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Abstract

Extensions to general relativity are often considered as possibilities in the quest for

a quantum theory of gravity on one hand, or to resolve anomalies within cosmology

on the other. Scalar fields, found in many areas of physics, are frequently studied in

this context. This is partly due to their manifestation in the effective four dimensional

theory of a number of underlying fundamental theories, most notably string theory.

This thesis is concerned with the effects of scalar fields on cosmological and black hole

solutions. By comparison, an analysis of an inhomogeneous cosmological model which

requires no extensions to general relativity is also undertaken.

In chapter three, examples of numerical solutions to black hole solutions, which

have previously been shown to be linearly stable, are found. The model includes at

least two scalar fields, non-minimally coupled to electromagnetism and hence possesses

non-trivial contingent primary hair. We show that the extremal solutions have finite

temperature for an arbitrary coupling constant.

Chapter four investigates the effects of higher order curvature corrections and scalar

fields on the late-time cosmological evolution. We find solutions which mimic many of

the phenomenological features seen in the post-inflation Universe. The effects due to

non-minimal scalar couplings to matter are also shown to be negligible in this context.

Such solutions can be shown to be stable under homogeneous perturbations. Some

restrictions on the value of the slope of the scalar coupling to the Gauss-Bonnet term

are found to be necessary to avoid late-time superluminal behaviour and dominant

energy condition violation.

A number of observational tests are carried out in chapter five on a new approach

to averaging the inhomogeneous Universe. In this “Fractal Bubble model” cosmic

acceleration is realised as an apparent effect, due to quasilocal gravitational energy

gradients. We show that a good fit can be found to three separate observations, the

type Ia supernovae, the baryon acoustic oscillation scale and the angular scale of the

sound horizon at last scattering. The best fit to the supernovae data is χ2 w 0.9 per

degree of freedom, with a Hubble parameter at the present epoch of H0 = 61.7+1.4
−1.3 km

sec−1 Mpc−1 , and a present epoch volume void fraction of 0.76± 0.05.
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Overview

The thesis is structured as follows. Chapters 1 and 2 contain introductory material,

while chapters 3, 4 and 5 present original investigations which form the major work of

this thesis.

• In chapter 1 we outline the applications of general relativity relevant to this

thesis. A quick review of the homogeneous cosmological models is given. The

current concordance model, the Λ Cold Dark Matter model, is also considered

along with some of the observational evidence and concordance parameters. Var-

ious inhomogeneous cosmological models are covered to give a perspective of the

previous work done in this area. Particular emphasis is put on the Fractal Bubble

model for which a number of observation tests are carried out in chapter 5. A

number of current cosmological observations are discussed, the type Ia supernovae

data, the cosmic microwave background and the baryon acoustic oscillation scale.

The last section of the chapter covers two well-known black hole solutions, the

Schwarzschild solutions and the Reissner-Nordström solution, which are relevant

to the work in chapter 3.

• Chapter 2 is dedicated to extensions to general relativity. It covers the Kaluza-

Klein compactification scheme, which gives a simplified version of compactifi-

cation from higher dimensions, and the resulting manifestation of scalar fields

in the effective theory. A number of potentially physical scalar field candidates

are outlined and a basic description given of the mechanisms that create them.

A summary of previous work incorporating scalar fields into cosmological and

black hole solutions is given. We also consider higher-order curvature terms,

particularly the Gauss-Bonnet term which is central to the work in chapter 4.
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• Chapter 3 presents and discusses results found for multi-scalar black hole solu-

tions coupled to electromagnetism. These show interesting properties with regard

to the extremal solutions.

• Chapter 4 presents a number of results regarding the cosmological implications

of including leading order curvature corrections and scalar fields. A number of

different scenarios are examined, giving possible late-time evolutions.

• In chapter 5 the concordance of the fractal bubble model to the type Ia supernovae

data is presented. Two other observations, the baryon acoustic oscillation scale

and angular scale of the sound horizon in the CMB are also compared to the

model.

Throughout this thesis, the 4-dimensional Newton constant is given by G. We use

natural units in which the constants c, k, ~ and µ0 do not appear, or equivalently may

be considered to have a numerical value of unity. There is one exception to this, in

the data analysis c = 2.998× 108 ms−1. One may transform between our natural units

and rationalised practical (SI) units by making the following transformations for the

five SI base dimensions:

Length: x = xSI

Time: t = ctSI

Mass: m =
c

~
mSI

Temperature: T =
k

~c
TSI

Current: i =
(µ0

~c

)1/2

iSI.
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Chapter 1

Introduction to General Relativity

1.1 Homogeneous Cosmology and the Current Con-

cordance Model

Many assumptions must be made in order to have any chance of modelling the universe

due to the extremely complex nature of the structure observed. For many years the

major assumption in most cosmological models has been that the universe is spatially

homogeneous and isotropic or equivalently the universe can be foliated by spacelike

hypersurfaces that are maximally symmetric in the three spatial dimensions intrinsic

to the surface1. The level of assumption here is obviously huge as many observations

point to a highly inhomogeneous universe on scales of less than 100–300 Mpc, with

regions of very low density, where space is empty give or take some radiation and the

odd particle, through to extremely high density areas such as planets, stars and even

black holes.

There is, however, some basis to such a claim. The most well-known piece of

evidence is the observation of the cosmic microwave background (CMB). This radia-

tion, which permeates the whole universe, is a remnant of last scattering indicating

a highly homogeneous universe at this epoch. The temperature profile is incredibly

smooth, only varying in the order of 10−3, or 10−5 if our local motion with respect

1We are considering 4-dimensional spacetime at this point with a 3+1 split generally being possible,

ie. it is globally hyperbolic.
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to the cosmic rest frame is subtracted. There is evidence that the Universe is still

isotropic and homogeneous on large scales today but only in an average sense. Galaxy

clustering statistics suggest that the distribution of matter is homogeneous if we sample

on scales greater than about 200Mpc [1, 2]. Observations of the diffuse x-ray and γ-ray

backgrounds also support a homogenous Universe when averaged on such scales.

A spatially homogeneous and isotropic geometry in 4-dimensions can be considered

to be R×Σ where R is the time direction and Σ is the maximally symmetric spacelike

3-manifold. We therefore have a metric

ds2 = −dt2 + ā2(t)dσ2, (1.1)

where dσ2 is the metric for the 3-dimensional foliating manifold, Σ and ā(t) is the scale

factor. By using the fact that maximally symmetric metrics obey

(3)Rijkl = k(γikγjl − γilγjk), (1.2)

where k =(3)R/6 is a measure of the constant Gaussian curvature of the spatial 3-

manifold, Σ, with metric dσ2 = γijdxidxj, i, j ∈ {1, 2, 3}. The metric can be written

in a spherically symmetric form, such that,

dσ2 =
dr̄2

1− kr̄2
+ r̄2dΩ2, (1.3)

where dΩ2 = dθ2 + sin2 θdφ is the metric on the 2-sphere2. The value of k can be

normalised using the freedom in ā(t) such that k ∈ {−1, 0, 1}. The k = −1, k = 1 and

k = 0 cases correspond to negative, positive and flat spatial curvature respectively.

The Friedmann-Lemâıtre-Robertson-Walker (FLRW) geometry is given by

ds2 = −dt2 + ā2(t)

[
dr̄2

1− kr̄2
+ r̄2dΩ2

]
. (1.4)

The metric (1.4) is invariant under the transformations

ā → ω−1ā,

r̄ → ωr̄,

k → ω−2k. (1.5)

2See [3, 4] for details.
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This is convenient because it allows one to decide which variables to consider dimen-

sionless. In (1.4) the scale factor has units of distance while the radial coordinate is

dimensionless. Sometimes it is preferable to make the transformations

a(t) =
ā(t)

ā0

,

r = ā0r̄,

κ =
k

ā2
0

, (1.6)

where ā0 normalises the scale factor to a convenient epoch, generally the present epoch.

We now have a dimensionless scale factor, a(t), a radial coordinate, r, with dimensions

of distance and a curvature parameter, κ, with dimensions of (distance)−2. Hence the

metric (1.4) becomes

ds2 = −dt2 + a2(t)

[
dr2

1− κr2
+ r2dΩ2

]
. (1.7)

To understand the dynamics of a universe with the metric, (1.7) one has to solve

the Einstein equation with an appropriate energy-momentum tensor. The general

assumption made is that the matter and energy can be modelled by a perfect fluid.

This is again a simplification of grand proportions, one which is valid if the Universe

is exactly isotropic and homogeneous. Hence, in suitable local frames, there are no

off-diagonal terms in the energy-momentum tensor. The energy-momentum tensor for

a perfect fluid is given by

Tµν = (ρ + p)UµUν + pgµν , (1.8)

where, in a local frame, the 4-velocity is U â = (1, 0, 0, 0) with ρ and p being the density

and pressure respectively. By the assumption of homogeneity, ρ = ρ(t) and p = p(t).

Energy conservation is given by the zeroth component of the conservation equation

∇µT
µ
0 = 0,

∇µT
µ
0 = ∂µT

µ
0 + Γµ

µνT
ν
0 − Γν

µ0T
µ
ν ,

= −ρ̇− 3
ȧ

a
(ρ + p) = 0. (1.9)

where overdot is differentiation with respect to t. For perfect fluids one generally

assumes a linear equation of state, p = wρ. In FLRW models the parameter w is

5



independent of time. However, in extensions to quintessence models (see section 2.3.1)

time dependence is allowed. In the present context we have a conservation of energy

equation
ρ̇

ρ
= −3(1 + w)

ȧ

a
. (1.10)

Ordinary matter is assumed to be dust-like; i.e., it is collision–less and non-relativistic.

This means that pmatter = 0, or equivalently wmatter = 0. For radiation, one obtains

wradiation = 1/3 from the energy-momentum tensor for electromagnetism. Vacuum

energy is the component of the total energy density of the universe that most closely

resembles a perfect fluid in reality. It has the equation of state pΛ = −ρΛ. This

negative pressure is often attributed to being the source of the current acceleration of

the expansion of the Universe.

One can integrate (1.10), for w 6= −1, with respect to time to obtain

ρ ∝ a−3(1+w). (1.11)

For dust-like matter, radiation and vacuum energy the following relations between the

energy density and the scale factor are obtained,

ρmatter ∝ a−3,

ρradiation ∝ a−4,

ρΛ = const. (1.12)

Hence one can see that while the densities of radiation and matter with decrease quickly

with increasing size of the Universe, the vacuum energy has a constant density and

therefore in an eternally expanding universe will eventually dominate.

Now if we consider Einstein’s equation written in the form

Rµν = 8πG

(
Tµν − 1

2
gµνT

)
, (1.13)

we get

−3
ä

a
= 4πG(ρ + 3p),

ä

a
+ 2

(
ȧ

a

)2

+ 2
κ

a2
= 4πG(ρ− p), (1.14)
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from the tt and ij components respectively. Simplifying the ij equation with respect

to the tt equation we get the familiar Friedmann equations,

(
ȧ

a

)2

=
8πG

3
ρ− κ

a2
, (1.15)

ä

a
= −4πG

3
(ρ + 3p). (1.16)

A number of important parameters can be defined with respect to these equations.

The Hubble parameter, H = ȧ/a, which has units of (time)−1, conventionally measured

in km/sec/Mpc, is an important measure of the expansion rate of the universe. It is

also useful to have a parameter dependent on the second derivative of a(t) to measure

the rate of change of the expansion rate. This is the deceleration parameter

q = −aä

ȧ2
, (1.17)

which is positive for a decelerating universe. We also define the density parameter in

any matter or radiation component, A, as

ΩA ≡ 8πG

3H2
ρA =

ρA

ρcritical

, (1.18)

where the critical density is

ρcritical ≡ 3H2

8πG
. (1.19)

If Λ = 0, the three different FLRW geometries can be characterised by the value of

the density parameter. This is a direct result of (1.15) and gives

ρ < ρcritical ↔ Ω < 1 ↔ κ < 0 ↔ “open” geometry,

ρ > ρcritical ↔ Ω > 1 ↔ κ > 0 ↔ “closed” geometry,

ρ = ρcritical ↔ Ω = 1 ↔ κ = 0 ↔ spatially flat geometry.

The terminology “open” and “closed” in reference to the ultimate fate of the Universe

is a nomenclature which derives from the case with no vacuum energy. If Λ > 0 then

the Universe may expand forever even if the Universe is “closed”.

The current concordance model of cosmology is considered to be the so called Λ-

Cold-Dark-Matter (ΛCDM) model where the geometry is considered to be flat with

particular concordance parameters. This model has been shown to be in very good
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agreement with many observations, especially the cosmic microwave background3. The

present day make up of the universe for the flat-ΛCDM model which most closely agrees

with the WMAP 3 year data set of the Cosmic Microwave Background (CMB) is given

by the following parameters [5]

H0 = 73.2+3.1
−3.2km/sec/Mpc

ΩΛ = 0.759± 0.034

Ωmatter = 0.241± 0.034

Ωbaryonh
2 = 0.02229± 0.00073

where h is defined by H0 = 100h km sec−1 Mpc−1. When other data sets are included –

particularly the supernovae Ia data, various galaxy surveys and alternative observations

of the CMB4 - the cosmological parameters currently claimed by the WMAP team [16]

are

H0 = 70.4+1.5
−1.6km/sec/Mpc

ΩΛ = 0.732± 0.018

Ωmatter = 0.268± 0.018

Ωbaryonh
2 = 0.02186± 0.00068

The concordance ΛCDM model calls for a dominant contribution from the vacuum

energy or cosmological constant. Current observation seems to support an accelerating

universe, and the cosmological constant is the physical mechanism within the ΛCDM

model responsible for driving it. The model also has a significant proportion of cold

dark matter. Non–baryonic dark matter is expected to make up 23% of the matter–

energy content or 83% of ordinary clumped matter in the ΛCDM model when fitted

to the observations [16]. The generally observed ingredient of the universe, baryonic

matter, is only expected to make up 4.4% of the matter–energy content of the universe.

Note that ΛCDM is flat, ΩΛ + Ωmatter = 1 (at the present epoch radiation is negligible,

3However, some critical comments on this will be made in chapter 5.
4The included datasets are WMAP [6, 7], 2df Galaxy Redshift Survey [8], BOOMERang [9] +

ACBAR [10], CBI [11] + VSA [12], Sloan Digital Sky Survey [1, 13], Supernova Legacy Survey [14]

and the Riess 04 “Gold Sample” Supernova [15].
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Ωradiation ∼ 10−4), which fits with both the WMAP observation and the theoretical

requirements of inflation.

1.2 Inhomogeneous Cosmology

Over the years inhomogeneous cosmological models have been studied from many

different viewpoints [see ref. [17] for a review]. There is significant observational

evidence for an inhomogeneous matter distribution in the large scale struture of the

Universe at the present epoch [18, 19]. The most widely studied approaches for dealing

with inhomogeneity are discussed below.

1.2.1 Perturbation theory

If the background geometry can be assumed close to an FLRW model then one can

consider inhomogeneous perturbations,

gµν = gFLRW
µν + hµν . (1.20)

where |hâb̂| ¿ 1 in a orthornormal frame. Perturbation theory must be directly relevant

at early times given the evidence from the CMB for homogeneity in the early Universe.

It is therefore very widely studied and the subject of many reviews and texts [20, 21, 22].

At the present epoch, initial perturbations that give rise to galaxy clusters have gone

far into the non-linear regime and thus other approaches to dealing with inhomogeneity

must be considered.

1.2.2 Exact inhomogeneous solutions to Einstein’s equation

Here one assumes a metric which is inhomogeneous but still has some residual symmetry

– such as spherical symmetry in the case of the widely studied Lemâıtre-Tolman-Bondi

(LTB) models [23]. Given that exact spherical symmetry about our point is highly

unlikely such models have limited applicability although a number of attempts have

been made to apply these to the whole Universe [24, 25]. More realistic inhomogeneous

9



exact solutions with less symmetry have also been extensively studied, in particular the

families of exact solutions discovered by Szekeres [26] and Szafron [27]. These solutions

consider a perfect inhomogeneous fluid in comoving coordinates. Initially Szekeres

solved the Einstein equations for a dust source and Λ = 0, and it was generalised to

p 6= 0 by Szafron.

While LTB solutions are of limited values as models of the entire Universe, they

are useful in modelling single voids or single overdense regions. More generally the

problem of exact solutions representing stars or galaxies embedded in an expanding

background has a long history going back to the work of McVittie [28]. In these cases

one often constructs exact geometries with the desired properties, leaving the nature of

the energy-momentum tensor on the right hand side of Einstein’s equations the object

to be determined and interpreted. An extensive discussion of such models has been

recently given by Faraoni and Jaques [29].

1.2.3 Swiss cheese models

One can also construct solutions in which the energy-momentum tensor is directly

specified in various regions which are cut and pasted together by junction conditions

at a boundary. The first example of this, the original “Swiss cheese” model, was

constructed by Einstein and Straus [30]. Their technique was to cut spherical holes

out of the dust in FLRW models and replace them by central Schwarzschild solutions,

which have a mass equal to that cut out of the fluid. The boundary of the Einstein-

Straus vacuoles expands outwards in order to satisfy the junction conditions if the

background universe is expanding. The Einstein-Straus model would be very realistic

if the Universe did correspond to isolated galaxies moving uniformly away from each

other in a completely smooth fluid background. However, it does not correspond to

the observed structure of galaxy clusters in walls surrounding voids. Nonetheless, it is

widely used in various studies due to its simplicity.
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1.2.4 Averaged cosmologies

The question of extracting the correct average from a general inhomogeneous cosmology

is an important problem since the average geometry will differ from that of FLRW

models in general. Such approaches have recently become the focus of much interest [24,

31] as they may provide an alternative explanation for the apparent cosmic acceleration

observed at present. This is closely related to the effects of “back–reaction” [32] of

inhomogeneities on the average geometry of the Universe.

Of particular interest for this thesis are the effects of back–reaction on observed

quantities. As the Einstein equations are local and nonlinear, one should take an

initial inhomogeneous energy-momentum distribution and evolve this forward in time.

This is not equivalent generally to taking the average of the equations initially, and

time-evolving that average. Mathematically, if one considers an inhomogeneous scalar

quantity, Φ, in general 〈Φ2〉− 〈Φ〉2 6= 0 where angle brackets denote the average over a

relevant domain. This non-commutativity results in a back–reaction term in the Ein-

stein equations. The degree to which this back–reaction term affects the observational

parameters of the universe is a topic of much current debate. The effect of this term

may in fact be sufficient to cause apparent acceleration without the requirement of any

dark energy [25, 33].

There are a number of methods for averaging spatial or null cone volumes, involving

different foliations by hypersurfaces. Schemes for averaging both tensor quantities [34]

and scalars [35] have been developed. Buchert [35] has developed a scheme for irro-

tational dust cosmologies, considering spatial averages of the scalar quantities: energy

density ρ(t, x), expansion, θ(t, x), and shear, σ(t, x), over a spatial hypersurface of

constant average time, t and spatial 3-metric 3gij(x). The average cosmic evolution is

then given by

3
˙̄a
2

ā2
= 8πG〈ρ〉 − 1

2
〈R〉 − 1

2
Q, (1.21)

3
¨̄a

ā
= −4πG〈ρ〉+ Q, (1.22)

∂t〈ρ〉 + 3
˙̄a

ā
〈ρ〉 = 0, (1.23)

where ā(t) ≡ [V(t)/V(t0)]
1/3 with V(t) ≡ ∫

D
d3x

√
det 3g. The back–reaction term, Q,

11



is given by

Q ≡ 2

3
〈(θ − 〈θ〉)2〉 − 2〈σ〉2

=
2

3

(〈θ2〉 − 〈θ〉2)− 2〈σ〉2. (1.24)

The angle brackets denote the spatial volume average, hence

〈R〉 ≡
(∫

D

d3x
√

det 3gR(t, x)

)
/V(t) (1.25)

is the average spatial curvature.

1.2.5 Fractal Bubble model

Wiltshire has recently proposed an approach to cosmological averaging which takes into

account, not just back–reaction, but the possibility that there can be systematic dif-

ferences between measurements of cosmological parameters made within local systems

and at the volume average position in freely expanding space [36, 37]. This is done

through systematic consideration of differences in the quasilocal gravitational energy

between two scales: the very low density voids which dominate the Universe by volume

at the present epoch, and the bubble walls and filaments which surround the voids.

Wiltshire takes the present particle horizon volume as the domain of spatial averaging.

A crucial scale in Wiltshire’s approach is the fiducial reference point for the defini-

tion of quasilocal gravitational energy gradients. It is defined as follows [37].

With respect to a foliation of spacetime by spacelike hypersurfaces, finite infinity

is identified with the set of timelike boundaries of (disjoint) compact domains,

FI , within which the average expansion vanishes, while being positive outside:

(i) 〈θ(p)〉FI
= 0;

(ii) ∃ DI such that FI ⊂ DI and θ(p) > 0 ∀ p ∈ DIr FI (1.26)

This is shown diagrammatically in Fig. 1.1. Physically, finite infinity regions should

be considered as the analogue of the Einstein-Straus vacuoles. The principal difference

is that no assumptions about homogeneity are made beyond finite infinity. Finite

infinity may be understood as the demarcation scale between a bound system, or
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strictly speaking a potentially bound system, and freely expanding space. The idea is

that the density of matter averaged over a finite infinity domain is the “true critical

density”. Since the Universe was homogeneous and isotropic at last scattering it

possessed an almost uniform initial expansion velocity. This means that the notion

of a universal initial density of matter for gravity to overcome this initial uniform

expansion is well-defined. However, as cosmological evolution no longer occurs via the

Friedmann equation, ρcritical cannot be naively equated to the mean Hubble parameter

at a volume-averaged position according to (1.19).

θ<0Collapsing Expanding

Finite infinity <θ>=0

<θ>=0 θ>0

θ>0

Virialized

Figure 1.1: The dotted line represents finite infinity, the boundary between the voids and

the walls. Galaxies are expected to exist within the virialised region with a further collapsing

region and then expanding region required within the bounds of finite infinity to give 〈θ〉 = 0.

The local average geometry within finite infinity regions in bubble walls is assumed

to be well-described, on average, by the spatially flat metric

ds2
FI

= −dτ 2
w + a2

w(τw)
[
dη2

w + η2
wdΩ2

]
, (1.27)

where τw is strictly speaking the proper time of an ideal isotropic observer at the finite

infinity boundary and ηw is an appropriate radial coordinate. The related scale factor

is aw(τw). While the clocks of observers within galaxies will differ slightly from those at

finite infinity, it is assumed that these differences are small, since gravitational binding

energy is conventionally neglected. The break with conventional assumptions comes

from allowing significant spatial curvature gradients between finite infinity and the

centres of voids. Quasilocal energy differences will arise, as a consequence, between

finite infinity and the volume average.
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The Buchert scale factor, ā, which appears in (1.21)–(1.23), is taken to be

ā3 = fvia
3
v + fwia

3
w, (1.28)

in the 2-scale average. Here aw is the scale factor relevant for finite infinity regions, as

in (1.27), while av is a measure of the local geometry within voids, given similarly by

ds2
v = −dτ 2

v + a2
v(τv)

[
dη2

v + sinh2(ηv)dΩ2
]
. (1.29)

The constants fvi and fwi which appear in (1.28) are respectively the initial void

fraction, fvi ¿ 1, and the initial wall fraction, fwi ≡ 1− fvi at last scattering.

The crucial argument of Wiltshire’s solution to the averaging problem involves the

assumption that the underlying expansion of the Universe is still uniform, when defined

in terms of locally observed quantities, on scales larger than finite infinity. However,

both local clocks and quasilocal spatial curvature can vary. Negative spatial curvature

is associated with positive gravitational energy, which feeds back on clock rates to make

clocks tick faster in voids relative to finite infinity.

By Wiltshire’s assumptions the underlying locally measured Hubble flow is uniform

and coincides with that measured at the volume average,

H̄ =
1

3
〈θ〉H = fwHw + fvHv, (1.30)

where H̄ = ˙̄a/ā, and Hw ≡ ȧw/aw, and Hv ≡ ȧv/av are the expansion rates of walls and

voids referred to volume average clocks, 〈θ〉H is the average expansion over the particle

horizon volume, and fw(t) and fv(t) are the wall and void fractions respectively5.

The Buchert equations, (1.21)–(1.23), are now implemented with respect to the

volume average position. The independent Buchert equations are [38]

˙̄a
2

ā2
+

Q

6
− α2f

1/3
v

ā2
=

8πG

3
ρ̄0

ā3
0

ā3
(1.31)

f̈v +
ḟ 2

v (2fv − 1)

2fv(1− fv)
+ 3

˙̄a

ā
ḟv − 3α2f

1/3
v (1− fv)

2ā2
= 0 (1.32)

where

Q =
2ḟ 2

v

3fv(1− fv)
, (1.33)

5The overdot throughout the Fractal Bubble formalism is defined to be differentiation with respect

to proper time at the volume average, t.
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α = −kvf
2/3
vi , and kv is the curvature parameter in the voids defined by 〈R〉v = 6kv/a

2
v.

A curvature parameter for the walls kw is defined in a similar manner but is zero by

the definition of the finite infinity boundary.

Once an underlying uniform expansion is assumed, the relationship or “dressing”, of

cosmological parameters between finite infinity and the volume average is determined.

