as there may be tens or hundreds of

thousands of vertices of the polyhedron for one graph H.

This program is run on each lrslib output file, that is, on each original reduced graph being tested.

The output files are then manually read (or searched using grep) to discover which graphs do not have

a Gallai vertex, and whether every three longest paths have a common vertex for these graphs.

4.4 Results

LetH be a simple reduced graph and let GH be the set of simple graphs homeomorphic toH. Observe that

if H has exactly two or exactly three vertices, then every graph in GH is a path or a cycle, respectively,

and hence every graph in GH has a Gallai vertex. Therefore, we start by examining simple reduced

graphs H with n = 4 vertices, and examined all graphs H with at most n = 7 vertices, which is the limit

of the computational time available to us. We obtained the following result.

Theorem 4.5. Every simple connected graph that is homeomorphic to a simple connected graph with at

most 7 vertices has a Gallai vertex.

102

Algorithm 2 postprocessing.py

Input: Pickled file containing a graph H and a subset W ′(H) of W(H) (as output by the program

maximalwalks.py), and a file containing the vertices of the polyhedron of H.

Output: File containing notes of which longest paths, in which graphs, do not share a vertex.

1: unpickle H and W ′(H)

2: for each vertex v of the polyhedron do . (multiple vertices may be processed in parallel)

3: read v from the file

4: for each walk W in W ′(H) do

5: calculate the length of the corresponding path in P(Gv)

6: end for

7: determine the set S of walks in W ′(H) that are extremal at v . (check that the length of the

walk is at least 0.999 · `v to allow for floating-point rounding errors)

8: calculate whether the walks in S all have a common vertex

9: if the walks in S have a common vertex then

10: return

11: end if

12: write to output file that these walks do not have a common vertex

13: for each set of three walks in S do

14: check whether the three paths have a common vertex

15: if the three paths do not have a common vertex then

16: write to output file that these paths do not have a common vertex

17: end if

18: end for

19: end for

103

This is equivalent to the following theorem.

Theorem 4.6. Let G be a simple connected graph. Let a be the number of vertices v ∈ V (G) with

degG(v) 6= 2. Let p be the number of chains of G that are parallel to at least one other chain, and let s

be the number of maximal sets of parallel chains of G. If a+ p− s ≤ 7 then G has a Gallai vertex.

Our test of all reduced graphs with cyclomatic number 7 (n vertices and n+ 6 edges) and minimum

degree 3, yields the result below.

Theorem 4.7. Every simple connected graph homeomorphic to a simple connected graph with cyclomatic

number 7 and minimum degree 3 has a Gallai vertex.

This is equivalent to the following theorem.

Theorem 4.8. Every simple connected graph with cyclomatic number 7, no leaves, and no parallel chains

has a Gallai vertex.

This also means that every three longest paths in these graphs have a common vertex, and so this

result extends Theorem 3.1 in Chapter 3 to cyclomatic number 7 in the case where these restrictions

hold. Again, this result is the limit of the computational time available.

4.5 Linear programming

In this section, we describe an alternative to the method in Sections 4.2 and 4.3, utilising linear pro-

gramming solvers, which are faster than programs that enumerate the vertices of a polyhedron. Instead

of determining whether all of the graphs in a certain class have a Gallai vertex, this method determines

whether there is a graph in the class that has k (k ≥ 3) longest paths that do not have a common vertex.

As mentioned in Section 1.3, it is not known whether every k longest paths in a connected graph have

a common vertex for 3 ≤ k ≤ 6, though it has been conjectured that every three longest paths have a

common vertex (Conjecture 1).

4.5.1 Linear program

Let H be a simple reduced graph and let W ′(H) be a set of walks of H as defined in Section 4.2. For

each set S ⊆ W ′(H) with |S| = k (k ≥ 3) such that the walks in S do not have a common vertex, we have

104

the linear program below. Note that exact arithmetic performs computations using rational numbers

instead of floating-point numbers, and so has no rounding error.

Definition 2 (Linear program for exact arithmetic).

Variables: w(e) for each edge e ∈ E(H), and `.

Constraint 1: w(e) ≥ 1 for each edge e of H,

Constraint 2: ` ≥ 1,

Constraint 3:
(∑

e∈W w(e)
)
− α(W) ≤ ` for each walk W ∈ W ′(H)\S,

Constraint 4:
(∑

e∈W w(e)
)
− α(W) = ` for each walk W ∈ S.

We then use a linear program solver with exact arithmetic to determine whether there is a feasible

point for this set of (in)equalities, that is, whether there exists a simple graph G homeomorphic to H

such that the k walks in S correspond to k longest paths of G, and these k longest paths do not have a

common vertex.

However, linear program solvers using exact arithmetic are much slower than those using floating-

point arithmetic. We present a faster method that allows the use of linear program solvers with floating-

point arithmetic, only using the exact arithmetic solver when necessary. We loosen the constraints on

each walk W ∈ S to `−ε ≤
(∑

e∈W w(e)
)
−α(W) ≤ `+ε for some small ε. Now, for each set S ⊆ W ′(H)

with |S| = k (k ≥ 3) such that the walks in S do not have a common vertex, we have the linear program

below, where ε is a small constant.

Definition 3 (Linear program for floating-point arithmetic).

Variables: w(e) for each edge e ∈ E(H), and `.

Constraint 1: w(e) ≥ 1 for each edge e of H,

Constraint 2: ` ≥ 1,

Constraint 3:
(∑

e∈W w(e)
)
− α(W) ≤ ` for each walk W ∈ W ′(H)\S,

Constraint 4: `− ε ≤
(∑

e∈W w(e)
)
− α(W) ≤ `+ ε for each walk W ∈ S.

We can then use a linear program solver with floating-point arithmetic to search for a feasible region,

which is much faster, and then use an exact arithmetic linear program solver only if a feasible region is

found. For the graphs we tested, no feasible region was found and we therefore did not need to use an

105

exact arithmetic linear program solver.

4.5.2 Properties of a reduced graph

In this section, we consider graphs that are not necessarily simple. Let G be a simple graph and let H

be the smallest (with respect to edges) graph homeomorphic to G. The graph H can be obtained from

G by repeatedly smoothing degree two vertices of G until the resulting graph has no degree two vertices.

Similarly to a simple reduced graph, H is unique up to isomorphism. Let B be a block of H. If B

consists of a loop or a set of parallel edges, then we consider B to be a non-trivial block of H. Let G be a

simple graph with k longest paths (k ≥ 3) that do not have a common vertex, and let H be the smallest

(with respect to edges) graph homeomorphic to G. We present several properties of G and thereby

obtain results about properties of H, limiting the number of cases to be examined computationally for

the existence of k longest paths that do not have a common vertex.

We focus on Conjecture 1, that is, the case k = 3. A family F of graphs is monotone if it is closed

under the deletion of edges, that is, for every G ∈ F and every e ∈ E(G), the graph G′ obtained from G

by deleting e is in F . Axenovich [2] proves the following.

Lemma 4.9. For a monotone family F of graphs, let G ∈ F be a simple connected graph with smallest

|V (G)| + |E(G)| having three longest paths with no common vertex. Then G has exactly one nontrivial

block.

The proof of this lemma shows that the result also holds when G ∈ F is minimal with respect to

edges, instead of having the smallest |V (G)|+ |E(G)|. This is stated in the following lemma.

Lemma 4.10. For a monotone family F of graphs, let G ∈ F be a simple connected graph having three

longest paths with no common vertex, and let G be minimal with respect to edges. Then G has exactly

one nontrivial block.

Note that if a graph G has exactly one non-trivial block, then the smallest (with respect to edges)

graph H homeomorphic to G also has exactly one non-trivial block.

The following result is due to Klavžar and Petkovšek [26].

Lemma 4.11. Every graph that is a cactus has a Gallai vertex.

106

Lemma 4.12. Let G be a simple connected graph with three longest paths that have no common ver-

tex, and let G be minimal with respect to edges. Let H be the smallest (with respect to edges) graph

homeomorphic to G. Then H has no loops.

Proof. Suppose that H has a loop e. Let H ′ be the graph obtained from H by deleting e. If H ′ is a

tree, then G is a cactus, and hence by Lemma 4.11, G has a Gallai vertex, a contradiction. If H ′ is not

a tree, then G has more than one nontrivial block, which contradicts Lemma 4.10.

Let G be a simple minimal (with respect to edges) counterexample to Conjecture 1, and let B be

the only non-trivial block of G. Following Kensell’s definition [25], a branching point of G is a vertex

x ∈ V (G) such that degB(x) ≥ 3. Kensell states the following lemma and provides a sketch of the proof:

Lemma 4.13. Every cycle of G has at least 3 branching points [under the conditions above].

Since a cycle of G with exactly two branching points consists of two parallel chains, which corresponds

to a pair of parallel edges of H, Lemma 4.13 implies the following result:

Corollary 4.14. Let G be a simple connected graph with three longest paths that have no common

vertex, and let G be minimal with respect to edges. Let H be the smallest (with respect to edges) graph

homeomorphic to G. Then H has no parallel edges.

Proof. Suppose that H has a pair of parallel edges e1 and e2 with endpoints u and v. Let Q1 and Q2 be

the corresponding paths of G. Note that the interior vertices of Q1 and Q2 all have degree two. Then

Q1 ∪Q2 is a cycle of G with exactly two branching points, u and v, a contradiction by Lemma 4.13.

