
Detecting Advertising in Radio using Machine
Learning

November 8, 2007

Robin Müller-Cajar
rdc32@student.canterbury.ac.nz

Department of Computer Science and Software Engineering
University of Canterbury, Christchurch, New Zealand

Supervisor: Dr. Brent Martin
brent.martin@canterbury.ac.nz

Abstract

We present an algorithm that can distinguish between advertising and music with-
out understanding it, by extracting key attributes from a radio audio stream. Our
method combines advanced filtering of an audio stream with machine learning al-
gorithms to recognise the filtered variables. The result is lightweight enough to run
on an embedded processor, and could thus be used to create a device that gives the
listener the ability to filter advertising from radio broadcasts.

Contents

1 Introduction 1

2 Background and Related Work 3
2.1 Advertising . 3
2.2 Extracting features from an audio stream 3
2.3 Detecting advertising . 4
2.4 Statistical Classification and Machine Learning Algorithms 5

2.4.1 WEKA . 5
2.4.2 Linear Regression . 5
2.4.3 Decision Tree algorithms . 5
2.4.4 Artificial Neural Networks . 6
2.4.5 Hidden Markov Models . 7

3 Method 9
3.1 Analysing Advertising . 9
3.2 The Intelligent Advertising Detector 10
3.3 Audio Analyser . 10

3.3.1 Obtaining Relative Rating . 11
3.3.2 Volume . 12
3.3.3 Frequency Distribution . 12
3.3.4 Detecting Audio Edges and Segment Length 14

3.4 Machine Learning Algorithms - Design and Implementation 14
3.4.1 Artificial Neural Network . 15
3.4.2 Decision Tree . 15
3.4.3 Linear Regression . 15
3.4.4 Hidden Markov Models . 15

3.5 Improving Initial Performance . 17
3.6 Comparing the different machine learning algorithms 19

4 Results 20
4.1 Analysing Audio . 20
4.2 Algorithm Results . 20
4.3 Algorithm Comparisons . 20

5 Discussion 22

i

6 Conclusions and Future Work 25
6.1 Use of Speech Recognition . 25
6.2 Use of Databases . 26
6.3 Dynamic Training of Machine Learning Algorithms 26
6.4 Use of Meta-data . 26
6.5 More Complex Class Structure . 27
6.6 User Experience and Software Development 27
6.7 Extending the Hidden Markov Models 27

A Frequency Compression Algorithm 30

B Machine Learning Classifiers 32
B.1 Decision Tree . 32
B.2 Markov Models . 33

ii

1 Introduction

Advertising has become ubiquitous and pervasive in almost every aspect of life.
Whole companies like Google depend on it to provide income [11]. Several reports
state that the average American person is subjected to 500 to 3000 advertisements
every day [3, 6]. Not only does this have implications on our health [31, 28], but it is
quite simply annoying. Our project focuses on mitigating this problem by creating
the Intelligent Advertising Detector (IAD). This application recognises advertising
in radio broadcasts, making it possible to avoid it.

We chose Radio as the target domain of our application because of the passive
way it is enjoyed. Unlike vision, humans cannot disable their hearing. This, com-
bined with the fact that people ususally perform other tasks while listening to the
radio, makes it very hard to avoid advertising on the radio. In contrast the viewer
can simply mute television commercials, or ignore printed advertisements. Radio
is the only medium where the listener first has to perform a task switch to avoid
any advertisements. Also, as there are no visual cues, there is no way to know
when the advertisements have finished.

Our problem is: How do we recognise advertising, without understanding it?
It is easy for a human to distinguish between different audio contents as they can
assign meaning to what they hear. Although speech recognition has advanced
markedly to the stage where basic automatic transcriptions of news broadcasts
have become possible [10] this approach is still computationally expensive. Thus
our method cannot rely on understanding the content it receives. Instead we focus
on identifying key features in the audio stream that are only present in advertising.
These features need to be consistent across most, if not all, advertisements, while
also being simple to calculate.

Thus our research is split into several key steps:

• Research and discover features that differ between advertising and music

• Implement algorithms that can extract attributes corresponding to these fea-
tures

• Use machine learning algorithms to create a function with these attributes as
inputs, and the class (advertising or music) as output

In the background and related work section we discuss the approaches of other
researchers that have also attempted to classify an audio stream, either to discover
speech or also to detect advertising. We also describe some machine learning algo-
rithms central to our project.

1

Our method chapter starts with the analysis of advertisements. This results
in the discovery of key features that can be used to distinguish between adver-
tising and music. We implement algorithms to extract these in section 3.3, before
describing the design and implementation of several different machine learning
algorithms in section 3.4.

The results of testing the machine learning algorithms are described in chap-
ter 4, along with the quality of the extracted attributes. Our discussion chapter
then attempts to explain each classifier and its performance. Finally we discuss our
conclusions and future work in chapter 6.

2

2 Background and Related
Work

2.1 Advertising

The principle of advertising is as old as trade itself. It has been defined as:

Making known; calling public attention to a product, service, or
company by means of paid announcements so as to affect perception
or arouse consumer desire to make a purchase or take a particular ac-
tion. [19]

There have been enormous numbers of studies that have analysed the content of
advertisements, both for radio and other media [1, 7, 14, 17]. The problem of these
studies is that they concentrate on the effectiveness of advertising by analysing
its information content. What they do not do is differentiate advertising from the
media surrounding it, by defining or describing the features that differ.

Thus researchers that want to recognise advertising need to create their own
analysis of what distinguishes it from the remaining media. Most researchers did
this following the path of least resistance, identifying one key feature that consis-
tently identified all advertisements. Duan et al. for example focus on the fact that
commercials on television do not contain a station logo [8], while Saunders relies
entirely on the fact that radio advertising contains speech [25]. Herley does not
specifically detect advertising but instead all repeat content, but notes that it is pos-
sible to identify it by its length [12].

2.2 Extracting features from an audio stream

Clearly we cannot use the raw audio stream as input to any machine learning algo-
rithm, as this would certainly overwhelm it. Instead we will extract those features
that can identify advertising, by using algorithms that measure these features.

Pfeiffer, Fischer and Effelsberg have managed to automatically extract some
content and meaning from audio [21], as part of the University of Mannheim Movie
Content Analysis (MoCA) project. They provide an audio analysis framework that
can be used to extract several key attributes from music. They use the framework
to detect violence, such as screams and gunshots in movies. Apart from extracting
the volume, pitch and frequencies, they also look at the onset and offset of an audio
signal, which measures how fast a hearing cell responds to a signal.

Of more interest to us is their attempt to classify music by determining the fun-
damental frequencies of the chords played. This could be of interest as these funda-

3

mental frequencies are less likely to be present in advertising, which often does not
contain chords. But their method is not yet advanced enough to provide consistent
frequency resolution [21], nor has it been tested on speech to see how well it could
handle no chords being present.

There has also been some research into the detection of speech in any audio
source. Scheirer and Slaney have created a classifier that can accurately distinguish
between speech and music when both are separate, but only to 65% accuracy when
distinguishing between speech, music and simultaneous speech and music [26].
The attributes they extract are also volume, the energy distribution of the frequen-
cies, the spectral “Flux”, the Zero-Crossing Rate (ZCR) and a simple metric to mea-
sure the beat of the audio. The spectral “Flux” measures the change in frequencies
over time, while the ZCR represents “the number of time-domain zero-crossings”
[26]. Both of these are differ between music and speech and could thus be used to
recognise advertising.

Srinivasan et al. manage to classify mixed audio to an accuracy of 80% [29]
using frequency analysis and the ZCR. A similar approach is used by Itoh and
Mizushima, who used the identification of speech to reduce noise in hearing aids
[15]. The latter also use the spectral slope of the input signal, which is particularily
useful to distinguish between speech and background noise. Another algorithm
relying on the ZCR is presented by Saunders. He uses it to distinguish between
music and speech to a 98% accuracy across the training data.

