energy sfuels

Biofuels and Biomass

Subscriber access provided by UNIV OF CANTERBURY

Catalytic fast pyrolysis of demineralized biomass in a fluidized bed reactor: effects of acid-leaching and torrefaction pretreatment

Xing Xin, Kirk M. Torr, Shusheng Pang, Daniel Jason van de Pas, Martin Cooke-Willis, and Ferran de Miguel Mercader

Energy Fuels, Just Accepted Manuscript • DOI: 10.1021/acs.energyfuels.9b03698 • Publication Date (Web): 27 Dec 2019 Downloaded from pubs.acs.org on January 1, 2020

Just Accepted

"Just Accepted" manuscripts have been peer-reviewed and accepted for publication. They are posted online prior to technical editing, formatting for publication and author proofing. The American Chemical Society provides "Just Accepted" as a service to the research community to expedite the dissemination of scientific material as soon as possible after acceptance. "Just Accepted" manuscripts appear in full in PDF format accompanied by an HTML abstract. "Just Accepted" manuscripts have been fully peer reviewed, but should not be considered the official version of record. They are citable by the Digital Object Identifier (DOI®). "Just Accepted" is an optional service offered to authors. Therefore, the "Just Accepted" Web site may not include all articles that will be published in the journal. After a manuscript is technically edited and formatted, it will be removed from the "Just Accepted" Web site and published as an ASAP article. Note that technical editing may introduce minor changes to the manuscript text and/or graphics which could affect content, and all legal disclaimers and ethical guidelines that apply to the journal pertain. ACS cannot be held responsible for errors or consequences arising from the use of information contained in these "Just Accepted" manuscripts.

is published by the American Chemical Society. 1155 Sixteenth Street N.W., Washington, DC 20036

Published by American Chemical Society. Copyright © American Chemical Society. However, no copyright claim is made to original U.S. Government works, or works produced by employees of any Commonwealth realm Crown government in the course of their duties.

2 3 4 5	1	Catalytic fast pyrolysis of demineralized biomass in
6 7 8 9 10	2	a fluidized bed reactor: effects of acid-leaching and
11 12 13 14	3	torrefaction pretreatment
15 16 17	4	Xing Xin, ^{*,†,§} Kirk M. Torr, [‡] Shusheng Pang, [§] Daniel van de Pas, [‡] Martin Cooke-Willis,
18 19 20 21	5	[‡] and Ferran de Miguel Mercader [‡]
22 23 24	6	[†] Department of Chemical and Materials Engineering, The University of Auckland,
25 26 27 28	7	Private Bag 92019, Auckland 1142, New Zealand
29 30 31	8	[‡] Scion, Private Bag 3020, Rotorua 3046, New Zealand
32 33 34	9	[§] Department of Chemical and Process Engineering, University of Canterbury, Private
35 36 37 38	10	Bag 4800, Christchurch 8140, New Zealand
39 40 41	11	
42 43 44 45	12	KEYWORDS: catalytic fast pyrolysis, fluidized bed reactor, demineralized biomass, acid-
46 47 48	13	leaching, torrefaction.
49 50 51 52	14	ABSTRACT: In situ catalytic fast pyrolysis of pretreated wood was investigated using a
53 54 55 56 57 58	15	fluidized bed reactor. The pretreatments included acid-leaching, torrefaction, and a
59 60		ACS Paragon Plus Environment

Page 2 of 55

3
4
5
6
7
/ 0
8
9
10
11
12
13
14
15
16
17
10
10
19
20
21
22
23
24
25
25
20
27
28
29
30
31
32
33
34
25
22
50
~ -
37
37 38
37 38 39
37 38 39 40
37 38 39 40 41
37 38 39 40 41 42
37 38 39 40 41 42 43
37 38 39 40 41 42 43 43
 37 38 39 40 41 42 43 44 45
 37 38 39 40 41 42 43 44 45 45
 37 38 39 40 41 42 43 44 45 46
 37 38 39 40 41 42 43 44 45 46 47
 37 38 39 40 41 42 43 44 45 46 47 48
 37 38 39 40 41 42 43 44 45 46 47 48 49
 37 38 39 40 41 42 43 44 45 46 47 48 49 50
 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51
 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52
 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53
 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54
 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55
 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55
 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56
 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57
 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58

60

16	combined pretreatment of acid-leaching followed by torrefaction. Acid-leaching reduced
17	amounts of biomass minerals introduced into the process. However, acid-leaching
18	caused agglomeration during pyrolysis leading to reactor defluidization. Acid-leaching
19	also resulted in an upgraded bio-oil that was less deoxygenated compared to the
20	corresponding bio-oil obtained from raw wood. Conversely, torrefaction had a beneficial
21	effect leading to an increased yield of upgraded bio-oil without affecting its chemical
22	composition. Torrefaction of the acid-leached wood prevented agglomeration, reversed
23	the negative effect acid-leaching had on bio-oil quality, and gave an improvement in
24	upgraded bio-oil yield. These effects, combined with the removal of biomass minerals that
25	are detrimental to the catalyst, suggests acid-leaching coupled with torrefaction is a
26	promising pretreatment to improve in situ catalytic fast pyrolysis of lignocellulosic biomass
27	from a technical viewpoint.
28	1. INTRODUCTION
29	Lignocellulosic biomass is an abundant and renewable resource that can be used to
30	produce liquid fuels and valuable chemicals by thermochemical processes. The bio-oil
31	obtained from biomass pyrolysis can be upgraded to transport fuels by processes
	2 ACS Paragon Plus Environment

Page 3 of 55

Energy & Fuels

	32	including hydrotreating, catalytic cracking, etc. Hydrotreating process requires a high
	33	pressure up to 20 MPa and a hydrogen supply. In comparison, catalytic cracking is
) 1 2	34	realized at an atmospheric pressure and does not need hydrogen supply. Catalytic fast
3 4 5	35	pyrolysis (CFP) is a promising process that combines fast pyrolysis with catalytic
5 7 8 9	36	upgrading to produce upgraded bio-oils ¹ . In situ CFP processes use fluidized bed reactors
0 1 2	37	where solid particles are used as both active catalyst and bed material ² . Among the solid
3 4 5 5	38	catalysts studied, the zeolite HZSM-5 has been shown to be effective to produce high-
7 8 9	39	quality bio-oils ³ . HZSM-5 is a shape-selective zeolite that contains micropores with pore
) 1 2 3	40	diameters of approximately 0.5 nm ⁴ . During CFP, oxygenated molecules can diffuse into
4 5 5	41	the pores of the zeolite and be transformed into aromatic hydrocarbons by reacting with
7 8 9 0	42	acidic active sites within the pores ^{5, 6} .
1 2 3	43	The formation of coke during CFP leads to rapid deactivation of zeolite catalysts ^{7, 8} . It
4 5 6 7	44	is necessary to periodically regenerate the used catalyst by burning off the coke9, 10.
, 3 9 0	45	Several studies have shown that the activity of zeolite catalysts decreases as the number
1 2 3	46	of regeneration cycles increases ¹¹⁻¹³ . The main reason for this is that biomass minerals,
5 5 7	47	mainly alkali and alkali earth metals (AAEMs), accumulate on the catalyst after repetitive
8 9		3

ACS Paragon Plus Environment

Page 4 of 55

2
3
1
2
6
7
8
9
10
11
11
12
13
14
15
16
17
18
10
20
20
21
22
23
24
25
26
20
27
28
29
30
31
32
33
34
24 25
35
36
37
38
39
40
41
40
42
43
44
45
46
47
48
49
50
50
5 I
52
53
54
55
56
57
57
58
59
60

48	cycles of catalytic pyrolysis and regeneration. These metals can block the pores or poison
49	the active sites of the zeolite, eventually leading to irreversible catalyst deactivation ^{14, 15} .
50	The catalytic activity gradually decreases over time and new catalyst is required. Techno-
51	economic analysis has shown that the price of the CFP upgraded bio-oil product is very
52	sensitive to the catalyst cost ¹⁰ . Prolonging the catalyst lifespan is crucial in making the
53	CFP process more cost effective. Meanwhile, AAEMs reduce hydrocarbon yields in
54	catalytic pyrolysis of biomass leading to less aromatics and olefins ¹⁶ .
55	Biomass pretreatment as one of the key steps in the thermochemical process can
56	uniform and improve biomass characteristics for the following conversion ¹⁷ . The
57	pretreating methods include thermal methods ^{18, 19} , chemical methods ²⁰⁻²² , biological
58	methods ^{23, 24} , etc. Acid-leaching pretreatment as a chemical method is effective in
59	removing AAEMs from lignocellulosic biomass and can significantly increase the organic
60	oil yield in thermal pyrolysis ^{22, 25, 26} . This pretreatment reduces the amount of biomass
61	minerals introduced into the CFP process, potentially prolongs the catalyst lifespan ²⁷ .
62	Recently, a few studies have been reported on applying acid-leaching pretreatment in
63	catalytic pyrolysis of biomass. Hernando et al. studied catalytic pyrolysis of acid-leached
	4

Page 5 of 55

	64	wheat straw, but did not report on the effect of the acid-leaching pretreatment relative to
	65	un-leached straw ²⁸ . Wang et al. reported that acid-leaching of red oak wood increased
0 1 2	66	the yield of aromatic hydrocarbons in catalytic pyrolysis ¹⁶ . In previous work, we studied
3 4 5	67	the effects of acid-leaching and torrefaction pretreatments on catalytic pyrolysis of pine
6 7 8 9	68	wood using Py-GC/MS ²⁹ . It was concluded that the acid-leaching pretreatment had only
0 1 2	69	a minor effect on the relative composition of the GC-volatile products compared to
3 4 5 6	70	reaction conditions, i.e. temperature and catalyst loading. Persson et al. studied catalytic
7 8 9	71	pyrolysis of demineralized softwood using HZSM-5 in Py-GC/MS and fix-bed reactor ³⁰ . It
0 1 2 3	72	was found that acid-leaching pretreatment resulted in an increased yield of aromatics in
4 5 6	73	ex-bed catalytic pyrolysis of acid-leached biomass at 600 $^\circ$ compared to the
7 8 9 0	74	corresponding raw material. While the performance of in-bed catalytic pyrolysis of acid-
1 2 3	75	leached wood was limited.
4 5 6 7	76	There have been no studies reported on CFP of acid-leached biomass using a fluidized
8 9 0	77	bed reactor. Previous studies have shown that fast pyrolysis of acid-leached wood in a
1 2 3	78	fluidized bed reactor caused an operational issue that is referred to as bed material
4 5 6 7	79	agglomeration or char agglomeration ^{26, 31} . This issue is caused by the formation of a sticky
8 9 0		5 ACS Paragon Plus Environment

Page 6 of 55

2	
3	
4	
-	
5	
6	
7	
8	
a	
10	
10	
11	
12	
13	
11	
14	
15	
16	
17	
18	
10	
19	
20	
21	
22	
23	
23	
24	
25	
26	
27	
28	
20	
29	
30	
31	
32	
22	
22	
34	
35	
36	
37	
20	
20	
39	
40	
41	
<u>م</u>	
42	
43	
44	
45	
46	
17	
-T/ 40	
48	
49	
50	
51	
57	
52	
53	
54	
55	
56	
50	
57	
58	
59	
60	

80	melt material that coats the bed particles and binds them together to form agglomerates,
81	which can eventually lead to reactor defluidization ^{13, 26} . Bed material agglomeration has
82	been a barrier to research into CFP of acid-leached biomass. In recent work, we have
83	reported that bed material agglomeration can be mitigated by pyrolyzing at low
84	temperature, through continually refreshing the bed material, or by applying a mild
85	torrefaction pretreatment to the acid-leached wood ²⁶ .
86	Torrefaction is a relatively mild thermal treatment that can be used to increase the
87	energy density of lignocellulosic biomass and decrease its hydrophilicity ¹⁷ . The liquid
88	obtained from biomass torrefaction is considered a valuable product as it is rich in acids
89	and ketones ³² . This acidic liquid can also be used as a leachate to remove biomass
90	minerals for an acid-leaching pretreatment ³³ . Several analytical pyrolysis studies have
91	shown that a mild to moderate torrefaction pretreatment can improve the selectivity for
92	aromatic hydrocarbon products in catalytic pyrolysis of biomass ³⁴⁻³⁶ . Studies on analytical
93	catalytic pyrolysis of torrefied cellulose ³⁶ and torrefied lignin ³⁷ also indicate that
94	torrefaction pretreatment can enhance the selectivity of aromatic hydrocarbon products.

