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Chapter 1 

Introduction 

A customer walks into a record store to buy a new single that they have just 
heard on the radio. The computer system in the record store has an index of 
singles, which can be referenced by code number, title, or artist. Unfortunately, 
the customer does not.know the name of the song, or who the artist is; the only 
information available is the melody itself. 

In this situation, it would be desirable to index the tunes in the music database 
by their melody. But this raises some questions. How is it possible to perform 
a search on a melody? And exactly how can the melodies be indexed in the 
first place? 

What is required is a melody recognition system. Such a system shoul<l take 
a human voice (humming or singing a tune) and produce a ranked list of the 
most likely matches to this tune contained within a melody database. 

1.1 Pattern recognition 

Humans have a remarkable ability to quickly recognise and understand patterns 
in all types of sensory input. For us it is a trivial task to associate a particular 
sound, smell, or visual cue with some meaning. Computer scientists have for 
years been attempting to provide computers with a similar ability, to recognise 
patterns in the digital data fed to them. Although the task of programming a 
computer to understand its input is a very difficult problem, the recognition and 
association of fairly complex patterns within the data is now becoming practical. 
This is in part due to better algorithms, and in part due to significant increases 
in the processor power of modern computer systems. 

The degree to which the application of pattern recognition techniques have 
been successful is dependent on the nature of the data and the type of pattern 
being searched for. For example, computers are particularly adept at finding 
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a word in a document - as long as the word and the document are given to 
the computer in a digital, character-based format. Such a feature is commonly 
found in word processors and text editors. A more challenging situation is 
where the document is in bitmap form and the search word a digital sound 
sample. A solution to the latter problem is several orders of magnitude more 
complex to implement than the former. 

There are several applications where considerable motivation exists to find a 
workable solution to the more complex recognition problems. Some common 
examples are 

• Optical character recognition (OCR), 

• Optical music recognition (OMR), 

• Note recognition, and 

• Speech recognition. 

The melody recognition system that is the focus of this report makes direct 
and indirect use of the first three recognition systems listed above. An OMR 
system incorporating OCR [Bai] was used to scan in a melody database from 
the hymn book "Hymns for Today's Church", which became a testbed for the 
melody recognition system. 

Note recognition is the preprocessor of a melody recognition system. It is 
responsible for converting digital samples of a human voice humming or singing 
into note form. 

1.2 Melody recognition 

The purpose of melody recognition is to automate the process of finding a ref­
erence to a particular melody. The idea is that a computer is given a se­
quence of notes, which it then must match to a corresponding entry in a 
melody database. Once a match has been found, what happens next is en­
tirely application-dependent. The output may be as simple as printing out the 
name of the matching melody, or as complex as playing it while printing out 
the sheet music. 

There are several issues to be considered when implementing a melody recog­
nition system -

• How does the user enter the notes of the search key into the system? 

• How will the system deal with inaccuracies in user input? 
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• Once the notes have been entered, what sort of technique should be em­
ployed to compare melodies? 

• What methods can be used to create and index the melody database'? 

• Can the system deal with potential inaccuracies in the music database'? 

These are discussed in Chapters 2, 3, and 4. 

1.3 Project ain1s and objectives 

The aim for this project was to research, design, and provide the basis of an 
implementation for a real-time melody recognition system. The system should 
match music hummed or sung by a human with a particular piece in a melody 
database. The system should also allow for very large melody databases, where 
linear searching of the database would be too slow. 

The design of the system consists of the following components: 

• Digital sampling, 

• Note recognition, 

• Melody recognition, and 

• Melody indexing. 

They are linked together in a serial manner, the output of one component be­
ing the input to the next. The overall structure of the system is shown in 
Figure 1.1. Some of the system components have been well researched (such as 
note recognition [Kuh90],[Lan90),[SJ89],[Ric90]) and others have not (such as 
melody recognition). The main thrust of this report relates to melody recogni­
tion and how this effects the indexing of the melody database. 

An important part of this is experimentation with various possible melody 
correlation functions. A good function should have the following three charac­
teristics -

• accuracy (melodies that almost match should be given much higher cor­
relation values than those that do not), 

e speed (essential if the system is to exhibit real-time performance), and 

• index-ability ( easy to modify to allow indexing, so matching can be done 
in less-than-linear time with respect to the database size). 

Most project experiments were performed on a Sun SPARCstation 10, using a 
melody recognition test program called mrs, which is written in C. 
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Figure 1.1: Melody recognition system diagram 
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1.4 Description of this report 

Chapters 2 and 3 describe the issues relevant to note and melody recognition. 
Chapter 4 provides a background to the problem of indexing melodies. Chap­
ter 5 describes the design and implementation of the mrs melody recognition 
program. Chapter 6 presents some results gathered through use of mrs. Chap­
ter 7 contains some conclusions based on the experimental results. 
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Chapter 2 

Note recognition 

Note recognition is the initial phase of a melody recognition system. It is made 
up of the following components: 

e Digital sampling of vocal input (Section 2.1), 

• Note segmentation (Section 2.2), 

• Pitch recognition (Section 2.3), and 

e Pitch and rhythm quantisation (Section 2.4) 

The efficiency and accuracy of these subsystems are very important. Although 
allowances are normally made for errors that occur during the note recognition 
phase, the overall performance of melody recognition system is highly dependent 
on the quality of this output. 

2.1 Digital sampling 

A sound can be described as a continuous function of time, where the dependent 
variable represents the amplitude ( or loudness) of the sound signal at any given 
time. This is the waveform of the sound signal. 

Because the waveform is continuous1 it is impossible to represent it digitally 
with complete accuracy. This problem is overcome by approximating the wave­
form, in such a way that the most important information is preserved. 

The first step is to convert the variations in air-pressure which make up the 
sound into variations in electrical voltage. This is normally performed by a 

1 Consequently, there are an infinite number of amplitude values between any two distinct 
time points. 
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microphone. At constant time intervals a sequence of measurements is then 
taken of the resulting voltage waveform. The frequency of these measurements 
is called the sample rate. 

2.1.1 Amplitude quantisation 

When a voltage measurement is taken at a particular time, the resulting value 
is one point on a continuous voltage range. As such, this value would require an 
infinite number of bits to represent in a digital binary form. An approximation 
is found by dividing the voltage range into N subranges. All the voltage values 
which fall within a particular subrange are assigned a value which represents 
that subrange. This is the final step in the process, and is called amplitude 
quantisation. The quantised value requires approximately log2 N bits to repre­
sent digitally. 

2.1.2 Error introduced by digital sampling 

There a.re two types of errors which are introduced by this process. The first is 
called aliasing, and the second is called the quantisation error. 

Aliasing occurs when a high frequency near the sample rate is mistakenly in­
terpreted as a very low frequency. A common method of reducing the effect 
of aliasing error is to use an aliasing filter in conjunction with the analogue to 
digital converter. 

The quantisation error is the difference between the original voltage level and 
the mid-point of the voltage range in which it lies. The amount of random white 
noise introduced into the sampled signal by the quantisation error is inversely 
proportional to the sample rate. In other words, a higher sample rate results 
in less noise. 

2.1.3 Implementation 

For this project, all sound sampling was performed on a Macintosh, using the 
built-in sound sampling software. The sample rate was 22,254 samples per 
second, each sample represented by an 8 bit value (giving 256 distinct voltage 
subranges). This is more than adequate for the purposes of the pitch recognition 
subsystem. The magnitude of quantisation and aliasing errors are not significant 
enough to degrade recognition performance. 
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2.2 Note segmentation 

When a digital representation of the user's input has been obtained, it is nec­
essary to split the sound sample into chunks. Each chunk should represent a 
single note. This process, called note segmentation, splits a sound sample at 
the points where the RMS2 power of a signal drops below a certain threshold. 

The threshold can either be static or dynamic, and for note recognition the 
latter is normally used. A static threshold assumes the user will sing at a 
relatively constant volume. A dynamic threshold has the advantage that it can 
adapt to varying levels of volume. 

When the process of note segmentation is complete, the resulting chunks of 
sound sample can be individually passed to the pitch recognition system. The 
information calculated during this phase is also used to perform rhythm quan­
tisation. 

