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Abstract: A Monte Carlo analysis was undertaken to measure the ability of a series of dynamic insulin 

sensitivity and secretion tests (DISST) to observe and quantify the time-varying effect of an insulin 

sensitizer drug. Physiological parameter values from an insulin resistant individual were used to simulate 

a series of DISST tests with the effects a hypothetical sensitizer drug (based on Metformin) that was 

assumed to elevate insulin sensitivity (D) by 50%, and have absorption (Dk1) and decay (Dk2) half-lives 

of ~30 and ~140 minutes respectively. Noise was added to data sampled from the simulation and allowed 

repeated identification of pharmaco-kinetic/dynamic parameters in clinically realistic data. The 

coefficients of variation (CV) of the drug variables in this Monte Carlo analysis were CV-D=0.9%, CV-

Dk1=116.3%, and CV-Dk2=41.4% respectively. Although the CV values for the drug kinetic rates did not 

indicate considerable stability, the identified time-varying insulin sensitivity profile was relatively 

accurate to the simulation profile (median error of 0.047 L/mU/min (~2%) and IQR of -0.093 to 0.184 

L/mU/min (-4% to 8%)). This result indicates that the proposed method for identifying drug parameters 

using a series of dynamic tests is able to capture the overall effect of the drug, but has a potentially 

limited ability to identify the drug parameters individually. Thus, the existing method of arduous, 

frequently-sampled steady-state tests for the measurement of drug pharmacokinetics and dynamics could 

be replaced with a series of sparsely-sampled dynamic tests. 

Keywords: Physiological modeling, pharmacokinetics/dynamics, parameter-identification, insulin 

sensitivity. 

 

1. INTRODUCTION 

Insulin sensitizer drugs are used in treating type 2 diabetes 

mellitus to minimise the incidence of hyperglycaemia in 

individuals who require aid to effectively regulate their blood 

glucose concentration. Although there is a reasonable 

quantity of studies investigating the long term effects of such 

drugs, there are a limited number of studies investigating the 

drugs’ single dose kinetics. Typically, the effect of these 

drugs are measured by the companies that produce them 

using arduous steady-state clamp tests that last the duration of 

the drug’s efficacy. These steady-state tests require five or 

ten minutely samples to enable feedback control for 

euglycemia. This approach is thus very costly, time 

consuming and intensive. 

This study investigates a series of sparsely sampled dynamic 

tests as a possible alternative for this clinically intense 

approach. Our group has previously presented the dynamic 

insulin sensitivity and secretion test (DISST) as a low-cost, 

comparatively low intensity, but relatively high resolution 

insulin sensitivity test that also measures the participants 

endogenous insulin production response (Lotz et al. 2010). It 

is hypothesised that a series of these dynamic tests may 

enable an observation of the change in effect of these drugs 

over time. To test this hypothesis, an in-silico Monte Carlo 

analysis is completed that simulates the expected level of 

clinical assay error and measures the ability of the novel 

identification methods to reproduce values of a theoretical 

sensitizer drug’s pharmaco-kinetics (PK) and pharmaco-

dynamics (PD).    

2. METHODS 

2.1 Virtual Participant 

The parameters used to construct the virtual participant of 

this study were obtained from a participant of the DISST 

pilot study (Lotz 2007, Lotz et al. 2010). This particular 

participant was very insulin resistant with suspected 

undiagnosed type 2 diabetes mellitus. The participant had a  



 

 

     

 

Table 1. Key parameters of the participant used to generate the virtual participant used in this study, where all terms are 

defined in Table 2 except for Ub, U1 and U2 which represent the basal, first and second phases of insulin production. 

significant insulin production rate, but a relative inability to 

effectively clear glucose. Thus, she could be the type of 

person who might gain an advantage from insulin sensitizer 

treatment, and is likely to represent the physiology of patients 

already on insulin sensitizer treatment. Some key anatomical 

and PK/PD parameters for this participant are summarised in 

Table 1. 

2.2 Model Equations 

This study will use a previously validated  physiological 

model (Lotz et al. 2010), defined: 
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where: equation nomenclature is defined in Table 2. 

