
Department of Computer Science

University of Canterbury,
Christchurch, New Zealand

COSC460 2016

Dissertation

Mary Had a Little Lambda:
Implementing a Minimal Lisp for

Assisting with Education

Author:
Andrew Bell

Supervisor:
Dr. Kourosh Neshatian

October 14, 2016

Abstract

In this report, we describe the implementation of a minimal version of Lisp for use
in teaching programmers who have some experience in another language. We discuss
the reasons why learning Lisp is beneficial, and what such a minimal language might
achieve. After mentioning other Lisp dialects which are minimal, we explain why
these do not meet the needs we identify. We then report on the design and philosophy
of our newly created language, Mary, and the most important features of this dialect.
This language is placed in the context of other research and we report on the extent
to which Mary meets our design goals.

“Lisp isn’t a language, it’s a
building material.”

Alan Kay [6]

“Lisp is worth learning for ... the
profound enlightenment experience
you will have when you finally get
it. That experience will make you a
better programmer for the rest of
your days, even if you never
actually use Lisp itself a lot.”

Eric Raymond [25]

“Stand by the roads, and look, and
ask for the ancient paths, where the
good way is; and walk in it.”

Jeremiah 6:16, ESV

Acknowledgements

Thank you to my family and friends for your support this year. Especially to Joshua
and Dannielle for proof reading this.

Thank you to Dr. Kourosh Neshatian for the initial idea for this work, which I
have thoroughly enjoyed, and for showing a genuine care for both the project and
my wellbeing throughout the year.

S. D. G.

Contents

1 Introduction 1
1.1 Why teach Lisp? . 2
1.2 Methodology . 3
1.3 Report Outline . 4

2 Background 5
2.1 Paul Graham’s minimal Lisp . 5
2.2 Other Related Work . 7

3 Mary – Philosophy and Design 9
3.1 Educational philosophy . 9
3.2 Goals of Mary . 10

4 Core language Elements 11
4.1 Axioms . 11
4.2 Special forms . 12
4.3 Types . 12
4.4 Arithmetic operations . 13
4.5 I/O . 14

5 Educational Features 15
5.1 Standard Library . 15
5.2 Environments . 17
5.3 Debugging and User Feedback . 19

5.3.1 Macroexpansion Tracing . 19
5.3.2 Standard Debugging . 20

5.3.3 Environment Debugging . 21
5.4 Error messages . 23

6 Advanced Features 24
6.1 Macros and Quasiquotes . 24
6.2 Gensyms . 27
6.3 Multiple Dialects . 27

7 Evaluation 30
7.1 Minimality . 30
7.2 Correctness . 30
7.3 Comprehensibility . 31
7.4 Feedback to User . 32
7.5 Efficiency . 32

8 Conclusion 36
8.1 Future Work . 37

A Semantics of Stack Tracing 41

B Graham’s Lisp 43

Chapter 1
Introduction

This report describes the design, philosophy and implementation of a minimal Lisp
for the purposes of education. This language has been created for use at tertiary
level in order to teach Lisp to students who may know one or two other languages,
but are perhaps unfamiliar with functional programming and related concepts.

Lisp is one of the oldest languages still in common usage, and has had a far-
reaching influence on the development of many other languages in both explicit
and subtle ways. It has spawned many different dialects with particular strengths
and weaknesses, most notably Common Lisp, Scheme and Clojure [22]. Another
area where Lisp has been especially influential is the development of high level,
dynamically typed and interpreted languages such as Perl, Ruby and Python, and
functional languages such as Haskell and Elixir [5, 13].

When John McCarthy first developed Lisp in the years between 1956-1962, one
of his key discoveries was that with only seven key functions defined in Lisp, one
could create an eval function that could interpret the language itself [18]. This was
shown to be a very concise way to demonstrate the succinctness and power of Lisp in
comparison with other “Blub” languages1, and has been explained in detail by Paul
Graham [8].

The shortcoming of this approach is that it relies on the concept of meta-circularity ;
the idea that a language can be interpreted in itself. While this is quite an elegant
idea, introducing it to students too early on will do more to confuse than clarify
the simplicity of Lisp, because in order to implement eval, one first needs to have
a working eval. However, there are a number of other reasons students will benefit

1The term “Blub” was coined by Paul Graham to refer to a language which falls somewhere in
the middle of the continuum of abstractness, such as Java or Python [9].

1

from learning a stripped-back, minimal Lisp early on.

1.1 Why teach Lisp?

Learning new programming languages is important not just so that students can
add new tools to their toolkit, but so that they are challenged to alter the way they
think about programming in general. Many students who first learn to code in a
procedural language, such as Python or Java, approach programming in a particular
way. For example, the use of recursion may seem unnatural to them, even at times
when recursion would be more appropriate or even more efficient than iteration [26].

In fact, students are often uncomfortable with more functional styles of program-
ming. For example, a recent study in competencies with lambdas in C++ shows
that “students had difficulty completing tasks using lambdas, but far less so with
iterators” [32]. Lambdas are incredibly difficult to avoid, particularly for developers
who wish to work on user interfaces, so while some may suggest removing them from
the curriculum because students find them confusing, we advocate that they should
be given greater emphasis in order that students might become more comfortable
with them.

The effect that language has on the way we think has long been recognised. W. V.
Quine noted that “Conceptualization on any considerable scale is inseparable from
language” [24]. This fact is not limited to natural languages, but has application in
the realm of programming languages too.

As Bach is to Sibelius in music, Lisp is to common modern languages. Lisp is
at one time both alien and fundamental to the languages students are often familiar
with, so it has great potential for shifting students’ problem solving paradigms. Lisp
is unique for the way that it blurs traditional edges in language design. It encourages
students to consider functions as objects through the use of first class procedures, and
it allows programmers to treat data and code in the same way, with its unique macro
system that allows meta-linguistic programming. Additionally, it provides ways for
students to come to terms with functional composition, lambda expressions and
other functional programming concepts without the overhead of type inference that
a language such as Haskell would require a student to learn. For example, students
who use Lisp will likely be much more comfortable with using more functional aspects
of other languages, such as Python’s map and reduce functions.

Another concrete example of the practical benefits of learning Lisp is the lan-
guage Elixir—a functional language which runs on the Erlang Virtual Machine and
is gaining popularity, particularly for Web Development [31]. Elixir includes many

2

benefits such as immutable data structures and types, high concurrency and support
for Lisp-like macros. As languages like Elixir and Clojure gain popularity, the ben-
efits of students having exposure to macros and functional programming concepts
increases.

In the words of C.S. Lewis, “There are some things about your own village that
you never know until you have been away from it” [15]. We must push students
to leave the village of imperative programming paradigms if we wish them to fully
understand both its benefits and its disadvantages.

1.2 Methodology

We have established our reasons for wanting to teach students Lisp. Unfortunately,
often when students do learn a new language, they look first for constructs which
they are comfortable with and revert to those. For example, when first shown Lisp,
experience shows us that students who have learned Python may tend towards using
for loops, even though these are unidiomatic to Lisp.

The consequences of one’s first programming language were observed by Wexel-
blat. He noticed that “Programmers tend to favor their first language even to the
extent of applying the style or structures of this language when programming in
other languages” [34].

In light of this, we have sought to create a Lisp which removes some of these
features completely, restricting students to use the language as it “should” be used.

This report describes the design and implementation of such a minimal Lisp. We
have called this dialect of Lisp “Mary”. Mary differs from McCarthy and Graham’s
Lisps as it does not contain a meta-circular eval function. All interpretation is
done in the core—a minimal Lisp interpreter which we have written in Python. The
core has an extremely limited set of built-in axioms, and all other functionality is
bootstrapped on via a set of standard libraries.

We have used Python to write the interpreter, as this is a language that is com-
monly used for teaching first year University students, including the first year pro-
gramming course taught at our university. We are not relying on any of Python’s
unique features for our implementation; Mary could easily be rewritten in any lan-
guage.