2.3 Pitch recognition· 

Two pitch recognisers were considered for use in this project. The first is based 
on an algorithm called the Fundamental Period Measurement [Kuh90]. 

The second method is based on the Gold Rabiner [GR69] algorithm. The code 
for this technique was obtained from Trevor Monk's SightSinging Tutor appli­
cation [Mon93], and is written in C. The code also performs note segmentation, 
pitch quantisation, and rhythm quantisation. 

2.3.1 Fundamental Period Measurement (FPM) 

With this method, the sound samples are fed through a bank of six ba11dpass or 
lowpass filters whose upper cutoff frequencies are spaced at half octave intervals. 
If the filters are sufficiently sharp, then one of the filter outputs will be basically 
sinusoidal. The period of this sinewave and the pitch of the input signal can 
then be determined by measuring the time between zero crossings. 

The algorithm used to make the final pitch decision is shown in Figure 2.1. 
The maximum of the amplitude measurements A(O) ... A(5) is determined and 
compared with a silence threshold. If the input is silent, this is encoded as a 
period of -1. Otherwise the amplitude measurements are scanned, beginning at 
the lowest frequency filter, for the first filter with an appreciable amplitude. 

The fundamental of the input signal is then assumed to lie in the passband of 

2 Root Mean Square 
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max_amplitude = max( A(O), A(1), ... , A(5) ) 
if max_amplitude < SILENCE_THRESHDLD then 

period= -1 
else 

threshold= max_amplitude I 4 
period= -1 
filter = 0 
got_period = FALSE 
while filter<= 5 and got_period == FALSE 

if A(filter) > threshold 
if T(filter) is reasonable for filter then 

period= T(filter) 
elseif filter< 5 and T(filter+1) reasonable for filter+! then 

period= T(filter+1) 
else 

period= -1 
endif 
got_period = TRUE 

end if 
endwhile 

end if 

Figure 2.1: Pseudo-code for the Fundamental Period Measurement algorithm 

this filter or the filter immediately above it. The period in the filter's output 
is read and checked to see if it is reasonable for the filter. If so, it is taken as 
the period of the input signal. If not, the period of the next highest filter is 
read. If it is reasonable for its respective filter, then it is taken as the period. 
Otherwise, the period is set to -1 (equivalent to silence), representing a problem 
in recognizing the pitch. 

This algorithm was implemented on an Acorn A5000 in C. The main advan­
tage of the technique is that it is computationally efficient, primarily driven by 
Kuhn's original motivation of achieving real-time pitch recognition on an early 
IBM PC. The memory requirements of the system were negligible, and Kuhn's 
implementation used merely 50% of the available processing power of an IBM 
PC operating at 4.77 MHz. 

2.3.2 Gold Rabiner algorithm. 

The Gold Rabiner algorithm operates on a single lowpass filtered waveform. 
The peak to peak and peak to valley measurements of the filtered waveform are 
fed into six parallel pitch period estimators. A coincidence detector is used in 
combining the six estimators into a final output pitch. 
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Figure 2.2: Block diagram of the Gold Rabiner algorithm 
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Figure 2.3: Estimator inputs generated from a portion of filtered waveform 

Figure 2.2 shows a block diagram of the Gold Rabiner algorithm. The initial 
filter uses a lowpass cutoff of 900Hz, which ensures the fundamental frequency 
and at least two higher harmonics are present in the signal. The signal peak 
processor generates inputs for the six pitch period estimators (PPEs) by scan­
ning the filtered waveform for local maxima and minima. Figure 2.3 shows an 
example of estimator inputs generated from a portion of filtered waveform. The 
waveform has two local minima and two local maxima. 

Each estimator operates on its own pulse train, analysing the height and dis­
tance between pulses. They use this information to generate their own estimates 
for the final output pitch. The last stage of the algorithm is a majority estimate 
combiner. It takes the six pitch estimates produced by the PPEs in combination 
with previous estimates and determines the final output pitch. 

10 



Sample name Sample size FPM GoldRabiner 

JBOND 222540 bytes 1.2 seconds 9.2 seconds 

Table 2.1: Comparison of two pitch recognition programs - FPM vs 
GoldRabiner 

The code for this algorithm was originally written in C on a Commodore Amiga. 
The ta.sks of pitch and rhythm quantisation are integrated into the software. 
It was converted by Monk to work on the Apple Macintosh platform. For the 
purposes of this project, the code was converted to operate on an Acorn A5000 
and subsequently modified to output pitch deltas. Section ?? describes the 
format of this information. 

2.3.3 Implementation 

Table 2.1 shows a time comparison between FPM and Gold Rabiner process­
ing a 10 second sound sample. No note segmentation, rhythm quantisation 
or pitch quantisation was performed. The test machine was an Acorn A5000 
with 4 megabytes of RAM and a 33Mhz ARM CPU without floating point 
co-processor. 

The FPM implementation is significantly faster than the Gold Rabiner imple­
mentation. Much of the difference can be accounted for by the following factors: 

e GoldRabiner uses emulated floating point instructions. 

• FPM uses purely integer arithmetic. 

e GoldRabiner is written entirely in C. 

e FPM is written mostly in C, but the function to perform parallel waveform 
filtering is written in ARM assembler. 

Both algorithms exhibit O(N) time complexity. FPM has six filters operating 
in parallel, GoldRabiner requires only one. The six pitch estimators and com­
plicated majority estimate combiner account for a majority of the execution 
time used by GoldRabiner. The remainder of the FPM algorithm is extremely 
simple and requires very little processing time. Because the six parallel fil­
ters are the most computationally intensive components of FPM, Kuhn (1990) 
regarded them as ideal candidates for implementation in hardware, or a.s a hard­
ware/software hybrid. With the significant increase in processing power over 
recent years, this is unlikely to be necessary in future systems. 

Despite the faster implementation of the FPM algorithm, the Gold Rabiner 
code was chosen for use in this project. The three reasons for this are (1) the 

11 



implementation was entirely in C and therefore more portable, (2) the difference 
in speed is mainly implementation related, not algorithm related, and (3) the 
tasks of pitch and rhythm quantisation are integrated into the code. 

2.4 Pitch/Rhythm Quantisation 

The final step of note recognition is assigning musical values to the notes. This 
requires both pitch and rhythm quantisation. 

Rhythm quantisation simply takes the length of a note calculated during the 
note segmentation process, and quantises the note to the nearest rhythmic 
value. This should take into account varying values for tempo, as durations in 
musical rhythm are relative to the tempo. mrs currently ignores rhythm, for 
reasons outlined in Chapter 5. 

Pitch quantisation involves selecting a music pitch for a note given the varying 
frequency over the duration of that note. A range of frequencies map to a single 
pitch, and any note whose determined frequency lies within this range will be 
quantised to that pitch. 

Determining the overall frequency of a note, given that frequency varies over 
the duration of the note, is not a trivial problem. A common difficulty caused 
by many pitch recognition algorithms is that they generate irregular spikes at 
the start of a note. Most of these algorithms require some time to settle on the 
correct pitch. 

Because of these random artifacts, calculating the average frequency over the 
duration of a note is not a very accurate method of determining overall fre­
quency. Monk's Gold Rabiner code uses a technique called steady state fre­
quency analysis [Mon93). This selectively analyses the steady state frequencies 
to provide a more accurate value. 
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Chapter 3 

Melody recognition 

The note recognition system will output a series of notes, which in some way 
need to be matched with known pieces of music within the music database. In 
other words melody recognition will need to be performed on the input data. The 
following points need to be considered when constructing a melody recogniser: 

• The input is monophonic, therefore the music in the database should also 
be monophonic. This simplifies indexing and querying considerably. 

• The search key will not be complete or precise. For example, the search 
key may not begin with the correct note or consist of the correct pitch 
changes, even though the overall pitch contour is very similar to the orig­
inal. 

• The system should be fast. It should be assumed that the music database 
is large, so a linear-search type approach to the recognition problem is 
not appropriate. For example, the Library of Congress (as of 1990) has a 
collection of 2 million musical pieces. Uncompressed, this would result in 
large amount of data even if represented monophonically. 

• Because of the potential size of the database, the music must be stored 
and indexed as efficiently as possible. 

