
Melody recognition systems

Carl Ansley

October 28, 1994

Contents

1 Introduction 1
1
2
3
5

1.1 Pattern recognition .
1.2 Melody recognition .
1.3 Project aims and objectives
1.4 Description of this report

2 Note recognition 6
6
7
7
7
8
8
8
9

2.1 Digital sampling
2.1.1 Amplitude quantisation
2.1.2 Error introduced by digital sampling
2.1.3 Implementation .

2.2 Note segmentation
2.3 Pitch recognition

2.3.1 Fundamental Period Measurement (FPM)
2.3.2 Gold Rabiner algorithm
2.3.3 Implementation ...

2.4 Pitch/Rhythm Quantisation
11
12

3 Melody recognition 13
3.1 Pitch contours 13
3.2 Pitch contour matching . . 14

3.2.1 Regular expressions 15
3.2.2 Approximate pattern matching 15

3.3 Previous approaches to melody recognition and comparison 16
3.3.1 ntt (Name That Tune) 16
3.3.2 Minimum Message Length comparison of musical sequences 16

4 Melody indexing 18
4.1 Thematic indexes 18

5 An approximate melody recogniser - mrs 22
5.1 Construction of the melody database 22
5.2 Pitch delta representation 23
5.3 Pitch segments 24
5.4 Pitch segment correlation .. 25
5.5 Full-melody retrieval with mg 25

5.5.1 The mg system ... 26

5.5.2 mg and mrs

5.5.3 Melody querying
5.6 Summary of mrs command line arguments

6 Experimental results
6.1 Pitch delta level and segment size .

6.1.1 Average match position ..
6.1.2 Distribution of correlation values

6.2 Indexing with mg
6.3 Approximate melody recognition
6.4 Summary

7 Conclusion

ii

26
27
27

32
32
33
33
34
34
34

38

Chapter 1

Introduction

A customer walks into a record store to buy a new single that they have just
heard on the radio. The computer system in the record store has an index of
singles, which can be referenced by code number, title, or artist. Unfortunately,
the customer does not.know the name of the song, or who the artist is; the only
information available is the melody itself.

In this situation, it would be desirable to index the tunes in the music database
by their melody. But this raises some questions. How is it possible to perform
a search on a melody? And exactly how can the melodies be indexed in the
first place?

What is required is a melody recognition system. Such a system shoul<l take
a human voice (humming or singing a tune) and produce a ranked list of the
most likely matches to this tune contained within a melody database.

1.1 Pattern recognition

Humans have a remarkable ability to quickly recognise and understand patterns
in all types of sensory input. For us it is a trivial task to associate a particular
sound, smell, or visual cue with some meaning. Computer scientists have for
years been attempting to provide computers with a similar ability, to recognise
patterns in the digital data fed to them. Although the task of programming a
computer to understand its input is a very difficult problem, the recognition and
association of fairly complex patterns within the data is now becoming practical.
This is in part due to better algorithms, and in part due to significant increases
in the processor power of modern computer systems.

The degree to which the application of pattern recognition techniques have
been successful is dependent on the nature of the data and the type of pattern
being searched for. For example, computers are particularly adept at finding

1

a word in a document - as long as the word and the document are given to
the computer in a digital, character-based format. Such a feature is commonly
found in word processors and text editors. A more challenging situation is
where the document is in bitmap form and the search word a digital sound
sample. A solution to the latter problem is several orders of magnitude more
complex to implement than the former.

There are several applications where considerable motivation exists to find a
workable solution to the more complex recognition problems. Some common
examples are

• Optical character recognition (OCR),

• Optical music recognition (OMR),

• Note recognition, and

• Speech recognition.

The melody recognition system that is the focus of this report makes direct
and indirect use of the first three recognition systems listed above. An OMR
system incorporating OCR [Bai] was used to scan in a melody database from
the hymn book "Hymns for Today's Church", which became a testbed for the
melody recognition system.

Note recognition is the preprocessor of a melody recognition system. It is
responsible for converting digital samples of a human voice humming or singing
into note form.

1.2 Melody recognition

The purpose of melody recognition is to automate the process of finding a ref­
erence to a particular melody. The idea is that a computer is given a se­
quence of notes, which it then must match to a corresponding entry in a
melody database. Once a match has been found, what happens next is en­
tirely application-dependent. The output may be as simple as printing out the
name of the matching melody, or as complex as playing it while printing out
the sheet music.

There are several issues to be considered when implementing a melody recog­
nition system -

• How does the user enter the notes of the search key into the system?

• How will the system deal with inaccuracies in user input?

2

• Once the notes have been entered, what sort of technique should be em­
ployed to compare melodies?

• What methods can be used to create and index the melody database'?

• Can the system deal with potential inaccuracies in the music database'?

These are discussed in Chapters 2, 3, and 4.

1.3 Project ain1s and objectives

The aim for this project was to research, design, and provide the basis of an
implementation for a real-time melody recognition system. The system should
match music hummed or sung by a human with a particular piece in a melody
database. The system should also allow for very large melody databases, where
linear searching of the database would be too slow.

The design of the system consists of the following components:

• Digital sampling,

• Note recognition,

• Melody recognition, and

• Melody indexing.

They are linked together in a serial manner, the output of one component be­
ing the input to the next. The overall structure of the system is shown in
Figure 1.1. Some of the system components have been well researched (such as
note recognition [Kuh90],[Lan90),[SJ89],[Ric90]) and others have not (such as
melody recognition). The main thrust of this report relates to melody recogni­
tion and how this effects the indexing of the melody database.

An important part of this is experimentation with various possible melody
correlation functions. A good function should have the following three charac­
teristics -

• accuracy (melodies that almost match should be given much higher cor­
relation values than those that do not),

e speed (essential if the system is to exhibit real-time performance), and

• index-ability (easy to modify to allow indexing, so matching can be done
in less-than-linear time with respect to the database size).

Most project experiments were performed on a Sun SPARCstation 10, using a
melody recognition test program called mrs, which is written in C.

3

Digital Sampling

t
Microphone input

Note recognition

Melody recognition

Melody
indexing

Melody Database

Figure 1.1: Melody recognition system diagram

4

1.4 Description of this report

Chapters 2 and 3 describe the issues relevant to note and melody recognition.
Chapter 4 provides a background to the problem of indexing melodies. Chap­
ter 5 describes the design and implementation of the mrs melody recognition
program. Chapter 6 presents some results gathered through use of mrs. Chap­
ter 7 contains some conclusions based on the experimental results.

5

Chapter 2

Note recognition

Note recognition is the initial phase of a melody recognition system. It is made
up of the following components:

e Digital sampling of vocal input (Section 2.1),

• Note segmentation (Section 2.2),

• Pitch recognition (Section 2.3), and

e Pitch and rhythm quantisation (Section 2.4)

The efficiency and accuracy of these subsystems are very important. Although
allowances are normally made for errors that occur during the note recognition
phase, the overall performance of melody recognition system is highly dependent
on the quality of this output.

2.1 Digital sampling

A sound can be described as a continuous function of time, where the dependent
variable represents the amplitude (or loudness) of the sound signal at any given
time. This is the waveform of the sound signal.

Because the waveform is continuous1 it is impossible to represent it digitally
with complete accuracy. This problem is overcome by approximating the wave­
form, in such a way that the most important information is preserved.

The first step is to convert the variations in air-pressure which make up the
sound into variations in electrical voltage. This is normally performed by a

1 Consequently, there are an infinite number of amplitude values between any two distinct
time points.

6

'. I -.·,

I

microphone. At constant time intervals a sequence of measurements is then
taken of the resulting voltage waveform. The frequency of these measurements
is called the sample rate.

2.1.1 Amplitude quantisation

When a voltage measurement is taken at a particular time, the resulting value
is one point on a continuous voltage range. As such, this value would require an
infinite number of bits to represent in a digital binary form. An approximation
is found by dividing the voltage range into N subranges. All the voltage values
which fall within a particular subrange are assigned a value which represents
that subrange. This is the final step in the process, and is called amplitude
quantisation. The quantised value requires approximately log2 N bits to repre­
sent digitally.