Page 7 of 55

Energy & Fuels

	95	Combining acid-leaching with torrefaction is an attractive pretreatment to improve
	96	organic oil yield and the quality in pyrolysis processes ³⁸⁻⁴⁰ . Zhang et al. used Py-GC/MS
0 1 2	97	to study catalytic pyrolysis of rice husk biomass that had been pretreated by both acid-
3 4 5	98	leaching and torrefaction ⁴¹ . They found that this combined pretreatment improved the
6 7 8 9	99	relative content of aromatic hydrocarbons in the GC/MS-analyzable products compared
0 1 2	100	to untreated rice husks. This combined pretreatment is promising to improve CFP
3 4 5 6	101	process, however no study has been done using a fluidized bed reactor.
7 8 9	102	It is important to study CFP of pretreated biomass in large scale reactors. Compared to
0 1 2	103	Py-GC/MS work, these lab-scale fluidized bed reactors are a step towards better
5 4 5 6	104	mimicking CFP process. In this study, a bubbling fluidized bed reactor was employed for
7 8 9	105	CFP experiments on pine wood that had been pretreated by acid-leaching, torrefaction,
0 1 2 3	106	and acid-leaching followed by torrefaction. The effects of these three pretreatments on
4 5 6	107	catalytic fast pyrolysis were discussed respectively.
/ 8 9 0	108	2. EXPERIMENTAL SECTION
1 2 3	109	2.1. Materials. Fresh wood chips (Radiata pine) were obtained from a local sawmill in
4 5 6 7	110	Rotorua, New Zealand. These chips were dried and then ground and sieved to wood
8 9		7

1 2

3 4 5	111	particle sizes in the range of 0.25-2.00 mm. This raw (non-pretreated) wood was labelled
6 7 8 9	112	Rwood.
10 11 12	113	Acid-leaching of raw wood was performed by soaking and stirring the wood particles in
14 15 15 16	114	1 wt.% acetic acid solution for 4 hours at 30 °C. Dilute acetic acid was selected as the
17 18 19	115	demineralization agent as it is possible to recover acetic acid from both pyrolysis oil and
20 21 22 23	116	wood torrefaction condensate ^{22, 42} . Following acid-leaching, the wood particles were
24 25 26	117	washed with deionized water and oven-dried at 60 $^\circ\text{C}$ overnight, and then at 105 $^\circ\text{C}$
27 28 29 30	118	overnight. This acid-leached wood was labelled ALwood.
31 32 33	119	Torrefaction pretreatment was carried out with Rwood and ALwood using a 316
34 35 36 37	120	stainless steel vessel. Details of this procedure are described elsewhere ²² . During
38 39 40	121	torrefaction, the vessel that contained the biomass was heated in an oven set to 270 $^\circ\text{C}$
41 42 43	122	for 260 minutes. Nitrogen was used as a sweep gas to remove generated volatiles. The
44 45 46 47	123	average heating rate was ca. 0.9 $^\circ C$ /min, with the vessel reaching a maximum
48 49 50	124	temperature of 258 \pm 3 °C. Afterwards, the vessel was cooled at a rate of ca. 2.0 °C /min.
51 52 53 54	125	The torrefied Rwood was labelled as Twood, and the torrefied ALwood as ALTwood.
55 56 57		
59		8

ו כ	
2 3 4 5	126
6 7 8	127
9 10 11 12	128
13 14 15	129
16 17 18 19	130
20 21 22	131
23 24 25	132
20 27 28 29	133
30 31 32	134
33 34 35 36	135
37 38 39	136
40 41 42 43	137
44 45 46	138
47 48 49	139
50 51 52 53	140
54 55 56	141
57 58 59 60	

The moisture content of the wood samples was measured before each CFP experiment. The chemical characteristics of the Rwood, ALwood, Twood and ALTwood samples have been reported in our previous study²⁶. The results are presented in Supporting Information (Table S1). A spray-dried HZSM-5 zeolite catalyst, obtained from Saint Chemical Material Company (Shanghai, China) was used in this study. This catalyst had a Si/Al ratio of 30:1, a particle size of 0.3-0.4 mm, a specific surface area of \geq 350 m²/g and a binder (alumina gel) content of 50 wt.%. Before each CFP experiment, the catalyst was heated at 525 °C in a muffle furnace for 4 hours to remove any moisture that was absorbed during storage. 2.2. Fluidized bed reactor system and operating procedure. A bubbling fluidized bed reactor was employed for the CFP experiments. The reactor system is shown in Figure 1. Details of this reactor were reported previously.²⁶ A brief description is presented below. Screw augers transported the biomass and catalyst into the fluidized bed reactor at controlled feeding rates. The reactor bed was fluidized by preheated nitrogen that passed through a sintered metal plate at the bottom of the reactor. An overflow tube inside the reactor collected excess bed material to keep the bed level constant. The inner diameter 9

3 4 5	142	of the reactor was 100 mm, and the bed height was 420 mm. Five thermocouples were
6 7 8 9	143	located inside the reactor at different heights, four inside the fluidized bed, and one in the
10 11 12	144	freeboard above the overflow tube. The difference in temperature between these
13 14 15 16	145	thermocouples never exceeded 5 $^\circ\text{C}$ when the bed was fully fluidized. The average
17 18 19	146	temperature of the four thermocouple readings within the bed was defined as the reaction
20 21 22	147	temperature.
23 24 25 26	148	The hot vapors generated from the reactor were cleaned in a gas cleaning system that
27 28 29	149	was composed of a knock-out vessel, a cyclone and a hot filter, in series. The hot filter
30 31 32 33	150	consisted of a cylindrical cartridge filter of 316 stainless steel wire-mesh (pore size = 2
34 35 36	151	$\mu\text{m})$ contained within a filter housing. The hot filter was primarily used to remove fine
37 38 39 40	152	entrained catalyst dust. After cleaning, the vapor and non-condensable gas passed into
41 42 43	153	a quenching system that was composed of an electrostatic precipitator (ESP) column and
44 45 46 47	154	an intensive cooling (IC) column, both jacketed with coolant (water and ethylene glycol
48 49 50	155	mixture). The liquid product was collected at the base of these columns. A wound
51 52 53 54	156	polypropylene filter located after the IC column collected any aerosols remaining in the
55 56 57	157	non-condensable gas.
58 59 60		10 ACS Paragon Plus Environment

1	
2 3 4 5	15
6 7 8	15
9 10 11 12	16
13 14 15	16
16 17 18 19	16
20 21 22	16
23 24 25 26	16
27 28 29	16
30 31 32 33	16
34 35 36	16
37 38 39 40	16
41 42 43	16
44 45 46 47	17
48 49 50	17
51 52 53	17
55 56 57	17
58 59	

158	Before each experiment, 0.7 kg catalyst was preloaded in the reactor and the load
159	height was approximately 280 mm. This amount was the maximum quantity of catalyst
160	that could be loaded into the reactor without catalyst being blown out of the reactor when
161	fluidization was started. The pyrolysis reactor was then heated to the target temperature,
162	and the gas cleaning system was heated to 440 $^{\circ}\mathrm{C}$ for all experiments. The temperatures
163	of the ESP and IC columns were -5 $^\circ$ C and -15 $^\circ$ C, respectively. The minimum fluidization
164	velocity was approximately 0.05 m/s. The gas velocity in fluidized bed was maintained at
165	approximately 0.1 m/s by adjusting the nitrogen flowrate in the range of 14.0-17.4 L/min
166	at normal conditions. The residence time of the hot vapor in the reaction zone was
167	approximately 2-3 seconds as estimated.
168	At the beginning of the CFP experiment (t = 0 h), the biomass and catalyst were
169	simultaneously fed into the bed. The feed rate of biomass was always 0.35 kg/h to keep
170	the weight hourly space velocity at 0.5 (1/h). The duration of the pyrolysis run was 1.5
171	hours for all experiments. The feed rate of catalyst required to give a specific catalyst to
172	biomass (C/B) ratio, by the end of the experiment, was determined from the following
173	equation:

1

60

2 3 4 5	174	$C/B = \frac{f_c t + W_c}{f_b t} $ (1)
6 7 8 9	175	where C/B = ratio of catalyst to biomass (wt./wt.), f_c = feed rate of catalyst (kg/h), f_b =
10 11 12	176	feed rate of oven-dry biomass (kg/h), t = experiment duration (h) and W_c = weight of
13 14 15 16	177	preloaded catalyst (kg).
17 18 19	178	2.3. Analysis of liquid products. The liquid products collected in the CFP experiments
20 21 22 23	179	consisted of a lighter aqueous phase and a heavier organic phase (upgraded bio-oil). The
24 25 26	180	two phases were formed in approximately 10 minutes using a separating funnel, then they
27 28 29 30	181	were separated and stored at -20 °C prior to analysis.
31 32 33	182	The water content was measured in triplicate by Karl-Fischer titration (Metrohm 870 KF
34 35 36 37	183	Titrino plus). Elemental analysis was performed in triplicate using a FLASH 2000 CHN
38 39 40	184	analyzer (Thermo Scientific, USA). The carbon, hydrogen and nitrogen contents were
41 42 43 44	185	determined, and the oxygen content was calculated by difference.
45 46 47	186	Gas chromatography/mass spectrometry (GC/MS) of the upgraded bio-oils was
48 49 50	187	performed on an Agilent 7890 GC equipped with an Ultra 2 capillary column (50 m $ imes$ 0.2
51 52 53 54 55	188	mm \times 0.33 $\mu m)$ and coupled to a 5977B MSD. Duplicate bio-oil samples were dissolved
56 57 58		
59		12

ACS Paragon Plus Environment

Page 13 of 55

Energy & Fuels

1	
2	
3 4	
5	
6	
7 8	
9	
10	
11	
12	
14	
15	
16	
17	
19	
20	
21	
22	
24	
25	
26 27	
28	
29	
30 31	
32	
33	
34	
36	
37	
38	
39 40	
41	
42	
43	
44 45	
46	
47	
48 ⊿0	
50	
51	
52	
53 54	
55	
56	
57 50	
10	

	189	in dichloromethane, filtered and diluted to a concentration of 0.4 mg/mL for analysis. The
	190	injector temperature was held at 260 °C and injection volume was 1 $\mu L.$ High purity helium
) 2	191	was used as carrier gas at a constant flow rate of 1.0 mL/min. A split of the carrier gas
3 4 5	192	(1:10) was used. The temperature schedule of the oven was set as follows: 50 $^\circ C$ for 2
5 7 3 9	193	min, 5 °C/min to 130 °C, 10 °C/min to 300 °C, held at 300 °C for 5 min. MS data was
) 2	194	collected in scan mode over a range of 50-350 amu. Agilent MassHunter Quantitative
3 4 5	195	Analysis software equipped with NIST 2011 database was used to analyze the
7 3 9	196	chromatograms and identify the eluted compounds from their mass spectra.
) 2	197	Chromatographic peaks with areas larger than 5 % of the largest peak area in the
4 5 5	198	chromatograph were included for identification. Only those peaks with a high degree of
7 3 9	199	certainty in terms of an identity match to a library database compound (over 80%) were
) 2 }	200	included and relative abundances were determined based on the peak area percentages.
4 5 5	201	98 compounds in total were identified, and the total area of the identified peaks accounted
/ 3 9 0	202	for 87-91 % of the peak area of all the detected peaks. Details are shown in Supporting
1 2 3 4 5	203	Information (Figure S1 and Table S2).
5 7		

