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Abstract

The main focus of many agricultural, ecological and environmental studies is to develop well designed,
cost-effective and efficient sampling designs. Ranked set sampling (RSS) is one of those sampling methods
that can help accomplish such objectives by incorporating prior information and expert knowledge to the
design. In this thesis, new RSS schemes are suggested for efficiently estimating the population mean. These
sampling schemes can be used as cost-effective alternatives to the traditional simple random sampling (SRS)
and RSS schemes. It is shown that the mean estimators under the proposed sampling schemes are at least as
efficient as the mean estimator with SRS. We consider the best linear unbiased estimators (BLUEs) and the
best linear invariant estimators (BLIEs) for the unknown parameters (location and scale) of a location-scale
family of distributions under double RSS (DRSS) scheme. The BLUEs and BLIEs with DRSS are more
precise than their counterparts based on SRS and RSS schemes. We also consider the BLUEs based on DRSS
and ordered DRSS (ODRSS) schemes for the unknown parameters of a simple linear regression model using
replicated observations. It turns out that, in terms of relative efficiencies, the BLUEs under ODRSS are
better than the BLUEs with SRS, RSS, ordered RSS (ORSS) and DRSS schemes.

Quality control charts are widely recognized for their potential to be a powerful process monitoring tool
of the statistical process control. These control charts are frequently used in many industrial and service
organizations to monitor in-control and out-of-control performances of a production or manufacturing process.
The RSS schemes have had considerable attention in the construction of quality control charts. We propose
new exponentially weighted moving average (EWMA) control charts for monitoring the process mean and
the process dispersion based on the BLUES obtained under ORSS and ODRSS schemes. We also suggest an
improved maximum EWMA control chart for simultaneously monitoring the process mean and dispersion
based on the BLUEs with ORSS scheme. The proposed EWMA control charts perform substantially better
than their counterparts based on SRS and RSS schemes. Finally, some new EWMA charts are also suggested
for monitoring the process dispersion using the best linear unbiased absolute estimators of the scale parameter

under SRS and RSS schemes.
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Preface

This thesis is a collection of research articles on improvements in ranked set sampling (RSS). All of the
chapters have been either published or accepted for publication in different international journals, including
Environmetrics, Journal of Applied Statistics, Communications in Statistics-Theory and Methods, and Quality
and Reliability Engineering International. Since each chapter is an independent research article focusing on
RSS, there are some repetitions in the form of RSS methods, literature review and notations.

The outline of the thesis is as follows: In Chapter 1, we propose a cost-effective sampling scheme, named
partial RSS (PRSS), for estimating the population mean, median and variance. The PRSS scheme selects
samples using both simple random sampling (SRS) and RSS schemes, and thus reduces the cost of ranking.
In Chapter 2, we extend the work on PRSS, and propose a mixed RSS (MxRSS) scheme, as a cost-effective
alternative to the RSS scheme, for estimating the population mean and median. The MxRSS scheme
encompasses both SRS and RSS schemes, and it helps in selecting more representative samples from the
parent population. Under MxRSS scheme, there are more possibilities to select a sample than those with
the PRSS scheme. It is shown that the MxRSS scheme, generally, provides more efficient mean and median
estimators than those with SRS and PRSS schemes. Chapter 3 further extends this work, and suggests a new
paired double RSS (PDRSS) scheme, as a cost-effective alternative to the double RSS (DRSS) scheme, for
estimating the population mean. The mean estimator under PDRSS scheme is at least as efficient as the
mean estimator based on RSS. Note that in Chapter 3 we use the notation “PRSS” for paired RSS scheme,
and it should not be confused with the notation of the partial RSS (PRSS) scheme used in Chapters 1 and 2.

In Chapter 4, we derive the best linear unbiased and invariant estimators for the unknown parameters
(location and scale) of a location-scale family of distributions under DRSS scheme. Chapter 5 proposes the
best linear unbiased estimators (BLUEs) for the unknown parameters of a simple linear regression model
with replicated observations using DRSS and ordered DRSS (ODRSS) schemes.

In Chapter 6, we suggest new exponentially weighted moving average (EWMA) control charts for
monitoring the process mean and the process dispersion using the BLUESs (location and scale) obtained under
ordered RSS (ORSS). In Chapter 7, we extend the work on ORSS scheme, and suggest an improved maximum
EWMA control chart for simultaneously monitoring the process mean and dispersion. Chapter 8 extends the
work on ODRSS scheme, and proposes new EWMA control charts based on the BLUESs (location and scale)

using ODRSS for monitoring the process mean and the process dispersion. In Chapter 9, we suggest new
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EWMA control charts based on the best linear unbiased absolute estimators of the scale parameter under

SRS and RSS schemes for monitoring the process dispersion.



Chapter 1

Partial Ranked Set Sampling Design

This chapter appeared in:
Haq, A., Brown, J., Moltchanova, E., Al-Omari, A.I., 2013, Partial ranked set sampling design,
Environmetrics, 24(3), 201-207.

In many environmental studies, the main focus is on observational economy, that is, to obtain data on
the basis of cost-effective and efficient sampling methods. In this chapter, we propose a partial ranked set
sampling (PRSS) method for estimation of population mean, median and variance. On the basis of perfect
and imperfect rankings, Monte Carlo simulations from symmetric and asymmetric distributions are used to
evaluate the effectiveness of the proposed estimators. It is found that the estimators under PRSS are more
efficient than the estimators based on simple random sampling. The procedure is illustrated with a case

study using a real data set

1.1 Introduction

In many studies where sampling is used, such as environmental management, ecology, sociology and agriculture,
exact measurement of a selected unit is either difficult or costly and time-consuming. However, the ranking
of a small set of selected units can be carried out easily either by visual inspection with respect to the study
variable or on the basis of auxiliary variable. For example, hazardous waste sites with different levels of
contamination can be ranked by a visual inspection of soil discoloration, whereas the actual measurements
of toxic chemicals and quantifying their environmental impact is very costly. McIntyre (1952) proposed
a method, later called ranked set sampling (RSS), for estimating mean pasture and forage yields when
measurement is costly. Takahasi and Wakimoto) (1968) derived the statistical theory of the RSS procedure.
Dell and Clutter| (1972) showed that under imperfect ranking, the sample mean remains an unbiased estimator

of the population mean, but ranking should be better than at least a random ordering. As mentioned by
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Stokes (1977)), the concomitant variables can be used to judge the ranks of the study variable. For a detailed
review and bibliography on RSS, see [Patil (1995) and Kaur et al.| (1995)). For some real applications of RSS,
see [Yu and Lam| (1997)), |Al-Saleh and Al-Shrafat| (2001)), Al-Saleh and Al-Hadrami| (2003), |Al-Saleh and
Al-Omari| (2002)), [Husby et al.| (2005)), Chen/ (2007)), [Wang et al.| (2009), Ozturk (2011), Samawi (2011) and
references therein.

Under the RSS scheme, the experimenter selects m random samples, each of size m, from the target
population. The units within each sample are ranked visually without actual measurements. This may be
difficult when the data arrive in batches of varying sizes or when the ranking is difficult and results in large
inaccuracies or is time-consuming. An initial sample of m? experimental units under RSS produces the final
sample of m units.

In this chapter, we propose a cost-effective sampling method, namely partial ranked set sampling (PRSS)
design. This design provides flexibility to the experimenter in selecting the sample when it is either difficult
to rank the units within each set with full confidence or due to non-availability of experimental units. Under
the PRSS scheme, the experimenter selects A units using simple random sampling (SRS) and B units using
the RSS, producing the final sample of size m = A + B units. It thus requires less sampling units and less
ranking than the RSS and proves to be more efficient than SRS.

The rest of the chapter is organized as follows: In Section the RSS and PRSS methods are described.
Estimation of the population mean is considered in Section In Section the PRSS is considered for
median and variance estimation. An application to real data set is given in Section Finally, we summarize

our results in Section [L.6l

1.2 Sampling methods

In this section, we explain the RSS and PRSS procedures.

1.2.1 Ranked set sampling

The RSS can be described as follows: identify m? units from the target population. Randomly allocate these
units into m sets, each of size m. The units within each set are ranked visually or by any inexpensive method
with respect to the variable of interest. From the first set of m units, the smallest ranked unit is measured;
the second smallest ranked unit is measured from the second set of m units. The process continues until the
mth smallest ranked unit is measured from the last set. The process can be repeated r number of times to
obtain a large sample of size mr.

Let the study variable X has a probability density function (PDF) f(z) and cumulative distribution

2, Let X1,Xa,...,Xm be a simple random sample of size m

function F(z), with mean p and variance o
drawn from f(z). The SRS estimator of p is Xgrs = % >, X; with variance Var(Xgsgrs) = %2 Consider
X111, X192y o0y X1my, X21, X292, eoes Xamy eeey Xim1, X2y ooy Xmm be m independent simple random samples each

of size m. Let Xj(1.m), Xi(2:m)>, --» Xi(m:m) Tepresent the order statistics of the ith sample. Using RSS scheme,
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the measured RSS units are denoted by Xi(1.m), X2(2:m)) -++s Xm(m:m)- Let g(im)(z) be the PDF of the ith

order statistic, i.e., X(3.m), ¢ = 1,2, ...,m, from a random sample of size m. It can be shown that

9@i:m) (x) = m(?__ll) {F()} {1 - F(z)}™'f(z), —oo <z < 400,

see David and Nagaraja/ (2003)).

The mean and variance of X ;.rm), respectively, are

[o0)

[h(izm) = / Tg(imy(z)dz and of,.y = / (@ = pi(izm)) 9 (iem) ().

—00

The RSS estimator of the population mean is
_ 1 &
Xgrss = m ;X’i(i:m)a
=

with variance

Var XRSS) ZO'(.L m) = m2 Z(/"'(z m) — #)2

1.2.2 Partial ranked set sampling

The PRSS scheme is a mixture of both SRS and RSS designs. We propose this design for use when the
experimenter is unable to inspect the number of units that are required for a balanced ranked set sample or
when inspection cost per unit is high. The PRSS scheme requires fewer identified units as compared with a
ranked set sample, and at the same time, it provides more precise estimates than the commonly used SRS
scheme. Thus, PRSS scheme helps in reducing the total cost and expenditure that is involved in sampling.

In order to select a partial ranked set sample of size m, the following steps are carried out:

Step 1: Define a coefficient k such that k& = [am], where 0 < a < 0.5. Here, [t] represents the largest integer
value less than or equal to .

Step 2: Select 2k simple random samples each of size one from the parent population. In order to select the
remaining m — 2k units, select m — 2k sets each of size m from the parent population. Rank the
units within each set and select the ith ranked unit of the ith sample, for i = k+1,...,m — k. This
completes one cycle of a partial ranked set sample of size m.

Step 3: The above Steps 1 and 2 can be repeated r times in order to select a partial ranked set sample of

size n = mr.

The total number of units that were involved in selecting a partial ranked set sample of size m are m?—2k(m—1).

Note that with £ = 0, PRSS is equivalent to RSS.
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1.3 Estimation of population mean

Let X11, X129, ... X1m, X21, X292, ey Xomy eoes X1y Xm2s ooy Xmm b€ m independent simple random samples
each of size m. Apply the PRSS procedure on these m samples, as explained in Section The PRSS

estimator of population mean is defined as

XPRSS—* (Z-X + Z Xz(zm)+ Z X)

i=k+1 i=m—k+1

with variance

- 2ko? 1
Var(XPRSS) = e + m2 Z 0'(21-:m)-
i=k+1

For a symmetric distribution, we have p(;.m) + U(m—it+1:m) = 2p and a(zi:m) = a'(zm_z. +1im) fori=1,2,...,m,
see David and Nagarajal (2003). Then, it is easy to show E(Xprss) = K, Var(X'pRss) = Var(Xgss) +
% Zle Ca a(z m)) Also, Var(Xprss) < Var(Xsgs) if and only if o2 > p— 2k S k+1 0(z om)*

For a symmetric population, the relative efficiency (RE) of Xprss with respect to Xggs is
Var(X'SRs) mo?2

RE(Xprss, Xsrs) = o 5
(Xprss, Xsrs) Va.I‘(XPRSS) 2k0’2+21—k+1 U(zm)

Similarly, for an asymmetric population, the RE will be

Var(Xsrs) mo?

MSE(Xprss)  2ko? + 3 mk ) 02,y + MHE(Xprss — )}’

RE(Xprss, Xsrs) =

where MSE is the mean squared error.

1.3.1 Simulation study for mean estimation

In this section, a simulation study is conducted to investigate the efficiency of PRSS for estimating the
population mean with m = 4,5,6,7. The RE is used as a performance criterion for estimators. We
consider symmetric distributions: Normal (0,1), Uniform (0,1), Logistic (0,1) and Beta (6,6) and asymmetric
distributions: Exponential (1), Weibull (0.5,1), Lognormal (0,1) and Gamma (0.5,1). The sampling schemes
(SRS and PRSS) are based on the same sample size. Under each sampling scheme, for given values of m and
k, from each distribution, one million estimates of u and their MSEs are estimated. The estimated REs are

calculated and displayed in Figure
(a) Univariate case

For all the distributions considered in this study, the mean estimators based on PRSS are more efficient
than the estimators from SRS (RE > 1). It is observed that as the value of m increases, the RE of mean
estimator based on PRSS also increases and vice-versa. For symmetric distributions, with fixed m, the RE

decreases as the value of k increases. In asymmetric distributions, the RE increases as m increases, but at
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Figure 1.1: REs of PRSS with respect to SRS for estimating population mean under
perfect and imperfect rankings

the same time, it also depends on the value k. The RSS mean estimator is more precise than the PRSS

mean estimator because it uses more numbers of units. It is of interest to note that when the underlying

distribution is asymmetric like Weibull (0.5,1) or Lognormal (0,1), the RE of PRSS mean estimator is higher

as compared with the RSS mean estimator. From Section we have

_ — 1 . &
MSE(Xprss) = Var(Xgrss) + W{&rz — (0f1:m) + Ofm:my)} + {Bias(Xprss)}?, for k=1.

Note that for some highly skewed distributions, 202 < (0(21:m) + a%m:m)), as a result of which MSE(Xprss) <

Var(Xgrss). Moreover, the PRSS scheme uses fewer units to achieve higher efficiency.

(b) Bivariate case

In most of the real life situations, it is difficult to rank the study variable visually or it is too costly. In such

environments, it is beneficial to use any auxiliary variable that is highly correlated with the study variable.
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In order to investigate the performances of the estimators under the PRSS design, we assume that both the

study and the auxiliary variables follow a standard bivariate normal distribution, having PDF:

1 (x% — 2pzy + y?) }
T,Y) = ——F——=€Xp — , —oo<z,y<+0o0.
fX,Y( y) 91/ = 52 p{ 2(1 _ p2) Yy

Different values of the correlation coefficient, p = 0.99,0.80,0.50,0.20, were considered. Here, we have
assumed that the ranking on the auxiliary variable Y is perfect, whereas there are errors in ranking the study
variable X. On the basis of extensive Monte Carlo simulations, the REs are calculated and displayed in
Figure

We can conclude that even when the ranking of the study variable is imperfect, PRSS is more efficient
than SRS in estimating the population mean of X. Also, the RE increases with an increase in the value of m,
whereas it is a decreasing function of k. The value of p plays a key role in the performance of the PRSS
mean estimator. As the value of p increases, the efficiency of PRSS estimator also increases as compared

with the estimator under SRS.

1.4 Estimation of population median and variance

The median is often considered as a more suitable measure of location than the mean when the underlying
population is highly skewed such as income, expenditure and production. In this section, we compare the
estimators of population median and variance on the basis of SRS, RSS and PRSS methods.

We use Monte Carlo simulations from both symmetric and asymmetric distributions to compare the REs
of the median and variance estimators. The standard bivariate normal distribution is also used to study the
impact of imperfect ranking on the proposed median estimator under PRSS.

The SRS estimator of the population median is defined as

2 X((m+1)/2im), if m is odd,
fsrs = Median{ X1, Xz, ..., X;n} = ((m+1)/2:m)

{X(m/2m) + X((m+2)/2:m)}/27 if m is even.

Similarly, the median estimator under PRSS is defined as

é\PRSS = Media'n{Xla eeey Xk; Xk+1(k‘+1:m)7 eeey Xm—k('m—k:m)7 X’m—k+17 eeey X’m}

MSE (fsrs)
MSE(fprss) :

say 0, is MSE(,) = + Ef;l(@-,J — 0,,)2, for J = SRS, PRSS. Here, 0,,, represents the population median

The RE of fprgg with respect to fsrs is RE(épRss, éSRS) = The estimated MSE of any estimator,
and N is the number of replications (106).

The traditional unbiased estimator of the population variance, based on SRS, is
6%ps = 15 Y1 (Xs — Xsrs)?. [Stokes (1980) proposed an estimator of population variance on the basis of
RSS, 63qs = 15> 7 (Xitm) — Xmss)?. This estimator is biased for small samples, and it is

asymptotically unbiased. Suppose for given values of m and k, X7, X5, , ..., X,,, represent a partial ranked set
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Figure 1.2: REs of PRSS with respect to SRS for estimating population median
under perfect and imperfect rankings

sample of size m from the parent population. Then, analogous to 6%qg, the variance estimator under PRSS
is 63pgs = =17 >ie1 (X} — Xprss)?. The REs of 62ggq and 64g¢ with respect to 62gg, respectively, are

given by

N N MSE(62
RE(UI%RS& 3 7( Srs)

N N MSE(&2 )
Osrs) = MSE(&%RSS) and RE(O'%{SS’O'gRS = SRS

~ MSE(GRss)”

The estimated MSE of any estimator, say 63, is MSE(6%) = & Ef;l(?’ 5 — 02)2, for J = SRS, RSS, PRSS.
On the basis of Figure we can conclude that the PRSS median estimator is more efficient than SRS

median estimator based on the same sample size. As the value of the coefficient k& decreases, the RE under

PRSS increases. Under perfect and imperfect rankings, the PRSS estimator still performs better than the

SRS estimator for all cases considered here. Furthermore, as the value of p decreases, the REs also decrease

because of more errors in ranking and vice-versa.

Figure shows that, for both symmetric and asymmetric distributions, with small samples, the RE of
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Figure 1.3: REs of PRSS with respect to SRS for estimating population variance
under perfect and imperfect rankings

the proposed variance estimator is high as compared with the estimators based on SRS and RSS schemes.
For symmetric populations, under RSS, as the number of units increase, this leads to the gain in RE of
the estimator. On the other hand, the RE is a decreasing function of the number of units under PRSS for
symmetric population. In variance estimation, PRSS is more economical than SRS and RSS. The variance
estimator under PRSS uses less number of units and performs better than the other estimators. Therefore, in
practice, for small samples, it is preferable to use PRSS variance estimator.

Generally, the optimum choice of k& depends on the environment and experimenter. For instance, if the
experimenter can rank all of sets with full confidence, then it is better to take £ = 0. But when there are cost
or time constraints or lack of units, then it is preferable to use PRSS with k& > 0. In case of mean estimation,
if the underlying distribution is highly skewed, then it is preferable to apply the PRSS with £ = 1 instead of

using RSS method. Finally, in variance estimation with small samples, k = 1 is the optimal choice.

1.5 An application

A real data set is used to study the efficiency of the PRSS design in estimating the population mean, median
and variance as compared with the SRS. The data consist of the diameter of conifer tree at breast height,
say Y, and the height of the conifer tree, say X. For more details about the data, see [Platt et al.| (1988).
Table contains the summary statistics of the trees data. Here, we are interested in estimating the mean,
median and variation among the heights of the conifer trees population. The values of the samples sizes are
m = 4,5,6,7 with different possible values of k. In order to select a ranked set sample of size m = 7, the

experimenter needs to identify 49 conifer trees; but because of limited time or budget, it is difficult to apply
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the RSS procedure. Suppose no more than 40 trees can be measured. In such situations, PRSS provides
an opportunity to the PRSS(m, k) scheme, i.e., PRSS(7,1) with 37 units, PRSS(7,2) with 25 units and
PRSS(7,3) with 13 units. One million replications were used to estimate the MSEs of the estimators under
SRS, RSS and PRSS. The coefficient of skewness of the diameter is 0.884 and the skewness of height is 1.619.
Therefore, these data are asymmetrically distributed.

Table 1.1: Summary statistics of 399 trees data

Variable Mean Median Variance Skewness Kurtosis
Diameter (Y')(cm) 20.84 14.5 310.11 0.884 —0.423
Height (X) (ft) 52.36 29 325.14 1.619 1.776

Correlation coefficient (p)  0.908

It is evident from Table [[.2] that the mean and median estimators based on PRSS are more efficient as
compared with their competitors under SRS. As expected, the REs are generally high under perfect ranking
as compared with imperfect ranking. For a fixed value of m, as the value of k increases, the REs tend to
decrease. It is of interest to note here that, for small samples, the PRSS variance estimator is more efficient
than the variance estimators under SRS and RSS. Furthermore, PRSS uses less number of units as compared
with the units required in RSS procedure, and at the same time, it provides more efficient estimates than

RSS.

1.6 Concluding remarks

In this chapter, we proposed a PRSS design for estimating the population mean, median and variance. PRSS
provides an unbiased estimator of the population mean when the underlying population is symmetric. On
the basis of extensive Monte Carlo simulations, it was observed that for both perfect and imperfect rankings,
the estimators under PRSS are more efficient than the estimators based on SRS. In the variance estimation,
especially for small samples, PRSS provides efficient variance estimates than the estimates under SRS and
RSS designs. Therefore, it is recommended to use PRSS design as an efficient alternative to SRS design in
case of population mean, median and variance estimation.

This work can be extended to develop ratio and regression estimators of the population mean and median

under PRSS. Also, the current work can be extended to multistage partial ranked set sampling design.
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Table 1.2: Estimation of the population mean, median and variance of the study

variable X under perfect and imperfect rankings

Mean Median Variance
RSS PRSS PRSS PRSS RSS PRSS PRSS PRSS RSS PRSS PRSS PRSS
Ranking k=0 k=1 k=2 k=3 k=0 k=1 k=2 k=3 k=0 k=1 k=2 k=3
m=4
X 1.93229 1.40117 2.356890 1.88827 —— ——  0.95619 1.28807
Y 1.76474 1.32658 2.02863 1.70739 —— ——  0.94762 1.21507
m=>5
X 2.22719 1.52644 1.16415 3.01825 2.40034 1.47281 ——— 1.07035 1.30545 1.09905
Y 1.96547 1.43816 1.14066 2.60930 2.16476 1.39176 —— 1.02916 1.22735 1.08738
m==6
X 2.52027 1.62581 1.27675 3.53694 2.82148 1.96619 _— 1.18465 1.29887 1.13812
Y 2.14987 1.52776 1.24022 2.95560 2.50393 1.80554 _— 1.10424 1.22805 1.12365
m="7
X 2.80720 1.71135 1.34462 1.12098 4.00582 3.22178 2.54038 1.43774 1.30096 1.28833 1.13252 1.05779
Y 2.32114 1.60863 1.30656 1.10899 3.38511 2.86422 2.28398 1.38009 1.17128 1.22848 1.12108 1.05496




Chapter 2

Mixed Ranked Set Sampling Design

This chapter appeared in:
Haq, A., Brown, J., Moltchanova, E., Al-Omari, A.L., 2014, Mixed ranked set sampling design, Journal of
Applied Statistics, 41(10), 2141-2156.

The main focus of agricultural, ecological and environmental studies is to develop well-designed, cost-
effective and efficient sampling designs. Ranked set sampling (RSS) is one method that leads to accomplish
such objectives by incorporating expert knowledge to its advantage. In this chapter, we propose an efficient
sampling scheme, named mixed RSS (MxRSS), for estimation of the population mean and median. The
MxRSS scheme is a suitable mixture of both simple random sampling (SRS) and RSS schemes. The MxRSS
scheme provides an unbiased estimator of the population mean, and its variance is always less than the
variance of sample mean based on SRS. For both symmetric and asymmetric populations, the mean and
median estimators based on SRS, partial RSS (PRSS) and MxRSS schemes are compared. It turns out that
the mean and median estimates under MxRSS scheme are more precise than those based on SRS scheme.
Moreover, when estimating the mean of symmetric and some asymmetric populations, the mean estimates
under MxRSS scheme are found to be more efficient than the mean estimates with PRSS scheme. An

application to real data is also provided to illustrate the implementation of the proposed sampling scheme.

2.1 Introduction

In biomedical, environmental and ecological studies, situations may arise where taking the actual measurement
of the sample observation is difficult (e.g., costly, destructive, time-consuming) but ranking a small set of
selected units is comparatively easy and reliable. Ranking may be visually with respect to the study variable
or by any inexpensive method. For example, if the interest lies in estimating the average height of trees in a

forest, then it is easy to rank a small set of selected trees with respect to their heights. As another example,
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in animal and growth studies, ages of animals may need to be determined but aging an animal is costly and
time-consuming. However, variables on the physical size of an animal that are highly correlated with age
are cheap and easy to collect. In all such situations, the traditional ranked set sampling (RSS) scheme can
be used to achieve observational economy. The RSS scheme incorporates inexpensive auxiliary information
related to the variable of interest as a way of gathering additional information in order to rank the selected
sampling units. This use of supplementary information helps in selecting more representative samples from
the target population.

The RSS scheme was first introduced by [McIntyre| (1952) for estimating mean pasture and forage yields.
The statistical theory of the RSS scheme was developed by Takahasi and Wakimoto| (1968). They showed
that the sample mean under RSS scheme is an unbiased estimator of the population mean, and it is more
efficient than the sample mean based on simple random sampling (SRS). [Dell and Clutter| (1972) studied the
effect of imperfect rankings on the performance of RSS-based mean estimator. For more details and real
applications of RSS scheme, see [Yu and Lam| (1997), Mode et al.[(1999), |Al-Saleh and Al-Shrafat| (2001),
Al-Saleh and Al-Omari| (2002)), (Chen and Wang| (2004), Husby et al.| (2005), (Chen! (2007), [Wang et al.| (2009),
Ozturk| (2011) and references cited therein.

Recently, Haq et al. (2013b)) suggested partial RSS (PRSS) scheme for estimation of the population mean,
median and variance. They showed that RSS is a special case of PRSS. The PRSS scheme becomes a suitable
alternative to the RSS scheme when there is a shortage of experimental units, identification of units is costly
and time-consuming, data arrives in different batches, etc. In such situations, it is beneficial to make use of
PRSS scheme for efficient estimation of population parameters. The main disadvantage of PRSS scheme is
that it lacks flexibility or the options to select partial ranked set samples are limited. Additionally, the PRSS
scheme provides biased mean estimates when sampling from asymmetric populations.

In this chapter, we extend the work on PRSS scheme and propose a mixed RSS (MxRSS) scheme for
estimation of the population mean and median. The MxRSS scheme provides plenty of options to the
experimenter when selecting the sample from population. This helps in keeping the cost at an affordable
level. We show that the mean estimates under MxRSS scheme are not only unbiased but also more precise
than the mean estimates with SRS scheme. For symmetric and some asymmetric distributions, the mean
estimates under MxRSS are found to be more efficient than the mean estimates based on PRSS.

The rest of the chapter is organized as follows: Section contains brief details about RSS and PRSS
schemes. Section introduces MxRSS scheme for estimation of the population mean based on perfect and
imperfect rankings. In this section, we also estimate the means of symmetric and asymmetric populations
based on SRS, PRSS and MxRSS schemes. Estimation of the population median under the aforesaid sampling
schemes is considered in Section Section [2.5] provides the numerical results obtained from real data, and

Section [2.6] summarizes the main findings.
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2.2 Sampling schemes

In this section, we explain RSS and PRSS schemes for estimation of the population mean.

2.2.1 Ranked set sampling

The RSS scheme incorporates cheap quantitative or qualitative auxiliary information in order to obtain a
more representative sample from the underlying population before the real and more expensive sampling is
done. The RSS procedure is as follows: identify m? units from the parent population. These units are then
allocated to m sets, each of size m units. Without knowing the actual values, the units within each set are
ranked in an increasing order of magnitude with respect to the study variable. The ranking can be done by
employing expert knowledge or by using any concomitant variable that is highly correlated with the study
variable. After ranking all sets, the smallest ranked unit is quantified from the first set. Similarly, the second
smallest ranked unit is quantified from the second set, and the procedure continues until the largest ranked
unit is quantified from the last set. This completes one cycle of a ranked set sample of size m. The whole
procedure can be repeated r times to obtain r cycles of ranked set sample with total sample size n = mr.

Let Y be the study variable with probability density function fy (y) and cumulative distribution function
Fy (y), with mean py and variance 012,. Let Y1,Y5, ..., Y, represent a simple random sample of size n drawn
from fy(y). The sample mean Ygrg = L5 .Y, is an unbiased estimator of py with variance 0% /n, i.e.,
E(Ysrs) = py and Var(Ysgg) = 0% /n.

Let (Y11, Y125, -+, Yimj), (Y215, Y2255 -y Y2mj), ooy (Ymijs Ym2js -y Ymm;) be m independent simple random
samples each of size m for the jth cycle for j = 1,2,...,7. Let (Yj(1:m);, Yi(2:m)j» - Yi(m:m);) denote the
order statistics of the ith simple random sample (Y;1;, Yi2j, ..., Yim;) obtained in the jth cycle. Apply the
RSS scheme to m samples, obtained in the jth cycle, to obtain a ranked set sample of size m, denoted
by Yi(imyjs ¢ = 1,2,..,m and j = 1,2,...,r. Let Ypgg = %E§=1 Y i1 Yi(i:m); be the sample mean based
on a ranked set sample of size n. [Takahasi and Wakimoto| (1968) showed that YRrgg is also an unbiased
estimator of uy, and its variance is less than the variance of the Yggg, i.e., Var(Yrss) = ﬁ S a%,(i:m) =
Var(Ysrs) — 7 D oieq (By (i:m) — Hy)?. Here py (i.pm) and a?,(i:m) are the population mean and the population

variance of Y;(;.m,);, respectively.

2.2.2 Partial ranked set sampling

Recently, Haq et al. (2013b)) suggested another version of RSS, named PRSS, for estimation of the population
mean, median and variance. The PRSS scheme is a mixture of both SRS and RSS schemes. This scheme
requires less number of identified units than the RSS scheme when selecting a sample of size n, thus reducing
the total cost, time and expenditure that are involved in sampling.

The PRSS procedure is as follows: Define a constant k& such that k = [am] for 0 < a < 0.5. Here, []
represents the largest integer not greater than am. Firstly, select a simple random sample of size 2k from the

target population. Identify m(m — 2k) units from the target population, and allocate them into m — 2k sets,
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each of size m units. Rank the units within each set with respect to the study variable or as aforementioned.
Select the ith smallest ranked unit from the ith set for ¢ = k + 1,...,m — k. This completes one cycle of a
partial ranked set sample of size m. For a large sample, the whole process can be repeated r times in order
to obtain a partial ranked set sample of size n.

Note that the PRSS scheme is equivalent to the RSS scheme when k& = 0. Given k, the PRSS scheme
requires nm — 2k(n — r) identified units from the target population in order to select a sample of size n.

The sample mean based on a partial ranked set sample of size n is given by

?PRSS—f ZZYLJ+Z Z Y(zm)J+Z Z Yz] )

j=11i=1 j=1i=k+1 j=li=m—k+1

with variance

— 2ko2
Var(YpRss) Y e Z O'Y(z m)*
z k+1

For symmetric populations, Vpras is an unbiased estimator of Ly, and it is conditionally better than Yars.

For details see [Haq et al.| (2013b).

2.3 Proposed sampling scheme

In this section, we propose MxRSS scheme for efficient estimation of the population mean.

In some ecological and environmental field studies, the ranking or identification of the experimental units
is costly or time-consuming. Therefore, it is difficult to apply the RSS scheme with full confidence. The
PRSS scheme is an alternative option to the RSS scheme that helps in reducing the ranking cost, but it
is also restricted to some choices of k for each m. The MxRSS scheme is a suitable mixture of both SRS
and RSS schemes that offers more flexibility to the experimenter in selecting more representative samples
from the target population in different ways. This not only helps in reducing the ranking cost, time and
expenditure, but the estimates based on MxRSS scheme turn out to be more precise than the estimates with
SRS and PRSS schemes.

A mixed ranked set sample of size n can be selected based on the following steps:

Step 1: Select k1(0 < k1 < m) units from the target population based on SRS scheme.

Step 2: Let k2 be a constant such that ko = [B(m — k)] for 0 < 8 < 0.5. Identify (m — k1)(m — k1 — ko)
units from the target population, and partition them into m — k; — ko sets, each of size m — k; units.
Without knowing the actual values, rank the units within each set with respect to the study variable
or by any inexpensive method.

Step 3: Select the ith smallest ranked unit from the first m — k1 — kg sets, for ¢ =1,2,...,m — k1 — kg. Also
select the (m — k1 — % + 1)th smallest ranked unit from the first ko sets. This completes one cycle of
a mixed ranked set sample of size m.

Step 4: The above Steps 1-3 can be repeated r times in order to obtain a mixed ranked set sample of size n.
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It is to be noted that both SRS and RSS methods are special cases of the MxRSS scheme. For k; = m,
MxRSS scheme is equivalent to the traditional SRS scheme. Similarly, for k3 = ks = 0, MxRSS scheme is
equivalent to the RSS scheme. The total number of units that are required to select a mixed ranked set
sample of size n are kir + r(m — ki)(m — k1 — ko).

2.3.1 Estimation of the population mean

The sample mean based on a mixed ranked set sample of size n is defined as

rmklkg

YMxRSS = - ZZY;J +Z Z Y(zm k1)j +Zzy(m k1—i+lim—ky)j

Jj=1i=1 Jj=11=1
with variance
1 m k1 kg kz
Var(Vaxrss) = —— | kiod + 3 +) o}
ar{Ymxrss) = 10y Oy (i:m—k1) Oy (m—ky—it+1:m—ki)
nm : -
=1 =1
k2

+2 Z OY (i,m—k1—i+1:m—k;)
1<i<m—ky—i+1

Lemma 1:

@) Yuxrss is an unbiased estimator of the population mean py-.
(ii) For any population, we have Var(Yaxrss) < Var(Ysrs)-

Proof:
¢))

m—ki1—kz
E(Yumxrss) = <Z My + Z By (i:m—ky) T Zuy(m ky—it+lm— k1)>
= E{kluy + (m — ki)uy} = py,

using the fact that Ele Py (i:t) = thy, see Takahasi and Wakimoto| (1968).

(i)
_ 1 m— k'1 kz kZ
Var(Ymxrss) = kiof + Y 0Fmok) + D T (it Lim—ky)
i=1 i=1
k2
+2 Z OY (i,m—k1—i+1im—ks) | 5
1<i<m—ky—i+1
1 m—k1 kz
2 2
= % k10'y+ Z aY(i:m—k1)+2 Z OY (i,m—k1—i+1:m—k1) | »
i=1 1<i<m—ki —i+1
where oy (im—k,—it1:m—k,) = 0, © = 1,2,...,ko, is the positive covariance between Yj(.m_k,); and

.Y"‘I:(m—k1 —i+1l:m—k1 )J .
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Following |Al-Saleh and Al-Omari (2002), we can write

m—ky m—kq
2 _ 2
Z Oy (izm—k1) = (m —k1)oy — 2 Z OY (i,jim—k1)"
i=1 1<i<yj
Then, it follows that
0_2 2 m—ki k2
Y, Y
Var(Yumxrss) = n  nm Z Oy (i,jim—k1) — Z Oy (iym—ky—i+lim—ky) | = 0.
1<i<j 1<i<m—ky—i+1

Note that the first term, E;’gg Oy (i,j:m—k;) = 0, contains all positive covariance terms including those
terms being subtracted from it, i.e., Z’f; <m—ky—i+1 O (i;m—ky —i+1:m—k;)- Lhus, overall their difference is a
positive quantity, which completes the proof.

For any population, the relative efficiency (RE) of Yarcrss With respect to Ysrs is given by

Var (YSRS )

RE(Vinmss, Yors) = gooe 5
X.

1

2 m—ky ko )
1- moZ (El§i<j OY (i,jim—k1) — El§i<m—k1—i+1 ”Y(i,m—k1—i+1:m—k1))

which is independent of r.

2.3.2 Imperfect ranking schemes

Sometimes, it is difficult for the experimenter to rank the experimental units with full confidence with respect
to the study variable. [Dell and Clutter (1972) showed that the sample mean based on imperfect ranking
remains an unbiased estimator of population mean as long as the ranking is better than the random ordering
of the experimental units. Stokes| (1977)) showed that it is possible to judge the ranks of the study variable
with respect to the ranks of the concomitant variable, say X, that is cheap and correlated with the study

variable. The assumptions imposed by |Stokes| (1977)) in developing the model for imperfect ranking are:

(i) the regression of Y on X is linear,

(ii) the underlying distribution of standardized variables, i.e., Y;’f” and X;’:X , is same.
These conditions can be easily met when both (Y, X) follow a bivariate normal distribution. The mathematical
model suggested by [Stokes (1977)) for imperfect ranking is given by

gy . .
K[’Lm]] = Hy +P; (Xz(zm)J - ;u‘X) +§ij7 i=12,..,m, j=12,..,m

where puy and px are the population means, oy and ox are the population standard deviations, of Y and
X, respectively, p is the correlation coefficient between Y and X. Here, X;(;.rm); is the ith order statistic

corresponding to the ith judgment order statistic Y;[;.,); obtained from the ith sample in the jth cycle. &;; is
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a random error term with zero mean and constant variance, i.e., E(§;;) = 0 and Var(;;) = o = 02 (1— p?).
For more details, see |Stokes| (1977)).

Haq et al.| (2013b) considered bivariate normal distribution for imperfect RSS (IPRSS) scheme. They
estimated the RE of the mean estimator under IRSS using Monte Carlo simulations. Here we calculate the
exact RE of the PRSS-based mean estimator under the aforementioned ranking model. The sample mean

based on IPRSS scheme is given by

_ 1 r k r m—k r m
Yiprss = ZZYW +Z Z Yiliim); +Z Z Yi; |,
j=1i=1 j=1i=k+1 j=1li=m—k+1
with variance
_ 1 0_2 m—k
Var(¥ierss) = —— [0 {2k + (m— 2K)(1 = D)} +0° % D ooy
X i=k+1

The RE of Yiprss with respect to Verg is given by

Var(Ysgs)

RE(Yiprss, Ysrs) = Var(Viprss)’

2

0% {2k + (m — 2k)(1 — p?)} + p? Ez—k+laX(zm),

which is independent of r.

Similarly, the mean estimator based on imperfect MxRSS (IMxRSS) is defined as

rmk1k2

ﬁMxRSS = - ZZK] +Z Z Y[’Lm k1lj +ZZY[m k1—i+1lim—k]j | »

j=11i=1 j=1l1i=1

with variance

= 1
Var(Vivrss) = - |ob{ky+ (m — k)(1 - 4}
m—ki k2

2
2 0y 2
+p o2 E : OX (i:m—k1) +2 E OX (i,m—ki1—i+1:m—k1)
X\ i=1 1<i<m—ki—i+1

The RE of Yimxrss With respect to Ygrg is given by

Var(Ysrs) _ mo%
Var(Yiuxrss)  0x{k1+ (m—ke)(1 - p?)} + p?A’

RE(Yimxgss, Ysrs) =

m—k'1

which is also independent of r, where A =" a'X(z im—ky) T 221<Z<m ky—i+1 OX (i,m—ki—i+1:m—Fk;)-

2.3.3 Comparison of mean estimators

In this section, we compare the mean estimators based on SRS, PRSS and MxRSS schemes. The exact REs

of the mean estimators under each sampling scheme have been calculated.
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Figure 2.1: REs of mean estimators based on PRSS and MxRSS versus SRS for
symmetric distributions

For a fair comparison of mean estimators based on PRSS and MxRSS schemes, we consider both symmetric
and asymmetric distributions considered by Haq et al. (2013b)). The symmetric and asymmetric distributions
considered here are Normal (0,1), Uniform (0,1), Logistic (0,1), Beta (6,6) and Exponential (1), Weibull
(0.5,1), Lognormal (0,1), Gamma (0.5,2), respectively. The REs of mean estimators, based on m = 7, have
been computed from both symmetric and asymmetric distributions and are displayed in Figures and
respectively.

From Figure it is clear that the RE of an estimator is an increasing function of the number of units,
i.e., with an increase in the value of m or number of units, the RE of the mean estimator also increases and
vice-versa. It is observed that all REs are greater than one, which shows that the mean estimators based
on PRSS and MXRSS are more precise than the mean estimators based on SRS. An interesting feature of
the MxRSS scheme is that a sample can be selected in different possible ways as compared with the PRSS
scheme. Under symmetric distributions, the mean estimators under MxRSS outperform the mean estimators
based on PRSS when using the same number of experimental units. It is also worth mentioning that, under
MxRSS scheme, the mean estimates based on less number of units are more precise than the mean estimates
under PRSS scheme. This shows the superiority of the MxRSS scheme over PRSS scheme when estimating
the population mean of a symmetric population.

Figure 2 compares the mean estimators based on different asymmetric distributions. It turns out that

under MxRSS scheme, the REs are increasing with the number of units. In case when the underlying
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Figure 2.2: REs of mean estimators based on PRSS and MxRSS versus SRS for
asymmetric distributions

distribution is Exponential (1) or Gamma (0.5,2), the REs of mean estimators under MxRSS are greater than
the REs of their counterparts based on PRSS. However, for some highly skewed distributions, i.e., Weibull
(0.5,1) or Lognormal (0,1), under PRSS scheme when k = 1, the mean estimates are more precise than the
mean estimates with MxRSS. From Figures [2.1] and we conclude that MxRSS-based mean estimates are
better than those based SRS for all cases considered here. Moreover, these estimates turn out to be more
efficient than the mean estimates based on PRSS scheme when estimating the population mean of symmetric
and some asymmetric distributions.

In Figure we compare the performances of the mean estimators based on imperfect RSS schemes.
For a fair comparison, we consider different values of p with m = 7. The REs of mean estimators under
both TPRSS and IMxRSS schemes are calculated and displayed against the number of units in Figure
From Figure it is clear that all REs are greater than one. This shows that the mean estimates based
on IPRSS and IMxRSS schemes are better than those based on SRS scheme. Furthermore, in all cases, the

mean estimates under IMxRSS scheme are more precise than the mean estimates with IPRSS scheme.
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Figure 2.3: REs of mean estimators based on IPRSS and IMxRSS versus SRS for
standard bivariate normal distribution

2.4 Estimation of the population median

In this section, we compare the median estimators based on SRS, PRSS and MxRSS schemes.

In survey sampling, we often encounter several variables that follow highly skewed distributions, such as
income, expenditure and production. In such situations, the sample median is considered as a more suitable
measure of location than the sample mean. Following Haq et al. (2013b), we perform extensive Monte Carlo
simulations from both symmetric and asymmetric distributions in order to study the performances of the
median estimators based on SRS, PRSS and MxRSS schemes.

The sample median based on a simple random sample of size n is given by

~ Yn HOR if nis Odd,
Ysrs = Median{Y1,Ys,...,Y,} = (n/2+1/2:n)

{Yn/2:0) + X(nj24+1:0)}/2, if n is even.
Similarly, the median estimators based on partial and mixed ranked set samples of size n, respectively, are

given by

(Y11, Ya1, Yir 13kt 1:m) 1> - Yo k(m—kim) 1> Y(m—k+1)15 -+ Ym1) ooy

(Y1r7 vy Yior, Yk+1(k+1:m)7‘7 ey Ym—k(m—k‘:m)'ra Y(m—k+1)'r7 . 7Y'mT)

Yprss = Median
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Figure 2.4: EREs of median estimators based on PRSS and MxRSS versus SRS for
symmetric distributions
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~ Yi(m—kim—ki)1s -+r Yieg(m—hki—ka4-1im—ki)1) 1o
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The REs of Yprgs and Yarss with respect to f’SRs, respectively, are given by

MSE(}}SRS)
MSE(Yrrss)

MSE(Ysrs)

RE(Yprss, Ysrs) = m’

and RE(?MXRSS, YSRS) =

where MSE is the mean squared error (MSE) of (-). It is difficult to derive the exact mathematical expressions
of the MSEs of the median estimators based on PRSS and MxRSS schemes. Therefore, the MSEs are
estimated using Monte Carlo simulations, and then estimated REs (EREs) are calculated. The estimated

MSE (EMSE) of any median estimator ¥z under H sampling scheme is given by
. 1< .
EMSE(YH) = T Z(Y;,H - Y)27
i=1

where H = SRS, PRSS, MxRSS. Here, ¥ represents the population median and 7T is the total number of
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Figure 2.5: EREs of median estimators based on PRSS and MxRS_S versus SRS for
asymmetric distributions

replications (10%). The ERE of Yi with respect to Ysrg is defined as

EMSE (Ysrs)

ERE(Ys, Ysgrs) = EMSE(Fa)

The EREs of the median estimators based on SRS, PRSS and MxRSS schemes are calculated for both
symmetric and asymmetric distributions, and are displayed in Figures and respectively.

From Figures and almost a similar trend is observed as was seen in Section Note that
under PRSS scheme, the choices are limited and the experimenter is forced to select certain ranks with full
confidence to achieve precision whereas under MxRSS scheme the experimenter has plenty of options to get
more efficient estimates. Therefore, under MxRSS the median estimators have high REs than the median
estimators with PRSS when both designs use different number of experimental units. The median estimators

with the same number of units under PRSS are better than the median estimation with MxRSS.

2.5 An application to real data

In this section, a real data set is taken to study and compare the performances of the mean and median
estimators based on SRS, PRSS and MxRSS schemes.
Following Haq et al.| (2013b), data on 399 conifer trees are considered for application of the perfect and

imperfect RSS schemes considered here. For more details about trees data, see |Platt et al.| (1988]). Let the
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Table 2.1: Summary statistics of 399 trees data

Variable Mean Median Variance Skewness Kurtosis
Diameter (Y)(cm) 20.84 14.5 310.11 0.884 —0.423
Height (X) (ft) 52.36 29 325.14 1.619 1.776

Correlation coefficient (p) 0.908

study variable Y be the height of the tree, measured in feet, and the auxiliary variable X be the diameter
of the tree at breast height, measured in centimeters. Our objective is to estimate the average and median
height of the 399 trees using different RSS schemes based on different sample sizes. We consider different
values of m, i.e., m =4, 5, 6, with r = 1. Consider the case when n = 5, the experimenter need to identify 25
conifer trees in order to select a ranked set sample of size n = 5. However, under PRSS scheme, the same
sarmple size can be selected by identifying 25, 17 and 9 trees. Suppose that it is difficult to identify these
fixed number of trees. In such situations, MxRSS scheme is more economical and flexible than the RSS and
PRSS schemes. Under MxRSS scheme, a sample of size n = 5 can be selected by identifying 25, 20, 17, 15,
11,13, 9, 8, 7 and 5 trees. Note that both SRS and RSS are special cases of the MxRSS scheme.
Table 2.2: Comparison of EBs and EREs of the mean and median estimators based

on perfect and imperfect PRSS schemes with respect to their counterparts based on
SRS for trees data

m=4 PRSS (4,k) (4,0) (4,1)
No. of units 16 10
Mean ERE rankingonY 1.93229  1.40117
EB —0.00569 —5.74554
Mean ERE rankingon X  1.76474  1.32658
EB 0.00002 —4.85254
Median ERE rankingonY  2.35689  1.88827
EB 8.07091  7.74228
Median ERE rankingon X  2.02863  1.70739
EB 8.61632  8.22104
m=>5 PRSS (5, k) (5,0) (5,1) (5,2)
No. of units 25 17 9

Mean ERE rankingonY  2.22719 152644  1.16415
EB 0.00213 —6.59463 —3.15085
Mean ERE rankingon X  1.96547  1.43816  1.14066

EB 0.00118 -5.53820 —2.74135
Median ERE  rankingonY 3.01825  2.40034  1.47281
EB 3.37075  3.96855  5.67247
Median ERE rankingon X  2.60930 2.16476  1.39176
EB 3.72485  4.26022  5.91785
m=6 PRSS (6,k) (6,0) (6,1) (6,2)
No. of units 36 26 16
Mean ERE rankingonY 252027 1.62581  1.27675
EB —0.00209 -6.94324 -5.24357
Mean ERE rankingon X  2.14987  1.52776 1.24022
EB -0.00064 —5.80143 —4.58378
Median ERE rankingonY  3.53694  2.82148  1.96619
EB 3.86064  3.76995  4.62393
Median ERE rankingon X 295560 2.50393  1.80554
EB 4.22140 4.07353  4.92899
SRS m=4 m=>5 m =6
Mean EB 0.00541 -0.00702  0.00210
Median EB 11.89240 7.62705  7.64172

The summary statistics of the data are given in Table Based on one million replications, estimated
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Table 2.3: Comparison of EBs and EREs of the mean and median estimators based
on perfect and imperfect MxRSS schemes with respect to their counterparts based on

SRS for trees data

m=4 MxRSS (4, k1, k2) (4,0,0) (4,1,0) (4,2,0) (4,3,0) (4,0,1) (4,1,1) (4,0,2)
no. of units 16 10 6 4 12 7 8
Mean ERE rankingon Y  1.93256 1.40841 1.13963 1.00000 1.84463 1.32000 1.58695
EB 0.00336 —0.00098 —0.00682 0.00374 —0.00777 0.00385 0.00801
Mean ERE ranking on X  1.76558 1.35749 1.12634 1.00000 1.69890 1.28147 1.47207
EB 0.00184 0.00179 0.00518 0.00426 0.01286 0.00301 0.00253
Median ERE ranking on Y 2.35364 1.47922 1.15021 1.00000 2.32047 1.42291 1.61269
EB 8.07210 9.84056 11.17660 11.88510 8.09098 9.96757 8.48153
Median ERE ranking on X  2.03443 1.40792 1.13537 1.00000 1.92268 1.35083 1.46902
EB 8.61664 10.0854 11.23380 11.86480 8.64852 10.24200 9.05837
m =25 MxRSS (5, k1, k2) (5,0,0) (5,1,0) (5,2,0) (5,3,0) (5,4,0) (5,0,1) (5,1,1) (5,2,1) (5,0,2) (5,1,2)
no. of units 25 17 11 7 5 20 13 8 15 9
Mean ERE ranking on Y  2.22659 1.62688 1.30088 1.10762 1.00000 2.16771 1.57850 1.24189 2.00468 1.41964
EB 0.00655 —0.00033 0.00765 —0.00010 0.00646 0.00708 —0.00327 —0.00274 0.00111 0.00574
Mean ERE ranking on X 1.96621 1.53073 1.26636 1.09945 1.00000 1.92587 1.49061 1.21217 1.79445 1.34481
EB 0.00719 0.00746  —0.00315 0.00295 0.00984 —0.00557 0.00092 0.01067 0.00195 0.01137
Median ERE ranking on Y  3.03046 1.83716 1.37787 1.12453 1.00000 3.01445 1.82599 1.34923 2.65210 1.46753
EB 3.36044 4.87692 6.02353 6.97749 7.61286 3.37287 4.91340 6.12513 3.73313 5.82280
Median ERE ranking on X 2.60352 1.70051 1.32847 1.11180 1.00000 2.59615 1.68400 1.29218 2.27652 1.39193
EB 3.71869 5.12095 6.16259 7.02714 7.62934 3.74187 5.16080 6.28805 4.14630 5.99082
m =6 MxRSS (6, k1, k2) (6,0,0) (6,1,0) (6,2,0) (6,3,0) (6,4,0) (6,5,0) (6,0,3) (6,01) (6,1,1) (6,2,1) (6,3,1) (6,0,2) (6,1,2) (6,2,2)
no. of units 36 26 18 12 8 6 18 30 21 14 9 24 16 10
Mean ERE ranking on Y 2.52157 1.84918 1.47285 1.24075 1.08848 1.00000 2.47660 1.81548 1.43803 1.19296 2.35962 1.71531 1.32662 2.15072
EB 0.00350 —0.00568 0.00104 —0.01149 0.00569 0.00574 —0.00149 0.00725 0.00654 —0.00234 —0.00039 —0.00237 -0.00190 —0.00608
Mean ERE ranking on X  2.14993 1.69478 1.40669 1.21466 1.08054 1.00000 2.12322 1.66989 1.37927 1.17146 2.03798 1.58624 1.27032 1.86833
EB 0.00239  —0.00081 0.00236 —0.01281 0.00006 —0.00045 —0.00388 —0.00458 —0.01002 0.00638 —0.00439 —0.00369 —0.00296 0.00169
Median ERE ranking on Y 3.53310 2.20632 1.62323 1.30568 1.11253 1.00000 3.51832 2.19419 1.61237 1.27272 3.36424 2.01926 1.35444 2.18721
EB 3.86024 4.91433 5.81464 6.55568 7.19659 7.62561 3.86889 4.92811 5.81248 6.63550 3.90960 5.08227 6.31102 4.36739
Median ERE ranking on X  2.95616 1.99832 1.53809 1.26998 1.09910 1.00000 2.94801 1.99315 1.52206 1.23517 2.80219 1.82713 1.30350 2.00759
EB 4.21633 5.17143 5.96829 6.64940 7.24929 7.62204 4.22448 5.17758 5.99389 6.74987 4.29779 5.37721 6.45888 4.72278
SRS m=4 m=2>5 m =6
Mean EB 0.00742 0.00412 —0.00296
Median EB 11.9033 7.63485 7.61689
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biases (EBs) and EREs of both mean and median estimators have been computed for all sampling scheme
and reported in Tables [2.2] and From Table under PRSS scheme, for m =5 and k = 1, the EB and
ERE of the mean estimator are —6.59463 and 1.52644, respectively, when 17 trees were identified. However,
under MxRSS scheme for m =5, k1 = 1 and ke = 0, the EB and ERE of the mean estimator are —0.00033
and 1.62688, respectively, when 17 trees were identified. Similarly, these quantities are 0.00111 and 2.00468,
respective, with k&; = 0 and k; = 2 when 15 trees were identified. It is clear that with small number of
identified trees, the mean estimates under MxRSS scheme are much more precise than the mean estimates
with PRSS scheme. Note that the RE under MxRSS scheme with 15 trees is greater than that of PRSS with
17 trees, because in 17 trees one unit is selected using SRS, which reduces the efficiency of the PRSS-based
mean estimator. Moreover, the mean estimates under SRS and MxRSS schemes are unbiased as compared
with the estimates under PRSS scheme.

With the same number of units, the median estimates under PRSS scheme are better than the MxRSS-
based median estimates, but the options under PRSS are limited to achieve higher efficiency which is
accomplishable by using MxRSS scheme. Moreover, the median estimates under MxRSS are less biased than
the estimates under PRSS, provided both schemes use different number of identified units. Under PRSS
scheme, the EB and ERE of the median estimator are 3.96855 and 2.40034, respectively, with m =5, k1 =1
and k2 = 0 when 17 trees were identified. However, under MxRSS scheme, the EB and ERE of the median
estimator are 3.73313 and 2.65210, respectively, with m = 5, k; = 0 and k2 = 2 when 15 trees were identified.
Similarly, the EB of the median estimator when m = 5 under SRS scheme is 7.62705. In case of imperfect
rankings, as expected, the EREs (EBs) of the median estimators have decreases (increased) as compared

with perfect rankings.

2.6 Concluding remarks

In this chapter, we have proposed an improved MxRSS design for efficient estimation of the population mean
and median. It is shown that the MxRSS scheme provides an unbiased estimator of the population mean and
its variance is always less than the variance of the sample mean based on SRS. We also showed that both
unbiased sampling schemes, i.e., SRS and RSS, are special cases of the MxRSS scheme. Both symmetric
and asymmetric distributions were used to evaluate the performances of the estimators under perfect and
imperfect ranking schemes. It is noteworthy that MxRSS provides more flexibility to the experimenter in
selecting more representative samples from the target population as compared with RSS and PRSS schemes.
It is observed that the mean and median estimates based on MxRSS scheme are more precise than their
counterparts based on SRS scheme. Moreover, when estimating the mean of a symmetric population, MxRSS
scheme provides more precise mean estimates than the mean estimates under PRSS scheme. Similarly, if
the interest lies in estimating the population median, the median estimates under MxRSS scheme are more
efficient than those based on PRSS scheme, provided MxRSS scheme uses more number of identified units

than the PRSS scheme. Thus, we recommend using MxRSS scheme for estimation of the population mean
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and median when it is difficult to apply the RSS and PRSS schemes with full confidence.



Chapter 3

Paired Double Ranked Set Sampling

This chapter appeared in:
Haq, A., Brown, J., Moltchanova, E., Al-Omari, A.I., 2014, Paired double ranked set sampling,

Communications in Statistics-Theory and Methods, Accepted for Publication.

In environmental monitoring and assessment, the main focus is to achieve observational economy and to
collect data with unbiased, efficient and cost-effective sampling methods. Ranked set sampling (RSS) is one
traditional method that is mostly used for accomplishing observational economy. In this chapter, we propose
an unbiased sampling scheme, named paired double RSS (PDRSS) for estimating the population mean. We
study the performance of the mean estimators under PDRSS based on perfect and imperfect rankings. It
is shown that, for perfect ranking, the variance of the mean estimator under PDRSS is always less than
the variance of mean estimator based on simple random sampling (SRS), paired RSS and RSS. The mean
estimators under RSS, median RSS, PDRSS and double RSS are also compared with the regression estimator
of the population mean based on SRS. The procedure is also illustrated with a case study using a real data

set.

3.1 Introduction

There are many sampling methods that can be used in surveys of natural resources in agriculture, biology,
ecology, environmental management, forestry, etc. The main objective of whatever sampling method is used to
obtain precise estimates of population parameters with minimum cost and expenditure. One method is ranked
set sampling (RSS). RSS becomes an efficient alternative to simple random sampling (SRS) when taking
exact measurements of selected units is very costly whereas ranking a small set of selected units is cheap.
Ranking may be visually with respect to the study variable or by any inexpensive method. For example, if

interest lies in estimating the average height of trees, then it is easy to rank a small set of trees with respect
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to their heights visually. Similarly, the hazardous waste sites with different levels of contamination can be
ranked by a visual inspection of soil staining whereas the actual measurement of toxic chemicals and assessing
their environmental impact may be very costly.

Meclntyre] (1952) was the first to suggest the RSS method for estimation of pasture and forage yields.
Takahasi and Wakimoto (1968) developed the theory of RSS procedure under the assumption of perfect
ranking. Dell and Clutter| (1972) showed that the mean estimator under imperfect RSS remains an unbiased
estimator of the population mean. It is also possible to rank the values of the study variable on the basis of a
cheap concomitant variable (cf. Stokes, [1977)). For more detail and applications of RSS, see |Johnson et al.
(1993), Patil et al.| (1999), Mode et al.| (1999), |Al-Saleh and Al-Shrafat| (2001), [Yu and Tam/ (2002), |Al-Saleh
and Al-Hadramil (2003), |Chen et al. (2004), Buchanan et al.| (2005), Haq et al.| (2013b) and references cited
therein.

Patil et al| (1993) compared the mean estimator based on perfect and imperfect rankings with the
SRS-based regression estimator of the population mean. It is shown that, under perfect ranking, RSS mean
estimator is considerably more efficient than the regression estimator unless the correlation between the
study variable and the auxiliary variable exceeds 0.85. Muttlak (1996) and Muttlak (1997) introduced paired
RSS (PRSS) and median RSS (MRSS) schemes for estimation of population mean, respectively. [Muttlak
(1998) extended the work of [Patil et al.| (1993) and showed that the mean estimator under MRSS is more
efficient than the mean estimators with SRS and RSS. When the correlation between the study variable and
the auxiliary variable is high, then SRS-based regression estimator outperforms both RSS and MRSS mean
estimators based on perfect rankings. |Al-Saleh and Al-Kadiri (2000) introduced the double RSS (DRSS)
procedure for efficient estimation of the population mean. They showed that the sample mean based on
DRSS is more efficient than the sample mean with RSS. In order to select a double ranked set sample of
size m, the experimenter needs to identify m?3 units from the target population. This may be difficult when
an epidemic breaks out in some area or in queuing problems when data arrive in batches of varying sizes.
Moreover, there may be a shortage of experimental units or ranking is difficult, time-consuming and costly,
see [Samawi (2011) and Haq et al.| (2013b). In all such situations, the balanced DRSS cannot be conducted
with full confidence or it is costly.