Lu, Zhang and Jiang have also created a method that can classify several dif-
ferent types of audio (speech, music, silence, environment sound) and can even
distinguish between different speakers [16]. This method advances on the work
done by Scheirer and Slaney [26] and Pfeiffer et al. [21] as it manages to produce
satisfactory results even when more audio classes than speech and music are used.
They measure the variation of the ZCR, the number of silent frames in speech and
the spectral flux before using several machine learning algorithms to classify the
measured attributes.

Another system that detects the presence of speech even when mixed with other
audio has been proposed by Hoyt and Wechsler [13]. They use both Radial Basis
Function (RBF) classifiers and a formant tracking algorithm with mixed results.
Although they propose combining their algorithms to improve the result, they do
not actually do so.

2.3 Detecting advertising

Duan et al. have attempted to detect advertising in Television, using semantic con-
tent analysis [8]. By creating algorithms that could accurately detect the boundaries
of commercials and using Support Vector Machines to classify them they managed
to correctly classify commercials with up to 85.8% accuracy. Most of the features
extracted focused on the video stream, thus making them of little use to our project.

Herley has also created a method to find advertising in radio broadcasts [12].
His method focuses on the fact that advertisements are repeated. Thus by building
a database of known advertisements using fingerprints, it is possible to avoid the
repeat content. Combined with knowledge on how long each segment is, this can
be used to avoid advertisements but not repeated music. The main advantage of
this method is that it avoids the fundamental problem of distinguishing between

4

the DJ and advertising, as the DJ does not produce repeat content.

2.4 Statistical Classification and Machine Learning Algorithms

Effectively our method concentrates on separating the audio stream into two main
classes: Advertising and Music. This is a simple statistical classification and as
such requires machine learning algorithms capable of solving this problem. We
discuss some of the algorithms that can and have been used, along with WEKA a
framework that makes it easy to quickly test different algorithms.

2.4.1 WEKA

Instead of implementing every machine learning algorithm manually, it makes
better sense to use a standard framework of implemented algorithms for train-
ing. Those algorithms that produce promising results can then be implemented
and used in our application. The Waikato Environment for Knowledge Analysis
(WEKA) project by Frank and Witten [32], provides this framework. It is an envi-
ronment where one can rapidly prototype different machine learning algorithms,
using a standard data format. Their framework is better suited to train algorithms
than it is to use the algorithms as classifiers; therefore any resulting function needs
to be ported into another program for testing.

2.4.2 Linear Regression

Linear regression models the relationship between a dependent variable and sev-
eral independent variables. In our case the dependent variable is the output class
c, while the dependent variables are the attributes a filtered from the audio stream.
It works by creating a linear function that best separates the output classes.

Essentially it creates a linear equation of the type:

c = β0 + β1a1 + β2a2 + . . . + βnan (2.1)

Where each βi is a constant derived from the training data. WEKA uses the Akaike
information criterion [2] to determine the goodness of fit of the resulting equation.

This algorithm by definition can only learn linearly separable data. Although
its simplicity may mean that it cannot fit the model, it is ideal as a benchmark for
data that is possibly linearly separable.

2.4.3 Decision Tree algorithms

The Iterative Dichotomiser 3 (ID3) decision tree algorithm, and its later advance-
ment J48 are well suited to the problem domain. Invented by Ross Quinlan [22],
the algorithm works by splitting the search space (the space of all possible input
values) along the attributes that provide the highest information gain. This proce-
dure is repeated as the algorithm descends down the tree of attribute splits until
all test values (where possible) are accounted for. J48 improves the final tree by
pruning it to remove branches that have too little information gain. Clearly this
means that the final tree will no longer fit the training data exactly, but in general
this improves performance especially when used with noisy data, as it prevents the
tree from overfitting to the data.

5

-6.7

-5.4
6.8

5.2

3.4

4.1

-8.7

9.4

4.1

Figure 2.1: Feed forward neural network trained on the XOR function. The value
of each weight and threshold is represented by its colour and thickness.

This is a greedy algorithm, as it does not search for the best possible tree, but
only the attribute with the highest information gain to branch on at each point in
the tree. This can be a problem as this attribute may not be the best attribute to split
on. This is because the information gain is calculated by subtracting the entropy of
an attribute from the entropy of the data set. Yet the entropy of an attribute tends
to be low when the attribute has many different values. For example if we were to
include the length of the audio segment analysed so far as an attribute to ID3 this
would produce a different value every time. ID3 would split first on this attribute,
producing a useless result.

If we ensure that the attributes passed to this algorithm are meaningful, this
algorithm should be well suited to this task.

2.4.4 Artificial Neural Networks

These attempt to simulate the function of the brain, which makes decisions based
on the collective output of billions of neurons. Each neuron fires whenever its in-
puts exceed a certain threshold value. The output of each neuron then is used as
input to the next neurons, which repeats the process. ANN and their predecessors
Perceptrons have been studied since 1957 [24]. Although a single neuron can only
learn linearly separable equations [18], a feed-forward network using hidden lay-
ers can learn approximate every possible continuous function [4]. Note that it is a
NP-complete problem to actually design a network for each arbitrary function.

Several different flavours of ANNs exist. We will concentrate on a simple mul-
tilayer feed-forward network trained using the back-propagation algorithm. An
example network is schown in figure 2.1.

This type of network consists of an input layer, any number of hidden layers
and an output layer. Each hidden layer can have any number of units, each of
which is a simple perceptron. From each unit in each layer there are a number
of connections to the next layer. In a feed-forward network all connections move
strictly towards the output layer. Each connection has a weight associated with
it, which is used to emphasise certain connections. Additionally each unit has a
threshold which defines at which summed input value it begins to produce output.

Thus to train a feed-forward network we provide a set of example inputs and
the expected output associated with them. We run the inputs through the network

6

and compare the actual output with the expected output. The difference (or er-
ror) is then used by each unit in the network to scale the weights of its inputs, by
attributing some of this error to each input. This scaling of weights starts at the
output layer and is then back-propagated through the network to the input layer.

The output (activation value ai) of each unit i in this network is defined by sig-
moid function of the input ini. This function (shown in 2.2) is necessary as the
backpropagation algorithm requires the inverse of the activation function to calcu-
late the change in weights.

sigmoid(x) =
1

1 + e−x
(2.2)

The network we are using cannot retain any state, because the activation from
previous time steps plays no part in the current time step [20]. This means it has
no internal state other than its weights. It is well suited for the problem at hand, as
neural networks are good for continuous inputs and are noise tolerant [20].

2.4.5 Hidden Markov Models

Unlike the algorithms above hidden Markov models (HMMs) work on a funda-
mentally different premise. They are commonly used in tasks such as speech-
recognition [23]. Unlike in ANNs where one network is used to produce every
possible output class, we create a separate model for each output class. The model
is either trained using some form of training algorithm [5], or created to fit every
possible output that a class can create. To classify unknown output we then com-
pare the output to each model and calculate the probability that this model has
produced the given output. Clearly the model with the highest probability is then
taken to be the producer of the output and therefore the class of the output.

Hidden Markov models are a doubly stochastic model [23]. Each model consists
of a set of states. Each state has two sets of probabilities: The probability set of
possible outputs, and the state transition probabilities.

At each point in time the model will be in a certain state. It then produces some
output dependent on its output probabilities before changing state dependent on
its state transition probabilities. Note that there is nothing to stop the state transi-
tioning to itself as the next state. An example model is shown in figure 2.2. Here
bi1, . . . , bij correspond to each value in the output probability set of state i, while
ai1, . . . , aij corresponds to each value in the state transition probabilities of state i.

An example of the use of HMMs is by Duan et al. [8], who train them to detect
audio scene changes in television commercials.

