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Abstract

Background: Early childhood caries is a preventable chronic disease with a strong socio-economic gradient.

The overall arching goal of this research is to establish if routinely collected data can be used to predict dental

disease. The primary aim of this study was to compare a conventional statistical technique with a supervised

machine learning technique, to establish the most appropriate method for answering this research goal.

Methods: This study utilised routinely collected dental records, hospital admissions and New Zealand Index of

Multiple Deprivation data from 21,236 children aged 5-years, in the Canterbury region. Selection was limited to

children who turned five years old between 2014 and 2017. The data were split into 3 datasets, a training

dataset to build models to predict a count of decayed, missing or filled teeth, a tuning dataset to tune the best

of these models, and a testing dataset to compare the models on their predictive abilities. Models were

compared on goodness-of-fit, root mean square error (RMSE) and sensitivity and specificity.

Results: The zero-inflated negative binomial and the random forest models performed better at fitting and

predicting than the other methods considered. The random forest model performed better at prediction with a

RMSE of 2.678 compared to the zero-inflated negative binomial RMSE of 2.727. The sensitivity for the

random forest model was 0.203 which was higher than the zero-inflated negative binomial sensitivity of 0.071.

Specificity was 0.926 for the random forest model and 0.972 for the zero-inflated negative binomial model. The

model building, tuning and testing process for the random forest model was more computationally efficient

than for the zero-inflated negative binomial model.

Conclusion: Machine learning, specifically random forests, are a faster approach to modelling routinely

collected dental data, with greater precision and accuracy to fit the data and predict dental disease.
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Background

Caries in early childhood is a serious health concern worldwide. It is a preventable

phenomenon that can have detrimental effects on physical and mental health. Early

childhood caries (ECC) has been associated with increased weight and malnutrition

[1]. Fear, depression and anxiety are also associated with poor oral health in children

[2, 3, 4] and caries in childhood has been linked to higher rates of caries in adult

teeth [5]. According to the California Dental Association, dental caries is the number

one chronic health issue in early childhood [6].

Oral health is a key area of development for the World Health Organization

(WHO). According to the WHO Oral Health Fact Sheet, oral disease affects approx-

imately half the world’s population and is predominantly preventable or treatable

in the early disease stages [7]. School age children and youth are among the key

target groups for WHO oral health intervention [8]. Although decreasing in preva-

lence internationally [9, 10, 11], oral diseases are still considered the most common

chronic illness for children, especially for those living in deprived circumstances.

These children have more missing teeth and are more likely to have unmet treat-

ment needs than those in less deprived circumstances [11, 12]. In developed nations,

children who come from higher income families have lower rates of dental disease

than those from low income families. Similarly, children whose parents have higher

education levels have lower rates of dental diseases than those with less educated

parents [11, 12].

Investigating ECC is important to New Zealand public health. In the 2016/17 year,

the Ministry of Health identified that 12.3% of 5-9 year olds and 18.0% of 10-14 year

olds had a tooth or multiple teeth removed in their lifetime due to dental caries [13].

Utilising data from the Dunedin Multidisciplinary Health and Development study

[14], Thompson (2002) showed that children who came from lower socio-economic

backgrounds were more likely to have had a tooth or multiple teeth removed in

adulthood by age 26 years than children from higher socio-economic homes [15].

This study also showed that children who had dental issues at age five years were

at a higher risk of dental extraction by age 26 years than those that did not [15].

Prevention and effective early treatment for ECC is paramount for a child’s future

oral health. When not prevented or treated in a timely manner, ECC can lead to

complications including chronic infections or abscesses, pain and issues with sleeping



Sonal et al. Page 3 of 32

[6]. When an ECC is severe, tooth-saving treatments are no longer viable and tooth

extraction is required. Premature extraction of primary teeth can result in crowding,

teeth migration, early eruption of permanent teeth, remaining teeth destabilisation

and potential speech issues [16, 17]. Oral disease has been associated with other

complications such as systemic diseases, poor nutrition and a decreased immune

system function [11]. On a population level, one potential aid in avoiding ECC is

the development of prediction models that can identify those most at risk, for health

promotion or early intervention targeting. However, such models only have utility

if they have effective predictive properties.

Health data, including oral health datasets, are rapidly increasing in size and

scope with electronic record keeping, medical imaging and personal wearable tech-

nologies. This growth is unlikely to abate; indeed, further growth and expansion is

almost inevitable. As a result, machine learning techniques have developed to better

deal with larger datasets. Arguably, we are on the cusp whereby traditional statis-

tical techniques, developed in the epoch of smaller datasets and various sampling

strategies, may be superseded by these new techniques. They may provide a better

platform for understanding complex variable relationships, including the derivation

of prediction models.

Here, a purposeful selection of conventionally employed generalised linear mod-

elling techniques will be employed on a large oral health dataset, and the best ascer-

tained using a priori defined criteria. Concurrently, a selection of modern datamining

techniques will be employed, and using the same criteria, the best will be selected.

The best performing will then be compared on how well the models fit the data,

and on their ability to predict using a data subset not used for building the model.

Finally, the adequacy of each of these models for the predictive screening of ECCs

in this population will be assessed.

Methods

Study Design

A retrospective analysis of routine oral health data collected between 1st January

2014 to 31st December 2017, inclusive.
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Participants and Setting

Children aged 5-years attending the Community Dental Services in the Canterbury

and South Canterbury regions of New Zealand for their routine oral health check.

Those children living outside the Canterbury region or without a residential address

were excluded.

Variables

The primary variable of interest was the count of decayed, missing or filled teeth

(dmft) in children’s deciduous teeth [18]. Potential exploratory variables of interest,

available from routine collected data sources, included: appointment attendance;

household deprivation (based on last known residential address); ethnicity; and, co-

morbidities/hospital admissions from Canterbury District Health Board (CDHB)

data. Table1 contains the full variable list, and associated definitions and classifi-

cations.

