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I. INTRODUCTION 

According to the theory of export-led growth, exports have played an important role in 

contributing to economic growth in both developed and developing countries.1 Many reasons 

have been put forward to support the export-led growth proposition. These include increased 

demand for a country’s output, reallocation of resources from the non-trade sector to the 

relatively more efficient export sector, exposure to better production and management 

practices, acquisition of knowledge about advanced technologies, and access to additional 

sources of financing.  Expanded trade also allows firms to gain from specialization and 

increasing returns to scale. As a result, there is much interest in understanding the determinants 

of exports. Within this broad area, there has grown a substantial literature that has focused on the 

role of spillovers. 

Spillovers are an intriguing, and challenging, subject because of the multitudinous 

channels that have been hypothesized for them. They are particularly of interest because they 

imply that markets, left to their own devices, may not function well. This creates a potential 

opportunity for the public sector to contribute to economic growth via subsidization or the direct 

supply of resources.  Spillovers can affect exports directly; and indirectly, via their affect on 

productivity that in turn affects firms’ export performance (Melitz, 2003). 

The following is a non-exhaustive list of the many channels that have been 

hypothesized for spillovers to affect exports. Proximity to other exporters can produce 

spillovers that bring benefits such as lower costs and increased knowledge about foreign 

markets. Locational concentration of exporters can make it feasible to build specialised 

transportation infrastructure such as roads, railways, ports, airports, and storage facilities 

(Duranton & Puga, 2004). It also improves access to information about which goods to export 

to which markets (Aitken et al., 1997).  

                                       
1 For an excellent survey of the empirical literature on export-led growth, see Giles and Williams (2000).  
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Geographic concentration can help exporters establish networks. Krautheim (2008) 

shows how this leads to information sharing between firms exporting to the same country. 

Networks can reduce the fixed costs of exporting and thus increase the probability that a firm 

decides to export. In the same vein, agglomeration of exporters can reduce uncertainty between 

exporters and foreign buyers. Rauch and Watson (2003) argue that at the start of a commercial 

relationship, buyers may be uncertain about the ability of the supplier to deliver large orders. 

The concentration of exporters can increase buyers’ information on the quality and reliability 

of foreign suppliers, and thus stimulate exports. 

More generally, agglomeration can lead to lower transportation and transaction costs 

due to increased availability of services and goods from suppliers (Krugman, 1991). Further, 

geographic proximity allows the pooling of labour resources, reducing search and matching 

costs for workers and firms (Duranton & Puga, 2004).  

Much research attention has focused on the role of multinational enterprises (MNEs) 

and foreign direct investment (FDI) in generating spillovers. MNEs have a multi-market 

presence in the export market and are thus a natural conduit for information about foreign 

markets, foreign consumers and foreign technology. FDI can have spillover effects on firms in 

the host country through direct and indirect technology transfers. Proximity to foreign firms is 

likely to result in imitation by local firms, resulting in skill upgrading and research and 

development (R&D) activities (Greenaway, Sousa & Wakelin, 2004). Local economies may 

also benefit from the competition arising from the entry of foreign firms (Kneller & Pisu, 2007). 

A more competitive market forces domestic firms to improve productivity, which can lead to 

greater export behaviour. While FDI reduces the sunk costs of entering foreign markets and 

positively affects the export propensity of recipient firms, it can also help the non-FDI recipient 

firms to overcome financial constraint through region-specific external economies. For 

example, these firms may gain access to transportation infrastructure and information about 
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foreign consumers that MNEs or FDI recipients bring with them (Kemme, Nikolsko‐

Rzhevskyy, & Mukherjee, 2014).  

The multifarious nature of spillovers makes them a natural subject for meta-analyses, as 

researchers try to gain an overall understanding of their economic impact. No less than eight 

meta-analyses on spillovers have been carried out to date, though these have all focused on 

productivity spillovers (Gorg and Strobl, 2001; Meyer and Sinani, 2009; Havranek and Irsova, 

2010; Mebratie and van Bergeijk 2013; Irsova and Havranek, 2013; Iwasaki and Tokunaga, 

2016; Demena and van Bergeijk, 2017; and Bruno and Cipollina, 2018).  

This study also uses meta-analysis to study the effect of spillovers, but with a focus on 

how spillovers affect exports. Our final sample collects 3,291 estimated spillover effects from 

99 studies. We proceed as follows. Section II explains the different empirical procedures we 

employ in our meta-analysis. Section III describes our data. Section IV presents our first set of 

results, reporting summary statistics and estimates of the overall impact of spillovers on 

exports. Section V presents our second set of results, focusing on meta-regression analysis and 

the role of data, estimation, and study characteristics in explaining differences in the estimated 

spillover effects. Section VI concludes. 

 
II. METHODOLOGY 
      
The sample of estimated effects. Our study aggregates the results of studies that estimate an 

“effect” of spillovers on export behavior. To be included in our meta-analysis, a study had to 

estimate something like the following regression equation:  

(1) 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 = 𝛼𝛼 + 𝛽𝛽𝛽𝛽𝐸𝐸𝛽𝛽𝛽𝛽𝛽𝛽𝐸𝐸𝛽𝛽𝛽𝛽𝐸𝐸𝐸𝐸 + ∑ 𝛾𝛾𝑘𝑘𝑍𝑍𝑘𝑘 + 𝛽𝛽𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐾𝐾
𝑘𝑘=1 ,  

where 𝛽𝛽 is the effect of spillovers on exports and the Zk are a set of control variables. (We 

discuss below how we handle the challenge of comparing spillover effects that use different 

measures of exports and spillovers.) 

Our analysis focuses on three questions: (i) What is the mean, overall effect of 
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spillovers on export behavior? (ii) Is the sample of estimated effects in the literature affected 

by “publication bias”, the phenomenon by which certain estimates are censored because of 

their sign or lack of significance? and (iii), Are there data, estimation, and/or study 

characteristics that can explain why estimated effects differ across studies? In this section, we 

describe the methodology that we use to answer these questions.  

Estimating the mean, overall effect. A simple approach to answering (i) is to average 

the sample of estimated effects. This is equivalent to using OLS to regress the estimated effects 

from the literature, �̂�𝛽𝑖𝑖, on a constant:  

(2) �̂�𝛽𝑖𝑖 = 𝜇𝜇 + 𝜀𝜀𝑖𝑖, i = 1,2,…,N, 

where N is the number of estimated spillover effects in the meta-analysis sample, and 𝜇𝜇 is the 

mean, overall effect of spillovers on export behavior. Ignoring publication bias and 

endogeneity for the moment, if our sample of estimated effects is a representative draw from a 

population of estimated effects, then the estimate of 𝜇𝜇 in Equation (2) will be unbiased and 

consistent.  

While unbiased and consistent, simple averaging of the estimated effects will not be 

efficient. Some studies produce more precise estimates than others. Let 𝛽𝛽𝐸𝐸𝑖𝑖 be the standard 

error of the ith estimated effect. If all estimates come from a population with a single, true 

effect, so that the only source of variation in 𝜀𝜀𝑖𝑖  is proportional to sampling error -- i.e., 

var(𝜀𝜀𝑖𝑖) = (𝛽𝛽𝐸𝐸𝑖𝑖)2𝜎𝜎2 -- then Weighted Least Squares (WLS) estimation of Equation (2) will 

produce an unbiased, consistent, and efficient estimate of 𝜇𝜇, with the appropriate weight being 

the inverse of (𝛽𝛽𝐸𝐸𝑖𝑖)2.2  

However, many researchers believe that the assumption of a single, true effect is 

unrealistic. They would argue that spillovers have a range of effects on export performance, 

depending on any number of conditions and variables. As a result, researchers should aim for 

                                       
2 Strictly speaking, WLS will be unbiased only if the estimates of var(𝜀𝜀𝑖𝑖) are equal to their population values. 
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estimating the mean of the distribution of spillover effects on exports. This latter model is 

known in the meta-analysis literature as the “Random Effects” model. The single effect model 

is known as “Fixed Effects”.3  

Let 𝜏𝜏2 represent the component of the variance of 𝜀𝜀𝑖𝑖 that is due to differences in mean 

true effects. If we can assume that sampling error and variation in true effects are independent, 

and that the variance of 𝜀𝜀𝑖𝑖  is proportional to these two components, then var(𝜀𝜀𝑖𝑖) =

[(𝛽𝛽𝐸𝐸𝑖𝑖)2 + 𝜏𝜏2]𝜎𝜎2. This leads to an alternative, “Random Effects” version of WLS, with the 

appropriate weight now being the inverse of [(𝛽𝛽𝐸𝐸𝑖𝑖)2 + 𝜏𝜏2]. We thus have two WLS estimators 

that we can use, depending on whether the “Fixed Effects” or “Random Effects” model is 

appropriate.  

The two WLS models can be easily related to Equation (2) by dividing each term by 

the square root of the inverse of the respective weight, 𝜔𝜔: 

(3.a) 
𝛽𝛽�𝑖𝑖
𝜔𝜔𝑖𝑖

 = 𝜇𝜇∙� 1
𝜔𝜔𝑖𝑖
� + 𝜀𝜀𝑖𝑖

𝜔𝜔𝑖𝑖
,  i = 1,2,…,N. 

where  

(3.b) 𝜔𝜔𝑖𝑖 = �
𝛽𝛽𝐸𝐸𝑖𝑖,                          (𝐹𝐹𝛽𝛽𝐸𝐸𝛽𝛽𝐹𝐹𝐸𝐸𝐹𝐹𝐹𝐹𝛽𝛽𝐹𝐹𝐸𝐸𝐸𝐸1)
�(𝛽𝛽𝐸𝐸𝑖𝑖)2 + 𝜏𝜏2,   (𝑅𝑅𝑅𝑅𝑅𝑅𝐹𝐹𝐸𝐸𝑅𝑅𝐸𝐸𝐹𝐹𝐹𝐹𝛽𝛽𝐹𝐹𝐸𝐸𝐸𝐸1)

. 

OLS estimation of this transformed equation produces estimates equivalent to WLS. 

Additionally, when the meta-analysis sample consists of multiple estimates from the same 

study, it is standard practice to correct for non-independence of the error terms by using cluster 

robust standard errors. 

Note that the “Random Effects” WLS estimator produces a more uniform distribution 

of weights than “Fixed Effects”, since the weighting terms include a common constant, 𝜏𝜏2. 

Further, when 𝜏𝜏2 is large relative to (𝛽𝛽𝐸𝐸𝑖𝑖)2, the weights will be approximately equal across 

                                       
3  This nomenclature is unfortunate, given the association of these same terms with panel data estimation. 
Nevertheless, given their ubiquitousness in the meta-analysis literature, we will perpetuate the practice of using 
“Fixed” and “Random Effects” to refer to models of homogeneous and heterogeneous effects, respectively.  
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observations, so that WLS will produce estimates close to OLS. While researchers generally 

agree that the “Random Effects” model most closely matches reality, there is some debate about 

which works best in practice (Doucouliagos & Paldam, 2013; Reed, 2015). Accordingly, our 

analysis uses both. 