7

Figure 2.2: An example Hidden Markov Model. The circles represent stated, the
rectangles possible outputs. (From [30])

8

3 Method

Our project focused on creating an application framework that could solve the
problem outlined above: How can we detect advertising without understanding it?
To do so we first analysed advertising and attempted to find several attributes that
would be unique when compared to other audio. Using these attributes we then
created an application split into two main parts. First we created audio analysis
software containing several algorithms that extract the attributes discovered ear-
lier. Then using WEKA we first prototyped several machine learning algorithms,
before building several applications that could read the output from the audio anal-
yser and decide on what type of audio it came from.

Finally we tested these classifiers both separately and in combination to pro-
duce an application that can accurately separate music and advertisements.

3.1 Analysing Advertising

We decided to perform a small study on advertisements to explain the distinguish-
ing features of advertising when compared to music, as there has been little previ-
ous research to find these features. Using advertising recorded from several differ-
ent radio stations, we were able to find several attributes that differed from music.

Our study focused on commercial radio stations that could be received in Christ-
church. We made the decision to focus only on contemporary music, as this makes
up the bulk of music on the radio. We recorded several hours of radio from 91.3
ZM, More FM, The Edge and The Rock as test data. These recordings were taken at
different times of day between 8am and 5pm in the first week of June. The adver-
tisements that were captured in this manner were then analysed and compared to
music in the same segments.

This gave us the following key attributes:

Speech This was the key variable that was present in almost all advertisements.
Obviously to sell something the advertisers had to spread their message using
verbal information. Noteworthy are advertisements for Halswell Country
Florists and Team Hutchinson Ford; Both of this consisted entirely of music,
with the text sung in tune. In contrast a significant portion of advertisements
contained only speech, while some contained either music or other sound
effects in the background.

Rhythm of Speech Compared to music and the DJ, advertisements sometimes ap-
peared rushed, as traders attempted to squeeze as much information into as
little time as possible. There were some advertisements that did not follow

9

this rule, such as the Lincoln University ad, which was spoken in a very low
and slow pitch.

Frequencies and Frequency Distribution Advertisements contain fewer frequen-
cies, but those frequencies have been compressed to make the audio appear
louder. The range of frequencies tends to be smaller than for music, when the
advertisement consists of pure speech. For all advertisements the frequency
balance is skewed more towards lower frequencies.

Volume and Volume Distribution The silent gaps between words mean that the
average volume of speech is lower. Also the change in volume over time is
higher for advertisements for the same reason.

Time Advertisements are usually aired in chunks and in front of information the
listener is interested in. Thus the likelyhood of advertisements being aired in-
creases before the full hour, as this is before the news broadcast. Interestingly
even when no news broadcast is aired, the commercials appear at the same
time.

Length of Segment An advertisement is never longer than a minute, while music
is significantly longer. Radio DJ announcements can be any length, but also
tend to be longer than a single advertisement.

By extracting these attributes (where possible), it should be possible to train a
machine learning algorithm on them. This should enable the accurate classification
of advertising in radio broadcasts.

3.2 The Intelligent Advertising Detector

To classify advertising we created a software framework that can analyse audio
and then classify the audio based on the extracted attributes. The nature of the task
led to a two-tiered approach. By building two separate applications, one to analyse
the audio and one to classify it, we can easily test several algorithms and classifiers
without creating a mess of the source code.

This reasoning led to the software seen in figure 3.1: We have created an audio
analyser and controller, and several machine learning and statistical analysis ap-
plications. The audio analyser receives the audio stream, filters out attributes and
passes these to the machine learning applications. The machine learning applica-
tions then classify the received attributes and return a class to the audio analyser.
Depending on the return value, the audio analyser then performs an appropriate
action. In this test version the playback volume is simply muted whenever the
return value indicates that the current audio is advertising.

3.3 Audio Analyser

For each of the distinguishing features of advertising that we have identified earlier,
we needed to create an algorithm that can extract this feature. Some of these algo-
rithms used the temporal domain of the audio, while others relied on the frequency
domain. Therefore we converted all the audio input using the Fastest Fourier Trans-
form in the West (FFTW) [9] library.

10

Figure 3.1: Overview of the Intelligent Advertising Detector

Due to the logarithmic nature of music the resulting frequencies need to be re-
calculated to obtain a linear distribution. To obtain a note one octave higher than
the current note, its frequency has to be doubled. As western music is based en-
tirely on tones and semitones, we rescale the frequencies so that each frequency
value corresponds to a quartertone. This means that higher notes contain a larger
range of frequencies than lower notes. Appendix A contains the C++ code neces-
sary to convert any logarithmic frequency array into a linear one.

Audio was split into samples of duration 100ms, at a sampling frequency of
44100Hz. This sampling time was taken to ensure that every audible (down to
20Hz) frequency has at least two full cycles in each sample, while at the same time
remaining fine grained enough to quickly notice changes in frequencies. The statis-
tical classifier algorithms where then passed one set of attributes every ten samples.
This means that they have enough time to return a result before the next set of at-
tributes arrives.

3.3.1 Obtaining Relative Rating

One of the major problems of this project was the fact that most attributes filtered
by the audio analyser were only important relative to each other. For example the
volume of an audio clip is only significant if we can compare it to other volumes
at different positions and therefore state that it is louder or softer than the rest of
the audio clip. We cannot use a statically defined threshold, because different radio
stations transmit at different strengths.

Thus every attribute was scaled relative to its average (mean) value. When
training and testing the algorithm the mean values of the entire training set were
used. Clearly this is not an option when listening to music that has not been pre-
recorded. In this case we use the mean of all the values extracted since the ap-
plication has started. This mean attribute value (a) is easy to calculate using the
formula:

at =
(t− 1)at−1 + a

t
(3.1)

Where t is the number of samples that have been received so far, and a is the
value of the attribute. When using this mean, the first few scaled attribute values
are inaccurate as the mean is too close to the current sample value. After approxi-

11

mately 100 samples, the running mean a has approached the true mean enough to
produce meaningful results.

3.3.2 Volume

This attribute simply describes the power of the input signal. The volume v of
any sample consisting of an array of n individual values x, is calculated using the
function:

v =
n∑

i=1

x2
i (3.2)

This value is used to detect speech and the rhythm of the audio sample. The
average volume for speech tends to be lower than for music, as speech contains
pauses, which music does not. Volume patterns tend to be more constant for mu-
sic than for speech, as the latter contains many more peaks and troughs in each
sample period. By summing the number of significant peaks, we also have a crude
measurement of the pace of the audio sample.

3.3.3 Frequency Distribution

We extract several attributes to obtain a measure for how evenly frequencies are
distributed across the spectrum. This again targets the speech in advertising, as
speech has a narrower frequency spread than instrumental music.

Energy Balance

The energy balance compares the sum of the frequencies above 8000Hz with the
total sum of all frequency values. This value is significant because speech contains
few frequencies above 8000Hz while instruments contain significant amounts of
frequencies in this range. This does not always hold as certain music genres such as
rap often contain only speech and drums, and therefore very few high frequencies.

To calculate it we first averaged the values of ten consecutive samples in the
frequency domain together before compressing the resulting array of quartertones
into six individual values to obtain the frequency array f .

The energy balance b is then calculated using the formula:

b =
∑6

i=5 fi∑6
i=1 fi

(3.3)

Number of silent frequencies

This value targets the volume distribution apparent in pure speech. By summing
the number of empty frequencies, we can again obtain a value for the frequency
distribution of the received audio.

The value does not consider every frequency recorded but instead picks 32 sig-
nificant frequencies from the 300–2000Hz frequency range. The array of frequencies
fs is calculated using the equation:

fsi = 2
i

2.89 + 300 (3.4)

12

Where 0 ≤ i < 32. This equation has been chosen because at i = 0, fsi = 301 and
thus 300Hz, while at i = 31, fsi ≈ 1995 and thus close to 2000Hz. The function
is exponential and as it is used over the uncompressed frequency band it ensures
that we use more low frequencies than we use high frequencies. This is important
as the higher frequencies are less significant (see section 3.3 for an explanation of
western music and human hearing).