We have also aimed to have Mary’s minimality reflected by the source code of
the interpreter, so that as an educational exercise, the student could be shown the
source code and understand it, perhaps even rewriting a section of it. To an extent,
the smaller we make both the language and the interpreter, the more freedom the

3

student will have to create and recreate parts of the language.
As well as a minimal core, some of the distinctive features that Mary offers

include: macros; a traceable, lexically scoped environment; I/O; referential trans-
parency; and some basic debugging tools.

In order to assess Mary, we critique and compare it to other dialects of Lisp.
Mary’s effectiveness in achieving our educational goals would be very difficult to
measure quantitatively as the concepts that we desire to teach students are not easy
to test, so our assessment is of a qualitative nature. In our evaluation, we measure
the extent to which Mary is minimal, and the degree to which it emphasises the
concepts we desire to use Mary to teach by comparing it to other dialects of Lisp.

1.3 Report Outline

This report begins by collating and commenting on past work done in the area of
educational and minimal Lisps, particularly focussing on the Minimal Lisp described
by Paul Graham [8]. We then explain what motivations we have for creating Mary,
and enumerate our goals for the project. After this, we discuss various aspects of
Mary’s design. These are organised into the categories of language features, features
which particularly assist in education, and more advanced and extended features.
Finally, we evaluate Mary and compare it to other similar languages using a set of
criteria based on our design goals. In our conclusion we summarise the contribution
that Mary makes to the literature and the results of our evaluation.

4

Chapter 2
Background

There is good evidence that Lisp is a helpful language for teaching functional and
recursive programming. For example, Maniccam has investigated the use of Lisp for
teaching algorithms written in what is described as a purely functional and recursive
style and discovered that using functional programming to show students concepts
such as recursion has many benefits and helps to broaden students’ programming
skills [17]. There have also been a number of efforts to create minimal or educational
dialects of Lisp for various reasons.

2.1 Paul Graham’s minimal Lisp

As mentioned earlier, McCarthy and Graham have shown how with only seven
primitive Lisp functions, one can write an eval function which can interpret Lisp
code [8, 18].

When writing a Lisp interpreter, the evaluation can be described by a single
universal eval function. This function takes a Lisp expression and an environment,
and returns the result of the interpretation of the expression in the environment.
The environment is represented as a list of two item lists, each representing a symbol
and a value. If the Lisp expression is an atom, it is looked up in the environment,
and if it is a list, each item of the list is evaluated recursively and the first item in
the list is applied to all of the other items in the list. This eval function itself can be
written in Lisp, provided seven axioms are available; car, cdr, cons, cond, atom, eq
and quote1, and is able to interpret itself [8]. Graham’s Lisp is dynamically scoped,

1Graham also uses defun, but this is a special form rather than an axiom, and could be removed
by replacing all calls to functions with the function definitions themselves.

5

Figure 2.1: A LISP Machine at the MIT Museum. One of perhaps 7,000 machines
prior to 1988 built and optimised to run Lisp code efficiently. Photo courtesy of
Jszigetvari.

6

and indeed must be because of the way environments and closures are implemented
using the stack. We provide a demonstration of Graham’s interpreter in Appendix
B. A Python implementation has been created by Valle, which we used as a starting
point for much of our work [33].

Graham’s approach is a clever way to show the Turing completeness of a very
compact language, but one of its drawbacks is that its meta-circularity would cause
some confusion for students who are wanting to use the language for learning pur-
poses. There may be uncertainty over which eval function is being called when code
is interpreted, and in a sense it is true to say that both are being called simultane-
ously.

Another limitation that Graham’s approach has is that these seven primitive
operations, once defined by the Lisp eval function, cannot be freely redefined in
Lisp itself.

For example, three functions that are basic to all Lisp dialects are cons, car

and cdr. Lists are the most elementary data structure in Lisp, and these are the
functions used respectively for constructing a list from a single atom and another
list, accessing the first item in a list, and accessing the rest of the list. If these are
not defined in the interpreter, they can actually be defined in multiple ways, one of
which involves only the use of lambdas, as shown below.

cons← λxy.λf.f(xy)
car← λc.c(λxy.x)
cdr← λc.c(λxy.y)

Because of the meta-circular nature of Graham’s two eval functions, there is no
way that we could use these redefinitions to reduce the set of axiomatic primitives
in the dialect.

Mary seeks to have the underlying interpretive language simple and modular, so
that it is easy to remove and add functions to the core, then redefine them in a
standard library in Lisp itself. Having an eval function in Mary would make this
process confusing and much more difficult.

2.2 Other Related Work

Greg Pfeil has created a language based on Kell calculus in which he removed lambda
from the base set of functions entirely, and defined even basic numeric representations
in libraries in order to keep the core language small [21].

7

One notable example of a Lisp with a similar design approach to Mary is LispKit,
which is a minimal description of Lisp involving seventeen built-in functions and a
“purely functional” philosophy [14]. While this project shares much in common with
Mary, there are some points of difference:

1. LispKit does not have the capability to explore macros, which are arguably
one of the most important and unique aspects of Lisp. Likewise, because of
its aims to be functional, LispKit does not support function definitions except
through the use of lambda and let.

2. LispKit aims for being “purely functional”, which means that I/O is generally
not supported. One exception to this is an implementation of Turtle Graphics
in LispKit, which adds two graphics functions to the base set [35].

3. LispKit does not seek to find a set of axioms that are as minimal as possible,
but includes a number of redundant axioms, such as the arithmetic operators
add, sub, mul, div and rem.

Having said this, Mary has benefitted from the influence of LispKit, particularly
in thinking about the implementation of types. The Java implementation of LispKit
by Krejic and Luzanin was formative for much of the design of the object inheritance
structure in Mary [14].

8

Chapter 3
Mary – Philosophy and Design

We have examined some of the motivations for creating Mary. In this chapter, we
elaborate on these motivations and explain some of the design decisions made in light
of our goals.

3.1 Educational philosophy

The educational framework we have followed is Piaget’s philosophy of Construc-
tivism. Constructivism claims that students learn best when they are able to ex-
plore a domain and make mistakes; “constructing” their knowledge of the field as
they conduct open-ended investigations [3].

Mary seeks to apply the Constructivist theory of education to the domains of func-
tional programming, language design and computational thinking based on Church’s
lambda calculus, which was one of the core influences in the design of Lisp [18]. It
does this by removing most of the scaffolding that regular dialects of Lisp provide so
that students can learn to “construct” a language themselves.

For this reason, Mary provides extremely minimal functionality at its core. Though
this restricts students, it also gives them the freedom to build a language up on top
of it and to explore how a small number of functions can be combined to do very
complex tasks.

9

3.2 Goals of Mary

As mentioned earlier, the central goal for Mary is to demonstrate to students the
simplicity of Lisp; that with only a few basic functions as a starting point, a much
more comprehensive language can be constructed.

This means our architecture involves an interpreter that defines these functions,
and by default reads a Lisp library which defines more complex functions before
other code is run. These libraries can be easily removed or altered and redefined
by students, and student assignments could be set with just a small subset of these
functions if greater restrictions are desired. The core functions are also malleable, as
a new set of core functions can be easily defined by writing a new class that provides
more or less core functionality.

We have currently defined multiple sets of default axioms to demonstrate this,
which can be chosen with an option flag when running Mary. These sets include:
an extremely minimal set that forces list manipulation functions to all be defined in
the standard library; a set that does not include defun, and thus forces defun to be
defined as a macro; and a set that is identical to the previous set except that it does
include defun in the core.

As we believe simplicity will greatly aid in teaching, the goal for Mary is to be
simple in both its design and implementation. We have attempted to remove clutter
from the interpreter, the language itself and the libraries of Lisp functions outside of
the core.

Mary also aims to provide helpful information for debugging, and has multiple
levels of feedback to this end. This feedback could include a history of macro-
expansions, a history of evaluation, and a trace of the environments each expression
was evaluated in.

Mary does not support reassignment to variables. Graham suggests using variable
reassignment in Lisp as if it had a tax on its use [7]. In Mary we have gone one step
further by removing it altogether. This provides Mary with referential transparency.