Procedure

In New Zealand, all children under the age of 18 years are eligible for free dental

check-ups and treatments [19]. Community Dental Services is the organisation that

provides this service for children in the Canterbury and South Canterbury regions

from birth to age 13-years [20]. The 5-years age threshold was selected because

children begin primary school at this age, and they also begin receiving dental

treatments during school hours. All routine patient and appointment information is

collected and entered on the services electronic database, Titanium [21]; a software

application designed specifically to assist in the management and delivery of oral

health services. Research data were extracted from this Titanium database on two

separate occasions. The first extraction was to gather address data for geocoding.

This dataset had all identifiable information removed except for address, a new

unique identifier was created, and addresses were then geocoded to latitude and

longitude using ArcGIS software [22]. Both automatic and manual geocoding, using

the multiple options identified by ArcGIS, were undertaken.

The geocoded address information was then used to extract the deprivation data

for each child. The chosen dataset for this study was the New Zealand Index of

Multiple Deprivation (IMD) developed at the University of Auckland [23]. This was

chosen over the NZDep2013 Index of Deprivation [24] produced by Statistics New
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Zealand. One reason for this is the Canterbury earthquake sequence of 2010 and 2011

which resulted in significant displacement of the population in the following years,

especially in eastern suburbs of Christchurch. This population displacement may

affect the reliability of the NZDep2013 Index of Deprivation [25]. The NZDep2013

Index of Deprivation is made from census data, whereas IMD is an index made

up from routinely collected data from a combination of sources including govern-

ment organisations and census data [23]. There are 28 individual measures that are

grouped into the following categories: employment, income, crime, housing, health,

education and access [23]. Access is a combination category, and it is the distance to

the 3 nearest General Practitioner (GP) doctor’s office or accident and emergency

clinic, petrol stations, supermarkets or schools (excluding high schools) [23].

The extraction of this deprivation information for each patient was completed

within ArcGIS. The open source shape file was downloaded from the IMD website

[23] and joined to the patient geocoded address data through a spacial based join

[22], using the latitude and longitude of the address data to select the datazone for

the deprivation dataset. The joined deprivation data was returned to Community

Dental Services to remove identifying address information and to change the unique

identifier. This dataset is referred to as the IMD dataset and/or the deprivation

dataset.

The new unique identifier was replicated to the second extract of data from Com-

munity Dental Services, and to hospital admissions for joining of datasets. The

second extract of data from community dental services was the clinical data with

the new unique identifier, which excluded the address and any other identifying

information. This dataset is referred to as the oral health dataset. Changing the

unique identifier was to avoid identifiable information being present in the dataset

at the same time as the clinical data, and prevented the re-joining of identifying

address information to clinical data.

The hospital admission data was requested by Community Dental Services. This

process was done by utilising the National Health Index number (NHI) of each

patient in the cohort and extracting their Christchurch Hospital admission infor-

mation, both elective and acute admission types. The NHI number is a unique

identifier that is assigned to every person who uses health and disability support

services in New Zealand. The NHI number and all other identifiable information
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was removed by Community Dental Services, and the new unique identifier was

attached.

Study size

An approach to test model prediction ability is to have data used for building a

model separate from data used for testing prediction ability. This can be taken a

step further to have three separate datasets, one for building models, one for tuning

model parameters and selecting the best model, and a final set for testing the final

model. The three set approach is used in this study because an aim of the study is to

compare two types of modelling techniques against each other. This allows for the

models to be tested and improved separately before being evaluated against each

other. The cohort of four years (2014 to 2017) of five-year-olds was chosen to ensure

there were enough data for the three datasets. The research team required approx-

imately 10,000 patients for the training dataset, 5,000 for the tuning/validation set

and 5,000 for the testing dataset. A four year cohort allowed for an estimated 5%

data to be lost through geocoding and data joining, while minimising potential bias.

Data Cleansing and Joining Methods

Data Cleansing

All data cleansing was conducted within the statistical software R [26].

Ethnicity was found to have high proportions of patients with missing data. Eth-

nicity was considered a highly important variable, therefore removal of the variable

was not acceptable. This variable already had a factor level of “Unknown Ethnic-

ity”, therefore the missing data could be converted to “Unknown Ethnicity” without

losing any information or patients.

Combining variables into new variables was done during data cleansing. Hospital

admission data was transformed from raw International Classification of Diseases

(ICD) code [27] data into ambulatory-sensitive hospitalisation (ASH) codes [28].

ASH admissions are hospital admissions that are identified to be reducible through

preventative interventions [28]. This was of interest as ECC is a preventable chronic

illness, and it was of interest to see if other preventable diseases were related to ECC

in this cohort. To do this data conversion, after the hospital admission data were

rotated to one line per patient, the ICD codes which make up each ASH code were
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added together into a new column, and the ICD codes were removed from the

dataset for analysis. They were not removed from the raw data.

Data cleansing also included the transformation of variables. The days admitted

in hospital total (days_admit_tot) variable was generated by calculating the length

of stay for each hospital admission, and adding these together on rotation of the

data. The length of time between referral into dental services and treatment date

(exam.delay) was generated by subtracting the appointment date from the referral

date for each patient. The remaining NA values for the hospital admission data

were recoded as "0" to indicate no hospital admissions.

The full clean dataset was simplified twice from a full dataset to two reduced

datasets. The datasets were reduced by removing variables with correlations above

r ≥ 0.9 and then r ≥ 0.7. This was to identify and reduce potential multicollinear-

ity in the dataset. This process used the findCorrelation function from the Caret

package [29] in R. This function identifies variables with pairwise correlations above

a prescribed correlation threshold. It then considers which of the two variables in

each pairwise correlation has high correlation with other variables, and identifies

that as the variable to be removed.

Data Joining

Using dataset joining methods within ArcGIS, each patient had their last known

address attached to a deprivation data zone. All other data joining was conducted

within R. To join the oral health dataset to the deprivation dataset, a right join

was used, with all data from the IMD dataset kept, and the oral health data rows

removed if there was no corresponding patient in the IMD dataset. To join this

combined dataset to the hospital admission dataset, a left join was used, with all

patients data maintained and NA’s generated for the patients who did not have

hospital admissions. These were cleansed as outlined above.