 A related issue concerns the weighting of estimates versus studies. The number of 

estimates per study can vary widely. In our sample, the number of estimates per study ranges 

from 1 to 204, with a mean of 31.4 The WLS estimators above implicitly give greater weight, 

sometimes dramatically so, to studies with more estimates. Accordingly, we employ an 

alternative weighting system that, ceteris paribus, gives equal weight to studies rather than 

individual estimates:  

(3.c) 𝜔𝜔𝑖𝑖 = �
𝛽𝛽𝐸𝐸𝑖𝑖 ∙ �𝑅𝑅𝑖𝑖∈𝑆𝑆,                          (𝐹𝐹𝛽𝛽𝐸𝐸𝛽𝛽𝐹𝐹𝐸𝐸𝐹𝐹𝐹𝐹𝛽𝛽𝐹𝐹𝐸𝐸𝐸𝐸2)

�(𝛽𝛽𝐸𝐸𝑖𝑖)2 + 𝜏𝜏2 ∙ �𝑅𝑅𝑖𝑖∈𝑆𝑆,   (𝑅𝑅𝑅𝑅𝑅𝑅𝐹𝐹𝐸𝐸𝑅𝑅𝐸𝐸𝐹𝐹𝐹𝐹𝛽𝛽𝐹𝐹𝐸𝐸𝐸𝐸2)
 

where 𝑅𝑅𝑖𝑖∈𝑆𝑆 is the number of estimates in study S from which estimate i was taken. 

 Next we address the problem that arises when studies use different measures for exports 

and spillovers. When this happens, estimated effects are not directly comparable, despite the 

fact that the associated studies are all concerned with estimating the “same thing”, the effect of 

spillovers on exports. The problem of pooling estimated effects whose numerical values are 

not directly comparable is common in meta-analyses.  

There is a widely employed solution: transforming estimated coefficients to partial 

correlation coefficients (PCCs): 

(4.a) 𝑃𝑃𝑃𝑃𝑃𝑃𝑖𝑖 =  
𝑡𝑡𝑖𝑖

�𝑡𝑡𝑖𝑖
2+𝑑𝑑𝑑𝑑𝑖𝑖

 , 

where 𝐸𝐸𝑖𝑖  and 𝐹𝐹𝐹𝐹𝑖𝑖  are the t-statistic and degrees of freedom associated with the respective 

estimated effect. The corresponding standard error is given by: 

                                       
4 This is partly explained by the fact that studies commonly use multiple spillover measures in the same regression. 
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(4.b) 𝛽𝛽𝐸𝐸(𝑃𝑃𝑃𝑃𝑃𝑃𝑖𝑖) = �1−𝑃𝑃𝑃𝑃𝑃𝑃𝑖𝑖
2

𝑑𝑑𝑑𝑑𝑖𝑖
 . 

Examples of meta-analyses that use PCCs are Bruno and Cipollina (2018); Valickova, 

Havranek, and Horvath (2015); Arestis, Chortareas, and Magkonis (2015); Wang and Shailer 

(2015); Nataraj et al. (2014); Iwasaki and Mizobata (2018); Cohen and Tubb (2018); Bijlsma, 

Kool, and Non (2018); Churchill and Mishra (2018); Merkle and Phillips (2018); and Churchill 

and Yew (2017).  

In terms of the preceding analysis, all that changes is that �̂�𝛽𝑖𝑖 is replaced by 𝑃𝑃𝑃𝑃𝑃𝑃𝑖𝑖, 𝛽𝛽𝐸𝐸𝑖𝑖 

now stands for 𝛽𝛽𝐸𝐸(𝑃𝑃𝑃𝑃𝑃𝑃𝑖𝑖), and 𝜏𝜏2  now represents the variance of PCC above and beyond 

sampling error. Accordingly, Equation (3) is replaced by:  

 (5) 
𝑃𝑃𝑃𝑃𝑃𝑃𝑖𝑖
𝜔𝜔𝑖𝑖

 = 𝜇𝜇∙� 1
𝜔𝜔𝑖𝑖
� + 𝜀𝜀𝑖𝑖

𝜔𝜔𝑖𝑖
,  i = 1,2,…,N,  

where  

𝜔𝜔𝑖𝑖 =

⎩
⎪
⎨

⎪
⎧
𝛽𝛽𝐸𝐸𝑖𝑖,                                         (𝐹𝐹𝛽𝛽𝐸𝐸𝛽𝛽𝐹𝐹𝐸𝐸𝐹𝐹𝐹𝐹𝛽𝛽𝐹𝐹𝐸𝐸𝐸𝐸1)
�(𝛽𝛽𝐸𝐸𝑖𝑖)2 + 𝜏𝜏2,                 (𝑅𝑅𝑅𝑅𝑅𝑅𝐹𝐹𝐸𝐸𝑅𝑅𝐸𝐸𝐹𝐹𝐹𝐹𝛽𝛽𝐹𝐹𝐸𝐸𝐸𝐸1)
𝛽𝛽𝐸𝐸𝑖𝑖 ∙ �𝑅𝑅𝑖𝑖∈𝑆𝑆,                           (𝐹𝐹𝛽𝛽𝐸𝐸𝛽𝛽𝐹𝐹𝐸𝐸𝐹𝐹𝐹𝐹𝛽𝛽𝐹𝐹𝐸𝐸𝐸𝐸2)

�(𝛽𝛽𝐸𝐸𝑖𝑖)2 + 𝜏𝜏2 ∙ �𝑅𝑅𝑖𝑖∈𝑆𝑆,   (𝑅𝑅𝑅𝑅𝑅𝑅𝐹𝐹𝐸𝐸𝑅𝑅𝐸𝐸𝐹𝐹𝐹𝐹𝛽𝛽𝐹𝐹𝐸𝐸𝐸𝐸2)

 , 

and  𝛽𝛽𝐸𝐸𝑖𝑖 and 𝜏𝜏2 are redefined as above. In this specification, 𝜇𝜇 represents the mean true effect 

of spillovers on exports measured as a partial correlation.  

While the transformation of estimated coefficients to PCCs solves the 

noncomparability problem, it raises the question of how one should interpret 𝜇𝜇. In particular, 

what values of 𝜇𝜇  constitute a large effect? A small effect? Like any correlation, PCC takes 

values between -1 and 1. Cohen (1988) suggests that correlations of 0.10, 0.30, and 0.50 (in 

absolute value) should be interpreted as “small”, “medium” and “large” effects, and his 

interpretation is widely accepted. However, Cohen’s taxonomy refers to simple, not partial, 

correlations.  
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To investigate partial correlation sizes, Doucouliagos (2011) collected over 22,000 

estimates in empirical economics and transformed them to PCCs. He then ranked them from 

smallest to largest in absolute value. He defined the 25th, 50th, and 75th percentile values as 

“small”, “medium”, and “large” effects. While there was some difference across subfields of 

economics, PCC values of 0.07, 0.17, and 0.33 corresponded to “small”, “medium” and “large” 

effect sizes in the full sample. This establishes a scale for comparing PCC values to other PCC 

values in the literature, and it is the standard we employ in interpreting our empirical results. 

Publication bias. Publication bias arises when the estimates reported by researchers 

and/or the studies published by journals comprise a biased sample of the population of all 

estimates. This can happen when researchers/journals have preferences for estimates that are 

statistically significant and/or whose signs accord with expectations (Christensen & Miguel, 

2018). “Publication bias” can occur even in working papers that are not published in journals. 

This can happen if researchers choose not to write up results because the initial analyses did 

not produce interesting/promising results.5 In that case, even unpublished working papers can 

be characterized by publication bias.  

Publication bias represents a serious challenge to the validity of meta-analysis. If the 

estimates in the literature are disproportionately large and significant, then averaging them will 

preserve this bias, producing a distorted estimate of the mean true effect. Thus, it is important to 

test for the presence of publication bias. 

The most common test for publication bias in the economics literature is the Funnel 

Asymmetry Test (FAT). The FAT is carried out by adding the standard error variable, SE, to the 

constant-only specification above (Card & Krueger, 1995; Egger et al., 1997; Stanley, 2008). 

In the context of Equation (5), this means estimating 

                                       
5 Franco, Malhotra, and Simonvits (2014) report that the main source of publication bias is failure of researchers 
to write up results that are not significant or interesting. 
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 (6) 
𝑃𝑃𝑃𝑃𝑃𝑃𝑖𝑖
𝜔𝜔𝑖𝑖

 = 𝜇𝜇∙� 1
𝜔𝜔𝑖𝑖
� + 𝜌𝜌∙�𝑆𝑆𝑆𝑆𝑖𝑖

𝜔𝜔𝑖𝑖
� +  𝜀𝜀𝑖𝑖

𝜔𝜔𝑖𝑖
,  i = 1,2,…,N,  

where  

𝜔𝜔𝑖𝑖 =

⎩
⎪
⎨

⎪
⎧
𝛽𝛽𝐸𝐸𝑖𝑖,                                         (𝐹𝐹𝛽𝛽𝐸𝐸𝛽𝛽𝐹𝐹𝐸𝐸𝐹𝐹𝐹𝐹𝛽𝛽𝐹𝐹𝐸𝐸𝐸𝐸1)
�(𝛽𝛽𝐸𝐸𝑖𝑖)2 + 𝜏𝜏2,                 (𝑅𝑅𝑅𝑅𝑅𝑅𝐹𝐹𝐸𝐸𝑅𝑅𝐸𝐸𝐹𝐹𝐹𝐹𝛽𝛽𝐹𝐹𝐸𝐸𝐸𝐸1)
𝛽𝛽𝐸𝐸𝑖𝑖 ∙ �𝑅𝑅𝑖𝑖∈𝑆𝑆,                           (𝐹𝐹𝛽𝛽𝐸𝐸𝛽𝛽𝐹𝐹𝐸𝐸𝐹𝐹𝐹𝐹𝛽𝛽𝐹𝐹𝐸𝐸𝐸𝐸2)

�(𝛽𝛽𝐸𝐸𝑖𝑖)2 + 𝜏𝜏2 ∙ �𝑅𝑅𝑖𝑖∈𝑆𝑆,   (𝑅𝑅𝑅𝑅𝑅𝑅𝐹𝐹𝐸𝐸𝑅𝑅𝐸𝐸𝐹𝐹𝐹𝐹𝛽𝛽𝐹𝐹𝐸𝐸𝐸𝐸2)

 

Rejection of 𝐻𝐻0:𝜌𝜌 = 0 is taken as evidence that publication bias exists. 

 The specification of Equation (6) has a further benefit. Including the publication bias 

term, �𝑆𝑆𝑆𝑆𝑖𝑖
𝜔𝜔𝑖𝑖
�, adjusts the estimate of 𝜇𝜇 for the presence of publication bias. In this sense, the 

inclusion of this term is akin to including an inverse Mills ratio in a regression equation to 

adjust for sample selection (Stanley and Doucouliagos, 2012). Thus, estimation of Equation 

(6) allows one to not only test for publication bias, but also provides a bias-adjusted estimate 

of the overall, mean true effect, 𝜇𝜇. 