Assuming that Lemma 4.13 holds, the following result follows directly from Lemma 4.12 and Corol-

lary 4.14.

Lemma 4.15. Let G be a simple connected graph with three longest paths that have no common ver-

tex, and let G be minimal with respect to edges. Let H be the smallest (with respect to edges) graph

homeomorphic to G. Then H is simple.

Let G be a simple connected graph with three longest paths that have no common vertex, and let

G be minimal with respect to edges. By Lemma 4.10, G has exactly one non-trivial block, B. We use

107

our terminology from Chapter 2, and call B the core of G. Recall that the core-touching subgraphs of

core B of G are the components of the graph obtained from G by deleting the edges of B. Since B is

the only non-trivial block of G, the core-touching subgraphs of G are trees. Let H be the smallest (with

respect to edges) graph homeomorphic to G. Since the number of non-trivial blocks of a subdivision of

H is exactly the number of non-trivial blocks of H, it follows by Lemma 4.10 that H has exactly one

non-trivial block. Similarly to G, the non-trivial block of H is the core of H, and the core-touching

subgraphs of H are trees.

Lemma 4.16. Let G be a simple connected graph with three longest paths that do not have a common

vertex, and let G be minimal with respect to edges. Let B be the unique core of G. Then each core-touching

subgraph of G is a path.

The proof of this lemma follows similar reasoning to the proof of Lemma 2.9 in Chapter 2.

Proof. By Lemma 4.10, B exists. For each longest path P of G, (a) P is a subgraph of a core-touching

subgraph of G or (b) P has at least one edge that is an edge of the core B of G. Let P = Pa ∪Pb be the

set of longest paths of G, where Pa is the set of paths for which (a) holds and Pb is the set of paths for

which (b) holds.

We first show that Pa = ∅. Suppose that Pa 6= ∅. By Lemma 1.1, every pair of paths in Pa have a

common vertex, and hence there is a core-touching subgraph C(x) of G, for some x ∈ V (B), such that

each path in Pa is a subpath of C(x). If P = Pa, then by Proposition 2.2, G has a Gallai vertex, a

contradiction. Hence Pb 6= ∅. By Lemma 1.1, each path in Pb has a common vertex with each path in

Pa, and hence x ∈ V (P) for each path P ∈ Pb since there is at least one edge of P that is an edge of

B. If x ∈ V (Q) for each path Q ∈ Pa, then x is a Gallai vertex of G, a contradiction. If this is not the

case, then there exists at least one path P1 ∈ Pa that is a path of C(x)− x. Since each path in Pb has

a common vertex with P1, each path in Pb has a subpath of length at least one that is a path of C(x).

Let T be the set of these subpaths, and let S = T ∪ Pa. Then S is a set of paths of C(x) and every two

paths in S have a common vertex. Hence, by Proposition 2.2, the paths in S have a common vertex,

and therefore G has a Gallai vertex, a contradiction. Hence P = Pb.

We next show that there is no core-touching subgraph of G that is a tree but not a path. Let C(x)

108

be a core-touching subgraph of G for some x ∈ V (B). Suppose that C(x) is a tree but not a path. Note

that |E(C(x))| ≥ 2. Let Q1, . . . , Qk (k ≥ 2) be the set of maximal paths of C(x) with endpoint x and

assume without loss of generality that |Q1| ≥ |Q2| ≥ · · · ≥ |Qk|. If E(P)∩E(C(x)) = ∅ for every P ∈ P,

then G is not minimal with respect to edges, a contradiction. Suppose there is at least one path P ∈ P

with E(P) ∩ E(C(x)) 6= ∅. For every such path P , x ∈ V (P) and, since P is a longest path, there is

a leaf of C(x) that is an endpoint of P . Therefore each such path P can be assumed to have subpath

Q1. Let G′ be the graph obtained from G by deleting the edges of Q2, . . . , Qk and any resulting isolated

vertices, and note that |E(G′)| < |E(G)|. We show that there are three longest paths of G′ with no

common vertex. Let P1, P2, P3 ∈ P have no common vertex. Then x is a vertex of at most two of P1, P2,

and P3. If x ∈ V (P1), then let P ′1 be the path obtained from P1 by replacing the subpath of P1 that is

a subpath of C(x) with the path Q1 of C(x). If x 6∈ V (P1), let P ′1 = P1. Similarly define P ′2 and P ′3.

Then P ′1, P
′
2, and P ′3 are three longest paths of G′ with no common vertex and hence G is not minimal,

a contradiction.

Since a core-touching subgraph of G that is a path with length at least one corresponds to an edge

of H that is not a loop, we have the following corollary.

Corollary 4.17. Let G be a simple connected graph with three longest paths that have no common

vertex, and let G be minimal with respect to edges. Let H be the smallest (with respect to edges) graph

homeomorphic to G and let B be the unique core of H. Then each core-touching subgraph of H has at

most one edge and is not a loop.

Proof. By Lemma 4.10, G has exactly one nontrivial block. Hence H has exactly one non-trivial block,

and therefore the unique core B of H always exists. By Lemma 4.12, H has no loops. A core-touching

subgraph of G consisting of exactly one vertex corresponds to a vertex of H. A core-touching subgraph

of G that is a path with length at least one corresponds to an edge of H that is not a loop. It follows

that every core-touching subgraph of H has at most one edge and is not a loop.

109

4.5.3 Results

Thesis supervisor Brendan McKay wrote a program that uses the method in Section 4.5.1 and GLPK

[27] and ran this program on several classes of graphs, producing the following two lemmas.

Lemma 4.18. Let H be a simple graph with no vertices of degree two and exactly one non-trivial block

B, which is the core of H, where each core-touching subgraph of H has at most one edge. If

(i) |E(B)| − |V (B)| ≤ 6, or

(ii) |V (B)| ≤ 9, or

(iii) |V (B)| ≤ 16 and B has maximum degree at most three

then every three walks in W(H) have a common vertex.

Lemma 4.19. Let H be a simple graph with no vertices of degree two that has a connected subgraph A

with minimum degree two where each component of the graph H ′ obtained from H by deleting the edges

of A has at most one edge. If

(i) |V (A)| ≤ 11 and every vertex in V (A) has maximum degree at most three, or

(ii) |V (A)| ≤ 6 and every vertex in V (A) has maximum degree at most four,

then every six walks in W(H) have a common vertex.

From these lemmas, we deduce results about graphs homeomorphic to such graphs H in the following

two sections.

4.5.3.1 Three longest paths

From Lemma 4.18(i), we obtain the following result, which verifies Theorem 3.1 in Chapter 3.

Lemma 4.20. For every graph with cyclomatic number at most 6, every three longest paths have a

common vertex.

Proof. Assume that there is a graph with cyclomatic number at most 6 that has three longest paths

with no common vertex. Then there is such a graph G that is minimal with respect to edges. The set

of graphs with cyclomatic number at most 6 is monotone. To see this, observe that deleting an edge of

a graph decreases its number of edges by one and decreases its number of vertices by at most one, and

hence the cyclomatic number of the graph does not increase. Therefore, by Lemma 4.10, G has exactly

110

one non-trivial block. Let H be the smallest (with respect to edges) graph homeomorphic to G. Then

H has exactly one non-trivial block and has no vertices of degree two. Since subdividing an edge of a

graph increases the number of edges by one and the number of vertices by one, this operation does not

change the cyclomatic number of a graph. Hence the cyclomatic number of H is exactly the cyclomatic

number of G, and therefore is at most 6. Additionally, by Lemmas 4.12 and 4.13, H is simple. Since

G has three longest paths with no common vertex, there are three walks in W(H) that do not have

a common vertex. However, by Lemma 4.18, for such a graph H, every three walks in W(H) have a

common vertex, a contradiction.

Let G be a simple graph with no parallel chains and exactly one non-trivial block B. Let GB be the

class of all such graphs G. From Lemma 4.18(ii) and (iii) respectively, we have the following two results.

Lemma 4.21. Let G ∈ GB such that there are at most 9 vertices v ∈ V (B) with degB(v) ≥ 3. Then

every three longest paths of G have a common vertex.

Lemma 4.22. Let G ∈ GB such that there are at most 16 vertices v ∈ V (B) with degB(v) = 3 and no

vertices x ∈ V (B) with degB(x) > 3. Then every three longest paths of G have a common vertex.

Note that if G is a simple graph with exactly one non-trivial block B and this block is a cycle, then

the reduced graph H may not be simple, but G is a cactus graph and hence by Lemma 4.11, G has a

Gallai vertex.

4.5.3.2 Six longest paths

Let G be a simple graph with no parallel chains, no cycle with exactly one cut vertex of G, and for which

there exists a connected subgraph A of G such that every component of the graph G′ obtained from G

by deleting the edges of A is a path. Let GA be the set of all such graphs G. From Lemma 4.19, we have

the following two results.

Lemma 4.23. Let G ∈ GA such that there are at most 11 vertices v ∈ V (A) with degA(v) = 3 and no

vertices x ∈ V (A) with degA(x) > 3. Then every six longest paths of G have a common vertex.

Lemma 4.24. Let G ∈ GA such that here are at most 6 vertices v ∈ V (A) with 3 ≤ degA(v) ≤ 4 and no

vertices x ∈ V (A) with degA(x) > 4. Then every six longest paths of G have a common vertex.