Statistical Methods

Exploratory Data Analysis

After data cleansing, exploratory data analysis was conducted. Initially, a visual

method called a scatter-plot matrix was built in groups of 10 variables, to identify

possible multicollinearity. Figure 1 is an example scatter-plot matrix from this vi-

sualisation process. Multicollinearity can be an issue as model coefficient estimates
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can have high variation between samples of data, with small differences in input

data leading to large differences in the model [30]. Overfitting of the model is highly

likely with multicollinearity [30].

Conventional Biostatistical Techniques

To begin the traditional modelling, simpler models were attempted before trialling

of the more complex models. The first model type attempted was a Poisson model.

This model was chosen as the outcome variable, decayed, missing or filled teeth, was

discrete and could take the values zero or above [18, 31]. Next a negative binomial

model was chosen to model the data. A negative binomial is better able to deal

with dispersed data than a Poisson model [31] as it has separate parameters for

variance and mean, whereas Poisson has one parameter for both. The data was

then modelled with a zero-inflated negative binomial model. Zero-inflated data is

count data that has an excess of zeros that a standard distribution model will

underestimate [32]. A zero-inflated negative binomial model is a mixture model

containing the over-dispersed Poisson (the negative binomial) and a logit component

to model the excess zeros [33]. Each zero-inflated negative binomial model was

compared to the equivalent negative binomial using the Voung test [34]. The Voung

test is a comparative test for establishing if the zero-inflated model fits the data

significantly better than the standard model [34].

During the conventional modelling, variables were grouped to build separate mod-

els, reduced to parsimonious models using the Akaike information criterion (AIC)

[35], then joined into a full model. This is a technique often used in biostatistics

called an ensemble model. The variables were grouped based on the three original

datasets, group one was the variables originally from the oral health data, group

two was the data originally from the IMD and group three was from the hospital

admissions. The specific groupings are broken down in Table1.

When building and tuning the models, the data predicted was the validation set,

and when comparing the final conventional biostatitics model and the final machine

learning model, the predicted data was the testing set.

Machine Learning Techniques

Two styles of machine learning were selected to compare with the traditional statis-

tical models; support vector machines (SVM) [36] and random forests [37]. A SVM
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is a supervised learning technique that categorises a binary outcome using a hyper-

plane [38]. A tree-based approach to supervised learning breaks the predictor space

up into segments, which can be represented as a hierarchical tree, and the mean of

each segment is used for the prediction [38]. A random forest is an extension of this

approach, building multiple trees using bootstrapping methods, which increases the

prediction accuracy [38]. Each time a tree is split, a random sample of m predictor

variables is selected as possible candidates at that split [38].

The random forest technique was selected to continue the modelling process. The

random forest parameters were then tuned. Tuning a model can improve both model

fit and prediction accuracy [39]. The first parameter to tune was the number of

variables to be randomly selected to try at each split of the tree [40]. This was

tuned by using the inbuilt tuning function within the RandomForest package [41],

the tuneRF function. The second parameter to tune was the number of random

forests to build. This was done by setting up a loop to show between 500, 1000,

1500, 2000 and 2500 trees built, and comparing them on predictive performance.

Prediction

At each stage of the modelling process, for both the zero-inflated negative binomial

models and for the random forest models, models were tested for prediction capa-

bilities. This was done by testing prediction ability using the validation dataset. For

each model, a RMSE was calculated when predicting this validation set, and the

model with the lowest RMSE was selected as the best model.

The best zero-inflated negative binomial model and the best random forest model

were compared to each other based on their predictive abilities to the testing dataset,

data that were not used in any stage of the model building process.

The models were also compared on their sensitivity and specificity. Sensitivity

is the certainty of a correct positive diagnosis for a disease [42]. It is a ratio of

the correctly positively diagnosed patients to all patients with the disease [43].

Specificity is the certainty of a correct negative diagnosis for a disease [42], therefore

as sensitivity increases the specificity decreases, and vice versa. Generally in health

it is important to diagnose as many people with a disease correctly as possible.

A patient with a treatable serious disease such as dental decay, miss-diagnosed to

disease free would be undesirable, therefore sensitivity is usually regarded as being
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more important than specificity. Sensitivity and specificity are always between zero

and one, with values closer to one indicating higher sensitivity or specificity. To do

this testing, the outcome variable was converted to a binomial outcome of no disease

or disease present. The zero-inflated negative binomial model and the random forests

were then compared on their sensitivity and specificity when predicting the testing

set.

All code for the Data Analyses is included in the supplementary materials.

Ethical approval

The study complied with the ethical standards for human experimentation as es-

tablished by the Helsinki Declaration 1995 (as revised in Edinburgh 2000) and New

Zealand’s Health and Disability Ethics Committee (HDEC). HDEC defined this

study as minimal risk observational research and it did not require ethics committee

review. University of Canterbury Ethics Committee approved the study internally.

For data access purposes, a locality agreement was formulated, and evidence of

the internal ethics approval was provided to them along with a confirmation letter

from HDEC that external ethics approval was not required. These documents are

included in the supplementary materials.

Results

Participants

Overall, there were records for 21,236 children in the full oral health dataset. Al-

though address data for 78 (0.4%) children was unable to be geocoded, no other

data were lost during data joining. The final dataset included data from 21,158

children, 5,197 from 2014, 5,241 from 2015, 5,380 from 2016 and 5,340 from 2017.