The volume average is located in voids, somewhere between their centres and the finite

infinity regions along their boundaries. A metric for the volume-average geometry is

reconstructed from solutions to Buchert’s equations, and is given by

ds2 = −dt2 + ā2(t)dη̄2 + A(η̄, t)dΩ2

= −γ̄2
w(τw)dτ 2

w + ā2(τw)dη̄2 + A(η̄, τw)dΩ2, (1.34)

where t and η̄ are the temporal and radial coordinates of the averaged geometry while

ā and A(η̄, t) are the volume averaged scale factor and area function respectively.

The second line of (1.34) shows the line element as a function of the time parameter,

τw, measured within the finite infinity region. The average lapse function, γ̄w(τw) =

dt/dτw, describes the difference in the rate of the usual cosmic time, t, measured in

the volume average, and τw, the proper time at finite infinity. This lapse function is no

longer negligible once the possibility of quasilocal gravitational energy differences are

considered.

When the geometry (1.27) is related to the average geometry (1.34) by conformal

matching of radial null geodesics it may be rewritten

ds2
FI

= −dτ 2
w +

ā2

γ̄2

[
dη̄2 + r2

w(η̄, τw) dΩ2
]

(1.35)

where rw ≡ γ̄ (1− fv)
1/3 fwi

−1/3ηw(η̄, τw). Two sets of cosmological parameters are

relevant: those relative to an ideal observer at the volume–average position in freely

expanding space using the metric (1.34), and conventional dressed parameters using

the metric (1.35). The conventional metric (1.35) arises in our attempt to fit a single

global metric (1.27) to the universe with the assumption that average spatial curvature

and local clock rates everywhere are identical to our own, which is no longer true.

One important consequence is that the dressed matter density parameter, ΩM , differs

from the bare volume–average density parameter, Ω̄M , according to ΩM = γ̄3Ω̄M . The
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difference between these two parameters has direct implications for the calibration of

the baryonic density parameter from primordial nucleosynthesis: the value predicted

in the standard FLRW analysis is the volume–average, Ω̄B, which is smaller than the

conventional dressed parameter, ΩB.

The conventional dressed Hubble parameter, H, of the metric (1.35) differs from

the bare Hubble parameter, H̄, of (1.34) according to

H = γ̄H̄ − d
dt

γ̄ = γ̄H̄ − γ̄−1 d
dτ

γ̄ . (1.36)

Since the bare Hubble parameter characterises the uniform “locally measured” Hubble

flow, for observers in galaxies its present value coincides with the value of the Hubble

constant they would obtain for measurements averaged solely within the plane of an

ideal local bubble wall, on scales dominated by finite infinity regions. The numerical

value of H̄ is smaller than the global average, H, which includes both voids and bubble

walls. Eq. (1.36) thus also quantifies the apparent variance in the Hubble flow below

the scale of homogeneity. Measurements across single dominant local voids (on scales

30h−1 Mpc) should give a Hubble “constant” which exceeds the global average H0

by an amount commensurate to H0 − H̄0. As voids are dominant by volume, an

isotropic average will produce a Hubble “constant” greater than H0 until the scale of

homogeneity (∼ 200 Mpc) is reached: a “Hubble bubble” feature [39, 40, 41].

1.3 Cosmological Observations

• Type Ia Supernovae

Observations of Type Ia supernovae have been the main piece of evidence support-

ing the current view that the expansion of the Universe appears to be accelerating.

This is a major result as it poses major challenges for our fundamental under-

standing of physics. It is possible that it demands changes to our understanding

of the forces of nature, or modifications to gravity. Type Ia Supernovae are the

brightest standard candle known6, giving information about the behaviour out

6Attempts have recently been made to use gamma–ray bursts as standard candles [42]. These are

much brighter and could be used to large redshifts. However, it is not yet clear whether the intrinsic

systematic variations in their luminosities are well enough understood.
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to a redshift of z ∼ 1.5, far beyond the observable distance of other standard

candles: cepheid variables, RR Lyrae variables and eclipsing binaries. Given the

central importance of the Type Ia Supernovae observations, we will give a review

of their relevant astrophysical properties.

Type Ia Supernovae are believed to be ignited by white dwarf stars in binary

systems. A white dwarf is the stable remnant of a star that has completed its

life cycle, with nuclear fusion having ended. The white dwarf must have a mass

below the Chandrasekhar limit of ∼ 1.38 solar masses so that electron degeneracy

pressure is not overcome, restarting nuclear fusion. If these white dwarves start

accreting matter from a binary companion, they can approach the Chandrasekhar

limit, at which point it is believed that carbon fusion of the core starts to occur.

This causes a runaway reaction leading to a supernova. This mechanism results

in the supernova displaying very consistent characteristics, the peak luminosity

being of particular interest for the purposes of using Type Ia Supernovae as

standard candles7.

Although Type Ia Supernovae display very similar peak luminosities, it is not

without some dispersion. The apparent similarity was noticed in the early 1980s

leading to hopes that Type Ia Supernovae could be used as a standard candles.

However, it was soon discovered by studying nearby events, which could be

compared to other standard candles, that the peak absolute magnitudes varied

by 0.3-0.5 mag [44]. In 1993 Phillips et al. [45] discovered an empirical relation

between the rate of decline of the light curve over 15 days and the peak luminosity.

This has been further refined [46] and has, hence, allowed the use of Type Ia

Supernovae as standard candles leading to the results in 1997.

Interest in Type Ia Supernovae observations increased markedly with the re-

lease of results in 1997 indicating the expansion of the Universe appears to

be accelerating [47, 48]. Similar studies since have come to the same conclu-

sion [14, 15, 49, 50, 51]. There is still part of the community that disputes not

only the mechanism put forward for the observed acceleration, the cosmological

constant or another form of dark energy, but the results themselves.

7Reviews of the physical mechanisms predicted in Type Ia Supernovae can be found in [43].
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Recently, further analysis of the Type Ia Supernovae observations has led to a

number of interesting conclusions. A large variation in the interpretation of the

results is possible, dependent on the techniques used in the analysis, to the extent

that an accelerating Universe “is not supported beyond reasonable doubt” [52]

when the raw data is carefully analysed. The issues covered by Cattoen and

Visser [52] are:

– The distance scale

The value of the best-fit χ2 for a given model is shown to vary significantly

dependent on whether one uses the luminosity distance, proper motion

distance (photon count distance), angular diameter distance or a number

of other cosmological distance definitions. These alternative definitions lead

to alternative versions of the Hubble law, and differing results.

– The dependence of the deceleration parameter

It is shown that the value of the inferred deceleration parameter is affected

by whether one considers the redshift, z, or a parameter argued for as an

improvement on theoretical grounds, y = z/(1 + z).

– Systematic Errors

The systematic errors quoted for the Type Ia Supernovae results, when

combined with the usually displayed statistical errors, indicate that the level

of confidence for cosmic acceleration may be significantly overstated.

• Cosmic Microwave Background

The Cosmic Microwave Background (CMB) is perhaps the most important known

phenomenon in the study of modern cosmology. It was one of the most fa-

mous accidental discoveries in physics, being attributed to Penzias and Wilson.

The Nobel Prize winning discovery was made while trying to find the source

of background noise on a microwave receiver at Bell Telephone Laboratories in

New Jersey in 1965 [53]. In 1941 McKellar actually detected the CMB while

studying the properties of an interstellar gas cloud without realising what he had

found [3, 54]. The CMB had been theorised and values predicted on a number of
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occasions before the 1965 discovery [55], in fact, Wilkinson and Roll at Princeton

University had begun construction of a Dicke radiometer to measure it in 1964.

Since the discovery of the CMB many observations have been conducted. The

two most famous of these are the Cosmic Background Explorer (COBE) and

Wilkinson Microwave Anisotropy Probe (WMAP), both satellite missions un-

dertaken with the backing of NASA. Other notable experiments are the balloon

based BOOMERanG experiment, and the ground based observations by the Very

Small Array, the Degree Angular Scale Interferometer (DASI) and the Cosmic

Background Imager. Due to the apparent importance of the CMB to studies

of cosmology, more experiments are planned with the Planck Surveyor satellite

due to be lauched in 2008 and ground based experiments, Clover and Atacama

Cosmology Telescope, which saw first light on the 8th of June 2007.

The radiation, which peaks in the microwave regime at 1.9mm at the current

epoch, is, to current limits of experimental accuracy, a perfect blackbody spec-

trum. At times earlier than roughly 300,000 years, the average temperature of

the Universe was at energy scales above the binding energy of hydrogen. Conse-

quently the Universe was filled with an ionised plasma, with photons and electrons

undergoing Thomson scattering, and was opaque. As the Universe expanded, it

cooled so that kBT was reduced below the binding energy of hydrogen, and the

first atoms formed, the beginning of recombination. The Universe then became

transparent, as the free electrons were bound to nuclei, decoupling matter and

radiation. The photons which scattered from the last free electrons have been

travelling to us ever since. Hence this epoch is referred to as the time of last

scattering. These photons have since cooled due to the expansion of the Universe

but have retained a very nearly isotropic mean temperature, 2.725 K at the

present epoch. There is a dipole variation of order 10−3 in this temperature,

which is assumed to be almost completely due to our local motion with respect

to the cosmic rest frame8. When this dipole is subtracted, temperature variations

8It is possible that there is a 1-2% error in the dipole substraction due to foreground inhomo-

geneities [56]. Via the Rees-Sciama effect this may account for anomalies in the low multipole moments

of the CMB anisotropy spectrum, which have been dubbed the “axis of evil” [57].
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of the order 10−5 are seen.

The power of the fluctuations ∆T/T for 2-point variations as a function of angular

scale is shown in the well-known CMB anisotropy spectrum in figure 1.2. These

fluctuations are believed to be intrinsic to the plasma at the time of last scattering.

The structure of peaks can be modelled from acoustic oscillations in the matter-

radiation plasma before last scattering.

Under the assumption that the CMB is the remnant of last scattering a number

of deductions can be made. The first, and perhaps most significant, is that we live

in a universe which underwent a Big Bang as opposed to being in a steady state.

This resulted in a major change in direction for much of the community in the

1960s when it was discovered. Within the context of a cosmological model, the

Doppler peaks in the angular anisotropy spectrum encode a lot of information.

These predictions include the dark matter content of the universe, the epoch of

reionisation by population III stars and the ratio of photons to baryons.

Figure 1.2: The power spectrum of the anistropies in the CMB. The data shown is from

WMAP (2006), Acbar (2004) Boomerang (2005), CBI (2004) and VSA (2004) instruments.

The determination of the geometry of the Universe arises on account of the overall
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focussing of light rays which determines the angular scale of the Doppler peaks.

The first peak corresponds roughly to the angular diameter of the sound horizon.

WMAP results have quoted values with respect to the ΛCDM model for both

the size of the sound horizon at decoupling, rs = 147 ± 2Mpc, and the distance

from decoupling, dA = 14.0+0.2
−0.3Gpc [6]. This gives an angular scale of the sound

horizon, δ = 0.0105+0.0003
−0.0004 at the present epoch.

• Baryon Acoustic Oscillations

Analysis of the Sloan Digital Sky Survey (SDSS) data [1, 2] reveals a slight

departure from Gaussian statistics in the average distribution of galaxies in the

Universe. The overdensity or baryon acoustic oscillation (BAO), appears to

occur at distances comparable to the expected size of the remnant of the largest

acoustic oscillation in the baryon-photon plasma at the time of decoupling, once

intervening expansion of the Universe is taken into account. Since the angular

scale of the first Doppler peak corresponds to a standard ruler at the time of last

scattering, whereas the BAO scale gives a standard length scale at recent epochs,

we have a powerful tool for directly determining the expansion of the Universe

in the interim. This puts strong constraints on any cosmological model. The

distance between the areas of overdensity is found to be about 100h−1Mpc [1].

This result seems to match with reasonable accuracy estimates using the ΛCDM

model.

1.4 Schwarzschild and Reissner-Nordström Black

Holes

Classically black holes are defined as trapped regions in the spacetime manifold. These

are compact regions bounded by horizons that in the classical description of physics

are inescapable once crossed. A number of different definitions of black holes horizons

exist. Nielsen [58] gives a review of the major candidates. The version of the horizon

that has been perhaps the most deeply studied is the event horizon: a hypersurface

which separates the trapped region from regions of the manifold in which points are
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connected by at least one possible timelike path to future null infinity [59]. Event

horizons exist not only for black holes but also in models of the universe in which the

rate of expansion is accelerating, most notably the de-Sitter universe.

Event horizons are a global property of the manifold. While sufficient for many

applications, the global definition can cause difficulties if one wishes to consider in-

teracting black holes. Furthermore, the physical interpretation of an event horizon in

dynamical situations can be somewhat strange. Because the event horizon is defined as

the boundary of the causal past of future null infinity, in the case of black hole creation,

an event horizon may first develop before matter falls across the horizon as seen by

a local observer. There have been many attempts to provide more local definitions

of the horizon, beginning with the notable example of apparent horizons [59]. More

recently other locally defined horizons have become an area of interest [58]. They may

hold clues to the resolution of the information paradox in quantum gravity. They

also have applications for numerical work, especially in multi-body problems. Event

horizons, however, give a very good approximation for many applications. Other types

of horizons can be defined within general relativity including the particle horizon, the

acceleration horizon and Cauchy horizon. The particle horizon constitutes the relevant

domain of averaging used in section 1.2. Otherwise these alternative notions of horizon

are not considered in depth in this thesis.

Black hole horizons are associated with quantities that obey laws analogous to

those of thermodynamics. In particular, the surface gravity can be thought of as a

temperature, and the area of the horizon as an entropy [60]. At the level of classical

general relativity this is a purely formal analogy. However, once quantum field theory

is included black holes may evaporate via the Hawking effect and the correspondence

to thermodynamics becomes exact.

The Schwarzschild solution [61] is the simplest black hole solution for Einstein’s

vacuum equations in 4-dimensions being uncharged, static, asymptotically flat and

spherically symmetric. The Schwarzschild metric is given by

ds2 = −
(

1− 2GM

r

)
dt2 +

dr2

(
1− 2GM

r

) + r2dθ2 + r2 sin2 θdφ2, (1.37)

where we are using the 3 + 1 split of Schwarzschild coordinates, M is the Arnowitt–
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Deser–Misner (ADM) mass [62]. The Schwarzschild coordinates obviously break down

at r = 2GM , which actually corresponds to the horizon. The Schwarzschild geometry

has three rotational Killing vectors of SO(3). In addition, it has a fourth Killing vector,

∂
∂t

, as a result of Birkhoff’s theorem.

In general relativity one must be extremely careful about coordinate dependent

statements. The Schwarzschild coordinate singularity at r = 2GM can be removed by

going to other coordinates such as the Painlevé-Gullstrand or Eddington-Finkelstein

coordinates. Other coordinate systems may also possess coordinate singularities. In the

case of Schwarzschild geometry, the double null Kruskal-Szekeres coordinates (u, v, θ, φ),

ds2 = −32G3M3

r
e−r/2GMdudv + r2Ω2, (1.38)

with transformations

v(t, r) =
( r

2GM
− 1

)1/2

e(r+t)/4GM ,

u(t, r) =
( r

2GM
− 1

)1/2

e(r−t)/4GM ,

for r > 2GM and

v(t, r) =
(
1− r

2GM

)1/2

e(r+t)/4GM ,

u(t, r) =
(
1− r

2GM

)1/2

e(r−t)/4GM ,

for r < 2GM , in fact, cover the entire spacetime including the past singularity and an

additional asymptotic region. One may readily see from (1.38) that for fixed θ, φ, u =

const and v = const surfaces are null hypersurfaces, which are respectively outgoing

and ingoing. Thus r = 2GM , t = +∞, corresponds to the null surface u = 0, the

future horizon.

Coordinate independent measures of the curvature are useful for detecting singular-

ities. The Kretschmann scalar, RabcdRabcd, is one such invariant. For the Schwarzschild

solution it is given by

RabcdRabcd =
48G2M2

r6
. (1.39)

This diverges as r → 0 and hence implies the existence of a curvature singularity at

r = 0. Most physicists do not regard singularities as physical infinities, but rather
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Figure 1.3: The Schwarzschild geometry in Kruskal-Szekeres coordinates.

a signal that the underlying theory – general relativity – is incomplete. In quantum

gravity one may hope to eliminate such singularities. Singularities are not considered

part of the manifold and are also conjectured, regardless of their physical nature,

to exist within a trapped region bounded by the horizon. The cosmic censorship

hypothesis states, in particular, that naked singularities cannot form in gravitational

collapse from generic, initially non-singular states in an asymptotically flat spacetime

obeying the dominant energy condition [63, 64].

The region of most theoretical interest is the domain of outer communications

outside the horizon as this is the only region, at least classically, in which it is possible

to make observations for use in discriminating between theories. The Schwarzschild

geometry has been very successful for modelling phenomena seen within the solar

system, where one can model the planets and comets as point particles since r >

rsun À 2GMsun. The perihelion precession of Mercury is the most well-known local

verification of general relativity, and is predicted to high accuracy by the Schwarzschild

geometry. Other examples are: (i) the Shapiro time delay, detected when bouncing

radar signals off Venus when it is behind the sun; (ii) the bending of light by the sun,

24



first seen during eclipses, which is correctly predicted to be twice the Newtonian value.

Strictly speaking, a complete description of the local geometry is more sophisticated

than the Schwarzschild geometry, since at the very least angular momentum should be

included. However, these effects are negligible in the solar system.

The ‘no-hair’ theorems hypothesise that all black holes, under certain premises, can

be uniquely defined by four asymptotic parameters, the mass, M , electric and magnetic

monopole charges, Q and P , and the angular momentum, J . The Kerr-Newman

solution is the relevant unique analytic solution of the vacuum Einstein equation.

We are interested in the case of a non-rotating charged black hole, parameterised

by M , Q and P : the Reissner-Nordström solution. It should be noted that Q and

P are generally considered together as they parametrise the electromagnetic charges

as a whole and are just different components of the electromagnetic field tensor, Fµν .

It is therefore usual to consider black holes as parameterised by three asymptotic

parameters. Of course, magnetic monopoles have not been observed yet in nature.

But they remain a theoretical possibility.

The 4-dimensional Reissner-Nordström metric in Schwarzschild coordinates is

ds2 = −∆dt2 + ∆−1dr2 + r2dθ2 + r2 sin2 θdφ2, (1.40)

where

∆ = 1− 2GM

r
+

G(Q2 + P 2)

r2
. (1.41)

As with the Schwarzschild solution, provided we have been careful with our selection

of spatial coordinates and have a timelike Killing vector, we can take grr = 0 as the

null hypersurface that coincides with the horizon. In this case we get two horizons, the

outer and inner horizons, r+ and r− respectively where

r± = GM ±
√

G2M2 −G(Q2 + P 2). (1.42)

There is a critical case at GM2 = Q2 +P 2. If GM2 < Q2 +P 2 there are no horizons as

grr is always positive, so the metric remains regular for all values of r > 0. However,

there is a problem as the Kretschmann scalar diverges at a curvature singularity at r =

0. Since there are no horizons this would represent a naked singularity, in violation of

the cosmic censorship conjecture. If the conjecture holds, such solutions are unphysical.
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When GM2 > Q2 + P 2 both event horizons exist and the singularity at r = 0 is

timelike. The inner horizon is unstable to small perturbations [65]. It is an example of a

Cauchy horizon – points to its future can also be influenced by the timelike singularity,

leading to a loss of predictability for Cauchy initial values set at r = r−.

The extremal Reissner-Nordström solutions have zero temperature and therefore

do not emit Hawking radiation. The extremal solutions have a different topology to

the non-extremal ones. Locally the geometry in the neighbourhood of the horizon is

AdS2×S2, equivalent to the Bertotti-Robinson metric. The region between the horizon

and the singularity may be thought of as an infinitely long throat or equivalently, the

geodesic distance is infinite. This property makes extremal black holes useful for string

theoretic calculations.
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Chapter 2

Extensions to General Relativity

2.1 Kaluza-Klein Compactification

Scalar fields appear in many parts of physics from statistical mechanical concepts such

as temperature and pressure, potential fields in Newtonian gravity and electrostatics

through to representations of spin-0 particles in quantum field theory and the phenom-

enology of symmetry breaking and compactification in string theory. We are largely

interested in the last of these examples, which arises through various mechanisms

when string theory is considered the underlying fundamental physical theory. There

are three main classes of scalar fields attributed to the manifestation of string theory

in 4 dimensions, the dilaton, the axion and the moduli fields. Firstly, however, we will

present the well-known example of Kaluza-Klein compactification in five dimensions,

as it demonstrates a number of the essential features common to compactification in

more complex string theory scenarios.

The number of dimensions the Universe possesses is an interesting question for

fundamental physics. While we observe four spacetime dimensions, one temporal

and three spatial, a number of unified theories of gravity and the other forces which

were developed in the 20th century require or allow more dimensions. These extra

dimensions have generally been considered to be ‘rolled-up’ or compactified to such a

degree that they are not observable at current experimental limits. It is worth noting

that theories do exist with extended extra dimensions, the most notable example being
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braneworlds [see Maartens [66] for a review]. In the context of M-theory braneworlds,

all standard model particle excitations – including spin-1 bosons – are confined to a

brane with three spatial dimensions: the Universe in which we live. However, gravity

can probe all the dimensions.

The idea of extra dimensions in physics was introduced by Kaluza in 1921 [67]. He

discovered that a fifth dimension allowed for a theory which contained both electro-

magnetism and gravity, the only known forces at the time. In 1926 Klein proposed

the fourth spatial dimension to be curled up into a circle with a very small radius,

leading to periodic boundary conditions for physical fields in the extra dimension [68].

In dimensions greater than five, this can be replaced by a more general Lie group,

corresponding to a Yang-Mills gauge theory. In string theory compactifications, 6-

dimensional Calabi-Yau spaces are favoured on a number of theoretical grounds [69].

Kaluza-Klein theory takes a standard Einstein action in five dimensions,

S(5) =
1

4κ̄2

∫
d5x

√−ḡ 5R, (2.1)

where ḡ ≡ |det(ḡAB)| and κ̄ = 4πḠ with Ḡ being the 5-dimensional Newton constant1.

The five dimensional metric, ḡAB can be separated into the 4-dimensional metric gµν ,

a vector, ḡµ4 and a scalar, ḡ44 and is given by

ds2 = ḡABdxAdxB = ḡ44

(
dx4 + 2κAµdxµ

)2
+ β(σ)gµνdxµdxν , (2.2)

where ḡµ4 = 2κḡ44Aµ and κ = 4πG. The form of the metric, (2.2), is the most general

invariant under translations in x4. For later convenience we take β(σ) = exp(−2κσ/
√

3)

and ḡ44 = exp(4κσ/
√

3) where σ can be thought of as some scalar which corresponds

to the ḡ44 component of the metric. The fourth spatial dimension, x4, is considered to

be periodic,

x4 ∼= x4 + 2πRκ. (2.3)

Since the internal manifold is U(1) under this assumption we can take Fourier series

1In this section, capitialised Latin indices, A, B, ... run over all D-dimensions, 0, ..., D − 1, while

Greek indices, α, β, ..., are the d-noncompact dimensions 0, ..., d − 1 with D = 5 and d = 4 for the

Kaluza-Klein theory.
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expansions of the fields σ, Aµ, and gµν in x4

σ(xA) =
∞∑

n=−∞
σ(n)(xλ) exp

(
inx4

Rκ

)
,

Aµ(xA) =
∞∑

n=−∞
A(n)

µ (xλ) exp

(
inx4

Rκ

)
,

gµν(x
A) =

∞∑
n=−∞

g(n)
µν (xλ) exp

(
inx4

Rκ

)
. (2.4)

Making the ansatz that gµν is independent of x4 we can then use the equivalent as-

sumption that we can consider just the zero-modes of the expansions in (2.4). This

corresponds to the low energy limit of the theory. From (2.2) and (2.4) we obtain the

effective 4-dimensional action of the zeroth-order approximation,

S(4) =

∫
d4x

√−g

(
−

4R

4κ2
− 1

4
exp(2

√
3κσ)FµνF

µν +
1

2
gµν∂

µσ∂νσ

)
. (2.5)

The metric (2.2) preserves symmetry under the coordinate reparametrisations

xµ → x′µ(xν), x′4 → x4 + Λ(xν), (2.6)

which in turn give the 4-dimensional coordinate transforms and the U(1) gauge trans-

formations

Aµ → A′
µ = Aµ +

1

2κ
∂µΛ, (2.7)

in the effective 4-dimensional theory. This is the Kaluza-Klein mechanism, proposed

by Kaluza in 1921, which generates electromagnetism in the effective 4-dimensional

theory.

If one considers an additional complex scalar field, φ, coupled to the 5-dimensional

theory it is possible to determine the radius, Rκ, if the ansatz, ḡµ4 = 2κḡ44Aµ, is

followed to its natural conclusion. We consider the Fourier series expansion about x4,

φ(xA) =
∞∑

n=−∞
φ(n)(xλ) exp

(
inx4

Rκ

)
, (2.8)

again in order to find the 5-dimensional scalar Lagrangian

L(5)φ =
√

ḡḡAB∂Aφ∗∂Bφ. (2.9)
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This reduces to

L(4)φ =
∞∑

n=−∞

√−g

{
(Dµφn)∗Dµφ

n − n2φn∗φn exp

(−2κσ√
3

)}
, (2.10)

in the effective 4-dimensional theory where the covariant derivative is given by

Dµ = ∂µ − 2iκn

Rκ

Aµ. (2.11)

If we compare this to the 4-dimensional form of Dµ in relativistic quantum mechan-

ics [70] we find the elementary charge is quantised in units of e = 2κ/Rκ and hence

Rκ ' 3.78 × 10−34 m ' 23.4 `Planck which is well beyond the current detectable limits

of experiment.