111

The method described in this section requires running a linear program solver on every set of k walks

in W ′(H) (k ≥ 3) that do not have a common vertex, for a reduced graph H. This is in contrast to the

method described in Section 4.3 that required running lrs once for a simple reduced graph H. However,

there are linear program solvers, particularly those using floating-point arithmetic (rather than exact

arithmetic) that are far faster than any available vertex enumeration programs like lrs, and so the former

approach is much faster. For k = 3, we may also be able to use the results in Section 4.5.2 to restrict the

reduced graphs to be tested for a particular set of conditions, further speeding up the process. However,

for k > 3 many of the results n Section 4.5.2 do not apply and hence there are more reduced graphs

to be tested for a particular set of conditions. Additionally, the linear programming method does not

tell us whether the graphs in GH have a Gallai vertex, but only whether every k longest paths have a

common vertex for a specified k ≥ 3.

4.6 Concluding remarks

In this chapter, we used computational methods to check graphs for the presence of a Gallai vertex or

for the presence of three or six longest paths with no common vertex.

We used vertex enumeration of a polyhedron to determine that every graph that is homeomorphic to

a simple connected graph with at most 7 vertices has a Gallai vertex, and that every simple connected

graph with cyclomatic number 7 and minimum degree 3 has a Gallai vertex. The approach used here

allows us to determine results about an infinite set of homeomorphic graphs by checking a finite subset

of these graphs for the presence of a Gallai vertex. We start with the smallest simple graph in the set of

homeomorphic graphs, produce a set of inequalities representing the graphs in this set, process this set

of inequalities, and obtain a finite set of graphs to check for the presence of a Gallai vertex. However,

this method relies on the vertex enumeration of a polyhedron, for which there are no efficient algorithms

or programs. Avis [1] notes that certain graphs may run faster with the program cdd written by Fukuda

[13], which is therefore a promising method for future investigations.

In Section 4.5.1, we give an alternative method that uses linear program solvers instead of a program

that enumerates the vertices of a polyhedron. Using this method, thesis supervisor McKay tested simple

reduced graphs with certain conditions for the presence of three or six longest paths that do not have a

112

common vertex. We used the results in Section 4.5.2 and these computations to determine that every

three longest paths have a common vertex in every graph with cyclomatic number at most 6, among

other results stated in Section 4.5.3. This result on graphs with cyclomatic number at most 6 verifies

Theorem 3.1 in Chapter 3. The main advantage of this linear programming approach is that there are

much faster linear program solvers available than programs that enumerate the vertices of a polyhedron.

Even though, for a particular simple reduced graph, we have a separate linear program for every set

of k longest paths (k ≥ 3), running a solver on each of these linear programs is much faster than the

polyhedron method for the graphs tested in this chapter. Note that as k increases, if the number of

maximal walks in the graph is sufficiently large, then the number of combinations of k maximal walks

increases greatly and so the running time increases accordingly. It is therefore possible that there may

be graphs and values of k for which the polyhedron method is faster. One downside to the linear

programming method is that it does not allow us to specify that any subset of the maximal walks of

the reduced graph may be longest paths of an unreduced graph (as we do with the polyhedron method),

without testing each such subset individually. However, as the main questions of interest are whether

every three longest paths in a graph have a common vertex, and whether there is a graph with a set of k

longest paths, 3 ≤ k ≤ 6, that do not have a common vertex, the linear programming method is likely to

be much faster for examining these questions than the polyhedron method. Additionally, if more results

can be proved about the structure of the reduced graph H for a minimal (with respect to edges) graph

G with k longest paths that do not have a common vertex, this will decrease the number of reduced

graphs to be tested and speed up the process further.

113

Chapter 5

Conclusion

In this thesis we investigate the conjecture that every three longest paths of a graph have a common

vertex (Conjecture 1). We also investigate the question of whether all longest paths of a graph have a

common vertex (Gallai’s question).

5.1 Results

In this thesis, we add to the graph classes for which Conjecture 1 holds and to the graph classes that have

a Gallai vertex. Figures 5.1 and 5.2 show the diagrams of graphs classes from Chapter 1 for three longest

paths and all longest paths respectively with the addition of the results in this thesis, identified by a

red outline. We also present two small graph classes for which every six longest paths have a common

vertex. Recall that a chain of a graph G is a path of G whose interior vertices have degree two, and a

set of at least two chains are parallel if they have a pair of common endpoints.

Conjecture 1 (three longest paths): Our main result for Conjecture 1 is that every three longest

paths have a common vertex in:

• Graphs with cyclomatic number at most 6 (Theorem 3.1).

The entirety of Chapter 3 and part of Chapter 4 are dedicated to proving this result. Chapter 3 also

shows that a minimal (with respect to edges) counterexample to Conjecture 1 has cyclomatic number at

least 7, adding to the known properties of such a counterexample. In Chapter 4, we prove two smaller

114

results. Recall that a graph G is in the graph class GB if G has no parallel chains and there exists exactly

one non-trivial block B of G. We prove that every three longest paths have a common vertex in the

following graph classes:

• Graphs in GB for which there are at most 9 vertices v ∈ V (B) with degB(v) ≥ 3 (Lemma 4.21).

• Graphs in GB for which there are at most 16 vertices v ∈ V (B) with degB(v) = 3 and there does

not exist a vertex x ∈ V (B) with degB(x) > 3 (Lemma 4.22).

Figure 5.1 shows the diagram of graph classes from Figure 1.5 in Section 1.3.2 with the addition of the

results above, highlighted with a red outline. Note that Conjecture 1 also holds for the graph classes

listed below.

Gallai’s question (all longest paths): Our main result for Gallai’s question is that every graph in

the following graph class has a Gallai vertex:

• ΘH , theta-Hamiltonian-tree graphs (Theorem 2.1).

Chapter 2 is dedicated to proving this result. In Chapter 4, we prove that every graph in the following

two smaller graph classes has a Gallai vertex:

• Graphs with cyclomatic number 7, no leaves, and no parallel chains (Theorem 4.8).

• Graphs for which the number of vertices of degree 3 plus the number of chains that are parallel

to at least one other chain minus the number of maximal sets of parallel chains is at most seven

(Theorem 4.6).

Figure 5.2 shows the diagram of graph classes from Figure 1.7 in Section 1.3.3 with the addition of the

results above, highlighted with a red outline.

Six longest paths: Every six longest paths have a common vertex for the graph classes that have a

Gallai vertex listed above. In Chapter 4, we present results on two smaller graph classes. Recall from

Chapter 4 that a graph G is in the graph class GA if G has no parallel chains, no cycle with exactly one

cut vertex of G, and there exists a connected subgraph A of G such that every component of the graph

G′ obtained from G by deleting the edges of A is a path. We prove that every six longest paths have a

common vertex for every graph in the following graph classes:

• Graphs in GA for which there are at most 11 vertices v ∈ V (A) with degA(v) = 3 and there does

115

not exist a vertex x ∈ V (A) with degA(x) > 3 (Lemma 4.23).

• Graphs in GA for which there are at most 6 vertices v ∈ V (A) with 3 ≤ degA(v) ≤ 4 and there

does not exist a vertex x ∈ V (A) with degA(x) > 4 (Lemma 4.24).

5.2 Methods and extensions

In this section, we discuss the methods used in Chapters 2, 3, and 4 and the limitations and possible

extensions of these methods.

In Chapter 2, we use case analysis to prove that every theta-Hamiltonian-tree graph has a Gallai

vertex. We investigate extending our result to theta-Hamiltonian-tree graphs with a unique core and

a single edge inserted into the core with restrictions on the placement of this edge, as discussed in

Section 2.5. However, our methods are not easily extended to these graphs, if indeed such graphs have

a Gallai vertex. There are many additional cases and considerably more work is required in each case to

obtain a set of inequalities on the maximal paths of the graph similar to those in Section Lemma 2.10.

In Chapter 3, we use case analysis to prove that Conjecture 1 holds for graphs with cyclomatic number

at most 6. We investigated extending this result to graphs with cyclomatic number 7. This requires

proving that there is a seventh independent bi-coloured cycle or a second independent tri-coloured cycle

in a minimal (with respect to edges) counterexample to Conjecture 1. However, we were unable to prove

that there is another bi-coloured cycle or another tri-coloured cycle in this graph. Additionally, if such

a cycle does exist, the methods we use in this chapter to show that these cycles are independent are not

easily extended to further cycles, as discussed in Section 3.6. More sophisticated techniques are required

to extend our results to a higher cyclomatic number. Note that our result cannot be extended to all

longest paths since there are graphs with cyclomatic number at most 6 that do not have a Gallai vertex,

as discussed in Section 3.6.

In Chapter 4, we take a different approach and use computational methods to investigate Gallai’s

question and Conjecture 1 for particular graph classes. Similarly to Chapter 2, we use inequalities on the

lengths of the maximal paths of a graph. For a simple reduced graph H, we generate a set of inequalities

on the maximal walks of H which correspond to the maximal paths of a graph homeomorphic to H.