10

Chapter 4
Core language Elements

In this section we describe the core functionality of Mary, beginning by enumerating
the axioms of the language. We use the word axiom here to refer to built-in functions.
These are contrasted with both standard library functions, which are defined natively
in the language itself, and special forms, which aren’t used in the same way as
functions that simply take a set of parameters and return a value, as the axioms do.

4.1 Axioms

The six axioms of our language are as follows:

quote Returns the argument without evaluating it.

if Our alternative to Graham’s axiomatic cond. (if a b c) will return b if a eval-
uates to a truth value, otherwise c. This evaluation is lazy.

car Returns the first item of a list or the first character of a symbol.

cdr Returns all but the first item of a list, or all but the first character of a symbol.

cons Returns a list or symbol where the first element is the first argument and
the remainder is the second argument. (cons ’a ’(b c)) will return (a b c), and
(cons ’a ’bc) will return abc.

atom? Returns the argument if the argument is an atom, otherwise the empty list.

We have also decided to support overloading for list functions on symbols, which
allows us to do string manipulation without adding any extra axioms.

11

4.2 Special forms

The three forms lambda, defun and defmacro are not so much axiomatic functions
as they are definitional elements of the language. Graham does not count defun as
an axiom in his language, as it is useful for legibility but is not completely necessary.
Also, as he uses an environment which is itself a Lisp expression, he is able to define
lambda and label in terms of the other axioms. This forces him to scope his language
dynamically, as the environment itself is coupled tightly with each functional call.
We do include these special forms in Mary. However, we have a second version of
the core that does not include defun as an axiom, but defines defun as a macro.
This shows that we could cut the core down to include one less special form, but we
believe that the definition of defun as a macro, which involves nested quasiquotes
and splicing, would be confusing to students who are learning Lisp for the first time.

4.3 Types

We have decided to implement types in Mary in an Object Oriented style. We have
done this by creating an abstract LispExpression class, which is inherited by each
Lisp type. This makes typing, and therefore interpreting, much easier. It also allows
us to associate appropriate information and methods with different Lisp types.

The six types we have chosen to operate with in Mary are as follows:

List A generic list expression, eg. (a b c).

Symbol A symbol or string. This can include any character that is not a read
macro, a bracket or a space.

Number An integer or float. These are both implemented using the corresponding
Python types, but are represented by a single class in the interpreter.

Function A built-in Lisp function which is defined internally as a Python function.

Lambda An anonymous function, which is applied by creating a closure and per-
forming search and replace rules on the function’s body.

Macro Very similar to a lambda, but the body is interpreted (macroexpanded) in
a dynamic environment rather than a lexical one with unevaluated arguments,
and the result is then interpreted again in the current environment.

12

Figure 4.1: Diagram of inheritance for Lisp Expression types in Python

The structure, names and inheritance of these types as Python objects are shown
in Figure 4.1.

We have chosen to implement booleans implicitly. Every expression is treated as
having a “truthy”1 value except for the empty list and the empty string, as is the
approach of all major Lisp dialects. It may seem that one cannot have an empty
string in Lisp when symbols and strings equate to the same thing, but we have defined
cdr in such a way that the result of the expression (cdr ’a) is the empty string. By
contrast, (cdr ’(a)) evaluates to the empty list, which is equivalently false.

4.4 Arithmetic operations

In addition to these axioms, we have provided the two functions subtract (-) and
less than (<), which offer the ability to do mathematical and string comparison
operations. These operations are not necessary to make the language a functioning
language. Without subtract operations, one could still define arithmetic operations
in multiple ways, such as using Church numerals, but most of these methods would
run against the grain of our minimalist design philosophy, and would produce more
confusion for learners than helpful clarification.

The presence of the less than operator has allowed us to remove the eq function
from McCarthy’s original seven axioms, which returns true if and only if two atoms
are equal. eq can now be defined as “(not (or (< a b) (< b a)))”, and this definition
can be extended recursively to work on lists as well as atoms. So although we might
separate less than into a separate category from the core axioms, in reality it is

1That is, evaluating to true.

13

necessary for a lot of important computation.
As these are the only arithmetic operations provided in the core, and other oper-

ations such as +, * and / have been defined in terms of these two built-ins, arithmetic
computation is generally inefficient in Mary. To improve efficiency, we could have
given all arithmetic functions mappings to machine level instructions, but we chose
to just use these two functions as our built-ins in order to keep Mary minimal, and
show students how little was in fact necessary to create a comprehensive language.

4.5 I/O

We have created two functions, printsym and inputchar, which respectively print
a single symbol to standard output and return a single character read from input.
We have bootstrapped other I/O functions on top of these, including readline and
printline, which deal with more characters or symbols. I/O is useful for educational
and debugging purposes, but mostly just shows that our language can produce side-
effects, despite its functional leanings.

14

Chapter 5
Educational Features

As we designed Mary to be useful in education, we have included a number of features
that have educational uses.

5.1 Standard Library

We have created a set of standard libraries of Lisp functions defined in Mary, which
our interpreter reads by default before doing anything else. Each set of axioms has
a corresponding set of standard libraries to be read. For example, in the axiom set
without defun, one of the libraries contains a definition of defun as a macro.

The lambda function is very powerful, and one of our goals with this standard
library is to show students some of the power that anonymous functions can provide.
It has been shown that lambda can be used for simulating iteration, imperative
programming, variable assignment, and control transferral [29,30], and our standard
library seeks to show some of the ways in which this is possible.

For example, we have included the following definition of let, adapted from
Hoyte [12].

(defun f i r s t s (l)
; ; Takes a l i s t o f pa irs , r e tu rns a l i s t
; ; o f a l l the f i r s t va l u e s (cars) in each pa i r
(i f l

(cons (caar l) (f i r s t s (cdr l)))
)

)

(defun seconds (l)

15

; ; Takes a l i s t o f pa irs , r e tu rns a l i s t
; ; o f a l l the second va l u e s (cadrs) in each pa i r
(i f l

(cons (cadar l) (seconds (cdr l)))
)

)

(defmacro let (b ind ings &rest body)
‘ ((lambda , (f i r s t s b ind ings)

(progn ,@body))
,@(seconds b ind ings))

)

We have also written a script to order functions based on interdependencies, and
clearly label what other functions within a library a given standard library definition
relies on. We have done this by topologically sorting the functions based on references
by other functions which we obtained by examining the first item in any lists within
the function definition. This means one can remove standard library functions and
be aware of what other functions will be affected. Any functions that are dependent
will be below the function being removed. By way of example, we provide this code
snippet from the standard library.

. . .
; ; pa i r ?
; ; DEPENDENCIES: NONE
; ; DEPENDED ON BY: sor t , max , r e v e r s e s t r , reduce ,
; ; min , reverse , min l i s t , coerce , max l i s t
(defun pa i r ? (x) (cdr x))

; ; reduce
; ; DEPENDENCIES: pa i r ?
; ; DEPENDED ON BY: any ? , a l l ?
(defun reduce (fn l)

(i f (pa i r ? l) (fn (car l) (reduce fn (cdr l)))
(car l)))

. . .

If one removed pair? from the above standard library, one would also have to
either remove or redefine reduce, which means other functions depending on reduce

would also have to be removed. These functions would all be below reduce in the
file, so one could simply cut the file off at that point and ask a student to solve
problems using only functions above that point in the standard library.

We have also included a number of standard algorithms written in Mary, such as
quicksort. As an example, here is our implementation of quicksort.

16

(defun q u i c k s o r t (l)
(i f (cdr l)

(append (q u i c k s o r t (a l lwh i ch (cdr l)
(lambda (x) (< x (car l)))))

(cons (car l) (q u i c k s o r t (a l lwh i ch (cdr l)
(lambda (x) (not (< x (car l))))))))

l))

In this function, allwhich is a function which takes a list and a function as
parameters and returns the subset of the items in the list for which the function
returns true. It is defined as follows.

(defun a l lwh i ch (l fn)
(i f l (i f (fn (car l))

(cons (car l) (a l lwh i ch (cdr l) fn))
(a l lwh i ch (cdr l) fn))))

The function append is a generalised version of cons, which takes two lists and
combines them into one. It is given with the following definition.