In this chapter, we introduce a new unbiased sampling scheme, that we call paired double RSS (PDRSS)
for estimation of the population mean. PDRSS scheme can be used as an alternative to DRSS scheme when
it it difficult to apply DRSS procedure due to non-availability of experimental units or ranking costs cannot
be ignored. The main advantage of using PDRSS over DRSS is that it requires less number of identified units
as compared with DRSS. This helps in reducing the time and cost that is involved in the ranking process.
We show both theoretically and numerically that the mean estimators under PDRSS are more precise than
the mean estimators based on SRS, RSS and PRSS schemes. Furthermore, we extend the work of [Patil
et al. (1993) and Muttlak (1998)) to PDRSS. It is observed that with perfect and imperfect rankings, in

comparison with the regression estimator, the mean estimates under PDRSS scheme are more precise than
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their counterparts based on RSS and MRSS methods. The proposed mean estimator under perfect PDRSS is
also better in terms of relative precision (RP) than the regression estimator of the population mean based on
SRS.

The rest of the chapter is organized as follows: Section provides some mathematical results for RSS
methods. Section |3.3|introduces PDRSS method with mean estimators. Section |3.4]compares mean estimators
in terms of RP when sampling from symmetric and asymmetric distributions. The proposed and existing
estimators are also compared with the linear regression estimator of the population mean based on SRS. We

present a case study in Section Finally, Section [3.6] summarizes the main findings.

3.2 Mathematical setup and RSS methods

Let Y be the study variable with probability density function (PDF) f(y) and cumulative distribution
function (CDF) F(y). Let uy and o2 be the mean and variance of Y, respectively. Let Y1, Y2, ..., Yy, be a
simple random sample of size m drawn from f(y). Let Y(1.m), Y(2:m); -, Y(m:m) be the order statistics of this

random sample. The PDF and CDF of the ith order statistic ¥(;.mm), for ¢ = 1,2, ...,m, are respectively given

by
fam® = D= O~ F@™ ), —so<y <o
Fem®) = 3 (7)F@Ya-Fo)m.

The mean and variance of Y(;.,,), for ¢ = 1,2, ..., m, respectively, are

Ky (i:m) = /yf(zm)(y)dy and Ug’(zm) = /(y_MY(i:m))2f(i:m) (y)dya

see David and Nagarajal (2003).

3.2.1 Ranked set sampling

The RSS procedure is explained as follows: identify m? units from the target population. Randomly allocate
these units to m sets, each of size m. Now, rank the units within each set visually with respect to the study
variable or by any inexpensive method. Select the smallest ranked unit from the first set. The second smallest
ranked unit is selected from the second set. The procedure continues until the largest ranked unit is selected
from the last set. This completes one cycle of a ranked set sample of size m. This procedure can be repeated
r times in order to obtain a ranked set sample of size n = mr.

Let Yi15,Y125, ..., Yimj; Y15, Y224, --oy Yomjs -oo; Y1, Ym2j, -, Ymmj be m independent simple random
samples, each of size m, in the jth cycle, for j = 1,2,...,7. Apply RSS procedure to these samples in
order to obtain a ranked set sample of size m for the jth cycle, denoted by Y;(;.m);, for i = 1,2,...,m. The

mean of the ranked set sample is Yrgs = % Z;=1 E:;l Yj(i:m);- Takahasi and Wakimoto| (1968) showed that
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under perfect ranking Yrgg is an unbiased estimator of sy and it is more precise than Ysrs = % Z?=1 Y, ie.,

_ _ _ 1 &
E(Yrss) = py and Var(Yrss) = Var(Ysrs) — e > (v my — ). (3.1)

i=1

Sometimes, it is difficult to measure or rank the values of the study variable visually. |Stokes (1977)) developed
a model for imperfect RSS (IRSS) and showed that it is possible to judge the ranks of the study variable with
respect to the ranks of any auxiliary variable, say X, that is correlated with the study variable Y. Following
Stokes| (1977), it is assumed that (Y, X) follows a bivariate normal distribution and the regression of ¥ on X
is linear, i.e.,

(o3 . .
Yijim]j = By + pé(Xi(izm)j —ux)+ Gy, i=1,2,0,m, j=1,2,..,7, (3.2)

where ux and a§< are the mean and variance of X, respectively, and p is the correlation coefficient between
Y and X. Here, (;; is the random error term with mean zero and a constant variance, i.e., E((;;) = 0 and
Var((i;) = 07 = 03(1 — p°). Note that X;(;.m); is the ith order statistic and the analogous Yjj;.pm); is the
corresponding ith judgment order statistic from the ith sample in the jth cycle. Under IRSS, the sample
mean Yirgs and its variance, respectively, are given by

— 1 r m _ 1 0_2 m
Yirss = ” Z Z Yiim); and Var(Yirss) = poveny {ma%(l -+ Pzé Z Ugc(i;m)} . (3.3)
=1 =1 =1

3.2.2 Paired ranked set sampling

Muttlak| (1996) introduced PRSS procedure for estimation of population mean. PRSS procedure is as follows:
for even sample size m, identify m/2 sets each of size m from the target population. For odd sample size
m, identify (m + 1)/2 sets each of size m. Now, rank the units within each set as aforementioned. Select
the smallest and largest ranked units from the first set. Similarly, select the second smallest and second
largest ranked units from the second set. The procedure continues, in case when m is even, then (m/2)th
and {(m + 2)/2}th ranked units are selected from the last set, and if m is odd, then {(m + 1)/2}th ranked
unit is selected from the last set. This completes one cycle of a paired ranked set sample of size m. This
process can be repeated r times to obtain a paired ranked set sample of size n = mr. The sample means

under PRSS depending on even (E) and odd (O) sample sizes are respectively given by

1 r m/2 m/2
YiRss = ” Z Z Yiti:m); + Z Yi(m—i+1:m); and
j=1 \i=1 =1

N 1 r (m+1)/2 (m-1)/2
Yprss = EZ Z Yiiim); + Z Yitm—i+1:m)j
j=1 \ =1 =1
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Both Y{hog and Yihgg are unbiased estimators of py. The variances of Yiiqqg and Yixgs, respectively, are

m/2 m/2

Var(Yppss) = Var(YRss)-i-%Z > ov(imeitiim);
=1 i<m—i+1
(m—1)/2 (m—1)/2

Va.r(l?r?RSS) = Var(?RSS)—f‘% Z Z OY (i,m—i+1:m)» (34)
=1 i<m—i+1

where 0y (; m—i+1:m) = 0 represents the covariance between Yj(;.;m); and Yj(m—it1:m);- For more details, see

Muttlak| (1996)

3.2.3 Median ranked set sampling

Muttlak (1997) introduced MRSS procedure for estimation of population mean. MRSS procedure is
explained as follows: identify m? units from the target population and divide them into m sets each of size
m. Rank the units within each set as aforesaid. For even sample size m, select the (m/2)th ranked unit and
{(m + 2)/2}th ranked unit from first and last m/2 sets, respectively. For odd sample size m, select
{(m + 1)/2}th ranked unit from all sets. This completes one cycle of a median ranked set sample of size m.
The whole procedure can be repeated r times to get a median ranked set sample of size n = mr. The sample

means under MRSS for even and odd m are given below:

r m/2 m

. 1 & Lrom
Yitrss = - Z Z Yi(m/2:m); + Z Yi(m+2)/2:m)j and  Yyrgs = - Z Z Yi((m+1)/2:m)j-
j=1 \i=1 i=m/2+1 j=1i=1

For symmetric populations, both ¥}§rss and Y@z are unbiased estimators of uy. The mean squared errors

(MSEs) of Y;irsg and Y\2rgq, Tespectively, are

m/2 m

_ _ 1
MSE(Yatrss) = {E(Yitrss —uv)} + o Z U%’(m/mm) + Z Ulzf((m+2)/2=m) ’
i=1 i=m/2+1
_ _ (m41)/2
MSE(YA?RSS) = {E(YA?RSS - HY)}2 + nm Z 0%/((m+1)/2:m)' (3:5)
i=1

Muttlak| (1998) considered imperfect MRSS (IMRSS) for estimation of population mean under bivariate
normality. Consider the model given in (3.2)), the sample means under IMRSS for even and odd m, respectively,

are given by

T m/2

_ 1 m _ 1 r m
Yiirss = " SN Yimzmi+ Y. Yijmezyzmy | 2nd  Vifpss = o S Yiimer1)/2imls-
Jj=1 \i=1 i=m/2+1 j=1i=1

The variances of Yirss and Y{rsg, Tespectively, are

m/2 m

_ 1 o2
Var(Yill?ARSS) = om ma%,(l - PZ) + ng%, Z a;((m/2:m) + Z ng((m+2):m) )
X \i=1 i=m/24+1
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_ 1 o2 ™
Var(Yivrss) = . {ma%'(l -+ Pz%j Z U%(((m+1)/2:m)} . (3:6)
X i1

3.2.4 Double ranked set sampling

Al-Saleh and Al-Kadiri (2000) introduced DRSS procedure for estimation of the population mean. The DRSS
scheme can be described as follows: identify m3 units from the parent population. Randomly allocate these
units to m sets each of size m? units. Apply RSS procedure to m sets in order to obtain m ranked set samples
each of size m. Again apply the RSS procedure to these m ranked sets, each of size m, to obtain a double
ranked set sample of size m. This completes one cycle of a double ranked set sample of size m. This process
can be repeated r times to obtain a double ranked set sample of size n = mr.

Let YZ((?SL)T), fori =1,2,....,m, j = 1,2,...,7, represent a double ranked set sample of size n. Then,
Al-Saleh and Al-Kadiri| (2000) showed that the sample mean under DRSS, say Ybrss, is an unbiased estimator
of py and its variances is less than the variance of the sample mean based on RSS, i.e.,

E(Ponss) = ~ if:E(Y“)("m)) —py end Var(ass) = Var(Torss) + — 3 oG (3T)
n nm )

i(i:m)j
j=1i=1 i#l

(2,l:m)

where oy} > 0, for i # 1 =1,2, ..., m, represents the covariance between y[@@Em)

i(izm)j

and Ylg)r(i)';) For more

details, see Al-Saleh and Al-Kadiri (2000).

3.3 Paired double ranked set sampling

In this section, we propose a new unbiased RSS scheme, namely, PDRSS, for estimation of population mean.
This scheme can be used as an alternative to DRSS when it is difficult or time-consuming or costly or identify
m?3 units from the target population, especially when there is a shortage of experimental units.

The main steps involved in selecting a paired double ranked set sample of size m are as follows: for even
sample size m, identify m3/2 elements from the target population. Randomly allocate these units to m/2
sets each of size m? units. Apply RSS procedure on each set in order to obtain m/2 ranked set samples each
of size m. Now, apply PRSS procedure on m/2 sets to get an even paired double ranked set sample of size
m. Similarly, for odd sample size m, identify m?(m + 1)/2 elements from the target population. Randomly
divide these units to (m + 1)/2 sets each of size m? units. Apply RSS scheme on each set to obtain (m +1)/2
ranked sets each of size m. Now, apply PRSS procedure to (m + 1)/2 ranked sets to get an odd paired double
ranked set sample of size m. This completes one cycle of a paired double ranked set sample of size m. This

procedure can be repeated r times to obtain a paired double ranked set sample of size n = mr.

Examples

1. In order to draw a ranked set sample of size m = 3, we identify 9 units from the target population and

divide them into 3 sets each of size 3. Let (Y11, Y12, Y13) , (Y21, Y22,Y23) and (Y31, Yaz, Ya3) be the identified
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units in the first, second and third set, respectively. Now rank the units within each set to get

Yias) Yeas) Yaus)
Yi@a) Yz@s3) Yzas)

Yi@sy Yaas) Yaaa)

Now select the diagonal of the matrix in order to select a ranked set sample of size 3, i.e., ¥;(;:3), for ¢ = 1,2,3.

Similarly, if we select the median of each column in the above matrix, we get

Yias) Yeus) Ysuus)
Yi@s) Yos) Yse:s3)

Yi3:3) Yoz3) Yas3)

Here, Y;(2.3), for i = 1,2, 3, represent a median ranked set sample of size m = 3.
2. In order to select a paired ranked set sample of size m = 3, identify 6 units from the target population
and divide them into 2 sets each of size 3. Let (Y11, Y12,Y13) and (Ya1, Yag, Y23) be the identified units in the

first and second set, respectively. Now rank the units within each set to get

Yias) Yous)
Yi@3) Yaqs3)|-
Yia3) Yo

Now apply the PRSS procedure to select a paired ranked set sample of size m = 3, represented by Y(1.3),
Y5(2:3) and Yi(3:3).

3. In order to draw a double ranked set sample of size m = 3, we identify 27 units (3 sets each of size 9)
from the target population. The identified elements in the first, second and third set are (Yl(l1 ), Y1(21 ), oy 1@,(?} )),

(Y1(12 ), Y1(22 - Y3(§ )) and (Yl(f ), Y1(23 ) ng(g ), respectively. Now, rank the units within each set to get

YO yo o ] [y@  y@ @ y®  y®  y®

1(1:3)  f2(1:3) 13(1:3) 1(1:3)  f2(1:3) 3(1:3) 1(1:3)  “f2(1:3) “3(1:3)
(1) (1) 1 (2) (2) (2) (3) (3) (3)
Y1(2 3) Y2(2:3) Y3(2 3)|° Y1(2 3) Y2(2:3) 1/:'3(2:3) and Y1(2:3) Y2(2-3) Ys(2~3)
(1) 1) (1) (2) (2) (2 (3) (3) (3)
Y1(3 3) Y2(3 3) Y3(3 3) Y1(3 3) Y2(3:3) Y:'-3(3 3) Y1(3 3) Y2(3 3) Y3(3 3)

Now apply the RSS scheme to get

1) (2 (3)
Yi(l:3) Y‘1(1:3) Y1(1:3)

(1) (2) (3)
Y‘2(2:3) Y‘2(2:3) Y2(2:3)

(1) (2) (3)
Yv3(3:3) 1/:’-3(3:3) Yéi(3:3)
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Again rank the units within each column to get

(1)(1:3) (2)(1:3) (3)(1:3)
Y1(1:3) Y1(1:3) }/1(1:3)
(1)(2:3) (2)(2:3) (3)(2:3)
Y2(2:3) Y2(2:3) Y2(2:3)
(1)(3:3) (2)(3:3) (3)(3:3)
1/3(3:3) Y3(3:3) 1/;3(3:3)
Now, apply the RSS scheme to get Yz((:)g):g), for 4 = 1,2, 3, which is a double ranked set sample of size m = 3.

4. In order to draw a paired double ranked set sample of size m = 3, we identify 18 elements (2 sets each of

size 9) from the target population.

The identified elements in the first and the second set are

(Y1(11 ), 1(21 U Y?g )) and (Yl(l2 ), Y1(22 - 1@,(?? ), respectively. Now, rank the units within each set to get

Y1((11):3) 1/;((11):3) }3((11):3) 1/1((21):3) }3((21):3) Yé((zl):s)
Y1((12):3) 1’;((12):3) Ys((lz):s) and Y1((22):3) 13((22):3) Y},((zz):s)
Y1((13):3) Y2((13):3) 1@,((1:’,):13) Y1((23):3) Y2((23):3) Ys((23):3)
Now apply the RSS scheme to obtain
Yids Vs
Yz((lz):a) 13((22):3)
Yigs Yo
Again rank the units within each column to get
Yl((ll):gl)ﬂ) 1/1((21):(31):3)
Vo Yaas

Now, apply the PRSS scheme to get

Y(l)(1:3) Y(l) (3:3) Y(2)(2:3)

, which is an odd paired double ranked

11:3) 2 ¥3(33) 1 T2(2:3)
set sample of size 3. Note that the random variables }’1((11):(31):3) and 1’;,((2:(33):3) are dependent but Y2((22):E32):3) is

Y(l)(1:3) and Y(l)(3:3).

independent from Y7 (1:3) 3(3:3)

Similarly, consider a sample of size m, then (

(#)(i:m) ,(8)(m—it+1:m)
{ (Y;(zm)] ’ Y‘(m—i+1)(m—i+1:m)j)

() (im) < (6)(m—it1:m) )
Y im)j ’Y(m—z'+1)(m—i+1:m)j)’ i
v (m/2+1/2)(m/2+1/2:m)
’ 7 (m/241/2)(m/2+1/2:m)j

= 1,2,..,m/2, and

, 1 =1,2,...,(m — 1)/2, represent even and odd

paired double ranked set samples each of size m in the jth cycle for j = 1,2,...,r, respectively. It is to

be noted that, for fixed value of j, if y (B)(Em)

i(im)j

for i = 1,2, ...,m, are all independent, then Yi(i)(i:m) for

(Bm)j

1=1,2,...,m, represent a double ranked set sample of size m in the jth cycle.

Let Y pos and Y rqq represent the mean estimators based on PDRSS for even and odd m, respectively,

defined as

=B _
YPDRSS -

j=1 \ =1

r m/2
1 (i) (i:m)
=D ( Yiimi

m/2
(i) (m—i+1:m)
+ Z }f(m—i-i-l)(m—i-i-l:m)j) and
=1
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1 (TR ey . Ry meit i)

_E _ 2)(:m 2)(M—1 m

Ypprss = EZ Z Y;(i:m)j + Z Y(m—i+1)(m—i+1:m)j :
=1 i=1 i=1

The variances of Yghrsg and Y rss, respectively, are

~ 1 m/2 m/2 ] - 9 mf2 m/2 o
Va'r(YIPDRSS) = om (Z ag(lzrznr)n) + U;T;iti?;z—tiin;)) + i Z Z "g(rznmz—ti;nq)n)a
i=1 i=1 i=1 i<m—i+1
. L (e (myz
Var(Yeprss) = popeny ( z; Ug(trznr)n) + 2} "é?%l—tiﬁml—t%mm))

(m—-1)/2 (m—-1)/2

2 (i,m—i+1:m)
+% Z Z Oy (i,m—i+1:m)’ (3.8
i=1 i<m—i+l

(i,m—i+1:m)

@) (@Em)y _ _(4,5:m) (#)(m—itlm)y _ _(m—i+l,m—it+1:m) :
where Va'r(}fz(’;,zzﬂir)]‘]) - O-}Z(zi,rirzlm)’ Va'r(Yz(?m:r:,—l—llm)T: ) - G-Yn(Lmii—i-;r,Lmz—i—i-;r:Lm)’ and UY(i,m—i—i—l:m) 2 0 is the
covariance between Y,)(™ gpd y(m—iHD(m—i+lm) N0 that for a given value of i, YOU™ for j =

i(i:m)j (m—i+1)(m—i+1lim)j° i(itm)j

1,2,...,r, are independent and identically distributed (IID) random variables. Therefore, without loss of

generality, we consider Y™ = y(WEmM) ¢y 59 9 . As under DRSS, Y™ for i =12, ....m,

i(i:m)j i(i:m) i(itm)j
are independent and non-identically distributed (INID) random variables. Then, the CDF of Y;((z)f:l)?) is
given by
F(lz]'?n%ss(y) = Z Z H F(tk:m) (y) H {1 - F(tkm)(y)}a —00 <y < 00, (39)
r=1 P, k=1 k=r+1

where ) p, denotes the sum over all permutations (t1,%2y -y trm) of (1,2, ...,m) for which #; <ty < --- <1,
and tpy1 < tpyo < -+ < ty,. For more details about INID random variables, see David and Nagarajal (2003).
Following [Vaughan and Venables| (1972)) and Bapat and Beg (1989), another equivalent expression of the
CDF of Y2 i

i(i:m)
" 1
( Fam® — Fam®@ - Fnm) ) br
where and Per(f2) represents the
1= Fam® 1= Fam@® - 1= Fmm@) m—r @

permanent of the matrix Q. Here, “}7” and “}m — r” show that the first and second rows are repeated r

and m — r times, respectively. Similarly, the PDF of Y(i)fi:)m) is given by

a(é:

RS0 = Gy PR, o <y <o 10
F(l:m) (y) F(Z:m) (y) T F(m:m) (y) }7’ -1
where ¥ = f(l:m) (y) f(2:m) (y) T f(mm) (y) } 1

1- F(l:m) (Z/) 1- F(Z:m) (y) e 1= F(mm) (y) }m —1
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The joint density function of Yz((z)f;)m) nd YEZ)(l)m) 1<i<l<m,is

1

iy, Wisn) = =D =i = D)im =i Tr(®) —eo<m <y <o, (3.12)
F(1:m) (i) Foum) (vi) e Fln:m) (%) yi—1
Fm) (9s) fem) (9i) fimem) (93) 1
where © = | Fiom) 1) = Flim)(¥:)  Flaum)(1) — Fam) (%) -+ Fanm)(®1) = Fomamy(¥s) | }l—i—1
fmy (1) fm) (yr) f(m:m) (Y1) 3!
1= F:m)(yt) 1 — Fla.m)(y1) 1 = Fmm) (1) pm—1

Theorem 1:

(i) ?PJDRSS is an unbiased estimator of the population mean py for J = E, O.
(if) Var(¥gprss) < Var(Yrss) < Var(Ygss) < Var(¥srs).

Proof:

(i) From (3.7), it is easy to show that E(Ygprss) = E(Yprss) =

(if) If m is even, then from (3.8), we have

_ 1 m/2 N m/2 ) ) m/2 m/[2 )
Var(Ypprss) = vy ( o-g’?:(zzn'r)n) + U;T;Zif;z—tiﬁ)n)) oy el DD D) &Tiﬁ’ﬁfn),
i=1 =1 i=1 i<m—i+1
m/2  m/2
= Var(Yprss) +o Z > §ﬁ(2”,;it1+§";) (3.13)

z—l i<m—i+1

Replacing (3.7) in (3.13), we have

m m /2 m
— o 2 i,l:m & i,m—i+1l:m
Var (YPEDRSS) = Var(Yrss) — i (Z gf(z I: r)n) Z Z gf(i,m—-i;-li-l:'r)n)) .

i=1 i<l i=1 i<m—i+1
As we know that, all of the covariance terms are positive, i.e. o—g (lz Tzn) > 0. Therefore, the second term in the
above equation on the right side is positive, i.e., > 7" > 0 gﬁ(lz Tlnr)n) Zm/ 2 Y iem—itl &Tmztiﬁ)n) >0,

because the first term contains all covariance terms including the covariance terms that are being subtracted
from the first term. In what follows Var(Yinggs) < Var(Yisg).
Similarly, for odd m, we have

m m (m—1)/2 (m—1)/2 )

Y Y, 2 8,02 i,m—i+1:
Var(Yeprss) = Var(Yass) — o (Z ng(i,”lrzlr)n) - Z Z Ug(fmiﬁfb
i=1 i<l i=1  i<m—it+1
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From (3.4), we can write

m/2 m/2
, _ 2
Var(Ypprss) = Var(Yprss) — pevee Y > ovimeitim)
=1 i<m—i+41
9 m m m/2 m/2
(’l l:m) (1 m—i41:m)
_% Z Y(z i:m) Z Z Y(i,m—i—i—l:m) ’
i=1 i<l i=1 i<m=i+1
9 (m-1)/2 (m-1)/2

Var(YPE)DRSS) = Va'r(?IPRSS)_% Z Z OY (i,m—i+1:m)
i=1  i<m—i+l

9 m m (m-1)/2 (m-1)/2
(4,l:m) (i,m—i+1:m)
_% Z Y (i,l:m) Z Z 0Y(1l,m—1l+1:m)
i=1 i<l i=1  i<m=i+1
From (3.1), it is easy to write
1 9 m m m/2 m/2
Y, ¥, i,l:m i,m—it1l:m
Var(Ypprss) = Var(Ysrs) — oy Z(NY(izm) —py)® - oy Z §’(z I: 'r)n) Z Z §’(i,m—t+1:2n) .
=1 i=1 i<l i=1 i<m—i+1
. ) L m (i) (m—1)/2 (m—1)/2 (it 1im)
Var(YIPDRSS) = Var(YSRS)—% z:(NY(z mm) NY) E— Z Z O'Y(i.,l:m) - Z Z O'Y’(i,m—i-i-.l:m) )
i=1 =1 i<l =1 i<m—i+1l

which completes the proof.

Sometimes, it becomes difficult for the experimenter to rank the units with respect to the study variable.
Therefore, it is customary to utilize the concomitant variables that are highly correlated with the study
variable. Following [Stokes| (1977)), under bivariate normal distribution, we assume the following model for

imperfect PDRSS (IPDRSS) scheme:

Yl = iy + p ( xOGm ux) 8y, i=1,2,.,m, j=1,2, .7, (3.14)
where 8;; is the random error term with mean zero and constant variance, E(§;;) = 0 and Var(;;) = 02 =

02, (1 — p?). Note that X (z)(;;n) represents the ith order statistic from the ith set of the ith order statistics,

4(4:

ie, X ((3 om)j 1=1,2,...,m, and Y;E:)y[;]?] is the corresponding ith judgment order statistic from the ith set of

the ith judgment order statistics, i.e., y®

ilizmls? 1 =1,2,...,m, in the jth cycle. Based on even and odd set

based sample sizes, the mean estimators and their variances under IPDRSS are as follows:

m/2 m/
_ 1 <
E — y@lim] (B)[m—i+1:m]
YiPDRSS - ﬁ Z i[i:m]j Z Y'(m —i+1)[m—i+1:m]j and
Jj=1 i=1 i=1
L 1S Lo )
O i)[i:m, i) [m—i+1lm
YIPDRSS = ﬁ Z Z Y;[z :m]j Z Y(m —i+1)[m—i+1:m]j | ° (3'15)
= i=1 i=
_ 1 o2 m i) m/2  m/2 ’ s+ 1om)
Var(Yippres) = pogeny moy(1—p?) + Pzé Z: X (i,izm) T2 Z Z O X (i,m—i+1:m) and

i=1 i<m—i+41
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1 0_2 m (m—-1)/2 (m-1)/2

7 A t,m—i+1:

Var(Yprss) = popiny moy (1 - p?) + /’20,% > 0_(?2517311) +2 ) Uﬁé(’Zmz_i!{?n) - (3.16)
X \i=1 i=1 i<m—i+l

Similarly, from (3.15), the mean estimator based on imperfect DRSS (IDRSS) is

YiDbRss = 1 E;zl >r ng)r[;]';‘] The corresponding variance of Yipgrss is
7 1 2 2 2 ‘7%’ - (i,i:m)
Var(Yiprss) = o moy(1—p°)+p 22 29X (iyiem) | - (3.17)
X =1

Remark: It is to be noted that the mean estimators under all IRSS schemes are based on the assumption
that the study variable and the auxiliary variable jointly follow a bivariate normal distribution. Therefore,

the estimators based on imperfect rankings are not necessarily unbiased.

3.4 Comparison of estimators

In this section, we compare the mean estimators based on different sampling schemes. For a fair comparison
of estimators, we have considered both symmetric and asymmetric probability distributions. The RPs of
estimators are calculated for some choices of set size m and are given in Table Note that the RPs do not

depend on the value of . The estimators are compared based on their RPs. The RP of an estimator, say 31,

Var(e:g)

Var(91) Here 91 and 92 are both unbiased

with respect to other estimator, say 02, is defined as RP(él, 672) =
estimators. In case of a biased estimator, the variance is replaced by the MSE of the estimator.

Table shows that the RP is an increasing function of the set size m. In most cases, the proposed mean
estimators are more precise than the existing estimators based on PRSS, RSS and MRSS schemes. The gains
in precision mean that smaller sample sizes may suffice, thus reducing the total cost of the study. Moreover,
MRSS also provides efficient estimates for some populations but for some cases, as the set size increases, the
RPs of estimators under MRSS decrease as compared with that of the estimators under PDRSS and DRSS.
It is also clear that the DRSS scheme dominates all sampling schemes and provides most precise estimates of
the population mean for all distributions.

Sometimes, it is difficult or very costly to rank the values of the study variable, while it is easy to rank
the values of the auxiliary variable that is correlated with the study variable. In Table we compare the
mean estimators based on IRSS, IMRSS, IPDRSS and IDRSS methods. It turns out that under all sampling
schemes, the RPs are increasing with p and vice-versa. Except for very small values of p, the mean estimators

under IPDRSS are more efficient than their counterparts based on RSS and MRSS. Generally, when p < 0.70,

the mean estimates under IPDRSS are roughly equivalent to the mean estimates obtained under IDRSS.

3.4.1 Comparison with regression estimator under SRS

In this section, we compare the proposed and existing mean estimators under perfect and imperfect ranking

schemes with the regression estimators of the population mean based on SRS.
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Patil et al. (1993) compared RSS- and IRSS-based mean estimators with the SRS-based regression of the
population mean. They considered two cases, i.e., mean of the auxiliary variable is known or unknown. The

linear regression estimator of py when px is known is given by
Yieg =Y + Blux — X), (3.18)

where Y and X are the sample means based on a simple random sample of size n. Here B is the least-squares
estimate of the population regression coefficient 8. |Sukhatme and Sukhatme| (1970) showed that when (Y, X)
follows a bivariate normal distribution, then Yreg is an unbiased estimator of uy. The variance of l_freg is
given by

Var(Vieg) = %05(1 — ) (1 + nl_?’) . (3.19)

In field investigations, sometimes, the mean of an auxiliary variable px is unknown. In such situations, it
is customary to use the method of two-phase sampling or double sampling. In two-phase sampling, in the
first-phase a large sample of size nm is drawn from the target population and ux is estimated first. Then, in
second-phase, a subsample of size n is drawn from nm units to find the sample means, i.e., Y and X. The
linear regression estimator of py under two-phase sampling is given by

—d - A= -

Yreg = Y+/3(Xd _X)7 (320)
where X4 = ﬁ Yoim X, is also an unbiased estimator of px. If (Y, X) follows a bivariate normal distribution,
then Sukhatme and Sukhatme| (1970)) showed that l_’r‘ég is an unbiased estimator of uy, and its variance is
given by

= 1 1 1 o3
d 201_ 2 (2 _ Y
Var(Yres) = oy (1 — p%) (n - ) (1 + — 3) + p— (3.21)

In Table we compare the performances of the mean estimators based on perfect RSS schemes with the
regression estimator based on SRS. For this comparison, we consider the variances of mean estimators given
in (3.1), (3.5), (3.7, (3.8), and compare them with the variances of the regression estimators give in (3.19)
and . The RPs of these estimators (based on perfect RSS schemes) are given in Table Similarly,
under imperfect RSS schemes, we consider the variances of the mean estimators given in , , ,
, and compare them with the variances of the regression estimators given in and . The
RPs of these estimators based on imperfect RSS schemes are given in Table

From Table it is clear that under perfect ranking, the mean estimators under RSS designs are better
than the regression estimator based on SRS unless the correlation between the study and the auxiliary
variable is greater than 0.85. Similarly, in case of imperfect rankings, from Table it is noteworthy that
when the correlation is small, the RSS based estimators are preferable to the SRS-based regression estimator.
The RPs of the mean estimators tend to decrease under each of the RSS design as the number of cycles r

increases and vice-versa. For all cases, the mean estimators under PDRSS are more precise when compared
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with the mean estimates under RSS and MRSS. It is interesting to note that the RPs of both DRSS- and

PDRSS-based estimators remain roughly closer to each other.
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Table 3.3: Exact RPs of estimators under perfect ranking relative to SRS-based
regression estimator

Auxiliary variable mean known Auxiliary variable mean unknown

Paired Double Ranked Set Sampling
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m T p— +0.10 +0.30 =+0.50 =+0.70+ +£0.90 =+0.99 p— +0.10 =£0.30 =£0.50 +£0.70 £0.90 =0.99
4 1 RSS 4.65 4.27 3.52 2.39 0.89 0.09 | RSS 4.07 3.79 3.23 2.38 1.26 0.66
4 1 MRSS 5.49 5.05 4.16 2.83 1.05 0.11 | MRSS 4.81 4.48 3.81 2.82 1.48 0.78
4 1 PDRSS 6.14 5.65 4.65 3.16 1.18 0.12 | PDRSS 5.38 5.01 4.27 3.15 1.66 0.87
4 1 DRSS 6.98 6.42 5.29 3.60 1.34 0.14 | DRSS 6.12 5.70 4.85 3.58 1.89 0.99
4 3 RSS 2.58 2.37 1.96 1.33 0.50 0.05 | RSS 2.52 2.37 2.05 1.58 0.96 0.63
4 3 MRSS 3.05 2.81 2.31 1.57 0.59 0.06 | MRSS 2.98 2.80 2.43 1.87 1.13 0.74
4 3 PDRSS 341 3.14 2.59 1.76 0.65 0.07 | PDRSS 3.34 3.13 2.7 2.09 1.27 0.83
4 3 DRSS 3.88 3.57 2.94 2.00 0.74 0.08 | DRSS 3.79 3.56 3.09 2.38 1.44 0.94
4 oo RSS 2.46 2.26 1.86 1.27 0.47 0.05 | RSS 2.43 2.28 1.98 1.54 0.94 0.62
4 oo MRSS 2.91 2.67 2.20 1.50 0.56 0.06 | MRSS 2.87 2.70 2.35 1.82 1.11 0.74
4 oo PDRSS 325 2.99 2.46 1.68 0.62 0.07 | PDRSS 3.21 3.02 2.62 2.03 1.24 0.82
4 oo DRSS 3.70 3.40 2.80 1.90 0.71 0.07 | DRSS 3.65 3.43 2.98 2.31 1.41 0.94
5 1 RSS 2.32 2.14 1.76 1.20 0.45 0.05 | RSS 2.33 2.19 1.91 1.48 0.92 0.62
5 1 MRSS 2.75 2.52 2.08 1.41 0.53 0.06 | MRSS 2.75 2.59 2.25 1.75 1.09 0.73
5 1 PDRSS 3.07 2.82 2.33 1.58 0.59 0.06 | PDRSS 3.08 2.89 2.52 1.96 1.22 0.82
5 1 DRSS 3.49 3.21 2.64 1.80 0.67 0.07 | DRSS 3.50 3.29 2.87 2.23 1.38 0.93
5 3 RSS 4.11 3.78 3.12 2.12 0.79 0.08 | RSS 3.85 3.58 3.05 2.25 1.19 0.62
5 3 MRSS 5.18 4.76 3.92 2.67 0.99 0.10 | MRSS 4.84 4.50 3.83 2.83 1.49 0.78
5 3 PDRSS 6.37 5.86 4.83 3.28 1.22 0.13 | PDRSS 5.96 5.54 4.72 3.48 1.84 0.96
5 3 DRSS 6.62 6.08 5.01 3.41 1.27 0.13 | DRSS 6.18 5.76 4.90 3.62 1.91 1.00
5 oo RSS 297 2.73 2.25 1.53 0.57 0.06 | RSS 2.93 274 2.35 1.78 1.01 0.60
5 oo MRSS 3.74 3.44 2.83 1.93 0.72 0.08 | MRSS 3.69 3.45 2.96 2.24 1.27 0.76
5 oo PDRSS 4.60 4.23 3.49 237 0.88 0.09 | PDRSS 4.54 4.24 3.65 2.75 1.56 0.93
5 oo DRSS 4.78 4.39 3.62 2.46 0.92 0.10 | DRSS 4.71 4.41 3.79 2.86 1.62 0.97
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3.5 An application to real data

In this section, we explain the PDRSS scheme using a real data set that was previously used by [Haq et al.
(2013b) to illustrate RSS schemes. The data set is taken from Platt et al.| (1988) related to 399 conifer
(pinus palustris) trees. We consider only two variables out of the seven originally collected: the height of the
tree measured in feet (the study variable Y'), and the diameter of the tree at the breast height measured in
centimeters (the auxiliary variable X). The summary statistics of the data set are presented in Table

Table 3.5: Summary statistics of 399 trees data

Variable Mean Median Variance Skewness Kurtosis
Diameter (Y')(cm) 20.84 14.5 310.11 0.884 —0.423
Height (X) (ft) 52.36 29 325.14 1.619 1.776

Correlation coefficient (p) 0.908

Both variables are asymmetrically distributed with non-zero skewness and the mean greater than their
respective median. We use one million replications to estimate MSEs of the mean estimators under the
existing sampling methods. For an unbiased estimator, the MSE of estimator is equivalent to its variance.
For brevity of discussion, we consider MSE for each estimator.

Each iteration is performed as follows: a sample of size m is selected under each of the sampling scheme.
Here, the assumed values of m are 3, 4 and 5. The ranking is performed by using the study variable Y
and the auxiliary variable X. The sample means under both perfect and imperfect rankings are calculated.
One million iterations are used to obtain the sampling distributions of sample means under each sampling
schemes. Then, based on estimated MSEs (EMSEs) of mean estimators, RPs are calculated and reported
in Table The estimated RP (ERP) of any estimator, say Yj, with respect to Ygrg is defined as

ERP (Y, Ysrs) = %((Y;ﬁ) for H = RSS, PRSS, MRSS, PDRSS and DRSS.
Table 3.6: ERPs relative to SRS for trees data
Ranking PRSS RSS MRSS PDRSS DRSS
Perfect 14793 1.6328 1.8911 2.0163 2.0447
Perfect 1.56869 1.9306 1.9627 2.4975 2.6404
Perfect 2.0049 2.2274 1.6607 3.2392 3.2842
Imperfect 1.4139 1.5419 1.6698 1.8589 1.8834
Imperfect 1.4747 1.7665 1.7679 2.1666 2.2841
Imperfect 1.7945 1.9673 1.6194 2.6101 2.6404

ou s oo | 3

It is notable that in order to select a sample of size m = 5, RSS or MRSS requires 25 identified units,
PRSS requires 15 units, PDRSS requires 75 units, and DRSS requires 125 units. It is clear that although
DRSS provides efficient estimates but it requires a large number of identified units. The identification and
ranking of 125 trees in different sets may be more difficult than 75 trees. Therefore, PDRSS can be used
as an alternative to DRSS because it requires less identification and less ranking of trees. Thus, PDRSS
scheme can be more practical and economical than DRSS scheme. Table shows that the estimated RPs
are increasing with the set size m. It is clear that the estimates obtained under perfect rankings are superior

to the estimates based on imperfect rankings. As expected, the mean estimates under PDRSS are more
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precise than their counterparts based on SRS, RSS, MRSS and PRSS schemes. Generally, PDRSS scheme is
best for both perfect and imperfect rankings as compared with these sampling methods. For all cases the

mean estimates under DRSS are more precise than its counterparts.

3.6 Conclusion

In this chapter, we proposed an efficient and unbiased sampling scheme for estimation of the population mean.
We showed both analytically and numerically that under perfect ranking, the mean estimators under PDRSS
are more precise than the mean estimators under SRS, RSS and PRSS for both symmetric and asymmetric
distributions. Generally for large samples, the proposed mean estimates are also more precise than the
estimates under MRSS. In comparison with the regression estimators of the population mean, PDRSS mean
estimates are preferable to SRS, RSS and MRSS estimates for both perfect and imperfect rankings. Based on
the results obtained from real data, PDRSS provided efficient estimates than its counterparts. Finally, the
use of PDRSS is recommended over the existing RSS schemes. It is also a good alternative to DRSS when
ranking or identification cost cannot be ignored. The current work can be extended to develop ratio ratio

and regression estimators of population mean based on PDRSS.
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Chapter 4

Best Linear Unbiased and Invariant

Estimation in Location-Scale Families
Based on Double Ranked Set

Sampling Scheme

This chapter appeared in:
Haq, A., Brown, J., Moltchanova, E., Al-Omari, A.l., 2014, Best linear unbiased and invariant estimation in
location-scale families based on double ranked set sampling, Communications in Statistics-Theory and

Methods, Accepted for Publication.

In this chapter, we propose best linear unbiased estimators (BLUEs) and best linear invariant estimators
(BLIESs) for the unknown parameters of location-scale family of distributions based on double ranked set
sampling (DRSS) using perfect and imperfect rankings. These estimators are then compared with the BLUEs
and BLIEs based on ranked set sampling (RSS). It is shown that under perfect ranking, the proposed
estimators are uniformly better than the BLUEs and BLIEs obtained via RSS. We also propose best linear
unbiased quantile (BLUQ) and best linear invariant quantile (BLIQ) estimators for normal distribution under
DRSS. It is observed that the proposed quantile estimators are more efficient than the BLUQ and BLIQ

estimators based on RSS for both perfect and imperfect orderings.
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4.1 Introduction

The ranked set sampling (RSS) scheme was introduced by McIntyre (1952) for real life situations where the
variable of interest is difficult to measure or costly. However, the ranking of a small set of selected units
can be carried out easily by visual inspection or by any inexpensive method. The theoretical foundation of
RSS was set by Takahasi and Wakimoto| (1968)). They proved that under perfect ranking, RSS provides an
unbiased estimator of the population mean and it is more efficient than the sample mean based on simple
random sampling (SRS). Additionally, Dell and Clutter] (1972) showed that under imperfect ranking, the
sample mean remains an unbiased estimator of the population mean but ranking should be better than at
least a random ordering.

Lloyd| (1952) derived the best linear unbiased estimators (BLUESs) of the location and scale parameters
using general least-squares theory. Mann| (1969) obtained the best linear invariant estimators (BLIEs) of the
location and scale parameters based on BLUEs. The best linear unbiased quantile (BLUQ) estimator for
normal distribution was derived by [Hassanein et al.| (1986)). Under RSS protocol, [Stokes (1995) derived the
BLUES of location and scale parameters when one parameter of the location-scale family of distributions
is known. Later on Sinha et al. (1996) obtained BLUEs of the location and scale parameters of normal
distribution and for a scale parameter of exponential distribution using RSS. The BLUEs of location and scale
parameters of generalized geometric distribution were obtained by Bhoj and Ahsanullah) (1996) under RSS.
Barnett and Moore] (1997) suggested BLUESs of the location and scale parameters with particular reference to
imperfect RSS (IRSS). By extending the same work, Hossain and Muttlak (2000) obtained minimum variance
linear unbiased estimators (MVLUES) of location-scale family of distributions under RSS. They showed that
the MVLUESs of population mean under RSS are more precise than the usual SRS or RSS mean estimators of
the population mean. Raqab et al.| (2002)) extended the work of [Mann| (1969) and suggested BLIEs of the
mean, location and scale parameters of several distributions under RSS. Barnett and Bown| (2002) developed
an approximate significance testing procedure for normal quantile based on BLUQ estimators under SRS and
RSS. |Al-Saleh and Al-Kadiri (2000) introduced an extension of RSS, namely, double RSS (DRSS). The DRSS
scheme also provides an unbiased estimator of the population mean and it is more efficient than the RSS
mean estimator. Balakrishnan and Li| (2005) proposed BLUEs based on ordered RSS (ORSS) for unknown
location and scale parameters of generalized geometric distribution. It is shown that the BLUEs based on
ORSS are uniformly better than the BLUEs based on SRS and RSS. Balakrishnan and Li| (2008]) obtained
BLUEs based on ORSS for some location-scale distributions. [Shadid et al.| (2011) derived some modified
BLUEs and BLIEs of the unknown parameters of location-scale family of distributions under RSS. It is
shown that the modified BLUEs and BLIEs are more efficient than their competitors when the underlying
distribution is symmetric. For some other application and related work, see Sinha et al.| (1996)), Bhoj| (1997),
Chuiv and Sinhal (1998), Kim and Arnold| (1999), Zheng and Al-Saleh (2003), Balakrishnan and Li (2006]),

Tiensuwan et al, (2007) and references therein.
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In this chapter, we extend the work and propose BLUEs and BLIEs of the location and scale parameters
under DRSS scheme using perfect and imperfect rankings. Furthermore, we also propose some BLUQ and
best linear invariance quantile (BLIQ) estimators of normal quantiles based on DRSS. It is observed that
under perfect DRSS, the proposed BLUEs and BLIEs of location and scale parameters are uniformly better
than the BLUEs and BLIEs under RSS. In quantile estimation, the suggested quantile estimators are more
precise than their counterparts for perfect and worst rankings.

The rest of the chapter is organized as follows: the RSS and DRSS sampling methods are briefly elucidated
in Section Section [4.3] focuses on BLUEs and BLIEs under RSS. In Sections [4.4] and we present the
BLUEs and BLIEs of the location and scale parameters under DRSS using perfect and imperfect rankings,
respectively. Section provides a numerical comparison of estimators based on several symmetric and
asymmetric distributions. In Section [£.7] we consider quantile estimation based on RSS and DRSS schemes.
Section contains a numerical comparison of quantile estimators. Section provides the concluding

remarks.

4.2 Sampling methods

In this section, we provide a brief introduction to RSS and DRSS methods.

4.2.1 Ranked set sampling

The RSS scheme can be described as follows:

(i) Identify m? units from the target population. Randomly allocate these m? units to m sets each of size

m units.
(ii) Rank the units within each set without yet knowing the actual measurements of the study variable.

(iii) Select the smallest ranked unit from the first set of m units. Similarly, select the second smallest ranked
unit from the second set of m units. The procedure continues until the largest ranked unit is selected

from the last set. This completes one cycle of a ranked set sample of size m.

(iv) The above steps (i)-(iil) can be repeated k number of times, if necessary, in order to obtain a ranked set

sample of size n = mk.

4.2.2 Double ranked set sampling

Al-Saleh and Al-Kadiri (2000) introduced the DRSS procedure for an efficient estimation of population mean.
The DRSS scheme can be described as follows:

(i) Identify m?® units from the target population. Randomly allocate these m?® units to m sets each

containing m? units.

(ii) Apply the RSS procedure to these m sets in order to obtain m ranked set samples each of size m.
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(iii) Again apply the RSS procedure to these m sets, each of size m, to obtain a double ranked set sample of

size m. This completes one cycle of a double ranked set sample of size m.

(iv) This step is similar to the step (iv) of the RSS procedure.

4.3 BLUEs and BLIEs using RSS

Let Y3,Y5,...,Y,, be a simple random sample of size m, drawn from an absolutely continuous distribution
having distribution (CDF) F (%) and probability density function (PDF) % (%), where p is the location
parameter and o(> 0) is the scale parameter. For brevity, let f*(y) = % (%) and F*(y)=F (%)

Let Yi1s, Yiot, ooy Yimt, Y218y Y228 -ooy Yomts «oes Ymilts Ym2ts .-y Ymmt D€ M sets each of size m in the tth cycle

for t =1,2,...,k. By applying RSS procedure to these m sets, we obtain a ranked set sample of size m

for the tth cycle, i.e., Y(1)s, Y(2)t) -, Y(m)s- Here Y(;); is the ith independent order statistic obtained from

the ith sample of size m in the tth cycle, i.e., Y(;); = ith min(Yi1s, Yiot, ..., Yime). Let Uy, = Y(");_“ be the
standardized variate with PDF independent of u and 0. Let Y’ = (Y, Y5, ...,Y}) be the vector of observed
order statistics of a ranked set sample of size mk and let U’ = (Uy, Uy, ..., U},) be the vector of standardized
order statistics corresponding to Y, where Y} = (Y(1),Y(2), ..., Y(m)) and U; = (Uq), U2y, -, Ugmy) for
t=1,2,..,k. Let o' = (a},0),...,a;) be the mean vector of U, where a; = (o), (2), -, C(m)) for
t =1,2,...k, and let 8’ = (i, o) be the vector of unknown parameters. Let ¥ be a mk x mk diagonal
matrix of U, i.e.,, ¥ = diag(X;,Xs,...,X%). Here ‘diag’ indicates a diagonal matrix. As in the ranked
set sample, all of the order statistics are independent, thus, here 3; is also a m x m diagonal matrix,
ie., X; = diag(cqa1), o(22)s - T(mm)), for t = 1,2,...,k, where o(;;) = Var(Uy)), for i = 1,2,...,m. The
expected value of Y is E(Y) = A0, where A = (1, ), 1" = (14,19, ..., 1) is a mk X 1 vector of all 1’s, i.e.,
1, =(1,1,...,1) is a m x 1 vector, for ¢ = 1,2, ..., k. Similarly, the covariance matrix of Y is Cov(Y) = 02X.

The PDF and CDF of U;), for ¢ = 1,2, ..., m, respectively, are

* * im_i i+ -7 -1 * j
Fyw = @iy (T TN a-Fey, —o<u<s,
§=0
* m-—1 * i—1 * m—i p*
fow) = m(" T @ - P )
Similarly, the mean and variance of U;), respectively, are

Qg = /uf(*i) (u)du and o) = /(u — a(,-))zf(*i)(u)du. (4.1)

From (4.1), it is easy to find @ and X, that are required in obtaining the BLUEs of location and scale

parameters under RSS.
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4.3.1 BLUEs based on RSS

Following the work of Lloyd (1952)), Barnett and Moore| (1997)) obtained the BLUESs of the location and scale

parameters under RSS, i.e., éi&ss = (fimrss, frss), given by

éRSS = (A,E_IA)_IAIE_lY.
The covariance matrix of C':)Rss is

Cov(Oggs) = 02(A'S71A)L.
After some simplification, we can write

firss = —a'TY and 6grgs =1TY,

where ' = M and A = (1’7 11)(’E7a) - (1'=la)(/=711).
Similarly, the variances and covariance of BLUEs under RSS are

o' la 1’11

Var(firss) = o” (A) , Var(égss) = 0 (

I’E_Ia)

) and Cov(firss, Orss) = —0* ( A

Note that if the underlying distribution is symmetric, then due to symmetric 1’S 'a = -1’3 'a = 0. It

helps in further simplifying the expressions of the BLUEs, i.e.,

s 1=y | o'oY
brss = T7<—i5 ) ORSS = 1.
1’1 oo la
Var(igss) = Ts-17 Var(6gss) = > o and Cov(figgs, FRss) = 0.

For more details, see |David and Nagaraja/ (2003).
In order to study the performance of BLUEs under IRSS, Barnett and Moore| (1997) considered the

following model:

g .
Yii]t =p+p (O'X) (X(z)t - .u’X) + Tty = 1,2,..,m, t=1,2,..,k, (42)

where X;); and 7;}; are mutually independent. Under this model, (Y, X) follows a bivariate normal distribution
with parameters, y, ux, o, ox and p. Here E(rjy) = E(7i) = 0, E(Y) = p, E(X) = px, Var(Y) = o2,
Var(X) = 0%, Var(m;:) = Var(rie) = 02(1 — p?), Corr(X,Y) = p and Cov(Yj, Yj3e) = 0 for ¢ # j. Here 7y,
is the particular value of 7;; associated with X(;);. If a ranked set sample of size m is ordered by X;; in the
tth cycle, then Y};); is the 4th concomitant or induced order statistic of the ith order statistic X;); for the tth

X@t—px X@t—pBx _ Xaye—px Xgye—Bx\ _ . .
St = y 0x; = Cov( =, = ) =0, for i # j,

cycle. Let ax, = F ( » OX ;= Var (

,j=1,2,...m,t=1,2,.... k.
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From (4.2), we can write
E(Yp) = p+oak,,, Var(Yy) = 02‘7;((,.,.)a Cov(Y[syt, Yjj1¢) = 0 for i # j,

where o, = pax, and 0%, =1-p*(1—ox,)-

The BLUEs of u and o based on IRSS are fijrss = E:’;l ’yil_/[i] and f1rss = E:’ll ml_f[z-], respectively. Here v; =
e gy T 43) X 2o Xy [T n = 201 (% 5= 5 (o 1 ) , Y = & St Yaes

)

EO';((“) Eo’:(\’(ii)

The variances and covariance of fijrss and dirsg are, respectively, given by

2 M 2 M

~ g N o
Var(MIRSS) = ]?: Z (a‘%((i) /0;((“)) ’ VaI(UIzRSS) = ]?: Z (1/0}(1'1')) and
T =1 = i=1
0'2 i
Cov(Bmss, O1rss) = — 1= (ax(,-) / 0}}(“.)) .
T =1

4.3.2 BLIEs based on RSS

Mann| (1969) derived the BLIEs of the unknown parameters of location-scale family of distributions. The
BLIE possesses the minimum mean squared error (MSE) among all linear invariant estimators.

Following Mann| (1969), [Ragab et al.| (2002) proposed BLIEs of the location, scale and mean of the
different distributions under RSS.

Let firss and érgs be the BLIEs of the u and o, respectively, given by

firss = firss — Grsséi2(1+ &20)~ ' and Gres = Grss(l + &22) 7Y,

where 511 = U_ZVar(ﬁRss), 512 = O'_QCOV(ﬂRss, OA'RSS) and 522 = 0'_2Var(6'Rss).

The MSEs of figss and rgg are given by

MSE(firss) = 0°{&11—&a(1+&2)7'Y,
MSE(Grss) = 0%&n(l+ &),

E{(firss — 1) (Frss —0)} = o02&a(1+&2)7"

For further details see [Raqab et al.| (2002) and |Shadid et al.| (2011)).

4.3.3 BLIEs based on IRSS

Following the work of Barnett and Moore| (1997) and Ragab et al.| (2002), we propose BLIEs of location and
scale parameters under IRSS scheme.

Let firss and &irgs be the BLIESs of p and o, respectively. Following Raqgab et al.| (2002), the BLIEs of u
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and o are

firss = firss — O1rsséia(1+&55)7" and Grss = Omss(1+&55) 77,

where ¢§; = 0 2Var(fimmss), £ = 0~ 2Cov(firss, O1rss) and &3y = 0~ 2Var(b1rss)-

The MSEs of fijrss and dirss are given by

o?{&h — &3 (1 +€5,) 7',
0%E5(1+&52) 7Y

0?1+ &5,)7

MSE(firss)

MSE(61rss)

E{(frss — p1)(Gmss — o)}

4.4 BLUEs and BLIEs under DRSS based on perfect ranking

Al-Saleh and Al-Kadiri (2000) introduced DRSS procedure for estimation of population mean. It is shown
that the DRSS scheme provides an unbiased estimator of population mean and it is more efficient than the
mean estimator based on RSS. In this section, we propose some improved BLUEs and BLIEs of the location
and scale parameters based on DRSS.

Let Y; ~ F*(y), for i = 1,2,...,m. Suppose S1s, S, -, Smt be m sets each of size m? for the tth cycle,
for t = 1,2,..., k. Randomly allocate the m? units in the the ith set S;; to m subsets si;¢ each of size m, i.e.,
Sit = {sijt} = {si1¢, Sizts -y Simt}, for j = 1,2,...,m. The units of the jth subset s;;; of the ith set S;; in
the tth cycle are given by s;;; = {Yj(lzz, YJ(;,Z, - Y](,Qt} Apply the RSS procedure to these m sets in order to
obtain m ranked set samples each of size m. Suppose the ith set S}; contains the ith ranked sample, i.e.,
S = {Y((li))t,Y(gi))t, very Y((mi))t}. Again apply the RSS procedure to these m sets in order to obtain a double
ranked set sample of size m in the tth cycle. Let Z(;), = ith min{S}}, then {Z(1y¢, Z(2)t, ..., Z(m)t} Tepresents
a double ranked set sample of size m for the tth cycle, for t = 1,2, ..., k.

As 11,Ys, ..., Y., be independent and identically distributed (IID) random variables from a location-scale
PDF f*(y). Then, the CDF and PDF of the ith order statistic Y{;), respectively, are given by

m—i ;. .
Ryw = ey y (17
§=0

fow = w7 Eer - e,

u-rey, —o<y<w,

Consider {Z(1y¢, Z(2)t5 s Z(m)t}, for t = 1,2,...,k, be a double ranked set sample of size mk, then it is
assumed that the PDF of Z;), is ga) (2), i.e., Zgy ~ gz‘i) (2), with corresponding CDF Gz‘i) (2). Note that for
each t, Z(;; and Z(;) are identically distributed, i.e., Z;; 2 Z(;)- As explained by Al-Saleh and Al-Kadiri
(2000), here gz‘i)(z) is the PDF of the ith order statistic from a ranked set sample, say Y(1),Y(2), s Y(m)>
with Y3y ~ f(*i) (y), for i =1,2,...,m. Obviously {Z1)¢, Z(2)t, ---» Z(m)t} are independent but not identically
distributed (INID) random variables in the tth cycle.
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Following David and Nagaraja (2003), the CDF of the rth order statistic from INID random variables, Y(;),

fori=1,2,...,m, is given by

Gin(2) = ZZHF(*M(z) H {1-Fj,)(2)}, —oc0<z2<o0, r=1,2,..,m,

i=r A; l=1 I=i+1

where the summation A; extends over all permutations (j1, ja, ..., jm) 0f 1,2, ...,m for which j; < jo <--- < j;
and jiy1 < Jite < < jm.

An alternative form of Gf,,(z) is given by

m

Gy =2 m Per(B1),

i=r

where Per(Bj) is the permanent of the matrix Bj.

Here B; is defined as

( Fiy(z)  Foyp®) - Fi(® ) br
Bi= 1-Fay(2) 1-Fp(2) - 1-F(2)

tm—r
Here “}4” shows that the first row is repeated ¢ times and “} m — ¢” shows second row is repeated m — ¢
times.

Similarly, the PDF of the rth order statistic from INID random variables, Y(;), for ¢ = 1,2,...,m, is given by

. 1
9 (2) = r=Dlm=r) Per(By),

Finy(2) Foy(2) o Foy(2) ) Jr—1
where 32 = f(*m)(z) f{m)(z) f{m)(z) }1
1-— F(*;n)(z) 1-— F(*m)(z) R F(*;n)(z) Ym—r

Examples

Based on above formulae, we provide the CDFs of the order statistics based on double ranked set samples for
different sample sizes when Z = y.

Case I: If m = 2, then

Gly () = Fy {1 — Fiy (1)}, Gy (v) = Fyy () * Fyy (v)-

Case II: If m = 3, then

Gy () = Fy @)1~ FiapyH1 — Fsy )} + Fsy ) {1~ Fyy ()} + Fy(0),

Gl () = Fioy ) F sy (y) + Flyy(v) [Foy {1 — 2F 5 (9)} + Fy ()],

G5y () = F(y () F o () F5) ()
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Case III: If m = 4, then

Gy () = F5)(v) + Fiy {1 — Fo (W HL — F5 (W H1 — Fiy (W)} + Fioy {1 — F5 (W) H1 — Flpy ()} +
Fiy(y) — Fi5 (0) Fy (v),

Giy(y) = FlW)Fiy(y) + Floy{FS) ) + Fiy(y) — 2F5 W) FayW)} + Fiy @) [F)(v) + Fiy(y) —
2R () Fio(8) + Fiy )1~ 2F5)(9) — (2 — 35 0) Fiy )},

Glay(y) = Floy (y) F sy (0) F () + ooy (9) [F ) () F iy () + ooy ) E sy () + Fiy () — 3F sy (9) Fy ()3,
Gl (W) = Fiyy () F o) (0) Fs) (v) Fyy ()

Let Wiy = W be the standardized variate with PDF independent of y and 0. Let Z' =
(Z}, Zi, ..., Z},) be the vector of observed order statistics of a double ranked set sample of size mk and let
W' = (W1, Wy, ..., W) be the vector of order statistics corresponding to Z where Z; = (Z(1), Z(2), --» Z(m))
and Wi = (W), W(a), ..., Wimy) for t =1,2,..., k. Let v’ = (v}, V5, ..., v},) be the mean vector of W, where
v = (V(1), V(@) - U(m))- Let @ = diag(21, g, ..., V) be the covariance matrix of W. As all of the order
statistics in the double ranked set sample came from independent samples, therefore, here Q2 is a mk x mk
diagonal matrix, i.e., where Q; = diag(w(11), w(22), ---» Wimmy)), for t = 1,2,..., k, where w(;;y = Var(W;)), for
i=1,2,...,m. The expected value of E(Z) is E(Z) = B, where B = (1,v). The covariance matrix of Z is
Cov(Z) = o292
Here, the PDF of W(;, i = 1,2,...,m, is given by

. 1
9 (w) = G=Dm=i) Per(B3),
Fyy (w) Foylw) - Foy(w) | }i—1
where B3 = f(*1)(w) f(*z) (w) f(*m) (w) 3!
1-Fyy(w) 1-Fow) - 1-F;,(w)) tm—i
Similarly, the mean and variance of W(;y, respectively, are
V() = /wgfi) (w)dw and wg; = /(w - U(i))zga) (w)dw. (4.3)

From (4.3), it is easy to find v and €, that are required in obtaining the BLUEs of location and scale

parameters under DRSS.