In the effective 4-dimensional Lagrangian, (2.10), the non-zero modes correspond

to massive charged particles with masses,

mn =
n2

Rκ

exp

(−2κσ√
3

)
. (2.12)

This infinite tower of mass states is position dependent with charges and masses being

integer multiples of e and m0 = 2κe. These are the the Kaluza-Klein excitations.

Similar mass states will exist if one takes the non-zero modes in the expansion (2.4) in

the free theory given by (2.5). These excitations can be shown to be pure spin-2 [71]

and while Kaluza-Klein is not a realistic theory, such features are present in more

sophisticated unified theories.

It would appear that the Kaluza-Klein excitations are stable [72, 73] which would

indicate that if such mass states exist they should be observable as remnants of com-

pactification if it is in fact an actual physical phenomena. This places constraints on

the underlying theories requiring compactification, as no such excitations are currently

observed [72]. In the standard Kaluza-Klein scenario the masses would be so large that

they would also still be unobservable at the Large Hadron Collider (LHC) which will

start operation soon. However, other proposals – including brane worlds and other

scenarios with large extra dimensions – do give rise to the possibility of modifying the

spectrum of Kaluza-Klein excitations in such a way that they would be observable at

LHC energies. The fact that ordinary Kaluza-Klein modes have masses proportional

to their charges, would cause difficulties for being dark matter candidates, given that

dark matter appears not to interact strongly via electromagnetic interactions. Different

scenarios need to be looked at phenomenologically on a case-by-case basis.
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2.2 Dilaton, Axion and Moduli Fields

The labels dilaton and moduli refer to scalar fields, and are often used in a sloppy

fashion. The dilaton was originally introduced by Isham, Salam and Strathee [74]. It

arose through the development of an effective lagrangian which respected conformal

and [SU(2)×SU(2)] or [SU(3)×SU(3)] chiral symmetry. The resulting physical theory

had a number of features including massless, even-parity, spin-zero and chiral invariant

Goldstone particles corresponding to spontaneous symmetry breaking. The relevant

particle was named the “dilaton”.

In a string context the dilaton is a scalar appearing in 10-dimensional string theory

effective actions, which may also be obtained by dimensional reduction of M-theory on

a circle in 11 dimensions. In 10 dimensions it is associated with the dilation symmetry.

However, the word has loosely come to be associated with any scalar field coupled to

gravity in any dimension.

The dilaton field2, φ, defines the string coupling constant, α, such that,

α = exp(〈φ〉), (2.13)

and hence is vital component for the physical realisation of string theory. This is a

novel situation in that the coupling constant is not constant but dynamical, varying

with position. It contrasts with the situation in quantum field theory where coupling

constants are exactly that, constant. When supersymmetry is unbroken the value of

the scalar field is arbitrary, however, breaking of supersymmetry will usually create a

potential associated with the dilaton field which contains a minimum restricting the

behaviour of the field to energy states localised in this region.

Moduli fields3 are another form of theoretical scalar fields defined as having ar-

bitrary values as the associated potential is flat. In string theory compactifications,

moduli fields encode information about the shape and size of the compactified di-

mensions, particularly Calabi-Yau manifolds, when compactifing from 10-dimensional

string theory to a 4-dimensional effective theory.

2Note the change in notation here due to convention, σ in the previous section is the dilaton in a

compactification of 11-dimensional M-theory to a 10-dimensional string theory.
3Generally denoted σ in this thesis.
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The final scalar field we consider here is the axion. The axion arose in the standard

model formulation of the strong interaction in quantum chromodynamics (QCD). QCD

has a non-trivial vacuum structure that allows violation of the charge conjugation and

parity symmetries (CP). This violation would have a value that could be measured, in

theory, as a dipole induced within the neutron. No such dipole is observed to a high

degree of accuracy, which means that the degree of CP violation must be . 10−9, if it

is non-zero [75]. Since this value should be arbitrary in the range, 0 to 2π, this seems

rather unnatural.

It was suggested by Peccei and Quinn [76] that by adding a new global symmetry

that is spontaneously broken, resulting in a particle, the axion, the value of the CP

violating term could be taken to zero. This particle turns out to be a spin-0 pseudo-

Goldstone boson, as the symmetry is not exact as due to instanton effects, and therefore

carries a small mass.

It has been suggested that the axion could be a dark matter candidate. Axions

should have been created in great numbers during the Big Bang. In the post-inflation

universe it is theorised they would have become a very cold Bose-Einstein condensate,

which could be be a source of dark matter in the modern universe. Current experiments

have not yet been able to make observations at the expected very low masses, although

halo axions have been ruled out at masses above 1.9 × 10−6eV [77], which is at the

higher end of the expected order.

2.3 Scalar Fields Coupled to Gravity

2.3.1 Cosmology

The inclusion of scalar fields in cosmological solutions is relatively recent. This is partly

due to the current “golden era of cosmology” leading to increased theoretical focus on

the subject in the past two decades. However, another primary motivation was a change

in the consensus about the underlying cosmological model around 1998. Prior to this

there was only relatively slim observational evidence to suggest that the Universe could

not be explained by a standard open Λ = 0 FLRW model. With the release of the type
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Ia supernovae results in 1997 [47, 48] that indicated the Universe appeared to be was

undergoing accelerating expansion, consensus swung in favour of “dark energy” as a

cause for cosmic acceleration. Scalar fields were an obvious candidate.

Much work had previously be done on the subject of scalar fields in cosmology,

most notably as a mechanism to drive inflation [78], the so-called slow-roll inflation.

[See Linde [79] for a review.] The scalar field present during inflation, however, was not

thought to have any relevance beyond the very early universe since the energy scale is

vastly different to any residual dark energy today.

Late-time homogenous scalar fields in cosmology were studied in earnest from the

mid 1980s onwards. The pioneers included Wetterich [80] and Pebbles and Ratra [81]

who introduced a time-dependent scalar with a time-varying equation of state para-

meter lying in the range −1 < wφ < 1. The term quintessence was later coined [82]

to describe such late-time fields, and became a major area of research immediately

following the 1997 results. Quintessence is generally postulated as a form of dark

energy which drives cosmic acceleration at the present epoch. It is generally dependent

on all spacetime coordinates and has a varying equation of state, which must enter into

the regime, wQ < −1/3 that violates the strong energy condition. By comparison, the

cosmological constant is fixed such that wΛ = −1.

Quintessence may also weaken the cosmological constant problem. Most of the

solutions show tracker behaviour until the epoch of matter-radiation equality at which

point the field becomes independent of the evolution of the other background fields

and starts to behave as dark energy. The energy density attributed to such a field is

expected to be lower than estimates of the vacuum energy.

The strong energy condition, w > −1/3, is satisfied by all classical matter and

radiation and is required for fields to focus light rays. An exotic form of matter, such

as quintessence, may violate the strong energy condition while satisfying the dominant

energy condition which requires −1 6 w 6 1 for perfect fluids. Physically the dominant

energy condition is required for the speed of sound to be less than or equal to the speed

of light.

Recently a number of people have considered cosmological models in which the

dominant energy condition is violated, giving rise to phantom cosmologies, with w <
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−1 [83, 84]. Such models are not new. In fact, they formed the basis of the Hoyle-

Narlikar models in the early 1960s [85]. At the time the models were of interest due

to the negative kinetic energy C(x) field which was considered a mechanism for energy

creation. The violation of energy conservation was seen as a benefit by Hoyle and

Narlikar, as it allowed for the continuous creation of matter.

Cosmologies with w < −1 have some potentially serious problems. Causality

and stability of the system are no longer guaranteed by the Hawking-Ellis vacuum

conservation theorem [59, 86] and the dominant energy condition. In a physical sense

this means the speed of the energy flow can exceed the speed of light allowing closed

causal loops. Another problem is that the classical Hamiltonian can be unbounded

below depending on the system, but particularly for phantom matter with a negative

kinetic energy. Such a system has a negatively infinite ground state meaning no stable

vacuum solution exists [87, 88]. One cosmological implication, if such a fluid existed

and came to dominant the late time evolution of the Universe, is the big rip. The

expansion of the Universe would accelerate at such a rate that the event horizon due

to acceleration would eventually shrink to the point that all bound systems are ripped

apart, as no particle can remain causally connected to any other particle.

Solutions which violate the dominant energy condition need a quantum field the-

ory and hence a vacuum, before they can seriously be considered as a viable theory.

Such solutions are, however, an area of interest and the issues mentioned above are

not necessarily terminal, as pointed out, but need analysis on a case-by-case basis.

Measurements of the current equation of state parameter, although rather haphazard

and model dependent in nature, indicate w could be less than −1 in certain situa-

tions [83, 89]. It is worth noting, however, if the Universe has an equation of state

parameter w = −1 or slightly larger, any observations would possess some variance

and systematic errors and therefore likely include the region w < −1 within the

error limits. Data supporting w < −1 should therefore be treated with care as the

physics inherent in such a Universe would be significantly different to the status quo.

We consider some cosmological models, which enter this regime for certain parameter

values, when considering perturbative terms in a 4-dimensional effective string theory

action in chapter 4.
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Another approach taken by many authors [90] is to consider the 4-dimensional

effective actions motivated by string theory [91]4. These approaches, through necessity,

generally consider truncated perturbative effective theories following compactification.

The focus of much of this work pre-1997 was to examine the behaviour in the inflation-

ary and pre-inflationary universe. Many of these solutions show non-singular behaviour

at the beginning of the Big Bang, in contrast to many of the more traditionally de-

rived solutions. The scalar fields apparent in both the 10-dimensional and effective

4-dimensional theories also give a natural mechanism to drive inflation, although many

solutions do not possess a graceful exit to end the inflationary period. In recent years,

string motivated cosmologies have gained interest, this is due to a multitude of reasons,

many interrelated. The motivation relevant here is that the scalar fields present in

the effective 4-dimensional theory may help explain the late-time acceleration of the

Universe along with the earlier inflationary periods. Other motivations include the

advances within string theory itself which have allowed construction of more explicit

cosmological scenarios which obey the microphysical constraints of string theory. These

advances include flux-compactifications of Calabi-Yau manifolds and the popularisation

of brane-worlds [92].

2.3.2 Black holes

Black hole solutions to Kaluza-Klein theory were first considered in 1960 [93], though

such results were largely forgotten until higher dimensions became the vogue in the late

1980s with the advent of supergravity theories. One reason why black hole solutions

with scalar fields were not widely studied earlier was due to the “no-hair” theorems [94].

In particular it was shown in the early 1970s for a number of different models involving

gravity plus scalars that static, spherically symmetric solutions with regular horizons

do not exist [95]. Generally the scalar field diverges at the putative horizon, making it

singular.

Kaluza-Klein black holes avoid the no-hair theorems by virtue of the coupling

4Obviously the scalars considered in string theoretic motivated situations can often fit the definition

of quintessence. We separate them here due to original inspiration where quintessence is motivated

by cosmological interest rather than an underlying fundamental theory.
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between the scalar field and other gauge fields, such as the U(1) field in the case

of the 5-dimensional theory. The scalar charge depends on the electric and magnetic

charges and must vanish if these fields are both set to zero. Thus the scalar charge is

deemed to be a “secondary hair” in contrast to the “primary hair” that is ruled out

by the no-hair theorems.

Following the first “string theory revolution” in 1984, interest in the physical

viability of black hole solutions with scalar fields grew. Stable black hole solutions

in the low energy limit of string theory are generally considered a necessity, though

phenomenologically this only needs to be the case in the compactified theory.

In 1988 Gibbons and Maeda took a systematic approach to black hole solutions in

higher dimensional theories with scalar fields [96]. The solutions, which are of interest

in this thesis are 4-dimensional solutions for scalar fields coupled to gravity and a U(1)

gauge field. In reference [96], Gibbons and Maeda initially considered the arbitrary

dimensional model with the following action

S =

∫
dDx

√−g

[
R

2κ2
− 4

(D − 2)κ2
(∇φ)2 − 1

4
exp

(
− 4

D − 2
g2φ

)
FµνF

µν

− 1

2(D − 2)!
exp

(
− 4

D − 2
gD−2φ

)
Fµ1,..,µD−2

F µ1,..,µD−2 − V (φ)

]
. (2.14)

where g2 and gD−2 are coupling constants of the dilaton φ to the 2-form F and (D−2)-

form FD−2 respectively.

For generality the potential has been included here although it is set to V (φ) = 0

for the systems we are interested in. When the potential is absent the action has scale

invariance under the transformation,

gµν → Ωgµν ,

Fµν → Ω[1+2g2k/(D−2)]Fµν ,

Fµ1,..,µD−2
→ Ω[D−3+2g2k/(D−2)]Fµ1,..,µD−2

,

φ → φ + k ln Ω, (2.15)

where k is arbitrary and non-zero. A non-zero potential will, in general, break this scale

invariance. Non-zero potentials will arise in compactification schemes; the question of

the physical relevance of solutions with V = 0 is therefore open to debate. However,
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exact solutions are readily found when V = 0, making them the object of the first

studies.

Asymptotically flat analytic solutions are found to both the electrically and mag-

netically charged cases in Gibbons and Maeda. These solutions are dependent on the

values of M and Q with no dependence on the charge of the scalar field. In fact the

scalar field only exists in the situation where either Q 6= 0 or P 6= 0; i.e. they are an

example of “secondary hair”.

The solutions themselves show some interesting thermodynamical properties. In the

case where g2 <
√

D − 3 the isotherms in the M − Q plot show Reissner-Nordström

type behaviour [97] with zero temperature extremal black holes and a change in sign in

the specific heat, C ≡ (∂M/∂T )|Q. When this limit is exceeded the the solutions are

Kaluza-Klein-like [98] with infinite temperature extremal black holes and a negative

definite specific heat. The limiting case, g2 =
√

D − 3, is interesting in that the

isotherms end on the extremal limit, this means the extremal case has finite varying

temperature. The solutions for the electric case have a duality with the magnetic case

such that (g2, Q) → (gD−2, P ).

2.4 Higher-order Gravity

Theories of gravity based on modifications to the Einstein-Hilbert action have a long

history. One primary consideration is the need for field equations, second-order in

the derivatives of the metric. Theories based on field equations with higher-derivatives

generally have problems with causality, and conservation of energy at the classical level,

or a loss of unitarity when quantised5.

In 1971 Lovelock considered the problem of finding the most general field equations

in D-dimensions which contain, at most, second derivatives of the metric. In four

dimensions, the Einstein equations with a possible cosmological term are unique in

this respect. However, if D > 4 then additional divergence-free second-order symmetric

tensors, Aµν , can be found [100]. For a D-dimensional manifold it is shown that n such

tensors can be constructed from the metric and its first and second derivatives where

5See Barth and Christian [99] for a brief historical review.
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n = D/2 for even D and n = (D + 1)/2 for odd D,

Aν
µ =

n−1∑
p=1

apδ
νν1...ν2p
µµ1...µ2p

R µ1µ2
ν1ν2

R µ3µ4
ν3ν4

...R µ2p−1µ2p
ν2p−1ν2p

+ aδν
µ, (2.16)

where ap and a are arbitrary constants.

The quadratic curvature correction is obtained through variation of the Gauss-

Bonnet term in the action given by

R2
GB = RµνγλR

µνγλ − 4RµνR
µν + R2. (2.17)

It can be shown that the Gauss-Bonnet term is the only possible quadratic order correc-

tion to Einstein gravity in a low energy effective string theory if a ghost-free expansion

in the slope parameter is demanded [101]. Ghosts are particles with negative definite

kinetic energy. Other higher order terms can also be expected in the perturbative

expansion but as the quadratic term is the leading order correction it tends to garner

the highest level of interest.

In four dimensions the Gauss-Bonnet term is a topological invariant and therefore

is only of interest in pure gravity when considering dimensions greater than four. It

can, however, appear in effective 4-dimensional theories when coupled to another field.

There has therefore been great interest in Gauss-Bonnet terms coupled to moduli and

dilaton fields for both cosmological and black hole solutions as these fields are present

in the effective 4-dimensional theory of string theory and may couple to the higher

order gravity terms. One also observes such couplings when considering Jordan-Brans-

Dicke type gravity [102, 103] which has a Lagrangian analogous to that of the Jordan

string frame. If a conformal transformation to the Einstein frame is performed in the

presence of higher order gravity terms such couplings can also be expected.
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Chapter 3

Multi-scalar Black Holes

3.1 Introduction

Black hole solutions with scalar fields are usually constrained to possessing only sec-

ondary hair by the “no-hair conjectures” [94]. Early attempts to find black hole

solutions coupled solely to a scalar field found solutions where the scalar field diverged

at the putative horizon [95]. Hence, technically such solutions cannot actually be

considered black hole solutions due to a lack of a regular horizon. They are unlikely

to have any physical relevance [104]. The original “no-hair conjectures” have since

been violated in a number of cases, either via coupling the scalar fields to gauge fields,

or through violation of the dominant energy condition. When the existence of scalar

hair depends on a non-vanishing gauge field, and is entirely fixed by the mass, gauge

charge and angular momentum, it is called secondary hair [105]. Here we discuss a

solution with contingent primary hair [106], that is to say the scalar hair depends on

the existence of a non-vanishing gauge field but its behaviour is not entirely fixed by

the values of the other asymptotic parameters. We briefly list some further “hairy”

black hole solutions.

• Scalar fields coupled to higher order gravity have been heavily investigated due to

the applicability to low energy effective 4-dimensional theories of string theory.

The Gauss-Bonnet term, which is the only ghost-free leading order curvature

correction, has naturally been of particular interest [107, 108].
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• Minimally coupled scalar fields with dominant energy condition violating poten-

tials have been shown to allow non-trivial hair [109, 110, 111, 112]. Examples

have been found both analytically and numerically provided there is at least one

global minimum with V (φ) < 0.

• Theories which couple gravity to non-Abelian gauge fields such as Einstein-Yang-

Mills, Einstein-Yang-Mills-Higgs and Einstein-Skyrme, usually contain nonlinear

self-interactions and admit “hairy” black holes. Einstein-Yang-Mills-Higgs and

Einstein-Skyrme also include scalar fields. These vanish exponentially at infinity,

however, and thus they do not have “Gauss-like” scalar charge. These hairy black

holes were thought to be generally unstable but it has been shown that some

branches of solutions of the Einstein-Skyrme black holes are linearly stable [113].

Whether they are non-linearly stable remains an open question.

• Scalar fields non-minimally coupled to an Abelian gauge theory have been shown

to admit hairy black hole solutions [96, 114, 115, 116]. Such theories arise nat-

urally in Kaluza-Klein theories and effective low-energy limits of string theory

with a non-trivial dilaton.

Despite the solutions listed above being beyond the premises of the original “no-hair

conjecture”, they are still considered interesting as tests of the limits of the conjectures.

Stability is still an open problem in most cases.

Gibbons and Maeda found the solution to a non-rotating, static black hole with a

single scalar field coupled to the U(1) electromagnetic gauge field [96]. This solution is

not a member of the Reissner–Nordström class but is entirely specified by the values

of M, Q and P and hence, possesses only secondary hair. Adding an extra scalar field

was shown to give more freedom [117] and a version of scalar hair that falls between

the definitions of primary and secondary hair. This was called contingent primary

hair and has been generalised to incorporate N scalar fields, with linear stability being

shown [106]. Here we present numerical solutions to this model and discuss some of

the features. We use the notation of [106] and define c = 4πκ2 = 1.
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3.2 Model

The general Lagrangian density for the N -scalar field case is

L =
1

4

[
R − 2Λ− 2

N∑
i=1

∂µΦi∂µΦi

−
(

N∑
i=1

λ2
i

)−1 N∑
i=1

λ2
i e
−2giΦiFµνF

µν

]
, (3.1)

where R is the Ricci scalar and Fµν is the electromagnetic field strength. Initially we

consider the N = 2 case with no cosmological constant, i.e., Λ = 0. For simplicity we

split the representation of the scalar fields such that

L =
1

4

[
R− 2∂µΦ∂µΦ− 2∂µΨ∂µΨ− λ2

1e
−2g1Φ + λ2

2e
−2g2Ψ

λ2
1 + λ2

2

FµνF
µν

]
, (3.2)

Since there is no potential dependent on any of the scalar fields, the Lagrangian density

has the same scale invariance as the Gibbons-Maeda solution [96]. This invariance

applies under global re-scalings of the metric gab → ω2gab where ∇aω = 0.

The coupling between the scalar fields and the electromagnetic sector should be

considered a “toy model” or at least a simplification of more physical well-motivated

models. The construction of such an action is discussed by Cadoni and Mignemi [118],

one of the precursors to the work presented here. The action presented in (3.2, with

only minimal coupling of Ψ, can be found through a redefinition of the scalar fields

when considering the four-dimensional low-energy action from heterotic string theory

presented by Witten [119]. While there is no motivation at the string tree level to

include a non-minimal coupling of Ψ, at the one-loop level it can arise. This was

considered as a method of dealing with the supersymmetrisation of anomaly cancelling

terms by Ibañez and Nilles [120]. More recently such a exponential coupling has been

shown to arise when one integrates out the heavy modes of the string spectrum and be

a necessary component to dynamical symmetry breaking [121]. The case considered

here is a simplified version of the couplings which arise in these cases. It does, however,

allow some progress to be made in finding black hole solutions and testing the validity

of the no-hair conjectures.

We use a standard metric ansatz for static, spherically symmetric Schwarzschild
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coordinates following the formalism of [122].

ds2 = −A2(r)

(
1− 2m(r)

r

)
dt2 +

1

1− 2m(r)
r

dr2 + r2dΩ2 (3.3)

where dΩ2 = dθ2 + sin2 θdφ2 and m(r) is the familiar Misner-Sharp mass function. In

order for non-trivial solutions to exist we take the magnetic monopole field ansatz

Fθφ = P sin θ (3.4)

where P is the magnetic charge. This is equivalent to the ansatz

B(r) = Fθ̂φ̂ =
P

r2
(3.5)

in an orthonormal basis. Hence it can be seen explicitly that the magnetic field is

radial and falls as 1/r2. Since the scalar field is assumed to be radial with no θ

or φ dependence the Maxwell-like equation is still satisfied. The choice to use the

magnetic monopole ansatz is made out of convenience. Due to the scalar coupling

to the electromagnetic sector, the electric ansatz includes dependence on the scalar

fields and is therefore non-trivial, the magnetic ansatz, being the θφ components of

the electromagnetic tensor, avoids these complications. There is no longer a simple

duality between the magnetic and electric solutions although solutions for the electric

solution should still be tractable if the magnetic solutions exist. We could, of course,

also consider a situation where both are non-zero. As in the single scalar field case of

[96] the scalar fields will vanish if Q = P = 0.

The G t
t component of the Einstein equations gives

2m′

r2
=

(
1− 2m(r)

r

) (
Φ′2 + Ψ′2) +

(
λ2

1e
−2g1Φ + λ2

2e
−2g2Ψ

λ2
1 + λ2

2

)
P 2

r4
. (3.6)

The linear combination G t
t −G r

r of components of the Einstein equations gives

A′

A
= r

(
Φ′2 + Ψ′2) , (3.7)

while the two scalar field equations are

∂r

((
1− 2m(r)

r

)
Ar2∂rΦ

)
= −Aλ2

1g1e
−2g1ΦP 2

r2
(3.8)

and

∂r

((
1− 2m(r)

r

)
Ar2∂rΨ

)
= −Aλ2

2g2e
−2g2ΨP 2

r2
. (3.9)
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Prime denotes differentiation with respect to r. We note these generalise to N +2 field

equations for the system given in (3.1),

2m′

r2
=

(
1− 2m(r)

r

) (
N∑

i=1

Φ′2
i

)
+

(
N∑

i=1

λ2
i

)−1 N∑
i=1

λ2
i e
−2giΦi

P 2

r4
+ Λ, (3.10)

A′

A
= r

N∑
i=1

Φ′2
i (3.11)

and

∂r

((
1− 2m(r)

r

)
Ar2∂rΦi

)
= −Aλ2

i gie
−2giΦi

P 2

r2
. (3.12)

3.3 Numerical Solutions

Figure 3.1: Solution given by λ1 = λ2 = g1 = g2 = 1.0 with horizon values m(rh) = 0.25,

Φ(rh) = 1.0, Ψ(rh) = 0.1 with P = 0.5. P∞ = 0.8611 and MADM = 0.6674 while A(rh) =

0.6490 as found by the shooting method: (a) m(r); (b) A(r); (c) Φ(r); (d) Ψ(r).

The N = 2 solutions can be obtained numerically with the help of the following
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expansions near the horizon;

m(r) = mh + m1(r − rh) + m2(r − rh)
2 + ...,

A(r) = Ah + A1(r − rh) + A2(r − rh)
2 + ...,

Φ(r) = Φh + Φ1(r − rh) + Φ2(r − rh)
2 + ...,

Ψ(r) = Ψh + Ψ1(r − rh) + Ψ2(r − rh)
2 + .... (3.13)

In figure 3.1 we show the general form of the solutions for a non-extremal case.