The relationship between estimated spillover effects and data, estimation and study 

characteristics. In addition to estimating the mean overall effect and testing for publication bias, 

meta-analysis is also useful for identifying relationships between the estimated spillover effects 

and specific data, estimation and study characteristics. This enables an understanding of why 

different studies report different estimated effects. It can also be useful for identifying 

conditions and circumstances where spillover effects have their largest effects. 

 Let 𝑋𝑋𝑚𝑚 , 𝑅𝑅 = 1,2, … ,𝑀𝑀, be a set of variables measuring characteristics of the data, 

estimation procedures and study that are suspected to affect the size of the estimated spillover 

effects. Their impacts can be estimated via a meta-regression analysis (MRA), in which the 

respective variables are added to the specification of Equation (6): 

 (7) 
𝑃𝑃𝑃𝑃𝑃𝑃𝑖𝑖
𝜔𝜔𝑖𝑖

 = 𝜇𝜇∙� 1
𝜔𝜔𝑖𝑖
� + 𝜌𝜌∙�𝑆𝑆𝑆𝑆𝑖𝑖

𝜔𝜔𝑖𝑖
� + ∑ 𝛿𝛿𝑖𝑖 �

𝑋𝑋𝑚𝑚𝑖𝑖
𝜔𝜔𝑖𝑖
� 𝑀𝑀

𝑚𝑚=1 + 𝜀𝜀𝑖𝑖
𝜔𝜔𝑖𝑖

,  i = 1,2,…,N,  
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where  

𝜔𝜔𝑖𝑖 =

⎩
⎪
⎨

⎪
⎧
𝛽𝛽𝐸𝐸𝑖𝑖,                                         (𝐹𝐹𝛽𝛽𝐸𝐸𝛽𝛽𝐹𝐹 𝐸𝐸𝐹𝐹𝐹𝐹𝛽𝛽𝐹𝐹𝐸𝐸𝐸𝐸1)
�(𝛽𝛽𝐸𝐸𝑖𝑖)2 + 𝜏𝜏2,                 (𝑅𝑅𝑅𝑅𝑅𝑅𝐹𝐹𝐸𝐸𝑅𝑅 𝐸𝐸𝐹𝐹𝐹𝐹𝛽𝛽𝐹𝐹𝐸𝐸𝐸𝐸1)
𝛽𝛽𝐸𝐸𝑖𝑖 ∙ �𝑅𝑅𝑖𝑖∈𝑆𝑆,                           (𝐹𝐹𝛽𝛽𝐸𝐸𝛽𝛽𝐹𝐹 𝐸𝐸𝐹𝐹𝐹𝐹𝛽𝛽𝐹𝐹𝐸𝐸𝐸𝐸2)

�(𝛽𝛽𝐸𝐸𝑖𝑖)2 + 𝜏𝜏2 ∙ �𝑅𝑅𝑖𝑖∈𝑆𝑆,   (𝑅𝑅𝑅𝑅𝑅𝑅𝐹𝐹𝐸𝐸𝑅𝑅𝐸𝐸𝐹𝐹𝐹𝐹𝛽𝛽𝐹𝐹𝐸𝐸𝐸𝐸2))

 

Note that the publication bias term, 
𝑆𝑆𝑆𝑆𝑖𝑖
𝜔𝜔𝑖𝑖

 , remains in the equation to correct for any publication 

bias that may exist.  

 A further advantage of MRA is that it allows one to explore the extent to which 

endogeneity affects estimates of spillover effects. Endogeneity can arise from simultaneity, 

sample selection and omitted variables. Some of the studies in our meta-analysis sample 

address endogeneity while others do not. By including variables in 𝑋𝑋𝑚𝑚 to identify studies that 

attempt to correct for endogeneity bias, we can investigate whether these attempts resulted in 

larger/smaller estimated spillover effects. 

 
III. DESCRIPTION OF DATA 

Selection of studies. Our search for estimated effects followed the procedure outlined in 

Stanley et al. (2013). We employed two categories of keywords, “Export” keywords and 

“Spillover” keywords, and used the search engines Web of Science, Google Scholar, Scopus, 

JSTOR, EBSCO, ProQuest and RePEc.  

The “Export” keywords consisted of “export”, “trade”, “export decision”, “export 

propensity”, “export intensity”, “export share”, “export performance” and “firm performance”. 

The “Spillover” keywords consisted of “agglomeration”, “urbanization”, “localization”, 

“external economies”, “externality”, “spillovers”, “export spillovers”, “FDI spillovers”, 

“spatial spillovers”, “geographical spillovers”, “sectoral spillovers” and “industrial spillovers”. 

We combined keywords from both categories when using the respective search engines. Our 

initial search yielded over 350 studies, including peer-reviewed journal articles, working 
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papers, conference proceedings, doctoral dissertations and master theses. 

 We reduced the sample to 115 studies by eliminating any papers that did not satisfy the 

following inclusion criteria: (i) the study must be empirical, (ii) the dependent variable must 

measure export performance and (iii) the explanatory variables must include one or more 

spillover measures. Included in this sample were multiple versions of the same paper, usually 

a working paper and a published version. To avoid double counting, we only included the 

published version. This reduced the sample to 106 papers.  

We further reduced the sample by eliminating studies where a spillover variable was 

specified in quadratic form or where it appeared as both a main and interaction effect. While 

marginal effects can be calculated in these cases, they require information that was not reported 

in the studies, such as the covariance of the respective coefficient estimates. Elimination of 

these observations reduced the sample to 99 studies and 3,359 estimated effects. Further 

analysis of this sample, described below, identified the existence of outliers. The elimination 

of outliers produced our final sample of 99 studies and 3,291 estimated effects. 

Coding. Once the final sample was determined, a team of researchers coded various 

data, estimation and study characteristics that could affect the size of the estimated spillover 

effects. Two coders independently recorded the respective characteristics. Discrepancies were 

then noted and reconciled.  

As noted above, the estimated spillover effects in our sample derive from studies that 

use many different measures of exports and spillovers. In order to investigate whether these 

differences can explain differences in the estimated spillover effects, we developed a set of 

variables to categorize differences in export and spillover measures. The remainder of this 

section describes the categories we used. It also provides examples for each category so that 

readers can better appreciate what the estimated spillover effects are actually estimating.  

Measures of export performance. Among the measures that have been used by studies 
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of export performance, some focus on the firm’s decision to export. Others focus on what 

market to export to, or what products to export, or what quantity to export. We group these 

export measures into two groups: categorical and continuous measures.  

Examples of categorical measures include a binary measure indicating whether a firm 

has any exports; a dummy variable indicating whether a firm is a new exporter; a four-part 

classification indicating whether a firm is a permanent exporter, sporadic exporter, new 

exporter or non-exporter; and a dummy variable indicating whether the ratio of exports to sales 

is greater than 10%. Examples of continuous measures include the value of firm exports; the 

ratio of exports to sales; the number of markets the firm has exported to; export growth; export 

variety; exports per worker; and the share of a region’s exports to a given country, relative to 

GDP.  

Spillover types. Researchers have posited many channels by which firms’ activities can 

spill over and affect the export performance of other firms. Two general categories of spillovers 

are “Regional” and “Industry”. Other spillovers are specifically associated with foreign-owned 

firms (“FDI”) or directly related to other exporters (“Exporters”). While these categories are 

further described below, it should be noted at the outset that the different categories are not 

mutually exclusive. A study could estimate a spillover effect that simultaneously belonged to 

all four categories.   

TABLE 2 elaborates on the spillover types in our sample. “Regional/Localization” 

spillovers arise from the spatial concentration of firms in the same or related industries. 

Potential benefits of residing near other firms in the same industry include a shared labor pool 

that can facilitate the acquisition of specialized skills and/or knowledge and access to common 

suppliers. In contrast, “Regional/Urbanization” spillovers arise whenever there is a large 

concentration of firms from heterogeneous industries in the same area. Possible benefits here 

include sharing of a well-developed transportation infrastructure and a large labor pool with 
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general human capital.  

“Industry” spillovers can be grouped in several ways. “Industry/Horizontal intra-

industry” and “Industry/Horizontal inter-industry” refer to spillovers from firms in the same or 

other industries that are engaged in economically related activities. “Industry/Backward” and 

“Industry/Forward” refer to vertical spillovers from buyers in downstream industries and from 

suppliers in upstream industries, respectively.  

The bottom panel of TABLE 2 gives examples of some of the spillover measures used 

by the studies in our sample. Note again that a single spillover measure can simultaneously 

belong to more than one “type” of spillover. 

Spillover measures. In addition to their “type”, spillover variables differ in their units 

of measurement. Some studies measure spillovers by the “Value” of their exports. Examples 

include the ratio of the value of exports to the value of total shipments; the ratio of the value of 

exports for a given industry and firm type to the value of exports from the manufacturing sector; 

the total value of exports of a particular product type to a particular destination country; and 

the ratio of a firm’s exports to its total production.  

Other studies measure spillovers by counting the number of firms producing the 

spillovers (“Number”). Examples are the number of firms operating in the same region and 

industry; the ratio of the number of exporting firms to the total number of firms in a given 

region and industry; and the number of exporters shipping to the same destination. Still other 

studies measure spillovers in terms of “Employment”. Employment can be counted as total 

employment in the same region and industry; total employment in other exporting firms located 

in the same region; the share of employment in exporting firms over the share of total 

employment; and the number of skilled workers in the same region and industry. 

Another approach to measuring spillovers looks at the output (“Output”) produced by 

firms, regions or industries. For example, to study horizontal FDI, one study calculates the ratio 
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of the output of foreign firms in a given industry to the total output of that industry. Measures 

of backwards and forwards FDI are constructed similarly, as ratios of outputs across industries. 

We also classify as output-based a measure that sums squares of industry output shares. 

Another type of spillover focuses on technology and research and development (R&D) 

transfers. Examples include the share of R&D expenditures over sales; patent applications per 

capita; and the number of patent applications for a given region. 

Beyond all these are an assortment of other measures that we aggregate under the 

category of “Other”. Some of these include a dummy variable to indicate the presence of at 

least one large exporting firm in the locality; the share of intangible assets held by foreign 

firms; product-level Herfindahl concentration indices; and the share of MNE expenditures on 

wages and salaries over all firms’ expenditures on wages and salaries. 

The variety of these measures of exports and spillovers highlights the difficulty of 

combining estimates of spillover effects across studies. They underscore why it is necessary to 

transform the associated estimates into PCCs if we are to gain an overall understanding of the 

empirical literature on spillovers and exports. 