2.1.2 Error introduced by digital sampling

There a.re two types of errors which are introduced by this process. The first is
called aliasing, and the second is called the quantisation error.

Aliasing occurs when a high frequency near the sample rate is mistakenly in­
terpreted as a very low frequency. A common method of reducing the effect
of aliasing error is to use an aliasing filter in conjunction with the analogue to
digital converter.

The quantisation error is the difference between the original voltage level and
the mid-point of the voltage range in which it lies. The amount of random white
noise introduced into the sampled signal by the quantisation error is inversely
proportional to the sample rate. In other words, a higher sample rate results
in less noise.

2.1.3 Implementation

For this project, all sound sampling was performed on a Macintosh, using the
built-in sound sampling software. The sample rate was 22,254 samples per
second, each sample represented by an 8 bit value (giving 256 distinct voltage
subranges). This is more than adequate for the purposes of the pitch recognition
subsystem. The magnitude of quantisation and aliasing errors are not significant
enough to degrade recognition performance.

7

2.2 Note segmentation

When a digital representation of the user's input has been obtained, it is nec­
essary to split the sound sample into chunks. Each chunk should represent a
single note. This process, called note segmentation, splits a sound sample at
the points where the RMS2 power of a signal drops below a certain threshold.

The threshold can either be static or dynamic, and for note recognition the
latter is normally used. A static threshold assumes the user will sing at a
relatively constant volume. A dynamic threshold has the advantage that it can
adapt to varying levels of volume.

When the process of note segmentation is complete, the resulting chunks of
sound sample can be individually passed to the pitch recognition system. The
information calculated during this phase is also used to perform rhythm quan­
tisation.

2.3 Pitch recognition·

Two pitch recognisers were considered for use in this project. The first is based
on an algorithm called the Fundamental Period Measurement [Kuh90].

The second method is based on the Gold Rabiner [GR69] algorithm. The code
for this technique was obtained from Trevor Monk's SightSinging Tutor appli­
cation [Mon93], and is written in C. The code also performs note segmentation,
pitch quantisation, and rhythm quantisation.

2.3.1 Fundamental Period Measurement (FPM)

With this method, the sound samples are fed through a bank of six ba11dpass or
lowpass filters whose upper cutoff frequencies are spaced at half octave intervals.
If the filters are sufficiently sharp, then one of the filter outputs will be basically
sinusoidal. The period of this sinewave and the pitch of the input signal can
then be determined by measuring the time between zero crossings.

The algorithm used to make the final pitch decision is shown in Figure 2.1.
The maximum of the amplitude measurements A(O) ... A(5) is determined and
compared with a silence threshold. If the input is silent, this is encoded as a
period of -1. Otherwise the amplitude measurements are scanned, beginning at
the lowest frequency filter, for the first filter with an appreciable amplitude.

The fundamental of the input signal is then assumed to lie in the passband of

2 Root Mean Square

8

max_amplitude = max(A(O), A(1), ... , A(5))
if max_amplitude < SILENCE_THRESHDLD then

period= -1
else

threshold= max_amplitude I 4
period= -1
filter = 0
got_period = FALSE
while filter<= 5 and got_period == FALSE

if A(filter) > threshold
if T(filter) is reasonable for filter then

period= T(filter)
elseif filter< 5 and T(filter+1) reasonable for filter+! then

period= T(filter+1)
else

period= -1
endif
got_period = TRUE

end if
endwhile

end if

Figure 2.1: Pseudo-code for the Fundamental Period Measurement algorithm

this filter or the filter immediately above it. The period in the filter's output
is read and checked to see if it is reasonable for the filter. If so, it is taken as
the period of the input signal. If not, the period of the next highest filter is
read. If it is reasonable for its respective filter, then it is taken as the period.
Otherwise, the period is set to -1 (equivalent to silence), representing a problem
in recognizing the pitch.

This algorithm was implemented on an Acorn A5000 in C. The main advan­
tage of the technique is that it is computationally efficient, primarily driven by
Kuhn's original motivation of achieving real-time pitch recognition on an early
IBM PC. The memory requirements of the system were negligible, and Kuhn's
implementation used merely 50% of the available processing power of an IBM
PC operating at 4.77 MHz.

2.3.2 Gold Rabiner algorithm.

The Gold Rabiner algorithm operates on a single lowpass filtered waveform.
The peak to peak and peak to valley measurements of the filtered waveform are
fed into six parallel pitch period estimators. A coincidence detector is used in
combining the six estimators into a final output pitch.

g

E"'§
.-----------, ~:.:~

Processor ~L.:..:..:....:J
of signal

peaks

Final pitch
period -

computation

Figure 2.2: Block diagram of the Gold Rabiner algorithm

m3 m2 m1

..................... m6 J ~~ ~4

Figure 2.3: Estimator inputs generated from a portion of filtered waveform

Figure 2.2 shows a block diagram of the Gold Rabiner algorithm. The initial
filter uses a lowpass cutoff of 900Hz, which ensures the fundamental frequency
and at least two higher harmonics are present in the signal. The signal peak
processor generates inputs for the six pitch period estimators (PPEs) by scan­
ning the filtered waveform for local maxima and minima. Figure 2.3 shows an
example of estimator inputs generated from a portion of filtered waveform. The
waveform has two local minima and two local maxima.

Each estimator operates on its own pulse train, analysing the height and dis­
tance between pulses. They use this information to generate their own estimates
for the final output pitch. The last stage of the algorithm is a majority estimate
combiner. It takes the six pitch estimates produced by the PPEs in combination
with previous estimates and determines the final output pitch.

10

Sample name Sample size FPM GoldRabiner

JBOND 222540 bytes 1.2 seconds 9.2 seconds

Table 2.1: Comparison of two pitch recognition programs - FPM vs
GoldRabiner

The code for this algorithm was originally written in C on a Commodore Amiga.
The ta.sks of pitch and rhythm quantisation are integrated into the software.
It was converted by Monk to work on the Apple Macintosh platform. For the
purposes of this project, the code was converted to operate on an Acorn A5000
and subsequently modified to output pitch deltas. Section ?? describes the
format of this information.

2.3.3 Implementation

Table 2.1 shows a time comparison between FPM and Gold Rabiner process­
ing a 10 second sound sample. No note segmentation, rhythm quantisation
or pitch quantisation was performed. The test machine was an Acorn A5000
with 4 megabytes of RAM and a 33Mhz ARM CPU without floating point
co-processor.

The FPM implementation is significantly faster than the Gold Rabiner imple­
mentation. Much of the difference can be accounted for by the following factors:

e GoldRabiner uses emulated floating point instructions.

• FPM uses purely integer arithmetic.

e GoldRabiner is written entirely in C.

e FPM is written mostly in C, but the function to perform parallel waveform
filtering is written in ARM assembler.

Both algorithms exhibit O(N) time complexity. FPM has six filters operating
in parallel, GoldRabiner requires only one. The six pitch estimators and com­
plicated majority estimate combiner account for a majority of the execution
time used by GoldRabiner. The remainder of the FPM algorithm is extremely
simple and requires very little processing time. Because the six parallel fil­
ters are the most computationally intensive components of FPM, Kuhn (1990)
regarded them as ideal candidates for implementation in hardware, or a.s a hard­
ware/software hybrid. With the significant increase in processing power over
recent years, this is unlikely to be necessary in future systems.

Despite the faster implementation of the FPM algorithm, the Gold Rabiner
code was chosen for use in this project. The three reasons for this are (1) the

11

implementation was entirely in C and therefore more portable, (2) the difference
in speed is mainly implementation related, not algorithm related, and (3) the
tasks of pitch and rhythm quantisation are integrated into the code.

2.4 Pitch/Rhythm Quantisation

The final step of note recognition is assigning musical values to the notes. This
requires both pitch and rhythm quantisation.

Rhythm quantisation simply takes the length of a note calculated during the
note segmentation process, and quantises the note to the nearest rhythmic
value. This should take into account varying values for tempo, as durations in
musical rhythm are relative to the tempo. mrs currently ignores rhythm, for
reasons outlined in Chapter 5.

Pitch quantisation involves selecting a music pitch for a note given the varying
frequency over the duration of that note. A range of frequencies map to a single
pitch, and any note whose determined frequency lies within this range will be
quantised to that pitch.