The frequency range has been chosen as it contains most of the significant fre-
quencies of the audio stream. Due to noise we consider all frequencies that have a
value below 15% of the average frequency energy (f) to be empty. The advantage
of such a high threshold is that it is very noise tolerant, and can even ignore quiet
music in the background of some advertisements.

Mathematically the number of silent frequencies ns is extracted from the array
of uncompressed frequencies f as follows:

foreach fsi in fs do
if fsi < 0.15f then

ns++;
end

end
Algorithm 1: Calculating the no. of silent frequencies

Extreme Frequency Values

This value again measures the volume distribution of the audio stream. Advertis-
ing contains some very strong frequencies because it tends to heavily emphasise
the speech frequencies, something that music usually does not. By summing the
number of frequencies above and below a certain threshold we obtain a good esti-
mation for the general volume distribution.

The algorithm used to calculate the number of frequencies nex in the quarter-
note frequency array f , not close to the average frequency value f is as follows:

foreach fi in f do
if fi < 0.2f or fi > 3f then

nex + +;
end

end

Spectral Flux

This is the value proposed by Scheirer and Slaney [26]. Again this attribute focuses
on the fact that music usually uses more frequencies than speech. These frequen-
cies tend to change rapidly as new notes are played. This contrasts with speech
where the speaker tends to remain within a thin frequency spectrum, with most
frequencies remaining empty. Thus if we sum how much each frequency changes
from one sample period to the next, we can gather a value for how much the audio

13

has changed in that period. This value will be higher for music or noise than for
speech.

To calculate the Spectral Flux Sf we perform the calculation:

foreach Sampled array f do
Sf+ =

∑n
j=1 |fj,t−1 − fj,t|

end

3.3.4 Detecting Audio Edges and Segment Length

Here we use a similar measure to the spectral flux discussed above. Instead of
measuring the change in frequency since the last sample period, we compare the
change in frequency to the average frequencies of the last ten sample periods. If
this value is high, so is the chance of an edge. By remembering the time since the
last edge we can find the length of the current audio clip, giving us the ability to
sort clips by length.

The edge value ev is calculated using the formula:

ev =
n∑

j=1

|f j − fj,t| (3.5)

Where f j is the mean of the jth frequency for the last ten samples; fj,i is the
value of the jth frequency at time t.

This value is then used as a basis for calculating the length of the current seg-
ment. This length value is simply a counter that increments every second and is
reset whenever an edge occurs.

3.4 Machine Learning Algorithms - Design and Implementation

Once we have extracted key audio characteristics, we need to decide what class the
audio stream they were extracted from belongs to. Theoretically we could manu-
ally create a function to do this, but practically this is too hard to be realistic. Thus
we train machine learning algorithms with some training data, and then use these
algorithms as classifiers.

The training data consisted of 200 attribute sets, half of which originated from
music, the other half from advertising. Each algorithm was initially trained and
tested on this set.

The machine learning algorithms are chosen by comparing their performance
over the training set with the performance of the linear regression algorithm. Any
algorithm with a higher accuracy over the training set is used. We chose linear
regression as a benchmark because initial results showed our data to be almost
linearly separable (shown in figure 4.1). Another prerequisite to any algorithms
chosen is that it has a high noise tolerance. This is necessary due to the analog
nature of radio broadcasts, and because of the large amounts of data that cannot be
uniquely classified (DJ talking over top of a song, advertising for a concert or new
CD).

We used WEKA to test most algorithms. This algorithm was tested and im-
plemented purely in C, because WEKA does not have an implementation of Hid-

14

den Markov Models (HMMs). The other algorithms were then implemented us-
ing C/C++, communicating with the audio analyser using Linux FIFO pipes. This
makes it possible to ‘plug in’ different classifiers to the audio analyser — it does not
know which classifiers are being used, it only knows the output that is returned.

Below we describe the implementation of each algorithm that passed all the
required prerequisites.

3.4.1 Artificial Neural Network

Our ANN was implemented by rewriting code by Paras Chopra. It is a simple feed-
forward network that is trained using the backpropagation algorithm. We used a
fully connected network, because connections that are not needed will receive a
low weighting when the network is trained.

Our design was based on Occam’s razor — the simplest network that works
is probably the best one. This method also meant that we would avoid the ANN
overfitting itself to the training data. By starting with a simple perceptron with
an input for every audio property (six in total), we expanded the network until it
could train itself on the training data provided.

Surprisingly the resulting network performed poorly across the test set (76%
accuracy). Thus we continued increasing the network size and retraining until we
reached a plateau in result accuracy across the test set. The resulting network is
shown in figure 3.2. The complexity of this network makes it more likely that the
data is overfitting to the training set, but its improved performance across the test
set indicates otherwise.

3.4.2 Decision Tree

The decision tree algorithm used was J48, an advancement of the ID3 algorithm.
We chose J48 over ID3 because it enables the use of continuous data and it includes
pruning to provide a better fit to noisy data.

The tree was built using WEKA, and validated using 10-fold cross validation.
The resulting decision tree was then hard coded into a C++ application using if-else
statements.

3.4.3 Linear Regression

Once again the actual function was created and cross-validated using the Weka
framework. The resulting function was then transferred into C++ and used as a
benchmark to compare the performance of any other algorithms against.

The function implemented calculated the output o as follows:

o = −0.2889v +−1.0235b + 1.5603nex +−1.5777Sf + 0.6224 (3.6)

Here v is the volume at the point in time, b is the energy balance, nex the number of
extreme frequency values, and Sf is the Spectral Flux.

3.4.4 Hidden Markov Models

These were implemented by utilising the Generalised Hidden Markov Models li-
brary by the Max Planck Institute for Molecular Genetics, Germany [27]. They were

15

V

ol
um

e

M
us

ic

E
ne

rg
y

B
al

an
ce

S
ile

nt
 F

re
qs

S
um

 o
f P

ow
er

E
xt

re
m

e
F

re
qs

F
re

qu
en

cy
 F

lu
x

A
dv

er
t

Fi
gu

re
3.

2:
T

he
Fi

na
l

A
N

N
us

ed
to

cl
as

si
fy

au
di

o
da

ta
:

Th
e

th
ic

kn
es

s
of

ea
ch

de
nd

ri
te

co
rr

es
po

nd
s

to
it

s
w

ei
gh

t.
R

ed
in

di
ca

te
s

a
po

si
ti

ve
va

lu
e,

bl
ue

a
ne

ga
ti

ve
va

lu
e.

N
ot

e
th

at
so

m
e

of
th

e
in

pu
ts

ha
ve

si
gn

ifi
ca

nt
ly

hi
gh

er
w

ei
gh

ti
ng

s
th

an
ot

he
rs

,
th

es
e

co
rr

es
po

nd
to

th
e

at
tr

ib
ut

es
w

it
h

th
e

hi
gh

es
t

in
fo

rm
at

io
n

ga
in

.A
ls

o
no

te
th

at
th

e
ou

tp
ut

s
ar

e
si

m
pl

y
m

ir
ro

r
im

ag
es

of
ea

ch
ot

he
r.

16

trained on the same classes as all the other algorithms: advertising and music. For
each class we trained one HMM using the Baum-Welch algorithm.

The input data into the models is the sequence of volume levels in the audio
stream. Every sample period the current volume is measured and stored. Hidden
Markov models require discreet outputs, so the volume levels were scaled into ten
equally sized containers. The resulting array of discrete volumes in the range of
one to ten is then passed into both Markov models every second. Using the Viterbi
algorithm, the classifier application decides which model is more likely to generate
the input sequence of volumes.

As with the ANN, our models were designed by starting with the simplest pos-
sible model — a single state. The number of states was then increased linearly, until
the model stopped improving across the training set. Although both models were
designed independent of each other they both ended up with the same number
of states (see figure 3.3). Thus both models use seven states, but have completely
different connection and emission probabilities.