 
IV. DATA ANALYSIS: Part 16 

Distribution of PCC values. Our initial dataset consisted of 3,359 estimates from 99 studies.7 

TABLE 4 reports descriptive statistics for the PCC values, along with the corresponding t-

statistics and degrees of freedom (“df”) from which they are calculated. The mean and median t-

values for the full sample are 2.86 and 1.41, respectively. We shall discuss the relatively small 

value of the median t-statistic later. At this point, we highlight the minimum and maximum t-

values of -669.8 and 279.1. These are extraordinarily large and raise concern about outliers. A 

                                       
6 All the data and code necessary to replicate the empirical analysis in this study are publicly available at 
Dataverse: https://dataverse.harvard.edu/dataset.xhtml?persistentId=doi:10.7910/DVN/SJ5HP1. 
7 Bibliographic information for the 99 studies included in this meta-analysis is provided in a document entitled 
“Studies” that is posted at https://dataverse.harvard.edu/dataset.xhtml?persistentId=doi:10.7910/DVN/SJ5HP1. 
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similar concern applies to the df variable. It has mean and median values of 241,063 and 18,930, 

with minimum and maximum values of 50 and 5,776,129.  

The associated distribution of PCC values ranges from -0.984 to 0.994. It has mean and 

median values of 0.016 and 0.008. Large (absolute) values of PCC, along with large df values, 

are potentially a problem. These two variables impact the weights in the four WLS estimators, 

FixedEffects1, RandomEffects1, Fixed Effects2, and RandomEffects2, which are inverse 

functions of 𝛽𝛽𝐸𝐸𝑖𝑖 = �1−𝑃𝑃𝑃𝑃𝑃𝑃𝑖𝑖
2

𝑑𝑑𝑑𝑑𝑖𝑖
 . PCC values close to 1, especially when accompanied by large 

df values, can generate exceptionally large weights, so that a few observations with PCC values 

close to 1 or -1 can exert a dominating influence. Accordingly, we proceed by truncating the top 

and bottom 1% of PCC values, leaving 3,291 observations. The truncated distributions of t-

statistic, df, and PCC values are also reported in TABLE 4, immediately to the right of the full 

sample statistics. Corresponding histograms for the t-statistics and PCC values are presented in 

FIGURE 1. The two histograms in FIGURE 1 and the corresponding columns in TABLE 4 go 

far in answering our first question about the size of the effect of spillover effects on exports.  

The mean and median PCC values for the truncated sample are 0.016 and 0.008. These 

are far away from the threshold value of 0.07 that Doucouliagos (2011) sets for “small”. This 

suggests that spillovers have, at best, a positive but negligibly small effect on exports. 

The reasons for the small PCC values are not hard to identify. First, a large number of 

estimates in the literature are statistically insignificant. The table immediately below the 

histogram in the top panel of FIGURE 1 reports that 53.0% of all t-values lie between -2 and 2. 

Compounding these relatively low t-values are very large sample sizes. The distribution of df 

values for the truncated sample ranges from 57 to 5,776,129, with a median value of 18,933. If 

we calculate the PCC value that corresponds to the median t and df values using equation (4.a), 

we obtain a value for PCC equal to 0.010.  



16 
 

However, there are two caveats. First, the numbers in TABLE 4 and the values 

represented in FIGURE 1 are unweighted. So we need to re-compute our estimate of the mean 

true effect, 𝜇𝜇, using the different weighting schemes described above. Second, the analysis 

ignores publication bias. 

Fixed Effects or Random Effects? While we are aware of no study that compares how 

frequently researchers use “Fixed Effects” versus “Random Effects” estimators in their meta-

analyses, our sense is that “Fixed Effects” is generally preferred. TABLE 5 identifies our concern 

with “Fixed Effects”. It calculates a “study weight” for each study in our sample, weighting the 

individual estimates of that study by the respective weighting scheme (“Fixed Effects”/“Random 

Effects”) and then aggregating the weights at the study level. In this way, each study receives a 

weight, the sum of which equals 100%.8 

If the 100% weight was divided equally across studies, given 99 studies, each study 

would receive a weight of 1.01%. Against this benchmark, “Fixed Effects” weights are highly 

skewed. The median weight is 0.03%, and the maximum weight for a single study is 42.6%.9 

The top 3 studies account for 62.9% of the total weight, and the top 10 studies comprise 90.0%. 

Thus “Fixed Effects” estimates will be disproportionately influenced by a very small number of 

studies that have large PCC values and/or use a large number of observations (df). This is 

particularly concerning if the export and spillovers measures used by this small set of studies is 

not representative of the literature. 

In contrast, as noted above, the “Random Effects” estimator weighs estimates more 

uniformly - the median value is 1.14% compared to a mean value of 1.01%. The maximum 

weight any single study receives is 1.31%, and the top 10 studies account for 13.0%. While we 

report both “Fixed Effects” and “Random Effects” estimates, our preferred estimator is the latter. 

                                       
8 Study weights were calculated by 𝑤𝑤𝑖𝑖 ∑𝑤𝑤𝑖𝑖 ,⁄  where 𝑤𝑤𝑖𝑖 = 1 (𝛽𝛽𝐸𝐸𝑖𝑖)2⁄  or 𝑤𝑤𝑖𝑖 = 1 [(𝛽𝛽𝐸𝐸𝑖𝑖)2 + 𝜏𝜏2]⁄  depending on 
whether Fixed Effects or Random Effects were being used (cf. Rinquist, 2013, page 128). 
9 The ID for this study is 3. Its large weight is a function of its exceptionally large sample size (over 4,000,000 
observations) and small t-values (cf. Equations 4.a and 4.b).  
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Publication bias. A common, informal tool for identifying publication bias is the “funnel 

plot”. The funnel plot graphs estimated effect sizes (here, PCC values) against their respective 

standard errors (SE). A common representation is given in FIGURE 2. On the horizontal axis is 

the PCC value and on the vertical axis is its standard error (SE).  

Note that the value at the top of the vertical axis is zero, so that SE values increase as one 

moves down the vertical axis. The vertical line extending upwards from the horizontal axis 

identifies the sample mean PCC, and the inverted “V” identifies the 95% confidence interval for 

PCC values that is estimated to arise from sampling error. For a given SE value, the associated 

confidence interval is given by a horizontal band extending from the left side of the 95% region 

to the right side. As SE increases, the length of the band likewise increases, so that it is narrow at 

the top of the funnel and wide at the bottom.  

 Publication bias introduces asymmetry to the funnel plot. For samples with large error 

variances, sampling error will produce a wide range of effect estimates. This creates an 

opportunity for researchers to selectively report estimates that are larger in absolute size, and 

hence more likely to get published. This can be intentional on the part of the researcher, but it 

can also occur unintentionally, as sampling error causes some researchers to get large and 

significant estimates, while others get small and insignificant estimates. The former get published 

and the latter do not, generating publication bias in the literature and introducing asymmetry to 

the funnel plot.  

 Two things are noteworthy from the funnel plots in FIGURE 2. First, rather than having 

the distribution of estimates narrow to a point as SE approaches zero, the top of the distribution 

is flat and spread out. This indicates that there is no single, true spillover effect, but rather a 

distribution of true spillover effects. This is a further argument for favoring the Random Effects 

over the Fixed Effects model.  Second, there is evidence of positive publication bias. A 

disproportionate number of PCC-SE pairs reside to the right of the 95% confidence area.  
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As noted above, a formal test of publication bias is provided by the FAT. Rejection of 

𝐻𝐻0:𝜌𝜌 = 0 in Equation (6) is taken as evidence that publication bias exists.  TABLE 6 reports 

the results of estimating Equation (6) using the four different WLS estimators, FixedEffects1, 

FixedEffects2, RandomEffects1and RandomEffects2.  The first row reports the estimates of 𝜌𝜌, 

which is the coefficient on the publication bias term, SE. Across all four columns, we reject 

𝐻𝐻0:𝜌𝜌 = 0 at the 5 percent level of significance, indicating the existence of publication bias. 

The sign of the estimate indicates positive publication bias, suggesting sample selection that 

favors the publication of positive spillover effects on exports. 

 Estimates of the mean overall effect of spillovers on exports. The second row of 

TABLE 6 reports estimates of the constant term, representing 𝜇𝜇, the mean overall effect of 

spillovers on exports, corrected for publication bias. In three of the four cases, the estimates of 

𝜇𝜇 are significant at the 5 percent level.  The exception is the FixedEffects1 estimate of Column 

(1), which is significant at the 10 percent level. These results provide evidence that spillovers 

exist and they positively impact exports. However, the sizes of the estimates indicate that this 

effect is very small. The estimated effects range from 0.004 to 0.021, substantially below the 

0.07 value that Doucouliagos (2011) associates with “small”. 

Columns (5) and (6) in TABLE 6 report the weighted average estimates of the mean 

true effect, uncorrected for publication bias, using the RandomEffects1 and RandomEffects2 

estimators. The associated estimates are 0.015 and 0.026, which are close to the unweighted 

value of 0.016 reported in TABLE 4. These fall to 0.012 and 0.021, respectively, when SE is 

added to the specification to control for publication bias. Thus, while publication bias positively 

inflates estimates of the effect of spillovers on exports, it does not inflate them very much. 

Comparison with Other Meta-Analyses of Spillover Effects. While this study is the only 

meta-analysis to investigate the relationship between spillovers and exports, no less than eight 

other meta-analyses have studied various aspects of the relationship between FDI and 
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productivity spillovers (Bruno and Cipollina, 2018; Demena and van Bergeijk, 2017; Iwasaki 

and Tokunaga, 2016; Mebratie and van Bergeijk 2013; Irsova and Havranek, 2013; Havranek 

and Irsova, 2010; Meyer and Sinani, 2009; and Gorg and Strobl, 2001). For the most part, these 

studies have emphasized the influence of data and study characteristics on estimated spillover 

effects. For example, a common finding is that cross-sectional data produce larger spillover 

estimates than panel data. This emphasis on significant data and study characteristics has 

tended to obscure the fact that all of the studies find very small spillover effects.10 TABLE 7 

summarizes the estimates of mean, estimated spillover effects of FDI on productivity. Whether 

measured by t-stats, PCC values, or something else, the economic effects can be characterized 

as negligible. Our finding that spillovers do not have an important economic effect on exports 

is thus in line with what other studies have found with respect to productivity spillovers from 

FDI.  

 
V. DATA ANALYSIS: Part 2 

Data, Estimation, and Study Characteristics. In this section, we investigate the extent to which 

various data, estimation and study characteristics are correlated with the estimated spillover 

effects in our sample. TABLE 8 describes the variables we created for this meta-regression 

analysis (MRA). In a few cases, we do not actually use a variable because there were 

insufficient observations in a category or because it was held out as the benchmark, but we 

report it to give a better understanding of the data. The variables omitted from the MRA are 

indicated by an asterisk. We generally do not have expectations about the coefficient signs of 

the respective effect estimates. Accordingly, the subsequent analysis should be interpreted as 

exploratory.  

Firm-level indicates that the estimated spillover effect comes from a regression that 

                                       
10 Havranek and Irsova (2010), Iwasaki and Tokunaga (2016), and Irsova and Havranek (2013) are exceptions in 
that they make it clear that the estimated spillover effects are small in economic significance. 
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used firm-level data. The alternative is aggregated data, where the unit of analysis is a 

geographical jurisdiction, such as a state or region, or an industry aggregate. Almost all of our 

estimated spillover effects (92.3%) come from firm-level data. Domestic indicates that the 

estimated spillover effect focuses on domestic firms, as opposed to foreign, or a mix of foreign 

and domestic firms.  