Descriptive Statistics of participants

Of the 22,158 children, 10,666 (50.4%) were boys, 10,483 (49.6%) were girls and 9

(0.04%) had sex missing. The majority, 14,256 (67.4%), identified with European

ethnicity, 2,421 (11.4%) with Māori, 949 (4.5%) with Pasifika, 1,996 (9.4%) with

Asian and 388 (1.8%) with an other ethnicity. Ethnicity was unknown for 1,148

(5.4%) of the children. Ethnicity was prioritised using New Zealand Ministry of

Health methods. 4,554 (21.5%) of the children came from the least deprived IMD

decile rank of 1, 3,466 (16.4%) from decile 2, 2,109 (10.0%) from decile 3, 2,421
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(11.4%) from decile 4, 1,896 (19.0%) from decile 5, 1,581 (7.5%) from decile 6,

2,018 (9.5%) from decile 7, 1,308 (6.2%) from decile 8, 1,311 (6.2%) from decile 9

and 423 (2.0%) from the most deprived ranked neighbournood of IMD decile 10.

Table2 shows a breakdown of key statistics for sex, ethnicity and deprivation for

the dataset.

Statistics New Zealand publishes demographic data for each region of New Zealand

from a 4 yearly census. According the the 2013 data [44], the sex split in Canterbury

is 49.4% male and 50.6% female, which is similar to the study data. Ethnic break-

down in the data is slightly different to the census levels, with 86.9% European,

8.1% Māori, 2.5% Pasifika, 6.9% Asian and 2.7% other ethnicity. This was accepted

as there may have been changes in ethnic diversity since the 2013 census.

Outcome Data

The distribution of dmft was heavily right skewed, with median 0 (Q1=0, Q3=3)

and maximum 20. Table2 presents the dmft distribution by sex, ethnicity and de-

privation. There was no difference in dmft between boys and girls (p=0.11). Com-

pared to the dominant European population, Māori (p<0.01), Pasifika (p<0.01),

Asian (p<0.01), other (p<0.01) and unknown ethnicity (p<0.01) all had higher

mean dmft. Compared to the least deprived IMD decile of 1, deciles 2 (p<0.01), 3

(p<0.01), 4 (p<0.01), 5 (p<0.01), 6 (p<0.01), 7 (p<0.01), 8 (p<0.01), 9 (p<0.01),

10 (p<0.01) all had higher mean dmft.

Figure 2 shows the density histograms for the outcome variable in the training

set, the validation set and the testing set. From these plots, the histogram shows a

high density of patients with zero decayed missing or filled deciduous teeth.

Main Results

Data Joining and Exploratory Data Analysis

Most of the addresses were successfully geocoded automatically. A small proportion

of addresses were manually geocoded from multiple options identified by ArcGIS.

Patient records that failed to geocode had to be dropped from the study as one of

the criteria for inclusion was the patient living in the Canterbury region. Without

an address, there was insufficient evidence that the patient was a resident.
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Scatterplot matrices showed, in many case, that there was strong correlations and

multicollinearity between predictor variables. Two reduced datasets were used in

model building as multicollinearity was present in the dataset.

Conventional Biostatistical Techniques

Simpler models were attempted before more complex models. First, a Poisson model

was attempted but this model did not converge due to skewness of the data and

because the variance of the data was significantly larger than the mean. Then a

negative binomial was used, which was able to fit the data, but it was not a partic-

ularly good fit due to zero-inflation of the dataset. Lastly, a zero-inflated negative

binomial model was applied.

There were several issues found at this stage of the analysis. The zero-inflated

model could not handle the many variables at the same time. First, the data had

to be divided into groups to be modelled, then the best variables combined into

one model. When using group two data (see Table1) to build the model with the

full dataset, the IMD decile rank excluding housing variable had to be removed

manually due to non-convergence issues. The zero-inflated negative binomial model

built using group three data (see Table1) had two variables manually excluded due

to fitting issues. These two variables were Kidney/urinary infections and Vaccine-

preventable disease: Measles, Mumps and Rubella (MMR). This is likely due to

very low patient numbers in these admission types, only 8 children had admissions

for Kidney/urinary infections and 3 children with MMR related admissions.

The ensemble model performed better than individual group models when com-

pared on improvement of Root Mean Square Error(RMSE). The RMSE was cal-

culated using each model to predict unknown data and the rmse function from

the ModelMetrics package [45]. Using the Voung test each zero-inflated model was

confirmed to be superior to the standard negative binomial.

Table 3 shows the output information for the final zero-inflated model. This output

information shows the variables that make up the final parsimonious model. All

coefficients are statistically significant at an alpha value of 0.05 except housing decile

and Asthma hospital admissions. When the non-statistically significant variables

were removed, the AIC increased - and so they were retained.
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Machine Learning Techniques

On initial investigation of these methods with the dataset, random forests outper-

formed SVM on RMSE and were faster to build. Therefore random forests were

chosen to continue with for the analysis.

Three random forest models were built using the full dataset, the first reduced

dataset of size 28 variables (correlated variables with r ≥ 0.9 were removed) and

the second reduced dataset of 26 variables (correlated variables with r ≥ 0.7 were

removed). Table4 shows the RMSE for each model. The second reduced dataset

had the lowest RMSE of 2.556, therefore this model was used going forward with

further model tuning.

The model was then tuned for the number of variables randomly selected to try

at each tree split (mtry) and the number of trees to build. Using a mtry parameter

of 4 was found to reduce the Out-Of-Bag (OOB) error the most (OOB=0.311).

OOB error is used to measure the prediction error for a random forest model [40].

OOB error is the mean difference between the predicted outcomes and the real

outcomes for the data not used for building the model [40]. The second reduced

dataset performed the best, with a RMSE of 2.535. The ideal mtry of 4 was used

when tuning the number of trees. The second reduced dataset was again the best

performing model when using 1,500 trees, with a RMSE of 2.539 when predicting

the validation data. The random forest model explained 16.98% of the variation in

dmft.