3.5 Improving Initial Performance

After testing the algorithms across some our test data we noticed several key issues.
The output of our machine learning algorithms can flip from one second to the

next, because none of the algorithms remember their past state. This was espe-
cially a problem in borderline data. Thus we decided to smooth the output of each
algorithm, by using its running average as return value. A true running average of
order n would have meant caching n past results, so we calculated an approxima-
tion −→o as follows:

−→o i = 0.9−→o i−1 + 0.1o (3.7)

Where o is the true output of the algorithm. This was close enough to the true
running average for our purposes. This was done for each algorithm, at which
point they were retested.

By averaging the output we obviously produce errors everytime the class changes,
for example at the beginning or the end of an advertising break. But as these class
changes are reasonably rare, the introduced errors should be offset by the increased
accuracy during a class.

The ANN, J48 and Linear Regression produced very similar results, which is
not surprising as they all received the same input sets. Their outputs tended to
err towards false positives (music classified as advertising). The HMM tended to
misclassify advertising as music (false negative), which meant that it was more
likely to play advertising, but much less likely to skip music. To balance this result
we decided to combine the results of several algorithms to provide a more accurate
classification of music and advertising. The two algorithms that were combined
were the ANN and the HMMs. The ANN was chosen because it produced the
most accurate results over the training set, while Markov models were chosen to
counterbalance the ANN.

To combine the algorithms we used linear regression to weight the output of
our combined algorithms. We trained the regression algorithm with a training set
consisting of the outputs of the ANN and HMMS, as well as the expected output
at each point in time. The resulting formula (equation 3.8) was then added to the

17

1

2

1 2 3 4

5

6

789

10

5

6 7

4

3

1

2 3

7 6

5

4

1

2

3

4

5

6

7

8

9

10

Figure 3.3: The trained Hidden Markov Models. the speech model is at the top, mu-
sic is at the bottom. Circles are states, rectangles the volume outputs. The thickness
of each line is proportional to the probability of this line being followed.

18

source code and tested.

o = −1.1349−→o ANN − 0.1589−→o HMM + 1.1265 (3.8)

Note that we are using the averaged output of the ANN and HMMs.

3.6 Comparing the different machine learning algorithms

As we had now implemented several algorithms theoretically capable of classify-
ing the audio data, we decided to run a full comparison on the data. The training
and test data was 30 minutes of audio recorded from the More FM radio station
on the 11th of June. 200 seconds (100 seconds music and 100 seconds advertising)
were then taken as training data, using twenty ten second excerpts from through-
out the segment. To test the algorithms we used the entire thirty minute segment,
playing it from beginning to end and comparing the output of the algorithm with
our transcription of the audio.

The test set contained approximately ten minutes of advertising and twenty
minutes of music. For the purposes of the experiment the DJ has been classified
as advertising. There are several situations where the machine learning algorithms
are expected to fail. Examples include two advertisements that are music: An ad-
vertisement for the Hopscotch Finance Plan, and another for Christina Aguilera in
concert. Also some of the music contained speech, either at the end of a song when
the DJ talks over top of the music, or at the beginning of some songs (for example
“Grace Kelly” by Mika). Thus the accuracy of each algorithm will be similar to
those experienced in real life, where there will be always situations that cannot be
classified correctly based on the attributes we extract.

19

4 Results

4.1 Analysing Audio

Most of the data filtered from the audio stream is almost linearly separable (shown
in figure 4.1). Although there are values that cross due to borderline data, most
values cluster in regions.

The attributes with the highest information gain as calculated by the ID3 algo-
rithm are volume and the energy balance. In fact using only the volume v attribute
separates music from advertising with a 86% percent accuracy across the training
set. Energy balance b can be used to separate the classes with a 79.5% percent accu-
racy, followed by extreme frequency values nex and spectral flux Sf (both 71.5%).
The least accurate indicator is the number of silent frequencies which can be used
to classify 68.5% of the training set correctly.

The edge detection algorithm failed to provide meaningful results. Thus the
length attribute had to be dropped as its information gain was non-existent.

4.2 Algorithm Results

Our resulting neural network had three hidden layers. As we can see in figure 3.2,
the attributes with the highest information gain also had the highest weights as
inputs to the network. Thus our algorithm was able to distinguish between the
importance of attributes.

Unsurprisingly the speech model had a much higher probability of outputting
low energy values than the music model for our Hidden Markov models. Thus its
probabilities were skewed towards this. The chance of outputting the lowest pos-
sible volume is the highest in the speech model. In the music model (figure 3.3) we
can see that there is a high chance of each state returning to itself after each itera-
tion. This indicates that the volume levels do not change as much nor as quickly
in music and tend to remain reasonably constant. The probability of outputting a
medium volume is also much higher in the music model than the speech model.
Appendix B has the actual figures for the model.

4.3 Algorithm Comparisons

When testing the algorithms using the training set each performed similarly well.
The neural network performed best with 96.5% accuracy. It had 3% false negatives
(fN) and 4% false positives (fP). The Hidden Markov Models (HMMs) followed
with 93% accuracy (8% fN, 6% fP). The J48 decision tree (90%, 9% fN, 11% fP)
and the linear regression algorithm (88%, 7.5% fN, 16.5% fP) performed the worst.
The combined ANN/HMMs algorithm managed receive a 100% accuracy over the

20

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1

Volume

Fr
eq

ue
nc

y
B

al
an

ce

Music
Advertising

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

Frequency Flux

Ex
tr

em
e

Fr
eq

ue
nc

y
Va

lu
es

Music
Advertising

Figure 4.1: Graphs showing the filtered attributes with the highest information gain
from the training set. Each point corresponds to the attribute values of one second
of audio

% Overall % Music % Speech/Ads
Linear Regression 87.5 91.2 83.8
Linear (Averaged) 88.1 93.5 82.7
J48 88.5 93.9 83.1
J48 (Averaged) 89.7 91.0 88.4
ANN 85.7 86.8 84.6
ANN (Averaged) 89.6 90.7 88.5
Markov 85.8 91.1 80.5
Markov (Averaged) 93.1 96.4 89.8
Combined Algorithm 91.2 92.5 89.9

Table 4.1: Accuracy comparison between different machine learning algorithms.
The output for the averaged algorithms was obtained by using a running average
of order 10 on the true output.

training set.
When compared with the test set the results are quite different. The combined

algorithm does not perform best with its 91.2% accuracy (see table 4.3). In fact the
most efficient algorithm is the Markov model with averaged output with a 92.7%
accuracy. It is worth noting that the HMMs took advertising as music more often
than the J48 and ANN algorithms.

By averaging the outputs we are able to improve the results of all algorithms.
This improvement is very small for linear regression and J48 at around 1%. In
contrast the HMMs improvem by 6.9% and the ANN improvemes by 3.9%. This
also greatly improves the detection of advertising of the markov model to 89.9%.

21

5 Discussion

The results show that there is enough difference between advertising and music
that an algorithm that does not understand the content of the audio can still sepa-
rate them.

Most of the algorithms performed similarly well, because most of the extracted
data was linearly separable. This was because even though the more advanced
machine learning algorithms could model functions of a higher complexity this was
simply not necessary. Thus even the linear regression algorithm worked almost
as well as the other algorithms, with a 88.1% percent success rate. Although all
the extracted attributes were reasonably good at separating advertising and music,
most were used to detect speech. Thus borderline cases were borderline for most
attributes, which meant that there was little gain in combining the attributes.

The large size of the ANN is surprising. As can be seen by the differing input
weights in figure 3.2 the network clearly emphasised the values of some inputs
more than others. Also there were several weights that were basically non-existent.
Perhaps using some form of genetic algorithm to create a not fully connected net-
work would have produced a better result than relying on the back-propagation
algorithm to remove weights that seem unnecessary.