3.1 Pitch contours 

Most people can recognise a melody, whether it is a pop tune on the radio 
or a theme as it reappears throughout a symphony. When creating a melody 
recognition system for use by humans, an important question to consider is what 
features of melodies we use for memory, and how these features are processed 
to aid recognition. This in turn defines which elements of a melody need to be 
represented in the melody database. 
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Psychological studies of human memory have indicated that relative pitch is 
more important than rhythm for the recognition of melodies [SH085] [DC86]. 
The suggestion is that pitch contours should be the primary data structure used 
to represent melodies for the purpose of melody recognition. This is intuitive 
in the sense that rhythm tends to contain less variation than pitch, so therefore 
less information. 

Slaboda [SH085] conducted a study on a musical idiot savant, who is capable 
of memorising large-scale pieces of piano music in three or four hearings. An 
idiot savant is a person with a low general IQ who have exceptional talent in 
one particular field. In the study it was found that the subject, in common 
with other observed cases in the literature [Min23][Rev25][Vis70], memorised 
material mostly in terms of tonal structures and relations. 

Dewitt and Crowder [DC86] conducted a series of experiments to investigate 
the influence of contour and interval information. They recognised that two of 
the more general features of melodies are (1) contour (the binary pattern of 
ups and downs of pitch direction), and (2) interval information (the ordered 
sequence of pitch distances along a logarithmic scale of frequency between any 
two adjacent pitches in the melody). A primary question Dewitt and Crowder 
set out to answer was what information, be it contour, interval, or both, is 
useful for the recognition of melodies. 

In the study, subjects rated pairs of melodies as similar or different on a five­
point scale. Six conditions were defined by two delays (1 second and 30 seconds 
between hearing the two melodies) and three item types (target, related, and 
lure). In target pairs, the second melody retained the contour and interval 
information of the first melody, being an exact transposition to another key. 
In related pairs, only contour information was retained, and with the lure pairs 
neither contour nor interval information was retained. 

The results indicated that contour information had a larger influence on recog­
nition, especially after short delays. Interval information had a more significant 
effect after longer delays than it did after shorter delays, but was still the lesser 
influence. In the ideal melody recognition system, both pitch contour and in­
terval information would be used to search for matching melodies. However 
pitch contour is the most important of the two, as this is the primary structure 
humans use to remember melodies. 

3.2 Pitch contour matching 

If melody recognition is to be performed using pitch contours, the problem of 
pitch contour matching needs to be addressed. There are three basic approaches 
to matching a pair of pitch contours: 
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• Regular expressions, and other exact pattern matching techniques, 

• Approximate pattern matching ( eg agrep), and 

• Pitch segment matching. 

Pitch segment matching, as used by mrs, will be described in chapter 5. 

3.2.1 Regular expressions 

Pitch contour matching could be performed using regular expressions. A regular 
expression is a search pattern format that contains facilities such as wild-card 
matching. 

The main problem with regular expressions with respect to melody recognition 
is that it is an exact pattern matching technique. No errors are allowed for, so 
variations in the user's search key will result in poor recognition performance. 
Furthermore it is a linear searching method by nature, and therefore difficult 
to apply sub-linear indexing methods to it. 

3.2.2 Approximate pattern matching 

Approximate pattern matching, as performed by agrep [WM91][WM92], is 
much more suited to the problem of melody recognition than simple regular 
expressions. The algorithm used by agrep will find all occurrences of a pattern 
with at most k errors. An error is specified to be either an insertion, deletion, 
or substitution. This type of technique is known as dynamic programming. 

An insertion error occurs when a single character needs to be inserted into an 
approximate occurrence of the pattern so that it exactly matches the search 
pattern. Deletion is the same, except that a deletion needs to be performed 
before an approximate occurance matches the search pattern. A substitution 
error is where one character must be substituted by another before the occu­
rance matches the search pattern. agrep also allows a weighting to be given to 
each type of error. For example, a deletion can be made to count as two errors 
instead of one. 

Dynamic programming is potentially useful for melody recognition. Because 
of its approximate nature, allowances can be made for variations in the user's 
search key. Unfortunately it shares a problem with the regular expression tech­
nique, in that it is a fundamentally linear searching method. 

15 
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3.3 Previous approaches to melody recognition and . 
comparison 

Very few references to existing melody recognition systems were found in the 
academic literature. A reference to a prototype Japanese melody recogniser 
was observed on the BBC science and technology television series Tomorrow's 
World. Unfortunately this was a commercial system, and no further information 
could be obtained. Two published recognition systems are described below. 

3.3.l ntt (Name That Tune) 

The ntt program was written by Michael Hawley [Haw90] at the MIT Media 
Laboratory. The input is in the form of a melody played at a keyboard, trans­
mitted to the computer via a MIDI interface (According to Hawley, at this 
point the input pitches are quantised to remove embellishments, but he does 
not specifically state how this is done). It then finds possible matches from a 
database of musical themes. 

In the database, each melody is represented as a string of relative pitch changes, 
plus a starting tone. e.g. [3, -1, 4, 2, CJ These pitch changes are coded as 
ASCII characters, the numbers representing an offset from ASCII 'D'. This 
ensures that all the melodies are simple strings which can be sorted. Also, 
since the encoding is relative, transpositions will be found. 

When searching for a match in the database, ntt simply needs to perform a 
binary search. However, there are some problems with this approach, especially 
with respect to untrained vocal input: 

• No "fuzzy" approximate searches are done. 

• For an input to match a tune in the database, they must both start at 
the same point. 

• Precise pitch changes are unlikely when the input is vocal. 

Because of the above points, an algorithm such as the one used by ntt is also 
not appropriate for providing a metric of "similarity" between two or more 
tunes. It can do little more than perform an action such as "Find a tune that 
starts like this in the database". 

3.3.2 Minimum Message Length comparison of musical sequences 

In his thesis, Cook [Coo94] applies Minimum Message Length (MML) encoding 
to the comparison of melodies. The roots of MML encoding are in informa-
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tion theory and the field of data compression. Simply put, MML says that if 
significant compression can be achieved by expressing one sequence in terms of 
another, then those two sequences must be related. 

As far as the basic MML technique is concerned, matching is a binary oper­
ation. In other words, individual pitches either match or do not match, and 
transpositions of the same musical theme are not recognised as being related. 
In order to compensate for this, Cook suggests a further adjustment to the 
basic algorithm, called interval matching, which uses a probabilistic order-zero 
model to quickly adjust to constant differences between pitches. 

Cook describes the major advantage of MML as its objectivity, with parameters 
determined by data rather than a pre-determined heuristic method. However, 
the MML technique is designed for music analysis, and is unsuitable for melody 
recognition. A major disadvantage in this respect is the unsuitability of MML 
for fast comparisons and indexing, because it still requires a comparison of every 
entry in the database. 
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Chapter 4 

Melody indexing 

The concept of indexing tunes by their melodic components has been around 
for several decades. The thematic index is one of the more interesting special 
indexes in the field of music. Unfortunately, a problem with most thematic 
index reference books is that the task of searching for a particular melody is 
not easy unless the searcher happens to have some specific musical knowledge. 
However, they are worth investigating for some intriguing ideas which have 
possible application in the field of computer-based melodic indexing. 

4.1 Thematic indexes 

Barlow's Dictionary of Musical Themes [BM48] was published in 1949, and 
contained an index of over 10,000 tunes. To use the dictionary to locate a 
particular melody, the theme must first be transposed to C major, and then 
the letter representation of the first few opening notes looked up in an alphabetic 
index. Table 4.1 shows a segment of Barlow's notation index. 

CCBCAF 
CCBCAG 
CCBCBA 
CCBCBCBC 
CCBCBCD 

H666 
A61 

C232 
M512 
M846 

Table 4.1: Segment of the notation index from Barlow's Dictionary of Musical 
Themes 

The letter and number to the right of each definition in the notation index 
indicates the place in the alphabetic section of the book where the theme may 
be found. The themes are listed in their original key with the name of the 
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composition and the composer. Figure 4.1 includes one of the theme entries 
which is indexed in Table 4.1. 