4.4.1 BLUEs based on DRSS

Following the works of Lloyd| (1952) and Barnett and Moore| (1997), the BLUESs of the location and scale

N
parameters, i.e., ®pras = (ApRss, pRss), under DRSS are

Oprss = (B'Q7'B)"'B'Q7'Z.
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The covariance matrix of (:)DRSS is
Cov(éDRss) = 02(B’Q_1B)_1.
After some simplification, it is easy to write
pprss = —v'IIZ and 6pgrss = 1'I1Z,

where IT = w and ¥ = (1'Q711)(v'Q 1) — (1'Q 7 v) (v/Q711).

Similarly, the variances and covariance of BLUEs under DRSS, respectively, are

v vy 1011

Va.r(ﬂDRss) = g2 <\IJ) ava'r(&DRSS) =d° (

l’ﬂ_1v>

) and Cov(fipRrss, 6DRss) = —0° ( T

The DRSS BLUESs can be written as a linear combination of the independent order statistics obtained from a

double ranked set sample, i.e.,

ApRrss = Z'ﬂiz(i) and Oprss = Z‘Piz(i)a
=1 =1
where 9; = 5L {3712 (v, /wain) —vie) Lita (V) /wan)h i = Gose (v i (Wweiy) =it (Ve /wii) b
Z(i) = % Ef:l Z(i)t and ¥ = E?Ll(v(zi)/w(ii)) 227;1(1/0-1(&)) - {Eﬁl (U(i)/w(ii))}2'

The variances and covariance of iprss and &pgrss, respectively, are

. 0_2 m . 0.2 m
Var(fiprss) = =7 (U(Qi)/w(u)) , Var(6prss) = a7 Z (1/ws) and
1=1 =1
Cov(fiprss, 6pRss) = v Z (Vi) /wsy) -
=1

Note that if the underlying probability distribution is symmetric, then due to symmetry, we have 1'Qu =

—1'Qu = 0. Then the simplified expressions of the BLUEs are given by

. 1'Q7'z vQT'Z
HMDRSs = 17011’ DRSS = oo’
Var(iprss) = ,07:, Var(6prss) = 072_1 and Cov({prss, Fprss) = 0-
1'Q7"1 VT v

For symmetric populations, the expressions of the BLUEs and their variances under DRSS are

PR D 1C/CVLIT) R DO COT/OVC)
DRSS S (Lwan) DRSS Y ) wey)
0.2 0.2

and Var(6dgrss) =

Var(i = <=m 7 m '
(AbRss) ko (1was) kzizl(va) [w(isy)
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4.4.2 BLIEs based on DRSS

Following Mann! (1969) and Raqab et al.| (2002), in this section, we obtain the BLIEs of location and scale
parameters.

Let fiprss and 6prss be the BLIEs of u and o under DRSS, respectively, given by
fiprss = fiprss — Gprss¥12(1 +922)™" and Fprss = Gprss(l + ¥22) 7t

where 911 = 0~ 2Var(2prss), Y12 = 0~ 2Cov(iiprss, 6prss) and ¥ee = 0~ 2Var(6prss).

The MSEs of jiprss and 6prsg are given by

MSE(fiprss) = 02{¥11 — ¥(1+v22)7'},
MSE(6prss) = 02taa(l+e2)7?,

E{(fiprss — p)(Bprss — 0)} = 02h1a(1+1ha2) 7"

The simplified expressions of fiprgs and éprss are given by
m _ m _
fiorss = »_<iZ@ and Gprss = Y (iZa),
i=1 i=1

where ¢; = 9; + £ Y00 (v /wiany)s G = Yo AL A=kT + 37 (1/wis)-

Similarly, the simplified MSEs of fiprss and dprss are given by

2
5 o2
MSE(;J,DRss) = 0 Z(U(Z) /W(u) {Z(U@/W(u) } ] ’
MSE(6prss) = By Z 1/wa),
. . k\IIU
Cov(fiprss; GpRss) = E(U(z) [w(id))-
Since in case of symmetric distribution, we have 1'Qv = —1'Qu = E:’;l ('U(i)/ w(z’i)) =0.

The BLIEs based on DRSS and their MSEs can be further simplified to following forms:

PR Y 1C OV P SN COL OV ),
DRSS T oy (Yway) T PRSS 1+ 3235, (W) /wan)’
2
g

Var(iprss) = Var(fprss), MSE(6Drss) = T+ k>, (V2 g
i=1(V() /Wi
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4.5 BLUEs and BLIEs using DRSS under imperfect ranking

Let Y7 and Y3 be the study variable and the auxiliary variable, respectively. Let E(Y1) = py;, E(Y2) = py,,
Var(Y1) = o3, = o2, Var(Y2) = o}, and p be the correlation coefficient between Y; and Ys. Consider
(Y14, Y2;), i = 1,2, ...,m, be a random sample from a bivariate normal distribution with location-scale CDF
F*(y1,90) = F (%, %) Suppose (Ziijt, Zagiyt), t = 1,2, ...,m, t = 1,2, ..., k, represent a bivariate
ranked set sample of size mk from F*(y1,y2), as explained in Section If the sample is ordered by the
Zait, the Zy;; variate associated with Zy(;y, will be Zy;;;. Here Z;j;; is the ith concomitant of the ith order

statistic Zy(;); for the tth cycle. Following Samawi and Tawalbeh| (2002), we consider a simple linear

regression model based on this double ranked set sample of size mk, given by

g .
Zl[i]t = Uy, + pril(z2(z)t - )U‘Yz) =+ €Lty = 1,2,..,m, (44)

2
where Z(5); and €[;}; are mutually independent. Here ¢[;); is the particular value of €;; associated with Zy(;);.
Then, it follows that E(e;:) = E(epje) = 0, Var(eir) = Var(ep):) = o, (1 — p°).

Let vf,y = E (M), Wl = Var (Z'A’(z;tiy_“‘fz) and wj) = COV(Z2(i)t_I4Y2, Z2(J)t I—"Yg) — 0, for i # J,
2

OYy OYy

Z”j = 1)27 "'7m7 t = 1,2, ...,'r
Now from (4.4), we have

E(Zypii) = pv, +on (), Var(Zye) = a%lw&-*;), Cov(Zy[ijes Z1[j1¢) = 0 for i # j,

where v() = pu(;) and wi =1— p2(1— w{ii)).
4.5.1 BLUESs using DRSS under imperfect ranking

Now the results given in Section [4.4] can be extended to the case of imperfect double ranked set sampling

(IDRSS). The BLUES of location and scale parameters under IDRSS are given below:

m m
fuprss = » 9 Z1; and  Gpmss = Y ¢} Za,
=1 =1

where ¥; = W{Egl(vfﬁz/ﬁﬁ)) - vy T (VS Wi} eF = u NT {viy X (L/wiy) —
m *ok *k r7 k * m m Kok *k
e (VW)Y Z = £ i Zpg and U = 30T (uih winey) Dies (/W) — {E¢=1(U(i)/w(ii))}2-

The variances and covariance of fiiprss and Fipgrss, respectively, are

2 m
Var(,uIDRss) kq,* 2:(’1)(1)2 /w(m)) Va.r(aIDRss k\I’* Z(l/w(“)) and
i=1
0? &
Cov(ApRss, F1DRSS) = ~ 1 4% ;(U(i)/ Wii))-
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For symmetric populations, we have > ;" ('UE“;S /w(iiy) = 0. The simplified expressions of BLUEs and their

variances under IDRSS are

o _ Tint (Z1 a/ Wfﬁ)) e Dt (U?:S Z 101/ W?i’;))
TDRSS 2211 1/ w&.‘;)) » IDRSS = EZ’; (Uz‘;ﬁ/ w,(ki,.zi)) ’
o2 2

a

Var(fiprss) = m Var(Giprss) = kit (UG i)

4.5.2 BLIEs using DRSS under imperfect ranking

Following the results give in Section [4.5.1] we obtain BLIEs of location and scale parameters under imperfect
ranking using DRSS as follows.
Let fizprss and &1prss be the BLIEs of y and o under IDRSS, respectively, given by

- ~ ~ -1 ~ ~ -1
fiprss = Jprss — Orss¥is (1 + ¥53) and Gprss = Gprss(1+¥33) ",

where 9}7 = 0 ~?Var(fprss), %13 = 0~ 2Cov(fiprss, 6orss) and 933 = o~ 2Var(6prss)-

The MSEs of jiiprss and diprss are given by

MSE(fiiprss) = o2 {¢it — ¥i32(1+5s) 7,
MSE(6iprss) = o¢53(1+v33) ",
E{(fiprss — p)(rss —0)} = o*yiz(1+¢ss)t

The simplified expressions of fiiprss and éprss are given by
m

m
faprss = Y _s*Z;; and Gprss = » ¢ Zj,
i=1 i=1

where 61" = 0; + £ S, (0 /) G = WHGT W) T X = KU 4 S (1)

Similarly, the simplified MSEs of fiiprss and &iprss are given by

2
~ ok 1 ¢
MSE(fiiprss) = Z(U(z)z/w(m) o {Z(U(l)/w(n))} ],

)\** Z( /w(u)

i=1

MSE(61prss)

_ _ EU*o 2 m
Cov(fiprss, G1DRSS) = ——iig Z(U(z) Wi))-
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Since in case of symmetric distribution, we have E:’;l(v&’s /wa*;.)) =0.

The BLIEs and their MSEs can be further simplified to following forms:

-5 . 2211(21[1']/‘02‘5)) p . 2211(”2‘521[1']/‘”?5))
MIDRSS — 2211(1/‘”2‘:;)) ’ IDRSS — 14+ Z:ll (Ua‘;z/w’k{;)),

2
~8 AS ~8 4
Var(fiiprss) = Var(iiprss), MSE(Giprss) = 1+ kE’" (v**2 Jwi )
i=1\Y(5) /%)

4.6 Comparisons between BLUEs and BLIEs based on RSS

designs

In this section, we compare BLUEs and BLIEs based on RSS, DRSS and IDRSS for symmetric and asymmetric

location-scale families. For this purpose, we present the following relative efficiencies (REs) based on different

estimators.
RE,; — Var(firss) ) — Var(6rss) L= Var(fiprss) = Var(6prss)
MSE(firss)’ MSE(Grss)’ MSE(jiprss)’ MSE(éprss)’
. Var(ﬂRss) _ Var(a'Rss) _ Var(/les) _ Va.r(&Rss)
REE)_%, 6 — JXram/~ ) T = Xram/~ RES_f,
MSE(f@prss) MSE(6prss) MSE(fiprss) MSE(éprss)
RE, = Var(flirss) REje — Var(G1rss) L= Var(fiprss) = Var(61prss)
MSE(firss)’ MSE(61rss)’ MSE(fiprss)’ MSE(61prss)’
Var(fiirss) Var(G1rss) Var(firss) Var(&1rss)
REi3= o7~ REBuu= v, REis=r>—"~, REig= o/ -
'3~ MSE(fprss) ™ MSE(61prss) ® ™ MSE(fuprss) 16~ MSE(G1prss)

The REs of these estimators are calculated by considering several location-scale families, which are given

below:

(i) Normal (g, o)

)2
exp{—(yQUg) }, —o00 <y, < oo, 0>0.

1
f(ya K, 0) - \/271_?
(ii) Logistic (i, o)

1 _ B —2
Fysp,0) = — exp (_yau> {1+eXP <—w>} , =00 <y,p <00, g>0.

(iii) Laplace (p,0)
1 _
f(ysp,0) = o~ exp (—"y”l) , —00 < y,pu <00, a>0.
20 o

(iv) Extreme value (p, o)

1 _ _
fly;p,0) == exp{—exp (—yu) - yu}, —00 < Y, u <00, o>0.
o o o

(v) Weibull (e, p, o)

a—1 a
f(y;a,u,0)=:j(y0”) exp{— <y0u> } y>p, —00 < p< oo, g>0.
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Table 4.1: Means of the order statistics from different sample sizes under RSS and

DRSS
m=2 m=3 m=4 m=25
Distribution RSS DRSS RSS DRSS RSS DRSS RSS DRSS
Normal —0.5642 —0.6632 —0.8463 —0.9646 —1.0294 —1.1525 —1.1630 —1.2870
(0,1) 0.5642 0.6632 0.0000 0.0000 —0.2970 —0.3233 —0.4950 —0.5316
0.8463 0.9646 0.2970 0.3233 0.0000 0.0000
1.0294 1.1525 0.4950 0.5316
1.1630 1.2870
Logistic —1.0000 —1.1667 —1.5000 —1.7000 —1.8333 —2.0461 —2.0833 —2.3027
(0,1) 1.0000 1.1667 0.0000 0.0000 —-0.5000 —0.5331 —0.8333 —0.8788
1.5000 1.7000 0.5000 0.5331 0.0000 0.0000
1.8333 2.0461 0.8333 0.8788
2.0833 2.3027
Laplace —0.7500 —0.8646 —1.1250 —1.2641 —1.3854 —1.5413 —1.5885 —1.7575
(0,1) 0.7500 0.8646 0.0000 0.0000 —0.3438 —0.3465 —0.5729 —0.5761

1.1250 1.2641 0.3438 0.3465 0.0000 0.0000
1.3854 1.5413 0.5729 0.5761
1.5885 1.7575

Extreme value —0.1159 —-0.2337 —0.4036 —0.5267 —0.5735 —0.6918 —0.6902 —0.8029

(0,1) 1.2704 1.3882 0.4594 0.4234 0.1061 0.0491 —0.1069 —0.1672
1.6758 1.8349 0.8128 0.8086 0.4256 0.3945

1.9635 2.1430 1.0709 1.0835

2.1867 2.3783

Weibull 0.7088 0.6758 0.6192 0.5805 0.5625 0.5230 0.5222 0.4831
(3,0,5) 1.0772 1.1102 0.8880 0.8867 0.7890 0.7783 0.7238 0.7095
1.1718 1.2118 0.9869 0.9954 0.8868 0.8858

1.2335 1.2752 1.0537 1.0661

1.2784 1.3204

Gamma 0.5000 0.4167 0.3333 0.2599 0.2500 0.1887 0.2000 0.1481
(1,1,0,1) 1.5000 1.5833 0.8333 0.7802 0.5833 0.5217 0.4500 0.3930
1.8333 1.9599 1.0833 1.0548 0.7833 0.7364

2.0833 2.2348 1.2833 1.2718

2.2833 2.4507

Gamma, 1.2500 1.1212 0.9630 0.8366 0.8047 0.6899 0.7021 0.5979
(2,1,0,3) 2.7500 2.8788 1.8241 1.7685 1.4378 1.3600 1.2151 1.1365

3.2130 3.3949 2.2104 2.1939 1.7718 1.7230
3.5472 3.7562 2.5027 2.5092
3.8083 4.0334

CUR WNRROUE WNRFEOUERE WN RO WNRFROUERE WN RO WN R OUR WN s,

(vi) Gamma (a, 8, i, o)

_ af-1 _ B
f(y;a,ﬁ,,u,a)z /B (y u) exp{_ (y u) }’ Y > p, —00 < p <00, o >0.

Tla)e \ @ o

The values considered for the sample size m are 2, 3, 4, 5 each with k¥ = 1. In Tables means and
variances of the order statistics under RSS and DRSS are given for different values of m. The values of the
coefficients, i.e., ¥; and ¢;, needed for computing the BLUEs of x4 and o under DRSS are given in Table
The exact REs of BLUEs and BLIEs are reported in Table [4.4]

From Table [£.4} it is observed that for symmetric populations, under RSS or DRSS, the BLUEs and
BLIEs of the location parameters are equally efficient whereas in estimation of scale parameters, the BLIEs
are more efficient than the BLUEs. In case of asymmetric distributions, for estimation of the location and

scale parameters, BLIEs perform better than the BLUEs. If the estimators are compared with respect to the
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Table 4.2: Variances of the order statistics from different sample sizes under RSS
and DRSS
m =2 m=3 m=4 m=>5
Distribution RSS DRSS RSS DRSS RSS DRSS RSS DRSS
Normal 0.6817 0.5602 0.5595 0.4313 0.4917 0.3690 0.4475 0.3313
(0,1) 0.6817 0.5602 0.4487 0.2767 0.3605 0.1982 0.3115 0.1615
0.5595 0.4313 0.3605 0.1982 0.2868 0.1366
0.4917 0.3690 0.3115 0.1615
0.4475 0.3313
Logistic 2.2899 19288 2.0399 1.6646 1.9288 1.5574 1.8663 1.4997
(0,1) 2.2899 19288 1.2899 0.7605 1.0399 0.5516 0.9288 0.4698
2.0399 1.6646 1.0399 0.5516 0.7899 0.3613
1.9288 1.5574 0.9288 0.4698
1.8663 1.4997
Laplace 1.4375 1.2525 1.4149 1.2341 1.4417 1.2494 1.4703 1.2616
(0,1) 14375 1.2525 0.6389 0.3362 0.5207 0.2549 0.5025 0.2486

1.4149 1.2341 0.5207 0.2549 0.3512 0.1378
1.4417 1.2494 0.5025 0.2486
1.4703 1.2616
0.6840 0.4952 0.4485 0.3003 0.3440 0.2248 0.2849 0.1846

Extreme value

(0,1) 1.6449 1.4794 0.6585 0.3910 0.4155 0.2148 0.3085 0.1497
1.6449 1.4193 0.6518 0.3556 0.4060 0.1869

1.6449 1.3901 0.6491 0.3382

1.6449 1.3730

Weibull 0.7088 0.0531 0.6192 0.0371 0.5625 0.0293 0.5222 0.0246
(3,0,5) 1.0772 0.0632 0.8880 0.0311 0.7890 0.0215 0.7238 0.0169
1.1718 0.0485 0.9869 0.0228 0.8868 0.0156

1.2335 0.0411 1.0537 0.0186

1.2784 0.0366

Gamma 0.2500 0.1458 0.1111 0.0521 0.0625 0.0262 0.0400 0.0157
(1,1,0,1) 1.2500 1.1736 0.3611 0.2054 0.1736 0.0802 0.1025 0.0424
1.3611 1.2250 0.4236 0.2306 0.2136 0.0941

1.4236 1.2483 0.4636 0.2441

1.4636 1.2615

Gamma 0.6875 0.4578 0.3813 0.2209 0.2548 0.1389 0.1879 0.0992
(2,1,0,3) 2.1875 1.9978 0.8055 0.4788 0.4603 0.2320 0.3119 0.1448

2.2355 1.9478 0.8522 0.4713 0.4970 0.2288
22499 1.9101 0.8753 0.4632
2.2526 1.8821

GUBR WNRFEOUER WNRF OO WNRFROURA WN RO WN P OURWN OB WN s,

sampling design, then it is worth mentioning that all of the proposed estimators (BLUEs and BLIEs) under
DRSS are having high precision than the estimators with RSS design.

Similarly, from Table it is clear that for all values of p, under both IRSS and IDRSS, the BLUEs
and BLIEs are equivalent in estimation of the location parameter. When estimating the scale parameters,
the BLIEs outperform BLUEs for all values of m and p. In comparison of estimators with respect to the
sampling schemes, i.e., IRSS versus IDRSS, the BLUEs are efficient than their competitors for all values of p,
but for small values of p, the REs converge to unity. Furthermore, the BLIEs under IDRSS are uniformly
better than the BLIEs based on IRSS for all cases considered here.

A simulation study is conducted in order to study the robustness of the BLUEs and BLIEs under bivariate
normal distribution. Let p, be the correlation coefficient between the study variable and the auxiliary variable.
Here, the assumed values of p, are 0.25, 0.50, 0.75 and 1. For brevity, we consider m = 5. The main steps

involved in the simulation approach are as follows: for a given value of m and p,, the coefficients of both



4.6 Comparisons between BLUEs and BLIEs based on RSS designs 63

Table 4.3: The values of coefficients needed for computing the BLUESs of 1 and o

under DRSS
m=2 m=3 m=4 m=25
Distribution %; V4 % Vi % ©V; % ©;
Normal 0.5000 —0.7539 0.2810 —0.5184 0.1747 —0.3784 0.1173 —0.2878
(0,1) 0.5000 0.7539 0.4380 0.0000 0.3253 —0.1976 0.2406 —0.2439
0.2810 0.5184 0.3253 0.1976 0.2843 0.0000
0.1747 0.3784 0.2406 0.2439
0.1173 0.2878
Logistic 0.5000 —0.4286 0.2387 —0.2941 0.1308 —0.2051 0.0798 —0.1482
(0,1) 0.5000 0.4286 0.5225 0.0000 0.3692 —0.1509 0.2547 —0.1806
0.2387 0.2941 0.3692 0.1509 0.3311 0.0000
0.1308 0.2051 0.2547 0.1806
0.0798 0.1482
Laplace 0.5000 —0.5783 0.1763  -0.3956 0.0847 —0.2600 0.0469 —0.1841
(0,1) 0.5000 0.5783 0.6473 0.0000 0.4153 —0.2865 0.2382 —0.3062

0.1763 0.3956 0.4153 0.2865 0.4298 0.0000
0.0847 0.2600 0.2382 0.3062
0.0469 0.1841

Extreme value 0.8559 —0.6166 0.5579 —0.5595 0.3883 —0.4741 0.2860 —0.3967

(0,1) 0.1441 0.6166 0.3665 0.2277 0.3698 —0.0177 0.3262 —0.1349
0.0756 0.3318 0.2007 0.2856 0.2425 0.1428

0.0412 0.2062 0.1213 0.2489

0.0240 0.1400

Weibull 2.5566 —2.3020 1.7715 —1.6529 1.3297 —-1.2718 1.0466 —1.0188
(3,0,5) —1.5556 2.3020 0.2873 0.1338 0.6910 —0.4380 0.7605 —0.6009
—1.0587 1.5190 —0.2440 0.6229 0.1843 0.0903

—0.7767 1.0870 —0.3955 0.7109

-0.5959 0.8184

Gamma 1.3571 —0.8571 1.1844 —0.9888 1.0540 -1.0279 0.9550 —1.0247
(1,1,0,1) —0.3571 0.8571 —0.0454 0.5772 0.1096 0.3173 0.1847 0.1377
—0.1390 0.4116 —0.0929 0.4742 —0.0241 0.3893

-0.0707 0.2363 —0.0738 0.3468

—0.0418 0.1509

Gamma, 1.6380 —0.5690 1.3622 —0.5620 1.1524 —0.5222 0.9927 —0.4761
(2,1,0,3) —0.6380 0.5690 —0.0553 0.2692 0.2142 0.0733 0.3314 —0.0367

—0.3069 0.2929 —0.1860 0.2724 —0.0307 0.1764
—0.1806 0.1765 —0.1744 0.2193
—0.1189 0.1170
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BLUEs and BLIEs have been calculated. Then, imperfect ranked and imperfect double ranked set samples
are drawn from standard bivariate normal distribution by assuming different values of p, i.e., p = 0.1, 0.2,
0.25, 0.3, 0.4, 0.5, 0.6, 0.7, 0.75, 0.8, 0.9 and 1. For each sample, the values of BLUEs and BLIEs have been
calculated. This process is repeated 10° times and the estimated MSEs (EMSEs) are calculated. The EMSE
of any estimator, say E, of parameter E is EMSE(E) = ﬁ(l@z — E)2. The EMSEs of both BLUEs and

BLIEs based on different values of p, are plotted again p in Figure
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Table 4.4: REs of BLUEs and BLIEs under RSS and DRSS

RE; RE, RE3 RE4 REs REg RE; REg

Distribution ~ m  (firss,firss) (Grss,0rss) (fDrss,/iDrss) (GDrss;Oprss) (fDRrss;firss) (6DRss,Orss) (fiDrss, firss) (FDRss, FRSS)
Normal 2 1.0000 2.0708 1.0000 1.6368 1.2169 1.6815 1.2169 1.3291
on Hv 3 1.0000 1.3906 1.0000 1.2318 1.4218 1.6851 1.4218 1.4927
4 1.0000 1.2084 1.0000 1.1211 1.6132 1.7200 1.6132 1.5958
5 1.0000 1.1313 1.0000 1.0741 1.7906 1.7721 1.7906 1.6825
Logistic 2 1.0000 2.1449 1.0000 1.7085 1.1872 1.6159 1.1872 1.2872
on Hv 3 1.0000 1.4533 1.0000 1.2880 1.4333 1.5741 1.4333 1.3950
4 1.0000 1.2522 1.0000 1.1561 1.6586 1.6154 1.6586 1.4915
5 1.0000 1.1627 1.0000 1.0965 1.8611 1.6853 1.8611 1.5894
Laplace 2 1.0000 2.2778 1.0000 1.8378 1.1477 1.5252 1.1477 1.2306
on Hv 3 1.0000 1.56590 1.0000 1.3862 1.5427 1.4475 1.5427 1.2871
4 1.0000 1.3209 1.0000 1.2108 1.8072 1.5226 1.8072 1.3956
5 1.0000 1.2110 1.0000 1.1322 2.0624 1.5966 2.0624 1.4926
Extreme value 2 1.1063 2.2119 1.0251 1.7507 1.4889 1.6143 1.3796 1.2777
AOv Hv 3 1.0202 1.4468 1.0027 1.2706 1.5924 1.6515 1.5653 1.4503
4 1.0063 1.2382 1.0012 1.1387 1.7346 1.7171 1.7258 1.5792
5 1.0027 1.1495 1.0007 1.0834 1.8801 1.7916 1.8766 1.6886
Weibull 2 1.9655 2.0519 1.5608 1.6163 1.7014 1.7067 1.3510 1.3444
Awu 0, mv 3 1.3415 1.3711 1.1952 1.2137 1.7380 1.7364 1.5485 1.5371
4 1.1781 1.1938 1.0998 1.1089 1.7852 1.7789 1.6666 1.6525
5 1.1104 1.1203 1.0603 1.0657 1.8399 1.8308 1.7571 1.7416
Gamma, 2 1.8421 2.5000 1.5142 1.9694 2.0918 1.5474 1.7195 1.2189
AHn 1,0, Hv 3 1.2993 1.5403 1.1688 1.3269 2.3990 1.6529 2.1581 1.4239
4 1.1498 1.2808 1.0780 1.1574 2.5895 1.7842 24277 1.6123
5 1.0881 1.1720 1.0427 1.0897 2.7205 1.9182 2.6070 1.7834
Gamma, 2 1.9393 2.2778 1.5676 1.7950 1.8762 1.6073 1.5166 1.2666
(2,1,0,3) 3 1.3378 1.4575 1.1950 1.2715 1.9947 1.6850 1.7818 1.4700
4 1.1743 1.2382 1.0958 1.1336 2.0712 1.7830 1.9328 1.6324
5 1.1061 1.1466 1.0558 1.0779 2.1328 1.8830 2.0358 1.7701
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Figure 4.1: Comparison of EMSEs of BLUEs and BLIEs based on IRSS versus
IDRSS when m =5



Table 4.6: EREs of BLUEs and BLIEs under IRSS and IDRSS

REg REq0 RE1; REi2 RE;3 RE14 RE;5 RE;6
Distribution 02 m (firss, irss) (Orss;Orss) (BDRss, iDkss) (ODRss,0Drss) (DRSS, Arss) (ODrss;Orss) (PDRss, firss) (GDRSS, ORSS)

Normal 1 2 1.0000 1.8985 1.0000 1.4846 1.0730 1.4455 1.0730 1.1303
(0,1) 1 3 1.0000 1.2039 1.0000 1.0792 1.0727 1.3399 1.0727 1.2011
1 4 1.0000 1.0396 1.0000 0.9968 1.0570 1.2547 1.0570 1.2030

1 5 1.0000 0.9825 1.0000 0.9742 1.0543 1.1727 1.0543 1.1627

3 2 1.0000 1.8601 1.0000 1.4649 1.0335 1.3501 1.0335 1.0633

3 3 1.0000 1.1907 1.0000 1.0820 1.0109 1.2168 1.0109 1.1057

3 4 1.0000 1.0445 1.0000 1.0090 0.9824 1.1423 0.9824 1.1035

3 5 1.0000 0.9973 1.0000 0.9908 0.9729 1.0835 0.9729 1.0764

Logistic 1 2 1.0000 2.0517 1.0000 1.6122 1.1197 1.5219 1.1197 1.1959
(0, 1) 1 3 1.0000 1.3328 1.0000 1.1747 1.1896 1.4316 1.1896 1.2618
1 4 1.0000 1.1246 1.0000 1.0542 1.2101 1.3474 1.2101 1.2630

1 5 1.0000 1.0404 1.0000 1.0049 1.2260 1.2975 1.2260 1.2533

3 2 1.0000 1.9654 1.0000 1.5558 1.0829 1.4314 1.0829 1.1331

3 3 1.0000 1.2626 1.0000 1.1293 1.0575 1.3077 1.0575 1.1696

3 4 1.0000 1.0767 1.0000 1.0278 1.0571 1.1993 1.0571 1.1448

3 5 1.0000 1.0063 1.0000 0.9936 1.0618 1.1339 1.0618 1.1196

Laplace 1 2 1.0000 2.1145 1.0000 1.7127 1.0464 1.3821 1.0464 1.1195
(0, 1) 1 3 1.0000 1.3885 1.0000 1.2343 1.1240 1.3106 1.1240 1.1650
1 4 1.0000 1.1641 1.0000 1.0950 1.1552 1.1887 1.1552 1.1182

1 5 1.0000 1.0648 1.0000 1.0334 1.1340 1.1449 1.1340 1.1112

3 2 1.0000 2.0688 1.0000 1.6612 1.0319 1.3440 1.0319 1.0792

3 3 1.0000 1.3255 1.0000 1.1889 0.9808 1.2353 0.9808 1.1080

3 4 1.0000 1.1303 1.0000 1.0892 0.9994 1.0735 0.9994 1.0344

3 5 1.0000 1.0444 1.0000 1.0349 0.9902 1.0387 0.9902 1.0293

Extreme 1 2 1.0872 2.0553 1.0152 1.6148 1.2802 1.4543 1.1954 1.1427
Value 1 3 1.0003 1.2783 0.9940 1.1310 1.2252 1.3437 1.2174 1.1889
(0,1) 1 4 0.9904 1.0816 0.9940 1.0182 1.1803 1.2537 1.1846 1.1802
1 5 0.9903 1.0025 0.9948 0.9818 1.1348 1.1859 1.1400 1.1615

3 2 1.1007 2.0047 1.0230 1.5739 1.2167 1.3735 1.1309 1.0784

3 3 1.0048 1.2599 0.9954 1.1310 1.1307 1.2246 1.1201 1.0993

3 4 0.9931 1.0736 0.9950 1.0296 1.1002 1.1462 1.1023 1.0993

3 5 0.9920 1.0101 0.9956 0.9985 1.0714 1.0786 1.0752 1.0661
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Table 4.6: (Continued).

REq REq0 RE1; REi2 RE;3 RE14 RE;5 RE;6
Distribution 02 m (fimss, irss) (Grss;Orss) (BDRsS, iDkss) (ODRss,6Drss) (DRSS, Arss) (ODRsS;Orss) (BDRsS, irss) (GDRSS, ORSS)
Weibull 1 2 1.8531 1.9305 1.4631 1.5118 1.5643 1.5733 1.2350 1.2320
(3, 0, 5) 1 3 1.2112 1.2338 1.0875 1.0988 1.4846 1.4890 1.3330 1.3261
1 4 1.0521 1.0601 0.9981 1.0012 1.4166 1.4200 1.3439 1.3411
1 5 0.9932 0.9962 0.9715 0.9716 1.3696 1.3767 1.3396 1.3426
3 2 1.8092 1.8798 1.4266 1.4699 1.4351 1.4450 1.1316 1.1299
3 3 1.1661 1.1837 1.0595 1.0688 1.3173 1.3248 1.1968 1.1963
3 4 1.0231 1.0283 0.9891 0.9914 1.2410 1.2418 1.1998 1.1973
3 5 0.9755 0.9767 0.9708 0.9709 1.1762 1.1769 1.1705 1.1700
Gamma 1 2 1.5957 2.3082 1.2661 1.7793 1.5417 1.4002 1.2233 1.0794
(1, 1,0, 1) 1 3 1.1194 1.3830 1.0374 1.2211 1.3145 1.1963 1.2182 1.0562
1 4 1.0161 1.1424 0.9991 1.0813 1.1803 1.0645 1.1606 1.0076
1 5 0.9889 1.0557 0.9909 1.0310 1.1278 1.0105 1.1301 0.9868
3 2 1.5513 2.2663 1.2621 1.7834 1.3855 1.3100 1.1272 1.0309
3 3 1.1356 1.3948 1.0596 1.2539 1.2025 1.1013 1.1220 0.9900
3 4 1.0404 1.1713 1.0175 1.1134 1.1192 0.9971 1.0945 0.9478
3 5 1.0124 1.0874 1.0044 1.0568 1.1062 0.9732 1.0974 0.9457
Gamma 1 2 1.8857 2.2268 1.5113 1.7549 1.8107 1.5648 1.4512 1.2331
(2,1,0,3) 1 3 1.2783 1.4041 1.1333 1.2204 1.8409 1.6054 1.6321 1.3954
1 4 1.1099 1.1783 1.0333 1.0784 1.8264 1.6362 1.7004 1.4975
1 5 1.0373 1.0835 0.9929 1.0181 1.7670 1.6444 1.6914 1.5452
3 2 1.8317 2.1929 1.4751 1.7404 1.7269 1.5202 1.3907 1.2065
3 3 1.2205 1.3562 1.0839 1.1804 1.6510 1.4859 1.4662 1.2932
3 4 1.0536 1.1261 0.9929 1.0374 1.5520 1.4455 1.4626 1.3316
3 5 0.9895 1.0349 0.9644 0.9858 1.4648 1.3894 1.4277 1.3236
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In Figure sub-figure A compares the BLUEs of p based on IRSS and IDRSS schemes. Note that in
symmetric populations, the BLUE and BLIE of y are equivalent. It is observed that, for a given value of p,,
as the value of p increases, the EMSEs of both BLUEs decrease and vice-versa. For small values of p,, the
BLUEs under IDRSS are more efficient than the IRSS based BLUEs for different values of p. Sub-figure
B compares the BLUEs of ¢ under IRSS and IDRSS. It is clear that the BLUEs under IDRSS dominate
the BLUESs based on IRSS for all values of p. Generally, for large values of p,, i.e., p, > 0.75, the EMSEs
of BLUEs decrease as the value of p increases. However, their behavior is different for small and moderate
values of pg, i-e., po < 0.5. In sub-figure C, IRSS based BLIEs of ¢ are compared with the BLIEs obtained
under IDRSS. The BLIEs under IDRSS are generally more efficient than the BLIEs with IRSS. Comparing
the results of sub-figures B and C, it is evident that generally the scale BLIEs are more robust than the scale
BLUESs under both IRSS schemes.

We also study the robustness of both BLUEs and BLIEs when the underlying population is not bivariate
normal. Following Dell and Clutter| (1972) and [Zheng and Al-Saleh (2003), another simulation study is
conducted in order to examine the effect of judgment error on the performance of BLUEs and BLIEs.
Let Y, h = 1,2,...,m, represent a simple random sample of size m from a known distribution. Here we
consider different distributions for the study variable Y, i.e., Normal (0,1), Logistic (0,1) and so on. Let ¢,
is the random error term and it is normally distributed with mean zero and variance o2, i.e., € ~ N (0, 02),
h = 1,2,...,m, where €, is independent of X}. Here, the assumed values of m and o2 are 2, 3, 4, 5 and 1,
3, respectively. Given m and o2, we compute Wy, = X}, + ¢, for h = 1,2,...,m. Based on the values of Wy,
we select both ranked and double ranked set samples of size m. Suppose RSS is performed on the values of
W in order to observe the pair (W(;,Y};)), for i = 1,2,...,m. We name this scheme as IRSS. Similarly, if a
double ranked set sample of size m is observed using the value of W, then we observe a pair (W(*i), Y[f]) for
i =1,2,...,m. We name this scheme as IDRSS. For each imperfect sampling scheme, the above procedure is
repeated 108 times and the EMSEs of the BLUEs and BLIEs have been calculated. Note that the coefficient
of both BLUEs and BLIEs depend on the underlying distribution of Y;. Based on the EMSEs of both BLUEs
and BLIEs, the estimated REs (EREs) have been calculated and reported in Table The ERE of an
estimator F; with respect to Fy is: ERE(E1, F3) = %ggﬁg

From Table it is clear that when the underlying distribution is symmetric, the EREs tend to decrease
as the values of o2 increases and vice-versa. Under both imperfect ranking schemes when estimating location
or scale parameter, generally, the BLIEs are more robust than the BLUESs for m < 3. Moreover, the BLUEs
and BLIEs under IDRSS dominate their counterparts based on IRSS in most of the cases for different

underlying distributions.

4.7 Best linear unbiased and invariant quantile estimators

In this section, we propose some quantile estimators based on the BLUEs and BLIEs of the location and

scale parameters of normal distribution under RSS, IRSS, DRSS and IDRSS.
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4.7.1 Quantile estimators based on BLUEs for RSS and IRSS

Barnett and Bown| (2002) derived the BLUQ estimator of the normal quantile Q1_, = p + m_po for
p € {0.05,0.01} with different choice of sample size under RSS scheme. Here 7,_,, is the upper pth quantile
of standard normal distribution. Based on the BLUEs of i and o, obtained under RSS scheme, Barnett and
Bown! (2002) suggested a BLUQ estimator of Q1_p, given by

Qﬁés‘,{?_p = firss + T1—pOrss = —a'TY +m_,1'TY.

As firss and 6grgg are uncorrelated for symmetric populations, therefore, the variance of Qgé‘g ?_p is

Var(QREEL,) = o?A (/B e 18 ).
Similarly, the BLUQ estimator based on IRSS is

m m
Qs —_p = ftrss + T1_porss = ¥ %Y +T1p Y WYy

i=1 i=1

The variance of Q?F{‘S%Ql_p is

2 m m
ABLU 4
Va'r(QIRSS%—P) = E {Z(Og{(i) /0'3((“)) + 7r%—P Z(l/a}(ii))} '
i=1 i=1

4.7.2 Quantile estimators based on BLIEs for RSS and IRSS

In this section, we extend the work of quantile estimation and provide BLIQ estimators under RSS and IRSS
schemes.

The BLIEs of the unknown parameters of location-scale distribution under SRS was considered by Mann
(1969). Based on these BLIEs of location and scale parameters, a unique best linear invariant estimator of
Q1-p is also derived. For brevity of discussion, we name it as BLIQ estimator. On similar lines, the BLIQ
estimator based on RSS is given by

Qﬁéé‘ﬁ_p = firss + M1—pORss = [rss — Frss(&12 — T1—p) (1 + &22) 72,

which is a biased estimator of Q1_p.

The MSE of Qgé‘é%_p is
MSE(QRgss_,) = MSE(firss) + m3_,MSE(Grss) + 2m1—pE{(firss — 1) (Grss — o) }.

As the parent distribution is normal, therefore, F{(figrss — p)(6rss — o)} = 0.
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It follows that

MSE(QE%%_,,) =0 {&1 +m_ Laa(1+ &2) 7'}

Similarly, the BLIQ estimator based on IRSS procedure is obtained by replacing firss and Grss in Qﬁé‘gﬁ_p

by firss and Girss, given by

~BLI . . . R _
QIngl_p = Jitrss + T1—pGirsS = firss — Fmss (€l — T1—p) (1 + &) 72,

which is a biased estimator of Q1_p.

The MSE of Qﬁ-{ggl_p, under symmetry assumption, is
A BLI * * * | —
MSE(QRSS?:L—p) =o’{&h + W%—pfzz(l +&2)7 )

4.7.3 Quantile estimators based on BLUEs for DRSS and IDRSS

Following Barnett and Bown, (2002), under DRSS BLUES, the BLUQ estimator is

m m
Qgﬁg&_p = [iprss + T1—pODRSS = Z ViZ(i) +T1p Z VADY

i=1 =1

Here fiprss and 6prss are uncorrelated due to symmetric underlying population.

The variance of leélsjgl_p is

i=1 =1

. 0_2 m m
Var(Qprss1p) = 1y {Z(va)/wm» +i Za/w(m-))} :
Similarly, we suggest a BLUQ estimator based on IDRSS, given by

m m
ABLU N N .5 .5
QIDRS%,l_p = fiiprss + TM1—p0IDRSS = 2791' Z1[i) + T1—p Z VATOR

i=1 i=1

The variance of Q?DLSS% 1-p I8

A 02 “ Kok *k “ *k
VOB ) = e | 3o i + o3t |
=1 =1

4.7.4 Quantile estimators based on BLIEs for DRSS and IDRSS

Following Mann| (1969), the BLIQ estimator based on DRSS procedure is

m m
Qg;Ist,l_p = [iprss + T1—pODRSS = Z GiZ() + T1—p Z GiZ(i)»

i=1 =1
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which is a biased estimator of Q1.

The MSE of QBRck ;_,, is
m -1 m -1
MSE(@prst1_p) = 0° Hk (1/W(iz'))} +71, {1 + kZ(vé)/W(ii))} ] -
i=1 i=1
Similarly, the BLIQ estimator based on IDRSS procedure is
Qlbads,1—p = DRSS + T1—pFDRSs = ¥ 57" Za + m1—p 9 & Zaja,
i=1 i=1

which is also a biased estimator of Q1_p.

The MSE of Q%llagsg—p’ under symmetric assumption, is

m -1 m -1
MSE(QIBD%ES,I_,,)=UZHk (1/wz;-’;))} +vr%_p{1+k2(vz*52/wz‘;)>} ]

=1 =1

4.8 Comparisons between quantile estimators based on RSS

designs

In this section, we compare BLUQ and BLIQ estimators based on RSS, IRSS, DRSS and IDRSS for normal

distribution. For this purpose, we present the following REs based on different estimators.

ABLU ABLU
. Va‘r(QRSS,?—p) - Va‘r(QDRS(SQ,I—p)
1= ~BLI ) 2 = ~BLI )
MSE(QRSS?I—p) MSE(QDRSQS,I—p)
ABLU ~BLU
. _ Va‘r(QRSS,?—p) * Va'r(QRSS,?—p)

3 4

MSE(QgIﬁISQS,l—p) ’ MSE(QEII;QISQS,I—Z)) ‘

The REs based on different quantile estimators are calculated for different m and p for both RSS schemes.
We consider £ =1 for all cases. Note that if p = +1, then we have perfect ranking and all other cases belong
to imperfect ranking. From Table [4.7], it is noteworthy that under RSS, the proposed BLIQ estimators are
uniformly better than the BLUQ estimators suggested by Barnett and Bown/ (2002)). The similar trend is
observed for BLIQ estimators under DRSS scheme. In Table we compare the quantile estimators based
on RSS versus DRSS. It is worth mentioning that the proposed (BLUQ and BLIQ) estimators under DRSS

are more efficient than their competitors based on RSS for all cases considered here.
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Table 4.8: REs of quantile estimators based on BLUE and BLIE of RSS versus
DRSS under perfect and imperfect rankings

p— 0.01 0.02 0.03 0.04 0.05 0.01 0.02 0.03 0.04 0.05
RE — RE; RE: RE; RE; REZ RE; RE] RE} RE] RES
pm CENE ) (PRt 1 Qrssi)
£1.0 2 1.9545 1.9261 1.9026 1.8813 1.8610 1.5621 1.5440 1.5291 1.5157  1.5030
3 1.3508 1.3410 1.3329 1.3254 1.3184 1.2071 1.2132 1.1961 1.1915  1.1872
4 1.1875 1.1823 1.1780 1.1741 1.1704 1.1091 1.1061 1.1037 1.1014  1.0993
5 1.1182 1.1149 1.1123 1.1098 1.1075 1.0671 1.0654 1.0639 1.0626  1.0613
+0.9 2 2.2894 2.2525 2.2220 2.1942 2.1678 1.8029 1.7783 1.7581 1.7398 1.7224
3 1.5015 1.4883 1.4774 1.4674 1.4578 1.3211 1.3120 1.3045 1.2977  1.2912
4 1.2820 1.2747 1.2687 1.2632 1.2579 1.1843 1.1792 1.1750 1.1712  1.1675
5 1.1864 1.1816 1.1776 1.1740 1.1705 1.1237 1.1204 1.1176 1.1150  1.1126
+0.8 2 2.7588 2.7103 2.6702 2.6336 2.5987 2.1412 2.1080 2.0805 2.0556  2.0319
3 1.7139 1.6965 1.6819 1.6686 1.6558 1.4829 1.4701 1.4595 1.4499  1.4406
4 1.4155 1.4058 1.3976 1.3901 1.3829 1.2902 1.2827 1.2766 1.2709  1.2655
5 1.2827 1.2761 1.2706 1.2656 1.2607 1.2024 1.1973 1.1931 1.1892  1.1854
£0.7 2 3.4446 3.3796 3.3257 3.2764 3.2294 2.6363 2.5908 2.5532 2.5189  2.4862
3 2.0256 2.0023 1.9829 1.9650 1.9479 1.7213 1.7037 1.6891 1.6757  1.6628
4 1.6119 1.5989 1.5880 1.5780 1.5683 1.4464 1.4361 1.4275 1.4195  1.4120
5 1.4246 1.4158 1.4084 1.4016 1.3951 1.3185 1.3113 1.3053 1.2998  1.2945
+0.6 2 4.5026 4.4125 4.3375 4.2689 4.2035 3.4009 3.3369 3.2839 3.2354  3.1892
3 2.5077 2.4760 2.4494 2.4248 2.4012 2.0911 2.0667 2.0463 2.0275  2.0094
4 1.9163 1.8988 1.8841 1.8705 1.8573 1.6892 1.6750 1.6631 1.6521  1.6415
5 1.6447 1.6330 1.6232 1.6141 1.6053 1.4991 1.4893 1.4810 14734  1.4661
+0.5 2 6.2587 6.1270 6.0175 5.9172 5.8213 4.6708 4.5767 4.4984 4.4268  4.3584
3 3.3093 3.2640 3.2260 3.1908 3.1569 2.7071 2.6719 2.6425 2.6152  2.5890
4 2.4231 2.3987 2.3781 2.3590 2.3405 2.0942 2.0742 2.0574 2.0418  2.0268
5 2.0116 1.9956 1.9821 1.9696 1.9574 1.8006 1.7871 1.7756 1.7650  1.7547
£0.3 2 16.4819  16.110v  15.8012  15.5172  15.2453 | 12.0682  11.8003  11.5770 11.3722 11.1762
3 7.9826 7.8609 7.7582 7.6629 7.5708 6.3029 6.2085 6.1288 6.0550  5.9837
4 5.3807 5.3188 5.2663 5.2173 5.1696 4.4621 4.4117 4.3690 4.3291  4.2904
5 4.1549 4.1166 4.0839 4.0534 4.0236 3.5654 3.5331 3.5056 34798  3.4548
£0.1 2 144.2983 140.9380 138.1346 135.5584 133.0908 | 104.5706 102.1392 100.1106 98.2471 96.4619
3 66.4367 65.3699  64.4680 63.6293 62.8168 | 51.2998  50.4776  49.7824  49.1362 48.5101
4 42.3808  41.8705 41.4283  41.0145 40.6114 | 34.1087 33.6918 33.3366 33.0046 32.6808
5 30.9826  30.6756  30.4134  30.1670  29.9260 | 25.6690  25.4154  25.1984 24.9946 24.7954
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4.9 Conclusion

In this paper, we considered the estimation of the unknown parameters of location-scale family of distributions
under DRSS and IDRSS schemes. Explicit mathematical expressions for both BLUEs and BLIEs of the
location and scale parameters are derived. It is worth mentioning that, under perfect DRSS scheme, the
proposed estimators are uniformly better than their counterparts obtain under RSS. The DRSS based BLIEs
of scale parameters are more precise than the BLUEs based on RSS and DRSS schemes. Under imperfect
ranking schemes, generally, the BLIEs under IDRSS are more robust than the BLIEs computed under IRSS.
The work is then extended to the estimation of normal quantiles. The suggested estimators under DRSS are
better than the existing quantile estimators based on RSS for both perfect and imperfect rankings. Finally,
we recommend using the BLIEs under perfect DRSS scheme whereas in case of imperfect rankings, for most

cases, the BLIEs under DRSS are able to perform better than the BLIEs constructed under RSS.
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Chapter 5

Improved Best Linear Unbiased
Estimators for the Simple Linear
Regression Model using Double

Ranked Set Sampling Schemes

This chapter appeared in:
Haq, A., Brown, J., Moltchanova, E., 2014, Improved best linear unbiased estimators for the simple linear
regression model using double ranked set sampling schemes, Communications in Statistics-Theory and

Methods, Accepted for Publication.

In this chapter, we consider the best linear unbiased estimators (BLUEs) based on double ranked set
sampling (DRSS) and ordered DRSS (ODRSS) schemes for the simple linear regression model with replicated
observations. We assume three symmetric distributions for the random error term, i.e., normal, Laplace
and some scale contaminated normal distributions. The proposed BLUEs under DRSS (BLUEs-DRSS) and
ODRSS (BLUEs-ODRSS) are compared with the BLUESs based on ordered simple random sampling (OSRS),
ranked set sampling (RSS) and ordered RSS (ORSS) schemes. These estimators are compared in terms of
relative efficiency (RE), RE of determinant (RED), RE of trace (RET). It is found that the BLUEs-ODRSS
are uniformly better than the BLUEs based on OSRS, RSS, ORSS and DRSS schemes. We also compare
the estimators based on imperfect RSS (IRSS) schemes. It is worth mentioning here that the BLUEs under
ordered imperfect DRSS (OIDRSS) are better than their counterparts based on IRSS, ordered IRSS (OIRSS)
and imperfect DRSS (IDRSS) methods. Moreover, for sensitivity analysis of the BLUESs, we calculate REs
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and REDs of the BLUEs under the assumption of normality when in fact the parent distribution follows a
non-normal symmetric distribution. It turns out that even under violation of normality assumptions, BLUEs
of the intercept and the slope parameters are found to be unbiased with equal REs under each sampling

scheme. It is also observed that the BLUEs under ODRSS are more efficient than the existing BLUEs.

5.1 Introduction

The main focus of many agricultural, ecological and environmental studies is to develop well-designed,
cost-effective and efficient sampling designs. Ranked set sampling (RSS) is one of those sampling methods
that can accomplish such objectives because it uses expert knowledge and prior information. The RSS method
is an efficient alternative to the traditional simple random sampling (SRS) when the variable of interest is
either difficult or expensive to measure but is easy to rank and to make an economical assessment of the
rank order for the selected sampling units. For example, in ecological assessment of hazardous waste sites,
expensive radio-chemical techniques may need to be used. However, the hazardous waste sites with different
levels of contamination can be ranked by a visual inspection of soil discoloration.

The RSS scheme was first introduced by [Mclntyre, (1952) for estimating mean pasture and forage yields.
The mathematical setup of RSS was derived by [Takahasi and Wakimoto| (1968)). |Lloyd| (1952) obtained the
best linear unbiased estimators (BLUEs) of the location and scale parameters of location-scale family of
distributions based on ordered SRS (OSRS) or order statistics by using generalized least-squares approach.
Muttlak| (1995) developed the simple linear regression model (SLRM) based on RSS. It is shown that the
intercept and slope estimators under RSS are more efficient than those based on SRS. Barreto and Barnett
(1999) considered the SLRM with replicated observations under perfect RSS and obtained the BLUESs of the
intercept, slope and error standard deviation when the response variable is normally distributed. /Al-Saleh
and Al-Kadiri| (2000) introduced a two-stage RSS procedure, namely, double RSS (DRSS) for estimation
of the population mean. Balakrishnan and Li (2005, 2008 introduced ordered RSS (ORSS) scheme and
used it to obtain the BLUEs of the location and scale parameters of generalized geometric, normal, logistic
and exponential distributions. They found that the BLUEs based on ORSS (BLUEs-ORSS) are uniformly
better than the BLUEs-OSRS and BLUEs-RSS. |Li and Balakrishnan (2008) obtained the BLUEs-ORSS of
the unknown parameters of the SLRM when the response variable is normally distributed. They showed that
when estimating the parameters of the SLRM, the BLUEsS-ORSS outperform their counterparts based on
OSRS and ORSS schemes.

In this chapter, we consider the BLUEs of the unknown parameters of the SLRM based on DRSS and
ordered DRSS (ODRSS) schemes, namely BLUEs-DRSS and BLUEs-ODRSS. We study the performance
of the BLUEs when the random error term follows normal, Laplace and three scale contaminated normal
distribution. The performance of the proposed and existing BLUE:s is also evaluated for imperfect RSS (IRSS)
schemes, i.e., IRSS, ordered IRSS (OIRSS), imperfect DRSS (IDRSS) and ordered IDRSS (OIDRSS). The

comparisons of the BLUEs are based on individual and joint relative efficiencies, i.e., relative efficiency (RE),
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RE of determinant (RED) and RE of trace (RET). It is shown that the BLUEs-ODRSS and BLUEs based
on OIDRSS (BLUEs-OIDRSS) schemes are uniformly better than their counterparts based on all perfect
and IRSS schemes considered here. For sensitivity analysis of the BLUESs, we calculate REs of the BLUEs
assuming normality when the parent distribution is actually a non-normal symmetric distributions.

The rest of the chapter is organized as follows: Section explains both RSS and ORSS schemes. The
DRSS and ODRSS schemes along with their mathematical setups are given in Section In Section we
consider the SLRM with replicated observations under DRSS schemes. The performance comparisons of the
BLUESs based on perfect and IRSS schemes are given in Section Sensitivity analysis of the BLUESs based

on different RSS schemes is considered in Section Finally, Section [6.7] summarizes the main findings.

5.2 Ranked set sampling

In this section, we explain the traditional RSS and ORSS schemes.

Let Y be the study variable with probability density function (PDF) f(y) and cumulative distribution
function F(y). Let Y1,Y5, ..., Y, be n independent and identically distributed (IID) random variables, i.e.,
Y; ~ f(y), for j =1,2,...,n. Let Y((l)if)‘s, Y(gff)‘s, Y((T)“snf)‘S denote the ordered simple random sample of size

n obtained by arranging Yjs in an increasing order. Then, the PDF and CDF of the jth order statistic,

OSRS
Y(J m)

are respectively given by
n—1 . i
855w = o020 F@Y - FOY e, e <y<o

n

> (1) Fwyta - Foy-

1=j

FSS()

The corresponding mean and variance of Y(?:il)*s are

OSRS
BGy = / FOSBS(y)dy and ol o) = / (Y =BGy V2 Gmy. () dy, (5.1)

respectively. Similarly, the covariance between the Y(JO.ELF)‘S and Y(]O.EE)S is O'(OSJRn), for j # 3 =1,2,...,n. For
more details, see David and Nagaraja (2003).

The traditional RSS scheme is explained as follows: identify m? units from the target population.
Randomly allocate these units to m sets each of size m units. Rank the units within each set with respect
to the study variable or by any inexpensive method. Then, select the jth smallest ranked unit from the
jth set for j = 1,2, ...,m. This gives a ranked set sample of size m for one cycle. The whole process can be

repeated r times to get a ranked set sample of size n = mr. Let Y,

(I;Sg)t, i=12,..,m,t=1,2,..,r, denote

a ranked set sample of size n = mr, where n&sﬂf)t = jth min{Yj1¢, Yjot, ..., Yjme}. Let Uf}?vi) and ag?ﬁ:m) be

the mean and variance of Y, ( m)t, respectively. Given ¢, it is interesting to note that, under perfect ranking,

both Y, ( i m)t and Y588 are identically distributed when n = m. Therefore, it is easy to find the mean and

(gm)t
variance of }/(1;:373)1: from (5.1).
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The ordered ranked set sample of size m is easily obtained by arranging the ranked set sample an increasing

order of magnitude, i.e., ng)frtns)f = jth min{Y(ff:SnSL)t,Y(I;SnSl)t,...,Y(E‘nsnsn)t} for t = 1,2,...,r. Let /1,855)3 and

08%.:373) be the mean and variance of Y(?fsbs)f, respectively. These quantities can be obtained by deriving the
density and joint density functions of V2RSS, For more details, see Balakrishnan and Li| (2005).

(F:m)t*

5.3 Double ranked set sampling schemes

In this section, we explain DRSS and ODRSS schemes. We derive the explicit mathematical expressions for
random variables based on both DRSS and ODRSS schemes.

Let Si¢, Sot, ..., Smt be m sets each of size m? units in the tth cycle for ¢t = 1,2, ...,r. Given ¢, divide the jth
set Sj; into m subsets, say sp;t, each of size m units, i.e., Sjz = {snje} = {S1jt, S2jts .- Smje}, for h=1,2,...,m,
where spj: = {Yn1t, Yaot, -, Yame }- Apply RSS scheme on each set S; to get m ranked set samples each of
size m. Let S}; be the jth set that contains the jth ranked sample, i.e., SF, = {Y(Pl‘srsl)t, Y(Izi:er)t’ ...,Y(f}fjm)t}

for j =1,2,..,m. Again apply the RSS procedure on S}, to get a double ranked set sample of size m. Let

Y(]J:’%s)f = jth min{S%} (j = 1,2, ...,m;t = 1,2,...,7) denote a double ranked set sample of size m. Note that

Y ey Y oy oo Yoo, all are independent and non-identically distributed (INID) random variables for
the tth cycle. However, under DRSS, for fixed j, the random variables Y(]]:.)fns)sl, Y(]J:’Ifns)%, vy (]J?:I}ns)f, are IID.

DRSS _ YDRSS

(Gem)t for j =1,2,...,m.

Therefore, for simplicity, we set Y( Fmy, =
Suppose A = ((a;,;)) is a square matrix of order m. Then, the permanent of the matrix A is defined
to be Per(A) =) p ZT=1 aj;;, where ) p(-) denotes the sum over all m! permutations (41,4, ..., 4m) of

(1,2, ...,m). Following [Vaughan and Venables| (1972), and Bapat and Beg| (1989), the CDF of Y(]J?:%LS)S is

DRSS —
G(j:m) (y) - ; z'(m _ Z)' PeI‘(A]_),

where Per(A;) is the permanent of the matrix A;. Here A; is defined as

Fim®  Fam@ - FES,@) )
A = o
1-FimW) 1-Fgn @) - 1-Fgi5, )/ tm—i

where the first and second rows are repeated ¢ and m — ¢ times respectively.

Similarly, the PDF of Y(]J?:RS)S is given by

m

(DRSS), \ _ 1
g(j;m) (y) - (] — 1)'(m _])| PeI‘(Az),
Fiiom®) Fam@) - FES,@) | Yi-1
where Ay =| (o @) e (7) IEEETID riced () B B 3

1-FimW) 1-Fgn@w) - 1-FgS () tm—j
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Fore more details, see Balakrishnan| (2007)) and references cited therein.

Let uPRSS and ¢DRSS| be the mean and variance of Y/PESS

(izm) (irjom) (j:my » Tespectively, defined by the following expressions:

WEES = [ vl )y and oRSE) = [ kBRSO )y

By using above formulae, it is easy to calculate the mean and variances of order statistics obtained under
DRSS scheme. The numerical integration can be easily implemented in Mathematica.