(defun append (l i s t a l i s t b)
(i f l i s t a

(cons (car l i s t a) (append (cdr l i s t a) l i s t b))
l i s t b))

The function not is a predicate, and has the definition: (if x () ’ t). All of the
definitions used by quicksort are straightforward and only take a few lines of code.
By seeing all these definitions, a student can witness the simplicity and elegance of
quicksort as an algorithm. It is helpful to show students how few steps there are
from a language with only a few axioms to an algorithm that sorts lists of items in
O(n log n) time.

5.2 Environments

Mary has “lisp-1” style namespaces. This means there is a single namespace for
both functions and variables, as opposed to lisp-2, which has a separate namespace
for each. The advantage of this is that functions or macros that pass and return
other functions or macros are much simpler to write [4]. Lisp-1 is used by Scheme,
and other commonly used dialects of Lisp such as Clojure [23]. Hoyte argues that
lisp-2 provides an advantage in that it “eliminates an entire dimension of unwanted
variable capture problems” [12]. As variable capture is often an issue in working with
macros, this is a consideration we made in the implementation of Mary. However

17

Hoyte also admits that “lisp-1 lisps do not suffer any theoretical barrier to macro
creation”, so we decided that lisp-1 would be the appropriate choice for Mary.

We desired to implement a lexically scoped environment rather than a dynami-
cally scoped one, as we believe that lexical scoping will be much more accessible to
students familiar with other common lexically scoped languages, such as Python or
Java. This contrasts with Valle’s Python implementation of Graham’s interpreter,
which is dynamically scoped, as new environments are created as expressions are
interpreted, rather than when they are defined [33].

Bobrow has described an implementation of Lisp environments using a “Spaghetti
Stack” structure [2]. This was improved upon by Steele who added some control
structures to allow for static and dynamic scoping [28]. Our implementation was
inspired by Steele, and can also achieve static scoping, although we have simplified
Steele’s multiple control structures into one Python class, called Environment.

The Environment class has a parent environment, and a set of bindings. These
bindings are stored in a Python dictionary. When a lambda expression is read, it is
stored as a lambda object, and assigned a parent environment. When this lambda is
interpreted, it will create a closure inside the environment in which it was created,
rather than the environment it was called.

This process occurs in the apply to method in the LambdaExpression class,
which we reproduce the Python code for below. The method track env is used
to maintain a record of the environment evaluation history to allow stack trace
debugging, and check args is used to ensure the right number of arguments were
passed. The important lines are lines 17, 19 and 21. In these lines the new closure
is created, the arguments are defined in the closure, then the body of the lambda is
evaluated in this closure.

1 def app ly to (s e l f , arguments , environment , c a l l e r , debug) :
2 ”””
3 Apply to arguments in environment .
4 Eval i n f o s t o r ed wi th c a l l e r f o r debugg ing i f debug f l a g s e t .
5 ”””
6 # Arguments are eva lua t ed f i r s t
7 arguments = Li s tExpre s s i on (
8 [argument . eva luate (
9 environment , debug) for argument in arguments . va lue])

10 # Ensure the r i g h t number o f arguments were passed
11 s e l f . check arg s (arguments)
12 # Copy the body to separa t e i t dur ing debugg ing i f debug f l a g s e t .
13 # Keep t rack o f the environment .
14 body = c a l l e r . t r a c k r e s u l t (s e l f . body . copy (
15)) i f debug else c a l l e r . t r a c k r e s u l t (s e l f . body)
16 # Create a c l o su r e to app ly the lambda in

18

17 c l o s u r e = body . t rack env (s e l f . environment . c r e a t e c h i l d ())
18 # Define a l l arguments in the c l o su r e
19 s e l f . d e f i n e a r g s (arguments , c l o s u r e)
20 # Evaluate the body in the environment
21 return body . eva luate (c l o su re , debug)

When a SymbolExpression is evaluated, a lookup is made in the environment.
If the binding is not present, the parent environment is consulted recursively until
the default environment is reached.

This lookup is done by the environment itself, and can be seen in the following
method from the Environment class.

def r e t r i e v e d e f i n i t i o n (s e l f , l a b e l) :
”””Get d e f i n i t i o n o f l a b e l in environment i f i t e x i s t s ”””
i f not type (l a b e l) == SymbolExpression :

raise TypeError ("definition retrieval" , l abe l , "Symbol Expression")
i f l a b e l . va lue in s e l f . d e f i n i t i o n s :

return s e l f . d e f i n i t i o n s [str (l a b e l)]
e l i f s e l f . parent environment :

return s e l f . parent environment . r e t r i e v e d e f i n i t i o n (l a b e l)
else :

raise UnknownLabelError (l a b e l . va lue)

Due to its succinctness, students can read through this Python code and see how
and when label lookups happen, and understand ideas such as scoping and variable
capture in a deeper way.

5.3 Debugging and User Feedback

Upon request, Mary provides feedback on evaluation history at three levels. The
three levels are macroexpansion tracing, standard debugging and environment de-
bugging.

5.3.1 Macroexpansion Tracing

This feedback shows users all the macros which were expanded during interpetation
of the program. For example, in the version of Mary with no built-in function
definitions, + is defined as the following macro:

‘ ((lambda , ’ (x y) , ’(− x (− 0 y))) , x , y))

So whenever this macro is invoked with macroexpansion tracing, this definition
is revealed, along with the result of the expansion. For example:

19

>(+ 1 2)

-(macro + (x y) ‘((lambda ,’(x y) ,’(- x (- 0 y))) ,x ,y))

=((lambda (x y) (- x (- 0 y))) 1 2)

3

This allows students to see macroexpansion in action, and to trace how macros are
evaluated in order to understand macros and their power better. Mary’s macroex-
pansion is explained in more detail in section 6.1.

5.3.2 Standard Debugging

Standard debugging allows the user to see the entire evaluation history of an expres-
sion. For example, in the following stack trace, we see the history of evaluation for
the expression (+ 2 3).

> (+ 2 3)

Evaluation History:

->(+ 2 3)

--|->+

==|=>(lambda (x y) (- x (- 0 y)))

--|->2

--|->3

=>(- x (- 0 y))

--|->-

==|=>- [builtin]

--|->x

==|=>2

--|->(- 0 y)

--|--|->-

==|==|=>- [builtin]

--|--|->0

--|--|->y

==|==|=>3

==|=>-3

=>5

5

Expressions at the same depth level are either equivalent, or parts of the same
list expression one depth higher.

20

Arrows with equal signs (=) represent evaluations of a previous expression, con-
nected to their unevaluated expressions by a pipe (|) if they are more than one line
away from them.

For example, in the above trace, the expression (− 0 y) evaluates to the number
-3. The first item in the list is - (subtract), which evaluates to a built-in function,
the second is 0, which is a number so needs no evaluation, and the third is y, which
evaluates to the number 3. The result of (− 0 3) is -3, so these are connected by a
pipe.

A full and formal explanation of stack tracing is provided in Appendix A.

5.3.3 Environment Debugging

Environment debugging allows the user to see not just the trace of evaluation, but
the environments in which the bodies of lambda expressions are evaluated. Each
environment is represented with a chain of name spaces, in which the lower spaces
take priority, and the highest environment represents the default environment, in-
cluding any built-ins and defined functions. With verbose debugging, the previous
stack trace would look like this:

> (+ 2 3)

Evaluation History:

->(+ 2 3)

--|->+

==|=>(lambda (x y) (- x (- 0 y)))

--|->2

--|->3

=>(- x (- 0 y))

{DEFAULT ENVIRONMENT}

||

{‘y’: ‘3’, ‘x’: ‘2’}

--|->-

==|=>- [builtin]

--|->x

==|=>2

--|->(- 0 y)

--|--|->-

==|==|=>- [builtin]

--|--|->0

21

--|--|->y

==|==|=>3

==|=>-3

=>5

5

At the point that the expression (− x (− 0 y)) needs to be evaluated, a new envi-
ronment is created. This is shown in the stack trace. As nested environments are
added, the student is able to see how and when closures are formed. This helps
them to understand lexical scoping. In the lines after the environment’s creation,
the symbols x and y have the values 3 and 2.