SampleYear measures the age of the dataset that was used to estimate the spillover 

effect. Country and regional variables (OECD, EU, Developing, China) were created to 

indicate the geographical source of the estimated effects. The categories are not mutually 

exclusive. For example, a study that used data from the EU would also be categorized as using 

data from the OECD. For this reason, and in order to focus on differences between OECD 

countries, China and the rest of the world, the MRA drops EU and Developing.  

Categorical indicates that the export measure used in the original study was based on a 

discrete number of categories, as opposed to being continuous. We created variables to 

correspond to the four spillover types from TABLE 2 (Exporters, Region, Industry, and FDI) 

and the six spillover measures from TABLE 3 (Number, Value, Employment, Output, R&D, 

and OtherMeasures). Only the latter set of variables are mutually exclusive. Because the 

categories Output and R&D seldom appear in our sample, these, along with Other Measures, 

are held out as benchmark categories. 

We created five categories to indicate industry-specific spillover effects: 

Manufacturing, Service, IT, Food and Other Industry, where OtherIndustry includes studies 

that spanned multiple industries. The categories are mutually exclusive. We omit Service, IT, 

and Food because they occur infrequently. Accordingly, our MRA only includes an industry 

variable for manufacturing, with all other industries constituting the omitted category. 

Estimation methods were categorized in three mutually exclusive categories: 

Probit/Logit/Tobit, OLS/GLS and OtherEstimation, with the latter two combined to form the 
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comparison group.   

Of particular interest is whether studies corrected for endogeneity. Endogeneity could 

arise either from simultaneity, sample selection or omitted variables. Accordingly, we created 

dummy variables if the estimated effect used an estimation procedure that addressed these: IV, 

SampleSelection and FixedEffects, respectively. If we are willing to argue that simultaneity and 

sample selection generate a positive bias (e.g., firms that export more are also likely to be 

located in areas with greater spillovers), then correcting this bias should result in smaller 

estimates. In the case of panel fixed effects correcting for omitted variables, it is not possible 

to sign the bias without further knowledge about the omitted, time-constant variables. 

We also created variables to indicate commonly-included control variables, as these 

could also affect the spillover effects estimated by studies. We have dummy variables that 

indicate that a study controlled for firm size, firm productivity, labor quality, capital/assets and 

R&D expenditures. Lastly, we have variables that indicate various facets of study quality: 

whether the study was published in a peer-reviewed journal (Journal), the impact factor of the 

journal where the study was published (Impact) and the number of Google Scholar citations 

the study received (Citations). 

Bayesian Model Averaging (BMA) Analysis. A straightforward approach to identify 

data, estimation and study characteristics that correlate with estimates of spillover effects is to 

put all the variables in a single regression equation, such as the MRA specification of Equation 

(7), and estimate the respective coefficients. We will do this. However, the problem with this 

approach is that multicollinearity among the variables can mask important relationships. 

Accordingly, we use two additional approaches.  

The first approach is Bayesian Model Averaging, or BMA (Zeugner, 2011). 

Conceptually, BMA consists of estimating all possible regressions and averaging the associated 

coefficient and standard error estimates with weights determined by the likelihood values of 
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the respective specifications. In our case, there are a total of 27 variables (the 26 variables plus 

SE), producing 227 possible regressions. Rather than estimating all of these, BMA samples from 

the set of all possible specifications using Monte Carlo Markov Chain (MCMC) sampling. True 

to its Bayesian nature, BMA requires the user to specify a prior distribution. This typically 

specifies prior beliefs about the number of variables that belong in the “true” regression 

equation.  

The advantage of BMA is that it provides a global assessment of the relationship 

between the explanatory variables and the dependent variable (the estimated spillover effect). 

The disadvantage is that the results do not represent any single specification. This can be a 

problem when interpreting coefficients for dummy variables. For example, we use three 

variables to represent spillover measures, Number, Value and Employment. The interpretation 

for Number when Value and Employment are included in the specification is different than 

when Value and Employment are omitted from the specification, because the comparison group 

changes. This is concerning given that so many of the data, estimation and study characteristics 

are dummy variables. Accordingly, we also use a frequentist approach to estimate a “best” 

variable specification of Equation (7) as an alternative method for identifying factors that affect 

spillover effect estimates. 

TABLE 9 reports the results of two BMA analyses, using the FixedEffects1 and 

RandomEffects1 weightings. Four outputs for each BMA analysis are reported: PIP, Cond. 

Mean, Cond. SD, and Cond Pos Sign. PIP can be roughly interpreted as the weighted 

probability that the given variable belongs in the “true” specification. A PIP value of 1.000 

suggests that the probability the variable belongs in the “true” specification is approximately 

100%. Another way to look at the PIP is to note that each variable appears in half of the 227 

total possible specifications. If each regression had an equal probability of being true (i.e., equal 

likelihood values), then the PIP would be 0.50. Thus, values greater than 0.50 indicate that the 
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regressions including the respective variable have a higher probability of being “true” than the 

regressions that do not include the variable.  

Cond Mean reports a weighted average of that variable’s estimated coefficients, with 

weights calculated as the posterior probability that a given specification is true. Similarly, Cond 

SD is the weighted average of that variable’s estimated standard errors. Cond Pos Sign is the 

weighted average of indicator variables that take the value 1 if the variable’s coefficient in a 

given regression is positive. A Cond Pos Sign value of 1.000 suggests that the probability the 

given variable has a positive coefficient in the “true” specification is virtually 100%. 

TABLE 9 maintains the same order of variables as reported in TABLE 8. The left half 

of the table presents results for regressions using the FixedEffects1 weights, while the right 

hand side shows results using the RandomEffects1 weights. Variables having PIP and Cond 

Pos Sign values both equal to 1.000 are yellow-highlighted for each set of weighted 

regressions. Variables having PIP values equal to 1.000 and Cond Pos Sign values equal to 

0.000 are highlighted in rose. A compelling result would be one where (i) PIP was equal to 

1.000 in both the FixedEffects1 and RandomEffects1 regressions, (ii) the signs were 

consistently positive or negative (Cond Pos Sign either 1.000 or 0.000), (iii) the Cond Mean 

values were at least twice as large as the Cond SD values and (iv) the Cond Mean value was 

economically meaningful using the Doucouliagos (2011) guidelines.  

There are no variables that satisfy all four criteria. Variables that satisfy the first three 

criteria are SampleYear, China, Fixed Effects, and R&D. The Cond Mean estimate for 

SampleYear (-0.001 for both FixedEffects1 and RandomEffects1) indicates that a dataset the 

mid-sample “age” of which was 10 years older than another dataset would have, on average, 

an estimated spillover effect that was approximately 0.01 correlation points lower. This is very 

small in absolute size, but is roughly comparable in size to the bias-adjusted estimate of the 

mean overall spillover effect (cf. Columns 1-4 in TABLE 6). 
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The only other variable that has a consistently negative effect is FixedEffects, indicating 

that the associated spillover effect was estimated using panel fixed effects. The negative sign 

means that studies that used panel fixed effects generally had smaller estimates of spillover 

effects than other studies (cross-sectional studies and panel studies without fixed effects).  

Studies that used Chinese data or that measured spillover effects from R&D 

expenditures generally estimated larger spillover effects. In the case of China, the associated 

partial correlations are 0.010 (Fixed Effects1) and 0.013 (RandomEffects1) larger. For studies 

focusing on R&D, the corresponding estimates are 0.022 (FixedEffects1) and 0.012 

(RandomEffects1) larger.  

Information for the remaining variables is reported in the table. We note that weighting 

makes a difference. The variable Employment, indicating that the measure of spillovers was 

based on labor, has a PIP of 1.000 and a Cond Pos Sign of 1.000 in the FixedEffects1 

regressions. In contrast, it has a consistently negative sign in the RandomEffects1 BMA 

regressions (Cond Pos Sign equals 0.000 with a PIP of 1.000).  

As these results are exploratory, they should be viewed as suggestive. If there is one 

main conclusion to be drawn from the BMA analysis, it is that no data, estimation or study 

characteristics achieves even a small effect on estimates of spillover effects, where we define 

small using Doucouliagos’ (2011) guideline of 0.07.  

WLS estimation of selective specifications. This section complements the BMA 

analysis above by using WLS to estimate Equation (7) for selected variable specifications.  One 

of the variable specifications includes all variables in the same specification. We supplement 

this with another specification that uses stepwise regression to select the “best” set of additional 

variables to accompany the spillover type and measure variables. In particular, we lock in the 

spillover type and/or spillover measure variables and then use a backwards stepwise regression 

procedure that sequentially chooses the control variables that result in the lowest BIC/SIC 
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value. BIC/SIC is an information criterion measure that balances goodness of fit against model 

parsimony. It has the property that it is asymptotically consistent. Thus, our backwards 

stepwise algorithm is designed to select the additional variables that are most likely to belong 

in the true equation along with the different spillover variables.  

TABLE 10 locks in the four spillover type variables,  Exporters, Region, Industry, and 

FDI. TABLE 11 locks in the three spillover measure variables, Number, Value and 

Employment. TABLE 12 combines both spillover type and spillover measure variables. In 

addition, we also lock in the publication bias term, SE, in all specifications. We do this to 

investigate whether evidence of publication bias is sustained after other variables are added to 

the specification. 

The results from TABLES 10-12 were largely foreshadowed by the BMA analysis of 

TABLE 9. Of the seven spillover variables, none are consistently signed and significant across 

all estimation procedures and variable specifications. Employment is generally significant, but 

it switches signs from positive (FixedEffects) to negative (RandomEffects), depending on the 

WLS weights. In addition, none of the estimated coefficients achieves economic significance, 

as the estimated coefficients are all less than 0.07.  

Finally, we note that our previous finding of publication bias becomes suspect in light 

of the estimates from TABLES 10-12. While the publication bias term, SE, is statistically 

significant across all four weighting schemes in TABLE 6, it is never significant in the 

RandomEffects regressions. This is evidence that the significant SE coefficients in Columns (3) 

and (4) of TABLE 6 were illusory, generated by correlation with omitted data, estimation and 

study variables.   
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VI. CONCLUSION 
 
This study uses meta-analysis to investigate the effect of spillovers on export performance. 

Exports have been linked to many positive economic outcomes, such as growth, employment, 

technology improvements and consumer welfare. Spillovers have likewise received considerable 

attention. Despite the very large literature on spillovers, including no less than eight meta-

analyses, this study represents the first meta-analysis to investigate the relationship between 

spillovers and exports.  

 Our final sample consists of 3,291 estimated spillover effects from 99 studies, making it 

substantially larger than any previous meta-analysis of spillover effects. Our main finding is that 

spillovers have an economically negligible impact on exports. This conclusion follows directly 

from the fact that approximately half of the estimated spillover effects in the literature are 

statistically insignificant. This insignificance is particularly noteworthy given that the sample 

sizes of the underlying studies are generally very large. The mean and median sample sizes for 

the estimated effects in our sample are 245,911 and 18,933, respectively. The combination of 

insignificant estimates with very large sample sizes is indicative that spillovers do not have much 

effect on exports. 