The solution is uniquely defined by 3 asymptotic charges in the N = 2 case and

by N + 1 charges in the general case. The Arnowitt, Deser and Misner (ADM) mass,

MADM , is given by the asymptotic value of m(r), while the asymptotic Gauss-like

magnetic charge is given by

P∞ =

√
(λ2

1e
−2g1Φ∞ + λ2

2e
−2g2Ψ∞)

(λ2
1 + λ2

2)
P. (3.14)

These two asymptotic charges along with the coefficient Φ−1 of the 1/r term in the Φ

asymptotic expansion

Φ = Φ∞ +
Φ−1

r
+

Φ−2

r
+ ..., (3.15)

uniquely define the solution. As shown in [106], Ψ−1 is constrained in the N = 2 case

by

Φ2
−1 + Ψ2

−1 + 2MADM

(
Φ−1

g1

+
Ψ−1

g2

)
−

(
Φ−1

g1

+
Ψ−1

g2

)2

= P 2
∞. (3.16)

and in general by

N∑
i=1

Φ2
−1, i + 2MADM

N∑
i=1

Φ−1, i

gi

−
(

N∑
i=1

Φ−1, i

gi

)2

= P 2
∞, (3.17)

where Φ−1, i denotes the 1/r coefficient of the ith scalar field. This constraint limits the

system to N + 1 degrees of freedom with these being, in the magnetic monopole case,

MADM , P∞ and {Φ−1, 1, Φ−1, 2,...,Φ−1, N−1}. The constraint, (3.17), holds throughout

our numerical work to the accuracies required.

We use the shooting method to find solutions such that

lim
r→∞

A = 1, (3.18)

where this condition is adhered to with a numerical accuracy of 10−7. This exploits

the rescaling freedom in A(rh) which can be seen in (3.7) – (3.9). This is a necessary
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requirement for the surface gravity, κ, to be a well-defined quantity. The numerical

limits used to define the asymptotic region are m′(r) < 10−8 and r > 500rh.

Figure 3.2: Behaviour of constraint given in (3.23) for λ1 = λ2 = g1 = g2 = 1.0: (a) P∞ =

1.2; shows the solution approaching the limit as it reaches the extremal case at MADM = 0.849

(numerical accuracy of 10−5 used for finding P∞ and MADM ), note that although (a) shows

the expected behaviour it does not allow comparison with the expected values for κ = 0 as

all quantities are defined at infinity; (b) P = 0.5; approaches the limit m(rh) = 0.233 while

the required value for κ = 0 from (3.22) is m(rh) = 0.173.

We have also found solutions to both the N = 3, Λ = 0 and N = 2, Λ = −1 cases.

The solutions for the N = 3, Λ = 0 case are shown in figure 3.3. It is noted that

there are no particular additional features when compared to the solutions in figure 3.1

beyond the obvious additional freedom in both the coupling and scalar charge. From

these results, however, we would assume that solutions, with N > 2 scalar fields, exist,

having N + 1 degrees of freedom. This may be of interest to string theory motivated

work, where, in many cases a large or infinite number of scalar fields appear in the low

energy effective 4-dimensional theory. [See [123] for a review.]

The anti-de-Sitter (adS) solutions, while attainable, have distinct numerical issues

related to finding solutions over a wide parameter range. However, the critical tem-

perature generally exhibited by adS solutions, due to the thermal bath, may result in

interesting behaviour when Hawking evaporation is considered if the unique thermo-

dynamic features of the N = 2, Λ = 0 system shown below are also manifest in the

Λ < 0 case. A particular solution with Λ = −1 is shown in figure 3.4. Note that the
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mass plot given for the Λ = −1 case is not m(r) but rather,

M(r) = m(r)− Λ

6
r3, (3.19)

The asymptotic mass is given by M∞ ≡ M(r∞), where the asymptotic region in the

numerical integration is defined as dM(r)/dr < 10−6.

3.4 Thermodynamic Behaviour

The surface gravity1 for a black hole in these coordinates is given by [122]

κ =
A(rh)

4m(rh)
(1− 2m′(rh)) (3.20)

Clearly we will have zero-temperature black hole solutions (κ = 0) if m′(rh) = 1/2. In

the horizon expansion given above this would correspond to m1 = 1/2, while from the

equations of motion we find

m1 =
P 2

2r2

(
λ2

1e
−2g1Φ∞ + λ2

2e
−2g2Ψ∞

λ2
1 + λ2

2

)
. (3.21)

Hence, κ = 0 when

m(rh)
∣∣∣

κ=0
=

P

2

√
λ2

1e
−2g1Φh + λ2

2e
−2g2Ψh

λ2
1 + λ2

2

, (3.22)

where we have used rh = 2m(rh). We have denoted this limiting case as m(rh)|κ=0 as

it turns out not to be the extremal case. Here we define the “extremal solution” as the

solution existing with the maximal electromagnetic charge for a given mass and scalar

charge. This varies from the alternative definition often used in a thermodynamic

context, the solutions with κ = 0. We show that, while in many solutions these

definitions coincide, they are not in general the same.

We find that the separate condition given by Mignemi and Wiltshire [106],

P 2
∞ ≤ M2

ADM +
N∑

i=1

Φ2
−1, i, (3.23)

1We are considering surface gravity here, temperature may not be well-defined due to the lack of

T = 0 black holes. In the discussion we use temperature and surface gravity interchangeably as T ∝ κ

still holds.
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is the constraint for extremal black holes. This constraint has no thermodynamic

significance but the equality indicates the degenerate horizon. This is a novel situation

as when (3.22) and (3.23) are considered we find P∞, extremal < P∞, κ=0 for a given mass

and scalar charge. For the degenerate horizon, given by the equality in (3.23), we

find that the horizon becomes singular and hence does not have a well-defined surface

gravity. This is indicated by divergence of the coefficient m1 in (3.13).

The limiting behaviour due to (3.23) is shown in figure 3.2, where Φ−1 is defined

by

Φ−1 = g1λ
2
1P

2

∫ ∞

rh

e−2g1Φ

r2
A∂r, (3.24)

and similarly for Ψ−1 [106].

Contour plots of the surface gravity show Reissner-Nordström-like solutions when

g1 = g2 = 1 and Kaluza-Klein-like solutions when g1 = g2 = 3 in figure 3.5(a) and

figure 3.5(b) respectively. The ‘specific heat’, defined as C ∝ (∂MADM/∂κ)|P∞ , changes

sign in figure 3.5(a) while it is always negative for figure 3.5(b). Unfortunately we do

not possess the computational power to find the limit of the coupling gradients that

produce these two types of solutions.

The extremal limit in these cases is not an ‘isotherm’ but instead tends to finite

non-zero values where the surface gravity is decreasing with increasing P∞. If one was

to consider the “thermodynamic” definition of extremal black hole solutions, κ = 0,

these do not exist. The contours mimic those found in [96] but with a region excluded

due to the constraint (3.23). Figure 3.6 shows this graphically. However, we would

caution that the extremal solution falls into a different class from those solved by the

numerical method implemented here. As the value of m′(rh) diverges we do not have

well-defined solutions and hence the surface gravity is not defined. We therefore only

comment on the limiting behaviour for the extremal cases.

3.5 Discussion

We have numerically demonstrated linearly stable black hole solutions with contingent

primary hair. The condition, (3.17), as previously derived in [106], gives N +1 asymp-

totic charges for N scalar fields with two being MADM and P∞ (in the non-zero magnetic
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monopole solution considered here) with the other N − 1 charges being the 1/r coeffi-

cients of the asymptotic expansion of N−1 of the scalar fields, {Φ−1,1,Φ−1,2,...,Φ−1,N−1}.
This violation of the no-hair conjectures is, however, not entirely within the confines of

the premise under which the conjectures were originally derived as we have non-minimal

coupling between the scalar field and the U(1) gauge field.

The solutions here may help to shed some light on black hole solutions to the

low energy effective 4-dimensional theory of string theory when coupled with further

corrections, such as, higher-order gravity terms [108], another U(1) field or the inclusion

of scalar potentials. Chen et al. have found constraints on the value of the coupling in

the single scalar case when a Gauss-Bonnet term is introduced. This appears to limit

the applicability in string theory motivated situations. However, this constraint would

possibly be weakened by additional scalar fields, similar to the case for the slope of the

potential when additional scalar fields are considered in cosmology [124].

The result of major interest is that the solutions are bounded by (3.23) and do

not contain the κ = 0 case. At the extremal limit no surface gravity is defined. It

does, however, limit to finite, non-zero values for a general coupling, gi. Previously

this behaviour has only been seen in [96] when considering the limiting case between

Reissner-Nordström and Kaluza-Klein type solutions for a single scalar field with g =
√

D − 1. Although (3.17) limits the number of independent asymptotic charges, it

does not allow us further insight into the nature of the horizon. The Gibbons-Maeda

solution allowed analysis of the horizon in the extremal case, indicating a singularity.

This would seem likely in the present case as m′(r) diverges at the horizon indicating

a curvature singularity.
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Figure 3.3: Solution for N = 3, Λ = 0, where λ1 = λ2 = λ2 = 1.0, g1 = g2 = 0.1, g3 = 1.0

with horizon values m(rh) = 0.25, Φ(rh) = 1.0, Ψ(rh) = 0.1 with P = 0.5. P∞ = 1.0728 and

MADM = 1.0316 while A(rh) = 0.7818 as found by the shooting method: (a) m(r); (b) A(r);

(c) Φ1(r); (d) Φ2(r); (e) Φ3(r).
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Figure 3.4: Solution for N = 2, Λ = −1, where λ1 = λ2 = g1 = g2 = 1.0 with horizon values

m(rh) = 0.4, Φ(rh) = 0.1, Ψ(rh) = 0.1 and P = 1.0. P∞ = 1.1589 and M∞ = 1.2092 while

A(rh) = 0.7582 as found by the shooting method: (a) M(r); (b) A(r); (c) Φ(r); (d) Ψ(r).
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Figure 3.5: “Isotherm” contour plots showing the behaviour of the surface gravity; λ1 = λ2 =

1.0 with horizon values Φ(rh) = 1.0 and Ψ(rh) = 0.1: (a) g1 = g2 = 1.0; (b) g1 = g2 = 3.0.

Note the change in behaviour from Reissner-Nordström-like solutions in (a) where the specific

heat changes sign for P∞ = const as it moves away from the extremal limit while in (b) the

specific heat for P∞ = const is always negative and mimics the well-known Kaluza-Klein

examples. The extremal limit is shown as a dotted line as it is not an ‘isotherm’, instead the

surface gravity limits to the case where it decreases with increasing P∞.

Figure 3.6: The dotted line shows the constraint (3.23) while the solid line indicates the

limit imposed by (3.22) for λ1 = λ2 = g1 = g2 = 1.0, Φ(rh) = 1.0 and Ψ(rh) = 0.1 while

varying over horizon values for m(rh) and the ‘bare’ P values.
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Chapter 4

Gauss-Bonnet Cosmology

4.1 Introduction

If we follow standard assumption that dark energy is due to a perfect cosmological

fluid with an equation of state which violates the strong energy condition, then dark

energy and its associated cosmic acceleration problem presents three main conundrums

for modern cosmology:

• Why does the effective equation of state weff appear to have a value so close to

−1?

• Why is the dark energy density comparable to the matter density at the current

epoch? The current accelerating epoch began following a period of deceleration

and matter domination. If this acceleration had begun earlier structure would

not have had time to form. This is the so-called cosmic coincidence problem.

• Why is the cosmological vacuum energy extremely small and positive?

The fact that the expansion of our universe is accelerating after a long period of

deceleration is inferred by the observations of type Ia supernovae, gravitational weak

lensing and cosmic microwave background (CMB) anisotropies [15, 51, 126]; for a review

see Padmanabhan [127].
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Some possible mechanisms1 to cause this acceleration have already been discussed

in section 2.3.1. A number of further cosmological scenarios have expanded on these

ideas within the context of modified theories of scalar-tensor gravity such as, coupled

quintessence [129], k-inflation or dilatonic-ghost model [130], scalar-phantom model [131],

Gauss-Bonnet dark energy [132] and its various generalizations [133, 135, 136]. These

ideas are interesting as, like quintessence, they offer a possible solution to the cosmic

coincidence problem. The proposals in [131, 132, 133, 135, 136] are promising because

they may lead to the observationally supported equation of state, w ≈ −1, while

more interestingly provide a natural link between cosmic acceleration and fundamental

particle theories, such as superstring theory. We focus primarily on the first two ques-

tions raised above within the context of a generalized theory of scalar-tensor gravity

including non-minimal coupling to the Gauss-Bonnet curvature invariant.

The question of whether the gravitational vacuum energy is something other than

a pure cosmological term will not be central to our discussion. But we note that

Einstein’s general relativity supplemented with a cosmological constant term does not

appear to have any advantages over scalar-tensor gravity containing a standard scalar

potential. The recent observation that the dark energy equation of state parameter w

is ≈ −1 does not necessarily imply that the dark energy is in the form of a cosmological

constant; it is quite plausible that after inflation the scalar field ϕ has almost frozen,

so that V (ϕ) ≈ const = Λ. In a cosmological background, there is no deep reason

for expecting the energy density of the gravitational vacuum to be a constant, instead

perhaps it can be determined by the underlying theory, as in the case where a scalar

potential possesses many minima. It is thus worth exploring dynamical dark energy

models, supporting both w < −1 and w > −1, and also dw/dz 6= 0 (where z is the

redshift parameter).

The expansion of the universe is perhaps best described by a monotonically de-

creasing Hubble expansion rate, implying that Ḣ ≡ ä/a− ȧ2/a2 ≤ 0, where a = a(t) is

the scale factor of a four-dimensional FLRW universe2 and H = ȧ/a. In the presence

of a barotropic fluid of pressure p and energy density ρ, this last inequality implies

1Also see the references [128] for further review of quintessence.
2Overdot represents a derivative with respect to the cosmic time t throughout this chapter.
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that the cosmic expansion obeys the dominant energy condition (DEC), p+ρ ≥ 0, and

hence w ≡ p/ρ ≥ −1. The standard view is that the Hubble expansion rate increases

as we consider earlier epochs until it is of a similar order to that of the Planck mass,

mPl ∼ 1018 GeV. However, in strong gravitational fields, such as, during inflation, the

Einstein description of gravity is thought to break down and quantum gravity effects

are expected to become important. This provides a basis for the assumption that the

expansion of the universe is inseparable from the issue of the ultraviolet completion

of gravity. In recent years, several proposals have been made in order to establish

such a link. For instance, Creminelli et al. and Arkani-Hamed et al. [137] introduced a

system of a derivatively coupled scalar Lagrangian which violates the condition Ḣ ≤ 0

spontaneously: the model would involve a short-scale (quantum) instability associated

with a super-luminal cosmic expansion (see also Aref’eva and Volovich [138]).

The beauty of Einstein’s theory is in its simplicity. It has been remarkably suc-

cessful as a classical theory of gravitational interactions from scales of millimeters

through to kiloparsecs. Thus any modification of Einstein’s theory, both at small and

large distance scales, must be consistent with known tests. Several proposals in the

literature [137, 139] do not seem to fall into this category as these ideas would involve

modifications of Einstein’s theory in a rather non-standard (and nontrivial) way.

We motivate our work through the theoretical insights of superstring or M-theory as

it would appear worthwhile to explore the cosmological implications of such models. In

particular we examine whether we can achieve observationally supported cosmological

perturbations in the low-energy string effective action, which includes a nontrivial

interaction between dynamical scalar fields and a Riemann invariant of the Gauss-

Bonnet form, and study its phenomenological viability as a dark energy model. It is

appreciated that a generalized theory of scalar-tensor gravity, featuring one or several

scalar fields coupled to a spacetime curvature, or a Riemann curvature invariant, can

easily account for an accelerated universe with quintessence (w > −1), cosmological

constant (w = −1) or phantom (w < −1) equation of state without introducing the

wrong sign on the scalar kinetic term.

In the following section we discuss a general scalar-field Lagrangian framework and

write equations of motion that describe gravity and a scalar field ϕ, allowing nontrivial
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matter-scalar couplings. We discuss some astrophysical and cosmological constraints

on the model. In section 3 we present the construction of a number of scalar potentials

for some specific constraints, in an attempt to gain insight into the behaviour of the

scalar potential for late time cosmology. In section 4 we discuss inflationary cosmologies

for specific cases and study the parameters related to cosmological perturbations of the

background solution. The problem of suitable initial conditions, given stable observa-

tionally viable solutions with a full array of background fields for the general system is

considered in section 5 using numerical and analytic techniques for both minimal and

non-minimal scalar-matter couplings. In section 6 we present several remarks about

the existence of superluminal propagation and/or small-scale negative instabilities for

the tensor modes. Section 7 is devoted to the discussions of our main results.

4.2 Essential Ingredients

An unambiguous and natural way of modifying general relativity in four dimensions

is to introduce one or more fundamental scalar fields and their interactions with the

leading order curvature terms in the string parameter expansion, as arising in string

or M theory compactifications from ten- or eleven-dimensions to four-dimensions. The

string parameter is defined by the expectation value of the dilaton field, α = exp(〈ϕ〉),
in 10-dimensional string theory. In the low energy limit a perturbative expansion in α

is possible as it is generally expected to take values α ¿ 1. The simplest version of

such scalar-tensor gravities is given by the following general action

S = Sgrav + Sm, (4.1)

with

Sgrav =

∫
d4x

√−g

(
R

2κ2
− γ

2
(∇ϕ)2 − V (ϕ)− 1

8
f(ϕ)R2

GB

)
, (4.2)

Sm = S(ϕ,A2(ϕ)gµν , ψm) (4.3)

where R2
GB ≡ R2 − 4 Rµν Rµν + Rµνρσ Rµνρσ is the Gauss-Bonnet (GB) curvature

invariant. The matter component of the Lagrangian has been presented by Steinhardt

and Turok [134] heuristically as

Sm =

∫
d4x

√−g
(
A4(ϕ) (ρm + ρr)

)
, (4.4)
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One should be careful with this formulation as it is not a “true” Lagrangian as the

presence of the densities indicate it is not covariant. However, it does allow one to

see the explicitly the coupling between the scalar and matter fields. This sector of the

theory is more accurately a component of the energy-momentum tensor.

Above we shall assume that ϕ is a canonical field, so γ > 0. The coupling

f(ϕ) between ϕ and the GB term is a universal feature of all 4-dimensional man-

ifestations of heterotic superstring and M theory [140, 141]. For example, such a

form arises at heterotic string tree-level if ϕ represents a dilaton, and at one-loop

level if ϕ represents the average volume modulus; in a known example of heterotic

string theory, one has f(ϕ) ∝ ∑
n=1 cn e(n−2)ϕ > 0 in the former case, while f(ϕ) ∝

ϕ − π
3

eϕ + 4
∑

n=1 ln
(
1− e−2nπ eϕ)

+ ln 2 < 0 in the latter case (see discussions in

references [142] for further details). As discussed in [135, 136], a nontrivial or non-

constant f(ϕ) is useful not only for modelling a late time cosmology, but is also desirable

for embedding the model in a fundamental theory, such as superstring theory. Here we

also note that from a model building point of view, only two of the functions V (ϕ), f(ϕ)

and A(ϕ) are independent; these can be related through the equations of motion below.

The Hubble value at the time of nucleosynthesis is thought to be H ≈ 1MeV ≈
10−21mPl and has decreased until the present epoch where it has a value H ≈ 10−33eV ≈
10−60mPl, where we are considering Planck Mass units in the action due to the choice

2κ = 1. These values are obviously much less than unity. As R ∝ H2(2Ḣ2 + Ḣ/H2)

and R2
GB = 24H2(H2 + Ḣ), to leading order we have R ∝ H2 (under the assumption

that ε ∼ O(1)) and RGB ∝ H4. The linear curvature term therefore dominates over the

contribution of the quadratic term and all other higher order terms in the post-inflation

universe, if curvature is minimally coupled to all other fields3. It is the strength of the

coupling f(φ) which leads to a contribution from the quadratic curvature correction

term. The f(φ)H2 term must be less than unity for the f(φ)RGB term to remain

subdominant, as would be expected throughout the evolution of the Universe. This

allows very large values of f(φ) as H2 ∼ 10−120mPl at the present epoch. The value of

3This is purely a comment on the relative orders of the terms and only has relevance in the four

dimensional case when the higher order curvature corrections are non-minimally coupled. In four

dimensions the minimally coupled Gauss-Bonnet term is a scalar invariant and therefore makes no

contribution, as with all other ghost-free higher order corrections as discussed in section 2.4.
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f(φ)H2, being the important parameter with regard to the effect of the Gauss-Bonnet

term on the evolution of the Universe, is treated as an independent variable throughout

most of the work that follows. The initial value is set to values which result in physically

interesting solutions and is hence a type of tuning.

One can supplement the above action with other higher derivative terms, such as

those proportional to f(ϕ)(∇λϕ∇λϕ)2 and curvature terms, but in such cases it would

only be possible to get approximate (asymptotic) solutions, so we limit ourselves to

the above action. In the model previously studied by Antoniadis et al. [140], V (ϕ) and

Sm were set to zero. However, the states of string or M theory are known to include

extended objects of various dimensionalities, known as “branes”, beside trapped fluxes

and nontrivial cycles or geometries in the internal (Calabi-Yau) spaces. It is also natural

to expect a non-vanishing potential to arise in the four-dimensional string theory action

due to some non-pertubative effects of branes and fluxes. With supersymmetry broken,

such a potential can have isolated minima with massive scalars. This then avoids the

problem with runway behaviour of ϕ after inflation.

We allow ϕ to couple with both an ordinary dust-like matter and a relativistic

fluid. The model under consideration is shown to be sufficient to make inroads into

all major cosmological conundrums of concordance cosmology, notably the transition

from matter dominance to a dark energy regime and the late time cosmic acceleration

problem attributed to dark energy, satisfying weff ≈ −1.

4.2.1 Basic equations

In order to analyse the model we take a four-dimensional spacetime metric in standard

FLRW form: ds2 = −dt2 + a2(t)
∑3

i=1(dxi)2, where a(t) is the scale factor of the

universe. The equations of motion that describe gravity, the scalar field ϕ, and the

background fluid (matter and radiation) are given by

− 3

κ2
H2 + 3ϕ̇f, ϕH3 +

γ

2
ϕ̇2 + V (ϕ) + A4

b(ϕ)ρb = 0, (4.5)

1

κ2
(2ε + 3) H2 +

γ

2
ϕ̇2 − V (ϕ)− f̈H2 − 2ϕ̇Hf, ϕ(1 + ε) + wbA

4
b(ϕ)ρb = 0, (4.6)

γ (ϕ̈ + 3H ϕ̇) + V, ϕ + 3 (1 + ε) f, ϕH4 − ηQmA4
m(ϕ)ρm = 0, (4.7)
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where f, ϕ ≡ dV/dϕ, V, ϕ ≡ dV/dϕ, f̈ ≡ f, ϕϕ ϕ̇2 + f, ϕ ϕ̈, η is a numerical parameter

which we define below and

ε =
Ḣ

H2
, wb ≡ pb

ρb

, Q ≡ d ln A(ϕ)

dϕ
, (4.8)

where b stands for the background matter and radiation. For convenience we also define

the following quantities

x =
ϕ̇

H
, y =

V (ϕ)

H2
, u ≡ f, ϕH2,

Ωb ≡ ρbA
4(ϕ)

3H2
, Ωϕ ≡ ρϕ

3H2
=

γx2 + 2y

6
, ΩGB = ϕ̇Hf, ϕ = ux ≡ µ, (4.9)

so that the constraint equation (4.5) reads Ωϕ + ΩGB + Ωb = 1. The density fraction

Ωb may be split into radiation and matter components: Ωb = Ωr + Ωm and wbΩb =

wmΩm +wrΩr. Similarly, in the component form, Qρm = Qiρ
(i)
m . Stiff matter for which

wm = 1 may also be included. The analysis of Steinhardt and Turok [143] neglects

such a contribution, where only the ordinary pressureless dust (wm = 0) and radiation

(wr = 1/3) were considered, in a model with f(ϕ) = 0. The implicit assumption above

is that matter couples to A2(ϕ)gµν with scale factor â, where â ≡ aA(ϕ), rather than the

Einstein metric gµν alone, and ρr ∝ 1/â4, so ρr does not enter the ϕ equation of motion,

(4.7). That is, by construction, the coupling of ϕ to radiation is vanishing. This is, in

fact, consistent with the fact that the quantity Q couples to the trace of the matter

stress tensor, gµν
(i)T

(i)
µν , which vanishes for the radiation component, T µ

µ = −ρr +3Pr = 0.

We also note that, in general, ρ ∝ 1/â3(1+w), thus, for ordinary matter or dust (w = 0)

we have η = 1, for a highly relativistic matter (w = 1) we have η = −2, and for

radiation (w = 1/3), we have η = 0, while, for any other relativistic matter with

pressure ρ > p > ρ/3, −2 < η < 0.