Page 14 of 55

1 2		
3 4 5	204	Gel permeation chromatography (GPC) analysis of the upgraded bio-oils was
6 7 8 9	205	performed on a Knauer/Polymer Standards Service GPC equipped with a PSS SDV Lux
10 11 12	206	1000 Å column heated at 30 °C. Duplicate samples were analyzed at a concentration of
13 14 15 16	207	5 mg/mL in tetrahydrofuran using a refractive index detector. The system was calibrated
17 18 19	208	using low molecular weight polystyrene standards. Cumulative detector responses were
20 21 22 22	209	calculated from the GPC chromatograms and used to estimate that 93-96 % of organics
23 24 25 26	210	in the upgraded bio-oils were below 350 Da in molecular weight and therefore assumed
27 28 29	211	to be largely detectable by GC/MS.
31 32 33	212	Analysis of the aqueous phase products by ¹ H-NMR spectroscopy was performed to
34 35 36	213	determine the chemical functionality of the organics. A Bruker Avance III 400 MHz
37 38 39 40	214	spectrometer equipped with a 5 mm BBO probe was used. The spectra were obtained at
41 42 43	215	300 K in acetone-d6. At least 64 transients were collected. A presaturation pulse was
44 45 46 47	216	applied during acquisition to suppress the signal of water. The spectra were reprocessed,
48 49 50	217	and the hydrogens in the organics were divided into six groups based on their chemical
51 52 53 54	218	shifts. The resonance signals assigned to different hydrogen types were described
55 56 57	219	elsewhere ⁴³ . Results are shown in Supporting Information (Table S3).
58 59 60		14 ACS Paragon Plus Environment

Page 15 of 55

1	
2 3 4 5	22
6 7 8	22
9 10 11 12	22
13 14 15	22
16 17 18 19	22
20 21 22	22
23 24 25 26	22
27 28 29	22
30 31 32 33	22
34 35 36	22
37 38 39 40	23
41 42 43	23
44 45 46 47	23
48 49 50	23
51 52 53 54	23
55 56 57	23
58 59 60	

220	2.4. Analysis of gas and char. A gas flow meter (bellows meters type) measured the
221	total flow of the non-condensed gas in each experiment. The gas was sampled every 10
222	minutes during the experiment. The gas composition was measured by gas
223	chromatography (GC) analysis using a portable Agilent 490 Micro GC instrument
224	equipped with a molecular sieve 5A column and a PoraPLOT Q column. The column
225	temperature was 80 $^{\circ}$ C, and it was calibrated using a standard gas mixture based on the
226	reported composition of the non-condensable gas, including N_2 , O_2 , H_2 , CH_4 , CO , CO_2 ,
227	C_2H_4 , C_2H_6 , C_3H_6 and C_3H_8 . After analysis, the gas composition was normalized to N_2 -
228	free and O_2 -free contents (vol.%). The volume-based contents of gas species were then
229	converted to mass-based contents, and the yields (wt.%) of the individual gases were
230	calculated.
231	The char and used catalyst were collected as a mixture. The used catalyst containing
232	the coke byproduct could not be completely separated from the char. Therefore, the
233	combined yield of coke and char was reported. Samples of char and spent catalyst
234	materials for analysis by scanning electron microscopy (SEM) were mounted on carbon
235	tabs, coated with chromium and examined on a JEOL 6700F field emission scanning
	15

ACS Paragon Plus Environment

3 4 5	236	electron microscope at an accelerating voltage of 15 kV using a backscattered electron
6 7 8	237	detector.
9 10 11 12	238	2.5. Catalytic fast pyrolysis experiments. A summary of the CFP experiments is shown
13 14 15	239	in Table 1. Firstly, control experiments were conducted in triplicate using Rwood and
16 17 18 19	240	pyrolysing at 500 °C. The final C/B ratio was 2.5 by setting the catalyst feed rate at 0.43 $$
20 21 22	241	kg/h (see Eq. (1)). These experiments were used to provide benchmark data on liquid,
23 24 25 26	242	gas and char/coke yields and compositions, and to demonstrate experimental
27 28 29	243	repeatability. These experiments were given a code R500L. In the experiment code, the
30 31 32 33	244	first capital letter(s) referred to the wood sample, i.e. R = Rwood, AL = ALwood, this is
34 35 36	245	followed by the pyrolysis temperature in $^\circ$ C and finally the level of C/B ratio (L = low; M =
37 38 39 40	246	medium and $H = high$).
41 42 43	247	Bed material agglomeration was anticipated as an issue in conducting CFP experiments
44 45 46 47	248	with ALwood. An experiment was conducted at 500 °C with a C/B ratio of 2.5 with ALwood
48 49 50	249	to confirm the occurrence of bed material agglomeration. To overcome bed material
51 52 53	250	agglomeration, CFP experiments were conducted at 500 $^{\circ}$ C with C/B ratios of 4 and 6 by
54 55 56 57	251	increasing the catalyst feed rate to 1.0 kg/h and 1.5 kg/h, respectively. Additionally, CFP
58 59 60		16 ACS Paragon Plus Environment

Page 17 of 55

C. The
e valid
ducted
to high
gave a
bio-oil
r wood
Rwood,
porting
ne only
vt.% in
ficantly
nt from
were a

3 4 5	268	substantial reduction in the hemicellulose content and an increase in the apparent lignin
6 7 8	269	content ²⁶ . This was due to thermal degradation of the hemicelluloses, resulting in loss of
9 10 11 12	270	volatile components and degraded hemicelluloses that analyzed as lignin. In addition,
13 14 15 16	271	thermal degradation products in torrefaction may also been measured as acid-insoluble
17 18 19	272	lignin and included in the lignin content. Torrefaction pretreatment resulted in mass losses
20 21 22	273	of 17% and 14% for Twood and ALTwood, respectively. The ALTwood had reduced levels
23 24 25 26	274	of AAEMs compared to the Twood.
27 28 29	275	3.2. Catalytic fast pyrolysis of raw wood. Catalytic fast pyrolysis of Rwood at 500 °C
30 31 32 33	276	with a C/B ratio of 2.5 gave yields of the upgraded bio-oil of 8.3, 8.7 and 8.4 wt.%
34 35 36	277	(standard deviation (sd) = 0.2 wt.%) in the triplicate pyrolysis experiments. The
37 38 39 40	278	corresponding yields of the aqueous phase liquid, which was essentially produced water,
41 42 43	279	were 23.8, 22.1 and 22.6 wt.%, respectively (sd = 0.9 wt.%). The non-condensable gas
44 45 46 47	280	yields were 38.5, 38.4 and 38.5 wt.% (sd = 0.06 wt. %) and the yields of combined
48 49 50	281	char/coke were 23.8, 24.0 and 24.2 wt.% (sd = 0.2 wt.%). These results demonstrated
51 52 53 54	282	good reproducibility of the CFP experiments with product mass balances in the order of
55 56 57	283	93-94 wt.%. The loss of liquid product mainly consisted of the mass loss as some liquid
58 59 60		18 ACS Paragon Plus Environment

Page 19 of 55

Energy & Fuels

1	
2 3 4 5	28
6 7 8	28
9 10 11 12	28
13 14 15	28
16 17 18 19	28
20 21 22	28
23 24 25 26	29
27 28 29	29
30 31 32 33	29
34 35 36	29
37 38 39 40	29
41 42 43	29
44 45 46 47	29
48 49 50	29
51 52 53 54	29
55 56 57	29
58 59	

	284	remained in the condensation columns and the separating funnel. The variability in the
	285	product yields found in these triplicate experiments was used in assessing whether
0 1 2	286	product yields, in subsequent experiments, were the same or significantly different. For
- 3 4 5	287	instance, a difference of 1 wt.% in upgraded bio-oil yield was deemed significant
6 7 8 0	288	considering the 0.2 wt.% standard deviation found for bio-oil yield. The substantially lower
9 0 1 2	289	bio-oil yield, and higher yields of coke/char and non-condensable gas, compared to non-
3 4 5	290	catalytic fast pyrolysis ²⁶ , were indicative of the high activity of the HZSM-5 catalyst, which
6 7 8 9	291	was consistent with the literature ^{2, 16} .
0 1 2	292	3.3. Catalytic fast pyrolysis of acid-leached wood. 3.3.1. Overcoming bed material
3 4 5 6	293	agglomeration. The attempted CFP of ALwood under the same conditions used for
7 8 9	294	Rwood (500 °C, C/B ratio of 2.5, AL500L) resulted in rapid defluidization of the reactor
0 1 2 3	295	due to bed material agglomeration. On dissembling the reactor, agglomerates of catalyst
4 5 6	296	and char material were found located near the biomass input auger. To overcome this
7 8 9 0	297	issue, two different types of experiments were investigated based on our previous work
1 2 3	298	with non-catalytic fast pyrolysis of ALwood ²⁶ . Firstly, CFP experiments were undertaken
4 5 6 7	299	using increased catalyst feed rates of 1.0 kg/h (AL500M, C/B ratio = 4) and 1.5 kg/h
8 9		19

3 4 5	300	(AL500H, C/B ratio = 6). The aim was to continually refresh the bed material in the reactor
6 7 8 0	301	so that the problematic agglomerates were removed, via the overflow pipe, before they
9 10 11 12	302	could cause defluidization problems. This approach proved successful for the AL500H
13 14 15	303	experiment. In this case, the full 1.5 hour run was achieved and the CFP products could
16 17 18 19	304	be compared with corresponding products from the Rwood experiment (see Section
20 21 22	305	3.3.2). In the AL500M experiment, defluidization of the reactor occurred within 35 minutes
23 24 25 26	306	of starting the run.
27 28 29	307	The second approach was to lower the pyrolysis temperature to 450 or 360 $^\circ C$ while
30 31 32 33	308	keeping the catalyst feeding rate at 0.43 kg/h (i.e. C/B ratio = 2.5). These experiments
34 35 36	309	(AL450L and AL360L, respectively) were both successful at mitigating bed material
37 38 39	310	agglomeration over the 1.5 hour run. Figure 2 shows SEM images of char and catalyst
40 41 42 43	311	bed material collected from the CFP experiments of AL360L, AL450L and AL500L. The
44 45 46	312	char from the AL360L experiment (Figure 2A) showed a fibrous structure with no evidence
47 48 49 50	313	of biomass melting. Conversely, evidence of melting of the biomass during char formation
51 52 53	314	was observed in experiments AL450L and AL500L. The severity of the melting behavior
54 55 56 57	315	increased with temperature, leading to the bed material agglomeration observed in
58 59 60		20 ACS Paragon Plus Environment