In ODRSS scheme, we order the random variables under DRSS in an increasing order of magnitude. Let

}f(gp:?nr)ttss = jth min{Y(]i’:E‘ns)i,Y(E:f‘ns)ﬁ, ,Y(%ngt} for j =1,2,...,m, t =1,2,...,r, is the ordered double ranked
set sample of size n = mr. It is clear that for fixed ¢, Y((j):%‘fs is the jth order statistic from INID random

variables Y(?ﬁls)i for j = 1,2, ...,m. Also note that for fixed j, Y(?:?nf)‘lss, (?:Bf)‘zss, vy g?nr)‘fs are identically
distributed random variables. Therefore, for simplicity, without loss of generality, we set Y((J?:]%P)‘tss = ((Jy:?nr){ss.
The PDF of Y(?:?nf)‘ss is given by
gOPESS(y) = = Per(By),
' (G = Dim —j)!
Gl @) Gamy® -+ Goam@ | }i-1

where By = 981:);3)5 () 9(%32)5 () e 982?3) @) 3

1-GES(y) 1-Gpiss(y) - 1-GERsf(y)) Yym—j
The joint density function of Yé{%‘ss and Y((J.),PWIL‘)SS (1<j<j <m)is

1
ODRSS
DR - Per(B;), —

9G.; .m)(ylﬂy2) (J—l)'(]’—]—l)‘(m—]’)' er( 3)’ 00 < Y1 < Y2 <00,
where

GRS (1) G () e Gorss (y1) }i-1

I0hamy (¥1) Iy (91) e Iomeom (1) 11
By =| Gl W2) — GOy (1) Gy (42) — Gy (1) -+ Glman(v2) — GOy (1) | Y5’ —d—1 .

I0hmy (¥2) Iy (92) e Iomeom (¥2) 11

1- GGy (v2) 1— Gy (v2) e 1-GPRS () ) Im—j'

Let /,Lgl?nff)ss and 08.353)5 be the mean and variance of Yé.):?nf)‘ss, respectively, given by

Wiy > = / Yg0my - (W)dy and o0 = / W = HGomy ) 9Gmy > (¥)dy.

Let 083}3% be the covariance between Y((j):lfnl}ss and Y((j),]?ﬁ)ss for 1 < j < j' < m, defined as 08.3523) =

sy it ylygggg}fﬁs) (y1,y2)dy1dys — ugl?nlj)ssugl,?ggs. Based on these formulae, it is easy to calculate the

mean and variance of order statistics obtained under ODRSS scheme. The numerical integration can be

implemented in Mathematica.



Improved Best Linear Unbiased Estimators for the Simple Linear Regression Model using
82 Double Ranked Set Sampling Schemes

5.4 A simple linear regression model

In this section, we consider a SLRM based on replicated observations under DRSS and ODRSS schemes.

Sometimes, the main objective of the statistical analysis is to study the relationship between the study
(dependent) variable, say Y, and the predictor (independent) variable, say X. Mostly in experimental studies,
the dependent variable (V) is observed for preset values of the independent variable (X). At each distinct
value of X, say X = z; (i = 1,2,..., k), we observe n; replicated observations of Y, say Y = y;;(j = 1,2,...,n;).
For sake of simplification, we consider the case of equal n;s, i.e., ny = ny = --- = ng = n, but the results
presented here correspond to the general case.

Moussa-Hamouda and Leone| (1974) proposed the BLUESs of the unknown parameters of the SLRM based

on order statistics by ordering the replicated observations (Y;?SRS) that were observed against each level

i(4:n)
of z, namely BLUEs-OSRS. [Barreto and Barnett (1999) estimated the unknown parameters of the SLRM
using replicated observation that were obtained via RSS procedure. At each level of z, a ranked set sample of
size m is observed, i.e., Yif(ﬁsn)t, i1=1,2,.,k 7=1,2,..,mand t =1,2,...,r. Li and Balakrishnan| (2008)
extended the work of Moussa-Hamouda and Leone| (1974) and Barreto and Barnett| (1999), and proposed
BLUES of the unknown parameters of the SLRM using replicated observations (Yz?ﬁii) based on ORSS.
They showed that the BLUEs-ORSS are uniformly better than the BLUEs-RSS when errors are normally
distributed.

As an alternative to OSRS, RSS and ORSS methods, some efficient estimators of the unknown parameters

of the SLRM are proposed under DRSS and ODRSS schemes. For brevity of the discussion, consider the

Y ODRSS

SLRM based on ODRSS. Suppose an ordered double ranked set sample of size n = mr, i.e., iGmt

i=12,...m,t=1,2, ..., 7, is observed for each level of the independent variable X = x;, for i = 1,2, ..., k.

Then, the SLRM based on ODRSS can be stated as follows:
Yihmt = a+ B — ) + &ijes (5.2)

where j =1,2,..,m,t=1,2,...,7r and i = 1,2,..., k. &;; are IID error terms from a continuous symmetric

sl . . ODRSS __ {YiimSe—a—B(z:i—2)} .
distribution with mean zero and variance o2. Moreover, let Zi(}?g)t = —Agm)e - be the jth order
statistic under ODRSS from the standardized symmetric distribution, say g8.]3nR)SS (2), with mean zero and
variance unity.

ODRSS) _ ,,ODRSS ODRSS 7ODRSS) _ ,ODRSS ,,ODRSS _
Let E(Zi(ﬁﬁ)t) - .u'(jBnR) ’ COV(Zi(ﬁ,%)t,Zi(ﬁ%)t) - U(jg,{{m), e DR - (P'ODRSS7/J'ODRSSa-'-,
BoDRss)1xk for ¢ = 1,2,..,r, where poprss = (uﬁ?n%ss,ug?n%ss,~-~,#?£f‘ns)s)’1m- Let Q6prss =

diag(QPPRSS, QPPRSS, | QOPRSS) |, where QPPRSS = diag(Q0pRss, QoDRsS; ) RODRSS)kxk, for t =
1,2,...,r, and Qoprss = (oglgﬁzs))mxm. Here ‘diag’ indicates the diagonal matrix. Then, the model given in

(5.2)), can be represented in a matrix notation, given by

Y = WO +¢&,
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where Y = (Y1,Y2 s Yo ) Y, = (YOPRSS y QDRSS | Y OPRSSY .,

YRPR = (VDRSS YOPRSS, .., YoorSYixms ¢ = 1,2,.,k and ¢ = 1,2,.,7.  Here
11 m{ M?DRSS

w = Do : v 0 = (,B,0)1x30 & = (€162 &)1xm 1t = (L, 1,.,1) 14,
]_T :I:: u?DRSS

x; = (T1 — B, 82 — By ooy Tk — T p> & = (E16r&0tr 1 Ept) iy for t = 1,2,.,r, 1 = (1,1,...,1) 1,
T = (TiyZiy ooy Ti) ixoms B = (T, Fy o0y D)1 scrms Eit = (&1t &inty ooy Eimt)1xm fOr 2 = 1,2,.. .k, and E(€) = 0,
Var(¢) = Var(Y) = 0?Q0prss-

Following [Lloyd (1952), by using generalized least-squares approach, the BLUE-ODRSS of 6, say

00oprss = (AoDRss; BoDRSS; FODRSS )1 x3, and its variance are respectively given by

Boprss = (W' QEpresW) ' W Q5 hesY - (5.3)
Var(foprss) = 02(W'Q5prssW) 7, (5.4)
rk(1'Q5pres1) 0 rk(1'Q5prssPoDRsS)
0 r(UQobresl) imy (zi — )2 0
rk(1'Q5brssMoDRsS) 0 rk(#oprssobrssHODRSS)

It is interesting to note that when the underlying distribution of the dependent variable Y is symmetric
with mean zero, then it is easy to show that (1’ ﬂallszsp,ODRSS) = 0. Thus, it helps in further simplifying

the mathematical expressions of the BLUEs-ODRSS and their corresponding variances. The simplified forms

of (5.3) and (5.4) are respectively given by

Ooprss = (GopRss, Boprss, Foprss)’

and
Var(éoprss) 0 0
A 2 A
Var(Qoprss) = o 0 Var(Boprss) 0 '
0 0 Var(6oprss)
. 4 ODRSS _1 r k =)y ODRSS
where & ODRSS Et 1 Ez L Yir B = V2prss Et 1 Ei:l(Zi_Z)Yit
ODRSS rh(1'R5ppss1) ’ ODRSS r(1'5p0ss1) ELI(M—E)Z ’
, - ODRSS
A~ HoprssoDRss Et—l E =1 Yit A !
& - t=1 Lt and  Var(& =
ODRSS 'rk(p'bDRSSQO]lDRSSF-oDRSS) ’ ( ODRSS) rk( QODRSS '

1
= .
Tk(koprssoprssHODRSS)

Var(Boprss) = Var(6oprss) =

(1’5 nresl) E, 1 (z:—2)2" '
Similarly, let OpRrss = (&pRss, ﬂDRss, 6prss)’ and Var(6@prss) be the BLUE-DRSS and variance-covariance
matrix of ODRSS, respectively, which can be obtained on similar steps by using (5.3) and (5.4) under DRSS
scheme.

It is clear that in order to obtain the BLUEs-DRSS and BLUEs-ODRSS of 0, we need pprss, #oDRsS:
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Table 5.1: Means of order statistics from symmetric distributions under different
sampling schemes

OSRS

Normal  Laplace Scale Contaminated Normal

€e=001 =005 €=0.10
0.564190 0.530330 0.556287 0.535203 0.522495
0.000000 0.000000 0.000000 0.000000 0.000000
0.846284 0.795495 0.834431 0.802805 0.783743
0.297011 0.243068 0.288669 0.264510 0.247037
1.029375 0.979638 1.016351 0.982237 0.962645
0.000000 0.000000 0.000000 0.000000 0.000000
0.495019 0.405113 0.481116 0.440850 0.411729
1.162964 1.123269 1.150160 1.117584 1.100374

ORSS

0.663193 0.611353 0.652510 0.623374 0.604841
0.000000 0.000000 0.000000 0.000000 0.000000
0.964558 0.893827 0.949426 0.908373 0.882612
0.323265 0.244981 0.313662 0.285089 0.263019
1.152538 1.089893 1.136317 1.093335 1.068040
0.000000 0.000000 0.000000 0.000000 0.000000
0.531580 0.407373 0.515865 0.469179 0.433278
1.286984 1.242766 1.271219 1.230860 1.209451

ODRSS
0.707860 0.645505 0.695855 0.662791 0.641236
0.000000 0.000000 0.000000 0.000000 0.000000
1.011511 0.931552 0.995022 0.949966 0.921192
0.328321 0.239003 0.318401 0.288723 0.265443
1.198446 1.131254 1.180981 1.134414 1.106614
0.000000 0.000000 0.000000 0.000000 0.000000
0.537555 0.399607 0.521420 0.473234 0.435618
1.331560 1.286803 1.314677 1.271211 1.247882

Missing values can be found by the symmetry relation pg.m) =
—H(m—j+1:m)-

CTUTOU R A WWNI|ototot s b wwhS|otototd s wwddS
I3 ORI NG JURI O I O LA S B NG U NG JUR O R Y S ) B NG SO NG O U S IS

Qprss and Qoprss. In Tables and we report the means and covariances of random variables
based on DRSS and ODRSS schemes for some symmetric distributions such as normal, Laplace and scale
contaminated normal distributions. Note that under perfect ranking, DRSS is a special case of ORSS. See

next section for more details.

5.5 Performance comparison of estimators

In this section, we provide a comprehensive comparison of the BLUEs based on perfect and imperfect RSS

schemes when estimating the unknown parameters of the SLRM.

5.5.1 Perfect ranking

In this section, we compare the performances of the BLUEs based on OSRS, RSS, ORSS, DRSS and
ODRSS schemes. Let 8y and Var(@H) be the BLUE and variance-covariance of 8 under H sampling scheme,
respectively, where H = OSRS, RSS and ORSS.

Note that pogrg and Qogrs are the mean and variance-covariance matrix of the standardized statistics

obtained from Y;(()J%I})S (j = 1,2,...,n), prgs and Ngss are the mean and variance-covariance matrix of

the standardized statistics obtained from Elészfn)t, and porgs and Qorss are the mean and variance-
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Table 5.2: Variances and Covariances of order statistics from symmetric distributions
under OSRS

Normal  Laplace Scale Contaminated Normal
€e=0.01 e=005 €=0.10
0.681690 0.718750 0.690545 0.713557 0.726999
0.318310 0.281250 0.309455 0.286443 0.273001
0.559467 0.707465 0.591528 0.675830 0.726739
0.275664 0.236111 0.266989 0.244183 0.230431
0.164868 0.160590 0.162302 0.156131 0.153395
0.448671 0.319444 0.424395 0.359348 0.318016
0.491715 0.720866 0.542636 0.675862 0.755299
0.245593 0.234104 0.240588 0.228554 0.223053
0.158008 0.137424 0.153801 0.142409 0.135090
0.104684 0.115940 0.104614 0.105462 0.107688
0.360455 0.260362 0.341065 0.289383 0.256988
0.235944 0.159776 0.222919 0.187369 0.163747
0.447534 0.735125 0.514849 0.689434 0.791124
0.224331 0.241286 0.222508 0.220244 0.222814
0.148148 0.132014 0.145398 0.137740 0.132464
0.105772 0.099738 0.103775 0.098523 0.095469
0.074215 0.092357 0.075332 0.079598 0.084219
0.311519 0.251230 0.295688 0.255200 0.232610
0.208436 0.140087 0.196881 0.165296 0.144237
0.149943 0.107242 0.141893 0.120182 0.106170
0.286834 0.175590 0.270247 0.224047 0.191843

Missing values can be found by the symmetry relation 08?]5:3,”) =

~

.

cnmcncncncnmcncnu;u;ppu;u;oooowwwws
DN N o = NN RN S
W R WNIUERWNDEFEWN DR WNDEFEDNDWDND DN -

w

OSRS
U(m—j’+1,m—j+1:m) .

ORSS
}fi(j:m)t’

covariance matrix of the standardized statistics obtained from where i =1,2,...,k, j=1,2,...,m
and t = 1,2,...,r. It is interesting to note that under perfect ranking, posrs = Mrss: Horss = MDRSSs
Qrss = diag(Qosrs) and prss = diag(Qorss)- Tablesprovide the means, variances and covariances
of the order statistics under these sampling schemes for different value of m considered here.

We compare the performance of the BLUEs of parameters, «, 8 and o, for all sampling schemes based on

relative efficiencies (REs). The RE of &y with respect to &oggs is defined as RE(ég, &osrs) = % =
ro—1 A A
bt where H = RSS, ORSS, DRSS and ODRSS. Similarly, we define RE(B, fosrs) and RE(8w, 6osrs)-

OSRS

It is interesting to note that all REs are independent of & and r, and RE(&n, &osrs) = RE(BH, BOSRS).
Moreover, the overall efficiency of the BLUE of @ is also evaluated in terms of RED and RET. These REs are

defined as follows:

Trace{Var(@osrs)}
Trace{Var(fx)}

Det{Var(fosrs)}

) and RET(0y,6 =
Det{Var(ds)} (81, Bosrs)

RED(0y, fosrs) =

In Tables and we report the exact REs and REDs of the BLUEs based on all RSS schemes
for m =2, 3, 4, 5. We have considered three underlying distributions for the random error term, &;;, i.e.,
standard normal, standard Laplace and scale contaminated normal distributions. A random variable £ is said
to possess a scale contaminated normal distribution with scale factor § and a proportion of contamination

€, if the distribution function F(§) is a mixture of two normal distribution with same means and different
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Table 5.3: Variance and Covariance of order statistics from symmetric distributions
under ORSS
Normal Laplace Scale Contaminated Normal

~

€e=001 €=005 €=0.10
0.560175 0.626248 0.574230 0.611405 0.634167
0.121516 0.092502 0.116314 0.102152 0.092831
0.431297 0.617032 0.468273 0.566874 0.628606
0.096915 0.075202 0.092835 0.081784 0.074618
0.020345 0.015711 0.019466 0.017077 0.015515
0.276661 0.168083 0.260634 0.215968 0.184779
0.368974 0.624687 0.423554 0.567957 0.656383
0.082712 0.077081 0.080046 0.073211 0.069519
0.021048 0.015297 0.020110 0.017546 0.015835
0.003695 0.003054 0.003535 0.003106 0.002836
0.198181 0.127430 0.186845 0.155386 0.133728
0.073800 0.041301 0.069455 0.057282 0.048633
0.331298 0.630819 0.400999 0.583565 0.692175
0.073722 0.081116 0.072116 0.068555 0.067756
0.020201 0.016056 0.019434 0.017380 0.016078
0.004754 0.003554 0.004538 0.003954 0.003571
0.000692 0.000615 0.000662 0.000582 0.000534
0.161475 0.124319 0.152669 0.128618 0.112964
0.061210 0.035122 0.057622 0.047584 0.040476
0.020910 0.012260 0.019689 0.016275 0.013861
0.136644 0.068886 0.128435 0.105341 0.088718

Missing values can be found by the symmetry relation 083,53,1) =

<.

mmmmmmmmm%ghp.&%wwwwwwg
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ORSS
U(m—j’+1,m—j+1:m) .

variances. For example, without loss of generality, we have

F(£)=(1_6)F1(§)+6F2(£)7 OSGSL

where Fj(-) and Fy(-) are the distribution functions of N(0,1) and N(0, %), respectively. Following Leone
and Moussa-Hamouda| (1973)), we set § = 3, and take € =0.01, 0.05, 0.10.

From Table it is observed that both REs and REDs are increasing with the set size m. When
estimating a or 3, the proposed BLUESs under both DRSS and ODRSS schemes perform uniformly better
than their counterparts. In case of standard-deviation estimation of the error term, when m < 3, the BLUEs
under both RSS and DRSS are less efficient than the estimates under OSRS and ORSS. However, when the
set size m increases, the error estimates under DRSS tend to be more precise as compared with the estimates
under OSRS, RSS and ORSS schemes. Furthermore, it is clear from the REs based on determinants that both
DRSS and ODRSS provide more efficient BLUEs than the existing BLUEs based on OSRS, RSS and ORSS
methods. Almost similar trend of both REs and REDs is observed in Table 5.6l In estimation of individual
parameter o, when m > 4, REs under ORSS and ODRSS tend to increase as the value of € increases and
vice-versa. However, under ORSS, DRSS and ODRSS schemes when estimating o with m < 4, REs tend
to decrease as the value of € increases. It is worth mentioning here that for all cases, the estimates under
ODRSS are uniformly better than their competitors.

It is clear that the RETS depend on the values of z; (i = 1,2, ..., k). Therefore, in order to study the effect
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Table 5.4: Variances and Covariances of order statistics from symmetric distributions
under ODRSS

Normal Laplace Scale Contaminated Normal
€e=0.01 €=0.05 €e=0.10
0.498934 0.583324 0.515785 0.560708 0.588817
0.061241 0.042924 0.058445 0.050697 0.045350
0.377156 0.577034 0.416143 0.520326 0.585964
0.044542 0.033156 0.042569 0.037135 0.033455
0.003699 0.002550 0.003520 0.003023 0.002681
0.199377 0.110354 0.187577 0.154478 0.130882
0.321365 0.581497 0.377185 0.524955 0.615625
0.036885 0.034441 0.035602 0.032189 0.030139
0.003653 0.002432 0.003475 0.002980 0.002638
0.000180 0.000132 0.000171 0.000145 0.000128
0.134566 0.081646 0.126721 0.104788 0.089320
0.029967 0.015097 0.028171 0.023118 0.019486
0.288308 0.584407 0.358631 0.542775 0.652258
0.032404 0.036211 0.031596 0.029616 0.028806
0.003447 0.002636 0.003298 0.002891 0.002621
0.000232 0.000154 0.000220 0.000186 0.000163
0.000007 0.000006 0.000007 0.000006 0.000005
0.106894 0.080446 0.100930 0.084434 0.073203
0.023737 0.012651 0.022324 0.018355 0.015512
0.003466 0.001819 0.003259 0.002678 0.002261
0.085561 0.039196 0.080367 0.065727 0.055134
Missing values can be found by the symmetry relation o0 rey =

(4,4":m)
ODRSS
U(m—j’+1,m—j+1:m) .

~

.
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of the values of z; on the RETs, following Li and Balakrishnan| (2008), we consider equally spaced values of
z;, ie., z; =z + (i — 1)h, for = 1,2, ..., k, where h is the distance between the two consecutive z;s. For this

case, the RET of 9H with respect to @OSRS is given by

RET (01, fosrs) = (1'Q53rs1) ™" + 12{R%(K* — 1)(1'Q5sps1)} " + (KosrsPosrsHosrs) ™
, (V5" 1)1+ 12{R2(k? — 1)(1'Qg 1)} + (ps 25 )

)

where H = RSS, ORSS, DRSS and ODRSS.
In Tables b.11} for different values of m, k and h, we report the exact RETSs of the BLUEs based on

Table 5.5: REs of BLUEs based on OSRS, RSS, ORSS, DRSS and ODRSS schemes

Distribution Standard Normal Standard Laplace
Relative efficiency m=2 m=3 m=4 m=5 m=2 m=3 m=4 m=5
RE(éRss, Gosrs) 1.4669 1.9345 2.4040 2.8751 1.3913 1.7560 2.1725  2.5945

RE(Aorss, A0sRs) 1.4669 1.9382 24126 2.8889 1.3913 20720 2.6102  3.1589
RE(aprss, @0sRrs) 1.7852 2.7506  3.8781  5.1482 15968 2.7090 3.9261  5.3508
RE(&oprss, Gosrs) ~ 1.7852 2.7858  3.9503 52549 1.5968 3.1865 4.5757  6.2148
RE(6rss, 0sRs) 0.5331 0.7053 0.8641 1.0156 0.6087 0.7730 0.9306  1.0852
RE(80Rss, #0sRrs) 1.1446  1.2474 1.3618  1.4822 1.0893 1.1482 1.2807 1.4115
RE(6DRss, 0SRS) 0.8963 1.1885  1.4863 1.7997 0.9284 1.1190 1.4170 1.7326
RE(6opRrss,fosrs) 13069 15095 1.7589  2.0439 1.1994 1.3054 1.6026  1.9123
RED(8gss, Bosrs) 1.1471  2.6396  4.9939  8.3947 1.1783 2.3835  4.3922  7.3049
RED(forss, fosrs) 24631  4.6856  7.9269 12.3695 2.1085 4.9292  8.7254  14.0855
RED(Bprss,Bosrs)  2.8564 89918 22.3525 47.6992 2.3672 8.2117 21.8418 49.6072
RED(Qoprss, fosrs) 4.1648 11.7142 27.4481 56.4418 3.0583 13.2545 33.5535 73.8583

Here RE(4x, @osrs) = RE(Bu, Bosrs) for H = RSS, ORSS, DRSS and ODRSS.
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Table 5.6: REs of BLUEs based on OSRS, RSS, ORSS, DRSS, ODRSS for scale
contaminated normal distributions

Distribution € =0.01 €=0.05 €= 0.10
Relative efficiency m=2 m=3 m=4 m=5|m=2 m=3 m=4 m=5 | m=2 m=3 m=4 m=5
RE(&rss, 6:0srs) 14481 19032 2.3678 2.8381 | 14014 1.7980 2.2459 2.7118 | 1.3755 1.7230 2.1582  2.6190
RE(&orss, @0srs) 1.4481 1.9250 2.4093 2.8972 | 1.4014 1.9130 2.4207 2.9289 | 1.3755 1.9371 2.4584  2.9728
RE(éprss, @0sgrs) 1.7415 2.6895 3.8249 5.1176 | 1.6356 2.5546  3.7299  5.0789 | 1.5769 2.5111  3.72560  5.1079
RE(&oDRss, G0sRs) 1.7415 27588  3.9560 5.3024 | 1.6356 2.7419  4.0220 5.4463 | 1.5769 2.7992 4.1369  5.6039
RE(6rss, 6osrs) 0.5519 0.7256  0.8826  1.0320 | 0.5986 0.7690  0.9057 1.0391 | 0.6245 0.7889  0.9168  1.0492
RE(60rss, Fosrs) 1.1450 1.2381 1.3498  1.4725 | 1.1378 1.2102 13325 1.4745 | 1.1238 1.1860 1.3312  1.4961
RE(6pRss, 60SRS) 0.9131 1.1867  1.4690  1.7772 | 0.9477 1.1737 14258 1.7394 | 0.9593 1.1567 1.4119  1.7532
RE(60DRsS, F0SRS) 1.3039 1.4792 1.7234  2.0193 | 1.2843 1.4067 1.6754  2.0257 | 1.2582 1.3580 1.6714  2.0753
WmU%wmmSOmmmV 1.1573 2.6282 4.9483 83123 | 1.1756 2.4861 4.5683  7.6412 | 1.1816 2.3421 4.2704  7.1967
WMU%owwmvwomwmv 2.4012 4.5878  7.8351 12.3596 | 2.2347 4.4289  7.8084 12.6491 | 2.1264 4.4505  8.0451 13.2219
WHUAwuwmmSOmmmV 2.7691 8.5835 21.4904 46.5452 | 2.5352 7.6601 19.8354 44.8693 | 2.3854  7.2937 19.5914 45.7418
Wm_uﬁwouwwmvwomwmv 3.9542 11.2575 26.9714 56.7734 | 3.4358 10.5754 27.1022 60.0862 | 3.1286 10.6403 28.6041 65.1702
Here RE(4u, dosrs) = RE(Bu, Bosrs) for H = RSS, ORSS, DRSS and ODRSS.
Table 5.7: Trace REs of BLUEs based on RSS, ORSS, DRSS, ODRSS relative to
OSRS for normal distribution
m=2 m=3 m=4 m=35
h k RSS ORSS DRSS ODRSS | RSS ORSS DRSS ODRSS | RSS ORSS DRSS ODRSS | RSS ORSS DRSS ODRSS
0.25 2 1.4239 1.4598 1.7551 1.7740 | 1.8931 1.9248 2.7059 2.7565 | 2.3579 2.3924 3.8108 3.8971 | 2.8226 2.8613 5.0528 5.1725
4 12938 1.4360 1.6594 1.7366 | 1.7611 1.8793 2.5604 2.6587 | 2.2088 2.3237 3.5914 3.7204 | 2.6514 2.7678 4.7417 4.9002
6 1.1622 1.4076 1.5544 1.6925 | 1.6162 1.8240 2.3948 2.5428 | 2.0406 2.2399 3.3407 3.5129 | 2.4560 2.65641 4.3874 4.5838
8 1.0588 1.3814 1.4655 1.6521 | 1.4933 1.7718 2.2493 2.4365 | 1.8941 2.1608 3.1197 3.3246 | 2.2838 2.5470 4.0759 4.2998
10 0.9845 1.3598 1.3975 1.6194 | 1.3993 1.7281 2.1348 2.3498 | 1.7798 2.0946 2.9453 3.1725 | 2.1480 2.4577 3.8307 4.0723
1.00 2 1.1066 1.3940 1.5073 1.6715 | 1.5511 1.7970 2.3184 24874 | 1.9635 2.1990 3.2247 3.4147 | 2.3656 2.5987 4.2237 4.4353
4 08732 1.3224 1.2891 1.5631 | 1.2494 1.6505 1.9458 2.2003 | 1.5928 1.9767 2.6564 2.9131 | 1.9233 2.2991 3.4257 3.6888
6 0.8127 1.2989 1.2264 1.5282 | 1.1626 1.6005 1.8328 2.1070 | 1.4820 1.9007 2.4831 2.7530 | 1.7886 2.1971 3.1834 3.4546
8 0.7897 1.2892 1.2018 1.5139 | 1.1286 1.5797 1.7878 2.0690 | 1.4380 1.8690 2.4139 2.6880 | 1.7348 2.1548 3.0867 3.3601
10 0.7787 1.2845 1.1899 1.5069 | 1.1121 1.5694 1.7658 2.0502 | 1.4166 1.8533 2.3801 2.6561 | 1.7086 2.1338 3.0395 3.3138
2.00 2 0.8963 1.3308 1.3123 1.5756 | 1.2815 1.6680 1.9870 2.2336 | 1.6334 2.0034 2.7194 29705 | 1.9723 2.3349 3.5139 3.7731
4 0.7912 1.2899 1.2034 1.5149 | 1.1308 1.5811 1.7907 2.0715 | 1.4409 1.8711 2.4184 2.6923 | 1.7384 2.1576 3.0930 3.3663
6 0.7729 1.2819 1.1836 1.5032 | 1.1034 1.5638 1.7541 2.0402 | 1.4053 1.8449 2.3621 2.6391 | 1.6947 2.1225 3.0145 3.2892
8 0.7666 1.2791 1.1767 1.4991 | 1.0938 1.5577 1.7413 2.0292 | 1.3928 1.8366 2.3424 2.6203 | 1.6793 2.1101 2.9870 3.2621
10 0.7637 1.2778 1.1735 1.4972 | 1.0894 1.5549 1.7354 2.0240 | 1.3871 1.8313 2.3333 2.6116 | 1.6722 2.1043 2.9743 3.2495
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Table 5.10: Trace REs of BLUEs based on RSS, ORSS, DRSS, ODRSS relative to
OSRS for scale contaminated normal distribution with ¢ = 0.05

m=2 m=3 m=4 m=>5

h k RSS ORSS DRSS ODRSS| RSS ORSS DRSS ODRSS| RSS ORSS DRSS ODRSS| RSS ORSS DRSS ODRSS
025 2 1.3605 1.3942 1.6094 1.6256 | 1.7525 1.8917 2.4976 2.6922 | 2.1876 2.3856 3.6244 3.9230 | 2.6391 2.8803 4.9173 5.2933
4 12393 13705 1.5275 1.5931 | 1.6137 1.8227 2.3216 2.5364 | 2.0094 2.2731 3.3051 3.6189 | 2.4169 2.7252 4.4337 4.8283

6 1.1205 1.3433 1.4402 1.5560 | 1.4718 1.7451 2.1380 2.3694 | 1.8262 2.1483 2.9816 3.3035 | 2.1884 2.5545 3.9517 4.3539

8 1.0296 1.3191 1.3682 1.5234 | 1.3591 1.6779 1.9897 2.2309 | 1.6802 2.0414 2.7271 3.0500 | 2.0061 2.4096 3.5779 3.9783

10 0.9656 1.3001 1.3145 1.4977 | 1.2773 1.6255 1.8807 2.1269 | 1.5738 1.9590 2.5437 2.8643 | 1.8734 2.2986 3.3115 3.7064

1.00 2 1.0713 1.3306 1.4018 1.5389 | 1.4113 1.7097 2.0587 2.2957 | 1.7479 2.0918 2.8447 3.1677 | 2.0906 2.4778 3.7500 4.1522
4 0.8717 1.2683 1.2308 1.4553 | 1.1540 1.5400 1.7138 1.9644 | 1.4129 1.8264 2.2689 2.5814 | 1.6724 2.1212 2.9170 3.2970

6 0.8216 1.2492 1.1836 1.4298 | 1.0864 1.4896 1.6211 1.8721 | 1.3243 1.7490 2.1192 2.4248 | 1.5619 2.0184 2.7044 3.0730

8 0.8027 1.2415 1.1653 1.4197 | 1.0606 1.4696 1.5855 1.8363 | 1.2904 1.7185 2.0623 2.3647 | 1.5196 1.9781 2.6239 2.9876

10 0.7937 1.2377 1.1565 1.4147 | 1.0482 1.4598 1.5683 1.8190 | 1.2742 1.7037 2.0350 2.3359 | 1.4993 1.9585 2.5854  2.9467

2.00 2 0.8910 1.2752 1.2485 1.4645 | 1.1797 1.5585 1.7488 1.9988 | 1.4465 1.8549 2.3260 2.6406 | 1.7144 2.1592 2.9985 3.3823
4 0.8039 1.2420 1.1665 1.4204 | 1.0623 1.4709 1.5878 1.8386 | 1.2926 1.7205 2.0659 2.3686 | 1.5223 1.9807 2.6291 2.9931

6 0.7890 1.2358 1.1518 1.4121 | 1.0417 1.4547 1.5593 1.8099 | 1.2657 1.6958 2.0207 2.3207 | 1.4887 1.9482 2.5653 2.9252

8 0.7839 1.2336 1.1467 1.4092 | 1.0346 1.4490 1.5495 1.7999 | 1.2563 1.6873 2.0051 2.3042 | 1.4770 1.9368 2.5433  2.9017

10 0.7815 1.2325 1.1444 1.4079 1.0314 1.4464 1.5450 1.7953 1.2520 1.6833 1.9979 2.2965 1.4716 1.9316 2.5331 2.8909

Table 5.11: Trace REs of BLUESs based on RSS, ORSS, DRSS, ODRSS relative to
OSRS for scale contaminated normal distribution with e = 0.10
m=2 m=3 m=4 m=35

h k RSS ORSS DRSS ODRSS| RSS ORSS DRSS ODRSS| RSS ORSS DRSS ODRSS| RSS ORSS DRSS ODRSS
0.25 2 1.3355 1.3679 1.5519 1.5670 | 1.6754 1.9082 2.4425 2.7297 | 2.0937 2.4119 3.5912 4.0026 | 2.5363 2.9102 4.9033 5.4036
4 1.2180 1.3432 1.4748 1.5351 | 1.5345 1.8177 2.2391 2.5216 | 1.9036 2.2686 3.2061 3.6107 | 2.2931 2.7180 4.3222 4.8245

6 1.1044 1.3154 1.3938 1.4994 | 1.3963 1.7217 2.0393 2.3139 | 1.7182 2.1190 2.8438 3.2345 | 2.0571 2.5189 3.7854 4.2763

8 1.0187 1.2913 1.3279 1.4686 | 1.2906 1.6428 1.8862 2.1527 | 1.5772 1.9981 2.5766 2.9521 | 1.8783 2.3591 3.3955  3.8697

10 0.9588 1.2725 1.2793 1.4447 | 1.2161 1.5840 1.7781 2.0378 | 1.4781 1.9091 2.3929 2.7557 | 1.7531 2.2422 3.1304 3.5892

1.00 2 1.0580 1.3027 1.3586 1.4831 | 1.3391 1.6796 1.9565 2.2270 | 1.6418 2.0543 2.6982 3.0811 | 1.9602 2.4333 3.5723 4.0550
4 0.8719 1.2420 1.2045 1.4059 1.1069 1.4927 1.6196 1.8674 1.3336 1.7728 2.1308 2.4718 1.5709 2.0642 2.7562 3.1873

6 0.8260 1.2239 1.1628 1.3831 | 1.0486 1.4413 1.5348 1.7755 | 1.2567 1.6971 1.9942 2.3222 | 1.4743 1.9658 2.5629 2.9770

8 0.8087 1.2167 1.1467 1.3741 | 1.0266 1.4214 1.5029 1.7407 | 1.2278 1.6680 1.9433 2.2661 | 1.4380 1.9281 2.4913 2.8986

10 0.8005 1.2132 1.1390 1.3697 | 1.0161 1.4118 1.4877 1.7241 | 1.2141 1.6540 1.9192 2.2395 | 1.4208 1.9100 2.4573 2.8613

2.00 2 0.8897 1.2486 1.2203 1.4143 1.1293 1.5120 1.6522 1.9026 1.3632 1.8014 2.1841 2.5298 1.6083 2.1015 2.8318 3.2690
4 0.8098 1.2172 1.1477 1.3746 1.0280 1.4227 1.5049 1.7430 1.2297 1.6698 1.9466 2.2698 1.4404 1.9306 2.4959 2.9036

6 0.7962 1.2114 1.1349 1.3674 | 1.0107 1.4067 1.4797 1.7154 | 1.2068 1.6466 1.9066 2.2256 | 1.4117 1.9005 2.4396 2.8419

8 0.7915 1.2094 1.1304 1.3648 | 1.0047 1.4012 1.4710 1.7059 | 1.1990 1.6386 1.8928 2.2104 | 1.4019 1.8901 2.4203 2.8206

10 0.7894 1.2084 1.1284 1.3636 | 1.0019 1.3987 1.4670 1.7015 | 1.1954 1.6349 1.8865 2.2034 | 1.3973 1.8853 2.4115 2.8109
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Table 5.14: EMSEs of unknown parameters of SLRM under RSS schemes for scale
contaminated normal distribution with € = 0.05

RSS ORSS DRSS ODRSS
m o2 Amrss Prss Omrss | Gorss Porss Oorss | Gprss Pprss  Opmss | @opbrss  PODRSS  GODRSS
2 005 0.1016 0.0508 0.3552 | 0.1015 0.0507 0.1825 | 0.0878 0.0440 0.2263 | 0.0877 0.0438 0.1631
0.15 0.1043 0.0522 0.3703 | 0.1045 0.0520 0.1827 | 0.0919 0.0459 0.2405 | 0.0919 0.0460 0.1646
0.30 0.1078 0.0539 0.3921 | 0.1077 0.0541 0.1828 | 0.0966 0.0484 0.2641 0.0966 0.0482 0.1660
0.50 0.1114 0.0558 0.4229 | 0.1116 0.0557 0.1823 | 0.1014 0.0509 0.2964 | 0.1012 0.0507 0.1687
3 0.05 0.0507 0.02563 0.1514 | 0.0477 0.0238 0.0940 | 0.0370 0.018 0.1006 | 0.0346 0.0173 0.0816
0.15 0.0538 0.0269 0.1611 | 0.0508 0.0254 0.0949 | 0.0418 0.0209 0.1109 | 0.0392 0.0196 0.0841
0.30 0.0577 0.0288 0.1805 | 0.0548 0.0273 0.0960 | 0.0477 0.0239 0.1300 | 0.0447 0.0224 0.0876
0.50 0.0616 0.0308 0.2072 | 0.05686 0.0293 0.0978 | 0.05639 0.0269 0.1577 | 0.0503 0.0250 0.0911
4 0.05 0.0300 0.0150 0.0877 | 0.0280 0.0140 0.0581 | 0.0196 0.0098 0.0577 | 0.0182 0.0091 0.0475
0.15 0.0331 0.0165 0.0971 | 0.0310 0.0155 0.0597 | 0.0239 0.0120 0.0683 | 0.0222 0.0111 0.0511
0.30 0.0367 0.0184 0.1146 | 0.0344 0.0172 0.0618 | 0.0293 0.0147 0.0879 | 0.0271 0.0135 0.0553
0.50 0.0406 0.0203 0.1411 | 0.0381 0.0190 0.0638 | 0.0348 0.0174 0.1159 | 0.0318 0.0159 0.0592
5 0.05 0.0200 0.0100 0.0578 | 0.018 0.0093 0.0395 | 0.0120 0.0060 0.0370 | 0.0112 0.0056 0.0304
0.15 0.0227 0.0113 0.0666 | 0.0212 0.0106 0.0416 | 0.0157 0.0079 0.0478 | 0.0147 0.0073 0.0346
0.30 0.0260 0.0130 0.0837 | 0.0243 0.0122 0.0437 | 0.0204 0.0102 0.0677 | 0.0188 0.0094 0.0387
0.50 0.0295 0.0147 0.1097 | 0.0276 0.0138 0.0459 | 0.0251 0.0125 0.0968 | 0.0228 0.0114 0.0427
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different RSS schemes for normal, Laplace and scale contaminated normal distributions. From Tables 5.11]
it is observed that for all cases, the RETs under ODRSS are uniformly better than its counterparts. Under
each sampling scheme, given h, the RETs tend to increase as the value of k decreases. The similar trend
is observed when k is fixed and h varies. For small spacing, i.e., h = 0.25, DRSS provides more efficient
estimates than the estimates with RSS and ORSS for all values of m. Moreover, it also gives uniformly better

estimates than its counterparts when m > 3 except the corresponding estimates with ODRSS.

5.5.2 Imperfect ranking

In this section, a detailed simulation study is conducted in order to study the performances of the BLUEs
under imperfect RSS schemes.

The performance of an estimator obtained under DRSS scheme depends on the accuracy of ranking.
Accurate rankings make it possible to get efficient estimates of the population parameters. However, in
practice, errors in ranking are inevitable, particularly when dealing with large set sizes. These errors adversely
effect the efficiency of estimators obtained under RSS scheme. Dell and Clutter| (1972) were the first one to
investigate the effect of imperfect rankings on the performance of RSS-based mean estimator. They showed
that even with imperfect rankings, the mean estimator under RSS remains unbiased and it is more precise
than the mean estimator with SRS.

Following Dell and Clutter| (1972) approach, we study the performance of the BLUEs based on the
imperfect RSS methods. For a comprehensive comparison of the BLUEs under imperfect RSS schemes,
consider IRSS, OIRSS, IDRSS and OIDRSS procedures. For brevity of the discussion, &;;; is assumed to
be a standard normal random variable, i.e., &z ~ N(0,1), for i =1,2,...,k, j=1,2,..,mand t =1,2, ...,
However, in the rest of the chapter, other symmetric distributions are also considered for ;;;, i.e., Laplace and
scale contaminated normal distributions. Without loss of generality, consider k = 5, » =1 and m =2, 3, 4, 5.
Consider z; = i, for ¢ = 1,2, ..., 5, and treat z;s as fixed constants. Then, in the SLRM Y;;; = Y;;4|X; = z; is
also a normal random variable with mean o + 8(z; — Z) and variance unity, i.e., Yij¢|z; ~ N(a+ B(z; — %), 1)
for j=1,2,....,m,t=1,2,...,r. Consider « =1 and § = 2. Let V;;; be another random error term, and it is
normally distributed with mean zero and variance a%,, ie., Vijt ~ N(O, a'%,). Note that both Y;;; and V;;; are
independent. Compute Q;;: = Y;j: + Vij:. Given x;, generate Yj;, for j =1,2,...,m, t =1,2,...,r, and find
Qij:. Finally for a particular level of x;, select a ranked set sample of size n based on the values of Q;j;, i.e.,

Qz( )t for j =1,2,..,m,t=1,2,...,r. For each Q&S also observe the corresponding values of Y;;¢, i.e.,

i(j: m)t’

Yzleif]t, fori=1,2,..,k,j=1,2,...,m,t=1,2,...,7. This scheme is named as IRSS. It is to be noted that

if the values of Yg‘fns]t are sorted in an increasing order, then an ordered imperfect ranked set sample of size

n is obtained, denoted by nglffﬁts This scheme is named as OIRSS. Similarly, if DRSS is performed on the

values of Q;;:, then we get Y;I[?ffﬁts, fori=1,2,.,k,7=1,2,....,m,t =1,2,...,7, which is an imperfect double

ranked set sample of size n, and the analogous sampling scheme is named as IDRSS. Moreover, after sorting

the values obtained under IDRSS, i.e., 133535 in an increasing order, we obtain an ordered imperfect double
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ranked set sample of size n, denoted by Y;(L)jfgﬁss. The corresponding scheme is then named as OIDRSS.

In order to study the effect of imperfect rankings on the performance of the BLUESs, we consider U%, =0.05,
0.15, 0.30, 0.50. It is difficult to find the explicit mathematical expressions for the BLUEs constructed under
IRSS schemes. Therefore, the mean squared errors (MSEs) of the BLUEs are estimated using extensive
Monte Carlo simulations. In Tables under different IRSS schemes, the estimated MSEs (EMSEs)
of the BLUEs for normal, Laplace and scale contaminated normal distributions are reported based on 106

replications.
5.5.2.1 Semi-algorithm for OIDRSS

In this section, a semi-algorithm for calculating the EMSEs of estimators under OIDRSS scheme is provided.

Mathematica 8.0 is used for simulations since it is widely available and easily accessible.

Step 1: Let m=5,k=5,02 =0.05,a=1,8=2,r=1andz; =i fori=1,2,... k.

Step 2: Start with ¢ = 1.

Step 3: Generate m? values of Yij¢|z; and V;j5;. Calculate Qi = Yije + Vit

Step 4: Partition Q;;¢ into a m X m matrix, named Mg. Similarly, corresponding to @;;¢, the values of Y;;;
are also partitioned into another m x m matrix, named My-.

Step 5: Sort each column of Mg, and sort the columns of My with respect to the ranks of the columns of
Mg. Select diagonals of both matrices (Mg and My ), named dMg and dMy, each containing m
values. Again sort the values of dMg, and dMy is sorted with respect to the ranks of dMg. Select
the wth smallest value of dMy. Repeat the Steps 3-5 for w =1,2,...,m.

Step 6: Sort m values obtained from Step 5 to get an ordered imperfect double ranked set sample of size m.
In case when r > 1, repeat the Steps 2-5 r times to get a sample of size mr.

Step 7: Repeat Steps 2-6 for i = 1,2,...,5. This gives ordered imperfect double ranked set samples of size
m =5 for each value of z.

Step 8: Calculate the values of &orprss, @omprss and &orprss using .

Step 9: Repeat above Steps 2-8 one million times, and calculate the EMSE of each estimator.
The BLUE of 0, say 61 under IRSS scheme, named I, is given by
- k I
m Qg Yl Y Yie

1 1o=15" s~k (o vyl
ST S 2t i (@i — DY |, (5.5)

1 1 O—=1\r k 1
rh(p g i) AL IED P &

$>
I

where H = RSS, ORSS, DRSS, ODRSS and I = IRSS, OIRSS, IDRSS, OIDRSS.
From Tables 5.14] it is observed that when estimating intercept or slope parameters, the estimates
under DRSS are more precise than their counterparts based on RSS and ORSS schemes. For all cases, the

estimates under ODRSS are uniformly better than the corresponding estimates with other RSS schemes. As
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expected, the values of EMSEs tend to decrease as the value of m increases and vice-versa. Similarly, given

m, with an increase in (r%,, the values of EMSEs also increase.

5.6 Sensitivity of the BLUEs

In this section, we calculate REs of the BLUEs based on different RSS schemes assuming normality when the
parent distribution of the study variable Y is a non-normal symmetric distribution, say C-distribution, where
C is either Laplace or scale contaminated normal.

Let 92 be the BLUE of @ that is based on the normality assumption of Y, obtained under H sampling
scheme, where H = OSRS, RSS, ORSS, DRSS and ODRSS. Let Y ¢ be the dependent variable that follows
C-distribution. Then from , we have

V' Yoy T B(Vikg

E(é - ,
(Gr,n) rk(1'051)

1,QE}N ::1 Ef:l{a]‘ + IB('/E"' - E)1 + U,‘I’H,C}
rk(1'Q 1) ’

_ 1/91;,1NI*H,0
= etol ygtg )
H,N

where py y and py ¢ are the mean vectors of the standardized order statistics obtained under H scheme

when Y follows normal distribution and C-distribution, respectively. For any symmetric distribution with
mean zero, we have 1’ ﬂﬁl ty ¢ = 0, see Leone and Moussa-Hamouda, (1973). Therefore, E(&m,N) = @, which
shows that &m n is a linear unbiased estimator of a.

On similar steps, it is easy to show

QN Y Y (@ — 2){od + B(zi — 7)1 + opg o}
r(1'QgN1) YF, (z; — 7)2

)

E(Ba,N)

= B,

which is also a linear unbiased estimator of 8. Similarly, it can be shown that

—_ k _
B(bun) = Nh,NQH,lN Y1 2ol + Bz — )1 + opy o}
’ Tk(M'H,Nﬂﬁ,lNNH,N) ’

-1
_ #ﬁ,NQH,NI"H,C
=0 ! Q—l )
My N2 NMH,N

which shows that Gy n is not in the class of unbiased estimators.

The variances and MSE of &u N, BH,N and oy N are respectively given by

10971 Qn
Var(dH,N) — 0_2 < H,N H,N ,

rk(1'Qy 1)
llﬂﬁ,lNQH,CﬂI;,lNl
10—1 2k =\2 an
r(1 QH,Nl) >ici(Ti — )

Var(ﬁAH,N) = 02<
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Table 5.15: REs of the BLUEs under different RSS schemes when normality
assumptions do not hold

Scale Contaminated
Normal: ¢ = 0.01
Relative efficiency m= m=3 m=4 m=5| m= m=3 m=4 m=5>
RE(Arss,N, @0SRS,N) 1.3913 1.8383 2.3184 2.8207 | 1.4481 1.9069 2.3737 2.8465
RE(AoRrss N, Gosrs,N) 13913 1.9246 2.4931 3.0752 | 1.4481 19232 2.4078 2.8976
RE(&DRSS N, QOSRS,N) 1.5968 2.5704 3.8400 5.3609 | 1.7415 2.6893 3.8227 5.1174
RE(&oDRss,N; Gosrs,N) 1.5968 2.7927 4.2824 6.0063 | 1.7415 2.7540 3.9514 5.3044
RE(6Rss,N, GOSRS,N) 0.6152 0.7815 0.9412 1.0826 | 0.5523 0.7263 0.8870 1.0409
RE(60
RE(

Distribution Laplace

ORSS,N> GOSRS,N) 1.1256 1.1549 1.2248 1.2984 | 1.1514 1.2422 1.3514 1.4707
8DRsSS,N; FOSRS,N) 0.9667 1.12v8 1.3286 1.4800 | 0.9186 1.1908 1.4741 1.7784
RE(60oprss,N, Fosrs,y) 1.2515 1.3005 1.4270 1.5069 | 1.3136 1.4845 1.7226 2.0055

Distribution Scale Contaminated Scale Contaminated
Normal: € = 0.05 Normal: € =0.10
Relative efficiency m=2 m=3 m=4 m=5|m=2 m=3 m=4 m=5>

RE(dRss N, QOSRS,N) 1.4014 1.8395 2.3013 2.7800 | 1.37556 1.8041 2.2655 2.7507
RE aORSS N aogRS N) 1.4014 1.8889 2.4036 2.9344 1.3755 1.8753 2.4149 2.9786
RE(aDRSS N, QOSRS,N) 1.6356 2.5455 3.7006 5.0695 | 1.5769 2.4744 3.6565 5.0912
RE(&oDRss,N; Gosrs,N) 1.6356  2.6822 3.9766 5.4798 | 1.5769 2.6552 4.0315 5.6634
RE(6rss,N, 6OSRS,N) 0.6035 0.7756 0.9344 1.0811 | 0.6339 0.8005 0.9547 1.0903
RE(60rss,N, FOSRS,N) 1.1555 1.2105 1.2945 1.3868 | 1.1463 1.1790 1.2446 1.3140
RE(6prss,N, FOSRS,N) 0.9677 1.1761 1.4009 1.6207 | 0.9878 1.1529 1.3371 1.4921
RE(60DRss N, Josrs,N)  1.3077 1.3964 1.5697 1.7552 | 1.2842 1.3291 1.4546 1.5637

Here RE(4u,n, &osrs,n) = RE(Bu,n, Bosrs,n) for H = RSS, ORSS, DRSS and ODRSS.

MSE(6gn) = o2 <

/ —1
iu’H,NnH,N“'H,N

-1 -1 -1 2
P"H,NQH,NQH,CQH,NNH,N g P‘i{,NQH,NI‘H,C _1
Tk(NI}I,Nﬂﬁ,lNNH,N)2 ’

where Q0 n and Q¢ are the variance-covariance matrices of standardized order statistics when Y follows
normal and C-distributions, respectively.

In Table we report the exact REs of dn , BH,N and 6y n when one mistakenly assumes normality.
Almost similar trend of REs is observed here as aforementioned. It is clear from Table (.15 that for a
particular distribution when using any RSS scheme, the RE of an estimator is increasing with m. In both
individual and joint estimation of the unknown parameters of the SLRM, the estimates under ODRSS are
uniformly better than their analogies. Similarly, under DRSS, when estimating intercept or slope parameters,
it is possible to get more efficient estimates than the estimates with RSS and ORSS schemes. However,
when estimating o with m < 3, the estimates under DRSS are less efficient than those with ORSS. In joint

estimation of parameters, DRSS outperforms RSS and ORSS schemes for all values of m.

5.7 Conclusion

In this paper, we proposed improved BLUEs of the unknown parameters of the SLRM based on DRSS and
ODRSS schemes. We considered several symmetric distribution for the random error term of the SLRM,
and made a comprehensive comparison of the BLUESs based on perfect and imperfect RSS schemes. We also
studied the behavior of the BLUEs when normality assumptions are violated. It is worth mentioning that
the BLUEs under ODRSS and OIDRSS schemes are uniformly better than the existing BLUEs for all cases

considered here.



Chapter 6

Improved Exponentially Weighted
Moving Average Control Charts for
Monitoring Process Mean and

Dispersion

This chapter appeared in:
Haq, A., Brown, J., Moltchanova, E., Al-Omari, A.IL., 2013, Improved exponentially weighted moving average
control charts for monitoring process mean and dispersion, Quality and Reliability Engineering International,

Early view, DOI: 10.1002/qre.1573.

Exponentially weighted moving average (EWMA) control charts are mostly used to monitor the
manufacturing processes. In this chapter, we propose some improved EWMA control charts for detecting the
random shifts in the process mean and process dispersion. These EWMA control charts are based on the
best linear unbiased estimators obtained under ordered ranked set sampling (ORSS) and ordered imperfect
ranked set sampling (OIRSS), named EWMA-ORSS and EWMA-OIRSS charts, respectively. Monte Carlo
simulations are used to estimate the average run length, median run length and standard deviation of run
length of the proposed EWMA control charts. It is observed that the EWMA-ORSS mean control chart is
able to detect the random shifts in the process mean substantially quicker than the Shewhart-cumulative sum
and Shewhart-EWMA control charts based on the RSS scheme. Both EWMA-ORSS and EWMA-OIRSS
location charts perform better than the classical EWMA, hybrid EWMA, Shewhart-EWMA and fast initial

response-EWMA charts. The EWMA-ORSS dispersion control chart performs better than the simple random
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sampling based CS-EWMA and other EWMA control charts in efficient detection of the random shifts that
occur in the process variability. An application to real data is also given to explain the implementation of the

proposed EWMA control charts.

6.1 Introduction

Control chart is a powerful statistical process monitoring tool that is frequently used to identify the unusual
variations of the production processes. In manufacturing industries, the most commonly used control
charts are Shewhart, cumulative sum (CUSUM) and exponentially weighted moving average (EWMA). The
Shewhart-type control charts are based on the current information due to which they remain insensitive to
small shifts that occur in the process parameters. [Roberts (1959) was the first one to introduce the EWMA
or geometric moving average control chart for monitoring the process mean. The Shewhart control chart
becomes a special case of the EWMA control chart. This makes the EWMA control chart at least as effective
as the Shewhart control chart. It is well known that the EWMA control charts are superior to the Shewhart
control charts for detecting random shifts of smaller magnitudes. In recent years, these control charts have
gained considerable attention in various fields such as signal segmentation, navigation system monitoring,
nuclear engineering, health care and education (see Montgomery}, 2009} [Hawkins and Olwell, [1998; Masson),
2007; Hwang et al.| [2008; [Woodall, |2006; [Yashchin| |1989) and references therein).

In the last decades, there have been substantial advancements and improvements in the control charting
methodologies. Recently,|Abbas et al.| (2013b)) suggested a mixed EWMA-CUSUM control chart for monitoring
the process mean. It is shown that for detection of small shifts in the process location, this control chart
performs better than its competitors. Riaz et al.|(2011) and |Abbas et al. (2011) increased the efficiency
of CUSUM and EWMA control charts by applying several run rules, respectively. Haq| (2013)) proposed a
hybrid EWMA control chart for monitoring the process mean by mixing the plotting-statistics of the EWMA
control charts. It is shown that both Shewhart and EWMA control charts are its special cases. Riaz et al.
(2013) suggested some Shewhart-type control charts based on the auxiliary information. Some important
literature in the direction of location control charts may bee seen in Riaz| (2008b), Nazir et al.| (2013)), |Ahmad
et al.| (2014), |Abbas et al. (2013), |[Schoonhoven et al.[ (2009, 2011)) and references cited therein.

The ranked set sampling (RSS) scheme has had popularity in the construction of quality control charts.
The RSS method was introduced by Mclntyre (1952). Takahasi and Wakimoto (1968) developed the statistical
foundation of the RSS method. [Salazar and Sinha, (1997) developed the Shewhart-type control chart based
on RSS for monitoring the process mean. Their work was then further extended by Muttlak and Al-Sabah
(2003), who made some improved quality control charts based on perfect and imperfect RSS schemes. They
showed that the RSS-based control charts are far better than the control charts based on simple random
sampling (SRS). Abujiya and Muttlak| (2004) suggested control charts for monitoring process mean based on
double RSS methods. These control charts are better in detecting changes in the process mean compared

with their counterparts based on SRS and RSS methods. Balakrishnan and Li (2005, 2008)) introduced
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the ordered RSS (ORSS) and used this scheme to obtain the best linear unbiased estimators (BLUEs) of
the unknown parameters of location-scale family of distributions. It is shown that the BLUEs based on
ORSS (BLUEs-ORSS) are uniformly better than the BLUEs based on SRS and RSS. Recently, |Al-Omari
and Haqg| (2012)) suggested some improved quality control charts for monitoring process mean based on some
double RSS methods. |Abujiya et al.| (2013a,b) suggested Shewhart-EWMA and Shewhart-CUSUM control
charts based on RSS (i.e., Shewhart-EWMA-RSS and Shewhart-CUSUM-RSS) and median RSS schemes for
monitoring the process mean. They showed that these control charts are far better than the CUSUM and
EWMA control charts based on SRS. A comprehensive comparison of EWMA location control charts based
on different RSS schemes is given in |Abujiya et al.| (2014).

Dispersion control charts are also common in the statistical quality control literature. [Page (1954
developed the CUSUM control chart based on samples ranges for monitoring increases in the process
dispersion. (Crowder and Hamilton| (1992) applied logarithmic transformation to the unbiased sample variance,
52, and proposed an EWMA control chart for monitoring changes in the process standard deviation. |Acostas
Mejia et al.| (1999) suggested CUSUM control charts for monitoring process dispersion by applying normalizing
transformations to S? and made a comprehensive comparison of the dispersion control charts. Later on,
Castagliola (2005) suggested S2-EWMA control chart based on three-parameter logarithmic transformation.
Following the same transformation on $2, Castagliola et al| (2009) proposed the CUSUM-S? control chart for
monitoring process dispersion. Recently, Abbas et al.| (2013a) extended the work and proposed CS-EWMA
control chart under SRS (CS-EWMA-SRS) by mixing the effects of both EWMA and CUSUM control charts.
It is shown that for small shifts in the process dispersion, the CS-EWMA chart detects the random shifts
in the process variation significantly quicker than the S2-EWMA and CUSUM-S? charts. Note that all of
these dispersion control charts are based on SRS method. Hag| (2014) suggested an EWMA control chart for
monitoring process variability based on mean deviation under RSS scheme. Some important literature in the
direction of dispersion charts may be seen in [Huwang et al.| (2010), |Abbasi et al. (2012), |Abbasi and Miller
(2012), Riaz and Saghir| (2009), Riaz and Does (2008, 2009), | Abbas et al| (2013b), Ahmad et al.| (2013) and
references cited therein.

In this chapter, we introduce two improved EWMA control charts for monitoring process mean and
process dispersion based on ORSS and ordered imperfect RSS (OIRSS) schemes. The proposed EWMA
control charts are based on the BLUEs-ORSS and BLUEs-OIRSS, named EWMA-ORSS and EWMA-OIRSS
charts, respectively. The complete structure of the control limits of each of the EWMA-ORSS control chart
is developed. The statistical properties of these control charts are evaluated in terms of average run length
(ARL), median run length (MDRL) and standard deviation of run length (SDRL). ARL is the average number
of observations that are required to issue a particular size shift in the process location or dispersion or both.
Based on extensive Monte Carlo simulations, ARLs, MDRLs and SDRLs of the proposed EWMA-ORSS
control charts have been calculated. We compare EWMA-ORSS control charts with some of the recently

proposed control charts. It turns out that our proposed control charts (location and dispersion) are detecting
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random shift faster than their competitors while maintaining an equal in-control ARL. An application to real
data is also considered to explain the implementation of the proposed EWMA control charts.

The rest of the chapter is organized as follows: In Section [6.2] we explain the method to obtain BLUEs-
ORSS and BLUEs-OIRSS. The proposed EWMA-ORSS and EWMA-OIRSS control charts for process mean
and process dispersion are constructed in Section It also contains the values of ARLs, MDRLs and
SDRLs of the proposed EWMA control charts. These control charts are compared with some recent control
charts in Section Real data applications are given in Section [6.5, and Section [6.6] summarizes the main

findings.