Equations (4.5) – (4.7) may be supplemented with the equation of motion for a

barotropic perfect fluid, which is given by

â
dρb

dâ
=

1

H

∂ρb

∂t
+

ϕ̇

H

∂ρb

∂ϕ
= −3(1 + wb)ρb, (4.10)

where pb is the pressure of the fluid component with energy density ρb. In the case of
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minimal scalar-matter coupling, the quantity ∂ρb/∂ϕ → 0 4 and hence

Ω′
b + 2εΩb + 3(1 + wb)Ωb = 0, (4.11)

where the prime denotes a derivative with respect to N = ln[a(t)/a0]. In this case

the dynamics in a homogeneous and isotropic FLRW spacetime may be determined by

specifying the field potential V (ϕ) and/or the scalar-GB coupling f(ϕ).

For A(ϕ) 6= const, there exists a new parameter, Q; more precisely,

∂ρ
(i)
m

∂ϕ
= −ηρ(i)

m Qi,
∂ρr

∂ϕ
= 0. (4.12)

The variation in the energy densities of the ordinary matter, ρ
(d)
m , and the relativistic

fluid, ρ
(s)
m , and their scalar couplings Qi are not essentially the same5. Thus, hereafter,

we denote the Q by Qd for an ordinary matter (or dust) and Qs for a relativistic matter

(or stiff fluid coupled to ϕ). Equation (4.10) may be written as

Ω′
s
+ 2εΩs + 3(1 + ws)Ωs = −3ηQsΩsϕ

′, (4.13)

Ω′
d + 2εΩd + 3Ωd = −3QdΩdϕ

′, (4.14)

Ω′
r + 2εΩr + 4Ωr = 0. (4.15)

In the following we adopt the convention κ2 = 8πG = 1, unless shown explicitly.

4.2.2 Cosmological and astrophysical constraints

Scalar-tensor gravity models of the type considered are generally constrained by var-

ious cosmological and astrophysical observations, including the big bang nucleosyn-

thesis bound on the ϕ-component of the total energy density and the local gravity

experiments. However, the constraints obtained in a standard cosmological setup

(for instance, by analyzing the CMB data), which assumes general relativity, that

is, Q = 0, cannot be straightforwardly applied to the present model. The distance

of the last scattering surface can be (slightly) modified if the universe at the stage of

4Recently, Sami and Tsujikawa analysed the model numerically by considering Q → 0 [144]. The

authors also studied the case Q = const, but without modifying the Friedmann constraint equation.
5From this point on the subscripts s and d will refer to stiff, relativistic matter and ordinary matter

(dust) respectively with the m subscript being dropped.
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Big Bang Nucleosynthesis (BBN) contained an appreciable amount if energy in the

ϕ-component [145]).

The coupling Qd can be constrained by taking into account cosmological and solar

system experiments. Observations are made of objects that can be classified as visible

matter or dust [146, 147]; hence a value of Q2
d ¿ 1 is required to agree with the

current observational limits on deviations from the equivalence principle. If we also

require Q2
s ¿ 1, then the non-minimal coupling of ϕ with a relativistic fluid may be

completely neglected at present, since Ωs ¿ Ωd.

Under parameterised post-Newtonian (PPN) approximations [148], the local gravity

constraints on Qd and its derivative loosely imply that

m2
PlQ

2
d . 10−5, mPl |dQd/dϕ| . O(1). (4.16)

If A(ϕ) is sufficiently flat near the current value of ϕ = ϕ0, then these couplings have

modest effects on large cosmological scales. Especially, in the case that A(ϕ) ∝ eζκϕ,

the above constraints may be satisfied only for a small ζ (¿ 1) since Qd = ζ is constant.

On the other hand, if A(ϕ) ∝ cosh[ζκϕ], then Qd is only approximately constant, at

late times. Another possibility is that Qd ∝ e− ζκϕ; in this case, however, for the

consistency of the model, one also requires a steep potential. In the particular case of

A(ϕ) ∝ eζκϕ with ζ ∼ O(1) (as one may expect from string theory or particle physics

beyond the standard model), it may be difficult to satisfy the local gravity constraints

(under PPN approximation), unless there is a mechanism like the one discussed by

Khoury et al. [149] and Mota et al. [150].

4.3 Construction of Inflationary Potentials

In this section we study the model in the absence of background matter (and radiation).

Equations (4.5) – (4.7) form a system of two independent equations of motions, as given

by

γx2 + 2y + 6µ− 6 = 0, (4.17)

µ′ + (ε− 1)µ− γx2 − 2ε = 0. (4.18)
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The equation of state (EoS) parameter can be written in terms of ε such that for a flat,

FLRW model,

w ≡ p

ρ
= −3H2 + 2Ḣ

3H2
= −1− 2

3
ε. (4.19)

The solution ε = 0, therefore, corresponds to a cosmological constant term, for which

w = −1. The universe accelerates for w < −1/3, or equivalently, for ε > −1. It

is possible to attain w < −1, or equivalently ε > 0, for the action (4.2) without

introducing a wrong sign to the kinetic term. We shall assume that the scalar potential

is non-negative, so y ≥ 0. Evidently, with x2 > 0, as is the case for a canonical ϕ,

the inequality µ < 1 holds at all times. Here µ = 1 is a saddle point for any value

of ε. Thus, an apparent presence of ghost states (or short-scale instabilities) at a

semi-classical level, as discussed in Calcagni et al. [151], with further discussion in

references [152], is not physical. We shall return to this point in more detail, in our

latter discussions on small scale instabilities incorporating superluminal propagations

or ghost states.

We are interested in the possibility that one can explain inflation in the distant past

through the inclusion of a modified Gauss-Bonnet theory. To carry this out analytically

we require some physically motivated ansätze

x ≡ x0 eαN/2, µ ≡ µ0 eβN , (4.20)

where x0, µ0, α and β are all arbitrary constants. The implicit assumption is that both

x and µ decrease exponentially with N , or the expansion of the universe. We then find

ε =
2(β − 1)µ− γx2

2(2− µ)
. (4.21)

From this we can see that a transition between the ε > 0 and ε < 0 phases is possible

if µ 6= 0. Moreover, the first assumption in (4.20) implies that αN = 2 ln ϕ + ln ϕ1,

where ϕ1 is an arbitrary constant. The scalar potential is then given by

V (ϕ) = H(ϕ)2
(
3− λ0ϕ

2 − λ1 ϕ 2β/α
)
, (4.22)

where λ0, λ1 are (arbitrary) constants. For a canonical ϕ, so x2 > 0, we have λ0 > 0,

whereas the sign of λ1 is determined by the sign of µ0. Note that α = β is a special case

for which the potential takes the form V (ϕ) ≡ H2(ϕ) (3− (λ0 + λ1)ϕ
2). The quantity
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ε (and hence 1 + w) cannot change its sign in this case. Typically, if β = 2α, then the

scalar potential would involve a term which is fourth power in ϕ, i.e., V ∝ H2(ϕ) ϕ4. At

this point we also note that the potential (4.22) is different from a symmetry breaking

type potential V ∝ (Λ±m2
ϕϕ2 +λ1ϕ

4 + · · ·) generally considered. Here it is multiplied

by H2(ϕ). An inflationary potential of the form V ∝ ϕ4 is already ruled out by

recent WMAP results, at 3σ-level [156]. In the view of this result, rather than the

monomial potentials, namely V (ϕ) ∝ (ϕ/ϕ0)
p, a scalar potential of the form V (ϕ) ∝

H2(ϕ)(ϕ/ϕ0)
p, with p ≥ 2, as implied by the symmetries of Einstein’s equations, is

worth studying in the context of the inflationary paradigm.

It may also be possible to use the modified Gauss-Bonnet theory to explain the

ongoing accelerated expansion of the universe. We note that, especially at late times,

the rolling of ϕ can be modest. In turn, it is reasonable to suppose that ϕ̇/H ' const,

or x ' x0. Hence

V (ϕ) =
H2

2

(
6− γx0

2 + 6µ0 eβφ
) ≡ H(ϕ)2

(
Λ0 + Λ1 eβφ

)
, (4.23)

where φ ≡ (ϕ− ϕ0)/x0 and the Hubble parameter is given by

H = H0

(
1− µ0 eβϕ

)(2+x0)/2β−1
e−x0ϕ/2, (4.24)

with H0 being an integration constant. Interestingly, a non-vanishing f(ϕ) not only

supports a quartic term in the potential, proportional to H2(ϕ) ϕ4, but its presence

in the effective action also allows the possibility that the equation of state parameter

w switches its value between the w > −1 and w < −1 phases. We shall analyse the

model with the choice (4.23) and in the presence of matter fields, where we will observe

that the universe can smoothly pass from a stage of matter dominance to dark energy

dominance.

In the case where ϕ is rolling with a constant velocity, ϕ′ ≡ c, satisfying the power-

law expansion a(t) ∝ t1/p, or equivalently H ≡ H0 e− pN and p 6= 1, we find that the

scalar potential and the scalar-GB coupling evolve as

V = V0 e− 2pφ + 3(3p + 1)f1H
2
0 e (1−p)φ, (4.25)

f = f0 e 2pφ − f1

H2
0

e (1+3p)φ + f2, (4.26)
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where φ ≡ (ϕ− ϕ0)/c, f1 and f2 are arbitrary constants, and

V0 ≡ (6− 6p + 5c2 − pc2)H2
0

2(1 + p)
, f0 ≡ 2p− c2

2p(p + 1)H2
0

. (4.27)

The potential is a sum of two exponential terms. Such a potential may arise, for

example, from a time-dependent compactification of 10 or 11d supergravities on factor

spaces [153]. In general, both V (ϕ) and f(ϕ) pick up additional terms in the presence

of matter fields, but they may retain similar structures. In fact, various special or

critical solutions discussed in the literature [132] correspond to the choice f1 = f2 = 0.

We can be more specific here. Let us consider the following ansatz [132],

a ∝ (t + t1)
α, ϕ = ϕ0 + β ln(t + t1), (4.28)

for which obviously both ε and ϕ′ are constants,

ε ≡ Ḣ/H2 = −1/α, ϕ′ ≡ ϕ̇

H
=

β

α
. (4.29)

For ε < 0, one can take t1 = 0; the Hubble parameter is given by

H = |α| e− 1
β

(ϕ−ϕ0). (4.30)

The scalar potential is double exponential, which is given by

V = V0 e− 2φ + V1 e(α−1)φ, (4.31)

where φ ≡ (ϕ− ϕ0)/β and

V0 ≡ 6α2(α− 1) + β2(5α− 1)

2(α + 1)
, V1 ≡ −3(α + 3)αc1. (4.32)

The scalar-GB coupling f(ϕ) may be given by

f = f0 e2φ + f1 e(α+3)φ + f2, (4.33)

with

f0 ≡ 2α− β2

2(1 + α)α2
, f1 ≡ c1

α2(α + 3)
, f2 ≡ c2

α2
. (4.34)

Of course, the numerical coefficient f2 does not contribute to Einstein’s equations in

four dimensions but, if non-zero, it will generate a nontrivial term for the effective

potential.
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In the case ε > 0 (or Ḣ > 0), the above ansatz may be modified as

a ∝ (t∞ − t)α, ϕ = ϕ0 + β ln(t∞ − t), (4.35)

where α < 0. The Hubble parameter is then given by H = −α(t∞ − t)−1. Such

a solution to dark energy is problematic. Although this solution avoids the initial

singularity at t = 0, it develops a big-rip type singularity in the asymptotic future,

t = t∞. This is not a physically appealing case. The above critical solution may also

be unstable under inhomogeneous cosmological perturbations, which often leads to a

super-luminal expansion and violates all energy conditions.

The reconstruction scheme presented in Nojiri et al. [154] was partly based on

some special ansatz, e.g., (4.28), which may therefore suffer from one or more future

singularities. However, as we show below, for the model under consideration there exists

a more general class of cosmological solutions without any cosmological singularities.

4.4 Inflationary Cosmology: Scalar Field Dynamics

Inflation is now a well established paradigm of a consistent cosmology, which is strongly

supported by recent WMAP data6 [6]. It is also generally believed that the small

density fluctuations which developed during inflation naturally lead to the formation

of galaxies, stars and other structure in the present Universe. It is therefore interesting

to consider the possibility of achieving observationally supported cosmological pertur-

bations in low-energy string effective actions. For the model under consideration, this

can be done by using the standard method of studying the tensor, vector, and scalar

modes. We omit the details of our calculations because they are essentially contained

in the references [152].

4.4.1 Inflationary parameters

One may define the slow roll parameters, such as εH and ηH , associated with cosmolog-

ical perturbations in a FLRW background, using two apparently different versions of

6The small inhomogeneities observed for primordial density or temperature fluctuations in the

CMB provide support for the concept of inflation.
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the slow-roll expansion. The first (and more widely used) scheme in the literature takes

the potential as the fundamental quantity, while the second scheme takes the Hubble

parameter as the fundamental quantity. A real advantage of the second approach [155]

is that it also applies to models where inflation results from the term(s) other than the

scalar field potential. Let us define these variables in terms of the Hubble parameters 7,

εH ≡ 2

(
Hϕ

H

)2

=
2ε2

ϕ′2
, ηH ≡ 2Hϕϕ

H
=

2

ϕ′2

(
ε′ + ε2 − ε

ϕ′′

ϕ′

)
(4.36)

(in the units κ = 1). Here, as before, the prime denotes a derivative with respect to

e-folding time N ≡ ln[a(t)/a0]. One also defines the parameter ξH , which is second

order in slow-roll expansion,

ξH ≡ 1

2

(
HϕHϕϕϕ

H2

)1/2

=

(
εHηH −

√
2εH

η′H
ϕ′

)1/2

. (4.37)

These definitions are applicable in both the cases, V (ϕ) 6= 0 and V (ϕ) = 0, and are

based on the fact that inflation occurs as long as d
dt

( 1
aH

) < 0 holds. The above quanti-

ties (εH , ηH , ξH) are known as, respectively, the slope, curvature and jerk parameters.

Typically, in the case f(ϕ) = 0, or simply when |ΩGB| ¿ Ωϕ, so that the coupled

GB term becomes subdominant to the field potential, the spectral indices of scalar

and tensor perturbations to the second order in slow-roll expansion may be given

by [155, 156]

nR − 1 = −4εH + 2ηH − 2(1 + c)ε2
H −

1

2
(3− 5c)εHηH +

1

2
(3− c)ξ2

H ,

nT = −2εH − (3 + c)ε2
H + (1 + c)εHηH , (4.38)

where c = 4(ln 2 + γ) − 5 ≈ 0.08. For the solutions satisfying ξH ' 0, implying that

both εH and ηH are much smaller than unity (at least, near the end of inflation) and

their time derivatives are negligible, we have

nR − 1 ' −4εH + 2ηH , nT ' −2εH . (4.39)

In fact, nR and nT , along with the scalar-tensor ratio r, which is given by r ≈ 16εH +

32c(εH − ηH)εH , are the quantities directly linked to inflationary cosmology.

7The slow-roll variable is εH , not ε, the latter is defined by ε ≡ H ′/H.
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We introduce the following quantities: 8

ε1 = − Ḣ

H2
= −ε, ε2 =

ϕ̈

ϕ̇H
=

x′ + εx

x
, ε4 =

%′

2%
,

ε5 ≡ µ

2(1− µ)
, ε6 ≡ − µ′

2(1− µ)
. (4.40)

where

% ≡ γ +
3µ2

2(1− µ)x2
, µ ≡ ḟH = f ′H2. (4.41)

Even in the absence of the GB coupling (µ = 0), hence ε4 = ε5 = ε6 = 0, there are

particular difficulties in evaluating the spectral indices nR and nT , and the tensor-

scalar ratio r, in full generality. In perturbation theory it is possible to get analytic

results only by making one or more simplifying assumptions. In the simplest case, one

treats the parameters εi almost as constants, so their time derivatives are (negligibly)

small as compared to other terms in the slow-roll expansion. An ideal situation like

this is possible if inflation occurred entirely due to the power-law expansion, a(τ) ∝
|τ |− 1/(1+ε), where the conformal time τ ≡ −1/[aH(1 + ε)]. In this case, the spectral

indices of scalar and tensor perturbations are well approximated by

nR − 1 = 3−
3 + ε1 + 2ε2 + 2ε4

1− ε1

, nT = 3−
3− ε1 + 2ε6

1− ε1

. (4.42)

Note that not all εi are smaller than unity. Nevertheless, for various explicit solutions

found in this chapter, the quantity ε4 is close to zero, while ε5, ε6 can have small

variations during the early phase of inflation. After a few e-folds of inflation, ∆N & 5,

these all become much smaller than unity, so only the first two terms (ε1, ε2) enter into

any expressions of interest. In any case, below we will apply the formulae (4.42) to

some explicit cosmological solutions.

The above relations are only valid in the limit where the speeds of propagation for

scalar and tensor modes, which may be given by

c2
R = 1 +

µ2[4ε(1− µ) + f̈ − µ]

(1− µ)[2γ(1− µ)x2 + 3µ2]
, c2

T =
1− f̈

1− ḟH
=

1− µ′ + εµ

1− µ
, (4.43)

where µ = ḟH and x = ϕ̇/H, take approximately constant values. These formulae may

be expressed in terms of the quantity, ν(vph) ≡ f(ϕ)H2, using the relation µ = ν ′−2εν.

8The parameter ε3 defined in references [152, 157] is zero in our case since the action (4.1) is already

written in the Einstein frame, and ϕ does not couple with the Ricci-scalar term in this frame.
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The propagation speeds depend on the scalar potential only implicitly, i.e., through the

background solutions which may be different for the V (ϕ) = 0 and V (ϕ) 6= 0 cases. In

the case where c2
R and c2

T are varying considerably, the derivative terms like ε̇5, ε̈5 are

non-negligible, for which there would be nontrivial corrections to the above formulae

for nR and nT . Furthermore, the spectral indices diverge for ε1 ∼ 1, thus the results

would apply only to the case where ε1 ¿ 1. In this rather special case, which may hold

after a few e-folds of power-law expansion through to near the end of inflation, we find

that the tensor-to-scalar ratio is approximately given by

r ≡ A2
T

A2
R
≈ 16

2γx2(1− µ) + 3µ2

(2− µ)2

(
cR
cT

)3

. (4.44)

This is also the quantity directly linked to observations, other than the spectral indices

nR and nT . The WMAP data put the constraint r < 0.55 at 2σ level. The results

for inflation in the presence of an exponential coupling to the Gauss-Bonnet term are

presented below. The cases of a vanishing potential and an exponential potential were

also covered [158], but this work was largely carried out by my collaborator, Ishwaree

Neupane, and hence is not included here.

4.4.2 Inflating with an exponential coupling

Let us take the scalar-GB coupling of the following form,

f,ϕ = f0 e2ϕ/ϕ0 , (4.45)

but without specifying the potential, V (ϕ). With this choice, the system of autonomous

equations is given by

du

dN
=

2(x + εϕ0)

ϕ0

u, (4.46)

dx

dN
=

2ε + γx2

u
+ (1− 3ε)x− 2x2

ϕ0

, (4.47)

y = 3− γ

2
x2 − 3ux. (4.48)

These equations admit the following de Sitter (fixed-point) solution

x = 0, V = Λ0, H =

√
Λ0

3
, u = u(ϕ), (4.49)

which corresponds to the case of a cosmological constant term, for which w = −1. In

the following we consider two special cases,
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• Suppose that µ ≡ const, that is, ΩGB = const ≡ µ0. Then we find

ε =
µ0 + γx2

µ0 − 2
,

dx

dN
=

2(γϕ0x
3 − (2− µ0)x

2 + 2µ0ϕ0x)

(2− µ0)ϕ0

. (4.50)

These equations may be solved analytically9 for µ0 = 2/3. As the solutions are

still messy to write, we only show the behavior of w in Mathematica plots. In

the next section we will numerically solve the field equations, in the presence of

matter, allowing us to consider all values of µ0. We should at least mention that

the above system of equations has a pair of fixed point solutions:

x1 =
2− µ0 −

√
(2− µ0)2 − 8γϕ0µ0

2γϕ0

, x2 =
2− µ0 +

√
(2− µ0)2 − 8γϕ0µ0

2γϕ0

.

(4.51)

The fixed point x1 is an attractor, while the x2 is a repeller provided that x1, x2

are real. In the case where 8γϕ0µ0 > (2−µ0)
2 the solution diverges. The solution

also diverges for initial values of x such that x < 0 and x > x2. If these conditions

are not violated, the solutions would always converge to the attractor fixed point

x = x1. The evolution of the solution is monotonic from the initial value of ε

to the ε given by the attractor fixed point at x = x1. The initial value of w for

a wide range of µ0 and initial values of x may be read from figure 4.1(a), and

evolve to the w given in figure 4.1(b) for a specific value of µ0.

• Next suppose that u = const ≡ u0, instead of ux = µ =const. In this case, the

quantity x decreases quickly with the expansion of the universe; the GB density

fraction, ΩGB, also decreases with the number of e-folds. The explicit solution is

ε = − x

ϕ0

, x =
2− u0ϕ0

γϕ0 + u0 + (2− u0ϕ0)u1 e(2/u0ϕ0−1)N
, (4.52)

where u1 is an integration constant. Without any surprise, as x → 0, ε → 0; the

model then corresponds to the cosmological constant case.

Inflation is apparently future eternal for the solutions above for much of the pa-

rameter range. However, in a more viable cosmological scenario, the contribution of

9This is actually a critical point in the phase space, which may be seen also in cosmological

perturbation analysis, see, e.g., [159].
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Figure 4.1: The left panel (a) shows the initial equation of state parameter w with various

initial conditions for ΩGB = µ0 and x, while, the right panel (b) shows a possible variation

of w for a particular value of µ0; solutions evolve to these values regardless of xini provided

the fixed points exist and 0 < xini < x2. We have taken ϕ−1
0 = 2 and γ = 1

the matter field may not be completely negligible. This is because, during inflation,

the field ϕ, while slowly evolving down its potential, which satisfies ∆ϕ ∝ ∆N , decays

into lighter particles and radiation. The inflaton may even decay to heavier particles,

especially, if the reheating of the universe was due to an instance preheating [160].

In turn, a significant amount of the energy density in the ϕ component might be

transforming into the radiation and (baryonic plus dark) matter, with several hundreds

of degrees of freedom and with all components present, e.g., stiff matter (p = ρ) and

radiation (3p = ρ). In turn, the slow roll type parameter ε would receive a nontrivial

contribution from the matter fields. Explicitly, we find

ε = −3

2
(1 + w)Ωb −

ϕ′2

2
, (4.53)

where Ωb = Ωm + Ωr and w ≡ (pm + pr)/(ρm + ρr). Inflation ends when there is a

significant fraction of matter and radiation, making ε < −1.

Before proceeding to next section we also wish to make a clear separation between

the inflationary solutions that we discussed above and the dark energy cosmologies that

we will discuss in the following sections. Although it might be interesting to provide

a natural link between the early universe inflation and the late time cosmic acceler-

ation attributed to dark energy, postulating a string-inspired model of quintessential

inflation, the time and energy scales involved in the gravitational dynamics may differ

vastly. As we have seen, through the construction of potentials, the scalar potential
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driving an inflationary phase at an early epoch and a second weak inflationary episode

at late times could be due to a single exponential term or a sum of exponential terms,

but the slopes of the potential of the leading terms could be very different. In fact,

one of the very interesting features of an exponential potential is that the cosmological

evolution puts stringent constraints on the slope of the potential, particularly during

big-bang nucleosynthesis, but its coefficient may not be tightly constrained. That is,

even if we use the potential V (ϕ) = V0 e−βϕ, with β ∼ O(1− 10), for explaining both

the early and the late time cosmic accelerations, the magnitude of the coefficient V0 can

be significantly different, hence indicating completely different time and energy scales.

4.5 Non-vanishing Matter Fields

The above results were found in the absence of radiation and matter fields. It is thus

natural to ask what happens in a more realistic situation, at late times, when both

radiation and matter evolve together with the field ϕ. It may be possible to find a

number of new and interesting background evolutions. Also some of the pathological

features, like the appearance of super-luminal scalar modes, may be absent due to

nontrivial scalar-matter couplings.

4.5.1 Non-minimally coupled scalar field

To investigate a possible post-inflation scenario, where the scalar field may couple non-

minimally to a relativistic fluid or stiff-matter other than to ordinary matter or dust,

we consider the following three different epochs: (i) background domination by a stiff

relativistic fluid; (ii) radiation domination; (iii) a relatively long period of dust-like

matter domination which occurred just before the current epoch of dark energy or

scalar field domination. To this end, we define the fractional densities as follows: Ωs

for stiff-, relativistic matter, Ωr for radiation and Ωd for dust, where the respective

equation of state parameters are given by ws = 1, wr = 1/3 and wd = 0. Equations

(4.13) – (4.13) may be written as

Ω′
s + 2εΩs + 3Ωs(1 + ws) = −3ηsQsΩsϕ

′, (4.54)
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Ω′
d + 2εΩd + 3Ωd = −3QdΩdϕ

′. (4.55)

Ω′
r + 2εΩr + 4Ωr = 0, (4.56)

In order for current experimental limits on verification of the equivalence principle to

be satisfied, the coupling must be small, Q2
d ¿ 1, at present [146].

Superstring theory in its Hagedorn phase (a hot gas of strings), and also some

brane models, naturally predict a universe filled with radiation and stiff-matter. To

this end, it is not unreasonable to expect a nontrivial coupling of the field ϕ with the

stiff-matter: highly relativistic fluids may have strong couplings of the order of unity,

Qs ∼ O(1). As we do not observe a highly relativistic stiff-matter at the present time,

i.e., Ωs ≈ 0, the scalar-stiff-matter coupling Qs in the order of unity is not ruled out

and may have a quantifiable effect on the evolution of the early universe.