We then use two different methods for solving this system of inequalities. In the first method, we use

116

P
er

fe
ct

M
ey

ni
el

P
ar

ity

D
is

ta
nc

e-
he

re
di

ta
ry

C
ho

rd
al

B
ip

ar
ti
te

C
om

pa
ra

bi
lit

y

C
og

ra
ph

[2

2]

In
te

rv
al

[3

]

K
-t

re
es

Sp
lit

[2

6]

2-
tr

ee
s

[1
1]

Se
ri

es
-p

ar
al

le
l

(p
ar

ti
al

 2
-t

re
es

)
[1

0]

2-
te

rm
in

al

se
ri

es
-p

ar
al

le
l

O
ut

er
pl

an
ar

[1
1]

St
ro

ng
ly

ch

or
da

l

D
ou

bl
y

ch
or

da
l

C
ir

cu
la

r
ar

c
[3

, 2
3]

C
o-

co
m

pa
ra

bi
lit

y

P
er

m
ut

at
io

n

Su
n-

fr
ee

P
la

na
r

D
ua

lly

ch
or

da
l [

22
]

H
el

ly

ch
or

da
l

C
ir

cl
e-

po
ly

go
n

C
ir

cl
e

n-
go

n
(fi

xe
d

n)
P

la
na

r
pa

rt
ia

l 3
-

tr
ee

s

P
ar

ti
al

 3
-

tr
ee

s

Tr
ip

ar
ti
te

P
ar

ti
al

 k
-

tr
ee

s
3-

co
nn

ec
te

d

2-
co

nn
ec

te
d

4-
co

nn
ec

te
d

pl
an

ar4-
co

nn
ec

te
d k-
co

nn
ec

te
d,

k
≥
 5

(2
K

2)
-fr

ee

[1
7]

(6
,1

)-
ch

or
da

l

P
4-

sp
ar

se

[8
]

St
ar

lik
e

[8
]

Su
bs

ta
r

B
ip

ar
ti
te

pe

rm
ut

at
io

n
[7

]

Fu
ll

su
bs

ta
r

[7
]

H
am

ilt
on

ia
n

Tr
ee

s

C
ac

tu
s

T
he

ta
-

H
am

ilt
on

ia
n-

tr
ee

T
he

ta

E
ve

ry
 b

lo
ck

 is
 H

am
ilt

on
-

co
nn

ec
te

d,
 a

lm
os

t
H

am
ilt

on
-

co
nn

ec
te

d,
 o

r
a

cy
cl

e
[2

6]

M
at

ch
in

g
nu

m
be

r
at

m

os
t

th
re

e
[9

]

A
lm

os
t

hy
po

tr
ac

ea
bl

e
E

ve
ry

 b
lo

ck
 is

 a
 s

pl
it

gr
ap

h,
 in

te
rv

al
 g

ra
ph

, o
r

gr
ap

h
w

it
h

a
un

iv
er

sa
l

ve
rt

ex
 [8

]

(2
P

5,
K

1,
3)

-fr
ee

[9
]

Jo
in

 o
f t

w
o

gr
ap

hs
[8

]

(K
1,

3,
R

)-
fr

ee
 g

ra
ph

s

w
he

re
 R

 ∈
 {

C
3,

P
4,

P
5,

P
6,

Z 1
,

Z 2
,Z

3,
B

1,
1,

B
1,

2}
 [1

6]

B
lo

ck

H
yp

ot
ra

ce
ab

le

G
en

er
al

is
ed

th

et
a

P
to

le
m

ai
c

C
yc

lo
m

at
ic

nu

m
be

r
at

m

os
t

k,
 k

 ≥
 7

C
yc

lo
m

at
ic

 n
um

be
r

7,
 n

o
le

av
es

, a
nd

 n
o

pa
ra

lle
l c

ha
in

s

C
yc

lo
m

at
ic

nu

m
be

r
at

m

os
t

6

(P
5,

K
1,

3)
-fr

ee

[1
8]

P
5-

fr
ee

G
ra

ph
s

in
 𝒢

B
 w

it
h

m
ax

im
um

de
gr

ee
 3

 a
nd

 fo
r

w
hi

ch
 t

he
re

 a
re

at

 m
os

t
16

 v
er

ti
ce

s
v

∈
 V

(B
)

w
it
h

de
g B

(v
)
=

3

A
ll

no
n-

tr
iv

ia
l

bl
oc

ks
 a

re

H
am

ilt
on

ia
n

[1
1]

G
ra

ph
s

in
 𝒢

B
 fo

r
w

hi
ch

 t
he

re

ar
e

at
 m

os
t

9
ve

rt
ic

es
 v

 ∈
 V

(B
)

w
it
h

de
g B

(v
)
≥

3

N
um

be
r

of
 v

er
ti
ce

s
of

 d
eg

re
e

3
+

nu

m
be

r
of

 c
ha

in
s

pa
ra

lle
l t

o
at

 le
as

t
on

e
ot

he
r

ch
ai

n
-
nu

m
be

r
of

 m
ax

im
al

se

ts
 o

f p
ar

al
le

l c
ha

in
s
≤

7

F
ig

u
re

5
.1

:
A

d
ia

g
ra

m
sh

ow
in

g
re

la
ti

o
n
sh

ip
s

b
et

w
ee

n
a

n
u
m

b
er

o
f

g
ra

p
h

cl
a
ss

es
fo

r
w

h
ic

h
C

o
n
je

ct
u
re

1
h
o
ld

s
(g

re
en

)
a
n
d

cl
a
ss

es
fo

r
w

h
ic

h
it

h
a
s

n
o
t

y
et

b
ee

n
d
et

er
m

in
ed

w
h
et

h
er

C
o
n
je

ct
u
re

1
h
o
ld

s
(g

re
y
).

A
re

d
o
u
tl

in
e

in
d
ic

a
te

s
re

su
lt

s
p
ro

v
ed

in
th

is
th

es
is

.
A

rr
ow

s
in

d
ic

a
te

su
b

cl
a
ss

to
su

p
er

cl
a
ss

re
la

ti
o
n
sh

ip
.

T
h
is

d
ia

g
ra

m
d
o
es

n
o
t

in
cl

u
d
e

a
ll

su
ch

re
la

ti
o
n
sh

ip
s

o
f

th
e

cl
a
ss

es
sh

ow
n
.

117

P
er

fe
ct

M
ey

ni
el

P
ar

ity

D
is

ta
nc

e-
he

re
di

ta
ry

C
ho

rd
al

B
ip

ar
ti
te

[3
2]

C
om

pa
ra

bi
lit

y

C
og

ra
ph

[2

2]

In
te

rv
al

[3

]

K
-t

re
es

Sp
lit

[2

6]

2-
tr

ee
s

[1
1]

Se
ri

es
-p

ar
al

le
l

(p
ar

ti
al

 2
-t

re
es

)
[1

0]

2-
te

rm
in

al

se
ri

es
-p

ar
al

le
l

O
ut

er
pl

an
ar

[1
1]

St
ro

ng
ly

ch

or
da

l

D
ou

bl
y

ch
or

da
l

C
ir

cu
la

r
ar

c
[3

, 2
3]

C
o-

co
m

pa
ra

bi
lit

y

P
er

m
ut

at
io

n

Su
n-

fr
ee

P
la

na
r

[3
2]

D
ua

lly

ch
or

da
l [

22
]

H
el

ly

ch
or

da
l

C
ir

cl
e-

po
ly

go
n

C
ir

cl
e

n-
go

n
(fi

xe
d

n)
P

la
na

r
pa

rt
ia

l 3
-

tr
ee

s

P
ar

ti
al

 3
-

tr
ee

s

Tr
ip

ar
ti
te

P
ar

ti
al

 k
-

tr
ee

s
3-

co
nn

ec
te

d

2-
co

nn
ec

te
d

4-
co

nn
ec

te
d

pl
an

ar4-
co

nn
ec

te
d k-
co

nn
ec

te
d,

k
≥
 5

(2
K

2)
-fr

ee

[1
7]

(6
,1

)-
ch

or
da

l

P
4-

sp
ar

se

[8
]

St
ar

lik
e

[8
]

Su
bs

ta
r

B
ip

ar
ti
te

pe

rm
ut

at
io

n
[7

]

Fu
ll

su
bs

ta
r

[7
]

H
am

ilt
on

ia
n

Tr
ee

s

C
ac

tu
s

T
he

ta
-

H
am

ilt
on

ia
n-

tr
ee

T
he

ta

E
ve

ry
 b

lo
ck

 is
 H

am
ilt

on
-

co
nn

ec
te

d,
 a

lm
os

t
H

am
ilt

on
-

co
nn

ec
te

d,
 o

r
a

cy
cl

e
[2

6]

M
at

ch
in

g
nu

m
be

r
at

m

os
t

th
re

e
[9

]

A
lm

os
t

hy
po

tr
ac

ea
bl

e
E

ve
ry

 b
lo

ck
 is

 a
 s

pl
it

gr
ap

h,
 in

te
rv

al
 g

ra
ph

, o
r

gr
ap

h
w

it
h

a
un

iv
er

sa
l

ve
rt

ex
 [8

]

(2
P

5,
K

1,
3)

-fr
ee

[8
]

Jo
in

 o
f t

w
o

gr
ap

hs
[8

]

(K
1,

3,
R

)-
fr

ee
 g

ra
ph

s

w
he

re
 R

 ∈
 {

C
3,

P
4,

P
5,

P
6,

Z 1
,

Z 2
,Z

3,
B

1,
1,

B
1,

2}
 [1

6]

B
lo

ck

H
yp

ot
ra

ce
ab

le

G
en

er
al

is
ed

th

et
a

P
to

le
m

ai
c

A
ll

no
n-

tr
iv

ia
l

bl
oc

ks
 a

re

H
am

ilt
on

ia
n

[1
1]