Page 21 of 55

1 2		
3 4 5	316	experiment AL500L. This behavior of biomass melting during CFP, leading to bed
6 7 8 9	317	material agglomeration, was the same behavior as that previously observed in non-
10 11 12	318	catalytic fast pyrolysis of acid-leached pine wood ^{26, 31} .
13 14 15	319	A third approach to successfully mitigating bed material agglomeration in CFP, involving
16 17 18 19	320	a torrefaction pretreatment of the acid-leached wood, is discussed in section 3.5.
20 21 22	321	3.3.2. Catalytic fast pyrolysis products. The results for successful CFP experiments
23 24 25 26	322	using acid-leached wood are shown in Table 2, along with the corresponding results for
27 28 29	323	raw wood. Product yields are presented on a raw wood basis with the mass loss on acid-
30 31 32 33	324	leaching pretreatment of 1 wt.% taken into account. The liquid products were classified
34 35 36	325	into three groups: upgraded bio-oil, aqueous-phase organics and produced water. Most
37 38 39	326	of the organics are found in the upgraded bio-oil with very few organics remaining in the
40 41 42 43	327	aqueous phase, except in the case of CFP experiments at 360 °C.
44 45 46	328	Measured properties of the upgraded bio-oils included elemental content and chemical
47 48 49 50	329	composition of the organics as analyzed by GC/MS (Table 2). The GC/MS results are
51 52 53	330	based on relative peak area percentages of identified compounds, which have been
54 55 56 57	331	classified into seven chemical groups based on their main functionalities. GPC analysis
58 59 60		21 ACS Paragon Plus Environment

1

Page 22 of 55

332	indicated 93-96% of the organics in the upgraded bio-oils were of sufficiently low
333	molecular weight to potentially be amenable to analysis by GC/MS. Key non-condensable
334	gaseous products included CO, CO ₂ , CH ₄ , C ₂ H ₄ and C ₃ H ₆ , while the yields of H ₂ , C ₂ H ₆
335	and C_3H_8 were negligible. ¹ H NMR analysis results of aqueous phase products are
336	available in the Supporting Information (Table S3).
337	Firstly, the results of CFP of ALwood at 500 $^\circ C$ are compared with Rwood under the
338	same conditions, i.e. experiments AL500H and R500H. At this higher temperature the
339	catalyst was more active. However, a high catalyst feed rate was required to prevent bed
340	material agglomeration (see Section 3.3.1). The yields of upgraded bio-oil (9 wt.%) and
341	combined char/coke (29 wt.%) were the same for ALwood and Rwood. Produced water
342	and total non-condensable gas yields were also similar. Because of an excess catalyst
343	loading, no improvement in upgraded bio-oil yield was observed under these CFP
344	conditions. This contrasts to results for thermal pyrolysis in our previous study where
345	organic oil yield was significantly enhanced by acid-leaching pretreatment ²⁶ . It is
346	speculated that levoglucosan is difficult to be upgraded over HZSM-5 zeolite, as it is
	22 ACS Paragon Plus Environment
	 332 333 334 337 338 339 340 341 342 343 344 345 346

Page 23 of 55

1		
2 3 4 5	347	known that acid-leaching pretreatment primarily improves the production of levoglucosan
6 7 8	348	in non-catalytic fast pyrolysis. ⁴² Further discussion is presented in Section 3.3.3.
9 10 11 12	349	A comparison of the non-condensable gases from the AL500H and R500H experiments
13 14 15	350	revealed that acid-leaching resulted in decreased CO_2 production and increased CO
16 17 18 19	351	production (Table 2). Correspondingly, the upgraded bio-oil from the AL500H experiment
20 21 22	352	contained a lower carbon content and a higher oxygen content (Table 2). The GC/MS
23 24 25 26	353	analysis of the upgraded bio-oil indicated the presence of less aromatics, and more
27 28 29	354	phenols and oxygenated aromatics, than the R500H upgraded bio-oil. These results
30 31 32 33	355	indicated that acid-leaching pretreatment mildly hindered the degree of deoxygenation of
34 35 36	356	the upgraded bio-oil. These results are consistent with our Py-GC/MS study which
37 38 39	357	indicated that acid-leaching pretreatment prior to CFP resulted in a slightly lower relative
40 41 42 43	358	proportion of aromatic hydrocarbons in the GC/MS-detectable products ²⁹ .
44 45 46	359	Lowering the pyrolysis temperature and catalyst loading resulted in a decrease of the
47 48 49 50	360	catalyst activity ²⁹ . However, the effects of acid-leaching pretreatment were still clear in
51 52 53	361	CFP experiments at 450 °C (Table 2). CFP of ALwood at 450 °C resulted in a higher yield
54 55 56 57	362	of upgraded bio-oil compared to Rwood (i.e. 12 wt.% cf. 10 wt.%). The AL450L bio-oil
58 59 60		23 ACS Paragon Plus Environment
		-

revealed that acid-leaching resulted in decreased CO_2 production and increased CO
production (Table 2). Correspondingly, the upgraded bio-oil from the AL500H experiment
contained a lower carbon content and a higher oxygen content (Table 2). The GC/MS
analysis of the upgraded bio-oil indicated the presence of less aromatics, and more
phenols and oxygenated aromatics, than the R500H upgraded bio-oil. These results
indicated that acid-leaching pretreatment mildly hindered the degree of deoxygenation of
the upgraded bio-oil. These results are consistent with our Py-GC/MS study which
indicated that acid-leaching pretreatment prior to CFP resulted in a slightly lower relative
proportion of aromatic hydrocarbons in the GC/MS-detectable products ²⁹ .
Lowering the pyrolysis temperature and catalyst loading resulted in a decrease of the
catalyst activity ²⁹ . However, the effects of acid-leaching pretreatment were still clear in
CFP experiments at 450 °C (Table 2). CFP of ALwood at 450 °C resulted in a higher yield
of upgraded bio-oil compared to Rwood (i.e. 12 wt.% cf. 10 wt.%). The AL450L bio-oil
23 ACS Paragon Plus Environment

Page 24 of 55

1 2		
3 4 5	363	had a lower carbon and higher oxygen content than the R450L bio-oil, with relatively lower
6 7 8 9	364	proportions of aromatic hydrocarbons. These experiments at 450 $^\circ C$ supported the finding
10 11 12	365	that acid-leaching prior to CFP leads to a bio-oil product that is less deoxygenated.
13 14 15	366	At 360 $^{\circ}$ C, the pyrolysis and catalysis conditions were far from optimal. Pyrolysis of the
16 17 18 19	367	biomass is incomplete ²⁶ and the HZSM-5 catalyst is considerably less active ²⁹ . CFP of
20 21 22	368	ALwood at 360 $^\circ$ C was investigated despite these disadvantages because: i) bed material
23 24 25 26	369	agglomeration was completely mitigated ²⁶ and ii) acid leaching substantially increased
27 28 29	370	organic oil yield at this temperature in non-catalytic fast pyrolysis ³¹ . CFP of ALwood at
30 31 32	371	360 °C gave a 11 wt.% yield of upgraded bio-oil compared to 8 wt.% for Rwood. The
34 35 36	372	AL350L bio-oil had an oxygen to carbon ratio of 0.27 compared to 0.22 for the R360L bio-
37 38 39	373	oil, indicating it was less deoxygenated (Table 2). GC/MS analysis of the AL360L bio-oil
40 41 42 43	374	showed higher relative proportions of guaiacols, phenols, ketones and furans compared
44 45 46	375	to the R360L bio-oil. Correspondingly, the relative proportion of aromatic hydrocarbons
47 48 49 50	376	was lower. In addition, there was a further 8 wt.% of organics in the aqueous phase that
51 52 53	377	had not been sufficiently upgraded to pass into the oil-phase.
54 55 56 57		
58 59		24 ACS Paragon Plus Environment
60		ACS Falagor Flas Environment

1	
2	
3	
4	
5	
6	
7	
γ Ω	
0	
9	
10	
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	
21	
22	
23	
24	
25	
26	
27	
28	
29	
30	
31	
32	
33	
34	
35	
36	
37	
38	
39	
40	
_10 ⊿1	
/12	
-1∠ ⊿२	
ΛΛ	
44 15	
45 76	
40	
47 10	
40 40	
49 50	
5U E 1	
51	
52 52	
53	
54	
55	
56	
57	
58	
59	
60	

	378	3.3.3. Discussion of effect of acid-leaching pretreatment on CFP. Acid-leaching
	379	pretreatment prior to CFP improved the yield of upgraded bio-oil compared to raw wood,
) <u>-</u>	380	but only at carefully controlled conditions to simultaneously prevent bed agglomeration
; ; ;	381	and avoid excess catalyst loading. In non-catalytic fast pyrolysis, acid leaching
) 7 })	382	pretreatment is known to increase the production of levoglucosan ²⁵ . However,
)	383	levoglucosan is firstly converted to furans which can then be further converted to
; ; ;	384	aromatics during zeolite upgrading. Alternately, the furans can polymerize and
, ;)	385	decompose to form coke ⁴⁴ . Possibly, coke formation is favored over the production of
) <u>!</u> ;	386	aromatic hydrocarbons at high catalyst loadings (i.e. experiment AL500H). With ALwood
 	387	known to produce less char than raw wood in non-catalytic fast pyrolysis ^{26, 33} , the
, ;)	388	observation that ALwood and Rwood gave the same yield of combined char/coke (Table
2	389	2) is consistent with the production of more coke from the ALwood.
- - -	390	The experimental results in Table 2 also indicated acid-leaching pretreatment mildly
;))	391	suppressed the deoxygenation degree in catalytic fast pyrolysis. Zeolite upgrading
<u>!</u> ;	392	removes oxygen from the pyrolysis vapors by dehydration, decarbonylation and
5	393	decarboxylation to form water, carbon monoxide and carbon dioxide, respectively ²⁸ .
5)		25

1	
2 3 4 5	39
6 7 8	39
9 10 11 12	39
13 14 15	39
16 17 18 19	39
20 21 22	39
23 24 25 26	40
27 28 29	40
30 31 32 33	40
34 35 36	40
37 38 39 40	40
41 42 43	40
44 45 46 47	40
48 49 50	40
51 52 53	40
55 56 57	40
58 59 60	

394	Decarboxylation is the most favored pathway as it consumes the least carbon and no
395	hydrogen. The decreased CO_2 and increased CO production as a result of the acid-
396	leaching pretreatment (Table 2), is therefore undesirable and is likely to be a contributing
397	factor in the less deoxygenated bio-oil obtained from CFP of acid-leached wood.
398	3.4. Catalytic fast pyrolysis of torrefied wood. 3.4.1. Catalytic fast pyrolysis products.
399	Catalytic fast pyrolysis experiments with torrefied wood were conducted at 500 °C using
400	C/B ratios of 2.5, 4 and 6 (Table 3). CFP of torrefied wood at 500 °C did not result in bed
401	material agglomeration as was encountered with acid-leached wood. The results were
402	compared with results from Rwood obtained under the same experimental conditions.
403	Product yields for the Twood in Table 3 are reported on dry torrefied wood basis and dry
404	raw wood basis (in parentheses) corrected for the 17 wt.% mass loss that occurred on
405	torrefaction. In these experiments, the aqueous-phase liquids were all >99% water and
406	so contained very little, if any, aqueous-phase organics. ¹ H NMR analysis results of
407	aqueous phase products are available in the Supporting Information (Table S3).
408	Firstly, the results of CFP of Twood and Rwood at 500 $^\circ$ C and a C/B ratio of 2.5 were
409	compared (i.e. experiments T500L and R500L). This comparison showed that the
	26

ACS Paragon Plus Environment

1	
2 3 4 5	410
6 7 8 9	411
9 10 11 12	412
13 14 15 16	413
17 18 19	414
20 21 22 23	415
24 25 26	416
27 28 29 30	417
31 32 33	418
34 35 36 37	419
38 39 40	420
41 42 43 44	421
45 46 47	422
48 49 50 51	423
52 53 54	424
55 56 57 58	425
59 60	