For this analysis, saturation of hepatic insulin clearance is 

assumed to be negligible and thus, aI is set to zero and nL and 

nK are combined to a single parameter of insulin clearance 

from plasma (nT). 

If it is assumed that the drug is administered orally or 

subcutaneously, it would be reasonable to propose a very 

simple two-compartment model for the PKs of the theoretical 

insulin sensitizer drug. It is assumed for the purpose of this 

preliminary, proof-of-concept investigation, that the transport 

between compartments will be concentration-based and the 

drug will not re-enter the remote compartment from the 

active compartment. Figure 1 and Equations (6)-(8) define 

the model used in this study and the effect of the drug on 

insulin sensitivity: 

(���� = +��� − +��(��� (6) 

,� ��� = +��(��� − +��,��� (7) 

(���� = (�-�1 + ,���� (8) 

where: Equation nomenclature is defined in Table 2  

Sym’ Definition units 

C Plasma C-peptide concentration mU/L 

Y Interstitial C-peptide conc. mU/L 

k1 Transport rate to interstitial 1/min 

k2 C-peptide transport rate to plasma  1/min 

nK Kidney clearance of plasma insulin 

and C-peptide 

1/min 

Un Endogenous insulin production rate 

profile 

mU/L/min 

I Plasma insulin concentration mU/L 

Q Interstitial insulin concentration mU/L 

nL Hepatic insulin clearance 1/min 

aI Saturation of hepatic clearance L/mU 

nI Transition of insulin between plasma 

and interstitial 

L/min 

xL First pass clearance of insulin 1 

Vp Plasma insulin distribution volume  L 

Vq Interstitial insulin distribution 

volume 

L 

G Glucose concentration mmol/L 

Gb Basal glucose concentration mmol/L 

Qb Basal interstitial insulin conc. mU/L 

pG Glucose dependant glucose 

clearance 

1/min 

SI Insulin sensitivity L/mU/min 

PX Exogenous glucose bolus mmol 

VG Glucose distribution volume L 

S Latent drug effect in remote 

compartment 

1 

P Drug effect in active compartment 1 

D Total potential proportional effect of 

drug bolus on SI  

1 

Dk1 Passive transport rate from remote to 

active compartments. 

1/min 

Dk2 Passive clearance from active 

compartment. 

1/min 

SI0 Basal insulin sensitivity  L/mU/min 

SI(t) Time variant insulin sensitivity L/mU/min 

Table 2. Nomenclature from Equations (1)-(8). 

 

Figure 1. Two compartment representation of the PKs of a 

theoretical sensitizer drug. 

Sex Age 
BMI 

[kg.m
-2

] 

Un [mU.min
-1

] Insulin clearance VG 

[L] 

SI 
[L/mU/min] Ub U1 U2 nL [min

-1
] xL [1] 

F 57 33.9 115.5 233.6 150.7 0.064 0.822 13.35 2.236 
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2.3 Proposed Protocol 

The effect of a theoretical insulin sensitizer drug during a 

series of DISST tests will be simulated in a virtual participant 

over the 12 hours. The PKs of the theoretical drug used in 

this study are based on those of Metformin (Pentikäinen et al. 

1979). Seven DISST tests will begin at two hour intervals 

with blood samples taken at t=0, 10 25 and 40 minutes in 

each test. Thus, the total length of this virtual simulation is 

760 minutes (12 hours, 40 minutes), and the total number of 

samples is 28. Each of the seven DISST tests requires 10g 

glucose and 1U insulin (intravenous) bolus immediately after 

the t=0 and 10 minute samples respectively. The sensitizer 

drug is administered at t=150 minutes toward the end of the 

second test. Hence the first two tests serve as a baseline so 

each subject is their own control. All samples are assayed for 

insulin, C-peptide and glucose. 

2.4 Parameter Identification 

This analysis will define Un, nT, xL, SI0, VG, D, Dk1 and Dk2 as 

variables to be identified. All other model parameters are 

assumed to be known through a-priori means (Lotz 2007, 

Van Cauter et al. 1992).  

Un, nT, xL, SI0 and VG are identified using previously 

presented methods: Un is identified using a typical 

deconvolution approach (Van Cauter et al. 1992), nT, xL, SI0 

and VG are identified using the iterative integral method 

(Docherty et al. 2009, Hann et al. 2005), SI0 and VG are 

identified using only data from the first 150 minutes of the 

proposed protocol and are then held constant.  