C
yc

lo
m

at
ic

nu

m
be

r
at

m

os
t

k,
 k

 ≥
 7

N
um

be
r

of
 v

er
ti
ce

s
of

 d
eg

re
e

3
+

nu

m
be

r
of

 c
ha

in
s

pa
ra

lle
l t

o
at

 le
as

t
on

e
ot

he
r

ch
ai

n
-
nu

m
be

r
of

 m
ax

im
al

se

ts
 o

f p
ar

al
le

l c
ha

in
s
≤

7

C
yc

lo
m

at
ic

 n
um

be
r

7,
 n

o
le

av
es

, a
nd

 n
o

pa
ra

lle
l c

ha
in

s

C
yc

lo
m

at
ic

nu

m
be

r
at

m

os
t

6

(P
5,

K
1,

3)
-fr

ee

[1
6]

P
5-

fr
ee

F
ig

u
re

5
.2

:
A

d
ia

g
ra

m
sh

ow
in

g
re

la
ti

o
n
sh

ip
s

b
et

w
ee

n
a

n
u
m

b
er

o
f

g
ra

p
h

cl
a
ss

es
fo

r
w

h
ic

h
ev

er
y

g
ra

p
h

h
a
s

a
G

a
ll
a
i

v
er

te
x

(g
re

en
),

cl
a
ss

es

fo
r

w
h
ic

h
it

h
a
s

n
o
t

y
et

b
ee

n
d
et

er
m

in
ed

w
h
et

h
er

ev
er

y
g
ra

p
h

h
a
s

a
G

a
ll
a
i

v
er

te
x

(g
re

y
),

a
n
d

cl
a
ss

es
fo

r
w

h
ic

h
th

er
e

ex
is

ts
a

g
ra

p
h

w
it

h
n
o

G
a
ll
a
i

v
er

te
x

(o
ra

n
g
e)

.
A

re
d

o
u
tl

in
e

in
d
ic

a
te

s
re

su
lt

s
p
ro

v
ed

in
th

is
th

es
is

.
A

rr
ow

s
in

d
ic

a
te

su
b

cl
a
ss

to
su

p
er

cl
a
ss

re
la

ti
o
n
sh

ip
.

T
h
is

d
ia

g
ra

m

d
o
es

n
o
t

in
cl

u
d
e

a
ll

su
ch

re
la

ti
o
n
sh

ip
s

o
f

th
e

cl
a
ss

es
sh

ow
n
.

118

a program to enumerate the vertices of the polyhedron satisfying this system of inequalities. We then

process each vertex of the polyhedon to determine whether every simple graph homeomorphic to H has

a Gallai vertex. Using this method, we obtained results for two graph classes, as in the list in Section

5.1. Our second method uses linear programming and separately considers each set of k (for some k ≥ 3)

inequalities on the maximal walks of H. Our approach is to suppose that these k inequalities hold

with equality and use a linear program solver to determine whether there is a feasible region for the

given constraints. Using this second method, we independently confirmed our result from Chapter 3 and

obtained several other results, as listed in Section 5.1. For the polyhedron method, the limiting factor

is the program that enumerates the vertices of the polyhedron, for which there is no efficient algorithm.

However, the linear programming method does not have the same limitations as there are considerably

more efficient algorithms for solving linear programs. Therefore, the linear programming method has the

potential to be extended, for example to graphs with cyclomatic number 7.

While we were not able to extend our case analysis techniques in Chapters 2 and 3 to the graph

classes discussed above, these methods may be able to be applied to other graph classes. For instance,

graphs similar to theta-Hamiltonian-tree graphs, but with a series parallel core, may be amenable to

these methods. In Chapter 4, while the polyhedron method is slow and therefore difficult to extend, the

linear programming method is considerably faster and has the potential for extension. It would be of

interest to investigate whether every four, five, or six longest paths have a common vertex for graphs with

cyclomatic number at most 6, and the linear programming method could be applied to this problem. We

also believe that using the linear programming method could yield results in the investigation of whether

every three longest paths have a common vertex in graphs with cyclomatic number at most 7.

119

Appendices

120

Appendix A

Graph classes for which every graph

has a Gallai vertex

Every graph in the following graph classes has a Gallai vertex. The graph classes are listed here in

chronological order by the year the paper was published. Note that some of the results are superseded

by later results. Additionally, this list may not be complete.

It is well-known that trees have a Gallai vertex [see 10, 32]. All Hamiltonian graphs have a Gallai

vertex since every longest path of the graph is a Hamiltonian path.

• 4-connected planar graphs, since all 4-connected planar graphs are Hamiltonian, as shown by

Tutte [36].

• Split graphs and graphs in which every block is Hamilton-connected, almost Hamilton-

connected, or a cycle, proved in 1990 by Klavžar and Petrovšek [26]. The result on split graphs

was later superseded by the result on 2K2–free graphs below. A graph is called Hamilton-connected

if for every pair of vertices x, y there is a Hamiltonian path with endpoints x and y. A bipartite

graph with vertex partition V1 and V2 is called almost Hamilton-connected if for every pair of

vertices x, y there is a path with endpoints x and y that contains all of the vertices of either V1 or

V2. These results imply that every cactus graph and every block graph have a Gallai vertex.

121

• Circular arc graphs, proved in 2004 by Balister et al. [3], with a gap in the proof closed by Joos

[23] in 2015.

• Outerplanar graphs, proved in 2013 by de Rezende et al. [10], extending a result by Axenovich

[2] that every three longest paths in an outerplanar graph have a common vertex (later superseded

by the result on series-parallel graphs below). A planar drawing of a graph partitions the plane into

regions called faces, and every planar drawing of a graph has exactly one unbounded face called

the outer face. An outerplanar graph is a planar graph in which all vertices belong to the outer

face. It is also shown in this paper that, for graphs in which all non-trivial blocks are Hamiltonian,

every three longest paths have a common vertex.

• 2-trees, proved in 2013 by de Rezende et al. [10] (later superseded by the result on series-parallel

graphs below). A graph G is a k-tree if and only if either G is a complete graph with k vertices or

G has a vertex v with degree k such that v together with the set of vertices adjacent to v forms a

clique, and G− v is a k-tree.

• Graphs with matching number at most three, proved in 2015 by F. Chen [8]. A matching

of a graph is a set of pairwise nonadjacent edges in the graph. The matching number of a graph is

the number of edges in a maximum matching of the graph.

• Dually chordal graphs and connected cographs, proved in 2016 by Jobson et al. [22]. The

result for connected cographs latter was later superseded by the result on P4–sparse graphs below.

• Series-parallel graphs, proved in 2017 by G. Chen et al. [9], supserseding the results on outer-

planar graphs and 2-trees mentioned above.

• (2K2)–free graphs, proved in 2018 by Golan and Shan [16]. Note that this supersedes the result

on split graphs.

• Starlike graphs, P4–sparse graphs, (2P5,K1,3)–free graphs, graphs that are the join of

two graphs, and graphs in which every block is a split graph, interval graph, or graph

with a universal vertex, shown in 2019 by Cerioli and Lima [7] (first published without the

proofs in 2016). A star is a graph in which all but one vertex v is a leaf, and v is adjacent to

122

every leaf. A starlike graph is the intersection graph of substars of a star. This class generalises

split graphs. A P4–sparse graph is a graph G in which, for every set S of five vertices of G, the

induced subgraph of G with vertex set S has at most one P4 (path with four vertices). This result

supersedes the result on cographs, which are (P4)–free graphs. The graph P5 is the path with five

vertices. The graph K1,3 is the graph with four vertices where three are leaves and the other vertex

is adjacent to the three leaves. The join of two graphs G1 and G2 is the graph with vertex set

V (G1)∪ V (G2) and edge set E(G1)∪E(G2)∪ {uv : u ∈ V (G1), v ∈ V (G2)}. A universal vertex is

a vertex of a graph G that is adjacent to all other vertices of G.

• (K1,3, R)–free graphs where R ∈ {C3, P4, P5, P6, Z1, Z2, Z3, B1,1, B1,2}, proved in 2021 by Gao

and Shan [15]. The graph Cn is a cycle on n vertices and Pn is a path on n vertices. The graph

Zn is the graph formed from K3 and a path of length n by identifying one vertex of K3 with one

endpoint of the path. The graph Bn,m is the graph formed from K3, a path P of length n, and a

path Q of length m by identifying a vertex of K3 with one endpoint of P and a different vertex of

K3 with one endpoint of Q.

123

Appendix B

Python program maximalwalks.py

B.1 Program code

'''Takes a file of graphs, each of which is given by its adjacencies.

Ignores graphs for which further processing is not needed.

For the remaining graphs, creates two files,

one containing a set of inequalities for the maximal paths in lrs format,

and the other a pickled file containing the graph and its maximal paths.