Symphony In E Flat 
8.& H. No.103 
"Drum Roll" 

4th2~~y~~:~t1'¥r· -~1r fr Pr1J u J a,.u a JJ1r· HbbS 

Isl lfove~t~~ !41'&2 r Ir r r I J r r Ir r r IF r J I Hbb6 

151
1~t:h~~~ t,,u C!!j Eu t di tfvfff1IDrr@1 rr,_ H667 

Isl Movement l# e~~~- · ... 
2nd Theme ru F LLil3-i..f f I Utt E1Cf I t.m:H F H668 

Figure 4.1: An example of theme entries from Barlow's Dictionary of Musical 
Themes 

Most thematic indexes are devoted to the works of one composer. The lvlelodic 
Index to the Works of Johann Sebastian Bach [Pay62], for example, indexes and 
tabulates all of the themes of Bach according to their melodic design. The index 
contains 3872 themes, and enables the searcher to locate a Bach composition 
by the pattern of the first three intervals. All the melodies are in the treble clef 
and in the key of C. Repeated notes are ignored. 

Line direction is unchanged: 

r r 
Line direction is changed once: 

Line direction is changed twice: 

r r 
Figure 4.2: Six categories of melodic pattern used by the Melodic Index to the 
TtVorks of Johann Sebastian Bach 

The line formed by the composition's first four notes of differing pitch creates 
the pattern used in finding the composition. The patterns are categorised into 
six different types, as shown in Figure 4.2. Each of the six types are divided 
into seven sub-categories, based on the seven possible starting notes. 

The thematic index, which is in the same order as the charts, lists the themes 
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in full. Figure 4.3 shows an example of a finding chart, and Figure 4.4 shows 
the corresponding entry in the thematic index. 
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1 2 3 4 

1 & h .. q.l ~ .... , , ...... 1 .. ~ ...... &- I 
1-12 • 5 ••22 ... 37 • 22 

5 6 7 

I \, .... , ...... , j., .... - • I P•"., • I 
•

81 
"' 3 •

11 
6 •• I 

8 9 10 11 

I P• ...... I , ... I , .. & .. I " .. I 
•

11
1 * 11

9 •"1 •"'a2 

Figure 4.3: Example of a finding chart from the Melodic Index to the Works of 
Johann Sebastian Bach 

• --· Muslkallsches Opfer. 

A _..... --· 
y~onea di verai, no, 5. 

1$ffJ. Ji,; -3 .J 03 I J 

Figure 4.4: Corresponding entry in the thematic index 
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Chapter 5 

An approximate melody 
• recogniser - mrs 

The program mrs was written as a testbed for measuring melody recognition 
performance using pitch contours.· These contours are translated into a series 
of data structures called pitch segments, which can then be correlated using a 
variety of methods. 

Due to the highly distributed nature of the entire system, it could not be effec­
tively tested on real-time basis. However human voice search keys were entered 
into the system, and data was transferred from component to component man­
ually. The system performed very well in the complete test cases that were 
done. 

5.1 Construction of the melody database 

The source of the melodies used in the construction of the melody database was 
the hymn book "Hymns for Today's Church". The melodies ( approximately 
600 in all) were scanned in one page at a time. Each page was processed by 
David Bainbridge's optical music recognition system. Figure 5.1 shows part of 
a page from the hymn book. Figure 5.2 shows the corresponding output after 
processing by the optical music recognition system. 

The first section of the file specifies notes that make up each melody (there is 
one melody per stave). The second section of the file contains the text which 
appears immediately above or below each stave on the page. This text is treated 
as the "title" of the melody by mrs. 

All files created by the optical music recognition system ( one file per page of 
music) were concatenated and piped into mrs. At this stage mrs creates the 
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Delta value 
0 
1 
2 
3 

Description of mapping 
Much lower in pitch 
Slightly lower in pitch 
Slightly higher in pitch 
Much higher in pitch 

Table 5.1: Basic mapping of four-level pitch deltas 

melody database, converting each tune into pitch delta format, described in 
Section 5.2. 

The melody database is a simple text file, where each line represents a melody. 
A line contains the melody name followed by a tab, a colon, a space, and a 
corresponding pitch contour. An excerpt from the Hymn database is shown in 
Figure 5.3. 

5.2 Pitch delta representation 

To allow for errors in the input, the pitch change information generated in the 
note recognition sub-system is further quantised into pitch deltas. The unit of a 
pitch change is the semitone. All pitch changes of magnitude zero are ignored. 
This compresses the pitch contour horizontally to a significant extent, but has 
some advantages. The most important advantage is that it avoids ambiguities 
where the search key contains, for example, a single crotchet where two quavers 
of the same pitch was meant. Another advantage ( albeit minor) is that it allows 
the number of delta levels to be a power of 2. This results in a convenient binary 
representation for each pitch delta. 

mrs can handle either two-level or four-level pitch deltas. A two-level pitch 
delta can have only two possible values, higher or lower. Generating this is 
simply a matter of checking the sign of the pitch change. 

Four-level pitch deltas are more complicated to create from the original pitch 
change information. The "fuzzy" mappings of the four possible values are shown 
in Table 5.1. 

To perform the quantisation, the size and position of the four sub-ranges in 
terms of semitones need to be specified. Figure 5.4 shows the distribution of 
pitch changes present in the Hymns database. 

Due to errors introduced by the optical music recognition system1, some spu­
rious pitch changes are present in the data. A pitch change of more than an 

1 Mainly due to the poor quality of the original sheet music. 
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Delta value ASCII representation Subrange (semitones) 
0 D PitchChange < -2 
1 d -2:::; PitchChange < 0 
2 u 0 < PitchChange :::; 2 
3 u PitchChange > 2 

Table 5.2: Mapping of four-level pitch delta values to semitone subranges 

octave (12 semitones) would normally not appear in a melody. However, these 
can safely be ignored as the number of glitches is too small to affect the basic 
distribution significantly. 

Approximately half the pitch changes in the database have a magnitude of one 
or two semitones. Therefore, mrs maps half the available delta levels to changes 
of this magnitude. This ensures that roughly equal numbers of each pitch delta 
value will appear in the melody database. The actual mappings of sub-ranges 
to pitch delta values are shown in Table 5.2. 

Also shown in the table are the ASCII representations used for each delta value. 
This representation is the one used by mrs to store melodies in the database. 

Figure 5.5 shows an example of the overall process. The notes which make up 
the search key are converted into pitch changes, and then pitch deltas. Both 
the numeric delta values and ASCII representations are shown. 

5.3 Pitch segments 

Before pitch contour correlation can take place the contours are broken up into 
pitch segments. This conversion must be performed on both the search key and 
the melody database. Figure 5.6 shows two segmented pitch contours, one with 
a segment size of two and the other with a segment size of four. 

In the case of the search key, several segmented pitch contours are generated. 
The encoding of each successive segmented contour starts on a different note in 
the original search key. 

The number generated is equal to the segment size, as each contour represents 
a different possible correlation point. This removes the problem which would 
otherwise occur if an occurance of the search key did not start on a segment 
boundary within the matching melody. The system is also more resilient to 
deletion and insertion errors within the search key as a result. 

There is also a second representation of tunes in the melody database where 
the number of pitch deltas is not a multiple of the segment size. Because all 
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partially empty pitch segments are discarded, information would normally be 
lost at the end of the pitch contour. In the second representation, the end of 
the last segment is aligned with the last pitch delta in the contour. This ensures 
the entire pitch contour is represented in pitch segment form. 

5.4 Pitch segment correlation 

Pitch segment correlation involves comparing two melodies in segmented pitch 
contour form and producing a correlation value. Similar pairs of melodies should 
be given higher values than dissimilar ones. 

Two pitch segment correlation methods are supported by mrs directly, one of 
which is a refinement of the other. Their purpose is to show the basic viability 
of segmented pitch contours as a technique for melody recognition. 

The first correlation method is a very simple technique called commonsegs. It 
simply adds up the number of segments that a pair of pitch contours have in 
common, and uses this as the correlation value. 

The second method is a refinement of commonsegs called csordered. This 
technique differs in that common segments in a pair of pitch contours are given 
extra weighting if they are in the same order. The overall correlation value is 
incremented for each pair of common segments that are in the correct order. 