4.5.2 The ΩGB = const solution

It is interesting to study the case of a constant ΩGB as it allows us to evolve the potential

without constraining it through an ansatz. An exponential potential is generally used

in the literature due to the simplification it affords allowing a change of variables and

hence a system of autonomous equations.

It is worthwhile to investigate whether a physically interesting result can be found

without the need for an ansatz for the potential. To this end, let us take ΩGB '
const ≡ µ0. With the ansatz (4.45), we have

dx

dN
= −2x(ε +

x

ϕ0

) (4.57)

y = 3− γ

2
x2 − 3µ0 − 3(Ωr + Ωs + Ωd), (4.58)

where

ε =
γx2 + µ0 + 2x(ηsQsΩs + ηdQdΩd) + 3Ωr(1 + wr) + 3Ωs(1 + ws) + 3Ωd(1 + wd)

µ0 − 2
,

(4.59)

in addition to the continuity equations (4.54) – (4.56) describing the system. We also

note that, since ε = H ′/H, H is solved using (4.59), this allows us to find both the

scalar field potential V = yH2 and the effective potential Λ(ϕ) ≡ V (ϕ)+3f(ϕ)H4(1+ε)
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explicitly. We can see that there is a strong correlation between the length of dust-like

matter domination and the parameter values, µ0 and Ωd,ini.

Figure 4.2: The period of dust-like matter domination as a function of µ0 for f,ϕ = f0 e3ϕ,

γ = 1, Q2
d = 10−5 and Q2

s = 0.01. The initial conditions are x = 10−7, y = 10−15, Ωd = 0.1

and Ωr = 0.45.

The dust domination period is expected to last for about 5 − 7 e-folds of expan-

sion. However, in the above case, no parameter ranges meet this condition while still

maintaining a relatively long period of radiation domination. This is problematic as at

least some period of radiation domination appears to be a requirement for reconciling

any cosmological model with observation. Our results here are therefore presented in

the spirit of a toy model, which allow the evolution of an unconstrained potential for

parameter ranges and give solutions with the expected qualitative features.

Figure 4.2 shows the period of dust domination observed for various values of µ0.

We see that, in the parameter range µ0 . 10−3, there exist solutions supporting both

radiation and stiff-matter domination prior to matter domination. For larger values

of µ0, the Gauss-Bonnet contribution suppresses the background fields and we observe

a quick transition to scalar-field domination, with either the radiation dominated era

or the matter dominated era, or both eras not occuring. For smaller values of µ0, no

solutions exist for the parameters used above due to constraints in the field equations.

The behaviour of weff for varying µ0 and the general evolution of the cosmology are
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Figure 4.3: The behaviour of weff for varying µ0 for f,ϕ = f0 e3ϕ, γ = 1, Q2
d = 10−5 and

Q2
s = 0.01. The initial conditions are x = 10−7, y = 10−15, Ωd = 0.1 and Ωr = 0.45.

shown in figure 4.3 and figure 4.4, respectively. In the cases where the second derivative

of weff is monotonic there is no radiation domination (weff ∼ 1/3) or dust domination

(weff ∼ 0). For lower values of µ0, the second derivative of weff obviously changes

sign and hence implies a period of background matter or radiation domination. We

show the behaviour of the scalar potential and the corresponding effective potential in

figure 4.5.

4.5.3 Simplest exponential potentials

We now wish to consider the evolution of the full system while putting minimal restric-

tions on the evolution of the cosmological constituents. To do this we employ simple

single exponential terms for both the field potential and the scalar-GB coupling:

f,ϕ(ϕ) = f0 eαϕ and V (ϕ) = V0 e−βϕ. (4.60)

The commonly invoked exponential potential ansatz has some physical motivation in

supergravity and superstring theories as it could arise due to some nonperturbative

effects, such as gaugino condensation and instantons. These choices are almost un-

doubtedly too naive to allow all the expected physical features of our universe from

the inflation epoch to the present day. This is because generally the slopes of the

potential considered in post-inflation scenarios are too steep to allow the required
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Figure 4.4: The evolution of the fractional densities and weff (solid line) for a fixed µ0 = 10−6

with parameters γ = 1, ϕ0 = 2/3, Q2
d = 10−5 and Q2

s = 0.01, and initial conditions as

x = 10−7, y = 10−15, Ωd = 0.1 (dots) and Ωr = 0.45 (dashes). Ωs is represented by long

dashes and Ωϕ by dot-dash.

number of e-folds of inflation in the early universe. As a post-inflation approximation,

however, these may hold some validity, as one can replicate many observable physical

features from nucleosynthesis to the present epoch while allowing nontrivial scalar-

matter couplings. In section 4.5.5 we will discuss the possibility of a two-scalar fields

model where the potential related to one scalar field meets the requirements of inflation

while the other scalar drives the late time cosmology.

The ansätze (4.60) allow us to write an autonomous system

dx

dN
= − 1

2γ
[2γxε + 6γx− 2βy + 6u(1 + ε)− 6ηsQsΩs

+ηdQd{γx2 + 2y + 6(ux + Ωr + Ωs − 1)}] (4.61)

dy

dN
= −y(βx + 2ε) (4.62)

du

dN
= u(αx + 2ε) (4.63)

where

ε =
1

6(2γux− 2γ − 3u2)

[
18γ (1 + wd − wdΩr − wdΩs + wrΩr + wsΩs)

+6γux− 6γy + 3γ2x2 + 18u2 − 3γ2wdx
2 − 6βuy − 6γαux2 − 18γwdux− 6γwdy
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Figure 4.5: The left panel shows the evolution of V (ϕ) while the right panel shows the

evolution of Veff ≡ V (ϕ) + 3f(ϕ)H4(1 + ε) for µ0 = 10−6, γ = 1, f(ϕ) ∝ e3ϕ, Q2
d = 10−5 and

Q2
s = 0.01 with initial conditions x = 10−7, y = 10−15, Ωd = 0.1, Ωr = 0.45, H = 0.01 and

f(ϕ)ini = 10−10.

−ηdQd(2γ
2x3 + 18u− 18u2x− 6uy − 18uΩr − 12γx + 4γxy + 12γxΩr + 9γux2)

− (ηdQd − ηsQs) (12γx− 18uΩs)
]
, (4.64)

which along with the continuity equations (4.54) – (4.56) and the Friedmann constraint

equation, Ωd+Ωϕ+ΩGB+Ωr+Ωs = 1, allow us to proceed with numerical computation.

We look particularly at two values for β here, β =
√

2/3 and β =
√

3, while keeping

the other parameters constant to limit the vast parameter space. These values may

be motivated by various schemes of string or M theory compactifications [153]. We

will discuss the effects of varying these other parameters and some of the physically

relevant results. The evolution of the various constituents is shown in figures 4.6-4.7.

The β =
√

2/3 case appears to show a smoother evolution and has a short period

during which there is acceleration and an appreciable amount of matter in the universe.

In the table below we look at some of the features of the accelerating period for the

solution given in figure 4.6. At the onset of acceleration, weff = −1/3, we have Ωd =

0.650. Within the best-fit concordance cosmology the present observational data seem

to require weff < −0.74 [161]. However, in the above case, this requires less matter

(Ωd . 0.12) than in ΛCDM model.
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Figure 4.6: Evolution of the fractional densities and weff (solid line) where β =
√

2/3, γ = 1,

α = 12, Q2
d = 10−5 and Q2

s = 0.01 with initial conditions x =
√

6 × 10−4, y = 5 × 10−20,

u = 0.08, Ωr = 0.549 (dashes) and Ωs = 0.45 (long dashes). Ωd is represented by dots, Ωϕ

by dot-dash and ΩGB by dot-dot-dot-dash.

Condition imposed at present ∆Naccelerating Implied weff Implied Ωd

Ωd = 0.27 0.582 − 0.648 N/A

weff = − 0.74 0.955 N/A 0.123

weff = − 0.9 5.48 N/A 3.02× 10−6

weff = − 1.0 5.55 N/A 2.46× 10−6

∆N = 0.69 N/A − 0.685 0.215

∆N = 0.91 N/A − 0.734 0.134

The recent type Ia supernovae observations [14, 51] appear to indicate that the

universe may be accelerating out to a redshift of z ∼ 0.4 − 1 [162]. In terms of the

number of e-folds of expansion, this corresponds to ∆N = ln(1 + z) ∼ 0.34 − 0.69, if

one assumes a rescaling of N → 0 at the present epoch using the freedom in choosing

the initial value of the scale factor, a0. We have chosen the initial value of y, or the

ratio V (ϕ)/H2, such that the period of dust-like matter domination is ∆NΩd
∼ 6.5 as

this corresponds to a total redshift of z ∼ 1100, the epoch of matter-radiation equality.

The evolution with β =
√

3 does not seem to be in agreement with current cosmo-
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Figure 4.7: Evolution of the fractional densities and weff (solid line) where β =
√

3, γ = 1,

α = 12, Q2
d = 10−5 and Q2

s = 0.01 with initial conditions x =
√

6 × 10−4, y = 5 × 10−20,

u = 0.08, Ωr = 0.549 (dashes) and Ωs = 0.45 (long dashes). Ωd is represented by dots and

Ωϕ by dot-dash, ΩGB by dot-dot-dot-dash.

logical observations. The solution may undergo a period of sudden change in weff when

the Gauss-Bonnet contribution becomes appreciable (or significant); this would have

to occur around at the present epoch as to retrieve the current value of weff ∼ −1.

This result does not reconcile with either the supernovae data, which seem to indicate

a longer period of acceleration, or with a constraint for the present value of Gauss-

Bonnet density which requires that ΩGB . 0.2 [163], or with the present concordance

value of Ωd (∼ 0.27).

We observe an oscillatory crossing of weff = −1 limit for all cases in which the

Gauss-Bonnet contribution becomes appreciable, even momentarily. Such behaviour

may be seen in variants of scalar-tensor models [164]. In our case, the amplitude of

these oscillations corresponds to the amplitude of the oscillations seen in the Gauss-

Bonnet contribution and hence is heavily dependent on the slope of the scalar-GB

coupling; for large α we observe much larger oscillations. These oscillations damp

quickly as the Gauss-Bonnet contribution becomes negligibly small, and settle to a

late time evolution for which weff ≈ −1. As this limit is approached from above, none

of the issues inherent with super-inflation or a violation of unitarity will be applicable
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Figure 4.8: Evolution of weff with β =
√

2/3, γ = 1, Q2
d = 10−5 and Q2

s = 0.01; α = 12

(dash-dot), 8 (dashes), 3 (dots),
√

2/3 (solid), with initial values x =
√

6×10−4, y = 5×10−20,

u = 0.08, Ωr = 0.549 and Ωs = 0.45.

to the late time cosmology.

As the parameter space for the initial conditions is very large we have presented

solutions with initial conditions and parameters selected to give reasonable periods

of radiation and dust-like matter domination as well as other physically favourable

features. Although the quantitative behaviour is observed to change smoothly with

changes in initial conditions and parameters, such changes do have some qualitative

effects as limits of certain behaviour are encountered. A quantitative variation in the

period of dust-like matter domination can be attributed to altering the initial value of

y or Ωd,ini; lower values of yini extend the period before scalar field domination begins.

This is effectively a change in the initial potential and has a monotonic effect on the

epoch at which scalar field domination begins. In a quantitative sense, it has no effect

on the period of radiation domination until a yini is selected which is large enough that

the scalar field contribution completely suppresses the dust-like matter domination

period. The value of Ωd,ini is relevant to the epoch of matter-radiation equality, larger

values result in an earlier epoch. For small values, no dust-like matter domination

occurs and the solution is entirely dominated by the other four constituents considered.

The limits at which all these effects occur are dependent on other parameters and hence
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Figure 4.9: Evolution of weff with β =
√

3, γ = 1, Q2
d = 10−5 and Q2

s = 0.01; α = 12 (dash-

dot), 8 (dashes), 3 (dots),
√

2/3 (solid), with initial values x =
√

6 × 10−4, y = 5 × 10−20,

u = 0.08, Ωr = 0.549 and Ωs = 0.45.

discussion of actual values instead of the general behaviour does not add further insight.

The initial values of these parameters require a better understanding of the underlying

fundamental theory and the implications in the early Universe to be constrained more

tightly, and therefore add some predictability to the theory discussed here.

We note that the exponential terms for both the potential and the coupling have

some noticeable effects on the evolution of the system. This may be seen to an extent

in terms of β in figures 4.6–4.9. It does, however, appear that the ratio of these

parameters also influences the expansion during dust-like matter domination, remaining

relatively unchanged when this ratio is constant within realistic β and α parameter

ranges. Phenomenological bounds on these values have been studied in Koivisto and

Mota [159].

For α ∼ β we do not observe a significant period of Gauss-Bonnet contribution and

hence no crossing of the weff = −1 limit. The closer the value of α is to this limit the

later this period of significant Gauss-Bonnet density fraction occurs. As α increases

there is a minimum epoch at which the Gauss-Bonnet contribution becomes significant.

This epoch occurs after the scalar field becomes the dominant component in the energy
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Figure 4.10: The period of dust-like matter domination for varying Qs and Qd for γ = 1,

α = 12 and β =
√

2/3 with initial conditions x =
√

6 × 10−5, y = 5 × 10−20, u = 0.08,

Ωr = 0.549 and Ωs = 0.45.

budget of our universe. Results for various values of α are shown in figures 4.8 and 4.9.

The consequences of matter coupling to the scalar field on the cosmology are of

particular interest. The effect in the period of dust-like matter-domination is minimal

in relation to both Qd and Qs and can be seen in figure 4.10, though we allowed the

value Qs À Qd. As there is a lack of observational or theoretical motivation refuting

the possibility of a high relativistic matter-scalar coupling, we consider a range that

extends beyond Qs = 1, whereas the dust-like-matter-scalar coupling must take values

Q2
d < 10−5 due to the current level of experimental verification in solar system tests of

general relativity.

The solution undergoes a transition in qualitative behaviour when we extend through

the limit Qs,lim ∼ 1, where the exact onset and amplitude of its effects are dependent

on the other parameter values taken. Hence our remarks again apply to the general

behaviour observed rather than specific cases. Couplings greater than Qs,lim cause

a non-negligible reemergence of the stiff-matter contribution at the end of dust-like

matter domination. The density fraction of the relativistic matter undergoes a damped

oscillation, generally with a much shorter period than the oscillations observed in the

non-negligible Gauss-Bonnet contribution. This causes corresponding oscillations in

the effective equation of state parameter, while still generally showing the same overall
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Figure 4.11: Evolution of weff for different values of Qs: Q2
s = 104 (dots) 100 (dashes),

0 (solid) and 1 (dash-dot) with fixed Qd =
√

10−5 and γ = 1, α = 12, β =
√

2/3. The

initial conditions are x =
√

6 × 10−4, y = 5 × 10−20, u = 0.1, Ωr = 0.549 and Ωs = 0.45.

The larger, more violent oscillations seen for Qs > 1 are due to significant scalar-stiff-matter

couplings, while the smooth oscillations for smaller couplings at some later stage are due to

an appreciable contribution of the coupled Gauss-Bonnet term.

trend as for lower Qs values of the otherwise same solution, with the density fraction

of the relativistic matter stabilising to a non-zero late time value. This cosmological

behaviour does not appear to be physically valid, as no mechanism to generate this

relativistic matter seems plausible and would hence lead us to suggest that the value

of Qs would have an upper-bound such that Qs,max ∼ Qs,lim. The effects of Qs and

Qd on the effective equation of state parameter, weff , may be seen in figures 4.11 and

4.12. Note that in figure 4.12 we have considered ∆weff rather than weff as the effects

of varying Qd are so minimal that no discernable variation can be seen otherwise. In

these figures we have considered the same solutions as in figure 4.6. The magnitude of

the effects are, however, the same throughout the parameter space.

4.5.4 A canonical potential

From section 4.3, we consider the potential

V (ϕ) = H2(Λ0 + Λ1e
βϕ). (4.65)

81



Figure 4.12: Variation of weff for non-zero Qd as compared to the Qd = 0 case, ∆weff ≡
weff(Qd 6= 0)−weff(Qd = 0); Q2

d = 10−5 (solid), 10−6 (dots) and 10−8 (dashes) and Qs = 0.1.

Clearly, for higher values of the scalar dust-matter couplings, Q2
d > 10−5, we find slightly

larger variations in weff .

Imposing this ansatz along with the scalar-GB coupling given in equation (4.60),

f(ϕ) ∝ eαϕ, allows us to find solutions that have reasonable agreement with concurrent

observations while not crossing the weff = −1 limit at any stage of the evolution.

From figure (4.13) we can see that the cosmic evolution shows a smooth progression

to weff = −1, which may be physically more sensible. The amplitude of the Gauss-

Bonnet density fraction at maximum is dependent on the values of slope α, for smaller

α it never becomes relevant. The period of dust-like matter domination again shows a

heavy dependence on the initial value of y or the potential V (ϕ).

4.5.5 Double scalar case

Multiple scalar exponential potentials, which may arise in time-dependent compact-

ifications of supergravity on symmetric or twisted product manifolds [165], exhibit

assisted inflation [124] or assisted quintessence [166, 167] depending on the epoch of

interest. This is of interest in string motivated scenarios, as in the low energy effective

4-dimensional theory one would expect multiple scalar fields, and the potentials which

arise naturally from symmetry breaking are significantly steeper than those attributable
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Figure 4.13: Evolution of the fractional densities and weff (solid line) for the potential

ansatz V (ϕ) = H2(Λ0 + Λ1e
−βϕ) where γ = 1, α = 9, β =

√
2/3, Λ0 = 10−8, Q2

d = 10−5

and Q2
s = 0.01 with initial conditions x =

√
6 × 10−2, y = 9 × 10−3, u = 0.1, Ωr = 0.549

(dashes) and Ωd = 10−4 (dots). Ωs is represented by long dashes, Ωϕ by dot-dash and ΩGB

by dot-dot-dot-dash.

to an equation of state parameter wscalar < −1/3. It was shown by Liddle et al. [124]

that for a double scalar exponential potential,

V (ϕ1, ϕ2) = v1e
−β1ϕ1 + v2e

−β2ϕ2 , (4.66)

the dynamics match that of a single scalar theory with a slope, βeff , where

1

β2
eff

=
1

β2
1

+
1

β2
2

. (4.67)

To obtain an inflationary (or accelerating) universe in the case of a minimally coupled

gravity-scalar field theory with an exponential potential, one requires βeff <
√

2. In

the potential dominated, minimally coupled model weff = β2
eff/3− 1.

Here we extend the results of [158] by considering two scalar fields coupled to matter

and the Gauss-Bonnet correction to gravity. We show that the coupling to the Gauss-

Bonnet term further assists quintessence, with accelerating late-time behaviour being

observed for cases where βeff >
√

2.
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Model

We consider the matter and radiation contribution in addition to the curvature and

scalar field terms, such that,

L = Lgrav + Lscalar + Lm, (4.68)

where

Lgrav =
√−g

(
R

2
− 1

8
f(ϕ, σ)R2

GB

)
, (4.69)

Lscalar =
√−g

(
−γ

2
(∇ϕ)2 − ξ

2
(∇σ)2 − V (ϕ, σ)

)
(4.70)

and Lm =
√−g

[
A4

s(ϕ)ρs + A4
d(ϕ)ρd + A4

r(ϕ)ρr

]
. (4.71)

The constants, γ and ξ, are assumed to be positive, ignoring on physical grounds the

negative kinetic energy case. We set γ = ξ = 1 throughout this analysis without loss

of generality due to the freedom to rescale the scalar field. We make the physical

identification that one of the scalar fields, ϕ, is the dilaton while the other, σ, is a

modulus field. This is not rigorous by any means but allows us to make some general

simplifying assumptions regarding the physical behaviour.

We only consider a coupling between one scalar field, ϕ and the matter fields,

A(ϕ). As the field equations are only dependent on the derivative of the coupling, and

the modulus field would generally have |σ̇| ¿ 1 during the post-inflation period, the

coupling is likely neligible.

We take the standard 4-dimensional FLRW spacetime metric, as above, which,

along with (4.68), gives the Friedmann constraint equation,

ϕ̇2

6
+

σ̇2

6
+

V (ϕ, σ)

3
+ ϕ̇f,ϕH3 + σ̇f,σH

3

+
1

3

[
A4

s(ϕ)ρs + A4
d(ϕ)ρd + A4

r(ϕ)ρr

]
= H2, (4.72)

and the scalar equations of motion for ϕ and σ,

ϕ̈ + 3Hϕ̇ + V,ϕ + 3(1 + ε)f,ϕH4 + 2QsA
4
s(ϕ)ρs −QdA

4
d(ϕ)ρd = 0, (4.73)

σ̈ + 3Hσ̇ + V,σ + 3(1 + ε)f,σH
4 = 0, (4.74)

respectively, where

V,σ ≡ ∂V

∂σ
, and f,σ ≡ ∂f

∂σ
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In order to solve the system above, certain anstazes must be made. We only consider

minimal coupling between the scalar fields. Hence the potential is separable into the

linear sum of exponentials given by (4.66) where ϕ1 = ϕ and ϕ2 = σ. While in

the effective 4-dimensional theory the modulus field can be assumed to have a flat

potential, we leave a more general form here. We also assume exponential couplings to

both gravity and matter. Hence we get Q = const and

f(ϕ, σ) = g(ϕ) + h(σ) = f1e
α1ϕ + f2e

α2σ. (4.75)

Additionally we supplement (4.72) – (4.74) with the equation of motion for a barotropic

perfect fluid, (4.54) – (4.56).

For the purposes of numerical integration it is convenient reparamterise to dimen-

sionless variables, as we do in earlier sections. The field equations, (4.72) – (4.74),

therefore can be written as the autonomous equations,

−3 +
1

2
x2

1(N) +
1

2
x2

2(N) + y1(N) + y2(N) + 3u1(N)x1(N)

+3u2(N)x2(N) + 3 [Ωs(N) + Ωd(N) + Ωr(N)] = 0, (4.76)

x1(N) {x′1(N) + [ε(N) + 3]x1(N)}+ y′1(N) + 2y1(N)ε(N)

+3u1(N)x1(N) [1 + ε(N)] + 3x1(N) [2QsΩs −QdΩd] = 0, (4.77)

x2(N) {x′2(N) + [ε(N) + 3]x2(N)}+ y′2(N) + 2y2(N)ε(N)

+3u2(N)x2(N) [1 + ε(N)] = 0, (4.78)

where

xi =
Φ̇i

H
, yi =

V (Φi)

H2
, ui = f,Φi

H2, with i ∈ {1, 2}, (4.79)

such that Φ1 = ϕ and Φ2 = σ.

Numerical Solutions

The system described above has a lot of freedom. This is both convenient and prob-

lematic, while it allows fits to many scenarios, the predictive power is poor. We will

look to constrain some of the freedom on physical and theoretical grounds.

In the conformal transformation from the string frame to the Einstein frame, in-

tuitively one would expect f(ϕ) ≈ A(ϕ). We also note that the scalar fields must
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adhere to the nucleosynthesis upper bound, Ωϕ + Ωσ < 0.2, at temperatures around 1

MeV [168]. This has been further tightened by the observed abundances of primordial

light elements to Ωϕ + Ωσ < 0.045 [169].

As mentioned in the earlier sections, Q2
m . 10−5. We have shown for the single

scalar case that values of Qs & 1 cause the relativistic stiff matter contribution to

become significant in the late-time evolution of the Universe and is therefore ruled

unphysical.

We note that in the limit that the scalar-Gauss-Bonnet contribution and the matter

and radiation fields are set to zero, we recover the expected results [167]. The limiting

case between inflating solutions, weff < −1/3, and non-inflating solutions, weff >

−1/3, corresponds to βeff =
√

2.

The presence of the Gauss-Bonnet term allows inflating solutions when βeff is

greater than this limit. The degree to which the Gauss-Bonnet term assists the infla-

tionary limit on βeff is dependent on the value of α1 and α2. For values of α1, α2 > 2,

a significant weakening of the condition is observed when βeff =
√

2. Only one of α1

or α2 has to exceed this bound, αlim. The behaviour is largely driven by the term with

the largest coupling constant with very little effect due to the sub-dominant coupling

term.

There is a definite change in qualitative behaviour when this bound, αlim, is ex-

ceeded with the value of weff being pushed to weff = −1 + δ, where δ ¿ 1. For cases

where the dominant term has a value α < αlim, very little effect is observed in addition

to the regular assisted quintessence seen in the absence of the Gauss-Bonnet term. The

value of αlim is dependent on the value of βeff , with αlim increasing with increasing

βeff . This allows asymptotically inflating solutions in cases where βeff >
√

2.

The inclusion of the background fields, matter and radiation, has the effect of

driving the effective equation of state parameter toward wb. It is therefore easy to

construct situations where the Gauss-Bonnet contribution and background fields are

competing effects on the effective equation of state parameter.

In figure 4.14 we show a general solution, involving contributions from all terms

shown in (3.1). This solution shows a physically reasonable evolution. The period of

radiation domination is ∆N = 6.3, with matter domination lasting for ∆N = 8.2. The
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period since the onset of accelerating expansion (weff = −1/3) to the present epoch,

defined as the epoch where Ωd = 0.27 [7] following the period of matter domination, is

∆N ' 0.60, which is not unrealistic when presented in redshift, z ' 0.45 [14, 51]. The

individual behaviour of the scalar fields is shown in figure 4.15.