Usage: python3 maximalwalks.py n inFile

n : number of vertices in each graph. '''

from itertools import combinations

import sys

import os

import pickle

'''Create dictionary assigning each edge of graph an index value that can be

looked up. Edges stored as a tuple, both ways eg (0,1) and (1,0). (Used to

give each edge an index in an array.)'''

def make_edge_dict(graph):

edge_dict = {}

index = 0

for vertex in range(len(graph)):

for adj_v in graph[vertex]:

if (vertex, adj_v) not in edge_dict:

edge_dict[(vertex, adj_v)] = index

edge_dict[(adj_v, vertex)] = index

index += 1

return edge_dict

'''Create a tuple of 0s and -1s indicating which edges are in each path, based

on indices in edge_dict, and remove duplicates. Note -1 means edge is in the

path since inequalities are reversed. Does not remove subvectors.'''

def unique_path_edges(edge_dict, all_paths):

m = len(edge_dict) // 2 # Number of edges

all_edges = {}

124

for path in all_paths:

edges = [0] * m

for i in range(len(path) - 1):

Take two vertices of path and look up 'edge' in dictionary.

Set this edge to -1.

edges[edge_dict[tuple(path[i:i+2])]] = -1

edges = tuple(edges)

if edges not in all_edges:

all_edges[edges] = path

return all_edges

'''Remove any tuple of edges that is a subset of another tuple of edges.

Returns a dictionary with the edge tuples as keys and the corresponding path as the value.'''

def remove_subvectors(all_edges):

num_edges = len(next(iter(all_edges)))

length_buckets = {i: [] for i in range(1, num_edges + 1)}

for edge_vect in all_edges:

vect_len = -sum(edge_vect)

length_buckets[vect_len].append(edge_vect)

for super_ind in range(num_edges, 1, -1):

for sub_ind in range(super_ind - 1, 0, -1):

Loop backwards so that pop(i) doesn't mess with indices.

for i in range(len(length_buckets[sub_ind]) - 1, -1, -1):

if any(is_sub(length_buckets[sub_ind][i], x)

for x in length_buckets[super_ind]):

length_buckets[sub_ind].pop(i)

return {v: all_edges[v] for v in sum(length_buckets.values(), [])}

'''Check whether the edges in sub are all in sup.'''

def is_sub(sub, sup):

return all(x == 0 or y == -1 for x, y in zip(sub, sup))

'''Calculate the number (0, 1, or 2) to be subtracted from the length of the

path to adjust for the start and/or end possibly being repeated.'''

def minus_factor(path):

minus_num = 0

first_repeated = path[0] in path[1:]

last_repeated = path[-1] in path [:-1]

if first_repeated:

minus_num = 1

if last_repeated:

If first and last edge are the same, minus_num stays as 1.

Otherwise (as below) it's 2.

if path[0] != path[-2] or path[1] != path[-1]:

minus_num = 2

elif last_repeated:

minus_num = 1

return minus_num

'''Write inequalities to LRS file.'''

def write_lrs(f, graph, num_vert, graph_num, all_edges):

f.write(f"Graph{num_vert}v_{graph_num}.ine\n")

f.write("H-representation \n")

f.write("begin\n")

num_edges = len(next(iter(all_edges)))

125

num_ineq = num_edges + len(all_edges)

num_var = num_edges + 2

f.write(f"{num_ineq} {num_var} integer\n")

write inequality edgeLen >= 1 for each edge so -1 + edgelen >= 0, then no L (0)

order: constant, edges, L

for i in range(num_edges):

f.write(f"-1 {'0 '*i}1 {'0 '*(num_edges-i-1)}0\n")

write inequality for each path: segments - alpha <= L, so alpha - segments + L >= 0,

for edge_vect in all_edges:

minus_fact = minus_factor(all_edges[edge_vect])

last variable is L (length of longest path)

f.write(f"{minus_fact} {' '.join(map(str, edge_vect))} 1\n")

f.write("end\n\n")

'''Determine whether there is a vertex that is in all of the max length paths.'''

def has_intersection(all_paths):

hits = {}

for index in range(len(all_paths)):

path_vertices = set(all_paths[index])

for v in path_vertices:

hits[v] = hits.get(v, 0) + 1

if len(all_paths) in hits.values():

return True

else:

return False

'''A recursive function to generate all maximal "paths" in a graph, where the

endpoints may be repeated. visited[] keeps track of vertices in current path.'''

def gen_all_paths(graph, prefix=(), visited=None, start_visits=0):

if not prefix:

for v in range(len(graph)):

yield from gen_all_paths(graph, (v,), [i == v for i in range(len(graph))], 1)

return

for v in graph[prefix[-1]]: # Neighbors of the last vertex

if visited[v]:

if len(prefix) > 1 and v == prefix[-2]:

We just came from here! Ignore this vertex.

continue

elif v == prefix[0]:

Repeating the first vertex of the path.

if start_visits >= 2:

We have already repeated this vertex once, so stop. (Figure eight.)

yield prefix + (v,)

else:

First time repeating this vertex.

start_visits += 1

yield from gen_all_paths(graph, prefix + (v,), visited, start_visits)

else:

Ending in a cycle or is a cycle. Stop.

yield prefix + (v,)

continue

else:

Normal path. Try to recurse if not it's a leaf.

visited_v = visited[:]

126

visited_v[v] = True

extensions = gen_all_paths(graph, prefix + (v,), visited_v, start_visits)

Check whether there is an element in extensions by tying to get the first one

and get None otherwise.

first_extension = next(extensions, None)

if first_extension is not None:

yield first_extension

yield from extensions

else:

Leaf

yield prefix + (v,)

'''Check graph for a degree two vertex in which its adj vertices are not themselves adj

(i.e. graph can be reduced). Return True if found. (This graph will then be removed.)'''

def is_reducible(graph):

for row in graph:

if len(row) == 2:

if row[1] not in graph[row[0]]:

return True

return False

'''Process a single graph. Stops and returns 0 if the graph is reducible or all (longest)

paths have a common vertex. Otherwise, creates two output files and returns 1.'''

def process_graph(graph, num_vert, graph_num):

if is_reducible(graph):

print('reducible')

return 0

all_paths = []

for path in gen_all_paths(graph):

all_paths.append(path)

all_intersect = has_intersection(all_paths)

if all_intersect:

print('all paths intersect')

return 0

edge_dict = make_edge_dict(graph)

all_edges = remove_subvectors(unique_path_edges(edge_dict, all_paths))

paths = list(all_edges.values())

paths_intersect = has_intersection(paths)

if paths_intersect:

print('maximal paths intersect')

return 0

print('create output files')

lrsdir = f"pathslrs/lrsin{num_vert}v"

os.makedirs(lrsdir, exist_ok=True)

with open(f"{lrsdir}/lrsin{num_vert}v_{graph_num}.ine", "w") as lrs_file:

write_lrs(lrs_file, graph, num_vert, graph_num, all_edges)

pkldir = f"pathspkl/paths{num_vert}v"

os.makedirs(pkldir, exist_ok=True)

with open(f"{pkldir}/pkl{num_vert}v_{graph_num}.pkl", "wb") as pkl_file:

pickle.dump(graph, pkl_file, -1)

pickle.dump(paths, pkl_file, -1)

return 1

'''Process the graphs in the input file.'''

def process_graphs(num_vert, graphs_file):

graph = []

127

num_graphs = 0

for line in graphs_file:

if line != '\n':

line_array = line.strip().split()

if line_array[0] == 'Graph':

graph_num = int(line_array[1].strip('.'))

print(graph_num)

else:

graph.append([int(x) for x in line_array])

elif graph_num != 0:

num_graphs += process_graph(graph, num_vert, graph_num)

graph = []

print(f"Total number of graphs: {graph_num}")

print(f"Number of graphs remaining: {num_graphs}")

if __name__ == '__main__':

num_vert = int(sys.argv[1])

if sys.argv[2] != '-':

with open(sys.argv[2], 'r') as graphs_file:

process_graphs(num_vert, graphs_file)

else:

process_graphs(num_vert, sys.stdin)

B.2 Sample input

For Graph 1 and Graph 2 in Figure B.1, the input file, shown below, states the graph number followed

by a space-separated list of the vertices that are adjacent to vertices 0, 1, 2, 3, 4, and 5 respectively on

individual lines.

0
0

1 12

2

3

3
4 45

5

Graph 1 Graph 2

(i) (ii)

Figure B.1: Two graphs that each have six vertices, (i) Graph 1 and (ii) Graph 2.

Graph 1.

3 4 5

4

5

0

0 1 5

0 2 4

Graph 2.

3 4 5

4

128

5

0 4 5

0 1 3 5

0 2 3 4

B.3 Sample output: file for lrs

For Graph 1 in Figure B.1(i), the output file for lrs is as below.

Graph6v_1.ine

H-representation

begin

15 8 integer

-1 1 0 0 0 0 0 0

-1 0 1 0 0 0 0 0

-1 0 0 1 0 0 0 0

-1 0 0 0 1 0 0 0

-1 0 0 0 0 1 0 0

-1 0 0 0 0 0 1 0

0 -1 -1 0 -1 0 0 1

0 0 0 0 -1 -1 -1 1

0 -1 0 -1 0 -1 0 1

1 -1 -1 -1 0 0 -1 1

0 0 -1 -1 -1 -1 0 1

1 0 -1 -1 -1 0 -1 1

0 -1 0 -1 -1 0 -1 1

1 0 -1 -1 0 -1 -1 1

0 -1 -1 0 0 -1 -1 1

end

129

Appendix C

Python program postprocessing.py

C.1 Program code

'''Takes output file from LRS for a single graph, processes each vertex of the polyhedron

to find any graphs in which the longest paths do not have a common vertex, and outputs

these graphs and paths.