As an example which could be used in teaching, the expression:

(l et ((x 3) (y 2))
((lambda (y)

(− x y)) 1))

generates the following in its environmental stack trace:

...

==|==|=>(- x y)

{DEFAULT ENVIRONMENT}

||

{’x’: ’3’, ’y’: ’2’}

||

{’y’: ’1’}

--|--|--|->-

...

A student can see here that when the lambda expression is called, a new environ-
ment with a higher priority is created. In this environment, the value of y becomes
1 rather than 2, which it was in the parent environment, but the value of x remains
as 3, as it is not overridden in the new closure.

One can demonstrate the effects of lexical scoping by adjusting the brackets in
this expression, so that the anonymous function is defined, returned and then called.
The expression:

((l et ((x 3) (y 2))
(lambda (y)

(− x y))) 1)

22

will return the same result as the expression above, but will produce a different stack
trace. Students can examine the differences to see how lexical scoping works.

5.4 Error messages

On top of these three levels of feedback, we have included a number of built-in Lisp
errors. These are raised in response to syntactic or semantic mistakes in code. When
these errors are raised, a stack trace is printed out to aid in debugging the problem.
For example, if one attempted to add a number to a symbol, the response would be
as follows:

> (+ 1 ’a)

Evaluation History:

->(+ 1 ’a)

--|->+

==|=>(lambda (x y) (- x (- 0 y)))

--|->1

--|->’a

--|--|->quote

==|==|=>quote [builtin]

--|--|->a

==|=>a

=>(- x (- 0 y))

! Bad type: - expected Numbers but got 0 and a

This error was raised by the built-in function -. Hopefully the stack trace and
error message would provide enough information to show a student that the error
had been introduced by the calling of an arithmetic function on the symbol “a”.

A study on feedback for Lisp users showed that the preferred methods of display
for novice or occasional users were range highlighting, interlaced displays of evalua-
tion results and simultaneous displaying of called functions [11]. It would be helpful
to introduce range highlighting and functionality to step through and see function
calls to our results display. However, we believe that the interlacing of results pro-
vided by this simple text based interface is a good compromise between simplicity
of implementation and usefulness of feedback.

23

Chapter 6
Advanced Features

The following features are of an advanced nature, and would be useful for teaching
students some of the more important and unique capabilities of Lisp.

6.1 Macros and Quasiquotes

One of the limitations of Graham and McCarthy’s descriptions of minimal Lisps is
that neither has the ability to process Lisp macros [8, 18, 19]. Although macros are
one of the most compelling and unique things about Lisp as a language [7,12], they
weren’t introduced in to the language until the mid 1960’s [27]. It may be largely
for this reason that the use of macros in a minimal Lisp has not yet been explored
in depth.

While Graham describes “seven primitive operators”, he has decided not to count
the keyword defun as an operator [8]. We believe this is fair, as he shows this
keyword is unnecessary provided the environment is stored as a Lisp expression
and the language is dynamically scoped. However, in desiring to add macros to
Mary, we wanted to consider whether we could remove anything else from the core.
We concluded that functions could be described as macros, so a function to create
labelled functions could be described by a macro building macro. This meant we
could remove defun from the core.

We have done this in one of our versions of Mary, but have left defun in the
default version to help avoid confusion for students.

A macro is a piece of code that generates code that is then interpreted. Generally,
after a Lisp parser has read in some Lisp code and before this code is interpreted,
a stage called macroexpansion happens. A macroexpander will go through the code

24

and find any macro calls. It will then expand these macro calls according to the
definition of the macro [7].

To make macros readable, we needed to implement quasiquotations. Quasiquota-
tion is another feature that has not been included in other minimal versions of Lisp.
This is partially because they were not added to the language until the 1980’s, and
partially because they don’t provide any new functionality to a language, but are
really just convenient syntactical sugar which mostly aid the reading and writing of
macros [1]. Quasiquotes (‘) are much like the read macro quote (’), which tells the
interpreter not to evaluate its argument, except that they can be escaped via the
use of a comma (,). For example, the following Lisp expression would evaluate as
follows.

>‘(hello ,(cadr ’(Alice Bob Carol)))

(hello Bob)

Instead of using a comma to escape a quasiquote, one can also use a comma-at
sign (,@) to “splice” the resulting list expression in to the list above. For example,
the following would evaluate as given.

>‘(hello ,@(cdr ’(Gdodbye my friend)))

(hello my friend)

These quasiquotes do not provide new functionality, but they do make macro
writing much easier [7]. We show with the following equivalent expressions that
anything that can be described with quasiquotes can also be described without them.

‘(f ,c g) ↔ (list ’ f c ’g)

‘(f ,c ,@some−list d) ↔ (cons ’f (cons c (append some−list ’d)))

With quasiquotes, we are able to use macros to define cond as follows:

(defmacro cond (&rest opt ions)
(i f (car opt ions)
‘ (i f , (caar opt ions)

, (cadar opt ions)
(cond ,@(cdr opt ions))))

)

This will expand out to a nested if statement during macroexpansion, then
arguments will be evaluated lazily once the expanded statement has been created.

To write defun as a macro, we needed to use nested quasiquotes. Bawden has
described a number of common combinations of nested commas, quotes and comma-
at symbols inside nested quasiquotations, and some of these proved rather useful [1].

Our definition of defun is as follows:

25

(defmacro defun (name params &rest body)
‘ (defmacro ,name , params

‘ ((lambda , ’ , params , ’ , @body)
, , @params)

)
)

Many of the combinations of symbols here may seem mystical, however we have
found the following descriptions by Bawden enlightening [1]:

,’, The value of X will appear as a constant in the intermediate quasiquotation
and will thus appear unchanged in the final result.

,,@ The value of X will appear as a list of expressions in the intermediate quasiquo-
tation. The individual values of those expressions will be substituted into the
final result.

We add to this list the following:

,’,@ The value of X will appear as a list of constants in the intermediate quasiquo-
tation. The individual values of those expressions will appear unchanged in
the final result.

Although this definition is complex, we believe it is useful for students to see
macroexpansions at work in order to better understand both Lisp and programming
in general. Therefore it may be helpful to see complex programs described with
macros rather than with functions. For this reason, we have not made this the
default setting for Mary, instead providing it as an option for students wanting to
learn more about macros and Lisp interpretation, and we have defined quasiquote

as a core function.
As mentioned in section 5.3.1, we have included in Mary a macroexpansion tracing

mode. This allows the user to see each macroexpansion as it happens, and follow
the execution tree down to the smallest grain size. This means that students can see
the two stages of macroexpansion and evaluation and their results.

One difficulty in using macros in this way is that functional recursion is no longer
possible. If the macroexpander were to begin by expanding all the code out before the
interpreter did the job of actually applying the code to the data, the macroexpander
would continue expanding indefinitely. Graham says “Although the expansion func-
tion of a macro may be recursive, the expansion itself may not be” [7]. In other
words, macro recursion can terminate if it is based on the structure of the data, but
not if it is based on the data itself.

26

With most Lisp interpreters, this is certainly the case. For instance, MacLachlan’s
Python compiler for Common Lisp runs all macroexpansion a long time prior to any
interpretive work is done [16]. This is done in order to improve efficiency, as this
expanded code is then optimised into a representation of implicit continuations.

Because efficiency has not been a concern for us, we redefined how macroexpan-
sions are executed in Mary. All macroexpansion in Mary is done by the interpreter,
and is interlaced with interpretation itself. A macro is expanded at the point where it
is found during interpretation, and then interpreted immediately. This means that it
becomes possible to define macros which are recursive, and also means that functions
defined using the above defun function are able to safely call themselves.

6.2 Gensyms

In order to avoid naming collisions in nested macro environments, we have provided
a built-in gensym function. A gensym function is guaranteed to return a unique
symbol in the environment it is called. Our implementation returns successively
incremented versions of a global counter appended to a hash. Our parser will not
accept a symbol beginning with a hash. Gensyms are a common and effective way
of avoiding the problem of variable capture [12]. However, we have not needed to
use this technique in any of our standard libraries because the language has lexical
scoping and a unique dynamic macro evaluation system.