410	torrefaction pretreatment resulted in an improved yield of upgraded bio-oil (13 wt.% cf.
411	8.5 wt.% when calculated on a torrefied wood basis). Taking into account the mass loss
412	that occurred on torrefaction pretreatment, the upgraded bio-oil yield was still 2% higher
413	than that achieved with Rwood (Table 3). The torrefied wood also gave a substantially
414	lower yield of produced water, an increased yield of combined char/coke, and similar
415	yields of CO and CO_2 compared to Rwood (Table 3). It has been previously reported that
416	torrefaction pretreatment promotes catechols in non-catalytic fast pyrolysis.29 These
417	molecules may contribute to the increased yield of upgraded bio-oil as they can be easily
418	converted to aromatic hydrocarbons in zeolite upgrading.
418 419	converted to aromatic hydrocarbons in zeolite upgrading. The torrefaction pretreatment altered the composition of the wood, resulting in less
418 419 420	converted to aromatic hydrocarbons in zeolite upgrading. The torrefaction pretreatment altered the composition of the wood, resulting in less hemicelluloses and a lower overall oxygen content in the Twood compared to Rwood (i.e.
418 419 420 421	 converted to aromatic hydrocarbons in zeolite upgrading. The torrefaction pretreatment altered the composition of the wood, resulting in less hemicelluloses and a lower overall oxygen content in the Twood compared to Rwood (i.e. 39 <i>vs.</i> 43 wt.%). Thermal degradation of the hemicellulose during torrefaction was the
418 419 420 421 422	converted to aromatic hydrocarbons in zeolite upgrading. The torrefaction pretreatment altered the composition of the wood, resulting in less hemicelluloses and a lower overall oxygen content in the Twood compared to Rwood (i.e. 39 <i>vs.</i> 43 wt.%). Thermal degradation of the hemicellulose during torrefaction was the main cause of the observed 17 wt.% mass loss and the resultant lower oxygen content.
418 419 420 421 422 423	converted to aromatic hydrocarbons in zeolite upgrading. The torrefaction pretreatment altered the composition of the wood, resulting in less hemicelluloses and a lower overall oxygen content in the Twood compared to Rwood (i.e. 39 <i>vs.</i> 43 wt.%). Thermal degradation of the hemicellulose during torrefaction was the main cause of the observed 17 wt.% mass loss and the resultant lower oxygen content. This is consistent with reported evolution of water, CO and CO ₂ during torrefaction ^{18, 22} .
 418 419 420 421 422 423 424 	 converted to aromatic hydrocarbons in zeolite upgrading. The torrefaction pretreatment altered the composition of the wood, resulting in less hemicelluloses and a lower overall oxygen content in the Twood compared to Rwood (i.e. 39 <i>vs.</i> 43 wt.%). Thermal degradation of the hemicellulose during torrefaction was the main cause of the observed 17 wt.% mass loss and the resultant lower oxygen content. This is consistent with reported evolution of water, CO and CO₂ during torrefaction^{18, 22}. These chemical changes had contributed to the lower levels of water produced on CFP

2 3 4	426	The upgraded bio-oil produced in the T500L and R500L experiments had similar carbon
5 6 7	427	and oxygen contents (Table 3). GC/MS analysis confirmed that the T500L and R500L
8 9 10 11	428	upgraded bio-oils had very similar chemical compositions (Table 3). This confirmed that
12 13 14	429	the torrefaction pretreatment under these conditions only improved the yield of the
15 16 17	723	the torrelaction pretreatment, under these conditions, only improved the yield of the
18 19 20	430	upgraded CFP bio-oil and did not impact on its quality.
20 21 22 23	431	Catalytic fast pyrolysis of Twood at the higher C/B ratios of 4 and 6 resulted in the yield
24 25 26	432	of upgraded bio-oil decreasing from 13 wt.% to 8 wt.% (Table 3). These bio-oil yields were
27 28 29	433	slightly lower than those achieved with Rwood under the same conditions, when corrected
30 31 32 33	434	for the mass loss on torrefaction (Table 3). Conversely, more combined char/coke was
34 35 36	435	produced using higher C/B ratios (Table 3). The yields of water and non-condensable
37 38 39 40	436	gases were largely unchanged. Higher C/B ratios have been reported to lead to more
41 42 43	437	coke formation in CFP ¹⁵ . Hence, it is likely the higher C/B ratio led to a higher coke yield
44 45 46 47	438	at the expense of upgraded bio-oil. The upgraded bio-oil produced with a C/B ratio of 6
48 49 50	439	appeared to contain a slightly higher proportion of aromatic hydrocarbons and a slightly
51 52 53	440	lower proportion of oxygenated species than the corresponding bio-oil produced with a
54 55 56 57	441	C/B ratio of 2.5.
58 59 60		28 ACS Paragon Plus Environment

י ר		
2 3 4 5	442	
6 7 8	443	
9 10 11 12	444	
13 14 15	445	:
16 17 18 19	446	
20 21 22	447	-
23 24 25 26	448	
20 27 28 29	449	
30 31 32	450	
33 34 35 36	451	:
37 38 39	452	
40 41 42 43	453	Ī
44 45 46	454	
47 48 49 50	455	
51 52 53	456	
54 55 56	457	
57 58 59 60		

3.4.2. Discussion of effects of torrefaction pretreatment on CFP. Catalytic fast pyrolysis of torrefied wood, using the lower C/B ratio, gave a higher yield of a similarly-upgraded bio-oil compared to raw wood. In our previous study, non-catalytic fast pyrolysis of the same torrefied wood gave a lower yield of a bio-oil that contained a higher carbon content compared to raw wood²⁶. These two results suggest that the pyrolysis vapors produced from torrefied wood were more amenable to zeolite upgrading to oil-phase organics (i.e. mainly aromatic hydrocarbons). Under the right conditions, this resulted in a higher yield of upgraded bio-oil. Several studies provide evidence in support of this conclusion. Analytical pyrolysis studies have indicated that torrefaction pretreatment produces pyrolysis vapors which are enriched in lignin-derived molecules^{18, 45}. This is believed to be partly because the torrefied wood contains more lignin and partly because torrefaction can cleave aryl ether linkages in the lignin to promote volatilization^{18, 45}. In the presence of HZSM-5 catalyst, these lignin-derived compounds are upgraded to aromatic hydrocarbons^{18, 29}. Torrefaction pretreatment of organosolv lignin promotes the production of aromatic hydrocarbons in CFP³⁵. Several other studies using pyroprobe or fixed bed reactors have 29 **ACS Paragon Plus Environment**

1

Page 30 of 55

2 3 4 5	458	reported mild torrefaction pretreatments to have positive effects on the aromatic yield,
6 7 8	459	total carbon yield or the selectivity for aromatic hydrocarbons in CFP ^{18, 34, 46} .
9 10 11 12	460	3.5. Catalytic fast pyrolysis of acid-leached and torrefied wood. 3.5.1 Catalytic fast
13 14 15	461	<i>pyrolysis products.</i> Acid-leached and torrefied wood was pyrolysed at 500 °C using a C/B
16 17 18 19	462	ratio of 2.5 (experiment ALT500L). Unlike acid-leached wood, this CFP experiment was
20 21 22	463	successfully carried out in the reactor without encountering bed material agglomeration.
23 24 25 26	464	We have previously reported a similar result for non-catalytic fast pyrolysis and proposed
20 27 28 29	465	that the torrefaction pretreatment induced chemical changes in the lignin which ultimately
30 31 32 33	466	prevented bed material agglomeration from occurring ²⁶ . CFP of ALTwood was also
34 35 36	467	successfully carried out at 500 $^\circ$ C using C/B ratios of 4 and 6 (experiments ALT500M and
37 38 39	468	ALT500H), with the results provided in Table 4.
40 41 42 43	469	Product yields are reported on the basis of dry torrefied-acid-leached wood in Table 4.
44 45 46	470	Yields on dry raw wood basis, corrected for the mass loss (14 wt.%) that occurred on
47 48 49 50	471	torrefaction, are also provided in parentheses. The mass loss on torrefaction of acid-
51 52 53	472	leached wood was less than that on torrefaction of raw wood (i.e. 17 wt.%). This was due
54 55 56 57	473	to less thermal degradation of the hemicelluloses ²⁶ , possibly due to removal of AAEMs
58 59 60		30 ACS Paragon Plus Environment

Page 31 of 55

1 2		
3 4 5	474	that catalysed this process. The aqueous-phase liquids from these experiments were
6 7 8	475	all >99% water. ¹ H NMR analysis results of aqueous phase products are available in the
9 10 11 12	476	Supporting Information (Table S3).
13 14 15	477	Comparing the results of CFP of ALTwood and Rwood at 500 $^\circ$ C and a C/B ratio of 2.5
16 17 18 10	478	(i.e. experiments ALT500L and R500L) shows the combined pretreatment resulted in an
20 21 22	479	improved yield of upgraded bio-oil (10 wt.% cf. 8 wt.% calculated on an ALTwood basis).
23 24 25	480	The yield of upgraded bio-oil was 1% higher than that achieved with Rwood when
26 27 28 29	481	corrected for the mass loss on torrefaction (Table 4). CFP of the ALTwood gave a
30 31 32	482	substantially lower yield of produced water and increased yield of combined char/coke
33 34 35 36	483	compared to Rwood (Table 4), consistent with the Twood results. The yield of CO_2 from
37 38 39	484	CFP of ALTwood was lower than that from Rwood, which was consistent with the ALwood
40 41 42	485	results (Tables 2 and 4).
43 44 45 46	486	Elemental and GC/MS analysis of the upgraded bio-oil from ALTwood showed that the
47 48 49	487	bio-oil had the same carbon and oxygen contents, and a very similar composition of GC-
50 51 52 53	488	volatile chemicals, as the Rwood upgraded bio-oil (Table 4). Hence, the combined
54 55 56		
57 58		
59 60		31 ACS Paragon Plus Environment

Page 32 of 55

1 2		
3 4 5	489	pretreatment did not lead to less deoxygenation of the upgraded bio-oil as was found with
6 7 8	490	the acid-leaching pretreatment (Table 2).
9 10 11 12	491	Catalytic fast pyrolysis of ALTwood at the higher C/B ratios of 4 and 6 resulted in the
13 14 15	492	yield of upgraded bio-oil decreasing from 10 wt.% to 7 wt.%, and the yield of combined
16 17 18 19	493	char/coke increasing from 29 wt.% to 37 wt.% (Table 4). These trends were consistent
20 21 22	494	with the results for CFP of Twood (Table 3). The compositions of the upgraded bio-oil
23 24 25 26	495	produced from ALTwood using the three different C/B ratios were all very similar (Table
27 28 29	496	4). Hence, using excess catalyst in CFP of ALTwood did not improve bio-oil quality and
30 31 32 33	497	likely led to more coke formation.
34 35 36	498	3.5.2. Discussion of effects of the combined pretreatment on CFP. Applying a
37 38 39 40	499	torrefaction pretreatment to acid-leached wood resulted in an improvement in the yield of
41 42 43	500	upgraded bio-oil in CFP compared to raw wood, and also mitigated the problem of bed
44 45 46 47	501	material agglomeration. The degree of deoxygenation of the upgraded bio-oils was the
48 49 50	502	same for ALTwood and Rwood. This indicated the torrefaction pretreatment negated the
51 52 53 54	503	adverse effect that acid-leaching had on deoxygenation levels. Non-catalytic fast
55 56 57	504	pyrolysis of the same ALTwood produced a lower yield of bio-oil compared to raw wood ²⁶ .
58 59 60		32 ACS Paragon Plus Environment

1	
2	
3 4	ļ
5	
6	
7	ļ
8	
9 10	
11	ļ
12	
13	
14	ļ
15 16	
17	
18	ļ
19	
20	
21 22	;
23	
24	
25	
26 27	
27 28	1
29	,
30	
31	I
32	
33 34	
35	ļ
36	
37	
38	ļ
39 40	
41	
42	ļ
43	
44 45	
45 46	ļ
47	
48	
49	ļ
50 51	
52	
53	ļ
54	
55	
56 57	
57 58	
59	
60	