Determining the overall frequency of a note, given that frequency varies over
the duration of the note, is not a trivial problem. A common difficulty caused
by many pitch recognition algorithms is that they generate irregular spikes at
the start of a note. Most of these algorithms require some time to settle on the
correct pitch.

Because of these random artifacts, calculating the average frequency over the
duration of a note is not a very accurate method of determining overall fre­
quency. Monk's Gold Rabiner code uses a technique called steady state fre­
quency analysis [Mon93). This selectively analyses the steady state frequencies
to provide a more accurate value.

12

Chapter 3

Melody recognition

The note recognition system will output a series of notes, which in some way
need to be matched with known pieces of music within the music database. In
other words melody recognition will need to be performed on the input data. The
following points need to be considered when constructing a melody recogniser:

• The input is monophonic, therefore the music in the database should also
be monophonic. This simplifies indexing and querying considerably.

• The search key will not be complete or precise. For example, the search
key may not begin with the correct note or consist of the correct pitch
changes, even though the overall pitch contour is very similar to the orig­
inal.

• The system should be fast. It should be assumed that the music database
is large, so a linear-search type approach to the recognition problem is
not appropriate. For example, the Library of Congress (as of 1990) has a
collection of 2 million musical pieces. Uncompressed, this would result in
large amount of data even if represented monophonically.

• Because of the potential size of the database, the music must be stored
and indexed as efficiently as possible.

3.1 Pitch contours

Most people can recognise a melody, whether it is a pop tune on the radio
or a theme as it reappears throughout a symphony. When creating a melody
recognition system for use by humans, an important question to consider is what
features of melodies we use for memory, and how these features are processed
to aid recognition. This in turn defines which elements of a melody need to be
represented in the melody database.

13

Psychological studies of human memory have indicated that relative pitch is
more important than rhythm for the recognition of melodies [SH085] [DC86].
The suggestion is that pitch contours should be the primary data structure used
to represent melodies for the purpose of melody recognition. This is intuitive
in the sense that rhythm tends to contain less variation than pitch, so therefore
less information.

Slaboda [SH085] conducted a study on a musical idiot savant, who is capable
of memorising large-scale pieces of piano music in three or four hearings. An
idiot savant is a person with a low general IQ who have exceptional talent in
one particular field. In the study it was found that the subject, in common
with other observed cases in the literature [Min23][Rev25][Vis70], memorised
material mostly in terms of tonal structures and relations.

Dewitt and Crowder [DC86] conducted a series of experiments to investigate
the influence of contour and interval information. They recognised that two of
the more general features of melodies are (1) contour (the binary pattern of
ups and downs of pitch direction), and (2) interval information (the ordered
sequence of pitch distances along a logarithmic scale of frequency between any
two adjacent pitches in the melody). A primary question Dewitt and Crowder
set out to answer was what information, be it contour, interval, or both, is
useful for the recognition of melodies.

In the study, subjects rated pairs of melodies as similar or different on a five­
point scale. Six conditions were defined by two delays (1 second and 30 seconds
between hearing the two melodies) and three item types (target, related, and
lure). In target pairs, the second melody retained the contour and interval
information of the first melody, being an exact transposition to another key.
In related pairs, only contour information was retained, and with the lure pairs
neither contour nor interval information was retained.

The results indicated that contour information had a larger influence on recog­
nition, especially after short delays. Interval information had a more significant
effect after longer delays than it did after shorter delays, but was still the lesser
influence. In the ideal melody recognition system, both pitch contour and in­
terval information would be used to search for matching melodies. However
pitch contour is the most important of the two, as this is the primary structure
humans use to remember melodies.

3.2 Pitch contour matching

If melody recognition is to be performed using pitch contours, the problem of
pitch contour matching needs to be addressed. There are three basic approaches
to matching a pair of pitch contours:

14

• Regular expressions, and other exact pattern matching techniques,

• Approximate pattern matching (eg agrep), and

• Pitch segment matching.

Pitch segment matching, as used by mrs, will be described in chapter 5.

3.2.1 Regular expressions

Pitch contour matching could be performed using regular expressions. A regular
expression is a search pattern format that contains facilities such as wild-card
matching.

The main problem with regular expressions with respect to melody recognition
is that it is an exact pattern matching technique. No errors are allowed for, so
variations in the user's search key will result in poor recognition performance.
Furthermore it is a linear searching method by nature, and therefore difficult
to apply sub-linear indexing methods to it.

3.2.2 Approximate pattern matching

Approximate pattern matching, as performed by agrep [WM91][WM92], is
much more suited to the problem of melody recognition than simple regular
expressions. The algorithm used by agrep will find all occurrences of a pattern
with at most k errors. An error is specified to be either an insertion, deletion,
or substitution. This type of technique is known as dynamic programming.

An insertion error occurs when a single character needs to be inserted into an
approximate occurrence of the pattern so that it exactly matches the search
pattern. Deletion is the same, except that a deletion needs to be performed
before an approximate occurance matches the search pattern. A substitution
error is where one character must be substituted by another before the occu­
rance matches the search pattern. agrep also allows a weighting to be given to
each type of error. For example, a deletion can be made to count as two errors
instead of one.

Dynamic programming is potentially useful for melody recognition. Because
of its approximate nature, allowances can be made for variations in the user's
search key. Unfortunately it shares a problem with the regular expression tech­
nique, in that it is a fundamentally linear searching method.

15

('' .

3.3 Previous approaches to melody recognition and .
comparison

Very few references to existing melody recognition systems were found in the
academic literature. A reference to a prototype Japanese melody recogniser
was observed on the BBC science and technology television series Tomorrow's
World. Unfortunately this was a commercial system, and no further information
could be obtained. Two published recognition systems are described below.

3.3.l ntt (Name That Tune)

The ntt program was written by Michael Hawley [Haw90] at the MIT Media
Laboratory. The input is in the form of a melody played at a keyboard, trans­
mitted to the computer via a MIDI interface (According to Hawley, at this
point the input pitches are quantised to remove embellishments, but he does
not specifically state how this is done). It then finds possible matches from a
database of musical themes.

In the database, each melody is represented as a string of relative pitch changes,
plus a starting tone. e.g. [3, -1, 4, 2, CJ These pitch changes are coded as
ASCII characters, the numbers representing an offset from ASCII 'D'. This
ensures that all the melodies are simple strings which can be sorted. Also,
since the encoding is relative, transpositions will be found.

When searching for a match in the database, ntt simply needs to perform a
binary search. However, there are some problems with this approach, especially
with respect to untrained vocal input:

• No "fuzzy" approximate searches are done.

• For an input to match a tune in the database, they must both start at
the same point.

• Precise pitch changes are unlikely when the input is vocal.

Because of the above points, an algorithm such as the one used by ntt is also
not appropriate for providing a metric of "similarity" between two or more
tunes. It can do little more than perform an action such as "Find a tune that
starts like this in the database".

3.3.2 Minimum Message Length comparison of musical sequences

In his thesis, Cook [Coo94] applies Minimum Message Length (MML) encoding
to the comparison of melodies. The roots of MML encoding are in informa-

16

tion theory and the field of data compression. Simply put, MML says that if
significant compression can be achieved by expressing one sequence in terms of
another, then those two sequences must be related.

As far as the basic MML technique is concerned, matching is a binary oper­
ation. In other words, individual pitches either match or do not match, and
transpositions of the same musical theme are not recognised as being related.
In order to compensate for this, Cook suggests a further adjustment to the
basic algorithm, called interval matching, which uses a probabilistic order-zero
model to quickly adjust to constant differences between pitches.

Cook describes the major advantage of MML as its objectivity, with parameters
determined by data rather than a pre-determined heuristic method. However,
the MML technique is designed for music analysis, and is unsuitable for melody
recognition. A major disadvantage in this respect is the unsuitability of MML
for fast comparisons and indexing, because it still requires a comparison of every
entry in the database.

17

Chapter 4

Melody indexing

The concept of indexing tunes by their melodic components has been around
for several decades. The thematic index is one of the more interesting special
indexes in the field of music. Unfortunately, a problem with most thematic
index reference books is that the task of searching for a particular melody is
not easy unless the searcher happens to have some specific musical knowledge.
However, they are worth investigating for some intriguing ideas which have
possible application in the field of computer-based melodic indexing.