6.2 BLUEs and ordered ranked set sampling

In this section, we explain the RSS, ORSS and OIRSS procedures. The BLUEs of the unknown parameters
of the location-scale family of distributions under ORSS are also explained in detail.

The RSS procedure is explained as follows: identify m? units from the target population. Randomly
allocate these units to m sets each of size m. Now, rank the units within each set visually with respect to the
study variable or by any inexpensive method. Select the smallest ranked unit from the first set. Similarly,
select the second smallest ranked unit from the second set. The procedure continues, and the largest ranked
unit is selected from the last set. This completes one cycle of a ranked set sample of size m. The procedure
can be repeated r times to obtain a ranked set sample of size mr. In order to obtain an ordered ranked set
sample of size m, we sort the ranked set sample in an increasing order of magnitude.

Let Y1,Y53, ..., Y,, be m independent and identically distributed (IID) random variables that follow an
absolutely continuous distribution having cumulative distribution function (CDF) F (y—;ﬂ) and probability
density function (PDF) % f ((5£), where p is the location parameter and o(> 0) is the scale parameter. For
brevity of the discussion, let F*(y) = F (3£) and f*(y) = 2 f (*3£). Let Y{1:m), Y(2:m)» s Y(m:m) be the

m order statistics obtained from a simple random sample of size m, i.e., Y1,Ys,...,Y;,. Then, the CDF and

PDF of the ith order statistic, Y{;.), are respectively given by

Fam® = ¥ Y (1) 0-Foy, —w<o<w,
3=0

fom® = w77 E @Y PO

Let Y11,Y19, ..., Yim, Y21, Yoo, ..., You, ..., Yiu1, Yino, ..., Yoo be m independent simple random samples
each of size m. Apply RSS procedure to these m samples to obtain a ranked set sample of size m,
denoted by Yi(1:m), Y2(2:m)s ---» Ym(m:m)- The mean of the ranked set sample is Yrss = % pu Yi(iim)-
Takahasi and Wakimoto| (1968) showed that under perfect ranking, Ygrss is an unbiased estimator of py
and it is more precise than the sample mean based on SRS, Ysgs = % Yo Y, e, E(Ygss) = py and
Var(Yrss) = Var(Ysrs) — 2z i1 (By (iom) — ty)?, where E(Y;(im)) = By, for i = 1,2, ..., m.

Let Wiim) < Waim) < -+ < Wim:m) represent an ordered ranked set sample obtained by arranging
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Y1(1:m), Y2(2:m)» -++» Ym(m:m) in an increasing order of magnitude, i.e., W1.;n = min(Y1(1:m), Y2(2:m)» -++s Ym(m:m))-
Note that the random variables Yj(;. ), ¢ = 1,2, ..., m, are independent but not identically distributed (INID).

Therefore, the CDF of W, (r = 1,2,...,m) is given by

FORSS() =303

i=r Si

[LF5m@) T - Fz;-l;m)w)}], o <w<o

=1 I=i+1

where the summation S; extends over all permutations (j1, j2, ---, jm) of (1,2, ...,m) for which j; < jo < --- < j4;
and jit1 < Jit2 < -+ < Jm.

Similarly, the PDF of W(,.p)(r = 1,2, ...,m) is given by

8r;§)s(w) ( 1)| —7)! Z HF(JL m) H {1- F(Jt m)(w)}f(ar m)(w)]

l=r+1

where ) ;; denotes the sum over all m! permutations (j1,j2, ..., jm) of (1,2,...,m).

The joint PDF of W,.p) and Wis.m) (1 <7 < s <m) is given by

r—1 s—1
ORSS —
Jrsem) (Wi ) - = I T S m = 9)1 Z HF(JL omy (W) TT {F o) (0s) = Fjyomy (0r)}
I=r+1
H {1 - F(Elm) (ws)}f(,kjr:m)(wT)f{js:m)(ws)] y  Wp < Ws.
I=s8+1

Based on previously defined PDFs, it is easy to calculate the moments of order statistics under ORSS. For
more details, see David and Nagarajal (2003) and Balakrishnan and Li| (2005).

Let WoRrss = (W(lzm), Wiz:mys -+ W(m:m))’ be the vector obtained under ORSS from a general location-
scale distribution, with location parameter 4 and o(> 0) be its scale parameter. Define Z(,.,,) = (W(rim)—p)/0
as the standardized variate under ORSS such that the distribution of Z(,.,) is independent of p and
o. Also let E(Z(.y)) = “?r:m)’ 1 < r < m, Cov(Z(rim), Z(s:m)) = a-z(r,s:m)’ 1 <r<s<m Then
E(W(pm)) = 1+ O il a0d Cov(W(rim), Wis:m)) = 02UE*T’8:m). Following Balakrishnan and Li (2005), the
BLUE-ORSS, say #orss = (florss,dorss), of T = (u,0)" is 6orss = (0'Q7160)"10'Q W Rrss, where
0 = (1, porss)mx2, & = (07, s.m))mxm, 1 = (1,1,..;1)1xm and porss = (B{1.m)s K2imy> = B{m:my) - The
variance-covariance matrix of #ogrss is Cov(#orss) = 02(0'Q710)~!. The BLUEs of y and o can be written
as linear combinations of Wogss, i-e., lorss = D ey 0 W(rim) and 6orss = Y peq BrW(rim)- The values of
the coefficients (a, and 3,), qu«:m) and aa:m) for normal, exponential and logistic distributions are reported
in Balakrishnan and Lil (2008)) for several choices of m. If the underlying distribution is symmetric, then the
covariance between florss and 6orss becomes zero, i.e., Cov(Qorss, Forss) = 0. This helps in simplifying the
variances of the BLUEs-ORSS, i.e., Var(fiorss) = 02(1’Q2'1)~! and Var(6orss) = 02 (lpres® ™ " Morss) ™"

It is clear that the performance of RSS depends on how perfect the judgment ranking of the randomly

selected units is accomplished. The correct ordering helps in achieving stratification without quantification
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and utilizes the prior experience and expertise of the investigator. However, in practice, the judgment error is
inevitable, particularly for large m. Errors in ranking cause the units to be assigned ranks different from their
true ranks according to the study variable. This, in turn, leads to imprecise estimates. Dell and Clutter| (1972)
were the first to study the effect of imperfect ranking on the performance of RSS-based mean estimator. They
showed that even under imperfect ranking, the RSS-based mean estimator remains unbiased, but imperfect
ranking should be better than the random ordering of the selected units.

Here, we examine the effect of judgment error on the performance of BLUEs of the location and scale
parameters under ORSS. For brevity, we assume that the underlying process is normally distributed with
mean po and variance o3 at time ¢, i.e., Y; ~ N(uo,03), for t = 1,2,.... Given the value of m, generate m sets
each of size m, from the underlying process distribution, i.e., Yj;;, for ¢,j = 1,2, ...,m. We also generate the
random errors, V;;t, with mean zero and variance 02, i.e., V;j: ~ N(0,0%) at time ¢, where V;;; is independent
of Y;jt. Then, we compute X;j: = Yijt + Viji, for 4,5 = 1,2,...,m. Apply the RSS procedure on m? values
of X and also measure the corresponding values of Y. Then, a pair (X;(im)t, Yijizm)¢), for i = 1,2,...,m, is
selected based on the values of X, where Yj[;.,}; is the ith concomitant of the ith order statistic X;(;.m); at
time . Let W1.mjs < Wiaim)t < +** < Wim:m): Tepresent an ordered imperfect ranked set sample obtained by
rearranging Yjj;.mj¢, ¢ = 1,2, ...,m, in an increasing order, i.e., Wi;.mjs = ith min(Yy[1.mjt, Y2[2:m]t) --+» Yim[m:m]t)»
for 1 =1,2,...,m. We name this scheme as OIRSS. The BLUEs of i and ¢ based on OIRSS scheme, at time
t, are floRss,t = E:,n:l 0 Wiramps and Gorss,t = E:;l BrWir.mjs, respectively, where the values of coefficients
(o, Br) are the same as mentioned earlier. It is noteworthy that OIRSS involves order statistics from
independents concomitants. Therefore, it is difficult to derive the exact PDF of Wi.pmys, 7 = 1,2,...,t. Here,

we use Monte Carlo simulations to estimate the variances of the BLUEs obtained under OIRSS.

6.3 Proposed EWMA-ORSS control charts for monitoring

process mean and dispersion

In this section, we develop some improved EWMA control charts for monitoring process mean and dispersion

based on the BLUEs-ORSS and BLUEs-OIRSS.

6.3.1 EWMA-ORSS control chart for monitoring process mean

It is assumed that the underlying process is in-control, and let ¥; be the observation at time t, obtained from
a normally distributed process with mean po = 0 and standard deviation op = 1. Let uorss,+ be the estimate
of the underlying process mean ug under ORSS, obtained from a subgroup of size m at time ¢, for t =1, 2, ....
Let fiorss,1, JORSS,2, ---» [lORSS, ¢, --- be the sequence of IID random variables and let £ € [0,1] be a constant.
From this sequence, we define another sequence M7, My, ..., My, ..., by using a recurrence formula, given by
the following:

M, =&porss,t + (1 —EMi—1, 0<EL1, (6.1)
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which is called an EWMA sequence. For a positive integer ¢ > 1, E(M;) = po for E(fiorss,:) = po and
Var(M;) = (2%) {1-(1—-6)%*}6%(1'Q 1)~ for My = . If both pg and o are known constants, then
the upper control limit (UCL;), center limit (CL;) and lower control limit (LCL;) of the EWMA-ORSS

control chart based on the statistic M;, at time ¢, are given by

UCL; = po+ LUO\/(2E§) {1 — (]_ — £)2t}(1/9—11)—1,
CLt = Mo, (62)

LCL; = po— Lao\/(zg—g) {1-(1- 5)%}(1/9—11)—1,

where L is a positive control chart multiplier and its value is determined such that the in-control ARL of
the EWMA-ORSS control chart reaches to a particular level. If the underlying distribution is normally
distributed, then for £ = 1, the previous EWMA control chart reduces to the Shewhart control chart. The
statistic M; given in is plotted with the control limits given in against time t. The EWMA-ORSS
control chart detects an out-of-control signal if the plotting-statistic M; exceeds either UCL; or LCL;. If
M; > UCLy, then there is a positive shift in the process mean at time ¢, or if M; < LCL;, then there is a
negative shift in the process mean. Let § = (y/m/ao)|p1 — po| represents the random shift in the process
mean that is measured in o¢/+/m units. Here, 0 is the in-control process mean and u; is the out-of-control
process mean. Note that as the time ¢ increases, i.e., t — 0o, then the term {1 — (1 — £)?!} approaches
unity. Based on extensive Monte Carlo simulations, when the underlying process is normally distributed with
fo = 0 and o¢ = 1, we find values of the out-of-control ARLs, MDRLs and SDRLs with different values of §
using the control limits given in . The subgroup size is taken to be m = 5. With different choices of
&, the calculated values of ARLs, MDRLs and SDRLs are given in Table Each result is based on 10°
replications.

Based on the results given in Table [6.1], we conclude that for fixed value of £, ARLs, MDRLs and SDRLs
are decreasing function of ¢, i.e., as the the value of § increases, values of the out-of-control ARLs decrease
and vice-versa. For example, the proposed EWMA-ORSS control chart detects on average a shift of § = 0.25
in the process mean at the 31st sample when £ = 0.05. Similarly, the EWMA-ORSS chart quickly detect the
random shifts in the process location for large values of 4.

In order to study the effect of imperfect ranking on the performance of EWMA-ORSS control chart, a
detailed simulation study is conducted here. We name the EWMA chart based on OIRSS as EWMA-OIRSS
control chart. The plotting-statistic of the EWMA-OIRSS location control chart is given by

Gy =&fiorss,;: + (1 —§)Ge—1, 0<E<L1,

where £ is a smoothing constant and Gy = ﬁomss.

As previously mentioned, it is difficult to find the exact mathematical expressions for the means and
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Table 6.1: Run length properties of EWMA-ORSS (two-sided) process mean control
chart

E— 0.05 0.10 0.25 0.50
0 L— 2.6400 2.8250 3.0050 3.0810
0.00 ARL 500.79 500.92 500.58 500.37
MDRL 343.00 344.00 348.00 347.00
SDRL 515.14 507.69 499.14 501.73
0.25 ARL 31.50 3942 67.03 122.00
MDRL  26.00 30.00 48.00 86.00
SDRL 2497 3330 63.46 119.61
0.50 ARL 9.656 10.92 14.77  26.60
MDRL 8.00 9.00 12.00 19.00
SDRL 6.50 726 11.66 24.64
0.75 ARL 4.90 5.45 6.47 9.37
MDRL 4.00 5.00 6.00 7.00
SDRL 3.01 3.25 4.18 7.64
1.00 ARL 3.10 3.43 3.85 4.79
MDRL 3.00 3.00 3.00 4.00
SDRL 1.74 1.87 2.15 3.29
1.50 ARL 1.72 1.87 2.03 2.20
MDRL 2.00 2.00 2.00 2.00
SDRL 0.82 0.88 0.96 1.14
2.00 ARL 1.24 1.31 1.38 1.43
MDRL 1.00 1.00 1.00 1.00
SDRL 0.46 0.51 0.56 0.61
3.00 ARL 1.01 1.01 1.02 1.02
MDRL 1.00 1.00 1.00 1.00
SDRL 0.08 0.11 0.13 0.14

variances of BLUEs under OIRSS. Therefore, we estimate the mean and variances of the BLUEs under OIRSS
from preliminary samples that were taken when the process was in-control. Let fi; o1rss; f2,01RSS; -+, flw,0IRSS
be the estimated values of location-BLUEs based on w subgroups, each of size m, where fi; oirss =
Y re1 @ Wi [rim), for i =1,2,...,w. Then, the estimated upper control limit (EUCL,), estimated center limit
(ECL,) and estimated lower control limit (ELCL;) of EWMA-OIRSS location control chart, at time ¢, are

given by

EUCL,

ﬁ'OIRSS + La'ﬂonzss\/(2§£) {1 - (1 - f)Zt}a

ECL; = formss,

E"OIRSS - L&ﬂomss\/<2§§> {1 - (1 - 5)21:}’

ELCL,

= 1 —w A ~ 1 WA = . e
where forss = 3 D _s—1 i,0IRSS; Fpomss = \/ (ﬁ) Y ie1(fi,01rss — forrss)? and L is the positive

control chart multiplier. In order to find the values of ARLs, MDRLs and SDRLs of EWMA-OIRSS
control chart, we first estimate the control limits based on one million samples, obtained under OIRSS by
following Dell and Clutter| (1972) approach. For brevity, we assume four values for the error variance, i.e.,
o2, = 0.05,0.15,0.30,0.50. Then, based on 10° replications, the estimated values of ARLs, MDRLs and
SDRLs are calculated and given in Table

Note that in order to study the robustness of the EWMA-OIRSS chart, we keep the same values of L as
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Table 6.2: Run length properties of EWMA-OIRSS (two-sided) process mean control
chart

E— 0.05 0.10 0.25 0.50 0.05 0.10 0.25 0.50
L— 2.6400 2.8250 3.0050 3.0810 2.6400 2.8250 3.0050 3.0810
) oy =0.05 0z, =0.15
0.00 ARL 499.92 501.11 501.45 502.62 | 501.20 498.71 500.38 502.64
MDRL 341.00 347.00 346.00 348.00 | 344.00 343.00 348.00 347.00
SDRL 516.67 506.35 502.80 500.60 | 515.67 504.26 499.27 501.61
0.25 ARL 33.92 42.89 73.54 132.29 38.44 48.91 84.04 149.06
MDRL 27.00 33.00 52.00 92.00 31.00 37.00 59.00 104.00
SDRL 27.08 36.58 69.97 130.69 31.38 42.83 80.96 148.15
0.50 ARL 10.43 11.81 16.28 29.66 11.67 13.42 18.98 35.50
MDRL 9.00 10.00 13.00 21.00 10.00 11.00 14.00 25.00
SDRL 7.06 7.98 13.11 27.87 8.00 9.31 15.71 33.63
0.75 ARL 5.28 5.89 7.05 10.49 5.92 6.62 8.09 12.60
MDRL 5.00 5.00 6.00 8.00 5.00 6.00 7.00 9.00
SDRL 3.27 3.55 4.66 8.70 3.7 4.03 5.54 10.79
1.00 ARL 3.33 3.68 4.18 5.28 3.72 4.12 4.72 6.22
MDRL 3.00 3.00 4.00 4.00 3.00 4.00 4.00 5.00
SDRL 1.92 2.02 2.38 3.75 2.16 2.34 2.78 4.59
1.50 ARL 1.84 2.00 2.17 2.38 2.03 2.21 2.42 2.69
MDRL 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00
SDRL 0.89 0.96 1.04 1.27 1.02 1.10 1.20 1.52
2.00 ARL 1.30 1.38 1.46 1.52 1.40 1.49 1.60 1.68
MDRL 1.00 1.00 1.00 1.00 1.00 1.00 1.00 2.00
SDRL 0.51 0.56 0.61 0.67 0.59 0.64 0.70 0.78
3.00 ARL 1.01 1.02 1.03 1.04 1.03 1.04 1.06 1.07
MDRL 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
SDRL 0.11 0.14 0.17 0.19 0.17 0.20 0.24 0.26
5 % = 0.30 oZ = 0.50
0.00 ARL 502.41 500.51 505.91 510.16 | 503.35 500.61 507.38 513.18
MDRL 343.00 346.50 351.00 354.00 | 344.00 345.00 353.00 355.00
SDRL 517.28 505.86 505.09 509.60 | 519.28 505.74 507.65 513.61
0.25 ARL 43.61 56.30 97.28 167.61 49.20 64.00 110.56 186.32
MDRL 35.00 42.00 69.00 117.00 39.00 47.00 78.00 129.00
SDRL 36.12 50.38 93.62 166.28 41.49 57.87 107.56 186.46
0.50 ARL 13.35 15.30 22.53 42 .47 14.82 17.23 26.09 49.57
MDRL 11.00 13.00 17.00 30.00 13.00 14.00 19.00 35.00
SDRL 9.34 10.88 19.22 40.58 10.46 12.43 22.68 47.92
0.75 ARL 6.70 7.52 9.38 15.18 7.47 8.41 10.74 18.13
MDRL 6.00 7.00 8.00 11.00 7.00 7.00 9.00 13.00
SDRL 4.29 4.72 6.68 13.36 4.85 5.36 7.86 16.42
1.00 ARL 4.20 4.63 5.37 7.41 4.65 5.17 6.08 8.68
MDRL 4.00 4.00 5.00 6.00 4.00 5.00 5.00 7.00
SDRL 2.51 2.68 3.28 5.72 2.83 3.03 3.85 6.96
1.50 ARL 2.25 2.46 2.71 3.08 247 2.71 3.02 3.50
MDRL 2.00 2.00 2.00 3.00 2.00 2.00 3.00 3.00
SDRL 1.17 1.25 1.38 1.82 1.32 1.41 1.59 2.15
2.00 ARL 1.52 1.64 1.77 1.88 1.65 1.79 1.94 2.08
MDRL 1.00 2.00 2.00 2.00 1.00 2.00 2.00 2.00
SDRL 0.68 0.74 0.80 0.92 0.77 0.83 0.90 1.06
3.00 ARL 1.06 1.08 1.11 1.13 1.10 1.13 1.18 1.20
MDRL 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
SDRL 0.23 0.28 0.32 0.35 0.30 0.35 0.39 0.42

given in Table It is interesting to note that when o2 < 0.15, for all values of &, the in-control ARLs of
the EWMA-OIRSS control chart are almost equivalent to the in-control ARLs of the EWMA-ORSS control

chart. This shows that for small errors in ranking, the EWMA-OIRSS control chart is more robust to the
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in-control ARL. However, with an increase in the values of a%,, the out-of-control ARLs also tend to increase
and vice-versa. It is also observed that the in-control ARL of the EWMA-OIRSS chart increases for large

values of ¢ and o2, i.e., 02 > 0.3 with & > 0.25.

6.3.2 EWMA-ORSS control chart for monitoring process dispersion

Following Section [6.3.1] it is assumed that Y; follows a normally distributed process with mean po = 0 and
standard deviation og = 1. Let 6orss,+ be the best linear unbiased estimate of the underlying process standard
deviation based on ORSS, obtained from a subgroup of size m at time t. Let Gorss,1, GORSS,2; ---s FORSS, t» -+
be the sequence of IID random variables. Based on this sequence, we define another sequence D1, Ds, ..., Dy, ...,

by using a recurrence formula, given by
Dy =E&oomss,t + (1 —&)Ds—1, 0<E<1,

which is also an EWMA sequence. For ¢t > 1, we have E(D,) = o¢ for E(6orss,t) = 0o and Var(D;) =
(ﬁ) {1 = (1 —&)*}03(uorss® *porss) ! for Doy = g. If both pg and o are known constants, then the

control limits of the EWMA-ORSS control chart based on the statistic Dy, at time ¢, are given by

UCL; = oo+ H200\/<2£_§) {1 - (1 -6} (porss? ' Borss) ™

CLt = 0o, (6.3)

LCL; = oo— H100\/(2£_§) {1 - (1 -8} (porss® 'Horss)

where H = H; = H; is the positive control chart multiplier, and its values is determined such that the
in-control ARL of the EWMA-ORSS control chart reaches to a specific level. Similar to the EWMA-ORSS
control chart developed in Section here, statistic D; is the plotting-statistic, and the EWMA-ORSS
chart detects an out-of-control signal if the plotting-statistic D; exceeds either UCL; or LC'L;. If D; > UC'Ly,
then there is a positive shift in the process dispersion at time ¢, or if D; < LCL;, then there is a negative
shift in the process dispersion. Let 7 = 01 /0 represents the random shift in the process dispersion. Here, oq
is the in-control process standard deviation, and o is the out-of-control or shifted standard deviation.

Based on extensive Monte Carlo simulations, when the underlying process follows a normal distribution
with uo = 0 and gg = 1, we find the values of out-of-control ARLs, MDRLs and SDRLs with different values
of 7 by using the control limits given in . For brevity of the discussion, we consider m = 5. For different
choices of £, the estimated values of ARLs, MDRLs and SDRLs are given in Table Each result is based
on 10° replications. On similar lines, the run length properties of the one-sided EWMA-ORSS chart are given
in Table [6.41

Based on the results presented in Tables[6.3]and it is clear that the out-of-control ARL is a decreasing

function of 7 when 7 > 1. For fixed value of 7, as the value of £ increases, the values of out-of-control ARLs
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Table 6.3: Run length properties of the EWMA-ORSS (two-sided) dispersion control
chart

Symmetric limits Asymmetric limits
£— 0.05 0.10 0.20 0.30 0.40 0.50 0.30 0.40 0.50
H,— 22785 24780 2.6460 2.7210 2.7670 2.7938 2.5800 2.6660 2.6660
T Hy— 22785 24780 2.6460 2.7210 2.7670 2.7938 2.8350 2.8220 2.8600
0.50 ARL 2.44 2.79 3.15 3.45 3.87 4.65 3.12 3.55 4.01
MDRL 2.00 3.00 3.00 3.00 4.00 4.00 3.00 3.00 4.00
SDRL 0.87 0.95 1.05 1.22 1.58 2.37 1.12 1.44 1.94
0.60 ARL 3.53 4.08 4.73 5.47 6.82 9.55 4.82 6.01 7.63
MDRL 3.00 4.00 4.00 5.00 6.00 8.00 4.00 5.00 6.00
SDRL 1.53 1.67 1.99 2.65 4.01 6.87 2.29 3.42 5.18
0.70 ARL 5.75 6.71 825 10.73 15.71  25.82 899 13.03 18.80
MDRL 5.00 6.00 7.00 9.00 12.00 19.00 8.00 10.00 14.00
SDRL 3.03 3.40 4.55 718 1241  23.12 5.83 10.02 16.17
0.80 ARL 11.43 1374 19.58 30.19 50.27 86.85 | 23.01 38.61 57.47
MDRL 10.00 12.00 15.00 22.00 36.00 61.00 | 17.00 28.00 41.00
SDRL 7.26 8.74 1481 26.18 4694 8399 | 19.30 35.63 54.95
0.90 ARL 35.52 47.08 79.76 128.13 199.58 295.94 | 87.72 144.04 190.68
MDRL 28.00 35.00 57.00 90.00 139.00 205.00 | 62.00 101.00 133.00
SDRL 29.15 40.70 75.61 124.76 196.30 294.55 | 84.73 141.56 188.35
095 ARL 94.22 123.69 183.03 240.31 297.60 343.43 | 174.84 237.88 265.71
MDRL 67.00 87.00 127.00 167.00 207.00 238.00 | 122.00 166.00 184.00
SDRL 91.88 120.89 181.36 238.89 296.28 343.03 | 173.07 235.70 266.49
1.00 ARL 200.92 200.66 200.57 199.54 200.15 200.20 | 200.38 199.90 200.91
MDRL 133.00 137.00 138.00 138.00 139.00 139.00 | 139.00 138.00 140.00
SDRL  215.20 205.66 201.97 199.67 199.80 199.71 | 200.76 200.54 200.42
1.05 ARL 73.07 79.74 8573 87.89 91.26 92.61 | 104.10 98.04 101.61
MDRL 51.00 56.00 60.00 61.00 63.00 65.00 | 72.00 68.00 71.00
SDRL 75.03 79.73 84.84 87.18 91.25 91.94 | 103.61 97.32 100.72
1.10 ARL 2948 3321 3771 40.65 43.53 46.10 | 48.15 47.47  50.99
MDRL  22.00 24.00 27.00 29.00 31.00 32.00 | 34.00 33.00 36.00
SDRL 28.14  31.27 36.17 39.37 4241 4524 | 46.55 46.54  50.05
1.20 ARL 1039 11.58 12.87 1391 1510 16.18 | 15.67 16.12 17.56
MDRL 8.00 9.00 10.00 10.00 11.00 12.00 | 12.00 12.00 13.00
SDRL 9.16 988 11.23 1246 13.88 15.16 | 14.16 14.87 16.45
1.30 ARL 5.73 6.28 6.82 7.23 7.67 8.12 7.89 8.00 8.63
MDRL 4.00 5.00 5.00 6.00 6.00 6.00 6.00 6.00 6.00
SDRL 4.81 5.06 5.48 5.97 6.50 7.10 6.53 6.81 7.59
1.40 ARL 3.82 4.17 4.50 4.66 4.84 5.06 4.99 5.04 5.32
MDRL 3.00 3.00 4.00 4.00 4.00 4.00 4.00 4.00 4.00
SDRL 3.04 3.19 3.42 3.57 3.82 4.13 3.85 3.99 4.35
1.50 ARL 2.85 3.08 3.30 3.40 3.50 3.62 3.61 3.62 3.78
MDRL 2.00 2.00 3.00 3.00 3.00 3.00 3.00 3.00 3.00
SDRL 2.13 2.27 2.36 2.48 2.60 2.76 2.62 2.69 2.88
2.00 ARL 1.44 1.50 1.56 1.58 1.60 1.61 1.63 1.62 1.64
MDRL 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
SDRL 0.76 0.81 0.86 0.88 0.89 0.91 0.91 0.91 0.93
3.00 ARL 1.07 1.08 1.09 1.10 1.10 1.10 1.10 1.10 1.10
MDRL 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
SDRL 0.26 0.29 0.31 0.32 0.32 0.32 0.33 0.32 0.33

also increase and vice-versa. From Table it is also observed that for small values of &, i.e., 0 < £ < 0.20,
the out-of-control ARLs remains unbiased, i.e., they are less than the fixed in-control ARL for 7 = 1. However,
in other cases, when £ > 0.3, in detecting a downward shift in the process dispersion, for some values of 7,

i.e.,, 0.9 <7< 1, the ARLs are biased. This issue can be resolved by considering asymmetric values of the
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Table 6.4: Run length properties of EWMA-ORSS (one-sided) dispersion control

chart
E— 0.05 0.10 0.20 0.30 0.40 0.50
T H— 1.9120 2.1990 2.4550 2.5840 2.6640 2.7200
1.00 ARL 200.92 200.80 200.39 200.70 199.94 199.89
MDRL 131.00 135.00 138.00 140.00 138.00 139.00
SDRL  221.11 209.47 202.94 200.09 199.25 199.66
1.10 ARL 20.78 24.63 29.72 33.93 37.39 40.79
MDRL 14.00 18.00 21.00 24.00 26.00 28.00
SDRL 21.10 23.73 2832 3281 36.56  39.96
1.20 ARL 7.96 9.37 10.84 12.18 13.58 14.82
MDRL 6.00 7.00 8.00 9.00 10.00 11.00
SDRL 7.51 8.21 9.46 10.90 12.43 13.78
1.30 ARL 4.52 5.25 6.01 6.50 7.03 7.60
MDRL 3.00 4.00 5.00 5.00 5.00 6.00
SDRL 3.99 4.38 4.86 5.34 5.97 6.60
1.40 ARL 3.11 3.58 4.01 4.31 4.54 4.81
MDRL 2.00 3.00 3.00 3.00 4.00 4.00
SDRL 2.54 2.82 3.06 3.32 3.56 3.91
1.50 ARL 2.41 2.71 3.01 3.17 3.32 3.47
MDRL 2.00 2.00 2.00 3.00 3.00 3.00
SDRL 1.83 2.00 2.17 2.29 2.45 2.63
2.00 ARL 1.33 1.40 1.48 1.53 1.56 1.58
MDRL 1.00 1.00 1.00 1.00 1.00 1.00
SDRL 0.65 0.72 0.79 0.83 0.85 0.88
3.00 ARL 1.05 1.06 1.08 1.08 1.09 1.09
MDRL 1.00 1.00 1.00 1.00 1.00 1.00
SDRL 0.23 0.26 0.28 0.30 0.31 0.31

control chart multiplier. In the last three columns of Table we calculate the values of ARLs by using

asymmetric values of chart multiplier. With these choices, when £ > 0.3, there is a substantial improvement

in the performance of the EWMA-ORSS dispersion control chart in detection of small downward shifts in the

process variability. However, there is an increase in the values of out-of-control ARLs when 7 > 1. In case of

one-sided EWMA-ORSS control chart, the ARLs remain unbiased for all values of 7.

We also study the effect of imperfect ranking on the performance of the EWMA-OIRSS dispersion control

chart. A detailed simulation study is conducted in order to estimate the mean and variance of scale-BLUE

under OIRSS. The plotting-statistic of the EWMA-OIRSS scale control chart is given by

Q: = €omss,t + (1 — €)Q¢—1,

where ¢ is a smoothing constant and Qo = Sorrss-

0<£<1,

Here, we estimate the mean and variance of the scale-BLUE from preliminary samples that were taken

when the process was in-control. Let &1,01rss; 82,01RSS; -+ Ow,01rSS be the estimated values of scale-BLUEs

based on w subgroups, each of size m, where &; oirss = E;’;l BrWi [rim]> © = 1,2, ...,w. Then, the estimated

control limits of EWMA-OIRSS dispersion control chart, at time ¢, are given by

EUCL,

bormss + Hﬁa—omss\/(f_g) {1-(1-¢*},
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ECL; = Jomss,

ELCL: = 60omss — H&aomss\/ (255) {1—(1- &)},

= 1w A N 1 w oA = . ops
where 601rss = P Zi:l 0i,0IRSSs O601rss = \/(w—l) Ei=1(0'i,OIRSS — UOIRSS)2 and H is the positive control

chart multiplier. We first estimate the control limits based on one million samples obtained under OIRSS
by using the approach of Dell and Clutter| (1972)). For brevity, we assume the same values of 0’%, as taken
previously. Based on 10° replications, the estimated values of ARLs, MDRLs and SDRLs are calculated
and reported in Table Similarly, we also consider one-sided EWMA-OIRSS control chart for detecting
increases in the process dispersion. The ARLs, MDRLs and SDRLs of the one-sided EWMA-OIRSS dispersion
control chart are given in Table [6.6] for different values of ¢ and o2

Based on the results given in Table for £ < 0.2 and 6% < 0.15, generally, the in-control ARLs are
close to 200, which shows the robustness of the EWMA-OIRSS control chart. As the value of o2 increases,
both in-control and out-of-control ARLs tend to increase for fixed value of 7 and vice-versa. Secondly, for
¢ < 0.2 with a%, < 0.3, the ARLs of EWMA-OIRSS control chart remain unbiased and biased otherwise. It is
of interest to note that when detecting an increase in the process dispersion, from Table it is evident that
for all values values of £ and o2, the in-control ARLs are roughly closer to 200. This shows that the scale
one-sided EWMA-OIRSS dispersion chart is robust to the assumption of perfect ranking. Moreover, as o2

increases, the values of out-of-control ARLSs also increase for fixed values of £ and 7.



Table 6.5: Run length properties of EWMA-OIRSS (two-sided) dispersion chart

[ 0.05 0.10 0.20 0.30 0.40 0.50 0.05 0.10 0.20 0.30 0.40 0.50
H— 22785 2.4780 2.6460 2.7210 2.7670 _2.7938 _2.2785 2.4780 _ 2.6460  2.7210 _ 2.7670 _ 2.7938
T o = 0.05 oy =0.15
0.50 ARL 2.49 2.84 3.22 3.52 3.97 476 258 2.96 3.36 3.68 418 5.09
MDRL 2.00 3.00 3.00 3.00 4.00 4.00 2.00 3.00 3.00 3.00 4.00 4.00
SDRL 0.92 0.99 1.11 1.30 1.69 2.49 0.97 1.05 1.18 1.39 1.83 2.77
0.60 ARL 3.59 4.15 4.82 5.59 6.95 9.68 3.73 431 5.03 5.86 7.37  10.41
MDRL 3.00 4.00 4.00 5.00 6.00 8.00 3.00 4.00 5.00 5.00 6.00 8.00
SDRL 1.59 1.75 2.08 2.78 4.17 7.01 1.69 1.85 2.22 2.97 4.53 7.74
0.70 ARL 5.86 6.84 842 1098 1592  25.85 6.09 7.08 875 1156  17.08  28.03
MDRL 5.00 6.00 7.00 9.00 12.00  19.00 5.00 6.00 8.00 9.00  13.00  20.00
SDRL 3.12 3.52 4.75 7.46  12.63  22.98 3.29 3.69 5.02 8.01 1385 2524
0.80 ARL 11.66  13.94  19.83  30.76  50.97  87.28 | 12.01  14.58  20.81  32.29  54.05  94.61
MDRL  10.00 12.00 16.00 23.00 36.00 61.00 | 10.00 12.00 16.00 24.00 39.00  66.00
SDRL 7.49 9.06 1513  26.77  47.82  84.58 7.79 954  16.12 2815  50.57  92.06
0.90 ARL 36.12  48.01  80.28 128.36 199.37 300.50 | 37.45  49.81  83.80 133.84 212.29 322.58
MDRL  29.00 36.00 57.00 90.00 139.00 208.00 | 30.00 37.00 60.00 94.00 148.00 225.00
SDRL 29.67  41.89  75.94 124.76 197.47 298.90 | 30.98  43.49  79.05 130.43 210.03 319.48
0.95 ARL 94.96 125.09 183.99 241.13 299.81 348.89 | 98.13 127.34 187.77 246.29 310.18 365.65
MDRL  67.00 83.00 128.00 168.00 207.00 242.00 | 70.00 89.00 131.00 171.00 216.00 254.00
SDRL 92.99 122.01 182.39 240.00 298.93 348.14 | 96.34 124.75 184.95 246.25 307.19 365.31
1.00 ARL 201.24  200.04 202.98 201.85 203.44 204.18 | 203.26 201.63 204.43 204.94 207.82 208.78
MDRL 133.00 136.00 141.00 140.00 141.00 142.00 | 135.00 138.00 142.00 141.00 144.00 145.00
SDRL  216.33 205.36 203.3¢ 201.53 203.27 203.69 | 218.61 206.21 205.41 205.63 207.78 208.81
1.05 ARL 74.17  81.18  87.11  90.01  92.22 9435 | 7596 83.18 89.76  92.79  96.16  97.48
MDRL  51.00 56.00 60.00 62.00 64.00 65.00 | 52.00 58.00 62.00 6500 67.00 68.00
SDRL 76.82  81.25  86.76  89.62  92.02  93.82 | 78.00  83.47  89.22  91.97 9498  96.35
110 ARL 30.03  33.99 3868  41.82 4498 46.96 | 31.08 3504 39.94 43.34  46.36  48.84
MDRL  22.00 2500 27.00 30.00 32.00 33.00 | 23.00 26.00 2800 3000 3200  34.00
SDRL 28.82 3210  37.23  40.55  43.85  45.96 | 20.66 3326  38.46 4243  45.53  48.17
1.20 ARL 10.62  11.86  13.22  14.29 1543  16.61 | 10.98 1224  13.64 14.82  16.08  17.28
MDRL 8.00 9.00  10.00  11.00  11.00  12.00 8.00 1000 1000  11.00  12.00  12.00
SDRL 9.32  10.06  11.48 1278  14.15  15.60 9.68 1042  11.92  13.32  14.86  16.38
1.30 ARL 5.81 6.40 6.98 7.37 7.84 8.28 5.98 6.63 7.20 7.63 8.13 8.65
MDRL 4.00 5.00 6.00 6.00 6.00 6.00 5.00 5.00 6.00 6.00 6.00 6.00
SDRL 4.84 5.10 5.60 6.07 6.68 7.24 5.03 5.32 5.82 6.33 7.01 7.59
140 ARL 3.86 4.25 4.53 4.77 4.96 5.18 3.99 4.38 4.69 4.90 5.13 5.37
MDRL 3.00 3.00 4.00 4.00 4.00 4.00 3.00 3.00 4.00 4.00 4.00 4.00
SDRL 3.09 3.27 3.42 3.66 3.91 4.23 3.18 3.38 3.55 3.81 4.07 4.43
1.50 ARL 2.90 3.15 3.34 3.46 3.57 3.69 2.98 3.24 3.44 3.57 3.68 3.81
MDRL 2.00 2.00 3.00 3.00 3.00 3.00 2.00 3.00 3.00 3.00 3.00 3.00
SDRL 2.18 2.30 2.41 2.51 2.65 2.82 2.26 2.39 2.48 2.61 2.76 2.92
2.00 ARL 1.45 1.51 1.57 1.59 1.62 1.62 1.47 1.54 1.60 1.63 1.64 1.66
MDRL 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
SDRL 0.77 0.82 0.87 0.88 0.90 0.92 0.79 0.85 0.89 0.92 0.93 0.95
3.00 ARL 1.07 1.08 1.09 1.10 1.10 1.10 1.07 1.09 1.10 1.10 1.11 1.11
MDRL 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
SDRL 0.27 0.29 0.31 0.32 0.32 0.33 0.28 0.30 0.32 0.33 0.33 0.34
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Table 6.5: (Continued).

£— 0.05 0.10 0.20 0.30 0.40 0.50 0.05 0.10 0.20 0.30 0.40 0.50
H— 2.2785 2.4780 2.6460 2.7210 2.7670 2.7938 2.2785 2.4780 2.6460 2.7210 2.7670  2.7938
T o2, = 0.30 oz = 0.50

0.50 ARL 2.71 3.11 3.54 3.92 4.51 5.65 2.84 3.26 3.73 4.16 4.87 6.30
MDRL 3.00 3.00 3.00 4.00 4.00 5.00 3.00 3.00 4.00 4.00 4.00 5.00

SDRL 1.02 1.10 1.25 1.50 2.04 3.20 1.06 1.14 1.31 1.60 2.25 3.70

0.60 ARL 3.92 4.53 5.31 6.26 8.07 11.90 4.10 4.75 5.61 6.72 8.90 13.75
MDRL 4.00 4.00 5.00 6.00 7.00 9.00 4.00 4.00 5.00 6.00 7.00 11.00

SDRL 1.77 1.94 2.37 3.24 5.10 9.10 1.85 2.02 2.52 3.52 5.78 10.81

0.70 ARL 6.37 7.45 9.32 12.46 18.96 32.55 6.65 7.82 9.90 13.56 21.43 38.77
MDRL 6.00 7.00 8.00 10.00 14.00 24.00 6.00 7.00 9.00 11.00 16.00 28.00

SDRL 3.46 3.91 5.43 8.77 15.67 29.60 3.60 4.10 5.86 9.72 17.92 35.74

0.80 ARL 12.59 15.28 22.15 35.22 60.61  110.10 13.12 16.01 23.79 38.83 69.22  133.40
MDRL 11.00 13.00 17.00 26.00 43.00 78.00 11.00 14.00 18.00 28.00 49.00 93.00

SDRL 8.25 10.11 17.26 31.24 57.02 107.24 8.61 10.63 18.85 34.46 65.86  131.00

0.90 ARL 38.87 52.47 88.73  144.40 234.66  369.18 40.51 54.48 94.79  158.76  263.85  427.79
MDRL 31.00 39.00 63.00 101.00 164.00 256.00 32.00 40.00 67.00 111.00 184.00 297.00

SDRL 32.54 46.19 84.18 141.48 232.24 368.18 34.07 48.23 90.31 155.92  259.56  426.01

0.95 ARL 100.85 131.38 195.28 258.93 328.02 391.45 | 103.16 136.56 204.70 273.76 348.40 412.26
MDRL 72.00 92.00 136.00 180.00 228.00 272.00 73.00 96.00 142.00 190.00 242.00 283.00

SDRL 98.66 128.02 193.05 258.17 328.12 389.57 | 101.14 133.78 202.69 272.40 345.85 413.76

1.00 ARL 202.34 201.73 205.58 207.08 211.53 213.58 | 203.37 202.69 205.74 209.26 213.01  214.08
MDRL  134.00 138.00 143.00 144.00 147.00 148.00 | 134.00 139.00 142.00 145.00 148.00 147.00

SDRL 217.80 207.75 205.85 206.65 210.91 213.49 | 217.76 207.28 206.93 209.09 212.08 215.32

1.05 ARL 77.76 84.54 91.36 93.57 97.19 99.40 79.48 86.38 92.43 95.10 97.91 99.43
MDRL 53.00 59.00 64.00 65.00 67.00 69.00 54.00 60.00 64.00 66.00 68.00 69.00

SDRL 80.65 84.80 90.58 93.02 96.64 98.99 82.68 86.52 92.09 94.20 97.63 99.52

1.10 ARL 32.07 36.12 41.21 44.46 47.59 50.25 33.10 37.35 42.12 45.73 48.37 50.55
MDRL 23.00 26.00 29.00 31.00 33.00 35.00 24.00 27.00 30.00 32.00 34.00 35.00

SDRL 30.85 34.25 39.89 42.92 46.48 49.38 31.83 35.39 40.74 44.71 47.41 49.66

1.20 ARL 11.44 12.69 14.15 15.39 16.69 17.93 11.83 13.09 14.55 15.84 17.11 18.28
MDRL 9.00 10.00 11.00 11.00 12.00 13.00 9.00 10.00 11.00 12.00 12.00 13.00

SDRL 10.09 10.82 12.46 13.90 15.43 17.02 10.50 11.27 12.80 14.47 15.93 17.27

1.30 ARL 6.20 6.84 7.43 7.94 8.41 8.96 6.42 7.08 7.70 8.14 8.72 9.26
MDRL 5.00 5.00 6.00 6.00 6.00 7.00 5.00 6.00 6.00 6.00 7.00 7.00

SDRL 5.20 5.51 6.00 6.62 7.20 7.92 5.42 5.75 6.25 6.83 7.55 8.27

1.40 ARL 4.11 4.51 4.83 5.07 5.32 5.58 4.25 4.69 4.98 5.24 5.44 5.73
MDRL 3.00 4.00 4.00 4.00 4.00 4.00 3.00 4.00 4.00 4.00 4.00 4.00

SDRL 3.30 3.47 3.67 3.94 4.27 4.61 3.43 3.63 3.84 4.12 4.40 4.77

1.50 ARL 3.05 3.33 3.55 3.69 3.82 3.93 3.14 3.43 3.65 3.80 3.91 4.05
MDRL 2.00 3.00 3.00 3.00 3.00 3.00 2.00 3.00 3.00 3.00 3.00 3.00

SDRL 2.31 2.47 2.58 2.71 2.88 3.03 2.40 2.57 2.66 2.81 2.96 3.17

2.00 ARL 1.49 1.56 1.62 1.66 1.68 1.70 1.52 1.59 1.66 1.68 1.71 1.72
MDRL 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

SDRL 0.82 0.88 0.92 0.93 0.96 0.98 0.85 0.91 0.95 0.97 0.99 1.01

3.00 ARL 1.08 1.09 1.10 111 111 1.12 1.08 1.10 1.11 1.12 1.12 1.12
MDRL 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

SDRL 0.28 0.31 0.33 0.34 0.34 0.35 0.29 0.32 0.33 0.35 0.35 0.36
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Table 6.6: Run length properties of EWMA-OIRSS (one-sided) dispersion control

chart
£E— 0.05 0.10 0.20 0.30 0.40 0.50 0.05 0.10 0.20 0.30 0.40 0.50
H— 1.9120 2.1990 2.4550 2.5840 2.6640 2.7200 1.9120 2.1990 2.4550 2.5840 2.6640 2.7200
T o2 = 0.05 oy =0.15
1.00 ARL 203.13 199.80 201.15 202.32 202.44 202.91 202.46 201.09 201.33 202.77 204.17 205.23
MDRL 132.00 135.00 139.00 139.00 140.00 140.00 131.00 137.00 139.00 140.00 142.00 142.00
SDRL  225.48 207.74 203.23 204.77 203.18 202.89 | 224.53 208.42 202.94 203.02 203.88 205.91
1.10 ARL 21.11 25.06 30.28 34.37 38.47 41.97 21.56 25.82 31.11 35.71 39.30 43.27
MDRL 14.00 18.00 22.00 24.00 27.00 29.00 15.00 19.00 22.00 25.00 28.00 30.00
SDRL 21.59 24.05 29.10 33.29 37.44 41.13 21.95 24.78 30.10 34.46 38.41 42.40
1.20 ARL 8.07 9.46 11.16 12.46 13.74 15.10 8.30 9.84 11.46 12.97 14.32 15.81
MDRL 6.00 7.00 8.00 9.00 10.00 11.00 6.00 7.00 9.00 10.00 10.00 11.00
SDRL 7.59 8.33 9.73 11.16 12.54 14.09 7.88 8.68 10.07 11.60 13.23 14.77
1.30 ARL 4.59 5.39 6.12 6.62 7.21 7.83 4.73 5.53 6.32 6.87 7.50 8.07
MDRL 3.00 4.00 5.00 5.00 5.00 6.00 3.00 4.00 5.00 5.00 6.00 6.00
SDRL 4.05 4.48 4.97 5.46 6.14 6.88 4.18 4.63 5.15 5.71 6.44 7.09
1.40 ARL 3.16 3.65 4.08 4.36 4.67 4.93 3.25 3.75 4.21 4.52 4.79 5.09
MDRL 2.00 3.00 3.00 3.00 4.00 4.00 2.00 3.00 3.00 4.00 4.00 4.00
SDRL 2.58 2.87 3.12 3.36 3.71 4.01 2.67 2.97 3.23 3.50 3.81 4.17
1.50 ARL 2.43 2.75 3.07 3.23 3.38 3.53 2.50 2.83 3.13 3.33 3.49 3.67
MDRL 2.00 2.00 2.00 3.00 3.00 3.00 2.00 2.00 3.00 3.00 3.00 3.00
SDRL 1.85 2.05 2.22 2.33 2.49 2.70 1.91 2.11 2.28 2.43 2.61 2.81
2.00 ARL 1.33 1.42 1.50 1.54 1.58 1.60 1.35 1.43 1.52 1.57 1.60 1.63
MDRL 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
SDRL 0.66 0.74 0.80 0.84 0.87 0.90 0.68 0.76 0.82 0.86 0.89 0.92
3.00 ARL 1.05 1.06 1.08 1.09 1.09 1.10 1.05 1.07 1.08 1.09 1.10 1.10
MDRL 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
SDRL 0.23 0.26 0.29 0.31 0.31 0.32 0.24 0.27 0.30 0.31 0.32 0.32
o2 =0.30 o2 = 0.50
1.00 ARL 201.37 199.83 200.19 202.24 202.66 204.33 | 200.47 197.45 197.72 199.53 199.23 201.19
MDRL 130.00 136.00 137.00 140.00 141.00 141.00 129.00 133.00 137.00 138.00 138.00 139.00
SDRL 223.25 207.91 203.38 202.93 202.92 205.35 222.90 206.57 200.16 200.45 198.99 201.06
1.10 ARL 22.31 26.75 32.17 36.66 40.64 44.43 23.18 27.37 32.55 37.09 41.26 45.17
MDRL 15.00 19.00 23.00 26.00 28.00 31.00 16.00 20.00 23.00 26.00 29.00 32.00
SDRL 22.79 25.88 31.00 35.59 39.93 43.63 23.65 26.61 31.34 35.83 40.53 44.36
1.20 ARL 8.56 10.16 11.89 13.35 14.83 16.44 8.85 10.43 12.18 13.77 15.21 16.70
MDRL 6.00 8.00 9.00 10.00 11.00 12.00 6.00 8.00 9.00 10.00 11.00 12.00
SDRL 8.13 9.02 10.48 11.97 13.72 15.40 8.43 9.34 10.84 12.46 14.09 15.64
1.30 ARL 4.88 5.72 6.54 7.11 7.74 8.37 5.00 5.87 6.71 7.34 7.93 8.62
MDRL 4.00 4.00 5.00 5.00 6.00 6.00 4.00 4.00 5.00 6.00 6.00 6.00
SDRL 4.33 4.79 5.35 5.93 6.65 7.43 4.49 4.93 5.52 6.16 6.84 7.62
1.40 ARL 3.32 3.85 4.33 4.65 4.96 5.25 3.42 3.97 4.48 4.78 5.09 5.42
MDRL 2.00 3.00 3.00 4.00 4.00 4.00 3.00 3.00 4.00 4.00 4.00 4.00
SDRL 2.76 3.05 3.33 3.61 3.97 4.31 2.84 3.15 3.49 3.72 4.07 4.48
1.50 ARL 2.56 2.91 3.24 3.41 3.58 3.78 2.62 2.97 3.30 3.51 3.68 3.87
MDRL 2.00 2.00 3.00 3.00 3.00 3.00 2.00 2.00 3.00 3.00 3.00 3.00
SDRL 1.97 2.19 2.37 2.52 2.68 2.92 2.04 2.25 2.44 2.59 2.78 3.00
2.00 ARL 1.37 1.46 1.54 1.60 1.63 1.65 1.39 1.48 1.57 1.62 1.66 1.69
MDRL 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
SDRL 0.71 0.78 0.85 0.89 0.92 0.94 0.72 0.80 0.87 0.91 0.95 0.98
3.00 ARL 1.06 1.07 1.09 1.10 1.10 1.11 1.06 1.08 1.09 1.10 1.11 1.11
MDRL 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
SDRL 0.24 0.27 0.31 0.32 0.33 0.34 0.25 0.28 0.31 0.33 0.33 0.35
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6.4 Performance comparison of control charts

6.4 Performance comparison of control charts

In this section, we compare the proposed EWMA control charts based on ORSS and OIRSS with some
CUSUM and EWMA control charts for monitoring process location and process variability based on SRS and

RSS methods. The performance of each control chart is evaluated in terms of logarithm of the out-of-control

ARLs.
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Figure 6.1: Comparison of the EWMA-ORSS location control chart with some
classical EWMA charts based on SRS
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Figure 6.2: Comparison of EWMA-OIRSS location chart with some classical EWMA
charts based on SRS
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(i) EWMA-ORSS and EWMA-OIRSS location charts versus EWMA location charts

We compare the proposed EWMA-ORSS chart with some existing EWMA charts based on SRS, i.e., EWMA,
hybrid EWMA, Shewhart-EWMA, fast initial response (FIR) based EWMA (FIR-EWMA) control charts.
Note that the in-control ARL of all EWMA charts is fixed to 500. From Figure [6.1] it is clear that the
EWMA-ORSS chart is more powerful than the other controlling schemes considered here. With £ = 0.5,
when 6 < 0.5, hybrid EWMA chart performs better than the EWMA-ORSS chart. In Figure [6.2] we compare
the EWMA-OIRSS chart with the classical EWMA control charts. With £ = 0.1, EWMA-OIRSS chart has
smaller out-of-control ARLs than its competitors. However, for large shifts, i.e., 6 > 1.5, FIR-EWMA control
chart is slightly better than the EWMA-OIRSS control chart. The performance of EWMA-OIRSS chart

increases as the value of o2 decreases and vice-versa.
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Figure 6.3: Comparison of EWMA-ORSS location control charts versus Shewhart-
CUSUM-RSS and Shewhart-EWMA-RSS control charts

(ii) EWMA-ORSS location chart versus Shewhart-CUSUM-RSS location chart

In Figure [6.3] we compare the EWMA-ORSS control chart with the Shewhart-CUSUM-RSS control chart
when the in-control ARL is fixed to 500. Here k is the reference values of the plotting-statistics based on the
Shewhart-CUSUM-RSS control chart. It is observed that for all kinds of shifts, the values of out-of-control
ARLs are uniformly less than their counterparts based on Shewhart-CUSUM-RSS control chart when £ < 0.10.
For large values of §, say d > 1.5, the EWMA-ORSS control chart detects the random shifts substantially
quicker than the Shewhart-CUSUM-RSS control chart. Therefore, for small shifts in the process mean, the

proposed EWMA chart is better in terms of small out-of-control ARLs.
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Figure 6.4: Comparison of the proposed EWMA-ORSS chart versus CS-EWMA-SRS
chart for monitoring process dispersion

(iii) EWMA-ORSS location chart versus Shewhart-EWMA-RSS location chart

The EWMA-ORSS chart is also compared with the Shewhart-EWMA-RSS control chart in Figure when
the in-control ARL is fixed to 500. For a fair comparison of both control charts, we have assumed same
values for their smoothing constants. It turns out that for all kinds of shifts, the performance of the proposed
EWMA control chart is better than the Shewhart-EWMA-RSS control chart. The values of out-of-control
ARLs under both charts come closer for large values of £. It is worth noting here that for large values of £, the
proposed EWMA-ORSS control chart still dominates the Shewhart-EWMA-RSS control chart in detecting

both small and large shifts in the process mean.
(iv) EWMA-ORSS chart versus CS-EWMA-SRS chart for monitoring process dispersion

Abbas et al.| (2013a) suggested a CUSUM control chart based on the EWMA-statistic for monitoring process
dispersion. They showed that CS-EWMA-SRS control chart is better than the S2-EWMA (cf. |Castagliola,
2005) and (cf. |Castagliola et al., 2009) control charts when detecting small shifts in process dispersion. In
Figure we compare the proposed EWMA-ORSS control chart with the CS-EWMA-SRS control chart
based on different values of the constants A\, and K,. Here, A\; and K, are the parameters of the CS-EWMA
control chart (cf. Abbas et al |2013a)). The values of logarithms of the out-of-control ARLs computed for
CS-EWMA-SRS and EWMA-ORSS charts are plotted against different values of 7 when the in-control ARL
is fixed to 200. From Figure it is clear that for large shifts (upper or lower) in the process dispersion,
the proposed EWMA-ORSS control chart is far better than the CS-EWMA-SRS control chart. It is also

noted that for moderate values of &, i.e., £ > 0.3, when detecting downward shifts in the process dispersion,
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CS-EWMA-SRS control chart is able to perform better than the proposed EWMA-ORSS control chart.
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Figure 6.5: Comparison of EWMA-ORSS scale control chart versus EWMA control
charts for monitoring process dispersion

(v) EWMA-ORSS dispersion chart versus EWMA dispersion charts

Crowder and Hamilton! (1992) applied the logarithmic transformation to the unbiased sample variance based
on SRS and proposed and EWMA control chart for monitoring increases in the process standard deviation,
named CH. [Shu and Jiang| (2008)) extended the work and suggested another EWMA chart, named SJ, and
claimed that their chart is better than the EWMA chart proposed by |Crowder and Hamilton| (1992). Recently,
Huwang et al.| (2010) suggested two new EWMA-type dispersion control charts for monitoring changes in the
process dispersion, named HHW1 and HHW?2. For a fair comparison, we compare the proposed EWMA-ORSS
control chart with these EWMA control charts in Figure for different values of £. It is noteworthy that
the proposed EWMA-ORSS control scheme outperforms all EWMA control charts for positive shifts in the
process dispersion for all values of £&. However, in some cases, HHW1-EWMA control chart dominates the
EWMA-ORSS control chart when detecting decreases in the process variability. In this comparison, for

& = 0.3, we considered the asymmetric control limits for the EWMA-ORSS chart.
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Figure 6.6: Comparison of one-sided EWMA-ORSS and EWMA-OIRSS charts
versus one-sided EWMA dispersion control charts

Similarly, in Figure the one-sided EWMA dispersion charts are compared with the one-sidled EWMA-
ORSS and EWMA-OIRSS charts for detecting increases in the process dispersion. It is clear that the
EWMA-ORSS scheme dominates all EWMA charts when detecting increases in the process variability for
all values of {. We also compare the worst EWMA-OIRSS chart based on % = 0.50 with these EWMA
dispersion charts. It is worth mentioning here that the values of out-of-control ARLs under EWMA-OIRSS
chart are less than the values of its counterparts. This shows that both EWMA-ORSS and EWMA-OIRSS

charts are efficient alternatives to the dispersion charts considered here.

6.5 An application to real data

In this section, a real data set is used to explain the implementation of the proposed EWMA control charts
based on SRS, RSS and ORSS schemes.

Suppose we wish to establish statistical control of the inside diameter of the piston rings for an automotive
engine manufactured by a forging process (cf. Montgomery, [2009). Forty samples, each of size 5, have been
taken from this process. The inside diameters are measured in millimeters (mm). We combine all samples
such that we have 200 measurements of the inside diameters of the piston rings. Then, we apply three
goodness-of-fit tests on this data set. The p-values for the Shapiro-Wilk, Kolmogorov-Smirnov (by ignoring
ties) and Anderson-Darling tests are 0.2175, 0.1216 and 0.2259, respectively. It is clear that the data set

follows normal distribution.
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Figure 6.7: Comparison of the Shewhart-EWMA-RSS and EWMA-ORSS location

control charts for real data

In order to compare the Shewhart-EWMA-RSS and EWMA-ORSS control charts, we need to collect data
under both RSS and ORSS schemes. For this purpose, we assume that the process is in-control, and we draw
30 samples, each of size 5, from the 200 measurements under both RSS and ORSS schemes. Note that these
samples are drawn by using with replacement sampling scheme. Based on these 30 samples, control limits of
the Shewhart-EWMA-RSS and EWMA-ORSS control charts are estimated and plotted along with the values
of the corresponding plotting-statistics against sample number in Figure For both EWMA control charts,
the in-control ARL is fixed to 500. From Figure it is clear that both sub-figures (A) and (B) show that
the process is in control state. Now, suppose that after 30th sample, the process gets out-of-control. For this
purpose, we again draw 10 samples, each of size 5, from 200 measurements. We add 0.005 to all values within
each sample, that were obtained under RSS and ORSS schemes. For both EWMA control charts, the values
of their plotting-statistics have been computed for these 10 samples and are plotted in sub-figures (C) and
(D) in Figure It is evident that both EWMA control charts are showing out-of-control signals after 30th
sample. It is interesting to note that the Shewhart-EWMA-RSS control chart detects the random shift at the
37th sample, whereas the proposed EWMA-ORSS control chart detects the same shift at the 34th sample.
This shows that the EWMA-ORSS chart dominates the Shewhart-EWMA-RSS control chart and detects the

random shift in the process mean substantially quicker than its competitor.
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Figure 6.8: Comparison of the CS-EWMA-SRS and EWMA-ORSS dispersion control
charts for real data

For a fair comparison of the dispersion charts, we consider the CS-EWMA-SRS and EWMA-ORSS control
charts. We draw 30 samples with replacement, each of size 5, from the 200 measurements by using SRS
and ORSS schemes. For brevity, we standardize the values obtained under each sampling scheme. Based on
these samples, the control limits of each chart are computed. For both EWMA control charts, the in-control
ARL is fixed to 200. We consider £ = \; = 0.2, K, = 0.167 and H; = 5.157 (Abbas et al., 2013a). The
control limits and plotting-statistics of both EWMA control charts are displayed in Figure It is clear
from sub-figures (A) and (B) in Figure that the process is in-control state. Suppose that after a certain
time, the process gets out-of-control. For this purpose, we again draw 10 samples each of size 5 from the
200 measurements using both sampling schemes. The sample values under each scheme are then multiplied
by two. The plotting-statistics of both EWMA charts based on 40 samples each of size 5 are displayed in
Figure From Figure the sub-figures (C) and (D) show that the CS-EWMA-SRS chart detects a
random shift in the process dispersion at the 34th sample, whereas the EWMA-ORSS chart detects the same
shift at the 31st sample. This earlier detection makes the EWMA-ORSS control chart as an efficient and

powerful alternative to the CS-EWMA-SRS control chart for monitoring the process variability.