Figure 3 shows the variable importance plot for the random forest. This plot shows

that the 10 most important variables used to predict the number of primary teeth

with dental decay were delay from referral to community dental and appointment

(exam.delay), ethnicity (ethnicity), number of dental exams (nexam), number of

did not attend appointments (ndna), decile rank for education (edurankd), decile

rank for housing (hourankd), decile rank for crime (crirankd), decile rank for health

(hlthrankd), decile rank for access (accrankd) and number of cancelled appoint-

ments (ncanc). Of note, sex was ranked 11th. This is unexpected as the descriptive

statistics comparing sex and dmft directly did not show difference between females

and males. This may be due to a disproportionate number of hospital admissions

between the sexes.
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Other Analyses

Each final model was tested and compared with residual diagnostic plots, prediction

effectiveness and sensitivity and specificity analysis. Residual diagnostic plots and

full explanations can be found in the supplementary materials. Overall, the residual

diagnostic plots are slightly better for the random forest model than the zero-inflated

negative binomial model, providing evidence of a better model fit.

Sensitivity and Specificity Analysis with Receiver Operating Characteristic Curves

All sensitivity and specificity testing was conducted using the testing dataset. A

test dataset is one not used to build the models and is considered new data.

The random forest model has higher sensitivity of 0.203 compared to the sensi-

tivity for the zero-inflated negative binomial model of 0.071. For the random forest

model, 20.3% of five year old patients with dental decay would be diagnosed cor-

rectly as having disease, compared to 7.1% from the negative binomial model.

Both models had high specificity. For the zero-inflated negative binomial model,

2.8% of five year old patients who are dental disease free would be miss-classified

as having dental disease compared to 7.4% from the random forest model.

Figure 4 shows the receiver operator curve (ROC) for the two final models. The

line indicating the random forest model is on the outside of the zero-inflated negative

binomial model for the length of the curve, which indicates that it is performing

better for sensitivity and specificity overall. There is a point in the middle of the

curve where the lines touch, indicating no difference in sensitivity and specificity.

Overall the plot indicates that the random forest performs better for sensitivity and

specificity.

Model Prediction Testing

Table 4 shows the RMSE for both the zero-inflated negative binomial model building

process and the random forest model building process. For the zero-inflated model

building, the second reduced dataset had a lower RMSE than the other datasets.

This is also the case for the random forest model building process. When predicting

the unknown testing dataset with the final models, the RMSE is significantly lower

for the random forest model at 2.678 than the zero-inflated negative binomial model

at 2.727.
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Discussion

The final random forest model had a higher sensitivity (0.203) than the final zero-

inflated negative binomial (0.071), and had slightly lower specificity (0.926) than

the final zero-inflated negative binomial model (0.972). This means that if these

models were used to predict if a child had dental disease, 79.7% of children would

be misdiagnosed as disease free when they actually do have dental disease, when the

random forest model is used. 92.9% of children would be misdiagnosed as disease

free if the zero-inflated negative binomial model is used. Neither of these figures are

particularly good, although the random forest is the better of the two. When the

random forest model is used, 7.4% of patients would be diagnosed as having dental

disease when they do not, whereas the zero-inflated negative binomial model would

misdiagnose 2.8% of patients who do not have dental disease as having disease.

There is a small difference in specificity favouring the zero-inflated negative binomial

model, and a larger difference in sensitivity favouring the random forest model. The

final random forest model has a lower RMSE of 2.678 than the final zero-inflated

negative binomial model RMSE of 2.727. This shows that the random forest model

is outperforming the zero-inflated negative binomial model for predicting the exact

number teeth with dental issues. This shows that a random forest model could be

used to predict the number of teeth expected to have disease, which could then be

used to estimate treatment appointment length based on number of diseased teeth.

This could help prevent appointments running over time or prevent patients having

to return for second or third treatment appointments.

Conventional biostatistical techniques have been used to identify factors associ-

ated with poorer oral health. For example, Cruvinel (2010) [46] used logistic regres-

sion to predict dmft and permanent tooth decayed missing or filled teeth (DMFT)

for children born prematurely or at term. Unlike the current study where routinely

collected data was used to predict dmft, Cruvinel (2010) [46] used a sample of

80 children, 40 premature and 40 born full term, therefore traditional modelling

techniques are more appropriate. Javali (2007) [47] investigated the use of gener-

alised linear modelling for predicting DMFT over multiple linear regression, given

the skew that the DMFT outcome variable was found to have. This was a bigger

dataset compared to the previous study, with 7,188 patients interviewed and ex-

amined. This is would have taken many hours of examinations and following up
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participants, although they were able to include variables of interest such as oral

hygiene habits that were not possible in the current study. Given Javali (2007) [47]

was over 10 years before the current study, and supervised learning has only just

begun to infiltrate the health industry, it is not surprising that these larger data

techniques were not considered. Negative binomial regression has also been used

to predict DMFT in Hong Kong [48]. A sample of 324 young people was used to

predict DMFT using examination results and clinical examination. This sample size

does not lend itself to supervised learning, unlike the current study.

Machine learning has been used in the oral health area for diagnostic purposes.

Angelino (2017) [49] used a hand-held light emitting diode device with a machine

learning visual processing algorithm to diagnose plaque. Deep learning has been used

to predict oral malodour using saliva samples, with a 97% success rate [50]. Image

processing has also been used to diagnose gum disease [51]. These studies have

required examination and investigations to be used in conjunction with machine

learning, whereas the current study utilised routinely collected data to gain insights

into oral health.

Looking at the model performance purely from a statistical performance point of

view, neither modelling technique has resulted in a model that is an effective predic-

tor of dmft for Canterbury children. A recent systematic review of dental caries risk

assessment models discussed variables that made up predictive models. These mod-

els were made up of variables including socio-demographic factors (age, ethnicity

and socio-economic status), behavioural factors (diet, fluoride, dental appointment

attendance), blinical factors (oral hygiene habits, caries history, cleaning method,

systemic health, medication), and microbiological and salivary factors (certain bac-

teria levels, salivation rate) [52]. Models including the full range of these variables

had varying sensitivity scores from 0.41 to 0.75. The current study had all socio-

demographic factors listed, appointment attendance and systemic disease requiring

hospitalisation. This does not cover a large proportion of these predictor variables,

therefore the current study with sensitivity scores of 0.203 for the random forest

model and 0.071 for the zero-inflated negative binomial model fit with the expected

level of sensitivity. Specificity on the other hand is high compared to other models

that have the full range of variables, which ranged from 0.71 and 0.88, which the

current study outperforms with the sensitivity scores for the random forest and the



Sonal et al. Page 17 of 32

zero-inflated negative binomial at 0.926 and 0.972 respectively. Given that the data

used for the current study does not include any information about patient daily

oral health practises or dietary intake, it would be unrealistic to expect the models

to be out performing models with more data types.