	505	Hence, the pyrolysis vapors from ALTwood were more selectively upgraded by the zeolite
	506	to aromatic hydrocarbons and this resulted in an increase in upgraded bio-oil yield. These
	507	findings are consistent with a previous Py-GCMS study on CFP of acid-leached and
•	508	torrefied lignocellulosic rice husks ⁴¹ . They reported that the combined pretreatment
	509	improved the relative contents of benzene, toluene, xylene in the GC-volatile products
	510	compared to raw rice husks.
	511	Overall, this combined pretreatment can improve upgraded bio-oil yield in catalytic fast
	512	pyrolysis with the benefits of biomass demineralization. Recently promising results have
	513	been reported to use metal oxides as the catalysts for bio-oil upgrading ^{2, 47} . Biomass
	514	minerals can poison these catalysts by fouling on catalyst surface. Combined acid-
	515	leaching and torrefaction overcomes many of the problems associated with acid-leaching
	516	alone, while still removing biomass minerals that can shorten catalyst lifespans. This
	517	combined pretreatment offers a promising approach to improving in situ catalytic fast
1	518	pyrolysis process.
	519	4. CONCLUSION

Page 34 of 55

1	
2	
3	
4	
5	
ر د	
0	
/	
8	
9	
10	
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	
21	
27	
22 22	
23	
24	
25	
26	
27	
28	
29	
30	
31	
32	
33	
34	
35	
36	
37	
38	
39	
40	
41	
42	
43	
44	
45	
72	
40 17	
4/	
4ð	
49	
50	
51	
52	
53	
54	
55	
56	
57	
58	
20	

3 4 5	520	The effects of acid-leaching and torrefaction pretreatments on the products of in situ
6 7 8 9	521	catalytic fast pyrolysis of pine wood were investigated in this study. Acid-leaching
10 11 12	522	pretreatment caused bed agglomeration in a fluidized bed reactor. It also resulted in a
13 14 15 16	523	reduced level of deoxygenation in the upgraded bio-oil product. Torrefaction pretreatment
17 18 19	524	resulted in small improvements in the yield of upgraded bio-oil at a low catalyst loading,
20 21 22 23	525	and it hardly changed the chemical composition of upgraded oil. Torrefaction of acid-
24 25 26	526	leached wood was effective in mitigating the adverse effects from acid-leaching
27 28 29 30	527	pretreatment alone. Bed material agglomeration was overcome and the degree of
31 32 33	528	deoxygenation of upgraded bio-oil was improved when combining acid-leaching and
34 35 36 37	529	torrefaction. This combined pretreatment is promising to improve in situ catalytic fast
38 39 40	530	pyrolysis process from a technical viewpoint. It is necessary to validate the economic
41 42 43 44	531	feasibility considering the extra biomass pretreating step that increases cost to the whole
45 46 47	532	process.
48 49 50 51	533	ASSOCIATED CONTENT
52 53 54	534	Supporting Information
55 56 57 58	535	Figure S1. Representative GC/MS chromatograms of upgraded bio-oils.
59		34

1 2 3	536	Table S1 . Elemental composition trace elements and biomass chemical composition of
4 5 6		
7 8 9	537	pretreated biomass feedstocks.
10 11 12	538	Table S2. GC/MS analysis results of upgraded bio-oils (peak area percentage of total
13 14 15 16	539	identified peak area).
17 18 19 20	540	Table S3. ¹ H NMR analysis results of aqueous phase products (% of all hydrogens).
20 21 22 23	541	AUTHOR INFORMATION
24 25 26 27	542	Corresponding Author
28 29 30	543	*Telephone: + 64 9 923 1424. Fax: 0800 61 62 64. E-mail: <u>x.xin@auckland.ac.nz</u>
31 32 33	544	Notes
34 35 36 37	545	The authors declare no competing financial interest.
38 39 40	546	ACKNOWLEDGMENT
41 42 43 44	547	The authors acknowledge the technical assistance of Lloyd Donaldson and Eva Gaugler
45 46 47	548	in SEM and GPC analysis. This research was financially supported by the New Zealand
48 49 50 51	549	Ministry of Business Innovation and Employment via Scion's Strategic Science
52 53 54 55 56 57	550	Investment Fund.
58		35
59 60		ACS Paragon Plus Environment

2 3 4 5	551	NOMENCLATURE
6 7 8	552	AAEMs = alkali and alkali earth metals
9 10 11 12	553	ALwood = acid-leached wood
13 14 15	554	AL500L = CFP experiment of ALwood at 500 °C with C/B ratio of 2.5
16 17 18 19	555	AL500M = CFP experiment of ALwood at 500 °C with C/B ratio of 4
20 21 22	556	AL500H = CFP experiment of ALwood at 500 °C with C/B ratio of 6
23 24 25 26	557	AL450L = CFP experiment of ALwood at 450 °C with C/B ratio of 2.5
27 28 29	558	AL360L = CFP experiment of ALwood at 360 °C with C/B ratio of 2.5
30 31 32 33	559	ALTwood = acid-leached and torrefied wood
34 35 36	560	ALT500L = CFP experiment of ALTwood at 500 °C with C/B ratio of 2.5
37 38 39 40	561	ALT500M = CFP experiment of ALTwood at 500 °C with C/B ratio of 4
41 42 43	562	ALT500H = CFP experiment of ALTwood at 500 °C with C/B ratio of 6
44 45 46 47	563	C/B ratio = catalyst to biomass ratio
48 49 50	564	CFP = catalytic fast pyrolysis
51 52 53	565	ESP = electrostatic precipitator
55 56 57 58	566	GC = gas chromatography

2 3 4 5	567	GC/MS = gas chromatography/mass spectrometry
6 7 8	568	GPC = gel permeation chromatography
9 10 11 12	569	IC = intensive cooling
13 14 15	570	Rwood = raw wood without pretreatment
16 17 18 19	571	R500L = CFP experiment of raw wood at 500 °C with C/B ratio of 2.5
20 21 22	572	R500M = CFP experiment of raw wood at 500 °C with C/B ratio of 4
23 24 25 26	573	R500H = CFP experiment of raw wood at 500 °C with C/B ratio of 6
27 28 29	574	R450L = CFP experiment of raw wood at 450 °C with C/B ratio of 2.5
30 31 32 33	575	R360L = CFP experiment of raw wood at 360 °C with C/B ratio of 2.5
34 35 36	576	SEM = scanning electron microscopy
37 38 39 40	577	Stdev = standard deviation
41 42 43	578	Twood = torrefied wood
44 45 46	579	T500L = CFP experiment of Twood at 500 °C with C/B ratio of 2.5
47 48 49 50	580	T500M = CFP experiment of Twood at 500 °C with C/B ratio of 4
51 52 53	581	T500H = CFP experiment of Twood at 500 °C with C/B ratio of 6
54 55 56 57	582	REFERENCES
58 59 60		37 ACS Paragon Plus Environment

3 4 5	583	(1) Huber, G. W.; Iborra, S.; Corma, A., Synthesis of Transportation Fuels from
6 7 8	584	Biomass: Chemistry, Catalysts, and Engineering. Chem. Rev. 2006, 106, (9), 4044-
9 10 11 12	585	4098.
13 14 15 16	586	(2) Liu, C.; Wang, H.; Karim, A. M.; Sun, J.; Wang, Y., Catalytic fast pyrolysis of
17 18 19	587	lignocellulosic biomass. Chemical Society Reviews 2014, 43, (22), 7594-7623.
20 21 22 23	588	(3) Mihalcik, D. J.; Mullen, C. A.; Boateng, A. A., Screening acidic zeolites for catalytic
24 25 26	589	fast pyrolysis of biomass and its components. Journal of Analytical and Applied
27 28 29	590	<i>Pyrolysis</i> 2011, 92, (1), 224-232.
31 32 33	591	(4) Yang, H.; Coolman, R.; Karanjkar, P.; Wang, H.; Dornath, P.; Chen, H.; Fan, W.;
34 35 36	592	Conner, W. C.; Mountziaris, T.; Huber, G., The effects of contact time and coking on the
37 38 39 40	593	catalytic fast pyrolysis of cellulose. <i>Green Chemistry</i> 2017, 19, (1), 286-297.
41 42 43	594	(5) Dickerson, T.; Soria, J., Catalytic Fast Pyrolysis: A Review. <i>Energies</i> 2013, 6, (1),
44 45 46 47	595	514-538.
48 49 50	596	(6) Zhang, H.; Shao, S.; Xiao, R.; Shen, D.; Zeng, J., Characterization of coke
51 52 53 54	597	deposition in the catalytic fast pyrolysis of biomass derivates. Energy Fuels 2013, 28,
55 56 57	598	(1), 52-57.
58 59 60		38 ACS Paragon Plus Environment

1 2		
- 3 4 5	599	(7) Williams, P. T.; Nugranad, N., Comparison of products from the pyrolysis and
6 7 8	600	catalytic pyrolysis of rice husks. Energy 2000, 25, (6), 493-513.
9 10 11 12	601	(8) Aho, A.; Kumar, N.; Eränen, K.; Salmi, T.; Hupa, M.; Murzin, D. Y., Catalytic
13 14 15	602	pyrolysis of woody biomass in a fluidized bed reactor: Influence of the zeolite structure.
16 17 18 19	603	<i>Fuel</i> 2008, 87, (12), 2493-2501.
20 21 22	604	(9) Yildiz, G.; Ronsse, F.; van Duren, R.; Prins, W., Challenges in the design and
23 24 25 26	605	operation of processes for catalytic fast pyrolysis of woody biomass. Renewable and
27 28 29	606	Sustainable Energy Reviews 2016, 57, 1596-1610.
30 31 32 33	607	(10) Vasalos, I.; Lappas, A.; Kopalidou, E.; Kalogiannis, K., Biomass catalytic pyrolysis:
34 35 36	608	process design and economic analysis. Wiley Interdisciplinary Reviews: Energy and
37 38 39 40	609	<i>Environment</i> 2016, 5, (3), 370-383.
41 42 43	610	(11) Cerqueira, H.; Caeiro, G.; Costa, L.; Ribeiro, F. R., Deactivation of FCC catalysts.
44 45 46 47	611	Journal of Molecular Catalysis A: Chemical 2008, 292, (1), 1-13.
48 49 50	612	(12) Vitolo, S.; Bresci, B.; Seggiani, M.; Gallo, M., Catalytic upgrading of pyrolytic oils
51 52 53	613	over HZSM-5 zeolite: behaviour of the catalyst when used in repeated upgrading-
54 55 56 57	614	regenerating cycles. <i>Fuel</i> 2001, 80, (1), 17-26.
58 59 60		39 ACS Paragon Plus Environment

Page 40 of 55

1 2 3		
4 5	615	(13) Paasikallio, V.; Lindfors, C.; Kuoppala, E.; Solantausta, Y.; Oasmaa, A.; Lehto, J.;
6 7 8 9	616	Lehtonen, J., Product quality and catalyst deactivation in a four day catalytic fast
10 11 12 12	617	pyrolysis production run. <i>Green Chemistry</i> 2014, 16, (7), 3549-3559.
13 14 15 16	618	(14) Mullen, C. A.; Boateng, A. A., Accumulation of Inorganic Impurities on HZSM-5
17 18 19 20	619	Zeolites during Catalytic Fast Pyrolysis of Switchgrass. Industrial & Engineering
20 21 22 23	620	<i>Chemistry Research</i> 2013, 52, (48), 17156-17161.
24 25 26 27	621	(15) Jae, J.; Coolman, R.; Mountziaris, T. J.; Huber, G. W., Catalytic fast pyrolysis of
28 29 30	622	lignocellulosic biomass in a process development unit with continual catalyst addition
31 32 33 34	623	and removal. Chemical Engineering Science 2014, 108, 33-46.
35 36 37	624	(16) Wang, K.; Zhang, J.; Shanks, B. H.; Brown, R. C., The deleterious effect of
38 39 40 41	625	inorganic salts on hydrocarbon yields from catalytic pyrolysis of lignocellulosic biomass
42 43 44	626	and its mitigation. Applied energy 2015, 148, 115-120.
45 46 47 48	627	(17) Carpenter, D.; Westover, T. L.; Czernik, S.; Jablonski, W., Biomass feedstocks for
49 50 51	628	renewable fuel production: a review of the impacts of feedstock and pretreatment on the
52 53 54 55	629	yield and product distribution of fast pyrolysis bio-oils and vapors. Green Chemistry
56 57 58	630	2014, 16, (2), 384-406.
59 60		40 ACS Paragon Plus Environment