6.6 Conclusion

In this chapter, we propose some improved EWMA control charts based on the BLUEs-ORSS for monitoring

process location and process dispersion. Monte Carlo simulations have been used to estimate the ARLs,
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MDRLs and SDRLs of the proposed EWMA control charts. It is observed that the EWMA-ORSS control
chart is more efficient in detecting small random shifts in the process mean as compared with the Shewhart-
CUSUM and the Shewhart-EWMA control charts based on RSS. It is worth mentioning that the one-sided
EWMA-ORSS and EWMA-OIRSS dispersion control charts are uniformly better than their counterparts
considered here. The two-sided EWMA-ORSS dispersion control chart is also sensitive to the large upward
or downward shifts in the process variability. Finally, we considered a real data application of the proposed
EWMA control charts. The current work can be improved by developing EWMA control charts based on

double RSS schemes for monitoring process mean and dispersion.



Chapter 7

An Improved Maximum
Exponentially Weighted Moving
Average Control Chart for Monitoring

Process Mean and Variability

This chapter appeared in:
Haq, A., Brown, J., Moltchanova, E., 2013, An improved maximum exponentially weighted moving average

control chart for monitoring process mean and variability, Quality and Reliability Engineering International,

Early view, DOI: 10.1002/qre.1586.

Maximum exponentially weighted moving average (MaxEWMA) control charts have gained considerable
attention for detecting changes in both process mean and process variability. In this chapter, we propose
improved MaxEWMA control charts based on ordered ranked set sampling (ORSS) and ordered imperfect
ranked set sampling (OIRSS) schemes for simultaneous detection of both increases and decreases in the
process mean and/or variability, named MaxEWMA-ORSS and MaxEWMA-OIRSS control charts. These
MaxEWMA control charts are based on the best linear unbiased estimators of location and scale parameters
obtained under ORSS and OIRSS methods. Extensive Monte Carlo simulations have been used to estimate
the average run length and standard deviation of run length of the proposed MaxEWMA control charts.
These control charts are compared with their counterparts based on simple random sampling (SRS), i.e.,
MaxEWMA-SRS and MaxGWMA-SRS control charts. These proposed MaxEWMA-ORSS and MaxEWMA-
OIRSS control charts are able to perform better than the MaxEWMA-SRS and MaxGWMA-SRS control



An Improved Maximum Exponentially Weighted Moving Average Control Chart for
122 Monitoring Process Mean and Variability

charts for detecting shifts in the process mean and dispersion. An application to real data is provided to

illustrate the implementation of the proposed MaxEWMA control charts.

7.1 Introduction

The main objective of statistical process control (SPC) is to detect variations in parameters of production
processes as early as possible. Statistical quality control charts are well-known process monitoring tools of
SPC that are mainly used to track unusual variation in the manufacturing processes. The basic concept
of control chart was firstly introduced by Walter A. Shewhart in the 1920s. Later on, this concept led to
the introduction of modern SPC. The advanced statistical process monitoring techniques currently used are
exponentially weighted moving average (EWMA) and cumulative sum (CUSUM) control charts.

Control charts consider either location or dispersion. Location charts are used to monitor the process
mean while dispersion charts monitor the process variability. [Roberts| (1959)) introduced the EWMA control
chart for monitoring the process mean while the CUSUM control chart was suggested by Page (1954). Both
of these control charts are more sensitive to the small changes in the process parameters than the classical
Shewhart control chart. For this reason, EWMA and CUSUM control charts are widely used in chemical
and process industries, where small disturbances often have serious financial consequences (cf. Montgomery),
2009). In the last decades, the EWMA control charts are mostly used to monitor changes in the process
mean and process dispersion. For discussion of some recent improvements and advancement in the EWMA
and CUSUM quality control schemes for monitoring the process mean or dispersion, see |Abbas et al.| (2011,
2013bla), Riaz et al. (2011), Haq (2013) and references cited therein.

In recent years, many researchers have suggested control charts for simultaneously monitoring the process
mean and dispersion of normally distributed processes. Generally, two control charts are used to jointly
monitor the process mean and variance. (Chen and Cheng (1998) suggested a new control chart, named
Max-chart, to simultaneously monitor the process mean and the process standard deviation. Lee and Lin
(2012) combined Max-chart and adaptive chart to propose an improved adaptive Max-chart. They showed
that the adaptive Max-charts with variable parameters are more sensitive to small shifts in the process mean
and variance than that of EWMA, CUSUM and double sampling charts. |Chen et al.| (2001) proposed the
maximum EWMA (MaxEWMA) chart based on inverse normal transformations, which takes the maximum
of test statistics of two EWMA control charts. |Li et al.| (2010) proposed a self-starting control chart based
on the likelihood ratio test and the EWMA procedure for monitoring both mean and variability when the
process parameters are unknown. Recently, Sheu et al.| (2012) suggested an extended maximum generally
weighted moving average (MaxGWMA) control chart for monitoring process mean and variability. It is shown
that the MaxGWMA chart is more sensitive than the MaxEWMA chart. Since the estimators of mean and
variance in both MaxEWMA and MaxGWMA charts are based on simple random sampling (SRS), therefore,
we name these charts as MaxEWMA-SRS and MaxGWMA-SRS control charts. Some important literature

on the joint monitoring of the process mean and variability may be seen in |Gan| (1995), Reynolds Jr and
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Stoumbos| (2001)), Costa and Rahim| (2004} [2006a,b), Chen et al.| (2004)), Wu and Tian| (2005)), |[Zhang and Wu
(2006), Wu et al.| (2010), |Zhang et al. (2011)), Yang et al.| (2012), Zhang and Zhang| (2013) and references
cited therein.

The traditional ranked set sampling (RSS) scheme has gained considerable attention from researchers in
the last decades. The RSS scheme becomes an efficient alternative to SRS when it is easy to rank a small set
of selected units without knowing the actual values. However, in some cases, ranking cost cannot be ignored.
The traditional RSS scheme was first introduced by Mclntyre| (1952). Later on, |Takahasi and Wakimoto
(1968)) developed the statistical background of RSS scheme. They showed that the mean estimator based
on RSS is unbiased and it is more precise than the mean estimator based on SRS. Dell and Clutter| (1972)
were the first to study the effect of imperfect ranking on the performance of mean estimator. It is shown
that even under imperfect rankings, the mean estimator under RSS remains unbiased and it is still better
than the mean estimator with SRS. Salazar and Sinha (1997) were the first to propose a Shewhart-type
control chart for monitoring process mean based on RSS scheme. Muttlak and Al-Sabah) (2003)) extended
their work, and suggested some improved quality control charts for monitoring process mean based on perfect
and imperfect RSS schemes. They showed that the RSS-based control charts are more powerful than the
control chart based on SRS. Al-Saleh and Al-Kadiri (2000) introduced double RSS (DRSS) scheme for efficient
estimation of the population mean and showed that the mean estimator based on DRSS scheme is better than
the mean estimator with RSS. Using this fact, Abujiya and Muttlak (2004) suggested some Shewhart-type
control charts for detecting changes in the process mean based on DRSS scheme. DRSS scheme based control
charts are better than their counterparts based on SRS and RSS methods. Balakrishnan and Li/ (2005}, 2008)
introduced ordered RSS (ORSS), and used it to obtain the best linear unbiased estimators (BLUEs) of the
unknown parameters of location-scale family of distributions. They showed that the BLUEs based on ORSS
(BLUEs-ORSS) are uniformly better than the BLUEs constructed under SRS and RSS schemes. Recently,
Haq et al.| (2013a)) suggested improved EWMA control charts for monitoring process mean and dispersion
based on ORSS and ordered imperfect RSS (OIRSS) schemes. They showed that these control charts are
better than the Shewhart-EWMA and Shewhart-CUSUM control charts based on RSS for detecting small
shifts in the process mean. For more details about the control charts based on different RSS schemes, see
Al-Omari and Haq| (2012), Abujiya et al.| (2014), |Abujiya et al.| (2013a;b), Mehmood et al| (2013), Haq (2014),
Haq et al.| (2013a)) and references cited therein.

Following the motivation from |Haq et al. (2013a), in this chapter we propose improved MaxEWMA control
charts based on ORSS and OIRSS schemes, named MaxEWMA-ORSS and MaxEWMA-OIRSS control
charts, for simultaneously monitoring the process mean and variance of a normally distributed process. The
MaxEWMA-ORSS and MaxEWMA-OIRSS charts are based on the BLUEs of location and scale parameters
obtained under ORSS and OIRSS schemes. Utilizing extensive Monte Carlo simulations, we estimate the
average run length (ARL) and standard deviation of run length (SDRL) of both MaxEWMA control charts.

ARL is the average number of samples that are required to issue a particular size shift in the process location
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or dispersion or both. The performance of each MaxEWMA control chart is evaluated in terms of the ARL
and SDRL. We compare the performance of MaxEWMA-ORSS and MaxEWMA-OIRSS charts with the
MaxEWMA-SRS and MaxGWMA-SRS charts. It is remarkable that the proposed charts perform better
than their counterparts considered here.

The rest of the article is organized as follows: in Section we briefly explain the MaxEWMA-SRS and
MaxGWMA-SRS control charts. In Section we explain the ORSS scheme and use it to find the BLUEs
of the unknown parameters of location-scale family of distributions. Moreover, we also explain the OIRSS
scheme. The proposed MaxEWMA control charts based on ORSS and OIRSS schemes are constructed in
Section The proposed control charts are compared with their counterparts in Section An application
to real data is provided in Section Section [7.7] finally summarizes the main findings.

7.2 Control charts available in literature

In this section, we provide a brief explanation about some recent control charts that are mostly used to
simultaneously monitor the mean and variance of normally distributed processes.

Let X be a certain quality characteristic of a process and assume this characteristic is normally distributed
with mean p + do and standard deviation po, i.e., X ~ N(u + do, pa), where u and o are the standard
values for the process mean and process standard deviation, respectively. The underlying process is said to
be in-control when § = 0 and p = 1; otherwise, the process has changed or drifted. Let X, i = 1,2,...,n,
t=1,2,..., be the measurements of X arranged in groups of size n;, where ¢ indexes the group number. Let
X; and S? be the sample mean and sample variance computed from the tth subgroup, respectively, where
Xt = (X1t +Xot++ -+ Xp,t)/ne and SZ = 30, (Xit — X¢)?/(ng —1). Then, Xy, t = 1,2, ..., are independent
and identically distributed (IID) random variables with mean p + do and standard deviation po/./n, i.e.,
Xi ~ N(p+ 60, po/\/ng); (ne — 1)S%/p?0?, t = 1,2, ..., are IID chi-square random variables with n; — 1 as
degrees of freedom, i.e., (ny — 1)S2/p?0? ~ x2,_;. Note that both X; and S7 are independent of each other.

Now we define two statistics based on the following transformations:

_Xt_IJ' _a—1 (nt—1)5t2 o
Ut_a/\/ﬁt and V;=® [F{U2 sy — 1], (7.1)

where ®~!(-) denotes the inverse distribution function of normal distribution and F(h;v) is the chi-square
distribution function with v as degrees of freedom. For more details on these transformations and their
applications, see (Quesenberry| (1995). When the process is in-control, both U; and V; defined in are
independent and identically distributed (IID) standard normal random variables, i.e., Uy ~ N(0,1) and
Vi ~ N(0,1).

(i) MaxEWMA-SRS control chart

Xie (1999) and (Chen et al.| (2001) were the first to discuss the concept of the MaxEWMA chart. The
test-statistic of the MaxEWMA-SRS chart effectively combines the plotting-statistics of two EWMA control
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charts into a single test-statistic. This enables MaxEWMA-SRS chart to simultaneously monitor the changes
in the process mean and process variability.
Based on U; and V4, given in (7.1), we can define two EWMA sequences, U;* and V;*, respectively, by using

the following recurrence formulae:

Uy = U +(1-¢U;_,, 0<€£<1,U5=0,t=1,2,.., (7.2)

Vi = i+ (1-9VL,, 0<€<1 VF=0,1t=12,., (7.3)

where Uy and V' are the starting values of U} and V*, respectively, and £ is a smoothing constant. Note
that U} and V;* are also independent of each other because of the independence of U; and V;. For an
in-control process, we have Uy ~ N(0,0u;) and V;* ~ N(0,0v;), where of. = 0%, = (ffg){l — (1-¢)%},
fort=1,2,....

The test-statistic of the MaxEWMA-SRS chart based on U} and V;* is defined as

ME, = max{|[U}|,|V}[}, t=1,2.., (7.4)

where max(A, B) is the maximum of A and B, and | - | represents the absolute value. Since M E; is non-
negative, therefore, the initial state of the MaxEWMA-SRS chart is based only on an upper control limit
(UCL;) at time ¢, which is given by

UCLt = E(MEt) + L\/ Var(MEt), (75)

where L is the positive control chart multiplier, and its values is determined such that the in-control ARL
of the MaxEWMA-SRS chart reaches to a particular level. Here E(ME;) and Var(ME;) are the expected
value and variance of M Ey, respectively. For more details about the computation of E(M E;) and Var(ME;),
see Xie| (1999) and Chen et al. (2001)).

(ii) MaxGWMA-SRS control chart

Sheu et al.| (2012) extended the work of Xie| (1999) and |Chen et al.| (2001)), and proposed the MaxGWMA-SRS
control chart to simultaneously detect both increases and decreases in the process mean and dispersion.

As GWMA is a moving average of past data where each data point is assigned a weight. Let M be the
number of samples until the first occurrence of event A since the previous occurrence of event A. Thus, we

can write

iP(M:m)=P(M=1)+P(M=2)+---+P(M=t)+P(M>t)=1.
m=1

Here P(M =1),P(M = 2),...,P(M = t) are the weights of the current sample, the previous sample,...,
the most out-of-date sample, respectively. Therefore, P(M > t) is weighted with the target value of the

underlying process mean. For further details, see [Sheu and Lin| (2003).
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Based on U; and W, given in (7.1), we can define two GWMA statistics, G; and H;, respectively, by

using following formulae:

Gf = PM=1)Us+P(M=2)Us_1 +--+P(M =t)Uy + P(M > t)G}, G =0,

Hf

P(M =1)Hy+ P(M =2)H;_1+---+ P(M =t)H, + P(M > t)H;, Hj =0,

where t = 1,2,.... Here G§j and H{ are the initial values of G} and H}, respectively, and are set to zero.
Sheu et al. (2012) set the weights as P(M =t) = ¢ 1% — ¢®* for ¢t = 1,2, ..., where ¢(0 < ¢ < 1) is the
design parameter and « is the adjustment parameter determined by the practitioner. Note that these weights
follow the discrete Weibull distribution (cf. Nakagawa and Osakil, [1975). The GWMA statistics, G; and H},

can now be simplified as

M-

ar = (q(j—l)“ _ q(j)“) Upjo1 +¢P°GE, Gy =0, t=1,2,..., (7.6)

1

<.
1

M=

H = > (979" ¢ ) Vign +a9° By, Hy=0,t=1,2,... (7.7)

1

.
Il

Here Gy and Hj are independent of each other due to the independence of U, and V;. When the
underlying process is in-control, we have Gi ~ N(0,0¢x) and Hf ~ N(0,0n;), where 0% . = o2 . =
S (¢ DT =g fort=1,2, ...

The plotting-statistic of the MaxGWMA-SRS chart based on G} and Hj is defined as
GE, = max{|G;|, |H{|},t =1,2,.... (7.8)

Similar to the M E; defined in (7.4)), here GFE; is also non-negative, therefore, the MaxGWMA-SRS chart

only needs UCL,, which is given by

UCL, = E(GE,) + L/Var(GEy), (7.9)

where L is the positive control chart multiplier, and its value is determined such that the in-control ARL of
the MaxGWMA-SRS chart reaches to a particular level. For more details about the computation of E(GE;)
and Var(GE}), see Sheu et al| (2012).

7.3 Ordered ranked set sampling and BLUESs

In this section, we briefly explain RSS, ORSS and OIRSS procedures. Based on these sampling schemes, we
obtain the BLUEs of the unknown parameters of the location-scale family of distributions.
In order to select a ranked set sample of size n, the traditional RSS scheme is as follows: start with n?

units from the population. Randomly divide these units to n sets each of size n units. Rank the units within
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each set with respect to the study variable visually or by any inexpensive method. Select the rth smallest
ranked unit from the rth set, for » = 1,2, ..., n. This completes one cycle of a ranked set sample of size n. The
whole procedure can be repeated k times to get a ranked set sample of size nk. In order to get an ordered
ranked set sample of size n, we sort the obtained ranked set sample in an increasing order of magnitude.

Symbolically, let Xii, Xi2,..., X1n, Xo1, X022, «oss Xon,y ooy Xn1, Xn2, ..., Xnn be 7n independent simple
random samples, each of size n, drawn from an absolutely continuous distribution having cumulative
distribution function (CDF) F{(z — u)/o} and probability density function (PDF) (1/0)f{(z — u)/c}, where
u is the location parameter and o (> 0) is the scale parameter. For simplicity, let F*(z) = F{(x — u/o} and
f*(x) = QQ/o)f{(x — u)/o}. Apply RSS procedure to these n independent samples to obtain a ranked set
sample of size n, denoted by X, (r.n), for r =1,2,...,n. Here X, (r.) is the 7th ordered statistic obtained from
the rth simple random sample of size n, i.e., Xy(r.n) = rth min(X,1, Xr2, ..., Xrn).

The CDF and PDF of X, (,.)(r = 1,2, ...,n) are given by

Fon@ = 3 (1)E@ya-r@y, —w<s<em
f(t‘:n)(w) = (])'('){F*(.’E)}T 1{1 — F*(w)}n Tf (.’t) -0 < T <00,

respectively. For more details, see David and Nagaraja/ (2003).

Let ngls)s < X(Ozﬁgs < ... < X(?ﬁls)s represent an ordered ranked set sample of size n
obtained by arranging Xj(1:n), X2(2:n)s s Xn(nm) iS an increasing order of magnitude, i.e., X((z:f,}ss =
rth min(Xy(1:n), X2(2:n), -y Xn(nwm)), for 7 = 1,2,...,n. Note that X(O_P}LS)S, i=1,2,...,,n, are independent but

not identically distributed (INID) random variables. Therefore, the PDF of X 81);35 (r=1,2,...,n) is given by

FOS3 (@) = m Z [H Fomy) (@) H {1 - FGp ) (@)} Gy (@) [, —00 <z <00, (7.10)

P[n] k=r+1

where pln) denotes the summation over all n! permutations (i1, iz, ..., i) of (1,2,...,n).

Similarly, the joint PDF of X(c;&s)s and X 85‘33 (1 <r < s<n)is given by

1 r—1 X s—1 X X
f(r 8t n)(x’f"xs) = (7‘ _ 1)!(3 —r— 1)|(n _ s)| Z lgF(ik:n)(wT) H {F(ik:n) (:I,'S) - F(ik:n) (1177-)}

P[n] k=r+1

n
IT {1 = Fpony @)} Gy @) iy (ms)] e < Ts. (7.11)
k=s+1

From (7.10) and (7.11)), it is easy to compute the moments and cross-moments of order statistics based on

ORSS. For further details, see Balakrishnan and Li (2005, 2008).

Suppose X orss = (X, 81);33, X (0213;33, X &I%S)lxn is an ordered ranked set sample of size from a general

location-scale distribution with location parameter y and scale parameter o(> 0). Let Z 813;33 =(X 813;33 w)/o

be the standardized variate under ORSS. Note that the PDF of Z((z}?;bs)s is independent of 4 and 0. We denote
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E(Z(?:P:SS) = ,u?rf;s)s and Cov(Z(?f}LS)S, Zg}}ls)s) = 087}:?5), 1 <r,s <n. Then, E(Xg%s)s) =p+ a,ugfils)s, and
Cov(XORSS, XORSS) — 5250RSS | Following [Balakrishnan and Li (2008), the BLUE-ORSS, say Ogrum =

N . . AORSS _ _ _
(u%f”%%,agf‘g%)’ of 6 = (4,0)1x2, is OpLug = (BIZ lB) 'B's 1X0Rss, where B = (1, porss)nx2 and

T = {agﬁ:sf)}nxn. Here 1 = (1,1,...,1)},,, and porss = (¢ The variance-

~ORSS ~ORSS
covariance matrix of Og;yp is Cov(@pryr) = 0%(B'S"1B)~l. When the underlying distribution of X is

ORSS ,,ORSS ORSS
(tn) 2 B2y 2 -+ Bnan) Inxn

symmetric about 1, then, the covariance between I9R55 and 69RSS becomes zero, i.e., Cov(A9R5S, FORSS) =
0. This helps in simplifying the expressions of the BLUEs-ORSS, i.e., i9Fgs = (1'27'1) 11’27 X oRrss
and 69888 = (uhrssZ ' Morss) ' MorssE X orss- Similarly, the simplified expressions of their variances
are Var(A9RS3) = 02(1'=711) ! and Var(69558) = 02 (pres =~ *Horss) ', respectively.

It is obvious that the performance of the BLUEs obtained under ORSS depends on how accurately the
judgment ranking of the randomly selected units is accomplished. Errors in ranking affect the efficiency of
the estimator and lead to imprecise estimates. The problem of imperfect ranking was first put forward by
Dell and Clutter| (1972)). In their study, they showed that, even under imperfect RSS scheme, the mean
estimator remain unbiased and it is still better than the mean estimator based on SRS scheme.

In this study, we assess the efficiencies of the BLUEs under OIRSS scheme. Recall that for an in-control
process, X ~ N(u, o). Following Haq et al.| (2013al), the steps required to select an ordered imperfect ranked
set sample of size n are as follows: given the values of n, generate n? values from the underlying distribution
and divide them randomly into n sets each of size n, i.e., X;;, 4,j = 1,2,...,n. Let E be a random error term
and it is normally distributed with mean zero and standard deviation og, i.e., E ~ N(0,0g). Also generate
n? values of E, ie., E;j, i,j = 1,2,...,n. For imperfect ranking, we consider the model Y;; = X;; + Eij,
for 4,5 = 1,2,...,n. Apply RSS procedure to n? values of Y, and also observe the corresponding values
of X. Then, a pair (Y;(rn), Xrjrm]), for r = 1,2,...,n, is selected based on the values of Y, where X,[r.m
is the rth judgment ordered statistic corresponding to the rth ordered statistic Y;(;.n). In order to select
an ordered imperfect ranked set sample of size n, we sort Xi[1.n], X2[2:n]; ---) Xn[n:n] in an increasing order,
ie., X(ci%ss,Xg%ss, ...,X(CT)LI:EL‘)SS, where X(?Ef)ss = rth min{X1[1.n], Xo2:n]s s Xnjnn] }» oI 7 = 1,2, ..., n. Let

Xomss = (X 8?%SS,X (025‘)33, vy X 811:1;)35 ! «n be the vector of ordered imperfect ranked set sample of size

n. The linear estimators of 4 and ¢ under OIRSS (LEs-OIRSS) are A°RSS = (1'2711)"11'S"* X o1rss

and 6958 = (ufresE  Homss) 'MbrssE  Xomss. Note that the estimators (ACLRSS, 5OIRSS) will
no longer be the BLUE because their known coefficients are based on ORSS. However, these estimators
approach to the BLUEs when errors in ranking reduce and vice-versa. Since OIRSS scheme is based on order
statistics, X 8{71:“)33, for r =1,2,...,n, from independent judgment ordered statistics X1[1.n], X[2:n], -» Xn[nin]-
Therefore, it is difficult to obtain the explicit mathematical expressions for the CDF and PDF of X 8%53, for
r=1,2,...,n. Following Haq et al.| (2013a)), we use extensive Monte Carlo simulations to estimate the mean

and variances of the LEs-OIRSS.
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7.4 Proposed control chart

In this section, we propose improved MaxEWMA control charts for monitoring process mean and dispersion

based on ORSS and OIRSS schemes.

7.4.1 MaxEWMA-ORSS control chart

Recall that for an in-control process X; ~ N(u,0), t =1,2,.... Let {4155} and {651 0g,¢} be the sequences

of IID random variables for t = 1,2, .... Based on these sequences, we define EWMA sequences based on

following recurrence formulae:

Ay = RS +(1-OA1, 0<E<1, Ay=y, (7.12)

By = to3foes+(1—€Bi1, 0<E<1, By=o, (7.13)

where £ is a smoothing parameter. Here Ay and By are the initial starting values of the EWMA sequences

A; and By, respectively. These values are usually set by quality practitioners. Note that A; and B; are

independent of each other due to the independence of ﬂg{tg%,t and &g{‘g%’t.

Based on A; and B;, we define the following two standardized statistics, i.e.,

Ar = A—p and B = Bi—o . (1.14)

;
Vats - (- &*}Var(agRss ) Vte - (1 -0 Var(68E5,,

where Var(A9RSs ;) = o?(1'S7'1)" and Var(68F5s ;) = 0(MorssE 'Horss) ™. It is clear that the

resulting distribution of A; or B} is independent of i and 0. Here A} and B} are also mutually independent
because A; and B, are independent.

Similar to the MaxEWMA-SRS chart, the plotting-statistic of the MaxEWMA-ORSS chart is defined as
MEP®SS — max{|A!|,|B}]}, t=1,2,... (7.15)

Since M EP®SS is non-negative, the initial state of the MaxEWMA-ORSS chart only needs an UCL, which is

UCL = E(MEP®SS) + Ly/Var(MEQRSS), (7.16)

where L is a positive control chart multiplier, and its value is selected such that the in-control ARL of the

given by

MaxEWMA-ORSS chart reaches to a specific level. Here E(M EPRSS) and Var(M EP®SS) are the mean and
variance of M ECRSS | respectively. Due to the complexity involved in deriving the probability distributions
of the BLUEs-ORSS, we estimate the values of E(MEPRS) and Var(MEPRSS) by using Monte Carlo
simulations.

The main steps involved in the implementation of the MaxEWMA-ORSS control chart are as follows:
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1. Estimate the unknown parameter(s). It is customary to estimate the unknown parameters(s) using
large historical data that were obtained when the process was in control state. Suppose a preliminary
data set is available that comprises of w subgroups, each of size n, obtained under ORSS scheme.

Then, 4 and o can be estimated by their unbiased estimators, say A9k = (1/w) Y i_; AQFog, . and

~ORSS _ w  AORSS .
6prop = (1/w) D252, 6B1E, > respectively.

2. Select the desired (£, L) combination from Tables depending on the in-control ARL.

3. Set the UCL according to (7-16). The initial values of A; and B; can be estimated by Ay = ASRSS and

By = 5QRS83 | respectively. Similarly, estimate the standard deviations of pQRSS, and 69RSS by their

unbiased estimators, 6955 (1'S711)"1/2 and 69858 (uhrssE ™ Borss) ~/2, respectively. Note that
both porgs and >~ ! are known quantities because they are computed when the underlying distribution
is standard normal. Then, compute values of the statistics A, B;, A}, Bf and MEP®SS for each

sample.

4. Plot MEPRSS versus ¢ on the control chart with UCL. Plot a dot against ¢t when MEPRSS < UCL.
When MEPRSS > UCL, check both |A}| and |Bf|. If |A}| alone is greater than UCL, then plot “m-+”
against ¢ when A} > 0 to show there is a positive shift in the process mean, and plot “m—" against ¢
when A} < 0 to show there is a negative shift in the process mean. Similarly, if | By| is greater than
UCL, then plot “v+” against ¢t when B} > 0 to show there is a positive shift in the process variance,
and plot “v—" against ¢ when B; < 0 to show there is a negative shift in the process variance. If
both |A7| and |Bj| are greater than UCL, plot “++” if Af > 0 and B} > 0, then both process mean
process variance have increased simultaneously. Similarly, plot “+—7" if A7 > 0 and B} < 0, plot “—+”

if Af <0and By >0, plot “——"if A} < 0 and B} < 0, with similar interpretations.
5. Finally, examine the cause(s) for each out-of-control point.

Based on extensive Monte Carlo simulations, when the underlying process is normally distributed with mean
zero and standard deviation unity, i.e., X; ~ N(0,1), we compute the values of out-of-control ARLs and
SDRLs of the MaxEWMA-ORSS chart for different values of § and p. The changes in the process mean are
from u to p + do, where § = 0.00, 0.25, 0.50, 0.75, 1.00, 1.25, 1.50, 2.50 and 3.00. Similarly, the changes in
the process standard deviation are from o to po, where p = 0.25, 0.50, 0.75, 1.00, 1.25, 1.50, 2.00, 2.50 and
3.00. The subgroup size is taken to be n = 5. The values of smoothing constant ¢ are taken in the interval
0.05 < ¢ < 0.3, which is mostly considered for quick detection of small to moderate changes in the process
mean and/or dispersion. The in-control ARL of the MaxEWMA-ORSS chart is matched to 185, 250 and 370.
Each result is based on 10° replications. The computed values of ARLs and SDRLs of the MaxEWMA-ORSS
chart are given in Tables From Tables it is observed that the out-of-control ARL of the
MaxEWMA-ORSS chart is a decreasing function of ¢ for fixed values of £ and p. Having fixed § and p, the

performance of the MaxEWMA-ORSS chart increases as the value of £ decreases and vice-versa.
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7.4.2 MaxEWMA-OIRSS control chart

As mentioned in Section [7.3] it is difficult to obtain the explicit mathematical expressions for the mean and
variances of the LE-OIRSS. Therefore, we estimate the means and variances of LEs-OIRSS based on large

historical data.

Let ﬂggﬁss and ofgﬁss for ¢ = 1,2,...,w, be the estimated values based on w subgroups, each of

size n, where AP > = (1'5” '1)711"S7 Xorrss,i and 08> = (MorssZ ™~ "porss) " PorssE T X ommss,i-
Let APERSS = (1/w) Y il APEeS and 6055 = (1/w) YoiZ, 605%S, which can be used to estimate p

 OIRSS 5 OIRSS

and o, respectively. Similarly, the estimated standard deviations of ;> and & are 6'ﬂ8éRss =
\/ CT=y) Yo, (APERSS — pOIRSS)? and &, sOImSS = \/ @D Y1 (60ERSS — 60IRSS)2, respectively. Based on

estimated means and standard deviations of OIS and GOIRSS | it is easy to construct the MaxEWMA-OIRSS

control chart.
Let {AiPns >} and {605+ } be the sequences of IID random variable for ¢ = 1,2,.... Based on these

sequences, we define the EWMA sequences by using following recurrence formulae:

C: = RS+ (1-8Cio1, 0<E<1, Co=PEss, (7.17)
Dy = &R+ (1—€)Dio1, 0<E<1, Dy=6p5"". (7.18)

Based on C; and Dy, we can define two standardized statistics, given below

~OIRSS AOIRSS
Ct — Pk and D D: - (7.19)

\/ atp{l— (1- 6} (opmss)? \/(2 {1 — (1= &)} Gapmss)?

The plotting-statistic of the MaxEWMA-OIRSS chart is defined as
MEP™SS — max{|C}|,|D}|}, t=1,2,.... (7.20)

Since M EP™®SS is non-negative, therefore, the initial state of the MaxEWMA-OIRSS chart only needs an

UCL = E(MEP™SS) L4/ Var(M EPIRSS), (7.21)

where L is a positive control chart multiplier, and its value is selected such that the in-control ARL of the

UCL, which is given by

MaxEWMA-OIRSS chart reaches to a particular level. Due to the complexity involved in deriving probability
distributions of the LEs-OIRSS, we estimate the values of E(MEP™SS) and Var(MEP™SS) using Monte
Carlo simulations.

In order to find the values of out-of-control ARLs and SDRLs of the MaxEWMA-OIRSS chart, we first
estimate means and variances of the LEs-OIRSS using one million replications. The subgroup size is taken

to be n = 5. Then, we estimate UCL of the MaxEWMA-OIRSS chart based on one million replications.
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For brevity of discussion, we consider several values of error variance, i.e., 0% = 0.05, 0.15, 0.30 and 0.50.
Based on extensive Monte Carlo simulations (10°), we estimate out-of-control ARLs and SDRLs of the
MaxEWMA-OIRSS control chart for different values of é and p. Note that for the MaxEWMA-OIRSS chart,
we keep the same values of the control charting multiplier L, which were used to match the in-control ARL
of the MaxEWMA-ORSS chart. The reason for using same values of L is to study the effect the imperfect
ranking on the performance of the MaxEWMA-ORSS chart. The calculated values of ARLs and SDRLs of
the MaxEWMA-OIRSS chart are given in Tables 7.6

From Tables a similar trend is present in the values of the out-of-control ARLs of the MaxEWMA-
OIRSS chart as observed for the MaxEWMA-ORSS chart. The detection ability of the MaxEWMA-OIRSS
chart increases as the value of error variance (0%) decreases and vice-versa. Note that instead of fixing the
in-control ARL of the MaxEWMA-OIRSS control chart to a particular level, we have used the same values of
control chart multiplier L of the MaxEWMA-ORSS chart for the MaxEWMA-OIRSS chart. It is interesting
to note that the in-control ARL of the MaxEWMA-OIRSS chart remains closer to the in-control ARL of
MaxEWMA-ORSS chart. Moreover, the false alarm or incorrect out-of-control signal generally remains low
for the MaxEWMA-OIRSS chart as compared with the MaxEWMA-OIRSS chart. However, the decrease in

the false alarm rate for the MaxEWMA-OIRSS chart leads to an increase in its out-of-control ARLs.

7.5 Performance comparison of control charts

In this section, we evaluate the detection abilities of the MaxEWMA control charts for detecting changes in

the process mean and process dispersion.

(i) MaxEWMA-ORSS chart versus optimal MaxEWMA-SRS and optimal MaxGWMA-SRS

charts

In Tables [7.7] we compare the proposed MaxEWMA-ORSS chart based on £ = 0.05 with optimal
MaxEWMA-SRS and optimal MaxGWMA-SRS quality control schemes when the in-control ARL is fixed at
185, 250 and 370, respectively. The optimal values of the ARLs of both MaxEWMA-SRS and MaxGWMA-SRS
charts are taken from Sheu et al.| (2012)). It is interesting to note that the MaxEWMA-ORSS chart performs
uniformly better than the optimal MaxEWMA-SRS and MaxGWMA-SRS chart for all values of § when
p > 0.5. However, when p = 0.25, MaxEWMA-ORSS chart is less sensitive as compared with its counterparts
for small values of § in the interval 0 < § < 0.5. Moreover, the performance of the MaxEWMA-ORSS chart
increases as ¢ increases, i.e., § > 0.5, and it detects random shifts in the process mean substantially quicker

than its competitors.

(ii) MaxEWMA-OIRSS chart versus optimal MaxEWMA-SRS and optimal
MaxGWMA-SRS charts

In Table [7.10] we compare the MaxEWMA-OIRSS chart using £ = 0.05 with the optimal MaxEWMA-SRS
and optimal MaxGWMA-SRS schemes. Note that for the optimal control charts the in-control ARL is
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fixed to 370. Even under imperfect rankings, the proposed MaxEWMA-OIRSS chart is still able to perform
uniformly better than the other optimal MaxEWMA schemes when p > 0.5 for all values of § considered
here. However, when p = 0.25 and § in the interval 0 < § < 0.5, the MaxEWMA-OIRSS chart remains less

effective as compared with other control charts considered here.
(iii) Diagnostic abilities: MaxEWMA-ORSS chart versus MaxGWMA-SRS chart

Sheu et al.| (2012) showed that both MaxGWMA-SRS and MaxEWMA-SRS charts have same diagnostic
abilities and the former has better ARL and SDRL performances than the latter. Therefore, here we compare
the MaxGWMA-SRS chart with the proposed MaxEWMA-ORSS chart. For the MaxGWMA-SRS chart,
the assumed parameter values are ¢ = 0.25, @ = 0.80 and L = 2.8430. Similarly, the parameters set for
the MaxEWMA-ORSS chart are £ = 0.05 and L = 2.7650. For both control charts, the in-control ARL
is fixed to 370. In Table we compare the diagnostic abilities of the MaxEWMA-ORSS chart with
that of MaxGWMA-SRS control chart. The proposed MaxEWMA-ORSS chart is more efficient than the
MaxGWMA-SRS chart in terms of having better diagnostic abilities when there are increases in the process
mean and dispersion. For example, when detecting a positive change of 1.5 in both mean and variance, the
MaxGWMA shows 127 samples out of 1000 showing an out-of-control signal. However, for the same shift,
the MaxEWMA-ORSS chart shows 209 samples out of 1000 signaling an out-of-control signal. This shows
that the MaxEWMA-ORSS chart is better at signaling random shifts of different magnitudes in the process

mean and variation as compared with its competitors.



Table 7.1: ARLs and SDRLs of the MaxEWMA-ORSS control chart when in-control

ARL is fixed to 185

o— 0.00 0.25 0.50 0.75 1.00 1.50 2.00 2.50 3.00

p 13 L ARL SDRL ARL SDRL ARL SDRL ARL SDRL ARL SDRL ARL SDRL ARL SDRL ARL SDRL ARL SDRL
0.25 0.056 2.3363 1.54 0.50 1.54 0.50 1.53 0.50 1.06 0.23 1.00 0.00 1.00 0.00 1.00 0.00 1.00 0.00 1.00 0.00
0.50 0.05 2.3363 2.89 0.95 2.87 094 213 0.64 1.26 044 101 0.07  1.00 0.00 1.00 0.00 1.00 0.00 1.00 0.00
0.75 0.05 2.3363 9.57 514 599 295 237 1.05 1.36 0.52 1.05 0.21  1.00 0.00 1.00 0.00 1.00 0.00 1.00 0.00
1.00 0.05 2.3363 184.91 198.756 7.17 4.92 246 135 1.44 0.64 1.10 0.31  1.00 0.03 1.00 0.00 1.00 0.00 1.00 0.00
1.25 0.06 2.3363 7.86 6.84  4.59 3.58 227 142 147 0.70 115 0.38 1.00 0.07 1.00 0.00 1.00 0.00 1.00 0.00
1.50 0.05 2.3363 2.88 2.21 2.49 1.81 1.82 111 1.39 0.66 1.16 040 1.01 0.11  1.00 0.02 1.00 0.00 1.00 0.00
2.00 0.05 2.3363 1.40 0.74 1.37 0.69 1.28 0.58 1.18 0.45 1.10 0.32 1.02 0.14 1.00 0.04 1.00 0.01 1.00 0.00
2.50 0.05 2.3363 1.13 0.38 1.12 0.37 110 0.33 1.08 0.29 1.05 023 1.02 0.12 1.00 0.05 1.00 0.01  1.00 0.00
3.00 0.05 2.3363 1.05 0.23 1.05 023 1.04 0.21 1.03 019 1.02 0.15 1.01 0.10 1.00 0.056 1.00 0.02 1.00 0.01
0.25 0.10 2.6412 1.81 0.40 1.81 040 181 040 1.24 0.43 1.00 0.00 1.00 0.00 1.00 0.00 1.00 0.00 1.00 0.00
0.50 0.10 2.6412 3.25 1.03  3.23 1.01 239 0.68 1.40 0.50 1.02 0.12 1.00 0.00 1.00 0.00 1.00 0.00 1.00 0.00
0.75 0.10 2.6412 11.22 6.06 6.99 3.32  2.64 113 1.47 0.57 1.07 0.26 1.00 0.00 1.00 0.00 1.00 0.00 1.00 0.00
1.00 0.10 2.6412 185.61 190.51 8.15 540 2.70 145 1.54 0.69 1.14 0.36 1.00 0.04 1.00 0.00 1.00 0.00 1.00 0.00
1.25 0.10 2.6412 8.77 7.29 5.15 3.85 2.50 1.53  1.57 0.77 119 043 1.01 0.09 1.00 0.01 1.00 0.00 1.00 0.00
1.50 0.10 2.6412 3.16 234 273 194 1.98 123 1.47 0.73 120 044 1.02 0.13 1.00 0.02 1.00 0.00 1.00 0.00
2.00 0.10 2.6412 1.47 0.79 1.43 0.7 1.34 0.64 1.22 049 112 0.36 1.02 0.16 1.00 0.05 1.00 0.01  1.00 0.00
2.50 0.10 2.6412 1.16 0.42 1.15 041 113 0.37  1.09 0.31 1.06 0.25 1.02 0.14 1.00 0.06 1.00 0.02 1.00 0.01
3.00 0.10 2.6412 1.06 0.26 1.06 0.25 1.05 0.23 1.04 0.21 1.03 0.18 1.01 0.11  1.00 0.06 1.00 0.03 1.00 0.01
0.25 0.20 2.8874 1.95 0.26 1.94 0.26 1.94 0.25 1.50 0.50 1.00 0.01 1.00 0.00 1.00 0.00 1.00 0.00 1.00 0.00
0.50 0.20 2.8874 3.64 1.17  3.62 114 2.64 0.74 1.52 0.52 1.03 0.17  1.00 0.00 1.00 0.00 1.00 0.00 1.00 0.00
0.75 0.20 2.8874 15.49 1045  8.65 4.64 290 124 1.57 0.61 1.11 0.31 1.00 0.01 1.00 0.00 1.00 0.00 1.00 0.00
1.00 0.20 2.8874 184.76 185.84  9.50 6.77 294 1.57 1.64 0.73 118 0.40 1.00 0.05 1.00 0.00 1.00 0.00 1.00 0.00
1.25 0.20 2.8874 9.60 8.06 5.63 418 2.70 1.63 1.65 0.82 1.23 046 1.01 0.10 1.00 0.01 1.00 0.00 1.00 0.00
1.50 0.20 2.8874 3.37 2.46 291 2.02 211 129 1.54 0.78 1.23 048 1.02 0.15 1.00 0.03 1.00 0.00 1.00 0.00
2.00 0.20 2.8874 1.53 0.84 1.49 0.80 1.38 0.67 1.25 0.52 1.14 0.39 1.03 0.17  1.00 0.05 1.00 0.01 1.00 0.00
2.50 0.20 2.8874 1.18 0.44 1.17 043 114 0.39 111 034 1.07 0.27  1.02 0.15 1.00 0.07  1.00 0.02 1.00 0.01
3.00 0.20 2.8874 1.07 0.27 1.07 0.27 1.06 0.25 1.05 0.22 1.04 0.19 1.02 0.13 1.00 0.07  1.00 0.03 1.00 0.01
0.25 0.30 3.0000 1.99 0.22 1.99 023 1.99 0.22 1.61 0.49 1.00 0.02 1.00 0.00 1.00 0.00 1.00 0.00 1.00 0.00
0.50 0.30 3.0000 4.03 142 4.01 140 284 0.83 1.58 0.53 1.04 0.20 1.00 0.00 1.00 0.00 1.00 0.00 1.00 0.00
0.75 0.30 3.0000 2494 20.51 11.45 7.68 3.10 1.38 1.63 0.64 1.12 0.33 1.00 0.01 1.00 0.00 1.00 0.00 1.00 0.00
1.00 0.30 3.0000 185.98 185.94 11.29 8.82 3.10 1.70 1.69 0.76  1.20 042 1.00 0.06 1.00 0.00 1.00 0.00 1.00 0.00
1.25 0.30 3.0000 10.33 8.95 5.99 4.60 2.79 171 1.70 0.85 1.25 048 1.01 0.11 1.00 0.01 1.00 0.00 1.00 0.00
1.50 0.30 3.0000 3.47 2,53 3.01 2.09 217 133 1.58 0.80 1.25 0.50 1.03 0.16 1.00 0.03 1.00 0.00 1.00 0.00
2.00 0.30 3.0000 1.55 0.85 1.51 0.82 140 0.69 1.27 0.54 116 0.40 1.03 0.18 1.00 0.06 1.00 0.01 1.00 0.00
2.50 0.30 3.0000 1.19 0.46 1.18 044 115 040 1.12 0.35 1.08 029 1.03 0.16 1.01 0.07  1.00 0.03 1.00 0.00
3.00 0.30 3.0000 1.07 0.28 1.07 0.27  1.06 0.26 1.05 023 1.04 0.20 1.02 013 1.01 0.07  1.00 0.03 1.00 0.01
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Table 7.2: ARLs and SDRLs of the MaxEWMA-ORSS control chart when in-control

ARL is fixed to 250

o— 0.00 0.25 0.50 0.75 1.00 1.50 2.00 2.50 3.00

p 13 L ARL SDRL ARL SDRL ARL SDRL ARL SDRL ARL SDRL ARL SDRL ARL SDRL ARL SDRL ARL SDRL
0.25 0.05 2.5247 1.7 0.45 1.7 045 1.71 045 1.15 0.36  1.00 0.00 1.00 0.00 1.00 0.00 1.00 0.00 1.00 0.00
0.50 0.05 2.5247 3.11 0.99 3.09 0.98 228 0.66 1.34 048 1.01 0.10 1.00 0.00 1.00 0.00 1.00 0.00 1.00 0.00
0.75 0.056 2.5247 10.42 542  6.58 3.13 253 110 1.42 0.56 1.06 0.24 1.00 0.00 1.00 0.00 1.00 0.00 1.00 0.00
1.00 0.05 2.5247 249.55 263.99 7.81 522 261 141 1.50 0.67 1.13 034 1.00 0.03 1.00 0.00 1.00 0.00 1.00 0.00
1.25 0.06 2.5247 8.61 7.31 5.01 3.86 242 151  1.52 0.74 117 041 1.01 0.08 1.00 0.01  1.00 0.00 1.00 0.00
1.50 0.05 2.5247 3.08 2.34 265 191 1.92 119 1.4 0.71 118 043 1.01 0.12 1.00 0.02 1.00 0.00 1.00 0.00
2.00 0.056 2.5247 1.45 0.78 141 0.74 131 0.62 1.20 048 1.12 0.35 1.02 0.15 1.00 0.06 1.00 0.01 1.00 0.00
2.50 0.05 2.5247 1.15 0.41 1.14 0.39 112 0.36  1.09 0.30 1.06 0.24 1.02 0.13 1.00 0.06 1.00 0.02 1.00 0.00
3.00 0.05 2.5247 1.06 0.25 1.06 024 1.05 0.23 1.04 0.20 1.03 0.17 1.01 0.11  1.00 0.06 1.00 0.03 1.00 0.01
0.25 0.10 2.8249 1.92 0.29 1.92 029 1.92 0.29 143 0.49 1.00 0.01  1.00 0.00 1.00 0.00 1.00 0.00 1.00 0.00
0.50 0.10 2.8249 3.47 1.07 345 1.06 2.56 0.71  1.49 0.51 1.03 0.16  1.00 0.00 1.00 0.00 1.00 0.00 1.00 0.00
0.75 0.10 2.8249 12.31 6.60 7.66 3.56 2.81 118 1.54 0.60 1.10 0.30 1.00 0.01 1.00 0.00 1.00 0.00 1.00 0.00
1.00 0.10 2.8249 250.94 254.67 8.80 5.74 2.87 151 1.61 0.72 117 0.39 1.00 0.04 1.00 0.00 1.00 0.00 1.00 0.00
1.25 0.10 2.8249 9.57 7.87  5.59 4.09 2.66 1.62 1.63 0.81 122 045 1.01 0.10 1.00 0.01 1.00 0.00 1.00 0.00
1.50 0.10 2.8249 3.37 2.49 2.90 2.04 210 1.29 1.53 0.78 1.22 047 1.02 0.14 1.00 0.02 1.00 0.00 1.00 0.00
2.00 0.10 2.8249 1.52 0.84 1.48 0.79 137 0.67 1.24 0.52 1.14 0.38 1.03 0.17  1.00 0.05 1.00 0.01 1.00 0.00
2.50 0.10 2.8249 117 0.44 1.17 043 114 0.39 1.10 0.33 107 0.27  1.02 0.15 1.00 0.07  1.00 0.02 1.00 0.01
3.00 0.10 2.8249 1.07 0.27 1.07 0.26 1.06 0.25 1.05 0.22 1.04 0.19 1.01 0.12 1.00 0.07  1.00 0.03 1.00 0.01
0.25 0.20 3.0561 2.00 0.20 2.00 0.20 2.00 0.19 1.67 0.47 1.00 0.02 1.00 0.00 1.00 0.00 1.00 0.00 1.00 0.00
0.50 0.20 3.0561 3.89 123  3.86 121 2.82 0.77 1.61 0.52 1.05 0.21  1.00 0.00 1.00 0.00 1.00 0.00 1.00 0.00
0.75 0.20 3.0561 17.55 11.93  9.54 514  3.07 129 1.64 0.64 1.14 0.35 1.00 0.01 1.00 0.00 1.00 0.00 1.00 0.00
1.00 0.20 3.0561 249.21 247.83 10.44 742  3.09 1.63 171 0.77 121 042 1.00 0.06 1.00 0.00 1.00 0.00 1.00 0.00
1.25 0.20 3.0561 10.54 8.85  6.09 450 2.84 1.70 1.71 0.85 1.26 049 1.01 0.12 1.00 0.01 1.00 0.00 1.00 0.00
1.50 0.20 3.0561 3.56 2,59  3.09 215 220 1.34 1.60 0.82 1.27 0.51 1.03 0.16 1.00 0.03 1.00 0.00 1.00 0.00
2.00 0.20 3.0561 1.58 0.88 1.53 083 141 0.71 1.28 0.56  1.17 042 1.04 0.19 1.00 0.06 1.00 0.01 1.00 0.00
2.50 0.20 3.0561 1.20 0.47 1.19 045 1.16 041 1.12 0.35 1.08 0.29 1.03 0.17 101 0.07  1.00 0.03 1.00 0.01
3.00 0.20 3.0561 1.08 0.28 1.08 0.28 1.07 0.26 1.05 024 1.04 0.20 1.02 0.13 1.01 0.07 1.00 0.03 1.00 0.01
0.25 030 3.1681 2.03 0.22 2.03 0.22 2.03 0.22 177 0.42 1.00 0.04 1.00 0.00 1.00 0.00 1.00 0.00 1.00 0.00
0.50 0.30 3.1681 4.34 154 432 1.53 3.03 0.87 1.68 0.53 1.06 0.24 1.00 0.00 1.00 0.00 1.00 0.00 1.00 0.00
0.75 030 3.1681 30.42 25.72 13.38 9.20 331 147 171 0.66 1.15 0.36  1.00 0.01 1.00 0.00 1.00 0.00 1.00 0.00
1.00 0.30 3.1681 249.54 248.38 12.62 9.97  3.27 1.79 1.76 0.80 1.23 044 1.00 0.06 1.00 0.00 1.00 0.00 1.00 0.00
1.25 0.30 3.1681 11.43 10.00  6.55 5.00 2.96 1.82 176 0.89 1.28 0.51  1.02 0.12 1.00 0.01  1.00 0.00 1.00 0.00
1.50 0.30 3.1681 3.69 2.711 3.18 222 227 140 1.63 0.84 128 0.52 1.03 0.17  1.00 0.03 1.00 0.00 1.00 0.00
2.00 0.30 3.1681 1.60 0.90 1.56 0.85 1.44 0.73 1.30 0.57 1.18 042 1.04 0.20 1.00 0.06 1.00 0.01 1.00 0.00
2.50 0.30 3.1681 1.20 0.48 1.19 046 1.16 042 1.13 0.37  1.09 0.30 1.03 0.17 1.01 0.08 1.00 0.03 1.00 0.01
3.00 0.30 3.1681 1.08 0.30 1.08 029 1.07 0.27  1.06 024 1.04 0.21  1.02 014 101 0.08 1.00 0.04 1.00 0.01
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Table 7.3: ARLs and SDRLs of the MaxEWMA-ORSS control chart when in-control

ARL is fixed to 370

o— 0.00 0.25 0.50 0.75 1.00 1.50 2.00 2.50 3.00

p 13 L ARL SDRL ARL SDRL ARL SDRL ARL SDRL ARL SDRL ARL SDRL ARL SDRL ARL SDRL ARL SDRL
0.25 0.05 2.7650 1.89 0.32 1.89 0.33 1.88 0.33 137 0.48 1.00 0.01 1.00 0.00 1.00 0.00 1.00 0.00 1.00 0.00
0.50 0.05 2.7650 3.38 1.04 3.37 1.03  2.50 0.70 1.46 0.51  1.02 0.14 1.00 0.00 1.00 0.00 1.00 0.00 1.00 0.00
0.75 0.05 2.7650 11.56 5.79 7.38 3.37 275 116  1.52 0.59 1.09 0.29 1.00 0.01 1.00 0.00 1.00 0.00 1.00 0.00
1.00 0.05 2.7650 370.47 383.99  8.67 5.57 2.82 1.50 1.59 0.71 1.16 0.38  1.00 0.06 1.00 0.00 1.00 0.00 1.00 0.00
1.25 0.05 2.7650 9.69 7.92 5.61 419 261 1.61 1.61 0.80 1.21 044 1.01 0.09 1.00 0.01 1.00 0.00 1.00 0.00
1.50 0.05 2.7650 3.35 2.51 2.87 2.07  2.06 129 1.51 0.77 122 047  1.02 0.14 1.00 0.02 1.00 0.00 1.00 0.00
2.00 0.056 2.7650 1.51 0.83 1.47 0.79 1.36 0.67 1.24 0.52 1.14 0.38 1.03 0.17  1.00 0.06 1.00 0.01 1.00 0.00
2.50 0.05 2.7650 1.17 0.43 1.16 042 113 0.38 1.10 0.33 107 0.27  1.02 0.15 1.00 0.06 1.00 0.02 1.00 0.01
3.00 0.05 2.7650 1.07 0.27 1.06 0.26 1.06 0.24 1.05 0.22 1.03 019 1.01 0.12 1.00 0.06 1.00 0.03 1.00 0.01
0.25 0.10 3.0529 2.00 0.20 1.99 0.19 199 0.19 1.67 0.47 1.00 0.02 1.00 0.00 1.00 0.00 1.00 0.00 1.00 0.00
0.50 0.10 3.0529 3.77 112 3.75 111 2.78 0.74 1.61 0.52 1.05 0.21  1.00 0.00 1.00 0.00 1.00 0.00 1.00 0.00
0.75 0.10 3.0529 13.67 7256  8.54 3.87 3.04 124 1.64 0.63 1.13 0.34 1.00 0.01 1.00 0.00 1.00 0.00 1.00 0.00
1.00 0.10 3.0529 370.28 375.66  9.80 6.26  3.09 1.60 1.70 0.76 1.21 043 1.00 0.06 1.00 0.00 1.00 0.00 1.00 0.00
1.25 0.10 3.0529 10.71 8.59 6.23 4.47 2.86 1.72 1.72 0.86 1.26 049 1.01 0.12 1.00 0.01 1.00 0.00 1.00 0.00
1.50 0.10 3.0529 3.62 264 3.14 219 222 1.38 1.60 0.83 1.26 0.51 1.03 0.16 1.00 0.03 1.00 0.00 1.00 0.00
2.00 0.10 3.0529 1.59 0.90 1.54 0.84 142 0.72 1.28 0.56 1.16 041 1.04 0.19 1.00 0.06 1.00 0.01  1.00 0.00
2.50 0.10 3.0529 1.20 0.47 1.19 046 1.16 041 1.12 0.36  1.08 0.29 1.03 0.17 1.01 0.07  1.00 0.03 1.00 0.01
3.00 0.10 3.0529 1.08 0.29 1.07 0.28 1.07 0.26 1.05 024 1.04 0.20 1.02 0.13 1.01 0.07  1.00 0.04 1.00 0.01
0.25 0.20 3.2752 2.05 0.23 2.05 0.23 2.05 0.23 184 0.37  1.00 0.05 1.00 0.00 1.00 0.00 1.00 0.00 1.00 0.00
0.50 0.20 3.2752 4.21 1.31 4.20 1.29  3.06 0.82 1.73 0.51 1.08 0.27  1.00 0.00 1.00 0.00 1.00 0.00 1.00 0.00
0.75 0.20 3.2752 20.87 1472 10.99 6.04 3.32 136 175 0.66 1.17 0.38 1.00 0.02 1.00 0.00 1.00 0.00 1.00 0.00
1.00 0.20 3.2752 369.55 368.70 11.71 832 333 1.73  1.80 0.80 1.25 0.46 1.00 0.07  1.00 0.00 1.00 0.00 1.00 0.00
1.25 0.20 3.2752 11.95 10.00  6.72 491 3.05 1.82 181 091 130 0.52  1.02 0.13 1.00 0.01 1.00 0.00 1.00 0.00
1.50 0.20 3.2752 3.85 2.79 3.33 229 235 144 1.68 0.87 130 0.54 1.03 0.18 1.00 0.04 1.00 0.00 1.00 0.00
2.00 0.20 3.2752 1.64 0.93 1.59 0.88 147 0.75  1.32 0.59 119 044 1.04 021 1.01 0.07  1.00 0.02 1.00 0.00
2.50 0.20 3.2752 1.22 0.49 1.21 048 118 044 114 0.38  1.09 0.31 1.03 0.18 1.01 0.08 1.00 0.03 1.00 0.01
3.00 0.20 3.2752 1.09 0.30 1.08 0.30 1.07 0.28 1.06 0.25 1.05 0.22 1.02 0.14 1.01 0.08 1.00 0.04 1.00 0.02
0.25 0.30 3.3799 2.10 0.31 2.10 031 210 0.31 1.90 031 1.01 0.07  1.00 0.00 1.00 0.00 1.00 0.00 1.00 0.00
0.50 0.30 3.3799 4.77 1.71 4.75 1.69 3.30 0.94 1.79 0.52 1.10 0.30 1.00 0.00 1.00 0.00 1.00 0.00 1.00 0.00
0.75 0.30 3.3799  40.18 34.89 16.52 12.00 3.57 1.57 181 0.69 120 0.40 1.00 0.02 1.00 0.00 1.00 0.00 1.00 0.00
1.00 0.30 3.3799 369.69 368.556 14.57 11.67 3.54 192 1.86 0.84 128 048 1.01 0.08 1.00 0.00 1.00 0.00 1.00 0.00
1.25 0.30 3.3799 13.10 11.48 7.34 5.66 3.19 1.96 1.86 0.94 133 0.54 1.02 0.14 1.00 0.01 1.00 0.00 1.00 0.00
1.50 0.30 3.3799 3.98 292 343 239 242 149 1.72 0.90 1.32 0.56 1.04 0.19 1.00 0.04 1.00 0.00 1.00 0.00
2.00 0.30 3.3799 1.67 0.95 1.61 0.89 149 0.77 134 0.61 1.20 046 1.05 0.22 1.01 0.07  1.00 0.02 1.00 0.00
2.50 0.30 3.3799 1.23 0.50 1.21 048 1.18 044 1.15 0.39 1.10 0.32 1.03 0.19 1.01 0.09 1.00 0.03 1.00 0.01
3.00 0.30 3.3799 1.09 0.31 1.09 0.30 1.08 0.29 1.07 026 1.05 0.23 1.02 0.15 1.01 0.08 1.00 0.04 1.00 0.02
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Table 7.4: ARLs and SDRLs of the MaxEWMA-OIRSS control chart when in-control
ARL of MaxEWMA-ORSS chart is fixed to 185