Usage: python3 post-processing.py n lrsFile pickleFile

n : number of vertices in the graph.

lrsFile: file from lrs containing the output for one graph

pickleFile: pickled file containing the corresponding graph and its paths.

The pickle file is generated by longestpaths.py.

'''

import sys

import pickle

from itertools import combinations

import re

import os

from multiprocessing import Pool

from longestpaths import make_edge_dict, minus_factor

NUM_THREADS = os.cpu_count()

def eprint(*args, **kwargs):

print(file=sys.stderr, *args, **kwargs)

''' Generator to give pairs of items from a pickled file, and catch the end of the file.'''

def unpickle_pairs(f):

try:

while True:

yield pickle.load(f), pickle.load(f)

except EOFError:

eprint("End of pickle file")

return

'''Turn a string of an integer or fraction into a number (int or float respectively).'''

def numeric(s):

130

if s.isdigit():

return int(s)

if '/' in s:

num, denom = s.split('/')

return int(num) / int(denom)

raise ValueError(f"Don't know how to handle number {s}")

'''Determine whether there is a vertex that is in all of the max length paths.'''

def has_max_paths_intersection(all_paths, max_path_indices):

hits = {}

for index in max_path_indices:

path_vertices = set(all_paths[index])

for v in path_vertices:

hits[v] = hits.get(v, 0) + 1

if len(max_path_indices) in hits.values():

return True

else:

return False

'''Calculate the weight of a path.'''

def get_weight(path, edge_dict, edge_lengths):

w = 0

used = []

for i in range(len(path) - 1):

edge_index = edge_dict[tuple(sorted(path[i:i+2]))]

if edge_index not in used:

w += edge_lengths[edge_index]

used.append(edge_index)

w -= minus_factor(path)

return w

'''Find the max weight (length) paths in the graph based on the edge weights.

Allow wiggle room of epsilon = 0.001 to account for rounding errors with floats.'''

def max_paths(all_paths, edge_dict, edge_lengths):

max_path_indices = []

max_weight = edge_lengths[-1]

for index, path in enumerate(all_paths):

w = get_weight(path, edge_dict, edge_lengths)

if w >= 0.999 * max_weight:

max_path_indices.append(index)

return max_path_indices

'''Convert the max length paths to binary numbers giving the vertices in the path.'''

def binary_max_paths(all_paths, max_path_indices):

binary_paths = []

for path in max_path_indices:

bin_num = 0

for vertex in all_paths[path]:

bin_num |= 1 << vertex

binary_paths.append(bin_num)

return binary_paths

'''Calculate the intersection of every 3 longest paths in the graph.

Return a string with every set of three paths that don't intersect.'''

def intersect_every_3(binary_paths):

n = len(binary_paths)

131

s = ""

for i in range(n):

for j in range(i+1, n):

int_ij = binary_paths[i] & binary_paths[j]

for k in range(j+1, n):

if (int_ij & binary_paths[k]) == 0:

s += "These 3 paths do not share a vertex."

s += f"Path numbers: {combination}, Intersection: {bin(intersection)}\n"

return s

'''Check vertex of polyhedron to find corresponding longest paths in the graph and check

whether they have a common vertex. If they don't, check every three longest paths.

Return a string to be output.'''

def check_vertex(all_paths, edge_dict, edge_lengths):

max_path_indices = max_paths(all_paths, edge_dict, edge_lengths)

all_intersect = has_max_paths_intersection(all_paths, max_path_indices)

if all_intersect:

return ""

s = write_intersection(all_paths, edge_lengths, max_path_indices)

binary_paths = binary_max_paths(all_paths, max_path_indices)

s += intersect_every_3(binary_paths)

return s

'''Return a string to be output containing the paths that do not have a common vertex.'''

def write_intersection(all_paths, edge_lengths, max_path_indices):

s = f"Edge lengths: {edge_lengths}\n"

s += f"These {len(max_path_indices)} paths do not have a common vertex:\n"

for i in max_path_indices:

s += f"Path {i}: {all_paths[i]}\n"

return s

''' Generator that gets the next matrix one line at a time, stripping the formatting and

putting each line of the matrix into an array. Takes only the rows that start with a 1

(the vertices of the polyhedron), and ignores those that start with 0 (the rays).'''

def get_matrix(f):

for line in f:

if line == 'begin\n':

break

else: # "begin" was not found

return

skip over the line after "begin" and before the start of the matrix (gives matrix size)

f.readline()

for line in f:

if line == 'end\n':

break

if line.startswith(" 1"):

yield [numeric(x) for x in line[2:].strip().split()]

'''Helper function for multiprocessing.'''

def get_matrix_jobs(all_paths, edge_dict, lrs_file):

for line in get_matrix(lrs_file):

yield all_paths, edge_dict, line

'''Helper function for multiprocessing.'''

def check_vertex_star(args):

return check_vertex(*args)

132

'''Get a matrix and the corresponding graph and paths from the lrs_file and pickled paths_file,

and check each line of the matrix (check each vertex of the polyhedron).'''

def process_matrices(lrs_file, paths_file):

graph = pickle.load(paths_file)

all_paths = pickle.load(paths_file)

pattern = re.compile(r'Graph\d+v_(?P<graph_num>\d+)[.]ine')

for line in lrs_file:

if m:= pattern.match(line):

break

else:

raise Exception('No Graph line in file')

graph_num = m.group('graph_num')

eprint(f"Graph {graph_num}")

print(f"Graph number {graph_num} \nGraph: {graph}")

edge_dict = make_edge_dict(graph)

Multiprocessing

with Pool(NUM_THREADS) as p:

jobs = get_matrix_jobs(all_paths, edge_dict, lrs_file)

for output in p.imap_unordered(check_vertex_star, jobs):

if output:

print(output)

print("done \n")

if __name__ == '__main__':

graph_vert = sys.argv[1]

with open(sys.argv[2], "r") as lrs_file, open(sys.argv[3], "rb") as paths_file:

process_matrices(lrs_file, paths_file)

C.2 Sample input: file from lrs

For Graph 1 in Figure B.1(i), the output file from the program lrs, which is one of the two input files for

postprocessing.py, is below. The other input file for postprocessing.py is the picked file containing

the graph and its maximal paths (not shown).

*lrs:lrslib v.7.1 2020.6.4(64bit,lrsmp.h)

Graph6v_1.ine

V-representation

begin

***** 8 rational

1 1 2 2 1 1 2 6

0 0 0 1 0 0 0 1

0 0 1 0 0 0 0 1

0 0 0 0 0 0 1 1

0 1 1 1 1 1 1 4

1 1 2 2 3 3 4 10

0 0 0 1 1 1 1 3

0 0 1 0 1 1 1 3

0 0 0 0 0 0 1 1

0 1 1 1 2 2 2 6

133

1 1 1 2 2 3 3 8

0 0 0 0 0 1 0 1

0 1 0 1 1 2 1 4

1 1 2 1 3 2 3 8

0 0 0 0 1 0 0 1

0 1 1 0 2 1 1 4

1 1 1 1 2 2 2 6

0 1 0 0 1 1 0 2

1 3 2 4 1 3 2 10

0 0 0 1 0 0 0 1

0 1 1 1 0 1 0 3

0 2 1 2 1 2 1 6

0 1 0 1 0 1 1 3

1 3 2 3 1 2 1 8

0 2 1 1 1 1 0 4

0 1 0 0 0 0 0 1

1 1 1 2 1 2 2 6

0 0 0 1 0 0 0 1

1 2 1 3 1 3 2 8

0 0 0 0 0 1 0 1

0 1 0 1 1 2 1 4

1 2 1 2 1 2 1 6

0 1 0 0 1 1 0 2

1 3 4 2 3 1 2 10

0 1 1 1 1 0 0 3

0 2 2 1 2 1 1 6

0 0 1 0 0 0 0 1

0 1 1 0 1 0 1 3

1 3 3 2 2 1 1 8

0 2 1 1 1 1 0 4

0 1 0 0 0 0 0 1

1 1 2 1 2 1 2 6

0 0 1 0 0 0 0 1

1 2 3 1 3 1 2 8

0 0 0 0 1 0 0 1

0 1 1 0 2 1 1 4

1 2 2 1 2 1 1 6

0 1 0 0 1 1 0 2

1 2 2 2 1 1 1 6

1 1 1 1 1 1 1 4

0 0 0 0 0 0 1 1

0 1 0 0 0 0 0 1

0 0 0 0 0 0 0 1

end

*Note! Duplicate rays may be present

*Totals: vertices=17 rays=36 bases=26 integer_vertices=17 vertices+rays=53

*Dictionary Cache: max size= 6 misses= 0/25 Tree Depth= 5

*lrs:lrslib v.7.1 2020.6.4(64bit,lrsmp.h)

*0.003u 0.003s 1839104Kb 0 flts 0 swaps 0 blks-in 0 blks-out

134

C.3 Sample output

For Graph 1 in Figure B.1(i), the output file is as below. Since this output file does not contain details

of any vertex of the polyhedron and corresponding graph and longest paths that do not have a common

vertex, every graph that is a subdivision of Graph 1 has a Gallai vertex.

Graph number 1

Graph: [[3, 4, 5], [4], [5], [0], [0, 1, 5], [0, 2, 4]]

done

135

Bibliography

[1] Avis, D. (2000). A Revised Implementation of the Reverse Search Vertex Enumeration Algorithm.