6.3 Multiple Dialects

We have alluded to the fact that Mary is not a single minimal dialect of Lisp, but
rather a set of possible minimal dialects. There are three major dialects we have
provided, but we have also given scope for the creation of new dialects with new sets
of axioms.

The dialect we have introduced with no defun in its set of axioms is mostly
equivalent to the dialect which does have defun. The one difference is that our
definition of defun using a macro is incapable of creating functions which expect
variable numbers of arguments.

To accept variable numbers of arguments, we have hard-coded into the interpreter
the keyword &rest. If this keyword is included in a list of parameters to a macro or
lambda, any remaining arguments will be coerced into a list which is given the label
which succeeds &rest in the list of parameters. The problem comes when defining

27

defun with macros, as the &rest parameter is consumed by the first macro definition.
Therefore it cannot be used in the lambda which represents the function body.

The following definition of and, which takes a variable number of parameters and
returns an empty list if any of them evaluate to false, demonstrates the use of the
&rest keyword:

(defmacro and (&rest v a l s)
‘ (cond

((null ? ’ , (cdr v a l s)) (i f , (car v a l s) ’ t))
(, (car v a l s) (and ,@(cdr v a l s)))

)
)

Other than this difference, the two dialects are identical in functionality, although
execution tracing will yield different results. This comparison can be a useful educa-
tional tool, as students can be shown the difference between interpreting a statement
using macros and without.

The third dialect is an extremely minimal version of Mary which only includes
the built-ins quote, if, lambda and defun. This may seem extremely limiting,
however, the following snippets from this standard library of this tiny dialect show
that perhaps more can be achieved by this language than one might assume.

; ; and
(defun and (x y) (i f x y x))

; ; or
(defun or (x y) (i f x x y))

; ; cons
; ; DEPENDENCIES: NONE
; ; DEPENDED ON BY: f i r s t s , append , seconds , reverse , map
(defun cons (x y) (lambda (f) (f x y)))

; ; car
; ; DEPENDENCIES: NONE
; ; DEPENDED ON BY: cdar , caadr , cddar , map ,
; ; reverse , append , cadr , caar , cadar , reduce , cond , cdadr , caddr
(defun car (c) (c (lambda (x y) x)))

; ; cdr
; ; DEPENDENCIES: NONE
; ; DEPENDED ON BY: cddr , cdar , f i r s t s ,
; ; seconds , caadr , cddar , map , pa i r ? , reverse ,
; ; append , cadr , cadar , reduce , cond , cdadr , cdddr , caddr
(defun cdr (c) (c (lambda (x y) y)))

28

; ; map
; ; DEPENDENCIES: cons , cdr , car
; ; DEPENDED ON BY: NONE
(defun map (fn l) (i f l (cons (fn (car l)) (map fn (cdr l)))))

; ; reduce
; ; DEPENDENCIES: cdr , car
; ; DEPENDED ON BY: NONE
(defun reduce

(fn l) (i f (cdr l) (fn (car l) (reduce fn (cdr l))) (car l)))

More exploration remains to be done into the possibilities that this dialect of Mary
provides for learning about programming language capabilities and the simplicity of
Lisp.

29

Chapter 7
Evaluation

Mary is a comprehensive language for its size. In order for students to see that
Mary is not limited in functionality by its small size, the libraries include complex
functions. Some of the standard library functions we have created include: selection
sort; quicksort; a Fibonacci sequence generator; arithmetic multiplication, division
and modulo operations; and higher order functions such as map and reduce. We
have also implemented a game of tic-tac-toe in Mary to give a toy example of how
Mary could be used as a “real” programming language.

7.1 Minimality

In total, Mary has 15 functions and special forms in its core, which is twice as many as
Graham has [8], although these break down into categories of varying necessity. We
define six core axioms, replacing Graham’s cond with if, and eq with the arithmetic
function less than. As well as the default core, there are cores with less axioms
available for experimentation, and the option to roll your own default environments.

7.2 Correctness

We have written a series of 114 tests to run and confirm that the algorithms are
behaving as expected for all of the standard library functions we have implemented
in Mary. We use this to test the implementation of the language. As all tests pass,
we are confident that we have produced a language which is robust.

As the language is functional and generally side effect free, we can also use formal

30

MIT/GNU
Scheme

Mary

Core Language C Python
Files in Core Language 532 8
LOC in Core Language 2896994 807

Files in Lisp 1 8
LOC in Lisp 1032 104

Total Number of Files 1661 13
Total Lines of Code 3229969 911

Table 7.1: Comparison between source code for Mary and source code for MIT/GNU
Scheme

logic to prove the correctness of algorithms written in Mary. Assuming that the
primitive axioms hold, one could write a formal program specification and translate it
into Lisp code using Mary, then prove its correctness with a set of logical equivalences.

7.3 Comprehensibility

As one of our goals was to show students the simplicity of Lisp, we compare our
interpreter with a common Scheme interpreter, MIT/GNU Scheme [10]. We ran
cloc on the source code for both this interpreter and Mary to count statistics on the
lines of code. Results are shown in Table 7.1. Prior to running this test we removed
extraneous material from Mary, such as the code for the extremely minimal version
and the tests we have written.

These results show that Mary is a much smaller interpreter, with a much greater
proportion of the language written natively in Lisp (in Mary itself). As we sought
to write as little as possible in Python, and to transfer the weight of building the
language to the standard libraries written in Lisp, this is a positive result. 900 lines
of code will be much less overwhelming for students than over three million.

We also compared Mary to an implementation of LispKit, which was created
with similar aims. We found an implementation of LispKit written in Pascal and
Visual Basic that had a total of 1021 lines of code, which is comparable to Mary [20].
However, LispKit does not include macros or I/O, and it includes more axioms than
Mary. Furthermore, the source code is relatively difficult to understand, as it is
written in languages that are unfamiliar to modern learners, and documentation is

31

scant. We believe that the source code of Mary is much easier to navigate.

7.4 Feedback to User

We believe that the feedback Mary generates presents a unique contribution to the
world of minimal Lisps. In an effort to be minimal, some other Lisps, such as
Graham’s Lisp, do nothing to produce helpful error messages [8]. We have included
both meaningful error messages and stack tracing. This means that students learning
the language will not be as confused by error messages which are either unrelated to
the actual fault, or are actually errors from the parent language and are unrelated
to the Lisp code itself. The stack tracing that Mary provides includes environmental
tracing, which allows students to see how closures are created during interpretation.
We have also included a macroexpansion tracing mode, which allows students to see
how macros are expanded and interpreted. We believe this will be an extremely
educational tool.

7.5 Efficiency

Mary is for purposes of education rather than efficiency. Therefore, our goal has
been to implement an interpreter that is really minimal and concise, rather than
extensive and practical. Despite its lack of efficiency, Mary is useful for exploring
topics of computational complexity with students. The overhead of creating closures
and on the fly macro rewrites means the difference between quicksort and selection
sort for example is tangibly large even for small lists. Mary’s inefficiency is largely
due to its lack of ability to do anything like random access on any structures. This
is a limitation inherent to the linked list structure of Lisp dialects, which is usually
overcome by having a more comprehensive interpreter. As everything in Mary is
represented as a linked list, many common algorithms may not be as efficient in this
language. We have also opted to not implement tail-call optimisation, which would
aid in efficiency. Another factor which inhibits Mary’s efficiency is the fact that it is
written in Python. Because of this, we cannot expect Mary to outperform Python,
which is already a slow language in comparison to other languages such as C and
Java.

To measure the performance of Mary, we compared our implementation of quick-
sort in Mary with an implementation in Python. We chose to compare Mary to
Python as this is the language we wrote Mary in. This comparison shows how much
speed was lost from the parent language Mary was written in, and compares the

32

trends in execution speed. As well as the overhead of needing more interpretation,
we expected loss in speed because of the lack of random indexing for any data struc-
tures. However, we also expected to find that as the size of the list being sorted
increased, the increased time taken by Mary and Python would be proportional to
one other, and that both would be O(n log n). The results of this measurement are
shown in the graphs in Figure 7.1. We have included a regression line for the formula
a(n log n) + b for both graphs to demonstrate their asymptotic complexity. To run
these tests we had to disable debugging mode in Mary in order to avoid unnecessary
copying of stack tracing which slows down execution speeds. The coefficient in the
regression line for Mary is 1550 times that of Python, so this shows Mary is around
1550 times slower than Python for this task. The regression has a standard error
of 1.38% for Mary and 0.96% for Python, so both algorithms are well within the
bounds of O(n log n).