Limitations

A limitation of the zero-inflated negative binomial model is that the functions to

build this model could not handle wide data, that is, data with many explanatory

variables. The data had to be divided into three subsets, and each subset used

to build separate models, then joined into an ensemble model. This has become a

relatively common approach in epidemiological modelling [53]. Many variables had

to be removed manually along the way, as specific variables would not allow the

model to converge. All of the variables that were removed manually are a potential

source of bias and uncertainty. This is partially shown in the way in which the

random forest has outperformed the zero-inflated negative binomial model in RMSE

and sensitivity. There is also likely bias in the zero-inflated negative binomial that

is not visible or measured. The residual diagnostic plots were all far from the ideal

diagnostic plots for a good model. A good model would have non-linear residuals

that are normally distributed about the model, can take values over the full range

of the predictor values and without any particular values that are influencing the

model more than the others [54]. This means that there is an aspect of the data that

is not being modelled by the zero-inflated negative binomial model or the random

forest model.

Other limitations with this model were the length of time taken to build and

simplify each model, the number of steps required to simplify each model and the

process of building a model from 3 separate simplified models. The zero-inflated

negative binomial model took two to three hours to build each model as variables

had to be manually removed from the model. When the variables were removed

manually, this took a lot of time a trial and error to find which variables were

causing the issues. Once the variables were identified that could be kept in the

model, it took under 1 minute to build the model.

The number of steps required in building the ensemble final model to ensure no

mistakes were made took three days. The automated simplification of the models
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took more than four hours, therefore over-night processing was required for this

step. This is not the best way to build a predictive model. It is best to have a

streamlined process to build, tune and test the model, which was not achievable

for this model type. This is a benefit of artificial intelligence methodologies, as the

processes are automated without a loss of precision.

A limitation of the random forest model is that it cannot be written out as a

formula and used directly to predict the outcome variable like a conventional model

can. A single tree from the 1,500 trees built in the random forest could be extracted,

drawn in a hierarchical diagram and used to predict the count of dmft, but this

would not be as accurate as the full random forest.

During the model building process the random forest model was slower to build

than the zero-inflated negative binomial model, at approximately five minutes per

model. This is a disadvantage over the zero-inflated negative binomial model, and

could be considered slow when compared to other machine learning techniques.

Tuning the random forest took longer than building the forest. To tune the mtry

parameter took 20 to 30 minutes. The tuning process to decide the number of trees

took longer again as the loop had to build a random forest with an increasing number

of trees each time. This took approximately 2 hours. Although these times are

slow, they did not require user input while the processes were automating, whereas

the zero-inflated negative binomial model building process had to be constantly

monitored. Predicting using the random forest was fast, within seconds. Sensitivity

and specificity was also fast, within seconds.

An expected sources of bias was from patients removed from the final dataset while

joining the three initial datasets together (oral health data; hospital admission data;

and deprivation data), and through data cleansing for missing data.

During automated geocoding most of the addresses were geocoded to a Canterbury

address automatically or manually, leaving a small proportion unmatchable. The

unmatched addresses were examined manually and appeared to have no recorded

address. The loss of this data was considered acceptable, and although it may have

introduced a small amount of bias, given that the original premise was Canterbury

based children, without an address there is insufficient evidence to establish if the

children are residents of the region.
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During data cleansing, ethnicity was found to have missing data. If these patients

were removed from the dataset, this could have potentially introduced bias into

the dataset, as there may be a reason why all the patients with missing data are

similar. This is called a “missing not a random” situation [55]. As it was not possible

to discover why the data were missing and if the patients were similar in some way,

the decision was made to keep all patients in the dataset and deal with the missing

values in a different way to avoid and/or minimise bias.

Bias was also reduced by having only a four year cohort of data. This was to

help ensure that patients in each year were not growing up in differing social en-

vironments, especially given social changes due to natural disasters experienced in

2010-2011. If the cohort had been extended too close to these years, the dataset

would be expected to have bias due to address displacement. This is acknowledged

to potentially be a source of bias that is not controllable, but was minimised.

One limitation of using routinely collected data is that the data is gathered with-

out the study questions in mind. This means that the data may not contain all

the variables of interest, and is likely to have confounding factors, both measured

and unmeasured. For example, it may be of interest to know employment status

of the child’s parents, whether the child has other siblings with or without dental

issues, the oral health of the parents, the diet of the child and their parents, genetic

predisposition to oral health issues, oral health habits of the child, and many other

non-measured variables. All known confounding factors and any unknown confound-

ing factors could be affecting both models, introducing bias. The IMD data also does

not measure a specific individuals deprivation, it is an average score based on the

patients last known address. The assumption that the deprivation is true for each

individual based on their last known address is based on the assumption that those

in each IMD location are homogeneous. This may not hold true, and there is no

way to test this within the limitations of this study.

There is also potential bias from siblings in the dataset. It is not known if there are

siblings (or children with the same address regardless of relationship) in the dataset

as all identifying information was removed from the dataset prior to receipt. Siblings

or children living at the same address grow up in the same environment which may

introduce bias into the data as they are not independent observations.
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The hospital admission data is from hospital admissions from the Canterbury re-

gion, it does not include acute or elective admissions outside this region. This means

that there may be patients who were admitted to hospital nationally or interna-

tionally outside Canterbury, and there is no information on this in this dataset.

There is also no general practitioner data used in this study, which means that

co-morbidities controlled or treated by a general practitioner are not accounted for

or identified. These are potential sources of missing data. The CDHB has a world

renowned integrated health system in which many acute and chronic conditions are

managed outside the hospital system, until a patient has no other option other than

hospitalisation [56]. This means there could be children who have conditions that

fall under the disease categories used in this dataset, but they are not identified as

having the condition as they are managed in the community.