The different set of attributes passed to the HMMs caused them to produce
significantly different results. The attributes passed to the HMMs were simply an
array of volume levels. This meant that the HMM could not detect if the volume
came from speech or music. Thus the HMM was very good at detecting the vol-
ume patterns of music, but could not determine consistently if there was speech in
the foreground, causing a higher number of false negatives. Thus this algorithm
was much more likely to classify the input audio as music than as advertising. This
contrasted with the other algorithms of which some tended to overemphasise ad-
vertising. This could also have been caused by the input attributes which were all
primed to detect speech. Thus any music containing speech was misclassified as
advertising.

The results show a much lower accuracy for recognising advertising than for
music. This was caused by one advertisement for a Christina Aguilera concert
which consisted almost exclusively of sound clips of her songs. Obviously every
algorithm classified this advertisement as music. This advertisement contributed
approximately 10% of the total advertisement time, which explains why none of
the algorithms could classify advertising with an accuracy higher than 90%.

Thus the heavy reliance on attributes that detect speech meant that most algo-
rithms failed in the same set of situations:

• Any advertisement that consisted of music was classified as music. In essence

22

this is not wrong, but at the same time it meant that advertisements were
wrongly classified.

• The DJ was consistently classified as advertising. This is something that can-
not be fixed by introducing new attributes. Although theoretically there are
some attributes that distinguish the DJ from advertising (such as the rhythm
of speech), these are not very consistent, and also very hard to classify.

• Some songs simply consisted of speech and music, exactly like advertising.
At the same time some advertisements had music included. The IAD man-
aged only about a 56% accuracy with these borderline cases (using HMMs
as classifier), which is only slightly better than an algorithm based on pure
chance.

Part of the problem was the fact that the entire application focuses on attributes
that can be extracted from the audio stream directly. This means that large amounts
of meta-data and domain knowledge are lost. Examples of this meta-data are:

Time of day The probability of advertisements increases at certain times of day
and certain time of the hour. Simply by recording the time at which adver-
tisements were played over a certain period it should be possible to imple-
ment an accurate probability distribution of advertisements corresponding to
time. But this distribution would most likely be different for every radio sta-
tion, and would also have to be dynamically updated, making it hard, if not
impossible to implement.

Length of audio segments This attribute is theoretically easy to measure using an
excellent edge detection algorithm. Perhaps using the algorithm proposed by
Herley [12] instead of the one used would make this possible.

Length of Ad-break This follows on from the attributes above. If we can measure
the length of each segment and therefore know how for long advertisements
have been played, we can clearly decrease the probability of another adver-
tisement after a certain amount of time. This relies on the fact that the ad-
break tends to be around five minutes long.

The issue with using these attributes is that they require the domain knowl-
edge to be correct. There is nothing that stops radio stations only broadcasting two
minute ad-breaks every five minutes, which would make the last attribute useless.
Similarly, simply moving the time of ad-breaks by a certain amount of time would
make the time of day attribute completely useless. Thus these attributes can be
easily circumvented or broken, immediately decreasing accuracy.

Using attributes that do not rely on speech would also have helped separate
the borderline cases described above. The problem is that no other feature is so
common in advertising. Although some advertisements use sound-effects, while
others use some form of musical accompaniment, both of these are not common
enough to describe a significant portion of advertisements. In fact well over half of
the advertisements sampled in our analysis consisted entirely of speech. This also
explains why it has been impossible to separate out the DJ from the advertising.
As our edge detection algorithm failed to work consistently we could not use the

23

length attribute which would have been completely independent of speech. This
might have improved our accuracy even further.

Combining several machine learning algorithms did not improve the final per-
formance at all. Although the combined algorithm managed a 100% accuracy
across the training set, it produced worse results across the test set. Basically the
linear regression algorithm used to assign weights to the outputs of the original
algorithms overfitted the data to suit the training set, but was unable to generalise
to the test set.

By averaging the outputs of the machine learning algorithms we were able to
improve some of their performance significantly. This was especially true for the
HMMs and the ANN. Especially the advertising detection of the HMMs improved
markedly (to 89.8%) when we averaged their output. Thus by averaging their out-
put noisy data was effectively ignored. This result indicates that both algorithms
were significantly affected by noise. By averaging the output we are also causing
some problems with the classification. Anytime the audio class changes (for exam-
ple when a song finishes and the DJ starts talking) our averaged output will only
slowly adjust to this change, because we do not detect the edge change. Thus we
often miss the beginning of a song, and do not regognise the beginning of an adver-
tisement. Once again a good edge detection algorithm would solve this problem,
improving the performance of the IAD significantly.

Another possible reason for the need to average results might have been a too
short time slice. But using a time slice longer than one second (ten samples at
100ms each) would have meant a significantly longer delay before the IAD reacts
to changes in the music.

24

6 Conclusions and Future Work

We have shown that it is possible to detect advertising in radio broadcasts to a
good (93.1%) accuracy. It has shown that the right choice and correct filtering of
attributes is much more important than the choice of machine learning algorithm,
as all of our algorithms performed similarily well.

The attributes chosen to define advertising in this project were all extracted
from the audio stream. This was not a necessity, but makes our application com-
pletely independent of outside information. If we had relied on attributes such as
the time, our application would by necessity have required another information
stream, independent of the audio stream.

We heavily rely on speech detection to classify advertising, as it is the most
common identifier of advertising. This is partly because speech detection is well
studied in literature compared to other attributes of advertising. But it has the side
effect that the radio DJ is consistently (mis)classified as advertisement. By using
features from the audio stream that differ between the DJ and speech in advertising
this could be avoided, but we have not been able to identify any features that fit this
criteria. The reliance on speech was thus both our biggest advantage, but also the
reason why a fully correct classification was not possible.

The type of machine learning algorithm used made little difference to the classi-
fication accuracy of the application. This contrasts with the significance of different
attributes, some of which could separate up to 86% of audio correctly. Thus our de-
sign and identification of audio extraction algorithms provided a much larger con-
tribution to the overall accuracy of the application. Surprisingly a Hidden Markov
Model trained only on the sequence of volumes over time performed better than all
the algorithms using more complicated attributes. Thus it seems as if the change
of volume levels over time says significantly more about the audio class than the
average volume and all the other attributes together.

Due to the limited time available for our project, there are several steps still re-
quired to make our product usable for the end user. Additionally we have not fully
explored every possible method of detecting advertising. In the next few pages
we will discuss some of the work that could be done to extend and improve our
results.

6.1 Use of Speech Recognition

One of the key assumptions of this project was that the application would not un-
derstand the radio broadcast. In principle, with speech recognition advancing con-
stantly this assumption no longer needs to apply. By implementing a speech recog-
nition system as part of the audio analyser and then training the machine learn-

25

ing algorithms on its output, it might be possible to produce the same accuracy at
recognising advertising that humans enjoy.

Possible attributes that the machine learning algorithms could be trained on in-
clude key words, such as Sale, Buy, and Hurry. This combined with the attributes
we are currently extracting could greatly improve the performance of the Intelli-
gent Advertising Detector (IAD).

6.2 Use of Databases

One of the key abilities of humans is remembering. At the moment our IAD has
can only simulate this ability by using machine learning (which remembers key
features by creating a function that separates classes based on those features). By
implementing a database of known advertisements we can combine the ability of
the algorithms with the power to remember. It is probably not computationally
and spatially viable to store every advertisement, only storing those advertisements
that were not recognised might also be an option.

Instead of only creating a blacklist of advertisements, future research might fo-
cus on implementing a whitelist of radio DJs. This would make it possible to give
the user the choice of listening to the DJ instead of only listening to music.

Implementing a database would require some input from the user, as by defini-
tion only data that has been incorrectly classified needs to be put into a database.
Thus some form of dynamic user input would also be required.

6.3 Dynamic Training of Machine Learning Algorithms

Currently our machine learning algorithms are only trained once at the beginning.
There are two main reasons to provide a facility to dynamically retrain the machine
learning part of the IAD.

The first is concept drift. Although the probability of this occurring is not likely
to be high, it is possible that music changes over time, until it is no longer recog-
nised accurately by the machine learning algorithms. Thus by retraining the algo-
rithms this could be avoided.