= 0.00 0.25 0.50 1.00 2.00 0.00 0.25 0.50 1.00 2.00
p 3 L ARL SDRL ARL SDRL ARL SDRL ARL SDRL ARL SDRL ARL SDRL ARL SDRL ARL SDRL ARL SDRL ARL SDRL
o% = 0.05 op =0.15
025 005 2.3363 157 050 1.56 050 1.55 050 1.00 _ 0.02 1.00  0.00 | 1.67 047 167 047 167 047 1.00 _ 0.07 1.00 _ 0.00
050 005 23363 294 10l 291 098 221 070 102 015 100 000 | 307 107 303 104 238 078 107 026 1.00  0.00
1.00 0.05 2.3363 18510 198.63 7.74 535 262 147 114 036 1.00  0.00 | 18475 197.97 865 612 2.92 168 121 043 100  0.00
150 0.05 23363 296 225 258 187 190 118 118 043 100 002 | 3.06 235 269 197 201 128 123 049 100  0.03
200 005 2333 143 077 138 071 129 060 111 034 100 005 | 146 080 142 075 133 064 113 037  1.00 0.6
025 010 2.6412 1.8 040 1.81 040 1.81 040 1.00 _ 0.05 1.00 _ 0.00 | 1.90 034 1.90  0.33 1.90 033 1.02 _ 0.5 1.00 _ 0.00
050 010 26412 331 109 329 106 250 075 105 022 100 000 | 345 115 342 112 269 084 113 034 1.00 0.0
1.00 010 26412 18551 190.09 879 592 290 158 119 041 1.00 0.0 | 186.38 19146 991  6.81 3.22 179 127 049 100 0.1
150 0.0 26412  3.23 240 282 201 207 129 123 048 100 002 | 336 250 296 211 219 138 129 054 100  0.04
200 010 26412 150  0.82 145 077 136  0.66 114 038 100 006 | 153  0.85 149 081 139 069 116 042 100 _ 0.7
025 020 28874 195 028 1.95 028 195 028 101 010 1.00 000 | 201 025 201 025 201 025 107 025 1.00 _ 0.00
0.50 020 2.8874 371 124 3.69 121 277 08 108 028 100 000 | 387 131 38 120 30l 093 119 039 100  0.00
1.00 0.0 2.8874 186.90 188.60 1041  7.53 3.16 171 1.23 045 1.00 0.0 | 18624 186.78 11.94 895 3.52 197 133 053 100 0.1
150 0.20 2.8874 344 251 302 210 218 135 127 052 1.00 003 | 358 261 316 220 234 147 134 058 100 0.5
200 020 28874 156  0.86 151 082 141 00 116 041 100 006 | 159 089 155 085 144 074 119 045 101 _ 0.08
025 030 3.0000 200 026 200 026 200 026 102 013 100 000 | 207 028 207 028 206 027 110 029 1.00 _ 0.0
0.50 030 3.0000 411 151 409 149 298 093 111 031 100 000 | 433 164 430 161 3.25 107 122 042 100  0.00
1.00 030 3.0000 186.61 186.68 12.37  9.91 3.35  1.88 1.26  0.47 1.00  0.00 | 187.57 187.24 1448 11.94 3.78 220 136 055 100  0.01
150 0.0 3.0000 358 262 310 217 226 140 129 053 100 003 | 372 275 327 229 241 151 136 060 100 0.5
200 030 3.0000 158 088 154 0.8 142 071 118 043 100 007 | 162 091 158 087 147 075 121 047 1.0l _ 0.09
0% = 0.30 0% = 0.50

025 005 23363  1.80 042 1.80 041 179 042 103 0.6 100 000 | 188 035 18 035 1.8 035 109 028 1.00 _ 0.00
0.50 0.05 23363 323 112 320 110 258 085 115 036 100 000 | 337 116 335 114 279 091 124 043 100  0.00
1.00 0.05 2.3363 185.06 199.17 9.80  7.03 3.26 193 130 051 1.00  0.01 | 18478 198.11 10.86  7.90 3.59 218 139 059 100  0.02
150 0.05 23363 318 244 283 210 213 139 1.29 055 100 005 | 3.28 254 293 219 224 149 135 061 100  0.07
200 005 23363 149 082 146 079 137  0.68 116 041 101 008 | 152 085 148 081 139 071 119 045 1.0l _ 0.10
025 010 2.6412 198 027 1.98 026 1.98 026 110 030 1.00 0.0 | 203 025 203 025 203 025 124 043 1.00 _ 0.00
0.50 010 2.6412 363 120 361 119 294 092 124 043 100 000 | 38 126 379 124 317 098 136 049 1.00  0.00
1.00 0.10 2.6412 187.83 192.96 11.22  7.93 3.62 208 137 057 100 0.0l | 18579 190.24 1250  9.06 4.0l 235 148  0.64 100  0.02
150 0.0 26412 350 259 311 225 234 152 136 061 100 006 | 357 269 322 233 247 163 143  0.68 101  0.09
200 010 26412 157  0.89 153 085 143 074 120 046 1.0l 009 | 160 092 157 088 147 0.8 123 050 1.0l _ 0.12
025 020 28874 208 028 208 028 207 027 121 040 1.00 000 | 213 034 213 034 213 034 140 049 1.00 _ 0.00
0.50 020 2.8874 411 140 408 138 329 103 133 048 100 000 | 433 147 432 146 358 112 146 053 100  0.00
1.00 0.20 2.8874 189.07 190.17 13.70 1056 3.98  2.27 145  0.61 1.00  0.02 | 188.32 188.77 1550 12.26 442 261 157  0.69 100  0.04
150 020 2.8874 3.2 271 333 234 250 159 142  0.66 101 007 | 3.82 281 345 247 263 169 151 073 101  0.10
200 020 28874 164 093 160 090 149 078 123 049 101 010 | 167 096 1.63 092 153 082 127 053 102 013
025 030 3.0000 214 035 214 035 214 035 127 044 1.00 000 | 222 042 222 042 222 042 149 050 1.00 _ 0.00
0.50 030 3.0000 463 178 460 176 361 121 137 050 100  0.00 | 494 193 492 192 395 134 151 054 100  0.00
1.00 0.30 3.0000 190.16 189.72 16.88 14.38 4.27  2.59 149  0.64 1.00  0.02 | 189.83 189.42 19.27 16.63 4.80 3.0l 162  0.72 100  0.04
150 0.0 3.0000 3.8  2.87 345 245 258 164 146 068 1.0l 008 | 396 295 357 257 273 177 154 075 101 011
200 030 3.0000 166 095 163 091 152 080 125 051 101 011 | 171 099 1.66 094 156 084 129 055 102 0.4
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Table 7.5: ARLs and SDRLs of the MaxEWMA-OIRSS control chart when in-control
ARL of MaxEWMA-ORSS chart is fixed to 250

5 0.00 0.25 0.50 1.00 2.00 0.00 0.25 0.50 1.00 2.00
P ¢ L DRL RL _ SDRL RL SDRL
oZ = 0.05 oz =0.15
0.25 0.05 2.5247 172 045 1.73 045 1.72 0.45 1.00 0.08 1.00  0.00 1.82 0.40  1.82 040 1.82 039 1.01 012 1.00 0.00
0.50 0.05 2.5247 3.16 1.05  3.14 1.03  2.38 073 1.04 019 1.00  0.00 3.29 111 3.26 1.08 256 082 111 0.31  1.00 0.00
1.00 0.05 2.5247 252.10 266.41  8.42 5.65  2.80 1.55 1.17 039 1.00  0.00 | 250.75 265.71  9.49 6.49 3.1 1.76  1.25 0.47  1.00 0.00
1.50 0.05  2.5247 3.17 242 273 1.97 201 1.26 121 0.46  1.00  0.02 3.28 247  2.88 210 212 1.36  1.26 0.52  1.00 0.04
2.00 0.05 2.5247 1.47 0.80  1.43 075 1.34  0.64 1.13 037 100  0.05 1.51 0.83 147 079 137 068 115 0.40  1.00 0.07
0.25 0.10 2.8249 1.92 031  1.92 0.31  1.92 0.30  1.01 0.08 1.00 0.0 1.99 0.25 1.9 025 198 025 1.05 0.22  1.00 0.00
0.50 0.10 2.8249 3.54 113 3.52 110  2.68 0.79 1.07 026 1.00  0.00 3.69 120  3.66 117 2.8 088 1.17  0.38 1.00 0.00
1.00 010 2.8249 252.58 258.46  9.54 6.30  3.07 1.65  1.22 0.44 1.00  0.00 | 253.14 258.06 10.81 7.32  3.43 1.88 131 0.51  1.00 0.01
1.50 0.10 2.8249 3.44 253  3.00 212 217 1.35  1.26 051 1.00  0.03 3.58 2.64 317 225 2.32 148 133 0.57  1.00 0.04
2.00 0.10 2.8249 1.55 0.86  1.50 0.82  1.40 0.70  1.16 0.41 1.00  0.07 1.59 0.90 1.54 0.85 143 074 1.19 0.44  1.01 0.08
0.25 0.20 3.0561 2.02 024  2.02 0.24 2.01 024 1.02 014 1.00 0.0 2.07 0.27 207 027 207 027 112 0.32  1.00 0.00
0.50 0.20 3.0561 3.95 129 393 127 2.96 0.86 1.12 032 1.00 0.0 4.14 1.38  4.10 1.36  3.21 098 124 043 1.00 0.00
1.00 0.20 3.0561 250.38 251.51 11.45 8.37  3.34 1.79 1.27 047 1.00  0.00 | 250.88 250.32 13.09 9.84 3.74 2.05 137 055 1.00 0.01
1.50 0.20 3.0561 3.65 2.64  3.19 222 231 143 1.30 0.55 1.00  0.04 3.80 2.76  3.36 2.34 246 1.54  1.38 0.61  1.00 0.05
2.00 0.20 3.0561 1.60 0.89 156 0.86 144 073 1.18 043 1.01  0.07 1.65 0.94  1.60 0.89 149 078  1.22 0.48  1.01 0.09
0.25 0.30 3.1681 2.06 027  2.06 0.28  2.06 027  1.03 0.18 1.00 _ 0.00 2.13 034 2.13 034 213 034 1.16 0.36  1.00 0.00
0.50 0.30 3.1681 4.43 1.64 441 1.60  3.20 099 114 035 1.00 0.0 4.67 177 464 174 350 114 1.28 0.45  1.00 0.00
1.00 0.30 3.1681 253.02 252.21 1401 11.30  3.56 1.98  1.29 0.50 1.00 0.0 | 256.46 257.08 16.36  13.62  4.02 2.32  1.41 0.57  1.00 0.01
1.50 0.30 3.1681 3.80 2.79  3.30 231  2.38 147 133 0.57 1.00  0.04 3.96 2.92  3.49 246  2.54 1.60  1.41 0.63  1.00 0.06
2.00 0.30 3.1681 1.63 092 158 0.87 147 075  1.20 045 1.01  0.08 1.68 0.96  1.63 091  1.51 079  1.23 049  1.01 0.10
oZ = 0.30 oZ = 0.50
0.25 005 2.5247 1.92 031  1.92 031  1.92 031 1.07 025 1.00 000 7.99 026 1.9 026 1.98 026 117  0.38 1.00 0.00
0.50 0.05 2.5247 3.47 117 345 114 2.79 0.89 1.21 041 100 0.0 3.63 121 3.61 1.20  3.01 0.95 1.31 0.47  1.00 0.00
1.00 0.05 2.5247 252.94 267.14 10.68 742  3.49 2.03 1.34 055 1.00 001 | 250.76 265.10 11.94 8.46  3.87 2.20  1.45 0.62  1.00 0.03
1.50 0.05  2.5247 3.41 2.60  3.03 222 227 148 1.34 059 1.00 0.5 3.52 270  3.13 2.33  2.39 1.61  1.40 0.65 1.01 0.08
2.00 0.05 2.5247 1.54 0.87 150 0.83 1.4l 0.72 1.18 045 1.01  0.08 1.57 0.90 154 0.86 144 076 1.21 0.48  1.01 0.11
0.25 010 2.8249 2.05 0.25 2.0 025 2.5 025 1.18 038 1.00  0.00 2.10 030  2.10 030 210 030 1.36 048  1.00 0.00
0.50 0.10 2.8249 3.89 1.26  3.87 1.25  3.16 0.97  1.30 0.47 1.00  0.00 4.08 1.32  4.07 1.30  3.42 1.03 143 0.52  1.00 0.00
1.00 0.10 2.8249 25559 260.46 12.37  8.59  3.86 217 143 0.60 1.00  0.02 | 253.07 257.85 13.73 9.72  4.28 2.45  1.55 0.68  1.00 0.03
1.50 0.10 2.8249 3.71 2.72  3.32 2.37  2.48 159 141 0.65 1.00 0.7 3.83 2.84  3.46 2.49  2.62 172 1.49 0.72  1.01 0.10
2.00 0.10  2.8249 1.63 0.93  1.59 0.90  1.48 0.78  1.22 048 101 0.10 1.66 0.96  1.63 0.93  1.52 0.82 126 0.53  1.02 0.13
0.25 0.20 3.0561 2.14 035 2.4 0.35 2.4  0.35 1.30 0.46 1.00 _ 0.00 2.23 042 2.23 042 223 042 1.53 0.50  1.00 0.00
0.50 0.20 3.0561 4.39 1.49 437 146  3.53 1.08  1.40 0.50 1.00  0.00 4.63 1.56  4.61 1.53  3.84 118 153 0.54  1.00 0.00
1.00 0.20 3.0561 254.83 255.66 15.25 11.83  4.23 2.40 150 0.64 1.00  0.02 | 253.33 254.49 17.32  13.74 4.7l 2.74  1.63 0.72  1.00 0.04
1.50 0.20 3.0561 3.95 2.87  3.54 2.50  2.64 1.68 147  0.69 1.01 0.8 4.08 2.98 3.67 259 279 1.80  1.56 0.77  1.01 0.11
2.00 0.20  3.0561 1.69 0.98  1.65 0.93  1.53 0.82  1.26 052 101  0.12 1.73 1.01 168 0.96 1.58  0.86  1.30 0.57  1.02 0.15
0.25 0.30 3.1681 2.23 043 2.24 043 224 043 1.38 049 1.00  0.00 2.35 049  2.35 049  2.35 049 1.6l 0.49  1.00 0.00
0.50 0.30 3.1681 5.02 1.95  5.00 1.94 3.89 130 144 052 1.00  0.00 5.35 2.13 5.6 212 4.29 147 1.60 0.55  1.00 0.00
1.00 0.0 3.1681 259.99 260.90 19.32  16.43  4.59 2.76 154  0.66 1.00  0.02 | 257.33 257.70 22.32 19.45 5.15 321  1.68 0.75  1.00 0.05
1.50 0.30 3.1681 4.10 3.05 3.67 261 274 1.75 150 072 1.01  0.08 4.23 316  3.82 2.76  2.88 1.88  1.60 0.79  1.01 0.12
2.00 0.30 3.1681 1.72 1.00 1.68 0.95 1.56 084 1.27 054 1.01 012 1.76 1.03 172 0.98 1.61 0.88 1.32 0.58  1.02 0.15
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Table 7.6: ARLs and SDRLs of the MaxEWMA-OIRSS control chart when in-control
ARL of MaxEWMA-ORSS chart is fixed to 370

3 0.00 0.25 0.50 1.00 2.00 0.00 0.25 0.50 1.00 2.00
p 3 L ARL SDRL ARL SDRL ARL SDRL ARL SDRL ARL SDRL ARL SDRL ARL SDRL ARL SDRL ARL SDRL ARL SDRL
o% = 0.05 op =0.15
025 005 27650 180  0.33 1.89 034 1.89 034 101 _ 007 100 000 | 196 027 196 028 196 027 104 020 1.00 _ 0.00
0.50 005 27650 344 109 343 108 261 077 106 025 100 000 | 360 117 357 114 28 087 116 037 1.00  0.00
1.00 0.05 27650 370.38 386.23 9.38  6.09 3.03  1.65 121 043 1.00 0.0 | 370.95 386.85 10.57  6.94 3.38 187 130 051 100 0.1
150 0.05 27650  3.42  2.56 298 216 216 136 125 050 100 003 | 357 267 313 226 230 147 132 056 100  0.04
200 005 27650 153  0.86 149 0.8l 139 069 115 040 100 006 | 157 089 153  0.85 143 073 118 043 101 0.7
025 010 3.0529 201 023 201 023 201 023 102 014 1.00 000 | 206 026 206 026 206 025 11l _ 032 1.00 _ 0.00
050 010 3.0529 384 118 382 116 291 08 112 032 100 000 | 400 125 398 124 316 093 124 043 1.00  0.00
1.00 010 3.0529 37349 37712 1063  6.85 331 173 127 047 1.00 0.0 | 37525 379.85 12.06 802 3.71 199 137 055 100 0.1
150 010 3.0529 372 270 325 229 233 146 131 055 1.00 003 | 38 279 341 239 249 158 138 062 100  0.05
200 010 3.0529 161 091 157 086 144 074 118 044 100 007 | 165 095 1.60 090 149 078 122 048 101 _ 0.09
025 020 3.2752  2.09 029 2.09 029 208 028 105 023 1.00 000 | 216 037 216 037 216 036 121 041 1.00 _ 0.00
0.50 020 3.2752 430 138 428 136 321 092 117 038 100  0.00 | 449 148 448 146 349 104 132 047 100  0.00
1.00 0.0 3.2752 37157 371.99 1290 942 3.58  1.89 1.32 051 1.00 0.0 | 373.46 37239 1495 11.31 4.05 220 144 059 100 0.1
150 0.20 3.2752 394 2.8 344 237 246 151 135 058 1.00 004 | 410 295 3.62 253 263 164 143 065 100  0.06
200 020 3.2752 167 096 162 091 150 078 121 047 101 008 | 172 099 1.66 094 155 082 125 051 101 0.0
025 030 3.3799 215 036 215 036 214 035 108 027 100 000 | 225 044 225 044 225 044 126 044 1.00 _ 0.00
050 030 3.3799 487 182 486 179 349 107 120 040 100 000 | 515 199 512 196 3.8 124 136 049 1.00  0.00
1.00 030 3.3799 375.82 379.43 16.37 1342 384 214 134 053 1.00  0.00 | 375.09 373.74 19.31 16.28 435 252 147 061 100  0.01
150 0.0 3.3799 409  3.00 357 249 254 158 137 060 100 004 | 420 316 377 266 274 173 146  0.67 100  0.07
200 030 33799 170 097 1.65 091 152 079 123 048 101 009 | 175 101 170  0.96 157  0.84 127 053 101 0.1
0% = 0.30 0% = 0.50

025 005 27650 208 024 203 024 202 024 115 036 100 000 | 207 027 207 027 207 027 132 047 1.00 0.0
0.50 0.5 2.7650  3.78 122 377 121 307 094 128 046 100 000 | 397 127 395 126 332 10l 141 051 100  0.00
1.00 0.05 27650 375.87 391.03 12.02  7.99 3.80 214 141 059 1.00  0.02 | 369.22 382.04 13.39 911 421 243 153  0.67 100  0.03
150 0.05 27650  3.70  2.77 3.29 241 245 160 139  0.63 100 006 | 3.82 287 343 252 260 173 147 071 101  0.09
200 005 27650 161 092 157  0.80 147 078 122 048 101 010 | 1.65 096 161 093 150 081 125 052 101 _ 0.12
025 010 3.0520 213  0.34 213 034 213 034 130 046 1.00 000 | 221 041 221 041 221 041 153 050 1.00 _ 0.00
0.50 010 3.0520 423 133 422 131 345 102 139 050 100 000 | 444 138 443 138 373 109 154 054 1.00  0.00
1.00 0.0 3.0529 380.95 384.16 13.78  9.40 417 229 150  0.64 1.00  0.02 | 375.68 380.89 1550 10.82 4.64 259 163 072 100  0.04
150 0.0 3.0529  4.02 292 3.60 255 268 173 147 070 101 008 | 413 3.0l 374 267 282 184 156 0.7 101 011
200 010 3.0529 170 099 1.66 095 154 083 126 052 101 011 | 173  1.02 169 098 159 088 130 057 102 0.4
025 020 3.2752 227 045 228 045 227 045 146 050 1.00  0.00 | 240  0.50 240  0.50 240  0.50 1.69 _ 046 1.00 _ 0.00
050 020 3.2752 478 158 477 157 38 116 149 052 100 000 | 505 167 504 166 420 127 164 055 100  0.00
100 0.20 3.2752 377.80 380.38 17.61 13.71 459 257 158 0.8 1.00  0.03 | 374.68 37545 2017 1623 511 293 172 076 100  0.05
150 020 3.2752 428  3.07 383 268 2.8 179 154 073 101 009 | 440 319 397 279 299 192 164 081 102 013
200 020 3.2752 176 102 172 098 160 087 130 056 102 013 | 18  1.06 176 102 164 091 134 060 103 _ 0.16
025 030 3.3799  2.40 051 240 051 240 050 153 050 1.00  0.00 | 2.55  0.58 2555 053 255 053 176 043 1.00 _ 0.00
050 030 3.3799 557 220 554 218 430 145 154 054 100  0.00 | 597 242 598 241 476 164 170 057 1.00  0.00
1.00 0.30 3.3799 382.46 38226 23.16  20.06 5.00  3.00 1.62 070 1.00  0.03 | 378.85 380.09 26.94 23.83 5.68 356 177  0.79 100  0.06
150 030 3.3799 444 330 398 283 293 1.8 157 076 101 010 | 457 339 414 298 312 203 168 084 102  0.14
200 030 33799 179 104 175 101 163 089 131 057 102 013 | 18  1.09 179 104 168 094 136 062 103 0.7
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An Improved Maximum Exponentially Weighted Moving Average Control Chart for
140 Monitoring Process Mean and Variability

Table 7.7: A comparison of ARLs and SDRLs of the MaxEWMA-ORSS (¢ = 0.05)
with optimal MaxEWMA-SRS and optimal MaxGWMA-SRS charts when in-control
ARL is fixed to 185

P Chart o— 0.00 025 0.50 0.75 1.00 1.50 2.00 2.50 3.00
0.25 MaxEWMA-SRS ARL 149 149 149 149 143 1.00 1.00 1.00 1.00
SDRL 052 052 052 051 049 0.02 0.00 0.00 0.00

MaxGWMA-SRS ARL 149 149 149 148 142 1.00 1.00 1.00 1.00
SDRL 052 052 052 051 049 0.02 0.00 0.00 0.00

MaxEWMA-ORSS ARL 154 154 153 1.06 1.00 1.00 1.00 1.00 1.00
SDRL 0.50 050 0.50 0.23 0.00 0.00 0.00 0.00 0.00

0.50 MaxEWMA-SRS ARL 343 343 322 244 175 1.05 1.00 1.00 1.00
SDRL 150 150 129 085 0.59 0.21 0.01 0.00 0.00

MaxGWMA-SRS ARL 343 343 322 244 175 105 100 1.00 1.00
SDRL 1.50 150 129 0.85 0.59 0.21 0.01 0.00 0.00

MaxEWMA-ORSS ARL 289 287 213 126 101 1.00 100 1.00 1.00
SDRL 095 094 064 044 0.07 0.00 0.00 0.00 0.00

0.75 MaxEWMA-SRS ARL 1274 1035 5.14 283 1.8 114 1.01 1.00 1.00
SDRL 791 599 264 132 080 035 0.0r 0.01 0.00

MaxGWMA-SRS ARL 1264 1030 5.14 283 186 1.14 1.01 1.00 1.00
SDRL 7.78 591 264 132 080 0.35 0.07 0.01 0.00

MaxEWMA-ORSS ARL 957 599 237 136 105 1.00 1.00 1.00 1.00
SDRL 514 295 105 052 021 0.00 0.00 0.00 0.00

1.00 MaxEWMA-SRS ARL 185.00 16.87 554 295 195 122 1.03 1.00 1.00
SDRL 186.23 13.13 3.65 1.71 1.00 0.44 0.16 0.03 0.01

MaxGWMA-SRS ARL 185.00 16.31 5.51 295 195 122 1.03 1.00 1.00
SDRL 186.23 1240 3.60 1.71 1.00 044 0.16 0.03 0.01

MaxEWMA-ORSS ARL 18491 7.17 246 144 110 1.00 1.00 1.00 1.00
SDRL 198.75 492 135 0.64 0.31 0.03 0.00 0.00 0.00

1.25 MaxEWMA-SRS ARL 11.22 805 450 278 195 127 1.06 1.01 1.00
SDRL 10.04 6.89 3.44 1.86 1.13 0.52 0.24 0.09 0.02

MaxGWMA-SRS ARL 1060 771 442 277 195 1.27 1.06 1.01 1.00
SDRL 933 641 334 182 113 052 024 0.09 0.02

MaxEWMA-ORSS ARL 786 459 227 147 115 1.00 1.00 1.00 1.00
SDRL 684 358 142 0.70 038 0.07 0.00 0.00 0.00

1.50 MaxEWMA-SRS ARL 399 366 294 227 180 129 1.09 1.02 1.00
SDRL 3.28 296 222 155 108 056 029 0.13 0.05

MaxGWMA-SRS ARL 390 359 290 226 180 129 1.09 1.02 1.00
SDRL 3.09 278 215 151 1.07 056 029 013 0.05

MaxEWMA-ORSS ARL 28 249 182 139 116 101 1.00 1.00 1.00
SDRL 221 181 111 066 040 0.11 0.02 0.00 0.00

2.00 MaxEWMA-SRS ARL 174 172 164 152 141 122 110 1.04 1.01
SDRL 111 109 1.00 0.87 0.74 0.50 0.32 0.19 0.10

MaxGWMA-SRS ARL 1.74 171 163 152 141 1.22 110 1.04 1.01
SDRL 1.09 106 098 0.86 0.74 050 0.32 0.19 0.10

MaxEWMA-ORSS ARL 140 137 128 1.18 110 1.02 1.00 1.00 1.00
SDRL 0.74 069 058 045 032 0.14 0.04 0.01 0.00

2.50 MaxEWMA-SRS ARL 131 130 128 1.25 121 1.14 1.08 1.04 1.02
SDRL 064 063 060 056 051 039 029 020 0.13

MaxGWMA-SRS ARL 1.31 130 128 1.25 121 1.14 1.08 1.04 1.02
SDRL 064 063 060 056 051 039 029 020 0.13

MaxEWMA-ORSS ARL 113 112 110 1.08 1.05 1.02 1.00 1.00 1.00
SDRL 038 037 033 029 023 0.12 0.05 0.01 0.00

3.00 MaxEWMA-SRS ARL 120 119 118 117 115 1.11 1.07 1.04 1.02
SDRL 0.52 051 050 047 044 036 028 021 0.15

MaxGWMA-SRS ARL 120 119 118 117 115 1.11 1.07 1.04 1.02
SDRL 051 050 049 046 043 036 028 0.21 0.15

MaxEWMA-ORSS ARL 1.05 105 1.04 1.03 1.02 1.01 1.00 1.00 1.00
SDRL 023 023 021 019 0.15 0.10 0.05 0.02 0.01
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Table 7.8: A comparison of ARLs and SDRLs of the MaxEWMA-ORSS (¢ = 0.05)
with optimal MaxEWMA-SRS and optimal MaxGWMA-SRS charts when in-control
ARL is fixed to 250
p Chart ) 0.00 0.25 050 0.75 1.00 150 2.00 250 3.00
0.25 MaxEWMA-SRS ARL 1.58 1.58 158 158 154 1.00 1.00 1.00 1.00
SDRL 0.53 0.53 0.53 052 0.50 0.04 0.00 0.00 0.00
MaxGWMA-SRS ARL 1.58 158 158 158 1.54 1.00 1.00 1.00 1.00
SDRL 053 053 0.53 052 050 0.04 0.00 0.00 0.00
MaxEWMA-ORSS ARL 1.71 171 171 115 1.00 1.00 1.00 1.00 1.00
SDRL 0.45 045 045 036 0.00 0.00 0.00 0.00 0.00
0.50 MaxEWMA-SRS ARL 3.68 3.68 347 264 1.87 1.08 1.00 1.00 1.00
SDRL 1.57 157 136 089 0.60 0.26 0.01 0.00 0.00
MaxGWMA-SRS ARL 3.68 368 347 264 187 1.08 1.00 1.00 1.00
SDRL 1.57 157 136 0.89 0.60 0.26 0.01 0.00 0.00
MaxEWMA-ORSS ARL 3.11 3.09 228 134 1.01 1.00 1.00 1.00 1.00
SDRL 0.99 098 066 048 0.10 0.00 0.00 0.00 0.00
0.75 MaxEWMA-SRS ARL 13.90 1144 561 3.04 198 1.17 1.01 1.00 1.00
SDRL 839 641 2.79 138 084 0.39 0.07r 0.01 0.00
MaxGWMA-SRS ARL 13.77 1137 5.61 3.04 198 1.17 1.01 1.00 1.00
SDRL 824 633 279 138 084 038 0.09 0.01 0.00
MaxEWMA-ORSS ARL 10.42 6.58 2.53 1.42 1.06 1.00 1.00 1.00 1.00
SDRL 5.42 3.13 1.10 0.56 0.24 0.00 0.00 0.00 0.00
1.00 MaxEWMA-SRS ARL 250.00 18.77 6.00 3.15 2.06 125 1.04 1.00 1.00
SDRL 249.93 14.15 3.84 1.79 1.05 047 0.18 0.04 0.01
MaxGWMA-SRS ARL 250.00 18.08 5.96 3.15 2.06 125 1.04 1.00 1.00
SDRL 24993 13.30 3.79 1.79 1.05 047 0.18 0.04 0.01
MaxEWMA-ORSS ARL 249.55 781 261 150 113 1.00 1.00 1.00 1.00
SDRL 263.99 5.22 141 0.67 0.34 0.03 0.00 0.00 0.00
1.25 MaxEWMA-SRS ARL 12.53 894 489 297 2.06 1.31 1.07 1.01 1.00
SDRL 10.84 743 3.66 197 1.19 0.55 0.26 0.10 0.02
MaxGWMA-SRS ARL 11.84 854 481 296 2.06 131 1.07 1.01 1.00
SDRL 10.11 6.94 356 193 1.19 0.55 0.26 0.10 0.02
MaxEWMA-ORSS ARL 8.61 5.01 242 1.52 1.17 1.01 1.00 1.00 1.00
SDRL 731 386 151 0.74 041 0.08 0.01 0.00 0.00
1.50 MaxEWMA-SRS ARL 4.33 397 3.16 242 190 1.33 1.10 1.02 1.00
SDRL 3.50 316 237 165 1.15 0.59 0.32 0.15 0.06
MaxGWMA-SRS ARL 4.22 3.88 3.12 240 1.89 1.33 1.10 1.02 1.00
SDRL 3.29 298 230 161 113 0.59 0.32 0.15 0.06
MaxEWMA-ORSS ARL 3.08 265 192 144 1.18 1.01 1.00 1.00 1.00
SDRL 2.34 191 119 0.71 043 0.12 0.02 0.00 0.00
2.00 MaxEWMA-SRS ARL 1.83 180 1.71 159 146 124 111 1.04 1.01
SDRL 1.19 1.15 1.06 093 079 053 034 0.21 0.11
MaxGWMA-SRS ARL 1.82 1.79 1.70 158 146 124 111 1.04 1.01
SDRL 1.16 1.13 104 091 078 053 034 021 0.11
MaxEWMA-ORSS ARL 1.45 141 131 120 1.12 1.02 1.00 1.00 1.00
SDRL 0.78 0.74 0.62 048 035 0.15 0.05 0.01 0.00
2.50 MaxEWMA-SRS ARL 1.34 1.33 131 128 124 115 1.09 1.04 1.02
SDRL 0.68 0.67 0.64 059 054 042 031 0.21 0.14
MaxGWMA-SRS ARL 1.34 133 131 128 124 115 109 1.04 1.02
SDRL 0.67 066 0.63 058 054 042 031 021 0.14
MaxEWMA-ORSS ARL 1.15 1.14 112 109 1.06 1.02 1.00 1.00 1.00
SDRL 041 039 036 030 024 0.13 0.06 0.02 0.00
3.00 MaxEWMA-SRS ARL 1.22 1.21 120 1.19 1.16 1.12 1.08 1.05 1.02
SDRL 0.55 0.54 0.52 0.50 0.46 0.38 0.29 0.22 0.16
MaxGWMA-SRS ARL 1.22 1.21 120 118 1.16 1.12 1.08 1.05 1.02
SDRL 054 053 051 049 045 038 0.29 0.22 0.16
MaxEWMA-ORSS ARL 1.06 106 105 104 103 1.01 1.00 1.00 1.00
SDRL 0.25 0.24 023 020 0.17 0.11 0.06 0.03 0.01
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Table 7.9: A comparison of ARLs and SDRLs of the MaxEWMA-ORSS (¢ = 0.05)
with optimal MaxEWMA-SRS and optimal MaxGWMA-SRS charts when in-control
ARL is fixed to 370

P Chart 6 0.00 025 0.50 0.75 1.00 1.50 2.00 2.50 3.00
0.25 MaxEWMA-SRS ARL 171 171 171 171 166 1.01 1.00 1.00 1.00
SDRL 053 053 053 053 048 0.09 0.00 0.00 0.00

MaxGWMA-SRS ARL 171 171 171 170 166 1.01 1.00 1.00 1.00
SDRL 053 053 053 053 048 0.09 0.00 0.00 0.00

MaxEWMA-ORSS ARL 1.89 189 1.88 1.37 1.00 1.00 1.00 1.00 1.00
SDRL 032 033 033 048 0.01 0.00 0.00 0.00 0.00

0.50 MaxEWMA-SRS ARL 4.02 4.02 382 290 204 113 1.00 1.00 1.00
SDRL 166 166 146 094 0.62 0.33 0.02 0.00 0.00

MaxGWMA-SRS ARL 4.02 4.02 382 290 203 113 1.00 1.00 1.00
SDRL 166 166 146 094 0.62 0.33 0.02 0.00 0.00

MaxEWMA-ORSS ARL 338 337 250 146 1.02 1.00 1.00 1.00 1.00
SDRL 1.04 103 0.70 0.51 0.14 0.00 0.00 0.00 0.00

0.75 MaxEWMA-SRS ARL 1552 1296 6.25 3.33 214 123 1.01 1.00 1.00
SDRL 9.06 698 298 146 088 043 0.11 0.01 0.00

MaxGWMA-SRS ARL 1536 1288 6.25 3.33 214 123 1.01 1.00 1.00
SDRL 885 687 298 146 088 043 0.11 0.01 0.00

MaxEWMA-ORSS ARL 1156 738 275 152 1.09 1.00 1.00 1.00 1.00
SDRL 579 337 116 059 029 0.01 0.00 0.00 0.00

1.00 MaxEWMA-SRS ARL 370.00 2142 6.63 342 221 131 1.05 1.00 1.00
SDRL 368.91 85.57 4.10 1.90 111 0.51 0.21 0.05 0.01

MaxGWMA-SRS ARL  370.00 20.57 6.58 3.42 221 131 1.05 1.00 1.00
SDRL 368.92 14.53 4.04 1.90 1.11 0.51 0.21 0.05 0.01

MaxEWMA-ORSS ARL 37047 8.67 282 159 116 1.00 1.00 1.00 1.00
SDRL 383.99 557 150 0.71 0.38 0.05 0.00 0.00 0.00

1.25 MaxEWMA-SRS ARL 1437 1021 544 324 221 137 1.09 1.01 1.00
SDRL 11.92 815 3.96 211 128 0.60 0.29 0.11 0.03

MaxGWMA-SRS ARL 1356 9.72 534 322 221 137 1.09 1.01 1.00
SDRL 1112 763 3.78 2.07 128 0.60 029 0.11 0.03

MaxEWMA-ORSS ARL 969 561 261 161 121 101 1.00 1.00 1.00
SDRL 792 419 161 080 044 0.09 0.01 0.00 0.00

1.50 MaxEWMA-SRS ARL 482 439 348 263 203 138 1.12 1.03 1.00
SDRL 3.80 342 257 179 124 064 035 0.17 0.07

MaxGWMA-SRS ARL 4.69 429 343 261 202 138 1.12 1.03 1.00
SDRL 359 324 245 17 122 064 035 0.17 0.07

MaxEWMA-ORSS ARL 335 287 206 151 122 102 100 1.00 1.00
SDRL 251 207 129 0.77 047 0.14 0.02 0.00 0.00

2.00 MaxEWMA-SRS ARL 195 191 1.81 1.67 1.53 128 1.13 1.05 1.02
SDRL 128 124 114 1.00 0.85 0.57 0.37 023 0.13

MaxGWMA-SRS ARL 194 190 1.80 1.67 153 128 1.13 1.06 1.02
SDRL 125 122 112 098 0.84 0.57 037 0.23 0.12

MaxEWMA-ORSS ARL 151 147 136 124 114 1.03 1.00 1.00 1.00
SDRL 083 079 0.67 052 038 0.17 0.05 0.01 0.00

2.50 MaxEWMA-SRS ARL .39 138 136 1.32 1.27 1.18 110 1.05 1.02
SDRL 073 072 069 064 058 045 034 023 0.15

MaxGWMA-SRS ARL 1.39 138 136 1.32 1.27 1.18 1.10 1.06 1.02
SDRL 0.72 071 068 063 058 045 034 023 0.15

MaxEWMA-ORSS ARL 117 116 113 1.10 1.07 1.02 1.00 1.00 1.00
SDRL 043 042 038 033 027 0.15 0.06 0.02 0.01

3.00 MaxEWMA-SRS ARL 125 124 123 121 119 114 1.09 1.05 1.03
SDRL 0.60 058 057 054 050 041 032 024 0.17

MaxGWMA-SRS ARL 125 124 123 121 119 114 1.09 105 1.03
SDRL 0.58 057 055 053 049 040 032 024 0.17

MaxEWMA-ORSS ARL 1.07 106 1.06 1.05 1.03 1.01 1.00 1.00 1.00
SDRL 027 026 024 022 019 0.12 0.06 0.03 0.01
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Table 7.10: ARLs and SDRLs of the MaxEWMA-OIRSS chart versus optimal
MaxEWMA-SRS and optimal MaxEWMA-GWMA-SRS control charts when in-control
ARL is fixed to 370

P, Chart/o% 5—~ 000 025 050 1.00 2.0
025 MaxEWMA-SRS ARL 171 171 171 166 1.00
SDRL 053 0.53 0.53 048 0.00
MaxGWMA-SRS ARL 171 171 171 1.66 1.00
SDRL 053 0.53 0.53 048 0.00

0.05 ARL 189 189 189 1.01 1.00
SDRL 033 0.34 034 007 0.00

0.15 ARL 196 1.96 196 1.04 1.00
SDRL 027 028 0.27 020 0.00

0.30 ARL 203 203 202 115 1.00
SDRL 024 024 024 036 0.00

0.50 ARL 207 207 207 132 1.00
SDRL 027 027 0.27 047 0.00

050 MaxEWMA-SRS ARL 402 402 382 204 1.00
SDRL  1.66 1.66 146 0.62 0.02
MaxGWMA-SRS ARL 402 402 382 203 1.00
SDRL  1.66 1.66 1.46 0.62 0.02

0.05 ARL 344 343 261 106 1.00
SDRL  1.09 108 0.77 025 0.00

0.15 ARL 360 357 282 116 1.00
SDRL 117 114 087 037 0.00

0.30 ARL 378 3.77 3.07 1.28 1.00
SDRL  1.22 121 094 046 0.00

0.50 ARL 397 395 332 141 1.00
SDRL 127 126 101 051 0.00

100 MaxEWMA-SRS ARL  370.00 21.42 6.63 221 1.05
SDRL 368.91 8557 4.10 111 0.21
MaxGWMA-SRS ARL  370.00 20.57 6.58 221 1.05
SDRL 368.92 14.53 4.04 111 021

0.05 ARL  370.38 9.38 3.03 121 1.00
SDRL 386.23 6.09 1.65 043 0.00

0.15 ARL 37095 10.57 3.38 130 1.00
SDRL 386.85 6.94 1.87 051 0.01

0.30 ARL 37587 12.02 3.80 141 1.00
SDRL 391.03 7.99 214 059 0.02

0.50 ARL  369.22 13.39 4.21 153 1.00
SDRL 382.04 9.11 243 067 0.03

1.50 MaxEWMA-SRS ARL 482 439 348 203 112
SDRL  3.80 3.42 257 124 035
MaxGWMA-SRS ARL 469 429 343 202 112
SDRL 359 3.24 245 122 0.35

0.05 ARL 342 298 216 125 1.00
SDRL 256 216 1.36 050 0.03

0.15 ARL 357 313 230 132 1.00
SDRL 267 226 147 056 0.04

0.30 ARL 370 329 245 1.39 1.00
SDRL  2.77 241 160 063 0.06

0.50 ARL 3.82 343 260 147 101
SDRL  2.87 252 1.73 0.71 0.09

2.00 MaxEWMA-SRS ARL 195 191 181 153 1.13
SDRL 128 124 114 085 037
MaxGWMA-SRS ARL 194 190 180 153 1.13
SDRL 125 1.22 112 084 037

0.05 ARL 153 149 139 115 1.00
SDRL  0.86 0.8l 0.69 040 0.06

0.15 ARL 157 153 143 118 1.01
SDRL  0.89 0.85 0.73 043 0.07

0.30 ARL 161 157 147 122 1.01
SDRL 092 0.89 0.78 048 0.10

0.50 ARL 165 161 150 1.25 1.01
SDRL 096 093 081 052 0.12
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A comparison of diagnostic abilities of the MaxGWMA-SRS and

MaxEWMA-ORSS control charts when in-control ARL is fixed to 370
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Table 7.11: (Continued).
MaxGWMA-SRS MaxEWMA-ORSS
p —~ 0.00 025 050 0.75 1.00 1.50 200 250 300 0.00 025 050 0.75 1.00 1.50 2.00 2.50 3.00
- 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1.50 m+ 72 205 413 587 703 818 862 874 879 59 245 499 625 720 779 782 774 T79
m— 70 21 4 1 1 0 0 0 0 43 8 2 0 0 0 0 0 0
v+ 829 733 479 285 180 55 19 5 2 854 661 335 152 80 12 0 0 0
v— 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
++ 13 38 102 126 116 127 119 121 119 19 85 164 223 200 209 218 226 221
+— 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
—+ 16 3 2 1 0 0 0 0 0 25 1 0 0 0 0 0 0 0
- 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
2.00 m+ 67 122 192 262 331 461 539 585 600 39 93 165 276 337 394 408 425 417
m— 64 32 18 11 4 1 1 0 0 35 23 2 0 0 0 0 0 0
v+ 753 717 639 520 408 218 101 39 11 784 693 547 328 191 48 2 0 0
v— 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
++ 56 97 135 202 254 319 359 376 389 70 168 277 394 472 558 590 575 583
+— 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
—+ 60 32 16 5 3 1 0 0 0 72 23 9 2 0 0 0 0 0
- 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
250 m+ 58 86 119 147 188 273 331 369 396 22 52 75 105 153 176 196 188 169
m— 59 38 26 15 9 1 0 0 0 21 10 3 0 0 0 0 0 0
v+ 664 658 616 558 476 314 193 94 37 711 664 566 453 271 103 25 2 0
v— 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
++ 106 149 200 249 311 406 474 536 567 108 217 318 431 573 721 779 810 831
+— 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
—+ 113 69 39 31 16 6 2 1 0 138 57 38 11 3 0 0 0 0
- 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
3.00 m+ 57 79 99 117 140 187 218 253 272 12 36 38 53 55 90 82 103 81
m— 57 42 32 22 13 7 3 0 0 16 4 7 1 0 1 0 0 0
v+ 583 583 567 541 467 352 234 145 70 648 617 538 475 369 162 53 16 1
v— 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
++ 147 182 229 270 344 439 538 599 656 167 267 362 444 560 746 863 881 918
+— 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
— 156 114 73 50 36 15 7 3 2 157 76 55 27 16 1 2 0 0
- 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
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Figure 7.1: Comparison of the MaxEWMA-SRS, MaxGWMA-SRS and MaxEWMA-
ORSS control charts for piston rings data

7.6 An application to real data

In this section, we consider a real data to explain the implementation of the MaxEWMA-SRS, MaxGWMA-
SRS and MaxEWMA-ORSS control charts.

Suppose a quality practitioner is interested in establishing a statistical control of the inside diameters of
the piston rings from an automotive engine manufactured by a forging process. For this purpose, 40 subgroups
each of size five from an in-control process are observed. The complete data set is given in Montgomery
(2009). The inside diameters of the piston rings are measured in millimeters (mm). We combine all samples
such that we have 200 measurements of the inside diameters of piston rings. The data set reasonably satisfies
the normality assumptions (cf. Haq et al., [2013a).

In order to apply the MaxEWMA-SRS, MaxGWMA-SRS and MaxEWMA-ORSS control charts, we
need to generate data under both SRS and ORSS schemes. We draw 25 samples each of size five from the
200 measurements using SRS and ORSS methods. Both simple random and ordered ranked set samples
are obtained by using with replacement sampling scheme. Based on these 25 samples under both sampling

schemes, we estimate the control limits of each of the control chart considered here. In Figure sub-figures
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A, C and E, and plot the UCLs of these control charts along with their plotting-statistics. The in-control
ARL for all control charts is fixed to 370 with smoothing constant £ = 0.05. For the MaxEWMA-SRS chart,
we consider L = 2.764; for the MaxGWMA-SRS chart, we consider ¢ = 0.95, @ = 0.80 and L = 2.8430. It is
clear from sub-figures A, C and E that the underlying process is in-control for all control charts. Now suppose
that due to some interval cause, the process gets out-of-control. In order to capture that situation, 15 samples,
each of size five, from 200 measurements under both sampling schemes are drawn. We multiply the values
within each subgroup, obtained under SRS or ORSS scheme, by 1.00005 and add 0.01. The plotting-statistics
of all control charts are then calculated for these 15 samples and are plotted in sub-figures B, D and F. From
these sub-figures, it is evident that all control charts are signaling out-of-control signals after 25th sample. It
is interesting to note that the MaxEWMA-SRS, MaxGWMA-SRS and MaxEWMA-ORSS charts detect a
random shift in the process parameters at 29th, 28th and 27th samples, respectively. This shows that the
proposed MaxEWMA-ORSS chart dominates the MaxEWMA-SRS and MaxGWMA-SRS control charts, and

is able to detect random shift in the process parameters substantially quicker than its counterparts.

7.7 Conclusion

In this chapter, we proposed improved MaxEWMA control charts based on ORSS and OIRSS methods for
simultaneously monitoring the process mean and dispersion, named MaxEWMA-ORSS and MaxEWMA-
OIRSS charts. Extensive Monte Carlo simulations have been used to estimate the ARLs and SDRLs of the
proposed MaxEWMA control charts. In order to fairly access the detection abilities of the proposed control
charts, these control charts are compared with their counterparts based on SRS, i.e., MaxEWMA-SRS and
MaxGWMA-SRS charts. It is worth mentioning here that both MaxEWMA-ORSS and MaxEWMA-OIRSS
charts perform uniformly better than the MaxEWMA-SRS and MaxGWMA-SRS charts for all values of
d when p > 0.50. Finally, we considered a real data set to explain the implementation of the proposed
MaxEWMA-ORSS control chart. Therefore, we recommend the use of the MaxEWMA-ORSS control chart
for an improved monitoring of process mean and dispersion. The current work can be further improved by

constructing the MaxEWMA control chart based on DRSS scheme.
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Chapter 8

New Exponentially Weighted Moving
Average Control Charts for
Monitoring Process Mean and

Process Dispersion

This chapter appeared in:
Haq, A., Brown, J., Moltchanova, E., 2014, New Exponentially Weighted Moving Average Control Charts for
Monitoring Process Mean and Process Dispersion, Quality and Reliability Engineering International, Early

view, DOI: 10.1002/qre.16486.

Exponentially weighted moving average (EWMA) control charts have been widely accepted because of
their excellent performance in detecting small to moderate shifts in the process parameters. In this chapter,
we propose new EWMA control charts for monitoring the process mean and the process dispersion. These
EWMA control charts are based on the best linear unbiased estimators obtained under ordered double
ranked set sampling (ODRSS) and ordered imperfect double ranked set sampling (OIDRSS) schemes, named
EWMA-ODRSS and EWMA-OIDRSS charts, respectively. We use Monte Carlo simulations to estimate the
average run length, median run length, and standard deviation of run length of the proposed EWMA charts.
We compare the performances of the proposed EWMA charts with the existing EWMA charts when detecting
shifts in the process mean and in the process variability. It turns out that the EWMA-ODRSS mean chart
performs uniformly better than the classical EWMA, fast initial response-based EWMA, Shewhart-EWMA
and hybrid EWMA mean charts. The EWMA-ODRSS mean chart also outperforms the Shewhart-EWMA
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mean charts based on ranked set sampling (RSS) and median RSS schemes and the EWMA mean chart
based on ordered RSS scheme. Moreover, the graphical comparisons of the EWMA dispersion charts reveal
that the proposed EWMA-ODRSS and EWMA-OIDRSS charts are more sensitive than their counterparts.
We also provide illuminating examples to illustrate the implementation of the proposed EWMA mean and

dispersion charts.

8.1 Introduction

Statistical quality control charts are well-known process monitoring tool of statistical process control (SPC).
The main objective of these control charts is to detect infrequent variations in the industrial processes as early
as possible. The monitoring and identification of special cause of variations in the production processes are
key features of the SPC and can be used to ensure that necessary corrective actions are taken before defective
items are produced. The basic concept of the control chart was first introduced by Walter A. Shewhart in
1920s. Later on, this concept led to the introduction of modern SPC. Presently, the advanced statistical
process monitoring techniques include exponentially weighted moving average (EWMA) and cumulative sum
(CUSUM) control charts. In recent years, quality control charts have found extensive applications in various
fields, like signal segmentation, nuclear engineering, epidemiology, navigation system monitoring, fisheries,
health care and public health surveillance, and eduction, refer to [Montgomery| (2009), Hawkins and Olwell
(1998)), Masson| (2007), Hwang et al.| (2008)), (Woodall| (2006)), [Yashchin| (1989), |Pazhayamadom et al.| (2013))
and references cited therein.

The EWMA chart was first introduced by Roberts (1959) for monitoring the process mean. The traditional
Shewhart chart is a special case of the EWMA chart. The CUSUM chart was suggested by Page (1954). In
recent years, there have been substantial improvements and advancements in both EWMA and CUSUM
charts. [Abbas et al.| (2013)) proposed an improved EWMA-CUSUM chart for monitoring the process mean.
They showed that the CUSUM chart based on the EWMA-statistic is more powerful than the existing charts
when detecting small shifts in the process mean. Riaz et al.| (2011) and Abbas et al.| (2011)) increased the
detection abilities of the CUSUM and EWMA charts using several run rules. Haq| (2013) proposed a hybrid
EWMA chart by mixing the plotting-statistics of two EWMA charts for monitoring the process mean. It is
shown that the hybrid EWMA chart is more sensitive than the EWMA-CUSUM chart for detecting small
shifts in the process mean. Recently, Haq et al. (2014) suggested improved fast initial response features for
both EWMA and CUSUM charts. Note that all of these control charts are based on simple random sampling
(SRS) method. For more literature on the process mean control charts, refer to Riaz| (2008b), Nazir et al.
(2013), |Ahmad et al| (2014), Abbas et al.| (2013), Schoonhoven et al.| (2009} |2011)) and references therein.

The traditional ranked set sampling (RSS) was introduced by McIntyre| (1952). The RSS scheme has now
been applied to different fields, including biological and environmental studies, reliability theory, education,
and statistical quality control. The RSS scheme becomes an efficient alternative to SRS when taking actual

measurement of the quality characteristic is very costly or involves breaking the product that is expensive,
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hard to construct, and so on, while ranking a small set of selected units is cheap based on their quality
level or by using non-destructive tests, for example, testing the weights or shape of products using expert
knowledge (cf. |Jafari Jozani and Mirkamali} 2011). As previously mentioned, control charts have many
applications in health care and public health monitoring and surveillance. Control charts can be used for
hospital monitoring with respect to patient infection rates, patient falls or accidents, emergency waiting room
times, and so on. For these purposes, data on several different variables are collected on either weekly or
monthly basis from patients in different hospitals (cf. Montgomery, [2009). The data from patients can be
obtained via RSS schemes using expert’s knowledge or using auxiliary variables. It is customary to use the
auxiliary variables in order to judge the ranks of the study variable. [Salazar and Sinha) (1997) suggested
an improved Shewhart-type control chart for monitoring the process mean based on RSS scheme. Later
on, their work was extended by Muttlak and Al-Sabah| (2003) who constructed the Shewhart-type quality
control charts for detecting changes in the process mean based on perfect and imperfect RSS schemes. They
showed that the RSS-based mean charts are more efficient than the classical Shewhart mean chart based
on SRS. |Al-Saleh and Al-Kadiri (2000) introduced double RSS (DRSS) scheme for efficient estimation of
the population mean. They showed that the mean estimator based on DRSS is more efficient than the
mean estimators with RSS and SRS schemes. Using this fact, |Abujiya and Muttlak (2004) proposed the
Shewhart-type quality control charts for monitoring process mean based on DRSS schemes. It is shown that
the DRSS-based mean charts outperform their counterparts based on RSS and SRS methods. The concept
of ordered RSS (ORSS) scheme was introduced by Balakrishnan and Li| (2005} 2008). They obtained the
best linear unbiased estimators (BLUEs) under ORSS (BLUEs-ORSS) of the unknown parameters (location
and scale) of several location-scale families of distributions. They showed that the BLUEs-ORSS are more
efficient than their counterparts based on RSS and SRS schemes. |Abujiya et al.| (2013bla) proposed the
Shewhart-CUSUM and the Shewhart-EWMA control charts for monitoring the process mean based on RSS
and median RSS (MRSS) schemes. They showed that these control charts dominate their counterparts based
on SRS scheme under both perfect and imperfect RSS scenarios. Recently, Haq et al.| (2013a)) extended the
work of Balakrishnan and Li (2005)) in statistical quality control and constructed some improved EWMA
quality control charts for monitoring the process mean and the process dispersion based on ORSS and ordered
imperfect RSS (OIRSS) schemes and named them EWMA-ORSS and EWMA-OIRSS charts. For more
details on RSS-based control charts, refer to |Al-Omari and Haq| (2012), |Abujiya et al. (2014) and references
cite therein.

Dispersion charts are also frequently used to detect the changes in the process dispersion. |[Page| (1954)
suggested a CUSUM chart using a sample range for monitoring the process variability. Later on, |[Crowder and
Hamilton| (1992) applied the logarithmic transformation to the unbiased sample variance (5$2) and proposed
an EWMA dispersion chart for detecting increases in the process standard deviation. A comprehensive
comparison of the one-sided dispersion charts was considered by |Acosta-Mejia et al. (1999). (Castagliola (2005)

applied three-parametric logarithmic transformation to S? and proposed a S2-EWMA chart for monitoring



New Exponentially Weighted Moving Average Control Charts for Monitoring Process Mean
152 and Process Dispersion

the process dispersion. Later on, based on the same transformation, |Castagliola et al.| (2009) proposed a
CUSUM-S? chart for monitoring the process variability. Following |Castagliola (2005), |Abbas et al.| (2013a))
proposed a CUSUM chart based on the EWMA-statistic and named it CS-EWMA chart, for monitoring
the process variance. They showed that the CS-EWMA chart performs better than the S>-EWMA and the
CUSUM-S? charts in detecting small shifts in the process dispersion. |Abbasi and Miller (2013) proposed a
mean deviation based EWMA chart for monitoring the process dispersion. Note that all of these dispersion
charts are based on the traditional SRS scheme. Haq| (2014) extended the work of |Abbasi and Miller| (2013)
and proposed an improved mean deviation based EWMA chart for monitoring the process dispersion using
RSS scheme. For more literature on the dispersion charts, refer to Haq et al.| (2013a), Abbasi et al.| (2012,
Abbasi and Miller| (2012), Riaz and Does| (2009), [Riaz (20082), Abbas et al. (2013b)) and references therein.

Haq et al.| (2014)) introduced ordered double RSS (ODRSS) scheme for estimating the unknown parameters
of a location-scale family of distributions. They showed that the BLUEs based on ODRSS (BLUEs-ODRSS)
scheme are more efficient than the BLUEs-ORSS. In this chapter, we extend their work in statistical quality
control and propose new EWMA charts for monitoring the process mean and the process dispersion based
on ODRSS and ordered imperfect DRSS (OIDRSS) schemes, named EWMA-ODRSS and EWMA-OIDRSS
charts, respectively. Based on extensive Monte Carlo simulations, we estimate the run length characteristics,
i.e., average run length (ARL), median run length (MDRL), and standard deviation of run length (SDRL),
of the proposed EWMA charts. ARL is defined as the expected numbers of observations that are required
to signal a particular size shift in the process location or dispersion or both. The proposed EWMA charts
are compared with their counterparts based on SRS, RSS, MRSS and ORSS schemes. It is observed that
the proposed EWMA charts are better at signaling different shifts in the process mean and in the process
dispersion that their existing counterparts.

The rest of the paper is as follows: in Section we explain the ODRSS scheme and use it to obtain
the BLUES of the unknown parameters of a location-scale family of distributions. Section [8.3| contains the
proposed EWMA control charts based on ODRSS and OIDRSS schemes. In this section, we also estimate the
run length characteristics of the proposed EWMA charts. The performance comparisons of the EWMA charts
are considered in Section Illustrative examples are presented in Section (8.5, and Section [8.6 concludes

the paper.

8.2 Ordered double ranked set sampling and mathematical setup

In this section, the traditional RSS, DRSS, and ODRSS schemes are explained. We obtain the BLUEs-ODRSS
of the unknown parameters of a location-scale family of distributions.

The traditional RSS scheme is as follows: start with m? units from the target population and partition
them into m sets, each having m units. Rank the units within each set with respect to the study variable or
by any inexpensive method. Select the rth smallest ranked unit from the rth set, for r = 1,2, ..., m. This

completes one cycle of a ranked set sample of size m. If we arrange this ranked set sample in an increasing
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order of magnitude, we get an ordered ranked set sample of size m (cf. Balakrishnan and Li, 2008).

The DRSS scheme was suggested by |Al-Saleh and Al-Kadiri (2000). DRSS scheme is as follows: identify
m?2 units from the target population and allocate them into m sets, each having m? units. Apply the RSS
procedure on each set to get m ranked set samples, each having m units. Again, apply the RSS scheme on m
ranked set samples to get a double ranked set sample of size m. This completes one cycle of a double ranked
set sample of size m. If we arrange this double ranked sample in an increasing order of magnitude, we obtain
an ordered double ranked set sample of size m, and the corresponding sampling scheme is named ODRSS (cf.
Haq et al., [2014).

Let Y be the study variable with probability density function (PDF) f(y) and cumulative distribution
function F(y). Let Y3,Y5,...,Y,, be m independent and identically distributed (IID) random variables with
PDF f(y), i.e., Y, ~ f(y) for r = 1,2,...,m. Let Y'(?SR)S,Y'((;SR)S ,Y&?}S be an ordered simple random
sample (OSRS) of size m obtained by arranging Y3,Y3, ..., Yy, in an increasing order. The PDF and CDF of

the rth order statistic Y((T)SnR)S (1 < r < m) are, respectively, given by

W) = o PGV - PO, —o<y <,
o) = 3 (T)FQF-Fop, —o<y<on

see [Arnold et al.|(1992) and David and Nagaraja, (2003).