Figure 4.14: Evolution of the fractional densities and weff (solid line) where α1 = 2.0,

α2 = 2.0, β1 = 1.2, β2 = 1.0, Q2
d = 10−5 and Q2

s = 0.01 with initial conditions x1 =
√

6×10−6,

x2 =
√

6× 10−4, y1 = 5× 10−24, y2 = 5 × 10−22, u1 = 0.08, u2 = 0.08, Ωr = 0.549 (dashes)

and Ωs = 0.45 (dots). Ωs is shown as long dashes, Ωscalar = Ωϕ + Ωσ as dot-dash and

ΩGB = ΩGB,ϕ +ΩGB,σ as dot-dot-dot-dash although it never makes a significant contribution

over the range of N displayed here.

Due to the large number of degrees of freedom, evident in the parameterisation of

the solution, we do not analyse the general behaviour in relation to every variable. We

do, however, investigate the α dependence as this has interesting physical consequences.

The evolution of weff is shown in figure 4.16 for various values of α where α1 = α2 = α.

The epoch at which weff → −1 is dependent on the epoch of significant Gauss-Bonnet

contribution. For large α, this contribution oscillates markedly causing the equation of

state parameter to momentarily take values weff < −1 violating the dominant energy

condition. These oscillations are likely not a realistic phenomena in the late–time

evolution of the Universe and therefore, it would appear that α must take values near

or less than unity.
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Figure 4.15: Fractional densities of the scalar fields, Ωϕ (solid line) and Ωσ (dotted line)

where α1 = 2.0, α2 = 2.0, β1 = 1.2, β2 = 1.0, Q2
d = 10−5 and Q2

s = 0.01 with initial

conditions x1 =
√

6 × 10−6, x2 =
√

6 × 10−4, y1 = 5 × 10−24, y2 = 5 × 10−22, u1 = 0.08,

u2 = 0.08, Ωr = 0.549 and Ωs = 0.45.

The solutions presented have some intriguing features. However, the lack of pre-

dictive power is problematic. The number of free parameters in the theory would need

to be reduced through recourse to an underlying fundamental theory to allow proper

analysis of the validity of the theory. Another issue is the Gauss-Bonnet contribution,

which, while offering a mechanism to induce acceleration, appears very unstable, par-

ticularly in the late-time universe. This likely indicates it is unphysical, at least with

coupling constants, α, greater than unity.

We note that the solutions in section 4.5 are completely invariant under a constant

shift in N . Therefore the choice of N0 = 0 is arbitrary. We can equivalently set the

present epoch to N = 0 (a0 = 1), it is simply convenient numerically to present the

results as shown.

4.6 Linear Stability Analysis

Here we consider a basic stability analysis to small homogeneous perturbations about

a critical or fixed point. The earlier analysis of Nojiri et al. [132] would constitute
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Figure 4.16: The evolution of weff is shown for: α = 2 (solid line), α = 5 (dots), α = 10

(dashes), α = 20 (dot-dash), where α = α1 = α2. The fixed parameters are β1 = 1.2,

β2 = 1.0, Q2
d = 10−5 and Q2

s = 0.01 with initial conditions x1 =
√

6× 10−6, x2 =
√

6× 10−4,

y1 = 5× 10−24, y2 = 5× 10−22, u1 = 0.08, u2 = 0.08, Ωr = 0.549 and Ωs = 0.45.

a special case of the treatment which follows. Consider the potential V (ϕ) and the

coupling f(ϕ) as the simplest exponential functions of the field:

V (ϕ) = V1 emϕ/ϕ0 , f(ϕ) = f1 enϕ/ϕ0 . (4.80)

These choices may be motivated in the heterotic string theory as the first term of

the perturbative string expansion [140]. One may solve the equations (4.5)–(4.7) by

expressing V (ϕ) and f(ϕ) as in (4.80), with n = −m = 2, and dropping the effects

of matter fields. The simplest way of solving field equations is to make a particular

ansatz for the scale factor and scalar field, namely

a = a0

(
t
t0

)h

, ϕ = ϕ0 ln t
t1

(h > 0, t > 0), (4.81)

a = a0

(
t∞−t

t0

)h

, ϕ = ϕ0 ln t∞−t
t1

(h < 0, t < 0 or 0 < t < t∞). (4.82)

The system of autonomous equations, in the absence of matter fields, from (4.5) –

(4.7) using the substitutions in (4.9), is given by

dx

dN
=

γ2ϕ0x
3 − γx(2ux2 − 13uxϕ0 + 6ϕ0) + 2(2y − 3ux)− 6u(ϕ0 − 2xuϕ0 + x2u)

ϕ0(2γ − 2γxu + 3u2)
,

(4.83)
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du

dN
=

2u (−γ2x2ϕ0 + u(2y − 3(ϕ0 − x)u) + 2γ(x− 2ϕ0u))

ϕ0(2γ − 2γxu + 3u2)
. (4.84)

For the following critical solution [158]

x = x0 =
ϕ0

h
, y = y0 =

V1t
2
1

h2
, u = u0 =

2f1h
2

ϕ0t21
, (4.85)

the right hand sides of the above equations are trivially satisfied, implying that x′ =

y′ = z′ = 0.
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Figure 4.17: Only for negative eigenvalues, satisfying the conditions A + D < 0 and AD −
BC > 0 the linear perturbations become small and the system may be stable.

We consider the following homogeneous perturbation around the critical solution

(4.81) and (4.82):

x = x0 + δx, u = u0 + δu. (4.86)

Since the functional form of the potential is already specified, the variation of y is

encoded into the variation of ϕ. For stability of the solution, under a small perturbation

about the critical or fixed-point solution, requires

A + D < 0, AD −BC > 0, (4.87)

where A, B, C, D are the eigenvalues of a 2× 2 matrix, as given by

d

dN


 δx

δz


 = M


 δx

δz


 , M =


 A B

C D


 . (4.88)

In the following, we define V1t
2
1 ≡ k. We find

A = − Ã

hE
, B = − B̃

γE
, C = − γ C̃

3h2(3h2 − 3h− 2k)E
, D = − D̃

hE
(4.89)
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where

Ã ≡ 18h4(h− 1)(9h2 − 4h + 1) + 3k(1− 24h)h2 + k2(132h3 − 22h2 − 7h + 1),

(4.90)

B̃ ≡ 3(3h2 − 3h− 2k)
(
6h2(3h2 − 2h + 1)− k(22h2 − 13h + 1)

)
, (4.91)

C̃ ≡ (
36h5(3h2 − 1)− 2kh2(72h3 + 42h2 − 12h(3h + 2) + 6) + 2k2(28h2 − 12h + 1)

)

× (9h3 − 3h2 − 6hk + k), (4.92)

D̃ = 36h4(3h− 1)(h− 1)2 + 2k2(24h3 − 68h2 + 17h− 1)− 4kh2(36h3 − 93h2 + 51h− 6).

(4.93)

E = 18h4(5h2 − 4h + 1) + k2(60h2 − 16h + 1)− 6kh2(25h2 + 17h− 2). (4.94)

We find the result in Nojiri et al. [132] by taking k = 0 10. In the case γ > 0 and h < 0,

all eigenvalues are negative, except when |h| is small, |h| . 2, or when the parameter

k takes a large value, c.f., figure 4.17. In the case γ < 0, two of the coeffiecents, B and

C, take positive values, leading to a classical instability of the critical solution. Such a

system is normally unstable also under inhomogeneous cosmological perturbations. In

particular, for a large and positive potential, so that k À 0, only the h > 0 solution

can be stable.

4.7 Remarks on Ghost Conditions

Recently, a number of authors [151, 170]11 discussed constraints on the field-dependent

Gauss-Bonnet couplings with a single scalar field, so as to avoid the short-scale insta-

bilities or superluminal propagation of scalar and tensor modes 12. These conditions

10The results here also correct errors/typos that appeared in the appendix of Nojiri et al. [132].
11The case studied by De Felice et al. [170] has only limited applications within our model, as the

kinetic term for ϕ is dropped, and also a rather atypical coupling f(ϕ) ∝ ϕn, with n < 0, is considered.
12If the existence of a superluminal propagation is seen only as a transient effect, then the model is

phenomenologically viable. However, a violation of causality or null energy condition should not be

seen as an effect of higher curvature couplings, at least, for late time cosmology. Such corrections to

Einstein’s theory are normally suppressed as compared to the Ricci-scalar term, as well as the scalar

potential, at late times. For a realistic cosmology the quantity f(ϕ)H2 should be a monotonically

decreasing function of the number of e-folds, N , since f(ϕ)R2
GB ∝ f(ϕ)H4 and V (ϕ) ∝ H2(ϕ).
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Figure 4.18: The speeds of propagation for scalar and tensor modes, corresponding to the

solution (4.21) with
√

γϕ0 = 3, 4, 5 and 6 from top to bottom (bottom to top) for the left

(right) panel.

are

0 < c2
R ≤ 1, 0 < c2

T ≤ 1, 1− µ > 0. (4.95)

As long as µ < 1 and µ′/µ < ε, we also find c2
R < 1 and c2

T < 1. The short-scale

instabilities observed in Calcagni et al. [151] corresponding to the value µ ∼ 1, or

equivalently ν ′ − 2εν ∼ 1, may not be physical as the condition µ ∼ 1 effectively

invalidates the assumptions of linear perturbation theory [159, 152]. Furthermore, in

the limit |µ| → 1, other higher order curvature corrections, like cubic terms in the

Riemann tensor, may be relevant. Hence, the Gauss-Bonnet modification of Einstein’s

theory alone is possibly not sufficient for describing cosmology in the regime ΩGB →
Ωtotal. For the consistency of the model under cosmological perturbations, the condition

|µ| = |ΩGB| < 2/3 must hold, in general [159, 163].

Let us first neglect the contribution of matter fields and consider the special solution

given in Leith and Neupane [158],

x = ϕ0 − α ϕ0 tanh α(N + N1), u = −γx
3

, ε = 2γx2ϕ0−2x(6+γx2)
ϕ0(6+γx2)

, (4.96)

obtained with a simple exponential potential. From figure (4.18) we see that both

c2
R and c2

T temporarily exceed unity, because of which cosmological perturbations

may exhibit a superluminal scalar or tensor mode. However, this behaviour can be

significantly different in the presence of matter, especially, if ϕ is allowed to couple

non-minimally to matter fields.
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The propagation speeds normally depend on the spatial intrinsic curvature of the

universe rather than on a specific realization of the background evolution during the

stage of quantum generation of scalar and tensor modes (gravity waves). Thus a

plausible explanation for the existence of super-luminal scalar or tensor modes (c2
R > 1

or c2
T > 1) is that at the initial phase of inflation the spatial curvature K is non-

negligible, while the interpretation of c2
T (and c2

R) as the propagation speed is valid

only for K = 0. Additionally, in the presence of matter, the above result for c2
R does

not quite hold since the scalar modes are naturally coupled to the matter sector. The

result for c2
T may be applicable as tensor modes are generally not coupled to matter

fields.

From figures (4.19) and (4.20) we can see that, for ansätze such as (4.60), c2
R and c2

T

may become negative, though temporarily, if one allows a larger slope for the scalar-GB

coupling, namely α À β. It is precisely this last case for which c2
R and c2

T may also

take values larger than unity at subsequent stages, leading to superluminal propaga-

tion speeds for scalar and/or tensor modes. [For discussions on a similar theme see

references [144, 171].] The case where c2
T > 1 normally corresponds to the epoch where

the contribution of the coupled Gauss-Bonnet term becomes significant. However, for

smaller values of α and β, satisfying α . β, both c2
R and c2

T never become negative and

there do not arise any ghost-like states. However, depending upon the initial conditions

the tensors modes may become superluminal, temporarily.

4.8 Discussion

We have analysed the cosmological solutions of systems which allow nontrivial couplings

between the scalar field ϕ and the matter and gravitational fields. The cosmological

viability of such a generalized theory of scalar-tensor gravity is fully investigated by

placing minimal constraints on the model parameters and the scalar-matter couplings.

Some astrophysical and cosmological constraints applicable to a general scalar-

tensor gravity models are discussed. Under the assumptions that the quantity ϕ′ =

ϕ̇/H and the time-derivative of the scalar-GB coupling decrease during inflation, where

they are given by exponential functions of N ≡ ln[a(t)], namely ϕ̇/H ∝ eα1N and ḟH ∝
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eα2N , the reconstructed scalar potential was shown to take the form V (ϕ) = H2(ϕ)(C0+

C1 ϕ2 + C2 eα2/α1). Such a potential, being proportional to the square of the Hubble

parameter, would naturally relax its value as the Universe expands and might have

useful implications for inflation in the early Universe. With the approximation ϕ′ ≈
const, V (ϕ) was shown to take the form V (ϕ) = H2(ϕ)

(
V0 + V1 eβϕ

)
, for which the

effective equation of state approaches −1 without exhibiting any pathological features

at late times.

In the case were no matter or radiation contribution is considered we show that,

while not specifying the form of the potential, with an ansatz for the Gauss-Bonnet

coupling it is possible to find inflating solutions. These can be separated into two

special cases, ΩGB = const and u = const. Both show attractor behaviour, the first

being dependent on the value of ΩGB while the latter is the cosmological constant

solution. Neither of these solutions appear to offer a natural exit from the inflationary

period, although for some values of ΩGB we have non-inflating solutions throughout.

Addition of matter fields may help resolve such an issue.

We consider the theory in the presence of non-minimally coupled matter fields for

a number of scenarios. When a constant ΩGB is considered, the form of the potential

does not need to be specified. This allows us to examine whether realistic late-time

cosmologies exist without constraining the potential. Although we can find behaviour

which includes periods of radiation, matter and scalar field domination, the periods of

radiation and matter domination are too brief to be considered realistic.

Taking ansätze for both the form of the potential and Gauss-Bonnet coupling allows

us to find more realistic models of the late-time behaviour. We consider a number of

conditions on the current apparent structure of the Universe in order to examine the

validity of the model. The agreement, while not perfect, for string theory motivated

slopes of the potential, is encouraging. The effects of the scalar coupling to matter are

also examined. The coupling to dust is found to be negligible when considered in the

range Q2
d < 10−5. We do, however, find that the coupling to stiff, relativistic matter,

which is otherwise unconstrained, starts to cause what would generally be considered

unphysical effects for Qs & O(1).

When considering the canonical potential in place of the exponential potential in
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section 4.5.4 the behaviour is shown to have reasonable agreement with observation.

It is also without, it appears, the problem presented in the exponential potential case,

viz., having periods, during significance of the Gauss-Bonnet term in the late-time

evolution, which force the solution momentarily to values where weff < −1. The issues

relating to such cosmologies are presented in section 2.3.1.

The solutions above can also be generalised to a second scalar field. This is an obvi-

ous extension, as one would expect multiple scalar fields to be relevant on cosmological

scales if string theory is the underlying theory. These solutions show further freedom

and benefit from assisted quintessence allowing a greater range of values of the slope

of the potential while still providing the mechanism for accelerating solutions.

The solutions above can be shown to be linearly stable under certain conditions.

We also include a short discussion and analysis of the ghost conditions with respect to

analysis of the scalar and tensor modes. Superluminal modes are shown to become

relevant when a significant Gauss-Bonnet contribution exists. This constrains the

slopes the coupling to the Gauss-Bonnet term take as no late-time evidence exists

of such behaviour.
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Figure 4.19: The variation of c2
T with ∆N ; (top panel) β =

√
2/3 and α =

12 (dash− dot), 8 (dashes), 3 (dots),
√

2/3 (solid); (bottom panel) β =
√

3 and α =

12 (dash− dot), 8 (dashes), 3 (dots),
√

2/3 (solid). Other parameters are chosen as γ = 1,

Q2
d = 10−5 and Q2

s = 0.01, with initial conditions x =
√

6 × 10−4, y = 5 × 10−20, u = 0.08,

Ωr = 0.549 and Ωs = 0.45.
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Figure 4.20: The variation of c2
R with ∆N ; (top panel) β =

√
2/3 and α =

12 (dash− dot), 8 (dashes), 3 (dots),
√

2/3 (solid); (bottom panel) β =
√

3 and α =

12 (dash− dot), 8 (dashes), 3 (dots),
√

2/3 (solid), for γ = 1, Q2
d = 10−5 and Q2

s = 0.01

with initial conditions x =
√

6× 10−4, y = 5× 10−20, u = 0.08, Ωr = 0.549 and Ωs = 0.45.
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Chapter 5

Type Ia Supernovae analysis

5.1 Introduction

The Fractal Bubble (FB) model, presented in section 1.2.5, was recently put forward

by Wiltshire [37]. This model sidesteps the conundrums outlined in section 4.1. Firstly,

there is no cosmological constant, so the cosmological constant problem becomes “why

is the cosmological constant exactly zero?”. This question is not directly answered in

Wiltshire’s scheme. However, the other question of why apparent cosmic acceleration

begins at the epoch when complex structures form is answered. Apparent cosmic

acceleration is largely a consequence of clock rate variance between bound systems

and the volume average. Since positive gravitational energy is largely associated with

the negative spatial curvature of voids, the gradient becomes large at the epoch when

complex structures form and voids begin to dominate. Apparent cosmic acceleration

begins at a redshift of z ' 0.9.

To check the model’s physicial validity, comparison to a number of cosmological

observations is required. The obvious analysis to be carry out initially is a statistical

test on the type Ia Supernovae (SneIa) observations [51]. This gives a quantitative

measure of the fit of the model to the observed late-time evolution of the Universe. It

is of particular interest in testing the well–known observation of apparent cosmological

acceleration in the new paradigm. In the context of the Fractal Bubble model, this is

interpreted as an apparent effect due to differences in quasi-local gravitational energy

98



gradients. We analyse this model both without the back–reaction, in a earlier, more

naive form of the model, and then also in the case where the full Buchert equations,

(1.32), with back–reaction, are considered. We also fit the spatially flat ΛCDM model

without initial priors on H0. The two models are then compared using Bayesian

statistics [172].

The fit of the model to two other observations is also examined, the baryon acoustic

oscillation scale (BAO) and the angular scale of the sound horizon at last scattering.

These observations have already been discussed in section 1.3. The tests of the fit to

these three observations are independent methods of verification of the model.

A number of concerns have arisen in the analysis of SneIa in relation to FLRW

cosmologies. The Riess07 SneIa data at redshifts less than 0.023 has been excluded

in recent analyses [51] due to the so called “Hubble bubble” [39, 40, 41]. This data

was included in the Riess04 gold data set [15]. As indicated in section 1.2.5, the

Fractal Bubble model may give a natural resolution to the apparently anomalous

variance in the Hubble constant in this region, due to the inhomogeneous void and

wall structure on scales less than the scale of apparent homogeneity. We can therefore

justify excluding the Hubble bubble data on physical grounds. In the ΛCDM model,

there is no clear theoretical rationale for this; it is merely observed empirically that

a significant difference in the inferred Hubble constant occurs at the Hubble bubble

scale [40].

Another quantity which directly effects the BAO and angular scale tests is the

baryon–to–photon ratio, ηBγ. The observed abundances of the light elements, deu-

terium, helium-3, helium-4 and lithium, put strong constraints on the value of the

baryon-to-photon ratio with the current understanding of Big Bang nucleosynthesis

(BBN). Previously these have been compared solely within the FLRW paradigm. Re-

gardless of model assumptions, there appears to be an intrinsic tension in the data

between lithium and deuterium abundance measurements [173].

Prior to the the detailed measurements of the Doppler peaks in the CMBR, the

values quoted for ηBγ tended to be somewhat lower than the WMAP best–fit value.

For example, Olive, Steigman and Walker [174] quoted two possible ranges at the

95% confidence level: ηBγ = 1.2–2.8 × 10−10 or ηBγ = 4.2–6.3 × 10−10, depending on
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whether one accepted higher or lower values of the primordial D/H abundance. At a

similar time, Tytler et al. [175], accepting the lower D/H abundances, quoted a range

ηBγ = 4.6–5.6 × 10−10 at the 95% confidence level. The WMAP parameter estimates

moved the best–fit range of the baryon to photon ratio to ηBγ = 6.1+0.3
−0.2 × 10−10 [6, 7]

at the very edge [174], or beyond [175], the earlier 95% confidence limits. This is not

concordant with lithium abundance and pushed agreement with helium-4 abundances

to the previous 2σ confidence limit.

In Wiltshire’s approach [37], the baryon fraction inferred from the baryon–to–

photon ratio changes since the value of ηBγ predicted by standard analysis is the

volume–average quantity. Volume–averaged values of the bare baryon density parame-

ter, Ω̄B0, consistent with a lower ηBγ at the volume–average, give a higher conventional

dressed ΩB0 as measured by wall observers. We use the range of Tytler et al. [175],

which sets the baryon-photon ratio in the range ηBγ = 4.6–5.6×10−10 to 95% confidence

level.

There are a number of other observational anomalies that may be resolved by

further analysis of the Fractal Bubble model, they are not of direct relevance here but

are outlined by Wiltshire [37].

5.2 Analysis

5.2.1 ΛCDM model

In order to present a comparison to our own results we calculate the fit of the ΛCDM

model to the Riess07 data set. First we require definitions of the observed quantities.

We use the standard definition of the redshift z,

1 + z ≡ λobserved

λemitted

, (5.1)

and distance modulus, µ,

µ ≡ m−M = 5 log10(dL) + 25 . (5.2)
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where m is the apparent magnitude and M is the absolute magnitude, and dL is the

luminosity distance in units of Mpc. For the flat ΛCDM model it is given by

dL =
c(1 + z)

H0

∫ z

0

dz′√
(1 + z′)2(1 + Ωm0z′)− (z′)2(2 + z′)ΩΛ0

, (5.3)

where ΩΛ0 is the fractional energy denisity of the cosmological constant with ΩΛ0 =

1−Ωm0 in the approximation that Ωradiation ¿ 1. We also define ∆µ = mmodel−mempty,

where mempty is the apparent magnitude for the Ωm = 0, Λ = 0 universe with the same

Hubble constant. The Ωm = 0, Λ = 0 universe is known as the Milne Universe.

We find a best-fit of χ2 = 158.75 for H0 = 62.59 km/sec/Mpc and Ωm = 0.342 for

the 182 data points of the Riess07 “gold data set”. The confidence levels for 1σ, 2σ

and 3σ are shown in figure 5.1.

Figure 5.1: 1σ, 2σ and 3σ confidence limits (oval contours) for fits of luminosity distances

of type Ia supernovae (SneIa) in the Riess07 gold data set [51] for the ΛCDM model

These values are not those quoted by Riess et al. [51] as they have made prior

assumptions of the value of H0, generally treating it as a nuisance parameter and not

explicitly stating the value. Different values appear to be used for different tests. It

appears that since 2005 Riess et al. favour values of the Hubble constant near the

WMAP value, H0 = 70.4+1.5
−1.6 km sec−1. Mpc−1. In particular, in reference [176] Riess

et al. chose a different Cepheid calibration, which involves a systematic subtraction
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of 0.32 mag from all the distance moduli in their data set. This re-calibration has

been disputed by the Hubble Key team of Sandage et al. [177], although more recently

support has come from van Leeuwen et al. [178]. Sandage et al. [177] determine a

value of the Hubble parameter, H0 = 62.3 ± 1.3 (random) ± 5.0 (systematic), which

differs from the values which best-fit the WMAP data within the FLRW model, given

in section 1.1, to 14%. Sandage et al. attempt to make as model–independent an

estimate as possible. We find good agreement with the Sandage et al. value here.

From the perspective of the Fractal Bubble model of Wiltshire [37], we should expect

an intrinsic variance in the Hubble parameter below the scale of apparent homogeneity,

and on average larger values of H0 within the Hubble bubble. Thus the above disputes

between astronomers would appear perhaps to partly involve questions of the scale

of averaging, as well as systematic issues relating to calibration of Cepheids. We will

adopt the Cepheid calibration of Sandage et al. on account of the fact it is a natural

choice theoretically in the Fractal Bubble model.

A recent paper by Li and Schwarz [179], which considers back–reaction in Buchert’s

scheme, gives observational evidence consistent with Wiltshire’s proposal [37]. In par-

ticular the average Hubble parameter has a maximum at the scale of the dominant

void fraction, 30h−1Mpc ' 45Mpc, measured by Hoyle and Vogeley [19], which then

decreases until the scale of homogeneity is reached. Fig. 5.2 from [179] shows this

graphically.

5.2.2 Fractal Bubble model with no back–reaction

Two years prior to releasing the details of the present Fractal Bubble model [37],

Wiltshire first introduced a crude approximation [36] in which the wall regions were

assumed to evolve in a Einstein–de Sitter fashion, and the volume–average geometry as

an open FLRW model. In this approximation, one is able to compare clock rates using

the same assumptions discussed in section 1.2.5. However, as there is no back–reaction

term it turns out that wall observers see no apparent acceleration.

While the approximation of [36] is merely a toy model, it is interesting to compare

it to data. One can then understand to what extent back–reaction effects contribute,
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Figure 5.2: The scale dependence of the normalized difference between the averaged Hubble

rate HD and its “global” value H0. Data is from Freedman et al. [180]. Although Freedman

et al. use a calibration of H0 = 72 km/s/Mpc, since the fractional Hubble variance is shown

the plot would be identical if Sandage et al.’s value for H0 was adopted. The dashed lines

are the expected statistical noise for a perfectly homogeneous and isotropic model. The solid

lines show the expected values between which data should be randomly scattered assuming

Buchert averaging and no clock rate variance.

and to what extent clock–rate variance contributes to the observable quantities.