The second reason is the fact that there are very many types and genres of mu-
sic. The radio stations our application was tested on only played pop/rock music.
If an end-user wanted to use the IAD on a radio broadcast that played classical
music, the machine learning algorithms would have to be retrained. Of course this
problem could be avoided by training the machine learning algorithms on several
genres. But this would make the concept that we are trying to learn significantly
more difficult, and possibly mean that the resulting accuracy is lower.

6.4 Use of Meta-data

The use of meta data could also help in correctly classifying advertising (see our
discussion section). We do not use any meta-data whatsoever, because our project
has completely focused on attributes that can be extracted from the audio stream,.

Future research could focus on identifying data that describes the audio stream
that is not present in the audio file itself. The next step would be to somehow
extract this data and use it to correctly separate advertising and music.

26

6.5 More Complex Class Structure

The machine learning algorithms used in this project have all been trained for two
classes: music and advertising. Clearly this is not a completely accurate represen-
tation of a radio broadcast. By creating more classes it might be possible to more
accurately separate the audio stream into its individual segments.

An example of classes that might be used is: music, speech, speech and music,
noise, silence, sound-effects. These classes fit the range of sounds that can be heard
on a radio broadcast much more tightly.

6.6 User Experience and Software Development

The entire development of the Intelligent Advertising Detector (IAD) is still at a
research stage. Thus it cannot be used by an end-user effectively.

Our audio application does not have control over the audio that is played.
Thus it cannot change radio channel or play another media file while advertising
is present. All it can currently do is mute the audio output whenever advertising is
present. By implementing the software on a system that contains a radio card, this
problem can be solved.

Although care has been taken to make the memory and processor footprint as
small as possible, future research could focus on more efficiently implementing the
algorithms used. This could go as far as implementing the software on a microcon-
troller, thus creating a portable device with the software.

6.7 Extending the Hidden Markov Models

The success of the HMMs could be extended further by passing more attributes to
it. Perhaps several of the attributes we are filtering provide more meaning when we
consider their change over time, instead of using their mean value every second.
At the moment only the volume levels are passed in as attributes, but this could
easily be extended by using vectors of several attributes.

27

Bibliography

[1] ABERNETHY, A., AND FRANKE, G. The information content of advertising: A meta-
analysis. Journal of Advertising 25 (November 1996), 1–18.

[2] AKAIKE, H. A new look at the statistical model identification. Automatic Control, IEEE
Transactions on 19, 6 (December 1974), 716–723.

[3] ARENS, W., AND BOVÉE, C. Contemporary Advertising, 5th ed. Irwin, 1994.

[4] AUER, P., BURGSTEINER, H., AND MAASS, W. The p-delta learning rule for parallel
perceptrons. submitted for publication, 2001.

[5] BAUM, L. E., PETRIE, T., SOULES, G., AND WEISS, N. A maximization technique
occurring in the statistical analysis of probabilistic functions of markov chains. Ann.
Math. Statist. 41, 1 (1970), 164–171.

[6] BROWER, M., AND LEON, W. The Consumer’s Guide to Effective Enviromental Choices:
Practical Advice from the Union of Concerned Scientists. Three Rivers Press, 1999.

[7] DOWLING, G. Information content in u.s. and australian television advertising. Jour-
nal of Marketing 44 (Oktober 1980), 34–37.

[8] DUAN, L.-Y., WANG, J., ZHENG, Y., JIN, J. S., LU, H., AND XU, C. Segmentation,
categorization, and identification of commercial clips from tv streams using multi-
modal analysis. In MULTIMEDIA ’06: Proceedings of the 14th annual ACM international
conference on Multimedia (New York, NY, USA, 2006), ACM Press, pp. 201–210.

[9] FRIGO, M. A fast fourier transform compiler. In PLDI ’99: Proceedings of the ACM SIG-
PLAN 1999 conference on Programming language design and implementation (New York,
NY, USA, 1999), ACM Press, pp. 169–180.

[10] GAUVAIN, J.-L., LAMEL, L., ADDA, G., ADDA-DECKER, M., BARRAS, C., CHEN, L.,
AND DE KERCADIO, Y. Processing broadcast audio for information access. In ACL
’01: Proceedings of the 39th Annual Meeting on Association for Computational Linguistics
(Morristown, NJ, USA, 2001), Association for Computational Linguistics, pp. 2–9.

[11] GOOGLE. Google inc. annual fiscal report dec. 31, 2006.

[12] HERLEY, C. Accurate repeat finding and object skipping using fingerprints. In MUL-
TIMEDIA ’05: Proceedings of the 13th annual ACM international conference on Multimedia
(New York, NY, USA, 2005), ACM, pp. 656–665.

[13] HOYT, J., AND WECHSLER, H. Detection of human speech in structured noise. In
ICASSP ’94: IEEE International Conference on Acoustics, Speech, and Signal Processing,
1994 (April 1994), vol. ii, pp. II/237–II/240.

[14] HUNT, S. Informational vs. persuasive advertising: An appraisal. Journal of Advertis-
ing 5 (1976), 5–8.

28

[15] ITOH, K., AND MIZUSHIMA, M. Environmental noise reduction based on
speech/non-speech identification for hearing aids. In ICASSP ’97: Proceedings of the
1997 IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP
’97) -Volume 1 (Washington, DC, USA, 1997), IEEE Computer Society, p. 419.

[16] LU, L., ZHANG, H.-J., AND JIANG, H. Content analysis for audio classification and
segmentation. IEEE Transactions on Speech and Audio Processing 10 (October 2002), 504–
516.

[17] MILLER, D., AND MARKS, L. Mental imagery and sound effects in radio commercials.
Journal of Advertising 21 (December 1992), 83–94.

[18] MINSKY, M., AND PAPERT, S. Perceptrons. MIT Press, Cambridge, MA:.

[19] MOTTO, M. J. Definition of advertising, 2002.

[20] NORVIG, P., AND RUSSEL, S. Artificial Intelligence: A Modern Approach. Prentice Hall,
1995.

[21] PFEIFFER, S., FISCHER, S., AND EFFELSBERG, W. Automatic audio content analysis. In
MULTIMEDIA ’96: Proceedings of the fourth ACM international conference on Multimedia
(New York, NY, USA, 1996), ACM Press, pp. 21–30.

[22] QUINLAN, R. C4.5: Programs for Machine Learning. Morgan Kaufmann Publishers, San
Mateo, CA., 1993.

[23] RABINER, L. R. A tutorial on hidden markov models and selected applications in
speech recognition. In Proceeding of the IEEE (February 1989), vol. 77, pp. 257–286.

[24] ROSENBLATT, F. The perceptron: A probabilistic model for information storage and
organization in the brain. Psychological Review (1958).

[25] SAUNDERS, J. Real-time discrimination of broadcast speech/music. In ICASSP ’96:
Proceedings of the IEEE International Conference on Acoustics, Speech, and Signal Processing
(May 1996), vol. 2, pp. 993–996.

[26] SCHEIRER, E., AND SLANEY, M. Construction and evaluation of a robust multifeature
speech/music discriminator. In ICASSP ’97: Proceedings of the 1997 IEEE International
Conference on Acoustics, Speech, and Signal Processing (ICASSP ’97)-Volume 2 (Washing-
ton, DC, USA, 1997), IEEE Computer Society, p. 1331.

[27] SCHLIEP, A., GEORGI, B., AND RUNGSARITYOTIN, W. General hidden markov model
library.

[28] SMITH, L. Aap raises concern over effects of advertising on children’s health. American
Family Physician 75.1 (January 2007), 18.

[29] SRINIVASAN, S., PETKOVIC, D., AND PONCELEON, D. Towards robust features for
classifying audio in the cuevideo system. In MULTIMEDIA ’99: Proceedings of the
seventh ACM international conference on Multimedia (Part 1) (New York, NY, USA, 1999),
ACM Press, pp. 393–400.