In Kalai, G. and Ziegler, G. M., editors, Polytopes – Combinatorics and Computation, pages 177–198.

Birkhäuser Basel.

[2] Axenovich, M. (2009). When do three longest paths have a common intersection? Discrete Math.

Algorithms Appl., 1(1):115–120.

[3] Balister, P. N., Győri, E., Lehel, J., and Schelp, R. H. (2004). Longest paths in circular arc graphs.

Combin. Probab. Comput., 13:311–317.

[4] Berge, C. (2001). The Theory of Graphs. Dover Publications, Inc.

[5] Brandstädt, A., Le, V. B., and Spinrad, J. P. (1999). Graph Classes: A Survey. Monographs on

Discrete Mathematics and Applications. Society for Industrial and Applied Mathematics.

[6] Cerioli, M. R., Fernandes, C. G., Gómez, R., Gutiérrez, J., and Lima, P. T. (2020). Transversals of

longest paths. Discrete Math., 343(3):111717.

[7] Cerioli, M. R. and Lima, P. (2019). Intersection of Longest Paths in Graph Classes. Discrete Appl.

Math., 281:139–142.

[8] Chen, F. (2015). Nonempty intersection of longest paths in a graph with a small matching number.

Czechoslov. Math. J., 65(2):545–553.

[9] Chen, G., Ehrenmüller, J., Fernandes, C. G., Heise, C. G., Shan, S., Yang, P., and Yates, A. N.

(2017). Nonempty intersection of longest paths in series–parallel graphs. Discrete Math., 340(3):287–

304, 1310.1376.

136

[10] de Rezende, S. F., Fernandes, C. G., Martin, D. M., and Wakabayashi, Y. (2013). Intersecting

longest paths. Discrete Math., 313:1401–1408.

[11] Ekstein, J., Fujita, S., Kabela, A., and Teska, J. (2018). Bounding the distance among longest paths

in a connected graph. Discrete Math., 341(4):1155–1159.

[12] Fujita, S., Furuya, M., Naserasr, R., and Ozeki, K. (2019). A New Approach Towards a Conjecture

on Intersecting Three Longest Paths. J. Comb., 10(2):221–234, 1503.01219.

[13] Fukuda, K. (1993). cdd. https://people.inf.ethz.ch/fukudak/cdd_home/.

[14] Gallai, T. (1966). Problem 4. In Erdős, P. and Katona, G., editors, Theory Graphs, Proc. Colloquium

Held Tihany, Hungary, 1966. Academic Press, New York.

[15] Gao, Y. and Shan, S. (2021). Nonempty intersection of longest paths in graphs without forbidden

pairs. Discrete Appl. Math., 304:76–83.

[16] Golan, G. and Shan, S. (2018). Nonempty intersection of longest paths in 2K2-free graphs. Electron.

J. Comb., 25(2):2–6, 1611.05967.

[17] Golumbic, M. (2004). Algorithmic Graph Theory and Perfect Graphs. Elsevier Science.

[18] Harris, J. M., Hirst, J. L., and Mossinghoff, M. J. (2008). Combinatorics and Graph Theory.

Springer.

[19] Harvey, D. J. and Payne, M. S. (2020). Intersecting longest paths in chordal graphs.

arXiv:2012.07221.

[20] Havet, F. (2004). Stable set meeting every longest path. Discrete Math., 289(1-3):169–173.

[21] Jendrol, S. and Skupień, Z. (1997). Exact Numbers of Longest Cycles with Empty Intersection.

European J. Combin., 18:575–578.

[22] Jobson, A. S., Kézdy, A. E., Lehel, J., and White, S. C. (2016). Detour trees. Discrete Appl. Math.,

206:73–80.

[23] Joos, F. (2015). A note on longest paths in circular arc graphs. Discuss. Math. Graph Theory,

35(3):419–426.

137

https://people.inf.ethz.ch/fukudak/cdd_home/

[24] Jooyandeh, M., McKay, B. D., Pettersson, V. H., Osterg, P. R. J., and Zamfirescu, C. T. (2016).

Planar hypohamiltonian graphs on 40 Vertices. J. Graph Theory, 84(2):121–133.

[25] Kensell, S. (2011). Intersection of longest paths. Master’s thesis, Central European University.

[26] Klavžar, S. and Petkovšek, M. (1990). Graphs with nonempty intersection of longest paths. Ars.

Combin., 29:43–52.

[27] Makhorin, A. (2000). GLPK: GNU Linear Programming Kit. https://www.gnu.org/software/

glpk/.

[28] McKay, B. D. (2020). Personal communication.

[29] McKay, B. D. and Piperno, A. (2014). Practical graph isomorphism, II. J. Symbolic Comput.,

60:94–112, 1301.1493.

[30] Rautenbach, D. and Sereni, J.-S. (2014). Transversals of longest paths and cycles. SIAM J. Discrete

Math., 28(1):335–341.

[31] Schmitz, W. (1975). Über längste Wege und Kreise in Graphen. Rend. Semin. Mat. Univ. Padova,

53:97–103.

[32] Shabbir, A., Zamfirescu, C. T., and Zamfirescu, T. I. (2013). Intersecting longest paths and longest

cycles: a survey. Electron. J. Graph Theory Appl., 1(1):56–76.

[33] Skupień, Z. (1996). Smallest sets of longest paths with empty intersection. Combin. Probab. Comput.,

5:429–436.

[34] Stoll, R. (2012). Set Theory and Logic. Dover Books on Mathematics. Dover Publications.

[35] Thomassen, C. (1974). Hypohamiltonian and hypotraceable graphs. Discrete Math., 9(1):91–96.

[36] Tutte, W. T. (1956). A theorem on planar graphs. Trans. Amer. Math. Soc., 82:99–116.

[37] Veblen, O. (1912). An application of modular equations in analysis situs. Ann. of Math. (2),

14(1):86–94.

138

https://www.gnu.org/software/glpk/
https://www.gnu.org/software/glpk/

[38] Walther, H. (1969). Über die Nichtexistenz eines Knotenpunktes, durch den alle längsten Wege

eines Graphen gehen. J. Combin. Theory, 6:1–6.

[39] Walther, H. and Voss, H. J. (1974). Über Kreise in Graphen. Deutscher Verlag der Wissenschaften,

Berlin.

[40] Walther, H. J. (1970). Über die Nichtexistenz zweier Knotenpunkte eines Graphen, die alle längsten

Kreise fassen. J. Combin. Theory, 8:330–333.

[41] Wei, B., Wu, H., and Zhao, Q. (2022). Bonds intersecting long paths in k-connected graphs.

arXiv:2201.11245.

[42] Zamfirescu, T. (1972). A two-connected planar graph without concurrent longest paths. J. Combin.

Theory Ser. B, 13(2):116–121.

[43] Zamfirescu, T. (1976). On longest paths and circuits in graphs. Math Scand., 38:211–239.

[44] Zamfirescu, T. (2001). Intersecting longest paths or cycles: a short survey. An. Univ. Craiova Ser.

Mat. Inform., 28:1–9.

[45] Ziegler, G. (2012). Lectures on Polytopes. Graduate Texts in Mathematics. Springer, New York.

139

	Abstract
	Acknowledgements
	Introduction
	Graphs
	Subgraphs
	Walks, paths, and cycles
	Connectivity
	Graph classes

	Overview of thesis
	Intersections of longest paths of a graph
	Sets of two longest paths
	Sets of three longest paths
	All longest paths
	Related results
	Longest path transversal
	A measure of the distance between longest paths
	Vertices that are not in the vertex set of at least one longest path

	Thesis structure

	Generalised theta graphs
	Introduction
	Trees and the Helly property

	Graphs with more than one core
	Graphs with a unique core
	Two types of longest paths
	Case (1): paths of Type (A)
	Case (2): paths of Type (A) and Type (B)
	Case (3): paths of Type (B)
	Forbidden configurations of Type (B) longest paths
	Properties of paths of Type (B)
	Proof of TypeB

	Proof of uniqueCore

	Proof of theta
	Concluding remarks

	Graphs with cyclomatic number 6
	Introduction
	Preliminaries
	The mod 2 sum operation
	Cycle decomposition of a graph
	Independent cycles
	Graph colouring

	Properties of a minimal counterexample
	Forbidden configurations in
	The number of cycles of

	Preliminary results on bi-coloured cycles
	Independence of cycles of
	Sets of cycles of
	The mod 2 sum of two cycles
	The mod 2 sum of three cycles
	The mod 2 sum of four cycles
	The mod 2 sum of five cycles
	Independent tri-coloured cycle
	Proof of 6edges

	Concluding Remarks

	Computational Investigations
	Introduction
	Theory
	Homeomorphic graphs
	Maximal walks and paths
	Polyhedra
	An optimisation
	Worked example

	Method of computation
	Overview
	Generating graphs
	Finding maximal walks
	Calculating the polyhedron
	Finding intersections of paths

	Results
	Linear programming
	Linear program
	Properties of a reduced graph
	Results
	Three longest paths
	Six longest paths

	Concluding remarks

	Conclusion
	Results
	Methods and extensions

	Appendices
	Graph classes for which every graph has a Gallai vertex
	Python program maximalwalks.py
	Program code
	Sample input
	Sample output: file for lrs

	Python program postprocessing.py
	Program code
	Sample input: file from lrs
	Sample output

	Bibliography