4.1 Thematic indexes

Barlow's Dictionary of Musical Themes [BM48] was published in 1949, and
contained an index of over 10,000 tunes. To use the dictionary to locate a
particular melody, the theme must first be transposed to C major, and then
the letter representation of the first few opening notes looked up in an alphabetic
index. Table 4.1 shows a segment of Barlow's notation index.

CCBCAF
CCBCAG
CCBCBA
CCBCBCBC
CCBCBCD

H666
A61

C232
M512
M846

Table 4.1: Segment of the notation index from Barlow's Dictionary of Musical
Themes

The letter and number to the right of each definition in the notation index
indicates the place in the alphabetic section of the book where the theme may
be found. The themes are listed in their original key with the name of the

18

composition and the composer. Figure 4.1 includes one of the theme entries
which is indexed in Table 4.1.

Symphony In E Flat
8.& H. No.103
"Drum Roll"

4th2~~y~~:~t1'¥r· -~1r fr Pr1J u J a,.u a JJ1r· HbbS

Isl lfove~t~~ !41'&2 r Ir r r I J r r Ir r r IF r J I Hbb6

151
1~t:h~~~ t,,u C!!j Eu t di tfvfff1IDrr@1 rr,_ H667

Isl Movement l# e~~~- · ...
2nd Theme ru F LLil3-i..f f I Utt E1Cf I t.m:H F H668

Figure 4.1: An example of theme entries from Barlow's Dictionary of Musical
Themes

Most thematic indexes are devoted to the works of one composer. The lvlelodic
Index to the Works of Johann Sebastian Bach [Pay62], for example, indexes and
tabulates all of the themes of Bach according to their melodic design. The index
contains 3872 themes, and enables the searcher to locate a Bach composition
by the pattern of the first three intervals. All the melodies are in the treble clef
and in the key of C. Repeated notes are ignored.

Line direction is unchanged:

r r
Line direction is changed once:

Line direction is changed twice:

r r
Figure 4.2: Six categories of melodic pattern used by the Melodic Index to the
TtVorks of Johann Sebastian Bach

The line formed by the composition's first four notes of differing pitch creates
the pattern used in finding the composition. The patterns are categorised into
six different types, as shown in Figure 4.2. Each of the six types are divided
into seven sub-categories, based on the seven possible starting notes.

The thematic index, which is in the same order as the charts, lists the themes

19

in full. Figure 4.3 shows an example of a finding chart, and Figure 4.4 shows
the corresponding entry in the thematic index.

20

1 2 3 4

1 & h .. q.l ~ , , 1 .. ~ &- I
1-12 • 5 ••22 ... 37 • 22

5 6 7

I \, , , j., - • I P•"., • I
•

81
"' 3 •

11
6 •• I

8 9 10 11

I P• I , ... I , .. & .. I " .. I
•

11
1 * 11

9 •"1 •"'a2

Figure 4.3: Example of a finding chart from the Melodic Index to the Works of
Johann Sebastian Bach

• --· Muslkallsches Opfer.

A _..... --·
y~onea di verai, no, 5.

1$ffJ. Ji,; -3 .J 03 I J

Figure 4.4: Corresponding entry in the thematic index

21

Chapter 5

An approximate melody
• recogniser - mrs

The program mrs was written as a testbed for measuring melody recognition
performance using pitch contours.· These contours are translated into a series
of data structures called pitch segments, which can then be correlated using a
variety of methods.

Due to the highly distributed nature of the entire system, it could not be effec­
tively tested on real-time basis. However human voice search keys were entered
into the system, and data was transferred from component to component man­
ually. The system performed very well in the complete test cases that were
done.

5.1 Construction of the melody database

The source of the melodies used in the construction of the melody database was
the hymn book "Hymns for Today's Church". The melodies (approximately
600 in all) were scanned in one page at a time. Each page was processed by
David Bainbridge's optical music recognition system. Figure 5.1 shows part of
a page from the hymn book. Figure 5.2 shows the corresponding output after
processing by the optical music recognition system.

The first section of the file specifies notes that make up each melody (there is
one melody per stave). The second section of the file contains the text which
appears immediately above or below each stave on the page. This text is treated
as the "title" of the melody by mrs.

All files created by the optical music recognition system (one file per page of
music) were concatenated and piped into mrs. At this stage mrs creates the

22

Delta value
0
1
2
3

Description of mapping
Much lower in pitch
Slightly lower in pitch
Slightly higher in pitch
Much higher in pitch

Table 5.1: Basic mapping of four-level pitch deltas

melody database, converting each tune into pitch delta format, described in
Section 5.2.

The melody database is a simple text file, where each line represents a melody.
A line contains the melody name followed by a tab, a colon, a space, and a
corresponding pitch contour. An excerpt from the Hymn database is shown in
Figure 5.3.

5.2 Pitch delta representation

To allow for errors in the input, the pitch change information generated in the
note recognition sub-system is further quantised into pitch deltas. The unit of a
pitch change is the semitone. All pitch changes of magnitude zero are ignored.
This compresses the pitch contour horizontally to a significant extent, but has
some advantages. The most important advantage is that it avoids ambiguities
where the search key contains, for example, a single crotchet where two quavers
of the same pitch was meant. Another advantage (albeit minor) is that it allows
the number of delta levels to be a power of 2. This results in a convenient binary
representation for each pitch delta.

mrs can handle either two-level or four-level pitch deltas. A two-level pitch
delta can have only two possible values, higher or lower. Generating this is
simply a matter of checking the sign of the pitch change.

Four-level pitch deltas are more complicated to create from the original pitch
change information. The "fuzzy" mappings of the four possible values are shown
in Table 5.1.

To perform the quantisation, the size and position of the four sub-ranges in
terms of semitones need to be specified. Figure 5.4 shows the distribution of
pitch changes present in the Hymns database.

Due to errors introduced by the optical music recognition system1, some spu­
rious pitch changes are present in the data. A pitch change of more than an

1 Mainly due to the poor quality of the original sheet music.

23

Delta value ASCII representation Subrange (semitones)
0 D PitchChange < -2
1 d -2:::; PitchChange < 0
2 u 0 < PitchChange :::; 2
3 u PitchChange > 2

Table 5.2: Mapping of four-level pitch delta values to semitone subranges

octave (12 semitones) would normally not appear in a melody. However, these
can safely be ignored as the number of glitches is too small to affect the basic
distribution significantly.

Approximately half the pitch changes in the database have a magnitude of one
or two semitones. Therefore, mrs maps half the available delta levels to changes
of this magnitude. This ensures that roughly equal numbers of each pitch delta
value will appear in the melody database. The actual mappings of sub-ranges
to pitch delta values are shown in Table 5.2.

Also shown in the table are the ASCII representations used for each delta value.
This representation is the one used by mrs to store melodies in the database.

Figure 5.5 shows an example of the overall process. The notes which make up
the search key are converted into pitch changes, and then pitch deltas. Both
the numeric delta values and ASCII representations are shown.

5.3 Pitch segments

Before pitch contour correlation can take place the contours are broken up into
pitch segments. This conversion must be performed on both the search key and
the melody database. Figure 5.6 shows two segmented pitch contours, one with
a segment size of two and the other with a segment size of four.

In the case of the search key, several segmented pitch contours are generated.
The encoding of each successive segmented contour starts on a different note in
the original search key.

The number generated is equal to the segment size, as each contour represents
a different possible correlation point. This removes the problem which would
otherwise occur if an occurance of the search key did not start on a segment
boundary within the matching melody. The system is also more resilient to
deletion and insertion errors within the search key as a result.

There is also a second representation of tunes in the melody database where
the number of pitch deltas is not a multiple of the segment size. Because all

24

partially empty pitch segments are discarded, information would normally be
lost at the end of the pitch contour. In the second representation, the end of
the last segment is aligned with the last pitch delta in the contour. This ensures
the entire pitch contour is represented in pitch segment form.

5.4 Pitch segment correlation

Pitch segment correlation involves comparing two melodies in segmented pitch
contour form and producing a correlation value. Similar pairs of melodies should
be given higher values than dissimilar ones.