[30] TDUNNING. Hiddenmarkovmodel.png. http://en.wikipedia.org/wiki/Image:-
HiddenMarkovModel.png, August 2007. published under GNU Free Documentation
License, Version 1.2.

[31] TENG, L., LAROCHE, M., AND ZHU, H. The effects of multiple-ads and multiple-
brands on consumer attitude and purchase behavior. Journal of Consumer Marketing
(January 2007), 27–36.

[32] WITTEN, I. H., AND FRANK, E. Data Mining: Practical machine learning tools and tech-
niques. Morgan Kaufmann, San Francisco, 2005.

29

A Frequency Compression
Algorithm

The following algorithm transforms any input array with logarithmic spacing into
another array using linear spacing. This is used to linearise frequencies. For ex-
ample: If the input array contains a frequency at index ni, the frequency at index
2ni will be an octave higher, while the frequency at index 4ni will be two octaves
higher. The output array will then contain the same frequency at no, while one
octave higher will be at no + x where x is relative to the length of the output array.

/**
* @param rawFreqs the array of logarithmic frequencies

* @param compressedBand the output of linear frequencies

* @param numRaw the size of raqFreqs

* @param numCompressed the size of compressedBand

*/
int compressBands(double *rawFreqs, double *compressedBand,

int numRaw, int numCompressed) {
if(rawFreqs == NULL || compressedBand == NULL

|| numRaw < 1 || numCompressed < 1)
return -1;

//Start with 1Hz frequency
double centerFreq = 1.0;
double lowerFreqBound, upperFreqBound;
int lowerIndex, upperIndex;

//Work out N, which is the number of steps per
//octave in the compressed band
//If numCompressed is 202 this works out to exactly 24
//steps per octave i.e. each step is a quarter note.
double N = (numCompressed-2)/(8.0+1.0/3.0);
//Note that we skip the first few octaves as these are
//in a frequency range (0-20Hz) that does not interest us
int freqIter = (int)N*6;
double ten_N_log = 10.0*N*log10(2.0);
for(int i = 0; i < numCompressed; i++) {
compressedBand[i] = 0;

//First calculate the frequencies;
//We start with a frequency around 20Hz
centerFreq = pow(2.0,(3.0*(freqIter))/ten_N_log);
freqIter++;

30

lowerFreqBound = centerFreq/pow(2.0,1.0/(2.0*N));
upperFreqBound = centerFreq*pow(2.0,1.0/(2.0*N));

//Then convert them to array indices using the formula
// index = Frequency*arraySize/(maxFreq)*2
//NOTE max Freq = 22050 as we are sampling at 44100Hz
lowerIndex = (int) (lowerFreqBound*((double)numRaw)/44100.0);
upperIndex = (int) (upperFreqBound*((double)numRaw)/44100.0);
if(upperIndex > numRaw)
upperIndex = numRaw;

if(upperIndex == lowerIndex)
lowerIndex--;

if(lowerIndex < 0)
lowerIndex = 0;

//Finally make the compressed band index be the mean of values
//in the uncompressed band
for(int j = lowerIndex; j < upperIndex; j++) {
compressedBand[i] += rawFreqs[j];

}
if(upperIndex != lowerIndex)
compressedBand[i] /= upperIndex - lowerIndex;

}
}

31

B Machine Learning Classifiers

B.1 Decision Tree

This is the decision tree produced by the J48 algorithm, and implemented in C.

if(sumPower <= 0.656505) {
if(variation <= 0.570545) {
if(balance <= 0.422702) {
if(energyDiffs <= 0.298185) {
return 1;//: false (29.0/1.0)

}
if(energyDiffs > 0.298185) {
if(energyDiffs <= 0.331309) {
return 0;//true (6.0/1.0)

}
if(energyDiffs > 0.331309) {
return 1;//: false (3.0)

}
}

}
if(balance > 0.422702) {
if(balance <= 0.443866) {
if(loudVals <= 0.15625) {
return 0;//: true (6.0/1.0)

}
if(loudVals > 0.15625) {
return 1;//: false (2.0)

}
}
if(balance > 0.443866) {
return 0;//: true (12.0)

}
}

}
if(variation > 0.570545) {
return 1;//: false (63.0)

}
}
if(sumPower > 0.656505) {
return 0;//: true (79.0/2.0)

}

32

B.2 Markov Models

This section contains the Markov Models as produced by the Baum-Welch algo-
rithm.
M is the number of outputs,
N is the number of states.
The A matrix contains the state transition probabilities.
The B matrix contains the output probabilities.

//Music Model
HMM = {
M = 10;
N = 7;
prior = -1.000;
ModelType = 0;
A = matrix {
0.66, 0.03, 0.08, 0.01, 0.00, 0.14, 0.07;
0.22, 0.56, 0.09, 0.05, 0.00, 0.06, 0.02;
0.09, 0.24, 0.52, 0.06, 0.01, 0.07, 0.01;
0.00, 0.00, 0.17, 0.59, 0.24, 0.00, 0.01;
0.00, 0.00, 0.00, 0.33, 0.62, 0.05, 0.00;
0.00, 0.05, 0.26, 0.00, 0.07, 0.56, 0.06;
0.00, 0.02, 0.13, 0.00, 0.00, 0.29, 0.55;
};
B = matrix {
0.78, 0.16, 0.03, 0.00, 0.03, 0.01, 0.00, 0.00, 0.00, 0.00;
0.00, 0.83, 0.09, 0.07, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00;
0.00, 0.00, 0.73, 0.22, 0.05, 0.00, 0.00, 0.00, 0.00, 0.00;
0.00, 0.00, 0.01, 0.93, 0.06, 0.00, 0.00, 0.00, 0.00, 0.00;
0.00, 0.00, 0.00, 0.03, 0.96, 0.01, 0.00, 0.00, 0.00, 0.00;
0.00, 0.00, 0.01, 0.13, 0.32, 0.55, 0.00, 0.00, 0.00, 0.00;
0.00, 0.00, 0.00, 0.02, 0.01, 0.01, 0.54, 0.23, 0.11, 0.08;
};
Pi = vector {
0.11, 0.20, 0.25, 0.13, 0.14, 0.12, 0.06;
};
fix_state = vector {
0, 0, 0, 0, 0, 0, 0;
};
};
// Speech Model
HMM = {
M = 10;
N = 7;
prior = -1.000;
ModelType = 0;
A = matrix {
0.84, 0.09, 0.03, 0.03, 0.00, 0.00, 0.01;
0.18, 0.46, 0.15, 0.20, 0.00, 0.01, 0.00;
0.00, 0.47, 0.43, 0.00, 0.00, 0.00, 0.10;
0.00, 0.01, 0.15, 0.13, 0.17, 0.00, 0.54;
0.32, 0.49, 0.17, 0.00, 0.00, 0.01, 0.00;
0.05, 0.39, 0.00, 0.00, 0.45, 0.10, 0.00;
0.00, 0.00, 0.06, 0.00, 0.39, 0.55, 0.00;

33

};
B = matrix {
0.96, 0.04, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00;
0.16, 0.83, 0.00, 0.01, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00;
0.14, 0.14, 0.63, 0.04, 0.00, 0.07, 0.00, 0.00, 0.00, 0.00;
0.64, 0.08, 0.05, 0.12, 0.06, 0.05, 0.00, 0.00, 0.00, 0.00;
0.00, 0.05, 0.36, 0.15, 0.33, 0.03, 0.03, 0.00, 0.00, 0.04;
0.00, 0.00, 0.00, 0.03, 0.00, 0.34, 0.00, 0.25, 0.34, 0.03;
0.00, 0.11, 0.12, 0.19, 0.11, 0.07, 0.26, 0.11, 0.00, 0.02;
};
Pi = vector {
0.41, 0.18, 0.15, 0.11, 0.04, 0.05, 0.05;
};
fix_state = vector {
0, 0, 0, 0, 0, 0, 0;
};
};

34