The results of the first method, commonsegs, were similar in nature to cs ordered 
except generally worse. The commonsegs method is weighted heavily in favour 
of longer melodies. Because ordering and melody length are not taken into 
account, longer tunes tend to be given higher correlation values simply because 
they contain more pitch segments. For the generation of experimental results 
commonsegs was ignored, and csordered was used exclusively. 

5.5 Full-melody retrieval with mg 

Given a search key and a melody database, a simple way of performing melody 
recognition is to obtain a set of correlation values for the search key and each 
melody in the database. Ranking the output in order of highest to lowest 
correlation value groups the most likely matching melodies for a given search 
key at the top of the list. This method was used to produce some of the results 
given in Chapter 6. 

Although this proved successful for experimentation purposes, the technique is 
not appropriate for use in the melody recognition process. The main problem 
is that execution time is proportional to the length of the melody database. 
To reduce the time requirements of recognition, indexing of the database is 
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required. 

5.5.1 The mg system 

The mg2 system [WMB94] is a full-text retrieval system that runs under Unix. 
mg is designed to index and retrieve information from very large collections of 
documents. 

The document collection is compressed and indexed before it can be queried. A 
wide variety of queries are handled by mg, but most importantly it can perform 
ranked searches without searching the entire database. This makes it an ideal 
candidate for use with mrs. 

An inverted file is used by mg to perform indexing. Each item in the index 
is a "word" (in this case a pitch segment) followed by a list of "documents" 
(melodies) that contain the word. This means that only the melodies which 
have segments in common with the search key need be processed, the rest can 
be ignored. 

5.5.2 mg and mrs 

The mg system requires the document collection to be in a particular format 
before it can be compressed and indexed using the mgbuild program. Firstly, 
the mg__get shell script requires a slight modification so that it knows how to 
handle the melody collection. Figure 5.7 shows the lines that need to be inserted 
into the main switch statement. 

This ensures that when the command mgbuild melody is executed, the output 
file of mrs (in this case MelodyDatabase. mgseg) is passed directly to the mg 
system without modification. 

Secondly, mrs must be told to produce a slightly different format of melody 
database to the one described in Section 5.1. During the conversion of the 
optical music recognition output into a melody database, some extra operations 
need to be performed. A Ctrl-B character is inserted between every line in the 
database, which causes mg to treat the melodies as separate documents. The 
pitch contour of the melodies are segmented (as described in Section 5.3) by 
inserting a space between each pitch segment. This ensures that pitch segments 
are treated as separate words for the purposes of a ranked query. 

Different letters must be used when outputting the ASCII representation of a 
4 level pitch delta. "D", "d", "U", and "u" are used during the normal conver­
sion process. However, mg's ranked query is case insensitive so the distinction 

2 Managing Gigabytes 
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between "D" and "d" is lost. Selecting four letters such as "G", "d", "u" and 
"B" solves the problem. 

5.5.3 Melody querying 

When the melody database has been compressed and indexed by mg, it can 
finally be queried. mrs can generate a query for a given search key to be 
subsequently processed by the mgquery program. For example, given the pitch 
contour duduGBGBdu, the output of mrs will be: 

.set query ranked 
dudu GBGB uduG BGBd duGB GBdu uGBG 

In addition, mrs can create a very large query which performs a ranked search 
for every melody in the database. Executing this query on the Hymn database 
generated over 8 megabytes of output. This feature was implemented solely for 
experimentation purposes. See Chapter 6 for details of the results. 

5.6 Summary of mrs command line arguments 

usage: mrs <command> [command paramters] 

<command> can be one of the following: commonsegs, csordered, stats, 
meltoseg, mgstats, meltomgseg, genmgquery, melpdelta 

These commands take the following additional parameters: 
commonsegs <pitch contour> 
csordered <pitch contour> 
stats <filename> 
genmgquery <pitch contour> 

stdin and stdout are used for input and output by all commands. 
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3533 
SAVIOUR CHRIST, 216 

4M i J J J nJ J r r 1r--J ~ J I 
4444448 

CARTAN, 5 

4884 

Figure 5.1: Page from original hymn book 
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1.1: I 
4F#(1.0),4C#(1.0),4E(1.0),4A(1.0),4G#(1.0) I 4B(1.0),4A(1.0), 

. 5C#(1.0),4B(1.0) I 5C#(1.0),4A(1.0),4F#(1.0),4E(1.0) I 

2 .1: I I I 
4G(1.5),4A(0.5),4B(1.0),5E(1.0) I 5D(1.5),5D(0.5),5D(1.0),4B(1.0) 
5D(1.5),5D(0.5),5D(0.5)\_,_/4B(0.5),4A(0.5),4B(0.5)&4F#(4.0) 

3 .1: I I I I I 
rest(0.5) ,4B(0.5) ,4B(0.5) ,4A(0.5) I 4E(0.5) I 4G(0.5) I 4G(0.5), 
4A(0.5),4A(0.5),4B(0.5) I 4B(0.5),5C#(0.5) I I 

Stave 1: 
Above: 3 5 3 3 

SAV DUR CHRIST 216 

Stave 2: 
Above: 4 4 4 4 4 4 8 

GARTA 5 

Stave 3: 
Above: 4 8 8 4 

u IGuA 106 

Figure 5.2: Output from optical music recognition system 

Saviour Christ, 216 uUdudududdd 
Gartan, 5 uuuUdduddu 
Enigma, 106 ddduuuu 
The Infant King, 92 uduuuuuuddddududu 
Harrow Weald, 2 uudduududdudddUd 
Victor's Crown, 185 uddUUDdUuduu 
Ardwick, 224 ddddUdudu 
Passfield, 382 DUduduUddDUuu 
Schonster Herr Jesu, 209 uduuuduuUd 

Figure 5.3: Excerpt from the Hymn database 
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Pitch change distribution in Hymns database 
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"pitchdist.dat"--+-

1000 
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4--< 
0 

H 
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-20 -15 -10 -5 0 5 10 15 20 

Change in pitch 

Figure 5.4: Distribution of pitch changes in Hymns database 

J J J J J J J J J J J J 

Change in pitch 2 -2 3 3 -3 -1 -2 2 (semitones) I 

Delta level = 2 (ud) u d u u d d d u 
Delta level= 4 (UudD) d u u D d d 

ASCII u u 

Figure 5.5: Conversion of notes to pitch deltas 
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Delta level = 2 (ud) 

Delta level = 4 (UudD) 

Segment size = 2 

Segment size = 4 

J J J J J J J J J J J J 

u 
u 

!u 
!u 

d u u d 
d U U D 

d d u 
d d u 

Figure 5.6: Segmentation of a pitch contour 

case melody: 
switch ($flag) 

case '-init': 
breaksw 

case '-text' 

9,15,1,6 

160,22 

cat MelodyDatabase.mgseg #insert database name here 
breaksw 

case '-cleanup': 
breaksw #-cleanup 

endsw #flag 
breaksw #melody 

Figure 5.7: Lines that need to be added to the main switch statement of mg_get 
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Chapter 6 

Experimental results 

The chapter presents the results gathered from a number of experiments. Data 
was obtained on various combinations of pitch delta levels and segment sizes, 
to examine the effectiveness of pitch segments as a data structure. The perfor­
mance and practicality of using mg as a method of indexing the melody database 
is also examined. 

6.1 Pitch delta level and segment size 

The results presented in this section were obtained in the following wa.y. Given 
a search key and the Hymn melody database, a set of correlation values were 
generated for each possible pa.iring of search key and melody in the database. 
The output is ranked in order of highest to lowest correlation value. Therefore 
the most likely matching melodies for a given search key are put near the top 
of the list, with the least likely at the bottom. 

However, the output is not a list of melody names or pitch contours. It is a 
descending list of numbers, where a number at a particular position in the list 
represents the correlation value of the melody at that position. 