Two pitch segment correlation methods are supported by mrs directly, one of
which is a refinement of the other. Their purpose is to show the basic viability
of segmented pitch contours as a technique for melody recognition.

The first correlation method is a very simple technique called commonsegs. It
simply adds up the number of segments that a pair of pitch contours have in
common, and uses this as the correlation value.

The second method is a refinement of commonsegs called csordered. This
technique differs in that common segments in a pair of pitch contours are given
extra weighting if they are in the same order. The overall correlation value is
incremented for each pair of common segments that are in the correct order.

The results of the first method, commonsegs, were similar in nature to cs ordered
except generally worse. The commonsegs method is weighted heavily in favour
of longer melodies. Because ordering and melody length are not taken into
account, longer tunes tend to be given higher correlation values simply because
they contain more pitch segments. For the generation of experimental results
commonsegs was ignored, and csordered was used exclusively.

5.5 Full-melody retrieval with mg

Given a search key and a melody database, a simple way of performing melody
recognition is to obtain a set of correlation values for the search key and each
melody in the database. Ranking the output in order of highest to lowest
correlation value groups the most likely matching melodies for a given search
key at the top of the list. This method was used to produce some of the results
given in Chapter 6.

Although this proved successful for experimentation purposes, the technique is
not appropriate for use in the melody recognition process. The main problem
is that execution time is proportional to the length of the melody database.
To reduce the time requirements of recognition, indexing of the database is

25

required.

5.5.1 The mg system

The mg2 system [WMB94] is a full-text retrieval system that runs under Unix.
mg is designed to index and retrieve information from very large collections of
documents.

The document collection is compressed and indexed before it can be queried. A
wide variety of queries are handled by mg, but most importantly it can perform
ranked searches without searching the entire database. This makes it an ideal
candidate for use with mrs.

An inverted file is used by mg to perform indexing. Each item in the index
is a "word" (in this case a pitch segment) followed by a list of "documents"
(melodies) that contain the word. This means that only the melodies which
have segments in common with the search key need be processed, the rest can
be ignored.

5.5.2 mg and mrs

The mg system requires the document collection to be in a particular format
before it can be compressed and indexed using the mgbuild program. Firstly,
the mg__get shell script requires a slight modification so that it knows how to
handle the melody collection. Figure 5.7 shows the lines that need to be inserted
into the main switch statement.

This ensures that when the command mgbuild melody is executed, the output
file of mrs (in this case MelodyDatabase. mgseg) is passed directly to the mg
system without modification.

Secondly, mrs must be told to produce a slightly different format of melody
database to the one described in Section 5.1. During the conversion of the
optical music recognition output into a melody database, some extra operations
need to be performed. A Ctrl-B character is inserted between every line in the
database, which causes mg to treat the melodies as separate documents. The
pitch contour of the melodies are segmented (as described in Section 5.3) by
inserting a space between each pitch segment. This ensures that pitch segments
are treated as separate words for the purposes of a ranked query.

Different letters must be used when outputting the ASCII representation of a
4 level pitch delta. "D", "d", "U", and "u" are used during the normal conver­
sion process. However, mg's ranked query is case insensitive so the distinction

2 Managing Gigabytes

26

between "D" and "d" is lost. Selecting four letters such as "G", "d", "u" and
"B" solves the problem.

5.5.3 Melody querying

When the melody database has been compressed and indexed by mg, it can
finally be queried. mrs can generate a query for a given search key to be
subsequently processed by the mgquery program. For example, given the pitch
contour duduGBGBdu, the output of mrs will be:

.set query ranked
dudu GBGB uduG BGBd duGB GBdu uGBG

In addition, mrs can create a very large query which performs a ranked search
for every melody in the database. Executing this query on the Hymn database
generated over 8 megabytes of output. This feature was implemented solely for
experimentation purposes. See Chapter 6 for details of the results.

5.6 Summary of mrs command line arguments

usage: mrs <command> [command paramters]

<command> can be one of the following: commonsegs, csordered, stats,
meltoseg, mgstats, meltomgseg, genmgquery, melpdelta

These commands take the following additional parameters:
commonsegs <pitch contour>
csordered <pitch contour>
stats <filename>
genmgquery <pitch contour>

stdin and stdout are used for input and output by all commands.

27

3533
SAVIOUR CHRIST, 216

4M i J J J nJ J r r 1r--J ~ J I
4444448

CARTAN, 5

4884

Figure 5.1: Page from original hymn book

28

1.1: I
4F#(1.0),4C#(1.0),4E(1.0),4A(1.0),4G#(1.0) I 4B(1.0),4A(1.0),

. 5C#(1.0),4B(1.0) I 5C#(1.0),4A(1.0),4F#(1.0),4E(1.0) I

2 .1: I I I
4G(1.5),4A(0.5),4B(1.0),5E(1.0) I 5D(1.5),5D(0.5),5D(1.0),4B(1.0)
5D(1.5),5D(0.5),5D(0.5)_,_/4B(0.5),4A(0.5),4B(0.5)&4F#(4.0)

3 .1: I I I I I
rest(0.5) ,4B(0.5) ,4B(0.5) ,4A(0.5) I 4E(0.5) I 4G(0.5) I 4G(0.5),
4A(0.5),4A(0.5),4B(0.5) I 4B(0.5),5C#(0.5) I I

Stave 1:
Above: 3 5 3 3

SAV DUR CHRIST 216

Stave 2:
Above: 4 4 4 4 4 4 8

GARTA 5

Stave 3:
Above: 4 8 8 4

u IGuA 106

Figure 5.2: Output from optical music recognition system

Saviour Christ, 216 uUdudududdd
Gartan, 5 uuuUdduddu
Enigma, 106 ddduuuu
The Infant King, 92 uduuuuuuddddududu
Harrow Weald, 2 uudduududdudddUd
Victor's Crown, 185 uddUUDdUuduu
Ardwick, 224 ddddUdudu
Passfield, 382 DUduduUddDUuu
Schonster Herr Jesu, 209 uduuuduuUd

Figure 5.3: Excerpt from the Hymn database

29

Pitch change distribution in Hymns database
1200

"pitchdist.dat"--+-

1000

UJ
(!)

800 tl
i::
(!)

H
H
p
tl
tl
0 600

4--<
0

H
(!)

I 400

200

O L-...,._.....,..4--.,_~~::Z:.~-!....1_~~....L~~--1~~..2:.~c:.:'.:::~....J,...~ ---'
-20 -15 -10 -5 0 5 10 15 20

Change in pitch

Figure 5.4: Distribution of pitch changes in Hymns database

J J J J J J J J J J J J

Change in pitch 2 -2 3 3 -3 -1 -2 2 (semitones) I

Delta level = 2 (ud) u d u u d d d u
Delta level= 4 (UudD) d u u D d d

ASCII u u

Figure 5.5: Conversion of notes to pitch deltas

30

Delta level = 2 (ud)

Delta level = 4 (UudD)

Segment size = 2

Segment size = 4

J J J J J J J J J J J J

u
u

!u
!u

d u u d
d U U D

d d u
d d u

Figure 5.6: Segmentation of a pitch contour

case melody:
switch ($flag)

case '-init':
breaksw

case '-text'

9,15,1,6

160,22

cat MelodyDatabase.mgseg #insert database name here
breaksw

case '-cleanup':
breaksw #-cleanup

endsw #flag
breaksw #melody

Figure 5.7: Lines that need to be added to the main switch statement of mg_get

31

Chapter 6

Experimental results

The chapter presents the results gathered from a number of experiments. Data
was obtained on various combinations of pitch delta levels and segment sizes,
to examine the effectiveness of pitch segments as a data structure. The perfor­
mance and practicality of using mg as a method of indexing the melody database
is also examined.

6.1 Pitch delta level and segment size

The results presented in this section were obtained in the following wa.y. Given
a search key and the Hymn melody database, a set of correlation values were
generated for each possible pa.iring of search key and melody in the database.
The output is ranked in order of highest to lowest correlation value. Therefore
the most likely matching melodies for a given search key are put near the top
of the list, with the least likely at the bottom.

