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Abstract:  One of the most popular univariate asymmetric conditional volatility models is the 
exponential GARCH (or EGARCH) specification. In addition to asymmetry, which captures 
the different effects on conditional volatility of positive and negative effects of equal 
magnitude, EGARCH can also accommodate leverage, which is the negative correlation 
between returns shocks and subsequent shocks to volatility. However, there are as yet no 
statistical properties available for the (quasi-) maximum likelihood estimator of the 
EGARCH parameters. It is often argued heuristically that the reason for the lack of statistical 
properties arises from the presence in the model of an absolute value of a function of the 
parameters, which does not permit analytical derivatives or the derivation of statistical 
properties. It is shown in this paper that: (i) the EGARCH model can be derived from a 
random coefficient complex nonlinear moving average (RCCNMA) process; and (ii) the 
reason for the lack of statistical properties of the estimators of EGARCH is that the 
stationarity and invertibility conditions for the RCCNMA process are not known. 
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1. Introduction 
 

In the world of univariate conditional volatility models, the ARCH model of Engle (1982) and 

the generalization to the GARCH model by Bollerslev (1986) are the two most widely estimated 

symmetric models of time-varying conditional volatility, where symmetry refers to the identical 

effects on volatility of positive and negative shocks of equal magnitude. 

 

The asymmetric effects on conditional volatility of positive and negative shocks of equal 

magnitude can be captured in different ways by the exponential GARCH (or EGARCH) model 

of Nelson (1990, 1991), and the GJR (alternatively, asymmetric or threshold) model of Glosten, 

Jagannathan and Runkle (1992). These are the two most widely estimated asymmetric univariate 

models of conditional volatility. 

 

A special case of asymmetry is that of leverage. As defined by Black (1976) in terms of the debt-

to-equity ratio, leverage is associated with increases in volatility for negative shocks to returns 

and decreases in volatility for positive shocks to returns. In short, leverage captures the negative 

correlation between returns shocks and subsequent shocks to volatility. The EGARCH model is 

capable of capturing leverage, depending on appropriate restrictions on the parameters of the 

model.  

 

Although the GJR model can capture asymmetry, leverage is not possible, unless the short run 

persistence effect (that is, the ARCH parameter) is negative. Such a restriction is not consistent 

with the standard sufficient condition for conditional volatility to be positive. 

 

The univariate GARCH model has been extended to its multivariate counterpart in, for example, 

the BEKK model of Baba et al. (1985) and Engle and Kroner (1995), and the VARMA-GARCH 

model of Ling and McAleer (2003). The GJR model has a multivariate counterpart in the 

VARMA-AGARCH model of McAleer, Hoti and Chan (2009). However, the EGARCH model 

has not yet been developed formally for multivariate processes, with appropriate regularity 

conditions. 
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Although it is not essential, leverage is an attractive feature of the EGARCH model. Since 

EGARCH is derived as a discrete-time approximation to a continuous-time stochastic volatility 

process, and is expressed in logarithms, the exponential operator is required to obtain conditional 

volatility, which is guaranteed to be positive. Therefore, no restrictions are required for 

conditional volatility to be positive.  

 

However, there are as yet no statistical properties available for the (quasi-) maximum likelihood 

estimator of the EGARCH parameters. It is often argued heuristically that the reason for the lack 

of statistical properties arises from the presence in the model of an absolute value of a function 

of the parameters, which does not permit analytical derivatives or the derivation of statistical 

properties.  

 

It is shown in this paper that the EGARCH model can be derived from a random coefficient 

complex nonlinear moving average (RCCNMA) process, and that the reason for the lack of 

statistical properties of the estimators of EGARCH is that the stationarity and invertibility 

conditions for the RCCNMA process are not known. 

 

The remainder of the paper is organized as follows. In Section 2, the EGARCH model is 

discussed. Section 3 presents a RCCNMA process, from which EGARCH is derived in Section 4. 

Some concluding comments are given in Section 5. 

 

2. EGARCH 
 

Let the conditional mean of financial returns be given as: 

 

tttt IyEy ε+= − )|( 1           `(1) 

 

where ty  = tPlog∆  represents the log-difference in stock prices ( tP ), 1−tI  is the information set 

at time t-1, and tε  is conditionally heteroskedastic.  
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The EGARCH specification of Nelson (1990, 1991) is given as: 

 

111 log||log −−− +++= tttt hh βγηηαω  , 1|| <β       (2)  

 

where the standardized shocks, tη , are given by ttt h/εη =  , tη ~  iid ),0( ω ,  and 1|| <β  is 

the stability condition when 1log −th  is included in the model. Asymmetry exists if 0≠γ , while 

leverage exists if 0<γ  and γαγ −<< . 

 

3. Random Coefficient Complex Nonlinear Moving Average Process 
 

Consider a random coefficient complex nonlinear moving average (RCCNMA) process given by: 

 

tttttt ηηψηφε ++= −− 11 ||         (3)  

 

where 1−tη  is a complex-valued function of 1−tη ,  tφ ~  iid ),0( α , and tψ ~  iid ),0( γ .  

 

If  tη  is a standard normal variable, then cE t =||η , which is a known constant. Moreover: 

 

)0()0( <×+≥×= ttttt IEIEE ηηηηη   

 

= 2/2/ icc +   = 2/)1( ci+ ,  

 

where  1−=i  and 

 

5.0)0()0( =<=≥ tt II ηη   
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is an indicator function. As the mean of the complex-valued function is a finite constant, it 

follows that that both the unconditional and conditional means of tε  in equation (3) are zero. 

 

As the RCCNMA process given in equation (3) is not in the class of random coefficient linear 

moving average models examined in Marek (2005), the stationarity and invertibility conditions 

of the RCCNMA process are not known. 

 

4. One Line Derivation of EGARCH 
 

It follows from equation (3) that: 

 

111
2 ||)|( −−− ++== ttttt IEh γηηαωε .       (4) 

 

The use of an infinite lag for the RCCNMA process in equation (3) would yield the EGARCH 

model in equation (2). 

 

It is worth noting that the transformation of th  in equation (4) is not logarithmic, but the 

approximation given by:  

 

1))1(1log(log −≈−+= ttt hhh  

 

can be used to replace th  in equation (4) with 1 + thlog . 

 

The interpretation of leverage, whereby 0<γ  and γαγ −<< ,  is lost in the above derivation as 

both α  and γ  are required to be positive.  

 

More importantly, in terms of interpreting the model, the derivation of EGARCH, albeit without 

the logarithmic transformation, in equation (4) shows that the statistical properties of the model 
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do not exist because the model is based on a RCCNMA process, for which the stationarity and 

invertibility conditions are not known. 

 

5. Conclusion 
 

The paper was concerned with one of the most popular univariate asymmetric conditional 

volatility models is the exponential GARCH (or EGARCH) specification. The EGARCH model 

is popular, among other reasons, as it can capture both asymmetry, namely the different effects 

on conditional volatility of positive and negative effects of equal magnitude, and leverage, which 

is the negative correlation between returns shocks and subsequent shocks to volatility.  

 

There are as yet no statistical properties available for the (quasi-) maximum likelihood estimator 

of the EGARCH parameters. Although is often argued heuristically that the reason for the lack of 

statistical properties arises from the presence in the model of an absolute value of a function of 

the parameters, which does not permit analytical derivatives or the derivation of statistical 

properties, it was shown in the paper that the EGARCH model could be derived from a random 

coefficient complex nonlinear moving average (RCCNMA) process, and that the reason for the 

lack of statistical properties of the estimators of EGARCH is that the stationarity and invertibility 

conditions for the RCCNMA process are not known. 
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