Two other findings from our study are noteworthy: While we find evidence of publication 

bias using the standard funnel asymmetry test (FAT) for publication bias, this result disappears 

when additional variables are included in some of the regressions. This is suggestive that the 

estimated publication bias in the FAT may simply reflect omitted variable bias. In any case, the 

size of the estimated publication bias has a very small effect on the overall estimate of spillover 

effects.  

Our last finding is that we are unable to obtain compelling evidence that data, estimation 

and study characteristics affect estimated spillover effects. In particular, there is no robust 

evidence that estimated spillover effects are affected by how exports are measured, nor that some 
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spillover types have larger effects than others. While some of the respective variables are 

statistically significant in some of the regressions, neither the Bayesian Model Averaging 

analysis nor the frequentist regression results produce robust results linking data, estimation and 

study characteristics to spillover effects. 

It turns out that our results should not be surprising. Reviewing previous meta-analyses 

of spillover effects reveals that they also find economically insignificant effects from spillovers. 

This is somewhat obscured by the fact that, in many cases, previous studies have focused on 

statistical, rather than economic, significance. That is, they report that the overall mean effect of 

spillover effects is statistically significant, or that various data, estimation and study 

characteristics are significant, without commenting or discussing on the size of the effects. Low 

partial correlation coefficients and large numbers of insignificant effect estimates are, in fact, 

characteristic of the spillover literature.   
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TABLE 1 
Selected Measures of Export Performance 

 

Categorical 

• The decision whether firm exports or not in year t  
• The decision to start exporting to country j 

• Dummy = 1 if domestic firms in province i begin exporting product k to country j 
• Export status: permanent exporter, sporadic exporter, new exporter, non-exporter 
• Internationalisation modes: non-exporter, exporters, firm that exports and engages in 

horizontal FDI 
• Status: continue non-exporting, start exporting, continue exporting, exit from 

exporting 
• Export dummy = 1 if a firm’s export share (direct exports over sales) ≥ 10% 

Continuous 

• The export scale of firm i for product k to country j at time t 
• Firm’s export value 

• The ratio of export value to total sales 
• The share of firm i’s exports in industry j  
• Firm’s export volume 
• Export intensity – the number of macro areas that the firm has served through its 

exporting activity 
• Export intensity – the percentage of a firm’s exports in output 
• Growth of exports 
• Export value / export quantity / export price / export quality  

• Export variety – the number of HS8 products exported by firm i at time t  
• Unit value of product j exported by firm i at time t 

• Export per worker 
• The share of state i’s aggregate exports to country j in GDP 
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TABLE 2 
Examples of Spillover Types 

 

Regional 

• Localization – spillovers from spatial agglomeration of related firms 
• Urbanization – spillovers from urban concentration that apply to all firms and industries 

in a specific region 

Industry 

• Horizontal intra-industry – spillovers from firms within the same group of companies 
within industry 

• Horizontal inter-interindustry – spillovers from other firms within industry 
• Backward – spillovers from other firms in industry j purchasing intermediate goods from 

industry k where firm i is located 
• Forward - spillovers from other firms in industry j supplying intermediate goods to 

industry k where firm i is located 

FDI / Exporter 

• Spillovers that flow from foreign-owned firms / other exporter firms 

Examples 

• The total number of manufacturing firms in the region 

• R&D expenditure by domestic firms in sector j / sales by domestic firms in j 
• The number of exporting firms outside region that are exporting to market j belonging to 

a different 2-digit industry than firm i 
• The number of other firms in the region operating in the same industry 

• Regional output of MNEs to domestic markets 
• The total number of export firms in the region (outside the industry of the firm in focus) 

• The ratio of foreign-owned firms over total number of firms in the same industry 
• The number of exporting firms within the same industry but outside region 
• The share of FDI investment in a certain region-industry 

• The share of exporters in area, same industry – same destination 
• The share of exports by foreign firms in total exports in an industry 

• The share of exports by foreign firms in total exports in a province 
• The share of exports by foreign firms in total exports in an industry within a province  
• (Exports by MNEs in sector j / total exports in j) / (total exports by MNEs / total exports) 

• Exports value / total shipments from plants in the state and in the SIC4 industry 
• The share of exporting employment in area, all industries – same destination 
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TABLE 3 
Selected Spillover Measures 

 

Value 

• Exports value / total shipments from plants in the state and outside the SIC4 
industry 

• The province-industry-firm-type share of national industry exports / the province 
share of national manufacturing exports 

• Foreign exports from province i of product k to country j 

• The ratio of the export volume to total production value 

Number 

• The number of other firms in the region operating in the same industry 
• The number of exporting plants / total plants for plants in the state and in the SIC4 

industry 
• The province-firm-type share of national establishments / the province share of 

national establishments 
• The number of exporters in area, all industries – same destination 
• A region’s number of firms within the same industry as percentage of a country’s 

total number of firms within the same industry 
• A region’s number of direct and indirect exporters as percentage of a region’s total 

number of firms 

Employment 

• Exporting employment in area, all industries – same destination 

• The share of exporting employment in area, all industries – same destination 
• The number of total employment in the same region and industry (all plants / 

exporting plants / foreign-owned but non-exporting plants) 
• The number of skilled workers in the same region and industry (all plants / 

exporting plants / foreign-owned but non-exporting plants) 

Output 

• 𝐻𝐻𝐸𝐸𝐸𝐸𝛽𝛽𝐻𝐻𝐸𝐸𝑅𝑅𝐸𝐸𝑅𝑅𝛽𝛽_𝐹𝐹𝐹𝐹𝐹𝐹𝑗𝑗𝑡𝑡 =
𝑌𝑌𝑗𝑗𝑗𝑗
𝑓𝑓

𝑌𝑌𝑗𝑗𝑗𝑗
, 𝑌𝑌𝑗𝑗𝑡𝑡

𝑑𝑑 is the output of foreign firms in industry j, 𝑌𝑌𝑗𝑗𝑡𝑡 is the 

total output of industry j. 
• 𝐵𝐵𝑅𝑅𝐹𝐹𝐵𝐵𝑤𝑤𝑅𝑅𝐸𝐸𝐹𝐹_𝐹𝐹𝐹𝐹𝐹𝐹𝑗𝑗𝑡𝑡 = ∑ 𝛼𝛼𝑘𝑘𝑗𝑗𝑡𝑡𝐻𝐻𝐸𝐸𝐸𝐸𝛽𝛽𝐻𝐻𝐸𝐸𝑅𝑅𝐸𝐸𝑅𝑅𝛽𝛽_𝐹𝐹𝐹𝐹𝐹𝐹𝑘𝑘𝑡𝑡∀𝑘𝑘≠𝑗𝑗  , 𝛼𝛼𝑘𝑘𝑗𝑗 = 𝑌𝑌𝑘𝑘𝑗𝑗

𝑌𝑌𝑘𝑘
  where 𝑌𝑌𝑘𝑘𝑗𝑗 is the 

output provided from industry j to industry k. 
• 𝐹𝐹𝐸𝐸𝐸𝐸𝑤𝑤𝑅𝑅𝐸𝐸𝐹𝐹_𝐹𝐹𝐹𝐹𝐹𝐹𝑗𝑗𝑡𝑡 = ∑ 𝛽𝛽ℎ𝑗𝑗𝑡𝑡𝐻𝐻𝐸𝐸𝐸𝐸𝛽𝛽𝐻𝐻𝐸𝐸𝑅𝑅𝐸𝐸𝑅𝑅𝛽𝛽_𝐹𝐹𝐹𝐹𝐹𝐹ℎ𝑡𝑡∀ℎ≠𝑗𝑗 , 𝛽𝛽ℎ𝑗𝑗 = 𝑌𝑌ℎ𝑗𝑗

𝑌𝑌𝑗𝑗
 where 𝑌𝑌ℎ𝑗𝑗 is the 

output provided from industry h to industry j. 
• The sum of squares of an industry’s output share by region 
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R&D 

• R&D expenditure by domestic firms in sector j / sales by domestic firms in j 

• R&D expenditure by MNEs in sector j / sales by MNEs in j 

• Patent applications per capita in a particular region 

• The number of patent applications in the region 

Other 

• If at least one other large exporting firm is present in the region 
• The presence of foreign-owned firms’ capital stock in the total capital stock of an 

industry, a province and an industry within a province 
• The share of intangible assets held by foreign firms in fixed assets in an industry, in 

a province and in an industry within a province  
• Horizontal spillovers𝑗𝑗𝑡𝑡 =  (∑ 𝐹𝐹𝐸𝐸𝐸𝐸𝛽𝛽𝛽𝛽𝐹𝐹𝑅𝑅 𝐸𝐸ℎ𝑅𝑅𝐸𝐸𝛽𝛽𝑖𝑖𝑡𝑡 ∗ 𝑌𝑌𝑖𝑖𝑡𝑡)/(∑ 𝑌𝑌𝑖𝑖𝑡𝑡𝑖𝑖∈𝑗𝑗 )𝑖𝑖∈𝑗𝑗 , 

𝐹𝐹𝐸𝐸𝐸𝐸𝛽𝛽𝛽𝛽𝐹𝐹𝑅𝑅 𝐸𝐸ℎ𝑅𝑅𝐸𝐸𝛽𝛽𝑖𝑖𝑡𝑡 is the share of foreign fixed capital stock in a foreign-invested 
enterprise (FIE) i at time t,  𝑌𝑌𝑖𝑖𝑡𝑡 is the total output of the same FIE at time t. 

• Backward spillovers𝑗𝑗𝑡𝑡 = ∑ 𝛼𝛼𝑗𝑗𝑘𝑘𝐻𝐻𝐸𝐸𝐸𝐸𝛽𝛽𝐻𝐻𝐸𝐸𝑅𝑅𝐸𝐸𝑅𝑅𝛽𝛽𝑘𝑘𝑡𝑡𝑘𝑘≠𝑗𝑗  , 𝛼𝛼𝑗𝑗𝑘𝑘 is the proportion of industry 
j’s output supplied to industry k.  

• Forward spillovers𝑗𝑗𝑡𝑡 = ∑ 𝜑𝜑𝑗𝑗𝑚𝑚[[∑ 𝐹𝐹𝐸𝐸𝐸𝐸𝛽𝛽𝛽𝛽𝐹𝐹𝑅𝑅 𝐸𝐸ℎ𝑅𝑅𝐸𝐸𝛽𝛽𝑖𝑖𝑡𝑡 ∗ (𝑌𝑌𝑖𝑖𝑡𝑡 − 𝐸𝐸𝑋𝑋𝑖𝑖𝑡𝑡)]𝑖𝑖∈𝑚𝑚 /𝑚𝑚≠𝑗𝑗
[∑ (𝑌𝑌𝑖𝑖𝑡𝑡 − 𝐸𝐸𝑋𝑋𝑖𝑖𝑡𝑡𝑖𝑖∈𝑚𝑚 )]], 𝜑𝜑𝑗𝑗𝑚𝑚 is the share of inputs purchased by industry j from 
industry m in total inputs sourced by industry j, 𝐸𝐸𝑋𝑋𝑖𝑖𝑡𝑡 is the export value of FIE i at 
time t. 