The variables present in the data can also have misclassification issues which may

introduce bias into the dataset which may result in a biased and inaccurate model.

For example, the ethnicity variable does not allow for multiple ethnicities. This is

a flaw in the current oral health database, which should be addressed.

Conclusion

Conventional epidemiology techniques and modern machine learning techniques

were both employed and compared on their relative advantages and disadvantages

to model a large routinely collected health dataset. They were compared on how

well the models fit the data, and on their ability to predict dmft of a dataset not

used for model building.

The Random Forest performed slightly better overall than the zero-inflated nega-

tive binomial in the residual diagnostic plots which indicates higher model reliabil-

ity. Sensitivity and Specificity were tested and displayed using a ROC curve. The

random forest model displayed higher sensitivity (0.203) than the zero-inflated neg-

ative binomial model (0.071). The zero-inflated negative binomial model performed

slightly higher in specificity (0.972) than the random forest (0.926 ). Predictive abil-

ity was accessed using an unknown testing set, and assessed by comparing RMSE.

The random forest model outperformed the zero-inflated negative binomial model,

with a RMSE of 2.678 compared to 2.727.
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The process of modelling using these two techniques were quite different from

each other. The zero-inflated negative binomial model required an ensemble model

technique, whereas the random forest model could handle the data as it was (i.e. all

in one go). Where the random forest had parameters that could be tuned to better

the model, the zero-inflated negative binomial could only be tuned by simplification.

The zero-inflated negative binomial model took a long time to build and tune with

a high level of user interaction, the random forest was slightly slower to build and

tune but was predominantly automated.

Routinely collected data can be used to model and predict children with dental

caries. However, there are likely other contributing factors not being measured by

the routinely collected dental appointment data. The random forest model was able

to use the data to explain 16.98% of the variation in the level of dmft, therefore

there are other contributing factors not collected as part of the clinical data. The

random forest modelling process was easier and more efficient than the zero-inflated

negative binomial modelling process.

A random forest model could be used in the future to model routinely collected

data as in this study, along with additional data on diet, oral health habits, water

fluoridation and other factors known to contribute to early childhood caries and

dmft. Variables identified by this study are of interest for this process, and future

research could lead to better performing predictive models. Although the models

generated in this study are not at a level to accurately predict dmft, it has shown

that supervised learning techniques tend to perform better than conventional bio-

statistical techniques when modelling large health data. This modelling technique,

and identified risk factors, also have the potential to predict the severity of dental

issues before the child attends an appointment, which could be extended in length

if severe ECC are expected. This future model may be effective to predict dental

caries in other New Zealand centres with similar population demographics. A future

national random forest model could be built using data from all regions, not just

data from the Canterbury region. The future model may also be effective to predict

dental caries in other countries.
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Figures

Figure 1 Scatter plot matrix example used for initial exploratory data analysis
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Figure 2 Density histograms for Decayed, Missing or Filled Primary Teeth For each subset of

the data, The model training set(train), the model tuning set (valid) and the final model testing

set (test).

Figure 3 Final random forest variable importance plot A visual display of the important

variables listed from highest importance to lowest importance
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Figure 4 Receiver Operator Curve for the final zero-inflated negative binomial model and the final

random forest model
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Table 1 Table of variables in the full clean dataset, with explanations.

Variable Code Variable Explanation Levels Ensemble Model

ethnicity Ethnicity 1: European, 2: Māori, 3: Pacifika, 1

4: Asian, 5: Other, 6: Unknown

ddfmt decayed, missing and filled primary teeth Count of dmft

ndna Number of Did Not Attend appointments Count of dna 1

sex sex of the patient 1: male, 2: female, 3:unknown 1

nexam Number of dental examinations count of examinations 1

ncanc Number of cancelled dental Appointments count of cancelled Appointments 1

imdrankd** Overall deprivation decile decile rank between 1 and 10* 2

emprankd*** Employment decile decile rank between 1 and 10* 2

incrankd*** Income decile decile rank between 1 and 10* 2

crirankd Crime decile decile rank between 1 and 10* 2

hourankd Housing decile decile rank between 1 and 10* 2

hlthrankd Health decile decile rank between 1 and 10* 2

edurankd Education decile decile rank between 1 and 10* 2

accrankd Access to Services decile decile rank between 1 and 10* 2

imdnoempd** IMD decile with Employment Domain removed decile rank between 1 and 10* 2

imdnoincd** IMD decile with Income Domain removed decile rank between 1 and 10* 2

imdnocrid** IMD decile with Crime Domain removed decile rank between 1 and 10* 2

imdnohoud** IMD decile with Housing Domain removed decile rank between 1 and 10* 2

imdnohlthd** IMD decile with Health Domain removed decile rank between 1 and 10* 2

imdnoedud** IMD decile with Education Domain removed decile rank between 1 and 10* 2

imdnoaccd** IMD decile with Access Domain removed decile rank between 1 and 10* 2

days_admit_tot days admitted in hospital total count of days 3

exam.delay length of time between referral into count of days 3

dental services and treatment date

Asthma Hospital admissions for Asthma count of admissions 3

Bronchiectasis Hospital admissions for Bronchiectasis count of admissions 3

DertmatitisAnd Hospital admissions for Dermatitis count of admissions 3

Eczema or Eczema

GastroenteritisOr Hospital admissions for gastroenteritis count of admissions 3

Dehydration or dehydration

GORD Hospital admissions for count of admissions 3

Gastro-oesphageal reflux disease

KidneyUroInfection Hospital admissions for count of admissions 3

Kidney or Urological infection

Pneumonia Hospital admissions for count of admissions 3

respiratory infections: pneumonia

RFHD Hospital admissions for count of admissions 3

Rheumatic fever/heart disease

URENTInfections Hospital admissions for count of admissions 3

upper respiratory and ear, nose or

throat Infections

VacPreDiseases1 Hospital admissions for count of admissions 3

Vaccine-preventable diseases: meningitis, whooping

cough, hepatitis B, pneumococcal disease , other

VacPreDiseases2 Hospital admissions for count of admissions 3

Vaccine-preventable diseases: MMR
* All deciles 1: least deprived, 10: most deprived ** These variables removed when r>0.9 ***These