However, the output is not a list of melody names or pitch contours. It is a
descending list of numbers, where a number at a particular position in the list
represents the correlation value of the melody at that position.

This list is generated many times, one for every melody in the database. In each
case a different melody from the database is used as a search key. This means
that the search key will always be a "perfect match" for itself. The results in
Table 6.1 and Figures 6.1 and 6.2 were obtained by averaging the values of each
position for all the lists.

32

Pitch delta levels Segment size Match position
2 2 95.25
2 3 44.46
2 4 19.08
2 5 9.23
2 6 4.61
2 7 2.03
2 8 1.05
4 2 6.04
4 3 1.15
4 4 0.53

Table 6.1: The performance of various combinations of pitch delta. levels a.nd
segment sizes

6.1.1 Average match position

The average match position is the mean position of the perfect match to search
keys in the set of output lists. A match position of O means that the melody
recogniser has found the correct value. Therefore the performance of the melody
recogniser is closely related to how small the average match position is.

Table 6.1 compares the average match position obtained using various combina­
tions of pitch delta levels and segment sizes. A pitch delta level of 2 and segment
size of 2 performed very badly, with an average match position of 95.25. The
best performance was obtained with a pitch delta level of 4 and segment size of
4. The average match position in this case was 0.53.

6.1.2 Distribution of correlation values

Figure 6.1 shows the distribution of correlation values using 2 level pitch deltas.
Figure 6.2 shows the equivalent graph for 4 level pitch deltas. Again, the com­
bination of pitch delta level = 4 and segment size = 4 was the best performer,
exhibiting the most "L" shaped curve and lowest correlation values for non­
matching melodies.

There a.re a number of reasons for the poorer melody recognition performance
observed with few pitch delta levels a.nd small segment sizes.

A delta. level of two, combined with a. segment size of two, results in only four
different segments. Therefore any reasonably long melody is bound to have
copious quantities of all possible segments. This leads to a fairly flat distribution
of correlation values, and an almost random expected match position.

33

A problem with the csordered technique in general, but one which is exac­
erbated by fewer pitch delta levels and smaller segment sizes, is that of rank
distinction. Several of the most likely candidates for a match tend to be given
the same correlation value. The main reason for this is that the csordered
technique does not take into account melody length. If shorter melodies were
given higher weightings when calculating the correlation value, this problem
would be greatly reduced.

6.2 Indexing with mg

The experiments in this section differ from the previous section in that the
correlation values were computed in cooperation with mg's ranked query facility.

Figure 6.3 shows the distribution of correlation values using 4 level pitch deltas
and a segment size of 4.

The distribution of the graph is similar to its cs ordered counterpart. However,
this technique exhibited two desirable properties:

• The average match position was exactly zero. The melody recogniser
found the correct value every time, compared with 0.53 for csordered.

• The problem of rank distribution disappeared. The correlation values
output by mg were floating point and had a much higher granularity to
the corresponding values generated by csordered.

6.3 Approximate melody recognition

Figure 6.4 shows a normalised distribution of correlation values using 4 level
pitch deltas and a segment size of 4. This test was slightly different to the
previous mg test in that an error of one randomly-placed deletion was introduced
to each search key.

By comparing the graphs of Figure 6.3 and 6.4 it is clear the introduced error
had only a marginal effect on recognition performance.

6.4 Summary

Using csordered, the best results were obtained with -

• pitch delta level = 4, and

34

i>

• segment size = 3 or 4.

Using mg to index the melody database proved very successful. The problem of
rank distribution disappeared, and the system selected the correct match for a
particular search key every time.

The system performed very well even when a random deletion error was intro­
duced to the search keys. Recognition performance was affected only slightly.

35

<1
0
·rl
+'
·rl
co
0
Pa

H
0
'I.a

(])

12

10

Distribution of 'csordered' correlation values (2 level pitch deltas)

Segments ze 4 -
Segment s ze 5 ----­
segment s ze 6 -----·
Segment s ze 7 -····-···
Segment s ze 8 -·-·-

~ 8
~

<1
0

·rl
+'
·rl
co
0
Pa

H
0

'I.a

(])
p
rl

~
§
·rl

~
rl
(])
H
H
0
t)

ii,
~

!

4

-·-·--·- - -·-·-·-·-- - - - -·-

5 10 15 20 25 30 35
Fosition in ranked list

Figure 6.1: Distribution of correlation values with 2 level pitch deltas

40

35

30

25

20

15

\

Distribution of 'csordered' correlation values (4 level pitch deltas)

Segments ze 2 -
Segment s ze 3 ----­
segment s ze 4 -----·

10 , \

5 '\'.',, __ _

40

0 ~~~~~~~~~~~~~~~~~~~~-'-~~~-'-~~~....L.~~~-'
0 5 10 15 20 25 30 35 40

Position in ranked list

Figure 6.2: Distribution of correlation values with 4 level pitch deltas

36

Distribution of MG correlation values (Segment size= 4)
6

Raw-

5.5
'1
0
·rl 5 +'
·rl
<Jl
0
Pa 4.5
H
0

4-1 4
Q)
p
rl
<\J 3.5 I>

Ci
0 3 ·rl
+'
<\J
rl
Q) 2.5 H
H
0
()

2
Q)
01
<\J
H 1.5 Q)

I> ,,:

1

0.5
0 5 10 15 20 25 30 35 40

P.osition in ranked list

Figure 6.3: Distribution of correlation values

Distribution of normalised MG correlation values (Segment size= 4)

'1
0
·rl Normalised -
+'
·rl 0.9 <Jl
0
Pa
H
0 0.8

4-1

Q)
p
rl 0,7 <\J
I>

Ci
0
·rl 0.6
+'
<\J
rl
Q)

H 0.5 H
0
()

'lJ
Q) 0.4 <Jl
·rl
rl
<\J

~ 0.3
0
'1
Q)

01 0.2 <\J
H
Q)

~
0.1

0 5 10 15 20 25 30 35 40
Position in ranked list

Figure 6.4: Distribution of correlation values, normalised with deletion errors
in input

37

Chapter 7

Conclusion

The aim of this project was to research, design, and provide the basis of an
implementation for a real-time melody recognition system. The human brain
recognises complicated polyphonic music with ease. However, melody recogni­
tion is a complicated task for a computer to perform. It combines a number of
difficult problems (pitch recognition, note recognition and approximate pattern
matching) into one system.

With respect to human melody recognition, the two most important features
are recognised as being contour and interval information. Psychological studies
of human memory have indicated that relative pitch is more important than
rhythm for the recognition of melodies. The suggestion is therefore that pitch
contours should be the primary data structure used to represent melodies for
the purpose of melody recognition.

The concept of pitch segments was introduced as a potentially fast and accurate
way of performing melody recognition using pitch contours. This allowed the
application of a full-text retrieval system (mg) to the indexing of the melody
database, and proved very successful.

38

Bibliography

[Bai] David Bainbridge. An optical music recognition system. This is
a work in progress (Computer Science Department, University of
Canterbury, New Zealand).

[BM48] Harold Barlow and Sam Morgenstern. A Dictionary of Musical
Themes. Crown Publishers, New York, NY, 1948.

[Coo94] Shane Samuel Coale Minimum message length comparison of musical
sequences. Master's thesis, University of Waikato, 1994.

[DC86] Lucinda Dewitt and Robert Crowder. Recognition of novel melodies
after brief delays. Music Perception, 3(3):259-274, Spring 1986.

[GR69] B. Gold and L. Rabiner. Parallel processing techniques for estimating
pitch periods of speech in the time domain. Journel of the Acoustical
Society of America, 46(2):442-448, 1969.

[Haw90] Michael Hawley. The personal orchestra, or audio data compression.
Computing Systems, 3(2) :289-329, Spring 1990.

[Kuh90] William B. Kuhn. A real-time pitch recognition algorithm for music
applications. Computer Music Journal, 14(3):60-71, Fall 1990.

[Lan90] John E. Lane. Pitch detection using a tunable iir filter. Computer
Music Journal, 14(3):46-59, Fall 1990.

[Min23] B.M. Minogue. A case of secondary mental deficiency with musical
talent. Journal of Applied Psychology, 7:379-352, 1923.