• Aggregate shipping weight of exports from each region to each country 

• Related variety = ∑ 𝑃𝑃𝑔𝑔( 1
𝐻𝐻𝑔𝑔

)𝐺𝐺
𝑔𝑔=1  , 𝐻𝐻𝑔𝑔 is the Herfindahl concentration index 

calculated at the five-digit level within each two-digit level, 𝑃𝑃𝑔𝑔 is the employment 
share of sector g. Sector g is located in the same region and related to sector s 
where firm i is located. 

• Urbanization = 𝐿𝐿𝐿𝐿𝑝𝑝
𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑝𝑝

, 𝐿𝐿𝐿𝐿𝑝𝑝 is the population in province p and 𝐴𝐴𝐸𝐸𝛽𝛽𝑅𝑅𝑝𝑝 is the 

number of local units of the province area. 
• The average number of addresses per square kilometer within a circle of a one-

kilometre ray to measure agglomeration 
• Share of MNEs’ expenditures on wages and salaries on total expenditures on wages 

and salaries of the sector. 
• The ratio of foreign equity invested to total equity invested in the industry. 
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TABLE 4 
Descriptive Statistics for Effect Size Variables 

 
 t-Statistics df PCC Values 

 Full Truncated Full Truncated Full Truncated 

Mean 2.86 3.00 241,063 245,911 0.016 0.016 

Median 1.41 1.41 18,930 18,933 0.008 0.008 

Minimum -669.8 -51.0 50 57 -0.984 -0.140 

Maximum 279.1 147.4 5,776,129 5,776,129 0.994 0.199 

Std. Dev. 16.5 9.0 657065 662,943 0.063 0.040 

1% -14.24 -12.61 115 119 -0.148 -0.083 

5% -3.01 -2.81 527 610 -0.040 -0.030 

10% -1.78 -1.71 1011 1137 -0.018 -0.016 

90% 10.00 9.51 583,432 631,056 0.073 0.067 

95% 18.04 17.00 1,683,178 1,685,285 0.109 0.101 

99% 40.42 36.44 3,323,304 3,323,304 0.203 0.158 

Obs 3,359 3,291 3,359 3,291 3,359 3,291 
 

NOTE: The truncated sample is obtained from the Full Sample by deleting observations having the top and bottom 1% of PCC 
values. 
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TABLE 5 
Study Weights 

 

 Fixed Effects Random Effects 

Mean 1.01% 1.01% 
Median 0.03% 1.14% 

5% 0.00% 0.39% 
10% 0.00% 0.42% 
90% 1.78% 1.28% 
95% 5.39% 1.30% 

Maximum 42.6% 1.31% 
Top 3 62.9% 3.9% 

Top 10 90.0% 13.0% 

Studies 99 99 
 

NOTE: The methodology for calculating “study weights” is described in 
Footnote #8 in the text. 
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TABLE 6 
Test of Publication Bias and Estimate of Mean Overall Effect 

 

 
Variable 

Including Publication Bias Term Excluding Publication Bias Term 

FixedEffects1 
(1) 

FixedEffects2 
(2) 

RandomEffects1 
(3) 

RandomEffects2 
(4) 

RandomEffects1 
(5) 

RandomEffects2 
(6) 

SE 1.724*** 
(2.73) 

2.462*** 
(4.40) 

0.348** 
(2.01) 

0.397** 
(2.00) ---- ---- 

Constant 0.004* 
(1.78) 

0.004** 
(2.20) 

0.012*** 
(3.59) 

0.021*** 
(4.86) 

0.015*** 
(5.68) 

0.026*** 
(7.42) 

Observations 3,291 3,291 3,291 3,291 3,291 3,291 

 
NOTE: Estimates in Columns (1) through (4) come estimating Equation (6) in the text using Weighted Least Squares (WLS). The four WLS 
estimators (FixedEffects1, FixedEffects2, RandomEffects1, and RandomEffects2) are described in Section II. The estimates in Columns (5) and (6) 
come from estimating Equation (5). All of the estimation procedures calculate cluster robust standard errors. *, **, and *** indicate statistical 
significance at the 10-, 5-, and 1-percent level, respectively.  
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TABLE 7 
Summary of Meta-Analyses on FDI and Productivity Spillovers 

 

Meta-analysis #Studies / 
#Estimates 

Measure of 
Effect Size Evidence of Economic Insignificance 

Gorg and Strobl (2001) 21 / 25 t-stat Mean t-stat is 1.63 and 2.00 (cf. Table 2) 

Meyer and Sinani (2009) 66 / 121 t-stat Predicted t-stats range from -1.5 to 1.5 (cf. Figure 4) 

Havranek and Irsova (2010) 67 / 97 t-stat and PCC Median t-stat is 0.4 (cf. Table 1) 

Irsova and Havranek (2013) 52 / 1,205 Semi-elasticity Mean elasticity is -0.002 (cf. Table 1) 

Mebratie and van Bergeijk (2013) 30/ 130 Absolute t-stat Large percentage of insignificant estimates, ranging from 24% to 
71%, depending on the type of spillover (cf. Table 2) 

Iwasaki and Tokunaga (2016) 30 / 625 t-stat and PCC Mean PCC = -0.0007, Mean t-stat = -0.0047 (cf. Figure 2) 

Demena and van Bergeijk (2017) 69 / 1,450 t-stat and original 
estimates 

53% of the t-values are insignificant (cf. Figure 2). Mean t-stats 
are -0006 and 0.0004 (cf. Table 2). 

Bruno and Cipollina (2018) 52 / 1,133 PCC Mean PCC effect ranges from 0.001 to 0.024 (cf. Table 6) 

 
NOTE: Authors’ summary. Table and figure numbers refer to the tables and figures in the respective meta-analyses. 
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TABLE 8 
Description of Variables 

Variable Description Mean Min Max 

DATA CHARACTERISTICS 
Firm-level =1, if data are firm-level 0.923 0 1 
Domestic =1, if spillover effects focus on domestic firms 0.468 0 1 
SampleYear Mid-point of sample period 2001.4 1988 2011 

COUNTRIES 
OECD =1, if sample consists of data from OECD 0.467 0 1 
EU* =1, if sample consists of data from EU 0.380 0 1 
Developing* =1, if sample consists of data from developing countries 0.526 0 1 
China =1, if sample consists of data from China 0.230 0 1 

DEPENDENT VARIABLE 
Categorical =1, if dependent variable used a discrete number of categories 0.680 0 1 

SPILLOVER TYPE 
Exporters =1, if spillovers are from exporters 0.544 0 1 
Region =1, if spillovers are from same region 0.524 0 1 
Industry =1, if spillovers are from same industry 0.521 0 1 
FDI =1, if spillovers are from FDI 0.394 0 1 

SPILLOVER MEASURES 
Number =1, if spillovers are measured by number of firms 0.349 0 1 
Value =1, if spillovers are measured by export value 0.250 0 1 
Employment =1, if spillovers are measured by employment 0.092 0 1 
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Variable Description Mean Min Max 

Output* =1, if spillovers are measured by output 0.050 0 1 
R&D* =1, if spillovers are measured by R&D expenditures 0.018 0 1 
OtherMeasures* =1, if spillovers are measured by other variables 0.245 0 1 

INDUSTRY 
Manufacturing =1, if data are from manufacturing industry 0.762 0 1 
Service* =1, if data are from service industry 0.028 0 1 
IT* =1, if data are from IT industry 0.026 0 1 
Food* =1, if data are from food industry 0.022 0 1 
OtherIndustry* =1, if data are from other industries 0.162 0 1 

ESTIMATION METHOD 
Probit/Logit/Tobit =1, if estimation method is probit, logit, or tobit 0.724 0 1 
OLS/GLS* =1, if estimation method is OLS or GLS 0.261 0 1 
OtherEstimation* =1, if estimation method is none of the above 0.015 0 1 
IV =1, if estimation method uses instrumental variables 0.122 0 1 
SampleSelection =1, if estimation method corrects for sample selection 0.067 0 1 
Fixed Effects =1, if estimation method uses fixed effects 0.356 0 1 

CONTROL VARIABLES 
Size =1, if specification controls for firm size 0.822 0 1 
Productivity =1, if specification controls for firm productivity 0.648 0 1 
LaborQuality =1, if specification controls for firm labor quality 0.428 0 1 
Capital =1, if specification controls firm capital/assets 0.303 0 1 
R&D =1, if specification controls for R&D expenditures 0.221 0 1 
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Variable Description Mean Min Max 

STUDY QUALITY 
Journal =1, if study published in a peer-reviewed journal 0.839 0 1 
Impact RePEc impact factor of journal (April 2018) 0.150 0 4.93 
Citations Number of Google Scholar citations (April 2018) 67.8 0 2861 
 
NOTE: When the grouped variables include all possible categories, the categories omitted in the subsequent analysis (the benchmark categories) 
are indicated by an asterisk. 
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TABLE 9 
BMA Analysis 

 

Variable 
FixedEffects1 RandomEffects1 

PIP Cond Mean Cond SD Cond Pos Sign PIP Cond Mean Cond SD Cond Pos Sign 

FirmLevel 0.700 -0.003 0.003 0.001 0.848 -0.004 0.004 0.000 

Domestic 0.860 0.002 0.001 1.000 0.997 -0.005 0.002 0.000 

SampleYear 1.000 -0.001 0.000 0.000 1.000 -0.001 0.000 0.000 

OECD 0.478 0.000 0.002 0.938 0.900 0.003 0.002 1.000 

China 1.000 0.010 0.002 1.000 1.000 0.013 0.002 1.000 

Categorical 1.000 0.009 0.001 1.000 0.691 0.000 0.002 0.957 

Exporters 1.000 0.009 0.002 1.000 0.987 0.004  0.002  1.000 

Region 0.877 0.002 0.001 1.000 0.998 0.005 0.002 1.000 

Industry 0.998 0.003 0.001 1.000 0.986 0.004 0.001 1.000 

FDI 1.000 -0.013 0.001 0.000 0.700 0.000 0.001 0.001 

Number 0.994 0.005 0.002 1.000 0.924 -0.004 0.002 0.000 

Value 0.985 -0.004 0.001 0.000 1.000 -0.012 0.002 0.000 
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Variable 
FixedEffects1 RandomEffects1 