This list is generated many times, one for every melody in the database. In each 
case a different melody from the database is used as a search key. This means 
that the search key will always be a "perfect match" for itself. The results in 
Table 6.1 and Figures 6.1 and 6.2 were obtained by averaging the values of each 
position for all the lists. 
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Pitch delta levels Segment size Match position 
2 2 95.25 
2 3 44.46 
2 4 19.08 
2 5 9.23 
2 6 4.61 
2 7 2.03 
2 8 1.05 
4 2 6.04 
4 3 1.15 
4 4 0.53 

Table 6.1: The performance of various combinations of pitch delta. levels a.nd 
segment sizes 

6.1.1 Average match position 

The average match position is the mean position of the perfect match to search 
keys in the set of output lists. A match position of O means that the melody 
recogniser has found the correct value. Therefore the performance of the melody 
recogniser is closely related to how small the average match position is. 

Table 6.1 compares the average match position obtained using various combina­
tions of pitch delta levels and segment sizes. A pitch delta level of 2 and segment 
size of 2 performed very badly, with an average match position of 95.25. The 
best performance was obtained with a pitch delta level of 4 and segment size of 
4. The average match position in this case was 0.53. 

6.1.2 Distribution of correlation values 

Figure 6.1 shows the distribution of correlation values using 2 level pitch deltas. 
Figure 6.2 shows the equivalent graph for 4 level pitch deltas. Again, the com­
bination of pitch delta level = 4 and segment size = 4 was the best performer, 
exhibiting the most "L" shaped curve and lowest correlation values for non­
matching melodies. 

There a.re a number of reasons for the poorer melody recognition performance 
observed with few pitch delta levels a.nd small segment sizes. 

A delta. level of two, combined with a. segment size of two, results in only four 
different segments. Therefore any reasonably long melody is bound to have 
copious quantities of all possible segments. This leads to a fairly flat distribution 
of correlation values, and an almost random expected match position. 
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A problem with the csordered technique in general, but one which is exac­
erbated by fewer pitch delta levels and smaller segment sizes, is that of rank 
distinction. Several of the most likely candidates for a match tend to be given 
the same correlation value. The main reason for this is that the csordered 
technique does not take into account melody length. If shorter melodies were 
given higher weightings when calculating the correlation value, this problem 
would be greatly reduced. 

6.2 Indexing with mg 

The experiments in this section differ from the previous section in that the 
correlation values were computed in cooperation with mg's ranked query facility. 

Figure 6.3 shows the distribution of correlation values using 4 level pitch deltas 
and a segment size of 4. 

The distribution of the graph is similar to its cs ordered counterpart. However, 
this technique exhibited two desirable properties: 

• The average match position was exactly zero. The melody recogniser 
found the correct value every time, compared with 0.53 for csordered. 

• The problem of rank distribution disappeared. The correlation values 
output by mg were floating point and had a much higher granularity to 
the corresponding values generated by csordered. 

6.3 Approximate melody recognition 

Figure 6.4 shows a normalised distribution of correlation values using 4 level 
pitch deltas and a segment size of 4. This test was slightly different to the 
previous mg test in that an error of one randomly-placed deletion was introduced 
to each search key. 

By comparing the graphs of Figure 6.3 and 6.4 it is clear the introduced error 
had only a marginal effect on recognition performance. 

6.4 Summary 

Using csordered, the best results were obtained with -

• pitch delta level = 4, and 
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• segment size = 3 or 4. 

Using mg to index the melody database proved very successful. The problem of 
rank distribution disappeared, and the system selected the correct match for a 
particular search key every time. 

The system performed very well even when a random deletion error was intro­
duced to the search keys. Recognition performance was affected only slightly. 
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Distribution of MG correlation values (Segment size= 4) 
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Figure 6.3: Distribution of correlation values 
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Chapter 7 

Conclusion 

The aim of this project was to research, design, and provide the basis of an 
implementation for a real-time melody recognition system. The human brain 
recognises complicated polyphonic music with ease. However, melody recogni­
tion is a complicated task for a computer to perform. It combines a number of 
difficult problems (pitch recognition, note recognition and approximate pattern 
matching) into one system. 

With respect to human melody recognition, the two most important features 
are recognised as being contour and interval information. Psychological studies 
of human memory have indicated that relative pitch is more important than 
rhythm for the recognition of melodies. The suggestion is therefore that pitch 
contours should be the primary data structure used to represent melodies for 
the purpose of melody recognition. 

The concept of pitch segments was introduced as a potentially fast and accurate 
way of performing melody recognition using pitch contours. This allowed the 
application of a full-text retrieval system (mg) to the indexing of the melody 
database, and proved very successful. 

38 



Bibliography 

[Bai] David Bainbridge. An optical music recognition system. This is 
a work in progress (Computer Science Department, University of 
Canterbury, New Zealand). 

[BM48] Harold Barlow and Sam Morgenstern. A Dictionary of Musical 
Themes. Crown Publishers, New York, NY, 1948. 

[Coo94] Shane Samuel Coale Minimum message length comparison of musical 
sequences. Master's thesis, University of Waikato, 1994. 

[DC86] Lucinda Dewitt and Robert Crowder. Recognition of novel melodies 
after brief delays. Music Perception, 3(3):259-274, Spring 1986. 

[GR69] B. Gold and L. Rabiner. Parallel processing techniques for estimating 
pitch periods of speech in the time domain. Journel of the Acoustical 
Society of America, 46(2):442-448, 1969. 

[Haw90] Michael Hawley. The personal orchestra, or audio data compression. 
Computing Systems, 3(2) :289-329, Spring 1990. 

[Kuh90] William B. Kuhn. A real-time pitch recognition algorithm for music 
applications. Computer Music Journal, 14(3):60-71, Fall 1990. 

[Lan90] John E. Lane. Pitch detection using a tunable iir filter. Computer 
Music Journal, 14(3):46-59, Fall 1990. 

[Min23] B.M. Minogue. A case of secondary mental deficiency with musical 
talent. Journal of Applied Psychology, 7:379-352, 1923. 

[Mon93] Trevor Monk. Computer assisted sightsinging training: Implemen­
tation of a sightsinging tu tor ( sst-1). A thesis submitted in partial 
fulfilment of the requirements for the degree of bachelor of computing 
and mathematical sciences, University of Waikato, Hamilton, New 
Zealand, 1993. 

[Pay62] M.D. Payne. Melodic Index to the Works of Johann Sebastian Bach. 
Schiermer, 1962. 

[Rev25] G. Revesz. The psychology of a musical prodigy. 1925. 

39 



[Ric90] D.M. Richard. Godel tune: formal models in music recognition sys­
tems. In ICMC Glasgow 1990} Proceedings, pages 338-340, Glasgow, 
UK, 1990. ICMC. 

[SH085] John Slaboda, B. Hermelin, and N. O'Connor. An exceptional mu­
sical memory. Music Perception, 3(2) :155-170, Winter 1985. 

[SJ89] Hajime Sano and 13. Keith Jenkins. A neural network model for 
pitch perception. Computer Music Journal, 13(3):41-48, Fall 1989. 

[Vis70] D.S. Viscott. A musical idiot savant: a psychodynamic study and 
some speculations on the creative process. Psychiatry, 33 ( 4) :494-
515, 1970. 

[WM91] Sun Wu and Udi Manber. Fast text searching with errors. Tech­
nical Report 91-11, Department of Computer Science, University of 
Arizonza, 1991. 

[WM92] Sun Wu and Udi Manber. Agrep- a fast approximate pattern search­
ing tool. In USENIX Conference, January 1992. 

[WMB94] Ian H. Witten, Alistair Moffat, and Timothy C. Bell. Managing 
Gigabytes. Van Nostrand Reinhold, 1994. 