variables removed when r>0.7



Sonal et al. Page 30 of 32

Table 2 Distribution of dmft by sex, ethnicity and deprivation

Summary of dmft

n (%) mean (sd) median [Q1,Q3] maximum

Sex

Male 10,666 (50.41%) 1.538 (2.864) 0 [0,2] 20

Female 10,483 (49.55%) 1.475 (2.818) 0 [0,2] 20

Unknown 9 (0.04%) 1.000 (2.291) 0 [0,1] 7

Ethnicity

European 14,256 (67.38%) 0.985 (2.185) 0 [0,1] 20

Māori 2,421 (11.44%) 2.507 (3.287) 1 [0,4] 18

Pasifika 949 (4.49%) 3.530 (4.022) 2 [0,6] 20

Asian 1,996 (9.43%) 2.883 (4.072) 1 [0,5] 20

Other 388 (1.83%) 1.807 (3.124) 0 [0,2] 16

Unknown 1,148 (5.43%) 1.705 (3.008) 0 [0,2] 20

Deprivation (IMD decile)

1 4554 (21.52%) 0.963 (2.255) 0 [0,1] 19

2 3466 (16.38%) 1.151 (2.488) 0 [0,1] 20

3 2109 (9.97%) 1.321 (2.624) 0 [0,1] 16

4 2421 (11.44%) 1.347 (2.661) 0 [0,2] 18

5 1896 (8.96%) 1.589 (2.997) 0 [0,2] 20

6 1581 (7.47%) 1.580 (2.823) 0 [0,2] 20

7 2018 (9.54%) 2.051 (3.237) 0 [0,3] 19

8 1308 (6.18%) 2.152 (3.365) 0 [0,3] 20

9 1311 (6.20%) 2.683 (3.524) 1 [0,5] 19

10 423 (2.00%) 3.288 (3.781) 2 [0,6] 16

Total 21158 (100%) 1.507 (2.841) 0 [0,2] 20

Table 3 Results of the zero-inflated negative binomial model: decayed missing filled teeth predicted

by ethnicity + number of did not attend appointments + number of examinations + number of

cancelled appointments + education decile + housing decile + born in Christchurch + number of

acute hospital admissions + number of diaper dermatitis hospital admissions + number of other and

non-specified dermatitis hospital admissions * statistically significant coefficients with p-value < 0.05

Variables coefficient standard error p-value

Intercept 1.924 0.093 0.000 *

Ethnicity-Māori -0.970 0.085 0.000 *

Ethnicity-Pasifika -1.249 0.138 0.000 *

Ethnicity-Asian -1.105 0.084 0.000 *

Ethnicity-Other -0.451 0.174 0.009 *

Ethnicity-Unknown -0.648 0.108 0.000 *

Number of did not attend appointments -0.450 0.037 0.000 *

Number of dental examinations -0.162 0.019 0.000 *

Number of cancelled appointments -0.301 0.058 0.000 *

Education decile rank -0.080 0.011 0.000 *

Housing decile rank -0.017 0.012 0.166

Asthma -0.153 0.084 0.067

Upper Respiratory/ Ear, Nose and Throat Infections -0.136 0.042 0.001 *
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Table 4 Table of Root Mean Squared Error for both the conventional and machine learning

techniques

Model Root Mean Squared Error (3 d.p.)

Zero-inflated negative binomial models

Full Dataset, Group 1, reduced by AIC 2.568*

Reduced Dataset, r>0.9, Group 1, reduced by AIC 2.568*

Reduced Dataset, r>0.7, Group 1, reduced by AIC 2.568*

Full Dataset, Group 2, reduced by AIC 2.730

Reduced Dataset, r>0.9, Group 2, reduced by AIC 2.730

Reduced Dataset, r>0.7, Group 2, reduced by AIC 2.729

Full Dataset, Group 3, reduced by AIC 2.800**

Reduced Dataset, r>0.9, Group 3, reduced by AIC 2.800**

Reduced Dataset, r>0.7, Group 3, reduced by AIC 2.800**

Ensemble model, reduced by AIC 2.544

Ensemble model, reduced by AIC 2.727***

Random Forest Model

Full Dataset 2.584

Reduced Dataset, p>0.9 2.566

Reduced Dataset, p>0.7 2.566

Full Dataset, tuned mtry 2.576

Reduced Dataset, p>0.9, tuned mtry 2.550

Reduced Dataset, p>0.7, tuned mtry 2.535

Full Dataset, tuned mtry, tuned trees (2,500 trees) 2.574

Reduced Dataset, p>0.9, tuned mtry, tuned trees (2,500 trees) 2.546

Reduced Dataset, p>0.7, tuned mtry, tuned trees (1,500 trees) 2.539

Reduced Dataset, p>0.7, tuned mtry, tuned trees (1,500 trees) 2.678***

*Group 1 models are all the same model as no variables were removed during data simplification

** Group 3 models are the same model when reduced by AIC

***Root Mean Squared Error when predicting testing dataset, all others predicting validation set
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Supplementary Materials

Supplementary Material 1: R Code for Data Cleansing, joining and analysis

This file is a .txt file of the r commands for the data cleansing, joining and analysis.

Supplementary Material 2A: Locality Agreement

This file is a .pdf file of the locality agreement for ethnics approval.

Supplementary Material 2B: University of Canterbury internal ethics approval

This file is a .pdf file of the internal University of Canterbury ethics approval.

Supplementary Material 2C: HDEC out of scope letter

This file is a .pdf file of the confirmation letter from HDEC that this study did not require ethics approval.

Supplementary Material 3: Residual diagnostics

This file is a .pdf file of the full explanation and plots for the residual diagnostics.