The implementation of quicksort in Mary involves an append operation, which
means that each recursive call must do on average another n

2
operations, as there

is no efficient way to append linked lists without tail pointers. Each call also does
two separate calls on the list tail to find data which is smaller than the pivot, and
data which is greater than or equal to the pivot. This means another n opera-
tions are done by each recursive call. As Python lists support random indexing, the
Python implementation of quicksort is inherently more efficient, though not as ele-
gant. While Python does around n log n operations, the Mary implementation does
about 5

2
n log n.

As an example of the inherent difference in efficiency between Lisp and languages
with array structures available, compare the difference between an array implemen-
tation of a dequeue and a singly linked implementation. With an array, appending
and removing to the right side is an O(1) operation, while the same operations on the
left hand side involve O(n) time, due to the need to shuffle all other elements in the
array along by one. In contrast, with a singly linked list, appending and removing
from the head is always O(1), while appending and removing from the tail takes
O(n) time.

If this was the only difference between the two structures it would seem that
the singly linked lists of Lisp are no worse than arrays available in other languages.
However, many common algorithms such as binary search and heapsort require ran-
dom indexing, so cannot be implemented using a singly linked list. While there are
advantages to linked lists over arrays, such as fast shuffling and dynamic memory al-
location, most non-Lisp languages have capabilities for creating both linked lists and
arrays. Array-like random indexing cannot be done in Mary (aside from somehow
using closures as a data structure), so along with other dialects of Lisp, this is one

33

 0

 0.5

 1

 1.5

 2

 2.5

 0 100 200 300 400 500 600

T
im

e
 T

a
k
e
n
 (

s
e
c
o
n
d
s
)

Items Sorted

Time taken for quicksort in Mary

Mary
nlogn regression

 0

 0.0002

 0.0004

 0.0006

 0.0008

 0.001

 0.0012

 0.0014

 0 100 200 300 400 500 600

T
im

e
 T

a
k
e

n
 (

s
e

c
o

n
d

s
)

Items Sorted

Time taken for quicksort in Python

Python
nlogn regression

Figure 7.1: Performance of Quicksort in Mary and Python

34

of Mary’s limitations. Other Lisp dialects have solved this by providing special data
structures other than the list, such as vectors in Clojure. We have not provided any
such structures in Mary, but rather suggest that this limitation is an opportunity
to show students how Lisp requires a different style of thinking to what is neces-
sary in other languages. We hope this allows students to adjust how they approach
programming, and if it does, we will have achieved the goals we set for ourselves in
creating Mary.

35

Chapter 8
Conclusion

In Mary, we have created a dialect of Lisp that is minimal in both its set of axioms
and its source code. Mary is built on less than 15 axioms and has 911 lines of code.

We have met our goals of building on Graham’s Lisp by creating a language with
lexical scoping, macros and I/O while maintaining referential transparency [8]. We
have provided a language that is modular, minimal and not meta-circular. These
are features not present in Graham’s Lisp but which we deemed as necessary for our
purposes.

The design goal for the creation of Mary was to create a dialect of Lisp which
emphasised the elements particular and unique to Lisp. This dialect would expose
students to new ideas so that they might begin thinking differently about program-
ming. Our evaluation shows that the two areas we identified as being important for
this dialect, functional design and meta-linguistic programming, are emphasised in
Mary. Mary’s minimality means that much of Lisp which does not align with our
design goals is not present, so will not distract students from the concepts which we
have emphasised and do wish to teach students.

Mary would be a useful tool for students to learn about functional programming
paradigms, meta-linguistic programming and language interpretation. The standard
libraries allow teachers to set tasks with a subset of the language to force students
to think outside of the box. The simplicity and modularity of Mary opens the door
for a wide range of educational activities. Mary should be used educationally as
an approachable gateway to functional programming and macros. The project is
available at http://andybelltree.github.io/Mary/.

36

8.1 Future Work

One useful future addition to Mary would be a tutorial for beginners. Students who
have not seen any Lisp prior to Mary may find it helpful to have the option of being
walked through the semantics of Lisp and some of the features of Mary.

It could also be useful to investigate ways to further decouple code which is used
in creating a debugging stack trace in Mary from interpreter code. Having to include
stack tracing code amongst evaluation code means that the source code is slightly
less perspicuous than would be ideal for students wanting to see how the interpreter
works. This is a worthwhile trade-off for good debugging feedback, as we see helpful
error reporting as vital for an educational language. It would be useful, however, if
we could find a way to have this done well without having to interpolate code for
evaluation and stack tracing as we have done.

An educational study remains to be done on whether Mary achieves learning
outcomes. One way of doing this would be to expose students to Mary during a
semester of study and compare the ways they use both Lisp and other languages
before and after this exposure. Our hope would be that such a study would reveal
a tendency for students who have spent time using Mary to use constructs such
as recursion and lambdas with greater ease, and to work more comfortably with
macros. We would also hope that students who have studied using Mary would have a
greater understanding of language concepts such as scoping, referential transparency,
functional programming and meta-linguistic programming.

37

Bibliography

[1] Alan Bawden et al. Quasiquotation in Lisp. In PEPM, pages 4–12, 1999.

[2] Daniel G. Bobrow and Ben Wegbreit. A model and stack implementation of
multiple environments. Commun. ACM, 16(10):591–603, October 1973.

[3] Catherine Twomey Fosnot and Randall Stewart Perry. Constructivism: A psy-
chological theory of learning. Constructivism: Theory, perspectives, and prac-
tice, pages 8–33, 1996.

[4] Richard P. Gabriel and Kent M. Pitman. Technical issues of separation in
function cells and value cells. Lisp and Symbolic Computation, 1(1):81–101,
June 1988.

[5] Patrick Gombert. Lispy elixir. Internet: https://8thlight.com/blog/patrick-
gombert/2013/11/26/lispy-elixir.html [7/11/2016], Nov 2013.

[6] Paul Graham. Lisp quotes. Internet: http://www.paulgraham.com/quotes.html
[10/10/2016].

[7] Paul Graham. On Lisp. Prentice Hall, 1993.

[8] Paul Graham. The roots of Lisp. Internet:
http://lib.store.yahoo.net/lib/paulgraham/jmc.ps [28/3/2016], January
2002.

[9] Paul Graham. Beating the averages. Internet: http://paulgraham.com/avg.html
[10/8/2016], April 2003.

[10] Chris Hanson. MIT/GNU scheme. Internet:
https://www.gnu.org/software/mit-scheme/ [8/8/2016], May 2016.

38

[11] J. M. Hary, L. A. Cohan, and M. J. Darnell. Users’ preferences among differ-
ent techniques for displaying the evaluation of Lisp functions in an interactive
debugger. In Proceedings of the SIGCHI Conference on Human Factors in Com-
puting Systems, CHI ’88, pages 45–50, New York, NY, USA, 1988. ACM.

[12] Doug Hoyte. Let Over Lambda. HCSW and Hoytech, 2008.

[13] Simon Peyton Jones. Haskell 98 language and libraries: the revised report.
Cambridge University Press, 2003.

[14] N Krejic and Z Luzanin. An implementation of Lispkit Lisp in Java1. Inter-
net: http://perun.pmf.uns.ac.rs/radovanovic/publications/2002-prim-lisp.pdf
[30/9/2016], 2002.

[15] C. S. Lewis. Studies in Words. Cambridge University Press, 1960.

[16] Robert A. MacLachlan. The Python compiler for CMU Common Lisp. LFP ’92
Proceedings of the 1992 ACM conference on LISP and functional programming,
pages 235–246, 1992.