40 



 
 
    
   HistoryItem_V1
   AddMaskingTape
        
     Range: current page
     Mask co-ordinates: Horizontal, vertical offset -1.81, 523.26 Width 599.30 Height 318.66 points
     Mask co-ordinates: Horizontal, vertical offset 404.67, -0.00 Width 248.05 Height 540.46 points
     Mask co-ordinates: Horizontal, vertical offset 185.59, 462.60 Width 91.43 Height 24.44 points
     Origin: bottom left
      

        
     1
     0
     BL
            
                
         Both
         11
         CurrentPage
         17
              

       CurrentAVDoc
          

     -1.8106 523.2567 599.3043 318.6633 404.6662 -0.0029 248.0504 540.4601 185.5852 462.6021 91.4346 24.4429 
      

        
     QITE_QuiteImposingPlus3
     Quite Imposing Plus 3.0e
     Quite Imposing Plus 3
     1
      

        
     0
     43
     0
     1
      

   1
  

    
   HistoryItem_V1
   AddMaskingTape
        
     Range: all pages
     Mask co-ordinates: Horizontal, vertical offset 565.81, -0.00 Width 38.93 Height 841.02 points
     Origin: bottom left
      

        
     1
     0
     BL
            
                
         Both
         11
         AllDoc
         17
              

       CurrentAVDoc
          

     565.8084 -0.0029 38.9276 841.0176 
      

        
     QITE_QuiteImposingPlus3
     Quite Imposing Plus 3.0e
     Quite Imposing Plus 3
     1
      

        
     2
     43
     42
     43
      

   1
  

    
   HistoryItem_V1
   AddMaskingTape
        
     Range: current page
     Mask co-ordinates: Horizontal, vertical offset 9.96, 723.33 Width 46.17 Height 80.57 points
     Mask co-ordinates: Horizontal, vertical offset 51.60, 102.30 Width 532.31 Height 436.35 points
     Mask co-ordinates: Horizontal, vertical offset 507.87, 47.07 Width 65.18 Height 55.22 points
     Mask co-ordinates: Horizontal, vertical offset 29.87, 28.97 Width 41.64 Height 103.20 points
     Mask co-ordinates: Horizontal, vertical offset 11.77, 21.72 Width 21.73 Height 43.45 points
     Mask co-ordinates: Horizontal, vertical offset 49.79, 584.82 Width 22.63 Height 38.93 points
     Origin: bottom left
      

        
     1
     0
     BL
            
                
         Both
         11
         CurrentPage
         17
              

       CurrentAVDoc
          

     9.9582 723.3266 46.17 80.5711 51.6017 102.2953 532.3126 436.3514 507.8696 47.0724 65.1812 55.2229 29.8747 28.9665 41.6435 103.2035 11.7688 21.7242 21.7271 43.454 49.7911 584.8167 22.6323 38.9276 
      

        
     QITE_QuiteImposingPlus3
     Quite Imposing Plus 3.0e
     Quite Imposing Plus 3
     1
      

        
     2
     43
     2
     1
      

   1
  

    
   HistoryItem_V1
   AddMaskingTape
        
     Range: current page
     Mask co-ordinates: Horizontal, vertical offset 9.05, 698.88 Width 211.84 Height 114.07 points
     Origin: bottom left
      

        
     1
     0
     BL
            
                
         Both
         11
         CurrentPage
         17
              

       CurrentAVDoc
          

     9.0529 698.8837 211.8387 114.067 
      

        
     QITE_QuiteImposingPlus3
     Quite Imposing Plus 3.0e
     Quite Imposing Plus 3
     1
      

        
     3
     43
     3
     1
      

   1
  

    
   HistoryItem_V1
   AddMaskingTape
        
     Range: current page
     Mask co-ordinates: Horizontal, vertical offset 3.62, 675.35 Width 58.84 Height 125.84 points
     Origin: bottom left
      

        
     1
     0
     BL
            
                
         Both
         11
         CurrentPage
         17
              

       CurrentAVDoc
          

     3.6212 675.346 58.8441 125.8358 
      

        
     QITE_QuiteImposingPlus3
     Quite Imposing Plus 3.0e
     Quite Imposing Plus 3
     1
      

        
     4
     43
     4
     1
      

   1
  

    
   HistoryItem_V1
   AddMaskingTape
        
     Range: all pages
     Mask co-ordinates: Horizontal, vertical offset 30.78, 729.66 Width 16.30 Height 24.44 points
     Origin: bottom left
      

        
     1
     0
     BL
            
                
         Both
         11
         AllDoc
         17
              

       CurrentAVDoc
          

     30.78 729.6636 16.2953 24.4429 
      

        
     QITE_QuiteImposingPlus3
     Quite Imposing Plus 3.0e
     Quite Imposing Plus 3
     1
      

        
     5
     43
     42
     43
      

   1
  

    
   HistoryItem_V1
   AddMaskingTape
        
     Range: current page
     Mask co-ordinates: Horizontal, vertical offset 248.05, 470.75 Width 14.48 Height 10.86 points
     Origin: bottom left
      

        
     1
     0
     BL
            
                
         Both
         11
         CurrentPage
         17
              

       CurrentAVDoc
          

     248.0504 470.7497 14.4847 10.8635 
      

        
     QITE_QuiteImposingPlus3
     Quite Imposing Plus 3.0e
     Quite Imposing Plus 3
     1
      

        
     18
     43
     18
     1
      

   1
  

    
   HistoryItem_V1
   AddMaskingTape
        
     Range: current page
     Mask co-ordinates: Horizontal, vertical offset 103.20, 325.90 Width 435.45 Height 176.53 points
     Origin: bottom left
      

        
     1
     0
     BL
            
                
         Both
         11
         CurrentPage
         17
              

       CurrentAVDoc
          

     103.2035 325.9028 435.4461 176.5322 
      

        
     QITE_QuiteImposingPlus3
     Quite Imposing Plus 3.0e
     Quite Imposing Plus 3
     1
      

        
     19
     43
     19
     1
      

   1
  

    
   HistoryItem_V1
   AddMaskingTape
        
     Range: current page
     Mask co-ordinates: Horizontal, vertical offset 53.41, 121.31 Width 509.68 Height 538.65 points
     Origin: bottom left
      

        
     1
     0
     BL
            
                
         Both
         11
         CurrentPage
         17
              

       CurrentAVDoc
          

     53.4123 121.3065 509.6802 538.6496 
      

        
     QITE_QuiteImposingPlus3
     Quite Imposing Plus 3.0e
     Quite Imposing Plus 3
     1
      

        
     22
     43
     22
     1
      

   1
  

    
   HistoryItem_V1
   AddMaskingTape
        
     Range: current page
     Mask co-ordinates: Horizontal, vertical offset 401.05, 720.61 Width 68.80 Height 58.84 points
     Origin: bottom left
      

        
     1
     0
     BL
            
                
         Both
         11
         CurrentPage
         17
              

       CurrentAVDoc
          

     401.045 720.6107 68.8023 58.8441 
      

        
     QITE_QuiteImposingPlus3
     Quite Imposing Plus 3.0e
     Quite Imposing Plus 3
     1
      

        
     24
     43
     24
     1
      

   1
  

    
   HistoryItem_V1
   AddMaskingTape
        
     Range: current page
     Mask co-ordinates: Horizontal, vertical offset 243.52, 451.74 Width 93.25 Height 78.76 points
     Mask co-ordinates: Horizontal, vertical offset 133.98, 86.91 Width 45.26 Height 28.97 points
     Origin: bottom left
      

        
     1
     0
     BL
            
                
         Both
         11
         CurrentPage
         17
              

       CurrentAVDoc
          

     243.524 451.7386 93.2452 78.7605 133.9834 86.9053 45.2647 28.9694 
      

        
     QITE_QuiteImposingPlus3
     Quite Imposing Plus 3.0e
     Quite Imposing Plus 3
     1
      

        
     31
     43
     31
     1
      

   1
  

    
   HistoryItem_V1
   AddMaskingTape
        
     Range: current page
     Mask co-ordinates: Horizontal, vertical offset 103.20, 441.78 Width 48.89 Height 59.75 points
     Mask co-ordinates: Horizontal, vertical offset 133.98, 669.91 Width 45.26 Height 19.92 points
     Mask co-ordinates: Horizontal, vertical offset 101.39, 654.52 Width 23.54 Height 19.01 points
     Mask co-ordinates: Horizontal, vertical offset 416.44, 78.76 Width 57.94 Height 47.98 points
     Origin: bottom left
      

        
     1
     0
     BL
            
                
         Both
         11
         CurrentPage
         17
              

       CurrentAVDoc
          

     103.2035 441.7803 48.8858 59.7494 133.9834 669.9143 45.2647 19.9164 101.3929 654.5243 23.5376 19.0112 416.435 78.7576 57.9388 47.9806 
      