1 2		
3 4 5	631	(18) Neupane, S.; Adhikari, S.; Wang, Z.; Ragauskas, A. J.; Pu, Y., Effect of torrefaction
6 7 8 9	632	on biomass structure and hydrocarbon production from fast pyrolysis. Green Chemistry
10 11 12	633	2015, 17, (4), 2406-2417.
13 14 15	634	(19) Zheng, A.; Jiang, L.; Zhao, Z.; Huang, Z.; Zhao, K.; Wei, G.; Wang, X.; He, F.; Li,
17 18 19	635	H., Impact of Torrefaction on the Chemical Structure and Catalytic Fast Pyrolysis
20 21 22	636	Behavior of Hemicellulose, Lignin, and Cellulose. Energy & Fuels 2015, 29, (12), 8027-
23 24 25 26	637	8034.
27 28 29	638	(20) Qiao, X.; Zhao, C.; Shao, Q.; Hassan, M. J. E.; fuels, Structural characterization of
30 31 32 33	639	corn stover lignin after hydrogen peroxide presoaking prior to ammonia fiber expansion
34 35 36	640	pretreatment. 2018, 32, (5), 6022-6030.
37 38 39 40	641	(21) Zhao, C.; Qiao, X.; Cao, Y.; Shao, Q. J. F., Application of hydrogen peroxide
40 41 42 43	642	presoaking prior to ammonia fiber expansion pretreatment of energy crops. 2017, 205,
44 45 46	643	184-191.
48 49 50	644	(22) Wigley, T.; Yip, A. C. K.; Pang, S., The use of demineralisation and torrefaction to
51 52 53	645	improve the properties of biomass intended as a feedstock for fast pyrolysis. Journal of
54 55 56 57	646	Analytical and Applied Pyrolysis 2015, 113, 296-306.
58 59 60		41 ACS Paragon Plus Environment

647	(23) Saha, B. C.; Qureshi, N.; Kennedy, G. J.; Cotta, M. A. J. I. B.; Biodegradation,
648	Biological pretreatment of corn stover with white-rot fungus for improved enzymatic
649	hydrolysis. 2016, 109, 29-35.
650	(24) Yang, X.; Zeng, Y.; Ma, F.; Zhang, X.; Yu, H. J. B. t., Effect of biopretreatment on
651	thermogravimetric and chemical characteristics of corn stover by different white-rot
652	fungi. 2010, 101, (14), 5475-5479.
653	(25) Oudenhoven, S. R. G.; Westerhof, R. J. M.; Kersten, S. R. A., Fast pyrolysis of
654	organic acid leached wood, straw, hay and bagasse: Improved oil and sugar yields.
655	Journal of Analytical and Applied Pyrolysis 2015, 116, 253-262.
656	(26) Xin, X.; Torr, K. M.; De Miguel Mercader, F.; Pang, S., Insights into Preventing
657	Fluidized Bed Material Agglomeration in Fast Pyrolysis of Acid-leached Pine Wood.
658	<i>Energy & Fuels</i> 2019 , 33, (5), 4254-4263.
659	(27) Yildiz, G.; Ronsse, F.; Venderbosch, R.; van Duren, R.; Kersten, S. R.; Prins, W.,
660	Effect of biomass ash in catalytic fast pyrolysis of pine wood. Applied Catalysis B:
661	<i>Environmental</i> 2015, 168, 203-211.
	42 ACS Paragon Plus Environment
	 647 648 649 650 651 653 654 655 656 657 658 659 660 661

Page 43 of 55

1 2		
3 4 5	662	(28) Hernando, H.; Jiménez-Sánchez, S.; Fermoso, J.; Pizarro, P.; Coronado, J.;
6 7 8 9	663	Serrano, D., Assessing biomass catalytic pyrolysis in terms of deoxygenation pathways
10 11 12	664	and energy yields for the efficient production of advanced biofuels. Catalysis Science &
13 14 15	665	<i>Technology</i> 2016, 6, (8), 2829-2843.
16 17 18 19	666	(29) Xin, X.; Pang, S.; de Miguel Mercader, F.; Torr, K. M., The effect of biomass
20 21 22	667	pretreatment on catalytic pyrolysis products of pine wood by Py-GC/MS and principal
23 24 25 26	668	component analysis. Journal of Analytical and Applied Pyrolysis 2019, 138, 145-153.
27 28 29	669	(30) Persson, H.; Yang, W. J. F., Catalytic pyrolysis of demineralized lignocellulosic
30 31 32	670	biomass. 2019, 252, 200-209.
34 35 36	671	(31) Oudenhoven, S. R. G.; Lievens, C.; Westerhof, R. J. M.; Kersten, S. R. A., Effect of
37 38 39	672	temperature on the fast pyrolysis of organic-acid leached pinewood; the potential of low
40 41 42 43	673	temperature pyrolysis. <i>Biomass and Bioenergy</i> 2016, 89, 78-90.
44 45 46	674	(32) Persson, H.; Han, T.; Sandström, L.; Xia, W.; Evangelopoulos, P.; Yang, W. J. E.,
47 48 49 50	675	Fractionation of liquid products from pyrolysis of lignocellulosic biomass by stepwise
51 52 53 54	676	thermal treatment. 2018, 154, 346-351.
55 56 57 58		
59 60		43 ACS Paragon Plus Environment

2 3	677	(33) Wigley T : Vin A C K : Pang S. Pretreating biomass via demineralisation and
4 5 6	011	
7 8 9	678	torrefaction to improve the quality of crude pyrolysis oil. <i>Energy</i> 2016, 109, 481-494.
10 11 12 13	679	(34) Zheng, A.; Zhao, Z.; Huang, Z.; Zhao, K.; Wei, G.; Wang, X.; He, F.; Li, H.,
14 15 16	680	Catalytic Fast Pyrolysis of Biomass Pretreated by Torrefaction with Varying Severity.
17 18 19	681	<i>Energy & Fuels</i> 2014, 28, (9), 5804-5811.
20 21 22 23	682	(35) Adhikari, S.; Srinivasan, V.; Fasina, O., Catalytic pyrolysis of raw and thermally
24 25 26	683	treated lignin using different acidic zeolites. Energy & Fuels 2014, 28, (7), 4532-4538.
27 28 29 30	684	(36) Srinivasan, V.; Adhikari, S.; Chattanathan, S. A.; Tu, M.; Park, S., Catalytic
31 32 33	685	pyrolysis of raw and thermally treated cellulose using different acidic zeolites. <i>BioEnergy</i>
34 35 36 37	686	<i>Research</i> 2014, 7, (3), 867-875.
38 39 40	687	(37) Mahadevan, R.; Adhikari, S.; Shakya, R.; Wang, K.; Dayton, D. C.; Li, M.; Pu, Y.;
41 42 43 44	688	Ragauskas, A. J., Effect of torrefaction temperature on lignin macromolecule and
45 46 47	689	product distribution from HZSM-5 catalytic pyrolysis. Journal of Analytical and Applied
48 49 50 51 52 53 54 55 56 57 57	690	<i>Pyrolysis</i> 2016, 122, 95-105.
58 59 60		44 ACS Paragon Plus Environment
00		

1 2		
3 4 5	691	(38) Wigley, T.; Yip, A. C.; Pang, S., A detailed product analysis of bio-oil from fast
6 7 8	692	pyrolysis of demineralised and torrefied biomass. Journal of Analytical and Applied
10 11 12	693	<i>Pyrolysis</i> 2017, 123, 194-203.
13 14 15	694	(39) Zeng, K.; He, X.; Yang, H.; Wang, X.; Chen, H., The effect of combined
16 17 18 19	695	pretreatments on the pyrolysis of corn stalk. <i>Bioresour. Technol.</i> 2019, 281, 309-317.
20 21 22	696	(40) Chen, D.; Mei, J.; Li, H.; Li, Y.; Lu, M.; Ma, T.; Ma, Z., Combined pretreatment with
23 24 25	697	torrefaction and washing using torrefaction liquid products to yield upgraded biomass
26 27 28 29	698	and pyrolysis products. <i>Bioresour. Technol.</i> 2017, 228, 62-68.
30 31 32	699	(41) Zhang, S.; Zhu, S.; Zhang, H.; Chen, T.; Xiong, Y., Catalytic fast pyrolysis of rice
33 34 35 36	700	husk: Effect of coupling leaching with torrefaction pretreatment. J. Anal. Appl. Pyrolysis
37 38 39	701	2018, 133, 91-96.
40 41 42 43	702	(42) Oudenhoven, S. R. G.; Westerhof, R. J. M.; Aldenkamp, N.; Brilman, D. W. F.;
44 45 46	703	Kersten, S. R. A., Demineralization of wood using wood-derived acid: Towards a
47 48 49 50	704	selective pyrolysis process for fuel and chemicals production. Journal of Analytical and
51 52 53	705	<i>Applied Pyrolysis</i> 2013, 103, 112-118.
54 55 56		
58		
59 60		45 ACS Paragon Plus Environment

1 2		
3 4 5	706	(43) Mullen, C. A.; Strahan, G. D.; Boateng, A. A., Characterization of various fast-
6 7 8 9	707	pyrolysis bio-oils by NMR spectroscopy†. Energy & Fuels 2009, 23, (5), 2707-2718.
10 11 12	708	(44) Carlson, T. R.; Jae, J.; Lin, YC.; Tompsett, G. A.; Huber, G. W., Catalytic fast
13 14 15	709	pyrolysis of glucose with HZSM-5: the combined homogeneous and heterogeneous
16 17 18 19	710	reactions. Journal of Catalysis 2010, 270, (1), 110-124.
20 21 22	711	(45) Meng, J.; Park, J.; Tilotta, D.; Park, S., The effect of torrefaction on the chemistry of
23 24 25 26	712	fast-pyrolysis bio-oil. <i>Bioresource Technology</i> 2012, 111, 439-446.
27 28 29	713	(46) Srinivasan, V.; Adhikari, S.; Chattanathan, S. A.; Park, S., Catalytic Pyrolysis of
30 31 32 33	714	Torrefied Biomass for Hydrocarbons Production. Energy & Fuels 2012, 26, (12), 7347-
34 35 36	715	7353.
37 38 39 40	716	(47) Griffin, M. B.; Iisa, K.; Wang, H.; Dutta, A.; Orton, K. A.; French, R. J.; Santosa, D.
41 42 43	717	M.; Wilson, N.; Christensen, E.; Nash, C., Driving towards cost-competitive biofuels
44 45 46 47	718	through catalytic fast pyrolysis by rethinking catalyst selection and reactor configuration.
48 49 50	719	<i>Energy Environ. Sci.</i> 2018, 11, (10), 2904-2918.
51 52 53	720	
55 56 57	721	
58 59		46 ACS Paragon Plus Environment
00		Active angle in the Environment