We consider the case of no back–reaction, i.e, Q = 0 in (1.21) – (1.23), against

the Riess07 gold data set, originally presented in Carter et al. [181] for the Riess04

gold data set. Such a case, therefore, only takes into account of the differences in

identification of the various cosmological parameters of interest which arise from clock

rate variance and the subsequent dressing of parameters.

Within the no back–reaction approximation of [36], the observed quantities can be

found in closed form. The luminosity distance for the cosmological model is [36]

dL =
c(1 + z)(2 + Ω̃2

0
)

H0Ω̃0(2 + Ω̃0)


2 cosh η − 2− Ω̃0√

1− Ω̃0

sinh η


 , (5.4)

where H0 is the currently measured global average value of the Hubble constant, Ω̃0

is the equivalent of the bare density parameter, simply the density parameter of the
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open FLRW universe. It is related to the current dressed matter density parameter,

Ωm, according to

Ω̃0 =
6√
Ωm

sin

[
π

6
− 1

3
cos−1

√
Ωm

]
− 2 , (5.5)

and η is given by

cosh η = −1

2
+

(1− Ω̃0)(2 + Ω̃0) +
√

Ω̃0z[9Ω̃0z − 2Ω̃2
0
+ 16Ω̃0 + 4] + (Ω̃2

0
+ 2)2

2Ω̃0(z + 1)
. (5.6)

We find this gives a statistically favourable fit, for the 182 data points of the Riess07

“gold data set” we find a best-fit χ2 = 172.58 at H0 = 60.28 km/sec/Mpc and Ωm =

0.407. This represents a best-fit (χ2/degrees of freedom) < 1. The confidence levels

for 1σ, 2σ and 3σ are shown in figure 5.3.

Figure 5.3: 1σ, 2σ and 3σ confidence limits (oval contours) for fits of luminosity distances

of type Ia supernovae (SneIa) in the Riess07 gold data set [51] for the FB model.

5.2.3 Fractal Bubble model with back–reaction

We now consider the full theory of Wiltshire [37]. As already mentioned, the back–

reaction term can give apparent acceleration. This would be expected to allow a better

fit than the no back–reaction case as the observational data seems to support some
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acceleration, apparent or otherwise. The situation is somewhat more complex and

hence, so are the definitions of the cosmological parameters. We use the exact solution

given by Wiltshire [38],

(1− fv)
1/3 ā = fwi

1/3aw= ā0

[
(1− εi) Ω̄M0

]1/3
(

3
2
H̄0t

)2/3

, (5.7)

√
u(u + Cε)− Cε ln

(√∣∣∣∣
u

Cε

∣∣∣∣ +

√∣∣∣∣1 +
u

Cε

∣∣∣∣
)

=
Ω̄

1/2
k0

fv0
1/6

H̄0 (t + tε) , (5.8)

where u ≡ fv
1/3ā/ā0 = fvi

1/3av/ā0, Cε ≡ εiΩ̄M0fv0
1/3/Ω̄k0, fwi = 1 − fvi, and εi is a

small integration constant appearing in the integral constraint

ΩMw
≡ (1− εi) γ̄2Ω̄M

1− fv

= 1, (5.9)

which relates the bare matter density parameter, Ω̄M(t), to the void fraction, fv(t),

and mean lapse function, γ̄(t), at all times. The value of εi,

εi = 1− 1− fvi

γ̄2
i Ω̄i

. (5.10)

is determined by initial values of the void fraction, fvi, bare matter density, Ω̄i, and

mean lapse function γ̄i, at the time of last scattering. These are such that fvi ¿ 1,

1 − Ω̄i ¿ 1 and γ̄i − 1 ¿ 1. The parameters Ω̄k0 and tε are related to the other

parameters by the relations

√
(1− εi)Ω̄M0(1− fv0) +

√
(Ω̄k0 + Ω̄M0εi)fv0 = 1 . (5.11)

and

Ω̄
3/2
k0

fv0
1/2

H̄0(τ0 + tε) =
√

Ω̄k0(Ω̄k0 + Ω̄M0εi)− Ω̄M0εi ln

[√∣∣∣∣
Ω̄k0

Ω̄M0εi

∣∣∣∣ +

√∣∣∣∣1 +
Ω̄k0

Ω̄M0εi

∣∣∣∣
]
,

(5.12)

where the age of the universe in volume–average time is

t0 =
2

3H̄0

√
1− fv0

(1− εi)Ω̄M0

,

on account of (5.7).

The expansion age in terms of wall time, τ , relevant to observers in bound systems,

is given by performing the integral τ =
∫ t

0
dt′γ̄(t′), where the mean lapse function is

given by

γ̄ = 1− fv + fvh
−1
r . (5.13)
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Here fv(t) is defined implicitly by (5.7) and (5.8) and

hr(t) ≡ Hw

Hv

=

√√√√ (1− εi)Ω̄M0fv0
1/3fv(

Ω̄k0u + Ω̄M0fv0
1/3εi

)
(1− fv)

. (5.14)

Observers in bound systems measure a cosmological redshift, z, given by

z + 1 =
ā0γ̄

āγ̄
0

(5.15)

and a luminosity distance

dL =
ā0

γ̄
0

(1 + z)rw, (5.16)

where

rw = γ̄ (1− fv)
1/3

∫ t0

t

dt′

γ̄(t′)(1− fv(t′))1/3ā(t′)
, (5.17)

One can define a conventional angular diameter distance DA = dL/(1 + z)2.

Of the four independent parameters {H̄0, εi, Ω̄M0, fv0}, two can be eliminated through

the choice of physically realistic priors at the surface of the last scattering, which

for bound system observers occurs at a redshift zi ' 1100. In particular we choose

1 − hri ¿ 1 so that the initial velocity dispersion of underdense void perturbations is

small relative the dominant “wall” regions which average to critical density. We also

require that fvi ¿ 1 to the extent that the overall density contrast of our present past

horizon volume H at that epoch is

(
δρ

ρ

)

Hi

= fvi

(
δρ

ρ

)

vi

∼−10−6 to− 10−5,

once a realistic value for the underdense density contrast of the void regions is specified,

based on expectations from the variance in cold dark matter density perturbations

consistent with the CMB at last scattering. At last scattering both photons and baryons

have perturbations of order δρ/ρ ∼ 10−5. However, cold dark matter perturbations

which are largely responsible for the temperature fluctuations at last scattering, via

the dominant Sachs–Wolfe effect, can have δρ/ρ ∼ 10−3 typically. In practice, the

existence of a tracker solution, found in reference [38], means that the properties of

cosmological solutions are insensitive to variations of hri and fvi within the range of

physically realistic priors. Our plots in figures 5.4 and 5.5 use hri = 0.99999 and

fvi = 10−4.
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Once we specify hri and fvi, then by (5.13), γ̄i = 1− fvi + fvih
−1
ri , while Ωi is fixed

in terms of εi by (5.10). The integral constraint (5.9), combined with (5.15) gives

1− fv0 =
(1− εi)Ω̄M0γ̄

2
i fvi

2/3Ω̄2
k0

(1 + zi)2fv0
2/3A2

i

(5.18)

where zi ' 1100, and

Ai ≡ fvi
1/3Ω̄k0āi

fv0
1/3ā0

= Ω̄M0

[
fvi(1− εi)

(1− fvi)h2
ri

− εi

]
,

where we have used (5.14) to express ā0/āi in terms of hri and other parameters in the

last step. We evaluate both (5.7) and (5.8) at the present epoch τ0 and at the time of

last scattering, ti, and compare them at each epoch to eliminate τ0 and ti. We then

further eliminate tε from the two resulting expressions to also obtain

√
Ai(Ai + Ω̄M0εi)− Ω̄M0εi ln

(√
Ai

Ω̄M0|εi|
+

√∣∣∣∣1 +
Ai

Ω̄M0εi

∣∣∣∣
)
− 2

3

√
(1− fvi)A3

i

fv0(1− εi)fviΩ̄M0

=
√

Ω̄k0(Ω̄k0 + Ω̄M0εi)− Ω̄M0εi ln

(√
Ω̄k0

Ω̄M0|εi|
+

√∣∣∣∣1 +
Ω̄k0

Ω̄M0εi

∣∣∣∣
)
− 2

3

√
(1− fv0)Ω̄3

k0

fv0(1− εi)fviΩ̄M0

(5.19)

For fixed zi, fvi and hri then combination of (5.11), (5.18) and (5.19) determines two

of the remaining parameters {H̄0, εi, Ω̄M0, fv0}. It makes most sense to take these to

be the bare Hubble constant H̄0 and the present epoch void fraction fv0. However, the

dressed Hubble constant and conventional dressed density parameter are those which

compare most directly to parameters we are familiar with, and are therefore used in

figures 5.4 and 5.5. On account of the existence of the tracker solution,

H0 '
4fv0

2 + fv0 + 4)H̄0

2(2 + fv0)

and

ΩM0 = γ̄3
0
Ω̄M0 ' 1

2
(1− fv0)(2 + fv0).

From [37] we also have the proper distance to the comoving scale of the sound

horizon,

D̄s =
ā(t)

ā0

c√
3 H̄0

∫ x̄dec

0

dx̄√
(1 + 0.75 Ω̄B0x̄/Ω̄γ0)(Ω̄M0x̄ + Ω̄R0)

, (5.20)
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where x̄ = ā/ā0, so that x̄dec = γ̄−1
0

(1+zdec)
−1, with zdec being the redshift of decoupling.

The fractional densities Ω̄B, Ω̄γ and Ω̄R are the bare parameters for baryons, photons

and radiation respectively. At the present epoch observation indicates Ω̄R0, Ω̄γ0 ¿ 1.

From (5.16) and (5.17) we have the angular diameter of the sound horizon at

decoupling

dA dec
=

ā0rw dec

γ̄
0
(1 + zdec)

= ādecrw dec. (5.21)

This, along with (5.20), allows us to calculate the observed angular scale, δs = D̄s/dA dec
.

Evolving (5.21) forward to the present epoch gives the expected value of the BAO scale.

For the Riess07 “gold data set” [51] of SneIa we find that for 182 data points and

two degrees of freedom the best–fit χ2 = 162.7, i.e., a χ2 of approximately 0.9 per

degree of freedom, which is a good fit. While a marginally lower χ2 = 158.7 is obtained

for the best–fit flat ΛCDM model the difference is not significant. Indeed, on statistical

grounds a χ2 of about 1.0 per degree of freedom is to be expected. We have followed

the procedures adopted by Riess et al. [51] as closely as possible, and conclude that

the FB model fits the Riess07 data to a degree which is statistically indistinguishable

from the spatially flat ΛCDM model.

This is supported by a Bayesian model comparison of the FB model against a flat

ΛCDM model with flat priors 55 ≤ H0 ≤ 75 km sec−1 Mpc−1 and 0.01 ≤ ΩM0 ≤ 0.5.

This gives a Bayes factor of 1.3 in favour of the FB model, a margin which is “not

worth more than a bare mention” [172] or “inconclusive” [182].

In Fig. 1 we display the residual difference ∆µ = µFB − µempty, in the standard

distance modulus, µ = 5 log10(dL)+25, of the best–fit FB model from that of a coasting

Milne universe of the same Hubble constant, H0 = 61.7 km sec−1 Mpc−1, and compare

the theoretical curve with binned data from the Riess07 gold data set. Apparent

acceleration occurs for positive residuals in the range, z <∼ 0.9. It should be noted that

the exact range of redshifts corresponding to apparent acceleration also depend on the

value of the Hubble constant of the Milne universe distance modulus used to compute

the residual: for example, if the value of H0 = 60.7 km sec−1 Mpc−1 (2σ lower bound)

is assumed, then the first data bin residual is entirely negative, whereas if the value

H0 = 62.8 km sec−1 Mpc−1 (2σ upper bound) is assumed, then the same first data bin
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residual straddles the ∆µ = 0 axis. To take this into account, in figure 5.4 we show the

Riess07 “gold data set” binned and displayed for the two 2σ values including errors,

H0 = 60.7 km sec−1 Mpc−1 and H0 = 62.8 km sec−1 Mpc−1, as whiskers and coloured

bars where it overlaps the best–fit values. The black box indicates the binned data

with errors for the best–fit value, H0 = 61.7 km sec−1 Mpc−1. The blue bars indicate

an overlap between the lower 2σ limit, H0 = 60.7 km sec−1 Mpc−1 (green) and the

upper 2σ limit, H0 = 62.8 km sec−1 Mpc−1 (red).

A general feature of the FB model is that the magnitude of the gradient of the

theoretical residual of Fig. 1 versus redshift is less than that for comparable ΛCDM

models. This reflects the fact that the distance modulus approaches that of a Milne

universe at late times, regardless of the observer, and “acceleration” is an apparent

effect which relates to clock–rate variance between bubble walls and the volume–average

in voids. A volume–average observer in fact detects no apparent acceleration, and

determines a volume–average deceleration parameter for which q̄ → 0+ at late times.

For a wall observer the effective dressed deceleration parameter obeys q → 0− at late

times.

It is worth noting the effect of the back–reaction. For the best–fit value, one can

see from figure 5.4 that the back–reaction causes apparent acceleration for observers

in bound systems. While this does not occur when back–reaction is ignored the effects

appear relatively minor regarding the statistical fit of χ2. The case including back–

reaction, however, appears more physically relevant and does show a slightly better fit

to the data. The observational data supporting acceleration is also fairly strong, indi-

cating a model with cosmic acceleration, apparent or real, has more physical relevance.

Statistical confidence limits for the SneIa data are displayed as the oval contours in

the centre of Fig. 2, in the (H0, ΩM0) parameter space. The dressed density parameter

is used here, since it is the one whose numerical value is likely to be closest to that of a

FLRW model, and is thus most familiar. Since the tracker solution approximation [38]

is very reliable at late epochs, ΩM0 is related to the present void volume fraction by

ΩM0 ' 1
2
(1−fv0)(2+fv0), and to the bare density parameter by ΩM0 = 1

8
(2+fv0)

3ΩM0.

In Fig. 2 we also overplot parameter ranges for which two independent cosmological

tests have been applied. The first test is the effective angular diameter of the sound
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horizon, which very closely correlates with the angular scale of the first Doppler peak

in the CMB anisotropy spectrum. It is often stated that the angular position of the

first peak is a measure of the spatial curvature of the universe. However, this deduction

relies on the assumption that the spatial curvature is the same everywhere, appropriate

for the FLRW models. In the present model there are spatial curvature gradients,

and the calculation must be revisited from first principles. Volume–average negative

spatial curvature, which is actually consistent with other tests on the CMB that involve

geodesic mixing [183, 184], can nonetheless be consistent with our local observation of

the angular scale of the first peak [37].

Ideally we should recompute the spectrum of Doppler peaks for the FB model.

However, this requires considerable effort, as the standard numerical codes have been

written solely for FLRW models, and every step has to be carefully reconsidered. This

task is left for future work. The test that we apply here is to ask whether parameters

exist for which the effective angular diameter scale of the sound horizon matches the

angular scale of the sound horizon, δ = 0.01 rad, of the ΛCDM model, as determined

by WMAP [6]. Since there is no change to the physics of recombination, but just an

overall change to the calibration of cosmological parameters, this is entirely reasonable.

In Fig. 2 we plot parameter ranges which match the δ = 0.01 rad sound horizon

scale to within 2%, 4% and 6%. These limits have been arrived at assuming a volume–

average baryon–to–photon ratio in the range ηBγ = 4.6–5.6× 10−10 adopted by Tytler

et al. [175] prior to the release of WMAP1. The 2% contour would roughly correspond

to the 2σ limit if the WMAP uncertainties for the ΛCDM model are maintained. This

is reasonable as the physics at recombination is identical for the two models. This

can only be confirmed by detailed computation of the Doppler peaks, therefore the

additional levels have been chosen cautiously. With this range it is possible to achieve

concordance with lithium abundances, while also better fitting helium abundances. In

the FB calibration, on account of the difference between the bare and dressed density

parameters, a bare value of Ω̄B ' 0.03 nonetheless corresponds to a dressed value

ΩB ' 0.08, and an overall ratio of baryonic matter to non–baryonic dark matter of

about 1:3, which is larger than in the ΛCDM model. This would indicate sufficient

baryon drag to accommodate the ratio of the first two peak heights which has proved
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problematic for the ΛCDM model. While this suggestion can only be confirmed by

the detailed recomputation of the Doppler peaks in the FB model, on the basis of

well–established underlying physics, we expect concordance is highly likely.

The final set of contours plotted in Fig. 2 relate to the independent test of the

effective comoving scale of the baryon acoustic oscillation (BAO), as detected in galaxy

clustering statistics [1]. Similarly to the case of the angular scale of the sound horizon,

given that we do not have the resources to analyse the galaxy clustering data directly,

we begin here with a simple but effective check. In particular, since the dressed

geometry (1.35) does provide an effective almost–FLRW metric adapted to our clocks

and rods in spatially flat regions, the effective comoving scale in this dressed geometry

should match the corresponding scale of 104h−1Mpc seen in galaxy clustering [1]. We

therefore plot parameter values which match this scale to within 2%, 4% or 6%.

The best–fit cosmological parameters, using SneIa only, are H0 = 61.7+1.2
−1.1 km sec−1 Mpc−1

and fv0 = 0.76+0.12
−0.09, with 1σ uncertainties. The values of the mean lapse function,

bare density parameter, conventional dressed density parameter, mass ratio of non–

baryonic dark matter to baryonic matter, bare Hubble parameter, effective dressed

deceleration parameter and age of the universe measured in a galaxy are respectively:

γ̄0 = 1.381+0.061
−0.046; Ω̄M0 = 0.125+0.060

−0.069; ΩM0 = 0.33
+0.11
−0.16; (Ω̄M0 − Ω̄B0)/Ω̄B0 = 3.1+2.5

−2.4;

H̄0 = 48.2+2.0
−2.4 km sec−1 Mpc−1; q = −0.0428+0.0120

−0.0002; τ0 = 14.7+0.7
−0.5 Gyr. Statistical

uncertainties from the sound horizon and BAO tests cannot yet be given, but should

significantly reduce the bounds on fv0, ΩM0 etc.

One striking feature of Fig. 2 is that even if the SneIa contours are disregarded, then

the parameters which fit the two independent tests relating to the sound horizon and

the BAO scale agree with each other to the accuracy shown for values of the Hubble

constant which include the value of Sandage et al. However, they do not agree for the

values of H0 greater than 70 km sec−1 Mpc−1 which best–fit the WMAP data [6, 7]

with the FLRW model.

The value of the Hubble constant quoted by Sandage et al. [177] has been contro-

versial, given the 14% difference from values which best–fit the WMAP data with

the ΛCDM model [6, 7]. However, the WMAP analysis only constitutes a direct

measurement of CMB temperature anisotropies; the determination of cosmological
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parameters involves model assumptions. We have removed the assumptions of the

FLRW model, in an attempt to model the universe in terms of the distribution of

galaxies that we actually observe, with an alternative proposal to averaging consistent

with general relativity. Applied to the angular diameter of the sound horizon and the

BAO scale this leads to different cosmological parameters: ones that concord with our

SneIa analysis, and also the independent measurement of Sandage et al. [177].

5.3 Discussion

Both cases of the Fractal Bubble model analysed here fit the SneIa data very well.

While the ΛCDM model has a slightly lower best–fit χ2 value to the SneIa, the Bayesian

analysis shows that the fit to Riess06 gold data set is indistinguishable statistically

between the two models.

Our value of the Hubble constant corroborates the value of Sandage et al. This is

a significant result given that it had been widely thought that values of the Hubble

constant derived from the WMAP date did not accord with Sandage’s value. However,

our results show that the very same scales for the angular scale of the sound horizon and

the baryon oscillation, which are key to the WMAP analysis, lead to different results

once the model dependent assumptions of the FLRW model are removed. Naturally

a detailed analysis of the Doppler peaks in the Fractal Bubble model still needs to be

performed.

A systematic present epoch variation of 38% in clock rates between bound systems

and the volume average is found for the Fractal Bubble model with back–reaction best–

fit to the SneIa. This seems a large value, given our familiarity of large gravitational

time dilation effects occurring only for extreme density contrasts, such as with black

holes. However, in cosmology we are dealing with a circumstance in which intuition

based on static Newtonian potentials may fail, because spacetime itself is dynamical

and the definition of gravitational energy is extremely subtle. The normalization of

clock rates in bound systems relative to expanding regions can accumulate significant

differences, given that almost the entire age of the universe has been available for this

to occur.
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The Fractal Bubble model with back–reaction gives a best–fit void fraction of fv0 =

0.76+0.06
−0.05. The observed universe at the present epoch displays an inhomogeneous

structure on scales of less than 100–300 Mpc [1, 2]. Some 40–50% of the volume [19] of

the universe at the present epoch is in voids of order 30h−1Mpc in diameter, h being

the dimensionless Hubble parameter, H0 = 100h km sec−1 Mpc−1. If larger [185] and

smaller [186] voids are taken into account, the present universe can be said to be “void–

dominated”. The exact fraction, of order 70–90% perhaps, depends on how voids are

defined. This is in good agreement with the value of fv0 found for the best–fit values1.

The combination of best–fit cosmological parameters that arises is particularly

interesting. The present void volume fraction, fv0, is identical to the value claimed

for the dark–energy density fraction, ΩΛ0, in the ΛCDM model with WMAP [7]. If the

FB model is closer to the correct description of the actual universe, then in trying to fit

a FLRW model, we appear to be led to parameters in which the cosmological constant

is mimicking the effect of voids as far as the WMAP normalization to FLRW models

is concerned. This it does imperfectly, since for a flat ΛCDM model ΩM0 = 1 − ΩΛ0,

with the result that the best–fit value of ΩM0 normalized to the CMB does not match

the best–fit value of ΩM0 for SneIa with the FLRW model, nor for other tests which

directly probe ΩM0. In particular, it has been recently noted that the values of the

normalization of the primordial spectrum σ8∼ 0.76 and matter content ΩM0∼ 0.24

implied by WMAP3 are barely compatible with the abundances of massive clusters

determined from X–ray measurements [187]. For the FB model, by contrast, the best–

fit dressed density parameter, ΩM0 = 0.33+0.06
−0.08, does match the range preferred in direct

estimations of the conventional matter density parameter.

The age of the FB universe for observers in galaxies is one billion years more than

the concordance ΛCDM model. The expansion age at large redshifts is increased by

a greater relative fraction, allowing somewhat more time for structure formation, as

would be consistent with the observations of old structures at large redshifts [188,

189]. Naturally much work remains to be done. The first tasks include the detailed

computation of the CMB Doppler peaks; the calculation of the integrated Sachs–Wolfe

1In the Fractal Bubble model the void fraction is technically the fraction of the volume that is not

inside finite infinity regions; which may be somewhat difficult to measure independently.
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effect; and detailed tests to check whether the suggested resolution [37] of the ellipticity

anomaly [183, 184] agrees quantitatively with what is observed.
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Figure 5.4: The difference in the distance modulus, µ = 5 log10(dL) + 25, with dL in units

Mpc, of the FB model with H0 = 61.7 km sec−1 Mpc−1, ΩM0 = 0.326 from that of an

empty coasting Milne universe, with the same value of the Hubble constant. The Riess07

“gold data” [51] set of 182 SneIa is binned using the criterion ni∆zi = 5.8, where n is

the number of data points, and ∆zi the width, of the ith bin. The first bin boundary

is set at z = 0.023 as “Hubble bubble” points with z ≤ 0.023 are excluded in Riess07

data set. Our bins are very slightly different to those used in Fig. 6 of Riess et al. [51]:

in particular, with our choice the single outlier point at z = 1.755, falls in its own bin.

This point which falls below the theoretical curve is not shown here, but is included in the

χ2 analysis. We use the original distance moduli of the Riess07 Gold data set reported

at http://braeburn.pha.jhu.edu/∼ariess/R06/sn sample, without the suggested systematic

subtraction [176] of 0.32 mag, as we follow the Cepheid calibration of Sandage et al. [177].

The boxes show the standard statistical errors for the binned data using the reported

uncertainties[51], which already accounts for luminosity corrections in the MLCS2K2 re-

duction [40]. The whiskers indicate how the residuals move relative to the horizontal axis for

the 2σ limits on H0 with ΩM0 = 0.326 fixed: red corresponds to H0 = 62.8 km sec−1 Mpc−1

and green to H0 = 60.7 km sec−1 Mpc−1. The overlap in these two regions has been coloured

blue.
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Figure 5.5: 1σ, 2σ and 3σ confidence limits (oval contours) for fits of luminosity distances

of type Ia supernovae (SneIa) in the Riess07 gold data set [51] are compared to parameters

within the (Ωm,H0) plane which fit the angular scale of the sound horizon δ = 0.01 rad

deduced for WMAP [6, 7], to within 2%, 4% and 6% (contours running top–left to bottom–

right); and also to parameters which fit the effective comoving baryon acoustic oscillation

(BAO) scale of 104h−1Mpc observed in galaxy clustering statistics [1], to within 2%, 4% and

6% (contours running bottom–left to middle–right).
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