        
     QITE_QuiteImposingPlus3
     Quite Imposing Plus 3.0e
     Quite Imposing Plus 3
     1
      

        
     33
     43
     33
     1
      

   1
  

    
   HistoryItem_V1
   AddMaskingTape
        
     Range: current page
     Mask co-ordinates: Horizontal, vertical offset 71.52, 138.51 Width 426.39 Height 455.36 points
     Origin: bottom left
      

        
     1
     0
     BL
            
                
         Both
         11
         CurrentPage
         17
              

       CurrentAVDoc
          

     71.5182 138.507 426.3932 455.3626 
      

        
     QITE_QuiteImposingPlus3
     Quite Imposing Plus 3.0e
     Quite Imposing Plus 3
     1
      

        
     37
     43
     37
     1
      

   1
  

    
   HistoryItem_V1
   AddMaskingTape
        
     Range: current page
     Mask co-ordinates: Horizontal, vertical offset 111.35, 650.00 Width 16.30 Height 30.78 points
     Origin: bottom left
      

        
     1
     0
     BL
            
                
         Both
         11
         CurrentPage
         17
              

       CurrentAVDoc
          

     111.3511 649.9979 16.2953 30.7799 
      

        
     QITE_QuiteImposingPlus3
     Quite Imposing Plus 3.0e
     Quite Imposing Plus 3
     1
      

        
     38
     43
     38
     1
      

   1
  

    
   HistoryItem_V1
   AddMaskingTape
        
     Range: current page
     Mask co-ordinates: Horizontal, vertical offset 137.60, 806.61 Width 39.83 Height 27.16 points
     Mask co-ordinates: Horizontal, vertical offset 191.92, 460.79 Width 17.20 Height 16.30 points
     Mask co-ordinates: Horizontal, vertical offset 167.48, 531.40 Width 13.58 Height 11.77 points
     Mask co-ordinates: Horizontal, vertical offset 76.95, 490.67 Width 10.86 Height 15.39 points
     Mask co-ordinates: Horizontal, vertical offset 102.30, 474.37 Width 17.20 Height 26.25 points
     Mask co-ordinates: Horizontal, vertical offset 386.56, 527.78 Width 19.92 Height 20.82 points
     Origin: bottom left
      

        
     1
     0
     BL
            
                
         Both
         11
         CurrentPage
         17
              

       CurrentAVDoc
          

     137.6046 806.6136 39.8329 27.1588 191.9222 460.7915 17.2006 16.2953 167.4793 531.4044 13.5794 11.7688 76.95 490.6662 10.8635 15.39 102.2982 474.3709 17.2006 26.2535 386.5603 527.7832 19.9165 20.8217 
      

        
     QITE_QuiteImposingPlus3
     Quite Imposing Plus 3.0e
     Quite Imposing Plus 3
     1
      

        
     39
     43
     39
     1
      

   1
  

    
   HistoryItem_V1
   TrimAndShift
        
     Range: all pages
     Trim: none
     Shift: move right by 14.17 points
     Normalise (advanced option): 'original'
      

        
     32
     1
     0
     No
     1737
     174
     Fixed
     Right
     14.1732
     0.0000
            
                
         Both
         2
         AllDoc
         100
              

       CurrentAVDoc
          

     None
     0.0000
     Top
      

        
     QITE_QuiteImposingPlus3
     Quite Imposing Plus 3.0e
     Quite Imposing Plus 3
     1
      

        
     5
     43
     42
     43
      

   1
  

    
   HistoryItem_V1
   TrimAndShift
        
     Range: all pages
     Trim: none
     Shift: move right by 14.17 points
     Normalise (advanced option): 'original'
      

        
     32
     1
     0
     No
     1737
     174
     Fixed
     Right
     14.1732
     0.0000
            
                
         Both
         2
         AllDoc
         100
              

       CurrentAVDoc
          

     None
     0.0000
     Top
      

        
     QITE_QuiteImposingPlus3
     Quite Imposing Plus 3.0e
     Quite Imposing Plus 3
     1
      

        
     5
     43
     42
     43
      

   1
  

    
   HistoryItem_V1
   TrimAndShift
        
     Range: all pages
     Trim: none
     Shift: move left by 5.67 points
     Normalise (advanced option): 'original'
      

        
     32
     1
     0
     No
     1737
     174
     Fixed
     Left
     5.6693
     0.0000
            
                
         Both
         2
         AllDoc
         100
              

       CurrentAVDoc
          

     None
     0.0000
     Top
      

        
     QITE_QuiteImposingPlus3
     Quite Imposing Plus 3.0e
     Quite Imposing Plus 3
     1
      

        
     5
     43
     42
     43
      

   1
  

    
   HistoryItem_V1
   AddMaskingTape
        
     Range: current page
     Mask co-ordinates: Horizontal, vertical offset 271.59, 468.94 Width 14.48 Height 9.05 points
     Mask co-ordinates: Horizontal, vertical offset 212.74, 466.22 Width 9.05 Height 9.96 points
     Mask co-ordinates: Horizontal, vertical offset 411.00, 679.87 Width 8.15 Height 6.34 points
     Origin: bottom left
      

        
     1
     0
     BL
            
                
         Both
         11
         CurrentPage
         17
              

       CurrentAVDoc
          

     271.5881 468.9391 14.4846 9.0529 212.744 466.2233 9.0529 9.9582 411.0032 679.8725 8.1476 6.337 
      

        
     QITE_QuiteImposingPlus3
     Quite Imposing Plus 3.0e
     Quite Imposing Plus 3
     1
      

        
     5
     43
     5
     1
      

   1
  

    
   HistoryItem_V1
   AddMaskingTape
        
     Range: current page
     Mask co-ordinates: Horizontal, vertical offset 95.96, 107.73 Width 436.35 Height 465.32 points
     Origin: bottom left
      

        
     1
     0
     BL
            
                
         Both
         11
         CurrentPage
         17
              

       CurrentAVDoc
          

     95.9611 107.7271 436.3514 465.3209 
      

        
     QITE_QuiteImposingPlus3
     Quite Imposing Plus 3.0e
     Quite Imposing Plus 3
     1
      

        
     7
     43
     7
     1
      

   1
  

    
   HistoryItem_V1
   AddMaskingTape
        
     Range: current page
     Mask co-ordinates: Horizontal, vertical offset 269.78, 473.47 Width 9.05 Height 12.67 points
     Mask co-ordinates: Horizontal, vertical offset 344.92, 495.19 Width 17.20 Height 12.67 points
     Origin: bottom left
      

        
     1
     0
     BL
            
                
         Both
         11
         CurrentPage
         17
              

       CurrentAVDoc
          

     269.7775 473.4656 9.0529 12.6741 344.9168 495.1927 17.2006 12.6741 
      

        
     QITE_QuiteImposingPlus3
     Quite Imposing Plus 3.0e
     Quite Imposing Plus 3
     1
      

        
     8
     43
     8
     1
      

   1
  

    
   HistoryItem_V1
   AddMaskingTape
        
     Range: current page
     Mask co-ordinates: Horizontal, vertical offset 101.39, 99.58 Width 296.03 Height 34.40 points
     Origin: bottom left
      

        
     1
     0
     BL
            
                
         Both
         11
         CurrentPage
         17
              

       CurrentAVDoc
          

     101.3929 99.5794 296.0309 34.4011 
      

        
     QITE_QuiteImposingPlus3
     Quite Imposing Plus 3.0e
     Quite Imposing Plus 3
     1
      

        
     9
     43
     9
     1
      

   1
  

    
   HistoryItem_V1
   AddMaskingTape
        
     Range: current page
     Mask co-ordinates: Horizontal, vertical offset 214.55, 463.51 Width 92.34 Height 16.30 points
     Origin: bottom left
      

        
     1
     0
     BL
    
            
                
         Both
         11
         CurrentPage
         17
              

       CurrentAVDoc
          

     214.5546 463.5074 92.3399 16.2953 
      

        
     QITE_QuiteImposingPlus3
     Quite Imposing Plus 3.0e
     Quite Imposing Plus 3
     1
      

        
     11
     43
     11
     1
      

   1
  

 HistoryList_V1
 qi2base