To identify the PK/PD of the sensitizer drugs, a 

comprehensive model of the glucose PDs must be generated. 

Combining Equations (5) and (8) provides: 
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The variables in Equations (9) and (10) are not separable in 

terms of the glucose data and as such the iterative integral 

method is not possible. To enable variable identification, an 

approximation of the P(t) profile must first be de-convolved 

from Equation (9). Equation (9) can be rearranged for P(t): 
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With the exception of G(t) all parameters of Equation (9) are 

known or have been identified. G(t) must be approximated 

with the highest possible accuracy following the drug 

administration. Steps 1-4 outline this process: 

1. Simulate a preliminary G(t) for the full duration of 

all tests. Initially, this is done using the values for 

SI0 and VG identified with the iterative integral 

method and the baseline data from the first 150 

minutes of the test, and then using SI(t) and VG 

(G(t)prelim). 

2. Define a linear interpolation between the measured 

data points (G(t)interp) 

3. Define a linear interpolation between the values of 

G(t)prelim at the sample times (G(t)preint) 

4. The difference between G(t)interp and G(t)preint is 

attributable to the effect of the sensitizer and thus 

Equation (12) can be used as an approximation of 

G(t): 

G(t)=G(t)prelim+G(t)interp-G(t)preint.  (12) 

With an approximation of G(t), P(t)approx can be evaluated in 

Equation (11). This profile is then used with Equation (10) in 

a non-linear least square Levenberg-Marquardt parameter 

identification method to find the values of Dk1, Dk2 and D 

that minimise the function in Equation (13). 
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Once the PK/PD values of Equation (13) have converged 

sufficiently, P(t) is re-evaluated using Equation (10). Thus, 

G(t) can be re-simulated, and steps 1-4 and the Levenberg-

Marquardt parameter identification process can be iterated. In 

total, 5 iterations are used, by which time parameter 

convergence is on the order of 1%.  

2.5 Concept Evaluation 

A Monte Carlo analysis is used to assess the ability of the 

identification method and proposed protocol to detect and 

quantify the PKs of the theoretical sensitizer drug. C-peptide, 

insulin and glucose concentration profiles are simulated using 

Equations (1)-(4), and (9) with the protocol from Section 2.3.  

The participant parameter values used in the simulation are 

shown in Table 1. The theoretical drug kinetics are based on 

those of Metformin (Pentikäinen et al. 1979): Dk1 is defined 

as 0.005/min, representing an absorption half-life of ~140 

minutes. Similarly Dk2 is defined as 0.0015/min, representing 

a clearance half-life of ~460 minutes. Finally, D is defined as 

0.5, meaning a 50% increase in insulin sensitivity could be 

expected if the full amount of the drug dose was in the active 

compartment. The three C-peptide, insulin and glucose 

profiles are ‘sampled’ at the prescribed times and this 

represents a noiseless set of data measurements.  

The Monte-Carlo simulation identifies the eight variables 

mentioned at the start of Section 2.4 a total of 1000 times 

using the method described. Each iteration has normally-

distributed random noise added to the noiseless glucose, 

insulin and C-peptide data sets. The magnitude of the added 

noise is in accordance with realistic clinical assay error 

(glucose: CV=2%, insulin: CV=3%, and C-peptide: CV=4% 

to a maximum of three standard deviations).  



 

 

     

 

The median and variation of the identified variables of 

Equations (9)-(10) are presented. Furthermore, the median 

and inter-quartile range (IQR) of the SI(t) re-simulations will 

be compared to the noiseless simulation of Equation (8) to 

assess the ability of the method to track the PDs of the drug. 

3. RESULTS 

Table 3 summarises the variation in the identified variables 

that define the drug PK/PDs in Equations (9)-(10). 