[Mon93] Trevor Monk. Computer assisted sightsinging training: Implemen­
tation of a sightsinging tu tor (sst-1). A thesis submitted in partial
fulfilment of the requirements for the degree of bachelor of computing
and mathematical sciences, University of Waikato, Hamilton, New
Zealand, 1993.

[Pay62] M.D. Payne. Melodic Index to the Works of Johann Sebastian Bach.
Schiermer, 1962.

[Rev25] G. Revesz. The psychology of a musical prodigy. 1925.

39

[Ric90] D.M. Richard. Godel tune: formal models in music recognition sys­
tems. In ICMC Glasgow 1990} Proceedings, pages 338-340, Glasgow,
UK, 1990. ICMC.

[SH085] John Slaboda, B. Hermelin, and N. O'Connor. An exceptional mu­
sical memory. Music Perception, 3(2) :155-170, Winter 1985.

[SJ89] Hajime Sano and 13. Keith Jenkins. A neural network model for
pitch perception. Computer Music Journal, 13(3):41-48, Fall 1989.

[Vis70] D.S. Viscott. A musical idiot savant: a psychodynamic study and
some speculations on the creative process. Psychiatry, 33 (4) :494-
515, 1970.

[WM91] Sun Wu and Udi Manber. Fast text searching with errors. Tech­
nical Report 91-11, Department of Computer Science, University of
Arizonza, 1991.

[WM92] Sun Wu and Udi Manber. Agrep- a fast approximate pattern search­
ing tool. In USENIX Conference, January 1992.

[WMB94] Ian H. Witten, Alistair Moffat, and Timothy C. Bell. Managing
Gigabytes. Van Nostrand Reinhold, 1994.

40

 HistoryItem_V1
 AddMaskingTape

 Range: current page
 Mask co-ordinates: Horizontal, vertical offset -1.81, 523.26 Width 599.30 Height 318.66 points
 Mask co-ordinates: Horizontal, vertical offset 404.67, -0.00 Width 248.05 Height 540.46 points
 Mask co-ordinates: Horizontal, vertical offset 185.59, 462.60 Width 91.43 Height 24.44 points
 Origin: bottom left

 1
 0
 BL

 Both
 11
 CurrentPage
 17

 CurrentAVDoc

 -1.8106 523.2567 599.3043 318.6633 404.6662 -0.0029 248.0504 540.4601 185.5852 462.6021 91.4346 24.4429

 QITE_QuiteImposingPlus3
 Quite Imposing Plus 3.0e
 Quite Imposing Plus 3
 1

 0
 43
 0
 1

 1

 HistoryItem_V1
 AddMaskingTape

 Range: all pages
 Mask co-ordinates: Horizontal, vertical offset 565.81, -0.00 Width 38.93 Height 841.02 points
 Origin: bottom left

 1
 0
 BL

 Both
 11
 AllDoc
 17

 CurrentAVDoc

 565.8084 -0.0029 38.9276 841.0176

 QITE_QuiteImposingPlus3
 Quite Imposing Plus 3.0e
 Quite Imposing Plus 3
 1

 2
 43
 42
 43

 1

 HistoryItem_V1
 AddMaskingTape

 Range: current page
 Mask co-ordinates: Horizontal, vertical offset 9.96, 723.33 Width 46.17 Height 80.57 points
 Mask co-ordinates: Horizontal, vertical offset 51.60, 102.30 Width 532.31 Height 436.35 points
 Mask co-ordinates: Horizontal, vertical offset 507.87, 47.07 Width 65.18 Height 55.22 points
 Mask co-ordinates: Horizontal, vertical offset 29.87, 28.97 Width 41.64 Height 103.20 points
 Mask co-ordinates: Horizontal, vertical offset 11.77, 21.72 Width 21.73 Height 43.45 points
 Mask co-ordinates: Horizontal, vertical offset 49.79, 584.82 Width 22.63 Height 38.93 points
 Origin: bottom left

 1
 0
 BL

 Both
 11
 CurrentPage
 17

 CurrentAVDoc

 9.9582 723.3266 46.17 80.5711 51.6017 102.2953 532.3126 436.3514 507.8696 47.0724 65.1812 55.2229 29.8747 28.9665 41.6435 103.2035 11.7688 21.7242 21.7271 43.454 49.7911 584.8167 22.6323 38.9276

 QITE_QuiteImposingPlus3
 Quite Imposing Plus 3.0e
 Quite Imposing Plus 3
 1

 2
 43
 2
 1

 1

 HistoryItem_V1
 AddMaskingTape

 Range: current page
 Mask co-ordinates: Horizontal, vertical offset 9.05, 698.88 Width 211.84 Height 114.07 points
 Origin: bottom left

 1
 0
 BL

 Both
 11
 CurrentPage
 17

 CurrentAVDoc

 9.0529 698.8837 211.8387 114.067

 QITE_QuiteImposingPlus3
 Quite Imposing Plus 3.0e
 Quite Imposing Plus 3
 1

 3
 43
 3
 1

 1

 HistoryItem_V1
 AddMaskingTape

 Range: current page
 Mask co-ordinates: Horizontal, vertical offset 3.62, 675.35 Width 58.84 Height 125.84 points
 Origin: bottom left

 1
 0
 BL

 Both
 11
 CurrentPage
 17

 CurrentAVDoc

 3.6212 675.346 58.8441 125.8358

 QITE_QuiteImposingPlus3
 Quite Imposing Plus 3.0e
 Quite Imposing Plus 3
 1

 4
 43
 4
 1

 1

 HistoryItem_V1
 AddMaskingTape

 Range: all pages
 Mask co-ordinates: Horizontal, vertical offset 30.78, 729.66 Width 16.30 Height 24.44 points
 Origin: bottom left

 1
 0
 BL

 Both
 11
 AllDoc
 17

 CurrentAVDoc

 30.78 729.6636 16.2953 24.4429

 QITE_QuiteImposingPlus3
 Quite Imposing Plus 3.0e
 Quite Imposing Plus 3
 1

 5
 43
 42
 43

 1

 HistoryItem_V1
 AddMaskingTape

 Range: current page
 Mask co-ordinates: Horizontal, vertical offset 248.05, 470.75 Width 14.48 Height 10.86 points
 Origin: bottom left

 1
 0
 BL

 Both
 11
 CurrentPage
 17

 CurrentAVDoc

 248.0504 470.7497 14.4847 10.8635

 QITE_QuiteImposingPlus3
 Quite Imposing Plus 3.0e
 Quite Imposing Plus 3
 1

 18
 43
 18
 1

 1

 HistoryItem_V1
 AddMaskingTape

 Range: current page
 Mask co-ordinates: Horizontal, vertical offset 103.20, 325.90 Width 435.45 Height 176.53 points
 Origin: bottom left

 1
 0
 BL

 Both
 11
 CurrentPage
 17

 CurrentAVDoc

 103.2035 325.9028 435.4461 176.5322

 QITE_QuiteImposingPlus3
 Quite Imposing Plus 3.0e
 Quite Imposing Plus 3
 1

 19
 43
 19
 1

 1

 HistoryItem_V1
 AddMaskingTape

 Range: current page
 Mask co-ordinates: Horizontal, vertical offset 53.41, 121.31 Width 509.68 Height 538.65 points
 Origin: bottom left

 1
 0
 BL

 Both
 11
 CurrentPage
 17

 CurrentAVDoc

 53.4123 121.3065 509.6802 538.6496

 QITE_QuiteImposingPlus3
 Quite Imposing Plus 3.0e
 Quite Imposing Plus 3
 1

 22
 43
 22
 1

 1

 HistoryItem_V1
 AddMaskingTape

 Range: current page
 Mask co-ordinates: Horizontal, vertical offset 401.05, 720.61 Width 68.80 Height 58.84 points
 Origin: bottom left

 1
 0
 BL

 Both
 11
 CurrentPage
 17

 CurrentAVDoc

 401.045 720.6107 68.8023 58.8441

 QITE_QuiteImposingPlus3
 Quite Imposing Plus 3.0e
 Quite Imposing Plus 3
 1

 24
 43
 24
 1

 1

 HistoryItem_V1
 AddMaskingTape

 Range: current page
 Mask co-ordinates: Horizontal, vertical offset 243.52, 451.74 Width 93.25 Height 78.76 points
 Mask co-ordinates: Horizontal, vertical offset 133.98, 86.91 Width 45.26 Height 28.97 points
 Origin: bottom left