Wood	Code	Temperature	C/B	Bed
sample		(°C)	ratio	agglomeration
Rwood	R500L*	500	2.5	false
	R500M	500	4	false
	R500H	500	6	false
	R450L	450	2.5	false
	R360L	360	2.5	false
ALwood	AL500L	500	2.5	true
	AL500M	500	4	true
	AL500H	500	6	false
	AL450L	450	2.5	false
	AL360L	360	2.5	false
Twood	T500L	500	2.5	false
	T500M	500	4	false
	T500H	500	6	false
ALTwood	ALT500L	500	2.5	false
	ALT500	500	4	false
	Μ			
	ALT500H	500	6	false

	AL500H	R500H	AL450L	R450L	AL360L	R360L	
Biomass	ALwood	Rwood	ALwood	Rwood	ALwood	Rwood	
Temperature, °C	500	500	450	450	360	360	
C/B ratio, wt/wt	6	6	2.5	2.5	2.5	2.5	
Product yield, wt.% ^{a, b}							
Upgraded bio-oil	9	9	12	10	11	8	
Aqueous-phase	-1	-1	0	4	0	4	
organics	<1	<	Ζ	1	8	4	
Produced water	23	21	24	23	18	21	
Char/coke ^c	29	29	27	27	37	43	
СО	27	22	21	20	11	13	
CO ₂	7	13	10	12	6	8	
CH ₄	1	1	1	1	0.2	0	
C_2H_4	1	2	1	1	0.1	0.3	
C ₃ H ₆	1	2	1	2	0.3	0.4	
Elemental composition	n of upgraded bio-oil , wt.% ^d						
С	$\textbf{77.8} \pm \textbf{1.2}$	81.5 ± 1.3	74.2 ± 0.7	76.6 ± 1.4	69.2 ± 1.0	71.9 ± 0	
Н	$\textbf{6.6} \pm \textbf{0.2}$	7.0 ± 0.04	$\textbf{6.4} \pm \textbf{0.1}$	$\textbf{6.6} \pm \textbf{0.3}$	$\textbf{6.3}\pm\textbf{0.3}$	6.6 ± 0.0	
0	16	12	19	17	25	22	
O/C (mol/mol)	0.15	0.11	0.20	0.16	0.27	0.22	
GC/MS results of upgra	ded bio-oil,	peak area %	e				
Aromatics	73 ± 0.2	80 ± 0.0	69 ± 0.1	73 ± 0.1	38 ± 0.0	53 ± 0.2	
Phenols	15 ± 0.1	12 ± 0.0	16 ± 0.0	14 ± 0.0	14 ± 0.1	11 ± 0.1	
Oxygenated	10 ± 0 1	Q ⊥ 0 0	11 + 0 1	11 + 0 1	15 + 0 1	11 + 0 1	
aromatics	10 ± 0.1	0 ± 0.0	11 ± 0.1	11 ± 0.1	15 ± 0.1	14 ± 0.1	
Guaiacols	$\textbf{0.2}\pm\textbf{0.0}$	$\textbf{0.2}\pm\textbf{0.0}$	1.2 ± 0.0	$\textbf{0.7}\pm\textbf{0.0}$	17 ± 0.1	12 ± 0.0	
Ketones	$\textbf{0.7}\pm\textbf{0.0}$	$\textbf{0.3}\pm\textbf{0.0}$	2 ± 0.0	$\textbf{0.8}\pm\textbf{0.0}$	10 ± 0.1	7 ± 0.1	
	0.4 ± 0.0	$\textbf{0.3}\pm\textbf{0.0}$	0.5 ± 0.0	0.5 ± 0.0	5 ± 0.0	1 ± 0.0	
Furans			00100	0 4 1 0 0	0.00	0 0 0	

Table 2. Experimental results from catalytic fast pyrolysis of ALwood and Rwood.

1 2	
3	
4	
5	
7	
8	
9	
10	
12	
13	
14	
16	
17	
18 10	
20	
21	
22	
25 24	
25	
26	
27 28	
29	
30	
31	
33	
34	
35	
37	
38	
39 ⊿0	
40	
42	
43	
44 45	
46	
47	
48 49	
50	
51	
52 53	
54	
55	
56 57	
57 58	
59	
60	

737 **Table 3.** Experimental results from catalytic fast pyrolysis of Twood and Rwood.

	T500L	R500L	T500M	R500M	T500H	R500H ^a	
Biomass	Twood	Rwood	Twood	Rwood	Twood	Rwood	
Temperature, °C	500	500	500	500	500	500	
C/B ratio, wt/wt	2.5	2.5	4	4	6	6	
Product yield, wt.% ^{b, c}							
Upgraded bio-oil	13 (11)	8.5 ± 0.2	8 (7)	8	8 (7)	9	
Produced water	16 (13)	$\textbf{22.8} \pm \textbf{0.9}$	17 (14)	23	16 (13)	21	
Char/coke ^d	32 (27)	24.0 ± 0.2	34 (28)	25	40 (33)	29	
СО	20 (17)	21.6 ± 0.4	20 (17)	20	20 (17)	22	
CO ₂	11 (9)	12.0 ± 0.2	11 (7)	12	10 (8)	13	
CH ₄	1	1.1 ± 0.03	1	1	1	1	
C_2H_4	2	1.6 ± 0.02	2	2	2	2	
C ₃ H ₆	2	1.8 ± 0.06	2	2	2	2	
Elemental composition of	of upgraded b	io-oil, wt.% ^e					
С	$\textbf{78.4} \pm \textbf{1.4}$	$\textbf{79.8} \pm \textbf{1.0}$	80.0 ± 0.6	80.6 ± 1.1	$\textbf{79.6} \pm \textbf{1.1}$	81.5 ± 1.3	
Н	$\textbf{6.7} \pm \textbf{0.3}$	$\textbf{7.0} \pm \textbf{0.3}$	$\textbf{6.6} \pm \textbf{0.3}$	7.0 ± 0.2	$\textbf{6.8} \pm \textbf{0.4}$	7.0 ± 0.04	
0	15	13	13	12	14	12	
O/C (mol/mol)	0.14	0.12	0.13	0.12	0.13	0.11	
GC/MS results of upgrad	ded bio-oil, pe	ak area % ^f					
Aromatics	77 ± 0.1	76 ± 0.9	75 ± 0.2	79 ± 0.1	78 ± 0.1	80 ± 0.0	
Phenols	13 ± 0.2	13 ± 0.3	15 ± 0.0	11 ± 0.1	13 ± 0.1	12 ± 0.0	
Oxygenated aromatics	9 ± 0.1	10 ± 0.2	8 ± 0.1	9 ± 0.0	7 ± 0.0	8 ± 0.0	
Guaiacols	0.6 ± 0.0	$\textbf{0.2}\pm\textbf{0.0}$	$\textbf{0.6} \pm \textbf{0.0}$	0.2 ± 0.0	$\textbf{0.4}\pm\textbf{0.0}$	$\textbf{0.2}\pm\textbf{0.0}$	
Ketones	0.5 ± 0.0	$\textbf{0.3}\pm\textbf{0.0}$	$\textbf{0.4}\pm\textbf{0.0}$	0.2 ± 0.0	0.4 ± 0.0	$\textbf{0.3}\pm\textbf{0.0}$	
Furans	0.2 ± 0.0	$\textbf{0.2}\pm\textbf{0.0}$	$\textbf{0.3}\pm\textbf{0.0}$	0.2 ± 0.0	$\textbf{0.2}\pm\textbf{0.0}$	$\textbf{0.3}\pm\textbf{0.0}$	
Catechols	$\textbf{0.3}\pm\textbf{0.0}$	0.1 ± 0.0	0.1 ± 0.0	0 ± 0.0	0.1 ± 0.0	0 ± 0.0	
Included from Table 2 for	r ease of con	nparison; ^b Re	ported on dry	torrefied woo	d basis with	corrected	
/ields on dry raw wood in	parentheses	; Product yield	ds were repor	ted \pm one sta	ndard deviatio	on for the	
nree R500L experiments	; ^c The yields	of H ₂ , C ₂ H ₆ a	nd C ₃ H ₈ were	≤ 0.1, 0.3 an	d 0.3 wt.%, re	espectively; d	
he yields of char and co	ke were repoi	rted together;	^e Average val	ues of triplica	ite analyses c	alculated on	
dry basis ± one standard deviation, oxygen calculated by difference to 2 significant figures: ^f Average							
alues of duplicate analys	ses ± one star	ndard deviatio	n, details are	shown in Su	oporting Infor	mation (Table	
20)					-	•	

		ALT500L	R500L ^a	ALT500M	ALT500H		
	Biomass	ALTwood	Rwood	ALTwood	ALTwood		
	Pyrolysis temperature, °C	500	500	500	500		
	Catalyst/biomass ratio, wt/wt	2.5	2.5	4	6		
	Product yield, wt.% ^{b, c}						
	Upgraded bio-oil	10 (9)	8.5 ± 0.2	7 (6)	7 (6)		
	Produced water	18 (15)	$\textbf{22.8} \pm \textbf{0.9}$	19 (16)	17 (15)		
	Char/coke ^d	29 (25)	24.0 ± 0.2	33 (28)	37 (32)		
	СО	22 (19)	21.6 ± 0.4	23 (20)	22 (19)		
	CO_2	10 (9)	12.0 ± 0.2	10 (9)	10 (9)		
	CH₄	1	1.1 ± 0.03	1	1		
	C ₂ H ₄	1	1.6 ± 0.02	1	1		
	C ₃ H ₆	2	1.8 ± 0.06	1	2		
	Elemental composition of uppra	aded bio-oil. wt.% ^e					
	C	79.6 + 1.4	79.8 + 1.0	80.7 + 0.5	80.7 + 1.5		
	- H	68+02	70+03	6.3 ± 0.04	59 ± 02		
	0	14	13	13	13		
	O/C (mol/mol)	0.13	0.12	0.12	0.12		
	GC/MS results of upgraded bio	-oil neak area % ^f	0.12	0.12	0.12		
	Aromatics	-011, peak area 70 76 + 0 5	76 + 0 9	73 + 0 2	77 + 0 3		
	Phonole	10 ± 0.3	10 ± 0.3	13 ± 0.2	11 ± 0.0		
		14 ± 0.1	13 ± 0.3	17 ± 0.0	14 ± 0.0		
		0 £ U.U	10 ± 0.2	9±0.2	8 ± 0.2		
	Katapas		0.2 ± 0.0	0.0 ± 0.0	0.4 ± 0.0		
	Retones	0.0 ± 0.0	0.3 ± 0.0	0.8 ± 0.0	0.0 ± 0.0		
	Furans	0.2 ± 0.0	0.2 ± 0.0	0.3 ± 0.0	0.2 ± 0.0		
40		0.2 ± 0.0	0.1 ± 0.0	0.2 ± 0.0	0.1 ± 0.0		
46	^a Included from Table 3 for ease of comparison; ^b Reported on the basis of dry acid-leached and torrefied						
47	wood with corrected yields on dry raw wood in parentheses; ^c The yields of H_2 , C_2H_6 and C_3H_8 were ≤ 0 .						
48	0.3 and 0.3 wt.%, respectively; ^d The yields of char and coke were reported together ; ^e Average values of						
'49	triplicate analyses calculated on dry basis \pm one standard deviation, oxygen content calculated by						
′50	difference to 2 significant figures; ^f Average values of duplicate analyses, details are shown in Supporting						

Table 4. Experimental results from catalytic fast pyrolysis of ALTwood.

Information (Table S2).

1 2 3

- 58
- 59 60

Figure 2. SEM images of char products mixed with used catalyst collected from catalytic fast pyrolysis experiments, AL360L (A), AL450L (B) and AL500L (C).