 True 
Value 

Mean 
(CV) 

Median 
(IQR) 

SI 

[L/mU/min] 
2.236 

2.252 

(7.9%) 

2.240 

(2.112-2.355) 

Vg  

[L] 
13.35 

13.36 

(4.5%) 

13.31 

(12.95-13.74) 

D  

[1] 
0.5 

0.498 

(0.9%) 

0.500 

(0.498-0.500) 

Dk1  

[1/min] 
0.005 

0.0103 

(116.3%) 

0.0060 

(0.0048-0.0086) 

Dk2 

[1/min] 
0.0015 

0.0013 

(41.4%) 

0.0013 

(0.0010-0.0017) 

Table 3. The effect of noise on variable identification. 

Figure 2 shows the range of time-varying sensitivity profiles 

identified by the method described in Section 2.4. It can be 

seen that the median profile is approximately equal to the true 

value for the duration of the test. The identification method 

generally seems to slightly overestimate the drug absorption 

rate (Dk1). However the 100
th

 percentile simulation shows 

that at some outliers drastically overestimate the absorption 

rate. These values must contribute to the higher than expected 

mean and CV for Dk1. The median and IQR of Dk1 indicates 

that the values typically identified are within expected ranges.

Table 4 summaries the residuals of the time varying insulin 

sensitivity profiles shown in Figure 2.  

 Median (IQR) [L/mU/min] 

Basal Period 0.004 (-0.122, 0.158) 

2.5-6 hours 0.091 (-0.037, 0.224) 

6-12 hours 0.048 (-0.079, 0.183) 

Overall 0.047 (-0.093, 0.1842) 

Table 4. Residuals of the SI(t) profiles. 

4. DISCUSSION 

The simulated PKs of the composite, hypothetical sensitizer 

drug were relatively observable in the resulting glucose data 

using the proposed protocol and identification methods. The 

variation in SI (7.9%) was slightly larger than previous a 

Monte Carlo study (Lotz et al. 2008). This outcome was an 

artefact of the reduced sampling rate compared to the test 

protocol used in that study.  Hence, the increased variation 

was expected and to an extent, validated the other outcomes 

of this analysis.  

The proportional drug effect (D) measurement was 

particularly stable to noise (0.9%). However, the drug 

absorption (Dk1) and decay rate (Dk2) variables were 

considerably more susceptible to noise (116.3% and 41.4%, 

respectively). This considerable variation in the drug rate 

parameters did not have a significant effect on the ability of 

the protocol and identification method to trace the kinetic and 

dynamic behaviours of the theoretical drug (Table 4). The 

variation in the basal insulin sensitivity was comparable to 

the variation in SI(t). This result implies that parameter trade 

off occurs. Hence, although the methods presented might not 

be ideal for the identification of the variables individually,  

Figure 2. A comparison between the identified insulin sensitivity profiles and the ‘true’ value of insulin sensitivity for this in-

silico analysis. 
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they may be appropriate for predicting the overall activity of 

the drug over time. This is the key outcome of such tests as 

the PKs can be directly measured with direct species assays if 

desired.  

In particular, the findings of this study imply that a clinical 

pilot investigation of sensitizer kinetics could be undertaken. 

The existing option for the identification of sensitizer drugs 

PD/PKs is a continuous steady state test such as the 

euglycemic clamp. This test raises the participant’s insulin 

concentration with a continuous insulin infusion, and 

euglycaemia is maintained with variable rate of glucose 

infusion. This variable rate is defined by using feedback 

control of frequently sampled glucose samples. A specific 

drug dose will be administered at approximately 2.5-3 hours 

when the glucose infusion is generally stable.  This approach 

allows a more accurate estimation of the time-varying 

increase of the insulin sensitivity profile. However, it comes 

at the cost of significantly increased clinical burden and cost. 

Table 5 summarizes and compares the attributes of the 

multiple DISST approach to the existing option for tracing 

the kinetics and dynamics of insulin sensitizer drugs. 

 DISST protocol EIC protocol 

Blood samples  28 72-144 

Sample cost ($NZ) ~800-1600 ~200 

Down-time 
80 minutes 

every two hours 
None 

Validation Sparse Extensive 

Physiological 
relevance 

Within normal 

range 

Hyper-

physiological 

Risk of 
hypoglycemia 

Very minimal Very minimal 

Table 5. The costs and benefits of the two proposed methods 

for observing the kinetics and dynamics of insulin sensitizer 

drugs. 