[17] S. Maniccam. Sorting and searching using Lisp, functional programming, and
recursion. SIGCSE Bull., 41(4):53–56, January 2010.

[18] John McCarthy. History of Lisp. ACM SIGPLAN Notices - Special issue:
History of programming languages conference, 13(8):217 – 223, August 1978.

[19] John McCarthy. A micro-manual for Lisp - not the whole truth. SIGPLAN
Not., 13(8):215–216, August 1978.

[20] Paul McJones. Original OUCL PRG LispKit. Internet:
http://www.softwarepreservation.org/projects/LISP/lispkit/LispKit.tar.gz/view
[8/8/2016], May 2015.

[21] Greg Pfeil. Kilns: A Lisp without lambda. In Proceedings of ILC 2014 on 8th
International Lisp Conference, ILC ’14, page 9, New York, NY, USA, 2014.
ACM.

[22] Kent M. Pitman. Common Lisp: The untold story. In Celebrating the 50th
Anniversary of Lisp, LISP50, pages 6:1–6:12, New York, NY, USA, 2008. ACM.

[23] Christian Queinnec. Lisp in small pieces. Cambridge University Press, 2003.

[24] Willard Van Orman Quine. Word and object. MIT press, 1960.

39

[25] Eric S Raymond. How to become a hacker. Database and Network Journal,
33(2):8–9, 2003.

[26] Emmanuel Saint-James. Recursion is more efficient than iteration. LFP ’84
Proceedings of the 1984 ACM symposium on LISP and functional programming,
pages 228–234, 1984.

[27] Guy L. Steele and Richard P. Gabriel. The evolution of lisp. In History of
programming languages—II, pages 233–330, New York, NY, USA, 1996. ACM.

[28] Guy Lewis Steele, Jr. Macaroni is better than spaghetti. SIGPLAN Not.,
12(8):60–66, August 1977.

[29] Guy Lewis Steele Jr. Lambda: The ultimate declarative. Technical report,
DTIC Document, 1976.

[30] Gerald Jay Sussman and Guy Lewis Steele Jr. Lambda: The ultimate impera-
tive. 2015.

[31] Lau Taarnskov. Elixir – the next big language for the web. Inter-
net: http://www.creativedeletion.com/2015/04/19/elixir next language.html
[7/11/2016], April 2015.

[32] Phillip Merlin Uesbeck, Andreas Stefik, Stefan Hanenberg, Jan Pedersen, and
Patrick Daleiden. An empirical study on the impact of C++ lambdas and
programmer experience. In Proceedings of the 38th International Conference
on Software Engineering, ICSE ’16, pages 760–771, New York, NY, USA, 2016.
ACM.

[33] Kjetil Valle. Implementing (the original) Lisp in python. Internet:
http://kjetilvalle.com/posts/original-lisp.html [8/3/2016], November 2013.

[34] Richard L. Wexelblat. The consequences of one’s first programming language.
In Proceedings of the 3rd ACM SIGSMALL Symposium and the First SIGPC
Symposium on Small Systems, SIGSMALL ’80, pages 52–55, New York, NY,
USA, 1980. ACM.

[35] Putnik Zoran, Budimac Zoran, and Ivanovic Mirjana. Turtle walk through
functional language. SIGPLAN Not., 26(2):75–82, January 1991.

40

Appendix A
Semantics of Stack Tracing

We provide the following stack trace to demonstrate the symbolic semantics of our
stack tracing.

0 ->(cadr ’(a b c))

1 --|->cadr

2 ==|=>(lambda (l) (car (cdr l)))

3 --|->’(a b c)

4 --|--|->quote

5 ==|==|=>quote [builtin]

6 --|--|->(a b c)

7 ==|=>(a b c)

8 =>(car (cdr l))

9 {DEFAULT ENVIRONMENT}

10 ||

11 {’l’: ’(a b c)’}

12 --|->car

13 ==|=>car [builtin]

14 --|->(cdr l)

15 --|--|->cdr

16 ==|==|=>cdr [builtin]

17 --|--|->l

18 ==|==|=>(a b c)

19 ==|=>(b c)

20 =>b

At the lowest level (on the farthest left), we see a pipe connecting the expression

41

at line 0, to the expression at line 8, and then on to the result at line 20. The
first expression is the initial unevaluated expression, the second is a translation of
the expression from the lambda definition in line 2, and the final expression is the
result of the initial expression being evaluated. As the second and third expressions
represent the result of some evaluation, they are indented with equal signs (=). The
first expression is unevaluated, so is indented with a dash (-).

Lines 1–3 and line 7 have one level of indentation, which means they correspond
to parts of the expression at line 0. Line 1 is the name of the function in line 0,
and line 2 is its definition. This fact is again represented by the equal signs at line
2, showing it is an evaluation of a previous expression (in this case, the expression
at line 1). Line 3 is the argument in the expression at line 0. Line 7 represents the
evaluation of line 3, with intermediate steps being shown one level deeper between
line 4 and 6.

Once the expression has been translated, a new environment is created and shown
from lines 9–11, in which l corresponds to the list ’(a b c). The expression at line 8
is interpreted in this environment. At line 13, the symbol car from line 12 evaluates
to the built-in function car, and at line 18 the symbol l at line 17 evaluates to the
list stored in the closure that was created at line 9.

At line 19 we see the result of line 14, then at line 20 we see the result of the
whole evaluation, that is, the expression at line 0 and line 8.

42

Appendix B
Graham’s Lisp

The following Lisp was defined by McCarthy in his 1960 paper, and translated into
Common Lisp by Paul Graham [8, 18]. It is dynamically scoped, and assumes a
language with only quote, atom, eq, cons, car, cdr, cond and will interpret a
similar language. This code would be interpreted by a parent language, then be run
on other code, so that two Lisp interpreters were running simultaneously. This is the
meta-circularity which Mary seeks to avoid.

(defun l i s t . (x y)
(cons x (cons y ’ ())))

(defun pa i r . (x y)
(cond ((and . (null . x) (null . y)) ’ ())

((and . (not . (atom x)) (not . (atom y)))
(cons (l i s t . (car x) (car y))

(pa i r . (cdr x) (cdr y))))))

(defun assoc . (x y)
(cond ((eq (caar y) x) (cadar y))

(’ t (assoc . x (cdr y)))))

(defun eval . (e a)
(cond

((atom e) (assoc . e a))
((atom (car e))

(cond
((eq (car e) ’ quote) (cadr e))
((eq (car e) ’atom) (atom (eval . (cadr e) a)))
((eq (car e) ’eq) (eq (eval . (cadr e) a)

(eval . (caddr e) a)))

43

((eq (car e) ’ car) (car (eval . (cadr e) a)))
((eq (car e) ’ cdr) (cdr (eval . (cadr e) a)))
((eq (car e) ’cons) (cons (eval . (cadr e) a)

(eval . (caddr e) a)))
((eq (car e) ’cond) (evcon . (cdr e) a))
(’ t (eval . (cons (assoc . (car e) a) (cdr e))

a))))
((eq (caar e) ’ l a b e l)

(eval . (cons (caddar e) (cdr e))
(cons (l i s t . (cadar e) (car e)) a)))

((eq (caar e) ’ lambda)
(eval . (caddar e)

(append . (pa i r . (cadar e) (e v l i s . (cdr e) a))
a)))))

44

	Introduction
	Why teach Lisp?
	Methodology
	Report Outline

	Background
	Paul Graham's minimal Lisp
	Other Related Work

	Mary – Philosophy and Design
	Educational philosophy
	Goals of Mary

	Core language Elements
	Axioms
	Special forms
	Types
	Arithmetic operations
	I/O

	Educational Features
	Standard Library
	Environments
	Debugging and User Feedback
	Macroexpansion Tracing
	Standard Debugging
	Environment Debugging

	Error messages

	Advanced Features
	Macros and Quasiquotes
	Gensyms
	Multiple Dialects

	Evaluation
	Minimality
	Correctness
	Comprehensibility
	Feedback to User
	Efficiency

	Conclusion
	Future Work

	Semantics of Stack Tracing
	Graham's Lisp