PIP Cond Mean Cond SD Cond Pos Sign PIP Cond Mean Cond SD Cond Pos Sign 

Employment 1.000 0.020 0.001 1.000 1.000 -0.014 0.003 0.000 

Manufacturing 0.623 -0.001 0.001 0.000 0.939 -0.004 0.002 0.000 

ProbitLogitTobit 0.981 -0.003 0.001 0.000 1.000 -0.007 0.002 0.000 

IV 1.000 -0.007 0.002 0.000 0.851 -0.003 0.002 0.000 

SampleSelection 0.583 -0.002 0.003 0.000 1.000 -0.015 0.003 0.000 

FixedEffects 1.000 -0.006 0.001 0.000 1.000 -0.011 0.002 0.000 

Size 0.715 -0.001 0.001 0.000 0.942 0.004 0.002 1.000 

Productivity 0.516 0.000 0.001 0.006 0.715 0.001 0.002 0.989 

LaborQuality 0.568 0.001 0.001 0.999 1.000 -0.015 0.001 0.000 

Capital 0.994 0.007 0.002 1.000 0.997 0.006 0.002 1.000 

R&D 1.000 0.022 0.003 1.000 1.000 0.012 0.002 1.000 

Journal 1.000 0.015 0.002 1.000 0.999 0.007 0.002 1.000 

Impact 0.595 0.002 0.003 0.950 0.999 -0.013 0.004 0.000 

Citations 0.928 0.000 0.000 0.000 0.735 0.000 0.000 0.991 
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NOTE:  The column headings PIP, Post Mean, Post SD and Cond Pos Sign stand for Posterior Inclusion Probability, Posterior Mean, Posterior 
Standard Deviation and the likelihood-weighted probability that the respective coefficient takes a positive sign. These are described in the 
“Bayesian model averaging of control variables” subsection of Section V in the text. The Bayesian Model Averaging (BMA) analysis was done 
using the R package BMS, described in Zeugner (2011). The WLS estimators FixedEffects1 and RandomEffects1 are described in Section II. The 
table yellow-highlights variables that (i) have a PIP equal to 100%; and (ii) have a Conditional Positive Sign of 1.000 (i.e., are consistently 
positive). Variables that (i) have a PIP equal to 100% and (ii) have a Conditional Positive Sign of 0.000 (i.e., are consistently negative) are 
highlighted in rose.  
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TABLE 10 
Meta-Regression Analysis 

(Omitting Spillover Measures) 
 

Variable FixedEffects1 
(1) 

FixedEffects2 
(2) 

RandomEffects1 
(3) 

RandomEffects2 
(4) 

All Control Variables Included 

SE 1.611*** 
(3.89) 

1.918*** 
(4.47) 

0.176 
(0.90) 

0.294 
(1.57) 

Exporters 0.009** 
(2.36) 

0.012*** 
(2.65) 

0.005 
(1.08) 

0.005 
(0.75) 

Region 0.003 
(1.07) 

0.010*** 
(2.69) 

0.006 
(1.37) 

0.015** 
(2.16) 

Industry 0.003 
(0.72) 

0.001 
(0.18) 

0.004 
(1.20) 

0.004 
(0.72) 

FDI -0.014 
(-1.29) 

-0.009 
(-0.85) 

-0.001 
(-0.12) 

-0.003 
(-0.50) 

Control Variables Selected Via Backwards Stepwise Regression 

SE 1.606*** 
(4.31) 

1.761*** 
(4.21) 

0.197 
(1.02) 

0.302 
(1.59) 

Exporters 0.009** 
(2.49) 

0.012** 
(2.58) 

0.004 
(1.05) 

0.005 
(0.70) 

Region 0.002 
(0.81) 

0.010** 
(2.55) 

0.005 
(1.18) 

0.014** 
(2.18) 

Industry 0.003 
(0.67) 

0.001 
(0.30) 

0.003 
(1.00) 

0.005 
(0.79) 

FDI -0.013 
(-1.37) 

-0.010 
(-1.09) 

-0.000 
(-0.03) 

-0.002 
(-0.30) 

 
NOTE: The top panel reports the results of estimating Equation (7) with the full set 
of data, estimation, and study characteristic variables (the 26 variables of TABLE 
7 plus the publication bias variable SE). The bottom panel locks in the spillover 
type variables Exporters, Region, Industry and FDI, along with SE, and then uses a 
backwards stepwise regression algorithm to select the control variables that 
minimize the BIC/SIC information criterion. The top value in each cell is the 
coefficient estimate, and the bottom value in parentheses is the associated t-statistic. 
The four WLS estimators (FixedEffects1, FixedEffects2, RandomEffects1, and 
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RandomEffects2) are described in Section II in the text. All four estimation 
procedures calculate cluster robust standard errors. *, **, and *** indicate statistical 
significance at the 10-, 5-, and 1-percent level, respectively.
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TABLE 11 
Meta-Regression Analysis 
(Omitting Spillover Types)  

 

Variable FixedEffects1 
(1) 

FixedEffects2 
(2) 

RandomEffects1 
(3) 

RandomEffects2 
(4) 

All Control Variables Included 

SE 1.611*** 
(3.89) 

1.918*** 
(4.47) 

0.176 
(0.90) 

0.294 
(1.57) 

Number 0.005 
(1.62) 

0.003 
(0.55) 

-0.004 
(-0.80) 

-0.008 
(-0.91) 

Value -0.004 
(-1.24) 

-0.010 
(-1.59) 

-0.013** 
(-2.23) 

-0.014 
(-1.53) 

Employment 0.021*** 
(4.02) 

0.014 
(1.57) 

-0.014** 
(-2.33) 

-0.021*** 
(-3.02) 

Control Variables Selected Via Backwards Stepwise Regression 

SE 1.621*** 
(4.35) 

1.800*** 
(4.25) 

0.230 
(1.21) 

0.302 
(1.58) 

Number 0.006* 
(1.77) 

0.002 
(0.42) 

-0.006 
(-1.01) 

-0.007 
(-0.88) 

Value -0.003 
(-1.12) 

-0.010* 
(-1.68) 

-0.013** 
(-2.23) 

-0.014 
(-1.44) 

Employment 0.020*** 
(4.17) 

0.015* 
(1.68) 

-0.016** 
(-2.52) 

-0.021*** 
(-2.97) 

 
NOTE: The top panel reports the results of estimating Equation (7) with the full set 
of data, estimation, and study characteristic variables (the 26 variables of TABLE 
7 plus the publication bias variable SE). The bottom panel locks in the spillover 
measure variables Number, Value and Employment, along with SE, and then uses a 
backwards stepwise regression algorithm to select the control variables that 
minimize the BIC/SIC information criterion. The top value in each cell is the 
coefficient estimate, and the bottom value in parentheses is the associated t-statistic. 
The four WLS estimators (FixedEffects1, FixedEffects2, RandomEffects1, and 
RandomEffects2) are described in Section II in the text. All four estimation 
procedures calculate cluster robust standard errors. *, **, and *** indicate statistical 
significance at the 10-, 5-, and 1-percent level, respectively.
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TABLE 12 
Meta-Regression Analysis  

(Spillover Types and Measures Included) 
 

Variable FixedEffects1 
(1) 

FixedEffects2 
(2) 

RandomEffects1 
(3) 

RandomEffects2 
(4) 

Control Variables Selected Via Backwards Stepwise Regression 

SE 1.606*** 
(4.31) 

1.794*** 
(4.23) 

0.231 
(1.20) 

0.303 
(1.59) 

Exporters 0.009** 
(2.49) 

0.012*** 
(2.83) 

0.006 
(1.33) 

0.005 
(0.70) 

Region 0.002 
(0.81) 

0.010** 
(2.57) 

0.006 
(1.60) 

0.014** 
(2.18) 

Industry 0.003 
(0.67) 

0.001 
(0.25) 

0.004 
(1.22) 

0.005 
(0.79) 

FDI -0.013 
(-1.37) 

-0.010 
(-1.09) 

0.000 
(0.07) 

-0.002 
(-0.30) 

Number 0.005 
(1.58) 

0.002 
(0.39) 

-0.006 
(-0.97) 

-0.008 
(-0.89) 

Value -0.004 
(-1.16) 

-0.010 
(-1.65) 

-0.013** 
(-2.25) 

-0.013 
(-1.42) 

Employment 0.020*** 
(4.10) 

0.014 
(1.66) 

-0.016** 
(-2.50) 

-0.021*** 
(-3.01) 

 
NOTE: The table reports the results of estimating Equation (7) by locking in 
both spillover type and spillover measure variables Exporters, Region, Industry, 
FDI, Number, Value and Employment, along with SE, and then using a 
backwards stepwise regression algorithm to select the control variables that 
minimize the BIC/SIC information criterion. The top value in each cell is the 
coefficient estimate, and the bottom value in parentheses is the associated t-
statistic. The four WLS estimators (FixedEffects1, FixedEffects2, 
RandomEffects1, and RandomEffects2) are described in Section II in the text. 
All four estimation procedures calculate cluster robust standard errors. *, **, 
and *** indicate statistical significance at the 10-, 5-, and 1-percent level, 
respectively. 
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FIGURE 1 
Distribution of t-and PCC Values 

 
A.  t-Statistics 

 

 
 

Distribution of t-statistics Percent 
t < -2.00 7.7 

-2.00 ≤ t ≤ 2.00 53.0 

t > 2.00 39.3 
 

 
B.  PCC Values 
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FIGURE 2 
Funnel Plots 

 
 

A.  Individual Estimates 
 

 
 
 

B.  Mean Study Estimates 
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APPENDIX 1: 
Visual Representation of BMA Analysis (FixedEffects1) 
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NOTE: Each column represents a single model. Variables are listed in descending order of posterior inclusion probability (PIP) and have all been 
weighted according to the Fixed Effects1 case. Blue indicates that the variable is included in that model and estimated to be positive. Red indicates 
the variable is included and estimated to be negative. No color indicates the variable is not included in that model. Further details about this plot 
is given in Zeugner (2011).  
 

SUMMARY STATISTICS: 

      Mean no. regressors                     Draws  

                "23.3595"                   "1e+07"  
 
                  Burnins                      Time  
                  "1e+07"           "28.06786 mins"  
 
       No. models visited            Modelspace 2^K  
                "4610663"                 "1.3e+08"  
 
                % visited               % Topmodels  
                    "3.4"                      "99"  
 
                 Corr PMP                  No. Obs.  
                 "0.9999"                    "3291"  
 
              Model Prior                   g-Prior  
          "random / 13.5"     "hyper (a=2.0006077)"  
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APPENDIX 2: 
Visual Representation of BMA Analysis (RandomEffects1) 
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NOTE: Each column represents a single model. Variables are listed in descending order of posterior inclusion probability (PIP) and have all been 
weighted according to the RandomEffects1 case. Blue indicates that the variable is included in that model and estimated to be positive. Red 
indicates the variable is included and estimated to be negative. No color indicates the variable is not included in that model. Further details about 
this plot is given in Zeugner (2011).  
 
 

SUMMARY STATISTICS: 
 

     Mean no. regressors                    Draws  
               "25.2064"                  "1e+07"  
 
                 Burnins                     Time  
                 "1e+07"         "1.046804 hours"  
 
      No. models visited           Modelspace 2^K  
               "2589905"                "1.3e+08"  
 
               % visited              % Topmodels  
                   "1.9"                    "100"  
 
                Corr PMP                 No. Obs.  
                "1.0000"                   "3291"  
 
             Model Prior                  g-Prior  
         "random / 13.5"    "hyper (a=2.0006077)"  
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