The overall identification method used in this analysis was 

comprised of two separate types of identification method. 

Initially, the iterative integral method was used to identify the 

insulin kinetic variables, and then the SI and VG from the test 

period prior to drug administration.  Following this, non-

linear least squares was used to identify the PK’s of the 

sensitizer drug. The iterative integral method could not 

identify all five parameters of Equations (9)-(10) as they are 

not. Furthermore, when the five-variable case was 

considered, the non-linear lest squares method was either 

unstable, or unable to converge. As such, the iterative integral 

method was used to identify SI and VG during the pre-drug-

dose baseline period, and a change in insulin sensitivity 

profile is then generated by the drug that allowed a non-linear 

least-squares identification of the three drug PK and PD 

variables. This strategy enabled relatively fast, very stable 

parameter identification. The 1000 simulation Monte Carlo 

analysis required approximately 3 hours of simulation time 

and the 0
th

 and 100
th 

percentile shown in Figure 2 show that 

none of the randomly generated data sets prompted 

identification failure. 

The identification process and the identified values could be 

further stabilised if one or more of the parameters of 

Equation (9) could be fixed. For example, the rate of drug 

absorption (Dk1) may be known, but not the maximal effect 

(D) or decay rate (Dk2). In this case, the non-linear least 

square step would only have two variables and variable trade-

off would be limited. Similarly, the decay rate could be 

predetermined or bounded in separate prior tests. 

There were some limitations in this investigation. In 

particular, the model was contrived for a theoretical drug 

based on published data and contains simplified PK’s that 

may not fully represent the true PK/PD’s of actual sensitizer 

drugs. Such omitted effects may include: 

1. Irreversible transport between the remote and active 

compartments is not representative of the kinetics of 

drugs administered subcutaneously. Absorption of the 

drug if taken orally is irreversible, and the model 

assumption is valid in this case. 

2. The drug may be designed for become stored in fat 

cells for delayed dispersion. This may be modelled 

with an added passive third compartment of insulin 

kinetics. 

3. The drug may include combined physiological effects 

such as: 

a. Glucose production suppression. This is not 

modelled as a time-variant variable in s 

investigation 

b. A combined secretagogue effect. This will be 

observable with the C-peptide measurement 

during the trial. 

c. Delayed absorption of food. This will not affect 

dynamic fasting tests, but will be an important 

attribute of the drug that is not quantified. 

4. It is likely that the drug’s effect on insulin sensitivity 

may be saturable, i.e. doubling the bolus may only 

increase sensitivity by 50-70% (Laakso et al. 1990, 

Natali et al. 2000). 

5. The drug may require molecular changes that take 

time to occur. This is not modelled as such, but will 

be observable ‘lumped-in’ with the rate of 

absorption parameter. 

All of these factors can be incorporated into the model and 

so, do not invalidate the findings of this analysis. However, 

the model appears to be close to the limit of identification in 

the presence of noise, and thus any further addition would 

probably require known kinetic behaviours and rates. 

Furthermore, the proposed protocol could potentially be used 

as a replacement for the hyperglycaemic clamp for the 

identification of the effect of secretagogue drugs.  The typical 

approach of endogenous insulin production identification by 

a deconvolution of C-peptide data could be used. Parameters 

for first and second phase insulin production could be 

obtained from this de-convoluted profile and the variables of 



 

 

     

 

Equations (6)-(8) could be identified for the case of the 

secretagogue. 

5. CONCLUSIONS 

The proposed multiple DISST protocol offers a 

comparatively low-intensity option for the identification of 

the kinetics and dynamic of insulin sensitizer drugs. The 

time-varying insulin sensitivity profiles identified in this in-

silico analysis were quite accurate. However, the variables 

that defined the profiles showed that identification trade-off 

was occurring. Thus, although the proposed protocol will 

enable the identification of the effect of the drug overall, 

uncertainty exists in the identified drug absorption and decay 

rate values. 

The findings of this study indicate that a pilot trial of this 

protocol and the identification methods discussed would 

enable the observation and quantification of insulin sensitizer 

drugs. However, the next step for this type of test would be 

an in-silico analysis of a particular drug, instead of the 

theoretical one discussed here. 
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