 1
 0
 BL

 Both
 11
 CurrentPage
 17

 CurrentAVDoc

 243.524 451.7386 93.2452 78.7605 133.9834 86.9053 45.2647 28.9694

 QITE_QuiteImposingPlus3
 Quite Imposing Plus 3.0e
 Quite Imposing Plus 3
 1

 31
 43
 31
 1

 1

 HistoryItem_V1
 AddMaskingTape

 Range: current page
 Mask co-ordinates: Horizontal, vertical offset 103.20, 441.78 Width 48.89 Height 59.75 points
 Mask co-ordinates: Horizontal, vertical offset 133.98, 669.91 Width 45.26 Height 19.92 points
 Mask co-ordinates: Horizontal, vertical offset 101.39, 654.52 Width 23.54 Height 19.01 points
 Mask co-ordinates: Horizontal, vertical offset 416.44, 78.76 Width 57.94 Height 47.98 points
 Origin: bottom left

 1
 0
 BL

 Both
 11
 CurrentPage
 17

 CurrentAVDoc

 103.2035 441.7803 48.8858 59.7494 133.9834 669.9143 45.2647 19.9164 101.3929 654.5243 23.5376 19.0112 416.435 78.7576 57.9388 47.9806

 QITE_QuiteImposingPlus3
 Quite Imposing Plus 3.0e
 Quite Imposing Plus 3
 1

 33
 43
 33
 1

 1

 HistoryItem_V1
 AddMaskingTape

 Range: current page
 Mask co-ordinates: Horizontal, vertical offset 71.52, 138.51 Width 426.39 Height 455.36 points
 Origin: bottom left

 1
 0
 BL

 Both
 11
 CurrentPage
 17

 CurrentAVDoc

 71.5182 138.507 426.3932 455.3626

 QITE_QuiteImposingPlus3
 Quite Imposing Plus 3.0e
 Quite Imposing Plus 3
 1

 37
 43
 37
 1

 1

 HistoryItem_V1
 AddMaskingTape

 Range: current page
 Mask co-ordinates: Horizontal, vertical offset 111.35, 650.00 Width 16.30 Height 30.78 points
 Origin: bottom left

 1
 0
 BL

 Both
 11
 CurrentPage
 17

 CurrentAVDoc

 111.3511 649.9979 16.2953 30.7799

 QITE_QuiteImposingPlus3
 Quite Imposing Plus 3.0e
 Quite Imposing Plus 3
 1

 38
 43
 38
 1

 1

 HistoryItem_V1
 AddMaskingTape

 Range: current page
 Mask co-ordinates: Horizontal, vertical offset 137.60, 806.61 Width 39.83 Height 27.16 points
 Mask co-ordinates: Horizontal, vertical offset 191.92, 460.79 Width 17.20 Height 16.30 points
 Mask co-ordinates: Horizontal, vertical offset 167.48, 531.40 Width 13.58 Height 11.77 points
 Mask co-ordinates: Horizontal, vertical offset 76.95, 490.67 Width 10.86 Height 15.39 points
 Mask co-ordinates: Horizontal, vertical offset 102.30, 474.37 Width 17.20 Height 26.25 points
 Mask co-ordinates: Horizontal, vertical offset 386.56, 527.78 Width 19.92 Height 20.82 points
 Origin: bottom left

 1
 0
 BL

 Both
 11
 CurrentPage
 17

 CurrentAVDoc

 137.6046 806.6136 39.8329 27.1588 191.9222 460.7915 17.2006 16.2953 167.4793 531.4044 13.5794 11.7688 76.95 490.6662 10.8635 15.39 102.2982 474.3709 17.2006 26.2535 386.5603 527.7832 19.9165 20.8217

 QITE_QuiteImposingPlus3
 Quite Imposing Plus 3.0e
 Quite Imposing Plus 3
 1

 39
 43
 39
 1

 1

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: none
 Shift: move right by 14.17 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 1737
 174
 Fixed
 Right
 14.1732
 0.0000

 Both
 2
 AllDoc
 100

 CurrentAVDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus3
 Quite Imposing Plus 3.0e
 Quite Imposing Plus 3
 1

 5
 43
 42
 43

 1

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: none
 Shift: move right by 14.17 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 1737
 174
 Fixed
 Right
 14.1732
 0.0000

 Both
 2
 AllDoc
 100

 CurrentAVDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus3
 Quite Imposing Plus 3.0e
 Quite Imposing Plus 3
 1

 5
 43
 42
 43

 1

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: none
 Shift: move left by 5.67 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 1737
 174
 Fixed
 Left
 5.6693
 0.0000

 Both
 2
 AllDoc
 100

 CurrentAVDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus3
 Quite Imposing Plus 3.0e
 Quite Imposing Plus 3
 1

 5
 43
 42
 43

 1

 HistoryItem_V1
 AddMaskingTape

 Range: current page
 Mask co-ordinates: Horizontal, vertical offset 271.59, 468.94 Width 14.48 Height 9.05 points
 Mask co-ordinates: Horizontal, vertical offset 212.74, 466.22 Width 9.05 Height 9.96 points
 Mask co-ordinates: Horizontal, vertical offset 411.00, 679.87 Width 8.15 Height 6.34 points
 Origin: bottom left

 1
 0
 BL

 Both
 11
 CurrentPage
 17

 CurrentAVDoc

 271.5881 468.9391 14.4846 9.0529 212.744 466.2233 9.0529 9.9582 411.0032 679.8725 8.1476 6.337

 QITE_QuiteImposingPlus3
 Quite Imposing Plus 3.0e
 Quite Imposing Plus 3
 1

 5
 43
 5
 1

 1

 HistoryItem_V1
 AddMaskingTape

 Range: current page
 Mask co-ordinates: Horizontal, vertical offset 95.96, 107.73 Width 436.35 Height 465.32 points
 Origin: bottom left

 1
 0
 BL

 Both
 11
 CurrentPage
 17

 CurrentAVDoc

 95.9611 107.7271 436.3514 465.3209

 QITE_QuiteImposingPlus3
 Quite Imposing Plus 3.0e
 Quite Imposing Plus 3
 1

 7
 43
 7
 1

 1

 HistoryItem_V1
 AddMaskingTape

 Range: current page
 Mask co-ordinates: Horizontal, vertical offset 269.78, 473.47 Width 9.05 Height 12.67 points
 Mask co-ordinates: Horizontal, vertical offset 344.92, 495.19 Width 17.20 Height 12.67 points
 Origin: bottom left

 1
 0
 BL

 Both
 11
 CurrentPage
 17

 CurrentAVDoc

 269.7775 473.4656 9.0529 12.6741 344.9168 495.1927 17.2006 12.6741

 QITE_QuiteImposingPlus3
 Quite Imposing Plus 3.0e
 Quite Imposing Plus 3
 1

 8
 43
 8
 1

 1

 HistoryItem_V1
 AddMaskingTape

 Range: current page
 Mask co-ordinates: Horizontal, vertical offset 101.39, 99.58 Width 296.03 Height 34.40 points
 Origin: bottom left

 1
 0
 BL

 Both
 11
 CurrentPage
 17

 CurrentAVDoc

 101.3929 99.5794 296.0309 34.4011

 QITE_QuiteImposingPlus3
 Quite Imposing Plus 3.0e
 Quite Imposing Plus 3
 1

 9
 43
 9
 1

 1

 HistoryItem_V1
 AddMaskingTape

 Range: current page
 Mask co-ordinates: Horizontal, vertical offset 214.55, 463.51 Width 92.34 Height 16.30 points
 Origin: bottom left

 1
 0
 BL

 Both
 11
 CurrentPage
 17

 CurrentAVDoc

 214.5546 463.5074 92.3399 16.2953

 QITE_QuiteImposingPlus3
 Quite Imposing Plus 3.0e
 Quite Imposing Plus 3
 1

 11
 43
 11
 1

 1

 HistoryList_V1
 qi2base