Let (Y11, Y12, -, Yim), (Y1, Y22, -, Yom), -y (Y1, Y2, ---; Ymm) be m independent simple random samples,
each of size m. Apply the RSS procedure to obtain a ranked set sample of size m, denoted by
Y(RSS) = rth min{Y,1, Y2, ..., Y} for r = 1,2, ...,m. Then, it is easy to show that F(P;SWSI) (t) = F(?ilf)s (v),
where F(FT‘:SnSz) (y) is the CDF of Y(FT‘%?) Note that YR_SS) (1 £ r £ m) are independent and not identically
distributed (INID) random variables. Let {Y(rffs) 7 Y(g‘?s) g ,Y(I}n 'm),j} denote a ranked set sample of size
m obtained in the jth cycle, j = 1,2, ...,m. Then, let Y(?:I;S)S = rth mln{Y(lsﬂf) ” (2 m) e ,Y(m e} for
r=1,2,...,m denote a double ranked set sample of size m.

Suppose A = ((a;,;)) is a square matrix of order m. Then, the permanent of the matrix A is defined as

Per(A) = Y pIIi.;aji;, where 3 p(-) denotes the sum over all m! permutations (i1,dg,...,im) of

(1,2,...,m).

Following the work of Bapat and Beg (1989) and Vaughan and Venables (1972), the CDF of Y(]:T):%Ls)s 1<

r < m) is given by

& 1
(lzrrtns)s(y) Z mPer(Al), —00 <y < 00, (8.1)
Fitom®) FEm@ - Fn,@) |\ Y
here A; = . H d — ¢ show that
where A 1_F(I1tsri)(y) 1—F(%Snsz)(y) 1_F(Rw§§n)(y) Ym—i ere }iand }m—i show tha

the first row is repeated i times and the second row is repeated m — i times, respectively.
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Similarly, the PDF of Y(R%LS)S (1 <7 < m) is given by

1
f%???ns)s(y) = mPer(Az), —00 <y < 00,
F (rfsnsé) (v) Fem@ - Fony@ | }r-1
where Ay = (1 m) () (I;snsm) ®) T (Rys ?n) ®) 3t
1- (1m)(y) 1- (2:m)(y) 1—Fffsm)(y) }m—r

In ODRSS scheme, we order the random variables under DRSS in an increasing order of magnitude. Let

Y(O]T)nf)tss = rth min{Y; DRS)S, Y(lz)%s)s, YDRSZS} for r =1,2,...,m denote an ordered double ranked set sample

of size m. Note that here, YPR3S(1 < r < m) are INID random variable. The CDF of Y(E:lfns)s 1<r<m)is

(r:m)
given by
- 1
FORRS(y) = Z mper(!h), —00 <y < 00,
( RESS(w)  FRRSW) o FRESSW) ) b
where Aj .
FRRS(y) 1-FR%S(y) - 1-FpRoS(y)) Ym—i
Similarly, the PDF of Y((7?:17:>n1§3s (1 <r < m) is given by
1
fODRSS
femy () = mPer(A;;), —00 < y < 00,
FRRS(y) FoRSly) -+ FORS(y) | }r—1
where Ay = f(?RSS(y) f(]%RSS(?/) f(?,?f}bs)( ) 3t
LRRESSG) 1o FBRSSG) o 1 ERRSSG)) jmor

The joint density function of YOPESS and Y(g]?nf)‘ss (1 <r < s<m) is given by

(r:m)

fsimy W:7) = r—1)(s— 'rl— Di(m — )1 e (As)y  —00 <y <z <00,
Famy @) Fons () e Forss(y) jr—1
FERSS(y) FonsS(y) o FORSS () }1
where As = F(?Rn?)s( z) — F8R,,§)S(y) F(B‘}n)s(z) F(]gl,‘n) (y) - F&R,Sn)(z) F&Rsz)(y) }s—r—1
faRSS( 2) f(D2RSS(Z) . %‘Sf) (2) 11
\  1-FRE() 1-FRRS(z) - 1-FPRS() ) ym-s

Let ugl?"lf)ss and UODRSS be the mean and variance of Y(ODRSS(l < r < m), respectively, defined as

uomss — [urgPBSdy and oG2S = [y - WEESS SN )y
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ODRSS and YODRSS ODRSS

Similarly, the covariance between Y, (s:m) 2 SBY O(p som) (1 <r < s<m),is given by

(r:m)
o2 = [ [ e FORR .2z — QB EE.

Let Yoprss = (Y((l)?nr)LSS Y((2)17)nr)tss’ Y(%Dn%)ss)lxm be an ordered double ranked set sample of size

m from a general location-scale family of distributions, with u and o(> 0) be the location and scale

parameters, respectively. Let QPDRSS — (Y(ODRSS — p)/o be the standardized variate under ODRSS

(r:m) rim)

scheme. Therefore, the PDF of Qg?%ss is independent of y and o. Denote U?DRSS = E(QYDRSS

(rm)
for 1 < r < m, 198,]3333)5 = Cov(QgP%SS,QgPW%SS) for 1 < r < s €< m. Then, we can write
E(YQDRSS) = p+ ovghRSS and Cov(Y 2RSS, YODESS) = o29Q0RSS.  Following Lloyd (1952) and
David and Nagaraja (2003), the BLUE-ODRSS, say Oopnes = (AB5WZs, 5850Es)ixz of 6 = (1,012,
is @g;%ESS = (B'S'B)"'B'’S"'Yoprss, where B = (1,0)pmxz and ¥ = (I Jmxm.  Here,
1= (1,1, 1)1m and v = (VLRSS vQORSS, . wOPRSS) 1. The variance-covariance matrix of GOD%ESS is

ABLUE
Cov(foprss) = 02(B'S™'B)™1

The BLUEs-ODRSS of i and o can also be written as a linear combinations of Y oprss, i-€.,

~BLUE / ~BLUE !
Poprss = —v'T'Yoprss and &oprss = 1'T'Y oprss;,

where I' =

-1 ’_ ’ -1
B~ (1v Avl )B is the skew-symmetric matrix with A = |B'2_1B|.

Similarly, we can write

. W' v . 21’z 11
Var(ABKUEs) = T2 V) yar(pBRIE = TEE D) g
A A
R o (1'YX" v
Cov(#B35%5s, #85%s) =~ 22,

It is interesting to note that when the underlying location-scale distribution is symmetric, then it is easy to
show that 1’S™'v = —1’S'v = 0. Thus, the covariance between gBL%E: and 685%E, becomes zero. It
helps in further simplifying the mathematical expressions of the BLUEs-ODRSS and their corresponding

variances, given by

~BLUE Ien—14\—1q/91—1 ~BLUE Isv—1, \—1,./§1—1
/'LODRSS_(]-E 1) 1 YODRSSa O'ODRSS=(’U2 ’U) v’ YODRSS and

Var(A8prss) = 0*(1'S™11) ™", Var(63pnss) = o”(v'S7 )"

The performance of RSS-based estimators depends on how perfectly the judgmental ordering of the randomly
selected units is accomplished. The accurate ordering, in turn, helps in attaining stratification without
quantification and utilizes the prior knowledge, experience, and the expertise of the investigators. Nonetheless,
in practice, the judgmental ordering may not continuously match with the actual ordering. Thus, the judgment

error is inevitable, particularly when dealing with large m. Moreover, the errors in ranking procedures cause
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the units to be assigned ranks different from their true ranks. Consequently, ranking errors adversely affect
the performances of the estimates obtained via RSS scheme.

Dell and Clutter| (1972) were the first to study the effect of imperfect ranking on the performance of the
RSS-based mean estimator. They showed that, under imperfect ranking, the RSS-based mean estimator is
unbiased and better than the SRS-based mean estimator, but imperfect orderings should be better than the
random ordering of the selected units. Here, we examine the effect of the judgment error on the performances
of the BLUEs-ODRSS. For brevity of discussion, it is assumed that the underlying quality characteristic Y is
normally distributed with mean y and variance o2, i.e., Y ~ N(u,02). For imperfect rankings, we follow the
method suggested by Dell and Clutter (1972). Let Y;;, i = 1,2,...,m and j = 1,2,...,m?2, denote m3 values
drawn from a normal distributions. Partition these values into m sets, each of size m2. Also, generate random
errors V;; from a normal distribution with mean zero and variance 2. Then, compute X;; = Y;; + V;;. Note
that V;; is independent of Y;;. Based on the values of X;;, we select a double ranked set sample of size
m, denoted by XPRSS r = 1,2, ..., m. In fact, we select a pair (XPBSS V/IPRSS) based on the ranks of X.

(r:m)? (rim) >~ [rim)]

IDRSS
Here Y, -

[rim] is the rth concomitant corresponding to the rth order statistic X P®SS obtained under DRSS

(r:m)
scheme. Note that here, the ranking is performed with respect to the values of X; therefore, the corresponding

OIDRSS y/OIDRSS OIDRSS
Y, ,YQIDRSS Y,

values of Y are measured with error. Let Y omprss = ( (Torm) () )i xm be the vector of

an imperfect double ranked set sample of size m, where Y((T):I:nD)Rss = rth min{Y[Ill:DWl}]SS, Y[;PWIL‘]SS, . Y[g’%?s

for r = 1,2,...,m. The BLUEs of u and o under OIDRSS scheme are iSiVE<s = —v'TY omprss and
68HVE.« = 1'TY o1pRss, respectively. Note that since we are using the same coefficients of the BLUEs-
ODRSS under OIDRSS scheme, therefore, the BLUEs based on OIDRSS (BLUEs-OIDRSS) are only linear
estimators and do not hold the minimum variance property. However, when the ranking error reduces,
the BLUEs-OIDRSS approach to the BLUEs-ODRSS. As OIDRSS scheme involves order statistics from
independent concomitants obtained under IDRSS scheme. Therefore, it is difficult to obtain the mathematical

expressions for the PDF and CDF of }"(?:EL))RSS. Hence, extensive Monte Carlo simulations are used to estimate

the means and variances of the BLUEs-OIDRSS.

8.3 Proposed EWMA-ODRSS control charts

In this section, we propose new EWMA charts for monitoring the process mean and the process dispersion

based on ODRSS scheme.

8.3.1 EWMA-ODRSS control chart for monitoring the process mean

Assume that the underlying quality characteristics Y; is normally distributed with mean pg and variance
0§ at time ¢, i.e., ¥; ~ N(uo,03). Without loss of generality, we set o = 0 and of = 1. Let A85ggs ; be
the BLUE of py under ODRSS scheme, obtained from a subgroup of size m, at time ¢ for t = 1,2, .... Let

{A8H%ss ¢} be the sequence of IID random variables, and let & € [0, 1] be a smoothing constant. The EWMA
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sequence {W;} based on {285 5ss ;} can be defined by using a following recurrence formula:

Wy = €AdBRss, + (1 —Wem1, Wo=po, 0<E< L (8.2)

For a positive integer ¢, it is easy to show that E(W;) = po and Var(W;) = (ﬁ) {1-(1-¢)*}53(1'=11)~L.
Here, W; is the test-statistic of the EWMA mean chart based on ODRSS scheme. If the underlying process
parameters (Lo, 0o) are known, then the upper control limit (UCL,), center limit (CL;) and lower control

limit (LCL;) of the EWMA-ODRSS mean chart, at time ¢, are given by

UCL; = po+ Lao\/(2€_£) {1-(1- 5)21&}(1/2—11)—1,
CLt = Mo, (83)

LCOLy = po-— Lao\/<2f£) {1-1-92pa'=""1) Y,

respectively, where L is a positive control chart multiplier, and its value is selected such that the in-control
ARL of the EWMA-ODRSS mean chart reaches to a particular level. Note that as the time ¢ increases, i.e.,
t — 00, then the term {1 — (1 — ¢)2*} approaches unity. It is interesting to note that the EWMA-ODRSS
mean chart becomes equivalent to the Shewhart-ODRSS mean chart when £ = 1. For detecting unusual
variations in the process mean under ODRSS scheme, the test-statistic W;, given in , is plotted with
the control limits, given in (8.3), against time ¢. The EWMA-ODRSS mean chart detects an out-of-control
signal if W; exceeds either UCL; or LCL;. In case when W; > UCL, (W; < LCLy), then there is a positive
(negative) shift in the process mean at time ¢. Let § = (y/m/ao) |11 — to| represents the amount of shift in
the process mean measured in standard deviation units. Here, y; is the out-of-control process mean. The
underlying process is said to be in statistical control when § = 0 and out-of-control when § > 0. In order to
study the run length properties of the EWMA-ODRSS mean chart, we use extensive Monte Carlo simulations
to estimate the ARL, MDRL, and SDRL of the EWMA-ODRSS mean chart by using the control limits given
in . We consider different values of mean shift 4, i.e., § = 0.00, 0.25, 0.50, 0.75, 1.00, 1.50, 2, and 3. The
subgroup size is taken to be m = 5, and the in-control ARL is fixed to 500. Based on different values of £
and d, the estimated values of ARLs, MDRLs, and SDRLs are given in Table Each result is based on 105
replications.

From Table we observe that, having fixed £, the ARLs, MDRLs, and SDRLs tend to decrease as the
value of § increases and vice-versa. Similarly, for a fixed value of §, the detection ability of the EWMA-ODRSS
mean chart increases as the value of £ decreases. For example, with £ = 0.25, the EWMA-ODRSS mean
chart detects a shift § = 0.25 in the process mean on average at the 19th sample, whereas the same shift is
detected on average at the 70th sample with £ = 0.50.

A detailed simulation study is conducted to study the effect of imperfect ranking on the performance

of the EWMA-ODRSS mean chart. We name the EWMA chart based on the BLUEs-OIDRSS as the
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Table 8.1: Run length properties of the EWMA-ODRSS process mean control chart
E— 0.05 0.10 0.25 0.50

) L— 2.6402 2.8274 3.0085 3.0910
0.00 ARL 499.64 500.50 500.36 499.63
MDRL 340.00 344.00 346.00 344.00

SDRL 510.21 505.42 501.12 501.87

0.25 ARL 18.78 2244  35.61 69.21
MDRL 16.00 18.00 26.00 49.00
SDRL 13.59 17.17 3223  67.32

0.50 ARL 5.84 6.54 7.94 12.53
MDRL 5.00 6.00 7.00 9.00
SDRL 3.67 3.98 538  10.73

0.75 ARL 3.04 3.37 3.79 4.72
MDRL 3.00 3.00 3.00 4.00
SDRL 1.71 1.84 2.11 3.23

1.00 ARL 1.99 2.18 2.38 2.65
MDRL 2.00 2.00 2.00 2.00
SDRL 1.00 1.08 1.18 1.47

1.50 ARL 1.22 1.29 1.37 1.41
MDRL 1.00 1.00 1.00 1.00
SDRL 0.45 0.49 0.55 0.60

2.00 ARL 1.03 1.04 1.06 1.07
MDRL 1.00 1.00 1.00 1.00
SDRL 0.16 0.20 0.23 0.25

3.00 ARL 1.00 1.00 1.00 1.00
MDRL 1.00 1.00 1.00 1.00
SDRL 0.01 0.00 0.01 0.01

EWMA-OIDRSS chart. Let W;* be the plotting-statistic of the EWMA-OIDRSS mean chart, which is defined

as follows:

Wi = fﬂ(B)%gI];]SS,t +(1-OWr,, W§=idmRss 0<E<1,

where £ is a smoothing constant and A8KYE.c = 1 S°F | aBLUR.. .

As already mentioned in [8.2] it is difficult to derive the mathematical expressions for the mean and
variances of the BLUEs-OIDRSS. Hence, we estimate the mean and the variance of the BLUE-OIDRSS
based on a large historical data set, obtained from an in-control process. Let 28[hRss i» ¢ = 1,2, ..., k, be
the estimated values of the BLUEs-OIDRSS obtained from k subgroups, each of size m, where A8iSFeg ; =
(1'2_11)_11’2_1Y01DRSS,1~. Then, the estimated UCL; (EUCL), estimated CL; (ECL;), estimated
LCL; (ELCL;) of the EWMA-OIDRSS mean chart are, respectively, given by

HoIDRSS

EUCL, = ﬁg%]gl]%SS + L6 ;BLUE \/<2E§> {1 — (1 — §)2t}a

_  BLUE
ECL; = pomRsss

- . £
ELCL: = pomhss — Loamue \/<2_§ {1-0a-97},

A _ 1 k' (sBLUE _ 2ZBLUE )2 i iti ipli
where &ypLue = \/ =1y 2i=1(ASmDRSs,; — Aorprss)” and L is a positive control chart multiplier.

In order to study the run length properties of the EWMA-OIDRSS mean chart, we first estimate the

control limits based on 10 samples obtained under OIDRSS scheme (cf. Haq et al., 2013a). For brevity of
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Table 8.2: Run length properties of the EWMA-OIDRSS process mean control chart

oz =0.05 0% =0.15
£~ 0056 010 025 050 005 010 025 0.50
) L— 26402 2.8274 3.0085 3.0010 2.6402 2.8274 3.0085 3.0910
0.00 ARL  499.28 499.91 506.27 509.81 | 502.09 503.07 510.02 522.06
MDRL 343.00 343.00 350.00 353.00 | 344.00 347.00 354.00 360.00
SDRL 515.71 505.93 509.20 511.73 | 516.86 506.30 509.68 524.33
0.25 ARL 2259 2742 45.13 86.35 | 28.78 35.56  60.71 114.37
MDRL 19.00 22.00 32.00 61.00 | 24.00 28.00 43.00 80.00
SDRL  16.88 21.81 41.74 84.49 | 2232 29.52 57.09 112.04
0.50 ARL 696 7.80 9.84 1637 | 880 994 1327 23.60
MDRL  6.00 7.00 800 1200 | 800 9.00 11.00 17.00
SDRL 448 490 7.08 1452 | 584 651 1024 21.55
0.75 ARL 359 397 454 597 | 450 501 589  8.36
MDRL  3.00 400 400 500| 400 400 500  6.00
SDRL 2.08 222 264 434| 271 293 370  6.67
1.00 ARL 2.33 254 282 323| 286 316 353  4.32
MDRL 200 200 300 300| 300 300 300  4.00
SDRL 122 130 144 194 | 159 170 193 286
1.50 ARL 137 145 156 163 | 162 174 189  2.02
MDRL 1.00 1.00 100 100| 100 200 200 200
SDRL 057 062 067 075| 074 080 087  1.02
2.00 ARL 1.07 110 114 116 | 118 123 130 134
MDRL  1.00 1.00 100 100| 100 100 1.00 1.00
SDRL 026 030 035 037| 041 045 050  0.54
3.00 ARL 1.00 100 100 1.00 | 1.00 1.00 101  1.01
MDRL 1.00 1.00 100 100| 100 100 1.00 1.00
SDRL 002 002 003 003| 006 007 009 0.1
) 02 =0.30 o2 = 0.50
ARL  497.62 50447 51140 526.52 [ 502.91 503.32 507.73 525.08
0.00 MDRL 340.00 348.00 354.00 364.00 | 345.00 347.00 351.00 364.00
SDRL 513.64 512.45 512.32 526.57 | 518.77 508.38 508.11 523.53
ARL 35.84 4556  78.73 143.52 | 42,55 54.82 95.15 168.52
025 MDRL 29.00 35.00 56.00 100.00 | 34.00 41.00 67.00 118.00
SDRL  28.75 39.13 75.81 14219 | 3529 48.69 92.12 167.23
ARL 10.90 1255 17.47 3265 | 1297 1502 21.78  42.00
050 MDRL  9.00 11.00 13.00 23.00 | 11.00 13.00 16.00  30.00
SDRL 741 858 1425 30.71 | 9.01 10.64 18.38  39.97
ARL 555 621 751 1151 | 655  7.38 911 1494
075 MDRL 500 6.00 600 900| 6.00 600 800 11.00
SDRL 347 375 505 972 | 420 460 643 13.11
ARL 3.49  3.87 441 572 | 409 455 526  7.22
1.00 MDRL 300 300 400 500 | 400 400 500  6.00
SDRL 2.00 216 256 415| 244 262 319 554
ARL 191 208 227 252 | 220 241 266  3.02
1.50 MDRL 200 200 200 200| 200 200 200 3.0
SDRL 094 1.02 110 137 | 114 121 135 177
ARL 134 143 152 159 | 150 161 173  1.86
200 MDRL 100 1.00 1.00 1.00 | 100 100 200  2.00
SDRL 054 060 065 071| 066 072 078  0.90
ARL 1.02 103 104 1.05| 105 1.08 110 112
300 MDRL 1.00 1.00 100 100| 100 100 1.00 1.00
SDRL 014 017 020 022| 022 027 031 033

discussion, we consider different values for error variance (a%,), ie., U%, = 0.05, 0.15, 0.30 and 0.50. Based on

105 replications, we estimate the ARLs, MDRLs, and SDRLs of the EWMA-OIDRSS mean chart and are

presented in Table Here, we consider the same values of L as considered in Table However, it is also
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Table 8.3: Run length properties of the EWMA-ODRSS dispersion chart
Symmetric limits Asymmetric limits
E— 0.05 0.10 0.20 0.30 0.40 0.50 0.30 0.40 0.50
Li— 22777 24800 2.6501 2.7358 2.7856 2.8220 2.5800 2.6512 2.7600
T Lo— 22777 24800 2.6501 2.7358 2.7856 2.8220 2.8500 2.8575 2.8500
0.50 ARL 1.90 2.17 2.41 2.59 2.78 3.08 2.35 2.53 2.92
MDRL 2.00 2.00 2.00 2.00 3.00 3.00 2.00 2.00 3.00
SDRL 0.69 0.72 0.77 0.84 0.98 1.25 0.79 0.90 1.18
0.60 ARL 2.72 3.11 3.54 3.92 4.48 5.55 3.49 3.98 5.12
MDRL 3.00 3.00 3.00 4.00 4.00 5.00 3.00 4.00 4.00
SDRL 1.15 1.24 1.40 1.66 2.19 3.28 1.49 1.91 2.96
0.70 ARL 4.36 5.05 5.96 7.20 9.41 13.82 6.15 7.83 12.28
MDRL 4.00 5.00 5.00 6.00 8.00 10.00 5.00 6.00 9.00
SDRL 2.22 2.44 3.01 4.19 6.51 11.14 3.51 5.22 9.79
0.80 ARL 8.65 10.20 13.44 19.30 30.42 51.75 15.16  22.58 43.14
MDRL 8.00 9.00 11.00 15.00 22.00 37.00 12.00 17.00 31.00
SDRL 5.34 6.16 9.22 15.55 27.17 49.20 11.81 19.57 40.58
0.90 ARL 27.13 35.07 5744 94.80 152.23 240.27 64.02 101.11 193.79
MDRL 22.00 27.00 42.00 67.00 106.00 167.00 | 46.00 70.00 136.00
SDRL 21.27 2894 52.62 91.04 149.96 238.76 | 60.84 99.03 190.37
0.95 ARL 75.39 101.86 157.71 221.02 283.57 341.03 | 151.27 205.08 303.72
MDRL 55.00 72.00 110.00 154.00 197.00 238.00 | 106.00 143.00 208.00
SDRL 71.68  98.17 154.39 219.96 282.31 339.17 | 149.31 203.90 305.98
1.00 ARL 199.72 201.03 199.71 201.05 198.71 199.36 | 200.23 199.56 200.62
MDRL 130.00 138.00 138.00 140.00 137.00 138.00 | 138.00 138.00 139.00
SDRL 215.71 206.06 200.23 200.41 198.59 199.99 | 199.85 199.60 200.57
1.05 ARL 61.25 68.31 74.95 78.88 81.93 84.66 94.03 91.17  88.50
MDRL  43.00 48.00 52.00 55.00 57.00 59.00 | 65.00 64.00 62.00
SDRL 61.87 6763 7434 7795 81.51 84.28 | 93.33 90.20 87.68
1.10 ARL 23.61 26.92 30.77 3430 37.07  39.65 40.20 41.01 41.64
MDRL 18.00 20.00 22.00 24.00 26.00 28.00 28.00 29.00 29.00
SDRL 21.85 24.71 2897 3294 36.01 38.61 38.86 39.87 40.63
1.20 ARL 8.28 9.19 10.23 11.21 12.17 13.29 12.48 13.14 13.71
MDRL 6.00 7.00 8.00 8.00 9.00 10.00 9.00 10.00 10.00
SDRL 7.03 7.52 8.52 9.75 10.90 12.12 10.88 11.84 12.64
1.30 ARL 4.55 5.02 5.47 5.79 6.16 6.62 6.28 6.49 6.71
MDRL 4.00 4.00 4.00 5.00 5.00 5.00 5.00 5.00 5.00
SDRL 3.61 3.83 4.15 4.53 5.04 5.56 4.93 5.31 5.67
1.40 ARL 3.06 3.36 3.60 3.77 3.95 4.12 4.02 4.10 4.20
MDRL 2.00 3.00 3.00 3.00 3.00 3.00 3.00 3.00 3.00
SDRL 2.27 2.42 2.55 2.73 2.92 3.18 2.89 3.05 3.25
1.50 ARL 2.32 2.52 2.68 2.79 2.87 2.97 2.94 2.97 3.00
MDRL 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00
SDRL 1.58 1.71 1.78 1.87 1.99 2.11 1.98 2.05 2.13
2.00 ARL 1.26 1.30 1.34 1.36 1.38 1.39 1.40 1.40 1.40
MDRL 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
SDRL 0.54 0.58 0.62 0.64 0.65 0.67 0.67 0.67 0.68
3.00 ARL 1.02 1.03 1.03 1.03 1.04 1.04 1.04 1.04 1.04
MDRL 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
SDRL 0.15 0.16 0.18 0.19 0.19 0.19 0.20 0.20 0.19

possible to select the value of L such that the in-control ARL of the EWMA-OIDRSS mean chart reaches to
a particular level.

From the results presented in Table [8.2] it is observed that, when £ < 0.10, the in-control ARLs of the
EWMA-OIDRSS mean chart remain roughly closer to 500 for all values of o%,. This shows that, even under

imperfect rankings, the false-alarm of the EWMA-OIDRSS mean chart is stable. Moreover, for other cases,
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when £ > 0.10, the false-alarm of the EWMA-OIDRSS mean chart decreases. As expected, having fixed £ and

d, the performance of the EWMA-OIDRSS mean chart increases as the value of a%, decreases and vice-versa.

8.3.2 EWMA-ODRSS control chart for monitoring the process dispersion

Recall that the underlying quality characteristic ¥; ~ N(u,03) for ¢t > 1. Let 68pRss , be the BLUE of &
under ODRSS scheme, obtained from a subgroup of size m, at time ¢ for ¢ = 1,2, ... Let {6§5Rss ¢} be the
sequence of IID random variables. An EWMA sequence {H;} based on {68pRss ;} can be defined by using a

following recurrence formula:
H, = £68888s. + (1~ §)Hy—1, Ho=00, 0<E<,

where £ is a smoothing constant. For ¢ > 1, it is easy to show that E(H;) = oo and Var(H;) = {2575}{1 -(1-
€)*}02 (V'S v) 1. We name the EWMA chart based on H; as the EWMA-ODRSS dispersion chart. If the
underlying process parameters (1o, 00) are known, then the control limits of the EWMA-ODRSS dispersion

chart, at time ¢, are given by

UCL — oot Lm\/ (35) 0 - a-gws o,
CLt = 0o,

LCL; = o09— Llao\/(f_g) {1-(1- E)Zt}(’ulz—lv)—l,

where L, and Ly are the control charting multipliers, and their values are selected such that the in-control
ARL of the EWMA-ODRSS chart reaches to a specific level. Here, the EWMA-ODRSS dispersion chart
detects an out-of-control signal as soon as the plotting-statistic H; exceeds UCL; or LCL;. If at time
t, Hy > UCL;, then there is a positive shift in the process dispersion, or if H; < LCL;, then there is a
negative shift in the process dispersion. Let 7 = 01/0¢ represents the amount of shift in the underlying
process standard deviation, where oy denotes an out-of-control standard deviation or shifted process standard
deviation. The underlying process is said to be in control state when 7 = 1, i.e., 01 = go. Note that if
the quality practitioner is interested in detecting a shift in the process dispersion, then, both upper and
lower control limits are used for this purpose. The EWMA chart based on both UCL; and LCL, is called a
two-sided EWMA chart. However, if the interest lies in only detecting an increase (decrease) in the process
variation, then an upper (lower) control limit is used. The EWMA charts based on a single upper or lower
control limit is called a one-sidled EWMA chart. In this study, we consider both two-sided and one-sided
EWMA control charts for detecting overall changes in the process dispersion. Based on extensive Monte
Carlo simulations from the standard normal distribution, for different values of £ and 7, we compute the
run length characteristics, i.e., ARL, MDRL, and SDRL, of the two-sided and one-sided EWMA-ODRSS
dispersion charts. For brevity of discussion, we consider subgroup size m = 5. For each case, the in-control

ARL of the EWMA-ODRSS dispersion chart is fixed to 200. Each result is based on 10° replications. In
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Tables and we report the run length properties of the two-sided and one-sided EWMA-OIDRSS
dispersion charts, respectively.

From Tables [8.3] and 8.4} it is observed that, having fixed 7, the performance of the EWMA-ODRSS
dispersion chart increases as the value of £ decreases and vice-versa. From Table note that the out-of-
control ARLSs are unbiased for small values of £ in the range 0 < £ < 0.20. It means that each out-of-control
ARL is less than the in-control ARL. However, for 0.3 < £ < 0.50, the out-of-control ARLs of the EWMA-
ODRSS dispersion chart are biased when 0.9 < 7 < 1. Most quality practitioners are interested in detecting
an increase in the process dispersion because small decreases lead to an improvement in the quality of
the product. On the other hand, it is also possible to design an EWMA dispersion chart such that its
out-of-control ARL becomes unbiased. This task is accomplishable when using asymmetric control limits for
the EWMA-ODRSS dispersion chart. For this purpose, in the last three columns of Table we calculate the
out-of-control ARLs of the EWMA-ODRSS dispersion chart using asymmetric control limits. It is interesting
to note that there are some improvements when detecting small changes in the process dispersion. However,
a reduction in the out-of-control ARL when detecting a decrease in the process dispersion with asymmetric
control limits leads to large values of the out-of-control ARLs when detecting an increase in the process
variability. In Table we report the run length characteristics of the one-sided EWMA-ODRSS dispersion
charts. It is observed that all out-of-control ARLs are unbiased for all values of 7, and the performance of
the EWMA-ODRSS dispersion chart increases as the value of £ decreases and vice-versa.

Following Section [8.3.1] we also study the effect of imperfect ranking on the performance of the EWMA-
ODRSS dispersion chart. Let {68r5rss )} be the sequence of IID random variables. Define an EWMA

sequence {H;} based on {68 5Rss +}» by using a following recurrence formula:
~BLUE ZBLUE
= €60prss, T (1 —&Hi_1, Hg =060mrss) 0<€<1,

where ¢ is smoothing constant.

Based on a large historical data set, we estimate the mean and variance of 0By iss-  Let
&8%}%33’1,&8%}1%33 2 ,aongRss x be the estimated values of 68EYE. obtained from £ subgroups, each
of size m, where 885 rgg ; = (V=) W'=Y orpRss,i, § = 1,2, ..., k. Then, at time ¢, the estimated

control limits of the EWMA-OIDRSS dispersion chart are given by

BUCL, = G6ibrss + L&&s%ggss\/ (25_§> {1- (-8,

_ ~BLUE
ECL; = 601brsss

= 3
ELCL, = G&8ibnes — L%g{ﬂggss\/(H {1-Q1 -8},

1 4BLUE 5BLUE ; i
where 68fiRss = & Yie GOIDRSS,i» ToBLYE = \/ &-1) i (68DRss,: — Fombrss)” and L is a positive

control chart multiplier. Following [Haq et al.| (20134), we first estimate the control limits based on 108
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New Exponentially Weighted Moving Average Control Charts for Monitoring Process Mean
164 and Process Dispersion

samples obtained under OIDRSS scheme. For brevity of discussion, we consider the same values of m and
0‘2, as considered in Section For the EWMA-OIDRSS dispersion chart, we consider the same values
of control charting multiplier L as considered for the EWMA-ODRSS dispersion chart, i.e., L = L; = Ls.
Based on extensive Monte Carlo simulations, we estimate the run length characteristics of the two-sided and
one-sided EWMA-OIDRSS dispersion charts for different values of 7 and £ and are presented in Tables [8.5H8.7]

From Table [8.5] it is observed that, when 0 < £ < 0.2, the in-control ARLSs roughly remain closer to 200,
and the out-of-control ARLs are unbiased. For fixed values of £ and 7, the performance of the two-sided
EWMA-OIDRSS dispersion chart decreases as the value of o2 increases and vice-versa. Note that in Tables
and we have considered the same values of L; and Lo of the one-sidled EWMA-ODRSS dispersion charts
for the one-sided EWMA-OIDRSS dispersion charts. However, it is possible to select the values of L; and
L5 for the one-sided EWMA-OIDRSS dispersion charts such that the in-control ARL reaches to 200. From
Table it is clear that, given the values of 7 and 0%, both in-control and out-of-control ARLs tend to
increase with an increase in the value of £&. From Table we observe that when ¢ > 0.10 and 02 < 0.50,
the in-control ARLs are less than 200. This shows that with very small errors in rankings, the false-alarm
of the EWMA-OIDRSS dispersion chart increases. Therefore, when using the EWMA-OIDRSS chart for
detecting decreases in the process dispersion, the value of Lo should be selected such that the in-control ARL

of the EWMA-OIDRSS chart reaches to 200.



Table 8.5: Run length properties of the EWMA-OIDRSS (two-sided) dispersion

charts
E— 0.05 0.10 0.20 0.30 0.40 0.50 0.05 0.10 0.20 0.30 0.40 0.50
L— 2.2777 2.4800 2.6501 2.7358 2.7856 2.8220 2.2777 2.4800 2.6501 2.7358 2.7856 2.8220
T af, = 0.05 af/ =0.15

0.50 ARL 2.02 2.30 2.57 2.77 2.99 3.35 2.13 2.43 2.72 2.95 3.21 3.64
MDRL 2.00 2.00 2.00 3.00 3.00 3.00 2.00 2.00 3.00 3.00 3.00 3.00

SDRL 0.77 0.82 0.89 0.99 1.16 1.50 0.83 0.89 0.96 1.08 1.30 1.73

0.60 ARL 2.88 3.31 3.77 4.22 4.86 6.08 3.05 3.50 4.00 4.50 5.29 6.68
MDRL 3.00 3.00 4.00 4.00 4.00 5.00 3.00 3.00 4.00 4.00 5.00 5.00

SDRL 1.29 1.40 1.58 1.93 2.56 3.86 1.38 1.51 1.72 2.12 2.90 4.40

0.70 ARL 4.65 5.40 6.39 7.76 10.17 14.90 4.92 5.70 6.80 8.37 11.08 16.47
MDRL 4.00 5.00 6.00 7.00 8.00 11.00 4.00 5.00 6.00 7.00 9.00 12.00

SDRL 2.46 2.72 3.39 4.74 7.33 12.29 2.66 2.94 3.71 5.28 8.27 13.84

0.80 ARL 9.22 10.89 14.48 20.67 31.93 52.94 9.71 11.51 15.38 22.23 34.44 56.78
MDRL 8.00 9.00 12.00 16.00 23.00 37.00 8.00 10.00 12.00 17.00 25.00 40.00

SDRL 5.82 6.78 10.30 16.94 28.74 50.51 6.24 7.31 11.13 18.54 31.41 54.12

0.90 ARL 28.64 37.16 60.24 96.26 150.09 229.28 30.17 39.20 63.20 100.42 155.93 236.43
MDRL 23.00 29.00 43.00 68.00 105.00 159.00 24.00 30.00 45.00 71.00 109.00 164.00

SDRL 23.01 31.23 55.57 92.68 147.35 228.44 24.48 33.56 58.86 97.22 152.75 234.87

0.95 ARL 78.62 104.41 157.68 215.68 275.60 331.50 82.24 108.59 160.82 218.95 279.03 338.00
MDRL 56.00 73.00 110.00 151.00 191.00 230.00 59.00 77.00 112.00 151.00 194.00 235.00

SDRL 75.91 100.91 155.46 213.65 275.34 331.36 79.07 105.46 158.34 218.71 278.17 337.60

1.00 ARL 202.11 201.26 200.54 202.59 204.75 207.13 201.52 201.21 202.80 206.36 209.58 214.90
MDRL 134.00 138.00 139.00 139.00 141.00 143.00 133.00 138.00 140.00 143.00 145.00 149.00

SDRL 219.11 206.23 201.87 204.24 206.52 207.82 217.70 206.75 204.58 206.71 209.54 214.14

1.05 ARL 64.72 72.45 79.67 84.85 87.85 91.39 67.58 74.92 83.11 88.04 91.76 96.50
MDRL 45.00 51.00 56.00 59.00 61.00 63.00 47.00 52.00 58.00 61.00 64.00 67.00

SDRL 65.47 72.06 78.87 83.81 87.36 91.04 69.01 74.57 82.72 87.00 91.26 96.45

1.10 ARL 25.08 28.50 32.83 37.02 40.15 43.38 26.32 30.06 35.01 38.78 42.56 46.01
MDRL 19.00 21.00 24.00 26.00 28.00 30.00 20.00 22.00 25.00 27.00 30.00 32.00

SDRL 23.29 26.30 30.90 35.70 39.08 42.60 24.53 27.78 33.34 37.45 41.54 44.92

1.20 ARL 8.80 9.79 10.96 12.07 13.21 14.53 9.24 10.27 11.54 12.69 14.02 15.50
MDRL 7.00 8.00 9.00 9.00 10.00 10.00 7.00 8.00 9.00 10.00 10.00 11.00

SDRL 7.46 8.01 9.18 10.52 11.94 13.44 7.82 8.45 9.76 11.10 12.66 14.35

1.30 ARL 4.80 5.31 5.83 6.21 6.61 7.15 5.05 5.58 6.07 6.52 6.98 7.57
MDRL 4.00 4.00 5.00 5.00 5.00 5.00 4.00 4.00 5.00 5.00 5.00 6.00

SDRL 3.83 4.06 4.46 4.86 5.41 6.05 4.04 4.29 4.67 5.19 5.78 6.49

1.40 ARL 3.22 3.55 3.81 4.00 4.19 4.40 3.36 3.69 3.98 4.20 4.39 4.64
MDRL 3.00 3.00 3.00 3.00 3.00 3.00 3.00 3.00 3.00 3.00 4.00 4.00

SDRL 2.40 2.57 2.72 2.92 3.15 3.43 2.52 2.69 2.86 3.07 3.33 3.65

1.50 ARL 2.44 2.65 2.83 2.93 3.03 3.16 2.52 2.75 2.94 3.06 3.17 3.30
MDRL 2.00 2.00 2.00 2.00 2.00 3.00 2.00 2.00 2.00 3.00 3.00 3.00

SDRL 1.69 1.81 1.90 2.00 2.10 2.29 1.76 1.89 1.99 2.10 2.23 2.40

2.00 ARL 1.28 1.33 1.38 1.40 1.42 1.43 1.30 1.35 1.41 1.43 1.45 1.47
MDRL 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

SDRL 0.57 0.62 0.66 0.68 0.69 0.71 0.60 0.64 0.69 0.70 0.73 0.74

3.00 ARL 1.03 1.03 1.04 1.04 1.04 1.04 1.03 1.03 1.04 1.04 1.05 1.05
MDRL 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

SDRL 0.16 0.18 0.19 0.20 0.20 0.21 0.17 0.19 0.20 0.21 0.21 0.22
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Table 8.5: (Continued).

E— 0.05 0.10 0.20 0.30 0.40 0.50 0.05 0.10 0.20 0.30 0.40 0.50

L— 2.2777 2.4800 2.6501 2.7358 2.7866 2.8220 2.2777 2.4800 2.6501 2.7358 2.7856  2.8220

T % = 0.30 o2, = 0.50
0.50 ARL 2.46 2.82 3.18 3.49 3.93 4.72 2.67 3.07 3.49 3.88 4.46 5.64
MDRL 2.00 3.00 3.00 3.00 4.00 4.00 3.00 3.00 3.00 4.00 4.00 5.00
SDRL 0.95 1.03 1.13 1.32 1.71 2.50 1.02 1.10 1.24 1.49 2.01 3.18
0.60 ARL 3.53 4.07 4.71 5.44 6.70 9.23 3.84 4.44 5.20 6.15 7.90 11.68
MDRL 3.00 4.00 4.00 5.00 6.00 7.00 4.00 4.00 5.00 5.00 7.00 9.00
SDRL 1.64 1.79 2.09 2.73 3.99 6.66 1.77 1.94 2.32 3.17 4.96 8.87
0.70 ARL 5.69 6.63 8.11 10.42 14.79 24.02 6.21 7.25 8.97 12.00 18.18 32.07
MDRL 5.00 6.00 7.00 9.00 11.00 18.00 6.00 7.00 8.00 10.00 14.00 23.00
SDRL 3.14 3.50 4.62 7.01 11.69 21.11 3.41 3.82 5.21 8.41 14.86 28.98
0.80 ARL 11.18 13.46 18.65 28.30 46.23 81.19 12.21 14.76 21.13 33.46 58.19 111.24
MDRL 10.00 12.00 15.00 21.00 33.00 57.00 11.00 13.00 17.00 25.00 42.00 78.00
SDRL 7.35 8.80 14.19 24.39 42.87 78.42 8.00 9.76 16.28 29.36 54.40 108.08
0.90 ARL 34.65 45.62 75.34 121.03 192,91 307.32 37.49 50.04 84.50 142.08 235.16  392.65
MDRL 27.00 34.00 54.00 85.00 135.00 214.00 30.00 37.00 60.00 100.00 163.00 274.00
SDRL 28.75 39.72 70.72 117.71 189.89  305.32 31.30 44.13 79.68 137.95 232.17 391.03
0.95 ARL 91.53 119.35 177.38  242.27 310.85 381.77 97.23 127.26  191.27 263.53  342.04  420.28
MDRL 65.00 84.00 124.00 169.00 216.00 264.00 69.00 89.00 133.00 183.00 238.00 292.00
SDRL 89.47 116.53 175.71 241.21 311.26  380.87 95.32 124.40 190.06 261.87 340.40 421.23
1.00 ARL 201.86 201.95 206.03 213.93 220.06 228.42 201.69 202.16 206.47 215.30 221.85 227.96
MDRL  134.00 138.00 142.00 149.00 153.00 159.00 134.00 139.00 143.00 149.00 154.00 158.00
SDRL 216.16 207.84 208.15 213.33 220.04 227.77 217.66 206.72 206.96 215.65 221.46 226.96
1.05 ARL 73.63 81.42 89.54 95.35 100.35 105.16 77.11 84.50 92.13 97.34 101.567 105.44
MDRL 51.00 57.00 62.00 66.00 70.00 73.00 53.00 58.00 64.00 68.00 71.00 74.00
SDRL 75.55 80.73 88.83 94.53 99.65  104.47 79.66 85.24 91.85 96.52 100.69 104.29
1.10 ARL 29.53 33.60 39.16 43.32 47.46 51.49 31.26 35.49 41.15 45.61 49.27 52.81
MDRL 22.00 25.00 28.00 30.00 33.00 36.00 23.00 26.00 29.00 32.00 35.00 37.00
SDRL 27.87 31.41 37.42 42.07 46.27 50.63 29.80 33.34 39.43 44.11 48.16 51.94
1.20 ARL 10.38 11.60 13.08 14.51 16.13 17.67 11.14 12.39 14.04 15.47 16.89 18.60
MDRL 8.00 9.00 10.00 11.00 12.00 13.00 8.00 10.00 11.00 11.00 12.00 13.00
SDRL 8.94 9.69 11.21 12.91 14.79 16.61 9.72 10.45 12.19 13.91 15.64 17.48
1.30 ARL 5.65 6.25 6.87 7.45 7.98 8.64 6.03 6.65 7.31 7.90 8.48 9.20
MDRL 4.00 5.00 6.00 6.00 6.00 6.00 5.00 5.00 6.00 6.00 6.00 7.00
SDRL 4.59 4.88 5.39 6.06 6.73 7.58 4.99 5.26 5.78 6.51 7.27 8.08
1.40 ARL 3.73 4.10 4.45 4.68 4.94 5.24 3.97 4.37 4.72 4.99 5.24 5.59
MDRL 3.00 3.00 4.00 4.00 4.00 4.00 3.00 4.00 4.00 4.00 4.00 4.00
SDRL 2.87 3.04 3.26 3.564 3.85 4.23 3.11 3.29 3.50 3.81 4.14 4.57
1.50 ARL 2.79 3.04 3.25 3.39 3.51 3.69 2.94 3.22 3.45 3.60 3.73 3.90
MDRL 2.00 2.00 3.00 3.00 3.00 3.00 2.00 3.00 3.00 3.00 3.00 3.00
SDRL 2.01 2.13 2.27 2.38 2.54 2.77 2.16 2.32 2.43 2.58 2.74 2.98
2.00 ARL 1.37 1.44 1.49 1.52 1.55 1.57 1.42 1.49 1.56 1.58 1.61 1.63
MDRL 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
SDRL 0.67 0.73 0.77 0.79 0.81 0.84 0.72 0.79 0.83 0.85 0.87 0.90
3.00 ARL 1.04 1.04 1.05 1.06 1.06 1.06 1.05 1.05 1.06 1.07 1.07 1.07
MDRL 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
SDRL 0.20 0.21 0.23 0.24 0.25 0.25 0.22 0.23 0.25 0.26 0.27 0.27
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Table 8.6: Run length properties of the EWMA-OIDRSS (one-sided) dispersion

chart for monitoring increases in the process dispersion

[ 0.05 0.10 0.20 0.30 0.40 0.50 0.05 0.10 0.20 0.30 0.40 0.50
L— 1.9123 2.2065 2.4710 2.6107 2.6985 2.7593 1.9123 2.2055 2.4710 2.6107 2.6985  2.7593
T g% = 0.05 i, =0.15
1.00 ARL 199.86 200.69 203.93 210.71 211.59 213.87 | 204.37 204.33 210.564 217.37 222.67 226.33
MDRL  130.00 136.00 140.00 147.00 147.00 148.00 | 132.00 139.00 146.00 149.00 154.00 158.00
SDRL  221.09 209.45 206.88 210.53 212.12 213.22 | 226.70 211.82 212.43 219.56 222.50 225.12
1.10 ARL 17.79 21.42 26.49 31.18 35.35 39.24 19.32 23.16 28.94 34.15 38.84 43.59
MDRL 12.00 16.00 19.00 22.00 25.00 27.00 13.00 17.00 21.00 24.00 27.00 31.00
SDRL 17.72 20.16 25.14 29.84 34.26 38.34 19.35 21.89 27.42 32.82 37.78 42.64
1.20 ARL 6.74 7.97 9.45 10.71 12.04 13.47 7.25 8.67 10.29 11.78 13.30 15.00
MDRL 5.00 6.00 7.00 8.00 9.00 10.00 5.00 7.00 8.00 9.00 10.00 11.00
SDRL 6.09 6.78 7.99 9.39 10.79 12.35 6.63 7.40 8.75 10.36 12.06 13.93
1.30 ARL 3.82 4.51 5.15 5.68 6.20 6.76 4.15 4.86 5.61 6.21 6.82 7.43
MDRL 3.00 4.00 4.00 5.00 5.00 5.00 3.00 4.00 4.00 5.00 5.00 6.00
SDRL 3.18 3.57 3.99 4.49 5.07 5.72 3.49 3.87 4.40 4.96 5.62 6.36
1.40 ARL 2.67 3.06 3.45 3.71 3.98 4.24 2.85 3.29 3.74 4.04 4.31 4.62
MDRL 2.00 2.00 3.00 3.00 3.00 3.00 2.00 3.00 3.00 3.00 3.00 4.00
SDRL 2.02 2.26 2.48 2.69 2.99 3.31 2.20 2.46 2.71 3.00 3.28 3.63
1.50 ARL 2.07 2.34 2.61 2.77 2.90 3.04 2.19 2.49 2.78 2.97 3.13 3.31
MDRL 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 3.00 3.00
SDRL 1.42 1.60 1.76 1.87 2.01 2.18 1.54 1.74 1.91 2.05 2.21 2.42
2.00 ARL 1.20 1.26 1.33 1.36 1.39 1.41 1.23 1.30 1.38 1.42 1.45 1.48
MDRL 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
SDRL 0.48 0.55 0.61 0.64 0.67 0.69 0.52 0.59 0.66 0.70 0.73 0.75
3.00 ARL 1.02 1.02 1.03 1.03 1.04 1.04 1.02 1.03 1.04 1.04 1.05 1.05
MDRL 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
SDRL 0.13 0.15 0.18 0.18 0.20 0.20 0.14 0.17 0.19 0.21 0.21 0.22
oz = 0.30 oy = 0.50
1.00 ARL 202.58 203.64 210.16 216.81 222.11 228.42 | 202.24 201.40 206.99 213.36 218.43 222.94
MDRL 131.00 139.00 146.00 150.00 155.00 159.00 | 132.00 137.00 143.00 148.00 151.50 154.00
SDRL  225.11 211.92 211.07 217.71 221.07 227.62 | 224.06 209.92 209.71 214.02 218.95 223.03
1.10 ARL 20.78 24.99 30.91 36.28 41.48 46.40 22.08 26.47 32.36 38.10 42.80 47.93
MDRL 14.00 18.00 22.00 26.00 29.00 32.00 15.00 19.00 23.00 27.00 30.00 33.00
SDRL 20.95 23.85 29.56 35.09 40.40 45.59 22.32 25.35 30.86 36.83 41.74 47.35
1.20 ARL 7.86 9.39 11.16 12.82 14.46 16.25 8.37 9.97 11.86 13.59 15.35 17.29
MDRL 6.00 7.00 9.00 9.00 11.00 12.00 6.00 8.00 9.00 10.00 11.00 12.00
SDRL 7.28 8.13 9.63 11.41 13.14 15.16 7.87 8.67 10.27 12.14 14.08 16.11
1.30 ARL 4.41 5.24 6.05 6.69 7.36 8.14 4.72 5.57 6.41 7.12 7.83 8.64
MDRL 3.00 4.00 5.00 5.00 6.00 6.00 3.00 4.00 5.00 6.00 6.00 6.00
SDRL 3.77 4.25 4.79 5.44 6.14 7.05 4.08 4.59 5.15 5.82 6.68 7.55
1.40 ARL 3.05 3.53 3.99 4.36 4.67 5.03 3.22 3.74 4.24 4.62 4.95 5.32
MDRL 2.00 3.00 3.00 4.00 4.00 4.00 2.00 3.00 3.00 4.00 4.00 4.00
SDRL 2.41 2.69 2.97 3.27 3.62 4.05 2.60 2.90 3.17 3.52 3.89 4.33
1.50 ARL 2.33 2.65 2.97 3.19 3.37 3.55 2.44 2.80 3.14 3.37 3.57 3.76
MDRL 2.00 2.00 2.00 3.00 3.00 3.00 2.00 2.00 3.00 3.00 3.00 3.00
SDRL 1.70 1.89 2.07 2.25 2.42 2.65 1.81 2.04 2.23 2.42 2.62 2.86
2.00 ARL 1.27 1.35 1.43 1.48 1.51 1.54 1.30 1.39 1.48 1.53 1.57 1.60
MDRL 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
SDRL 0.57 0.65 0.72 0.75 0.78 0.81 0.61 0.69 0.77 0.81 0.84 0.87
3.00 ARL 1.02 1.03 1.05 1.05 1.06 1.06 1.03 1.04 1.05 1.06 1.07 1.07
MDRL 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
SDRL 0.16 0.18 0.22 0.23 0.24 0.24 0.17 0.20 0.23 0.25 0.26 0.26
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Table 8.7: Run length properties of the EWMA-OIDRSS (one-sided) dispersion

chart for monitoring decreases in the process dispersion

E— 0.05 0.10 0.20 0.30 0.40 0.50 0.05 0.10 0.20 0.30 0.40 0.50
L— 1.8380 2.0737 2.2395 2.2923 2.3100 2.3113 1.8380 2.0737 2.2395 2.2923 2.3100 2.3113
T g% = 0.05 g3, =0.15

1.00 ARL 201.85 198.07 196.99 193.30 191.39 190.80 | 200.71 195.59 19275 190.83 188.44 186.71
MDRL 133.00 136.00 135.00 134.00 133.00 132.00 | 130.00 133.00 134.00 132.00 131.00 129.00

SDRL 219.93 202.73 198.24 192.81 190.56 190.91 220.28 201.87 193.31 190.44 187.03 186.75

1.10 ARL 44.77 54.31 67.92 77.60 86.23 93.65 47.38 57.85 70.35 79.78 88.47 96.70
MDRL 31.00 39.00 48.00 54.00 60.00 65.00 33.00 41.00 49.00 56.00 61.00 68.00

SDRL 44.75 52.23 65.65 76.14 84.66 92.78 48.03 56.13 68.68 78.00 87.21 95.24

1.20 ARL 18.09 22.37 29.06 35.13 41.59 48.43 19.49 24.27 31.32 37.71 44.15 51.34
MDRL 14.00 17.00 21.00 25.00 29.00 34.00 15.00 19.00 23.00 27.00 31.00 36.00

SDRL 16.12 19.11 26.10 32.73 39.75 46.57 17.48 21.07 28.53 35.47 42.30 49.67

1.30 ARL 6.27 7.65 9.18 10.76 12.69 15.25 6.85 8.38 10.17 11.97 14.24 16.99
MDRL 5.00 7.00 8.00 9.00 10.00 11.00 6.00 7.00 8.00 9.00 11.00 12.00

SDRL 4.52 5.15 6.44 8.28 10.55 13.41 5.08 5.79 7.38 9.49 12.04 15.19

1.40 ARL 3.30 3.96 4.58 5.03 5.56 6.34 3.63 4.35 5.06 5.59 6.27 7.22
MDRL 3.00 4.00 4.00 4.00 5.00 5.00 3.00 4.00 4.00 5.00 5.00 6.00

SDRL 1.97 2.21 2.55 2.99 3.67 4.58 2.24 2.51 2.93 3.45 4.28 5.45

1.50 ARL 2.11 2.51 2.83 3.01 3.19 3.40 2.31 2.75 3.13 3.33 3.55 3.86
MDRL 2.00 2.00 3.00 3.00 3.00 3.00 2.00 3.00 3.00 3.00 3.00 3.00

SDRL 1.05 1.18 1.30 1.42 1.61 1.90 1.19 1.34 1.48 1.64 1.90 2.29

2.00 ARL 1.51 1.77 1.98 2.07 2.12 2.19 1.66 1.94 2.18 2.28 2.37 2.46
MDRL 1.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00

SDRL 0.63 0.71 0.77 0.81 0.87 0.95 0.72 0.81 0.88 0.93 1.01 1.13

3.00 ARL 1.17 1.33 1.48 1.54 1.56 1.58 1.27 1.47 1.64 1.70 1.74 1.76
MDRL 1.00 1.00 1.00 2.00 2.00 2.00 1.00 1.00 2.00 2.00 2.00 2.00

SDRL 0.38 0.49 0.54 0.56 0.58 0.60 0.46 0.55 0.59 0.61 0.63 0.67

0% =0.30 gy = 0.50

1.00 ARL 196.90 197.22 195.31 194.03 195.29 199.25 198.41 199.46  201.05 204.12 210.22 218.87
MDRL  128.00 135.00 135.00 135.00 136.00 138.00 | 130.00 135.00 139.00 142.00 146.00 152.00

SDRL 216.47  202.80 195.05 192.80 193.76 199.64 215.96 205.86 201.14 202.38 209.38 217.84

1.10 ARL 50.33 61.03 75.28 85.63 95.10 104.86 53.02 64.45 80.04 92.59 104.56 117.84
MDRL 35.00 43.00 53.00 60.00 67.00 73.00 37.00 46.00 56.00 65.00 73.00 82.00

SDRL 51.23 59.27 73.00 83.76 93.61  103.40 54.28 62.70 78.11 90.39 103.28 116.63

1.20 ARL 21.17 26.43 34.25 41.70 49.32 57.34 22.66 28.55 37.36 46.00 55.23 65.69
MDRL 16.00 20.00 25.00 30.00 35.00 40.00 17.00 21.00 27.00 33.00 39.00 46.00

SDRL 19.26 23.30 31.33 39.52 47.51 55.88 20.68 25.27 34.37 43.59 53.31 64.10

1.30 ARL 7.52 9.19 11.30 13.50 16.23 19.69 8.10 9.96 12.45 15.10 18.54 23.02
MDRL 6.00 8.00 9.00 10.00 12.00 14.00 7.00 8.00 10.00 12.00 14.00 17.00

SDRL 5.64 6.48 8.36 10.87 14.00 17.81 6.08 7.04 9.35 12.42 16.17 20.99

1.40 ARL 3.96 4.80 5.61 6.30 7.19 8.37 4.30 5.21 6.16 6.98 8.14 9.77
MDRL 3.00 4.00 5.00 5.00 6.00 6.00 4.00 5.00 5.00 6.00 7.00 7.00

SDRL 2.48 2.81 3.29 4.01 5.08 6.48 2.70 3.06 3.67 4.56 5.90 7.79

1.50 ARL 2.52 3.02 3.46 3.72 4.01 4.44 2.72 3.27 3.78 4.09 4.50 5.09
MDRL 2.00 3.00 3.00 3.00 4.00 4.00 2.00 3.00 3.00 4.00 4.00 4.00

SDRL 1.32 1.49 1.67 1.87 2.20 2.76 1.43 1.59 1.81 2.07 2.53 3.23

2.00 ARL 1.79 2.13 2.42 2.54 2.65 2.78 1.93 2.31 2.62 2,78 2.93 3.13
MDRL 2.00 2.00 2.00 2.00 2.00 3.00 2.00 2.00 2.00 3.00 3.00 3.00

SDRL 0.79 0.89 0.96 1.03 1.15 1.31 0.86 0.95 1.03 1.13 1.27 1.51

3.00 ARL 1.37 1.61 1.81 1.89 1.94 1.98 1.46 1.75 1.98 2.06 2.13 2.19
MDRL 1.00 2.00 2.00 2.00 2.00 2.00 1.00 2.00 2.00 2.00 2.00 2.00

SDRL 0.52 0.60 0.63 0.65 0.68 0.74 0.56 0.62 0.65 0.68 0.72 0.80

891

uorsaadst

( SS9201J pue
UBOTA[ SS9201J SUIIONUOIA I0] SjIey)) [0IIU0)) 3FeIoAy SUIAOIA PIIYSIOM A[reryusuodxi] MaN



8.4 Performance comparisons of control charts 169

8.4 Performance comparisons of control charts

In this section, we compare the performances of the proposed EWMA-ODRSS and EWMA-OIDRSS charts
with some of the recent EWMA charts when detecting changes in the process mean and in the process

dispersion. The performance of each control chart is evaluated in terms of logarithm of out-of-control ARLs.
(i) EWMA-ODRSS and EWMA-OIDRSS mean charts versus EWMA mean charts

In Figure we compare the run length performance of the proposed EWMA chart with some existing
powerful EWMA charts based on SRS and ORSS schemes, respectively, i.e., classical EWMA, fast initial
response based EWMA (FIR-EWMA), Shewhart-EWMA, hybrid EWMA, and EWMA-ORSS charts. Note
that the in-control ARL for each EWMA chart is fixed to 500 with £ = 0.10, 0.50. It is worth mentioning
that the proposed EWMA-ODRSS chart performs uniformly better than the EWMA charts considered here.

£=0.10 £=0.50
o v ] EWMA o dw | EWMA
-—-- FIR-EWMA Xy -—-- FIR-EWMA
o 4 W — — Shewhart-EWMA| P B TN — — Shewhart-EWMA
W\ _ ) )
W == Hybrid EWMA YR == Hybrid EWMA
-+ 1 L - - - EWMA-ORSS R RSN - - EWMA-ORSS
x RN —— EWMA-ODRSS x \ ENEN — EWMA-ODRSS
o S m NN
S 2
AN [N
T N ey —
o - = o -
I I I I I I I I I I I I I I
00 05 10 15 20 25 3.0 00 05 10 15 20 25 3.0
1 o

Figure 8.1: Comparison of the EWMA-ODRSS mean chart with some classical and
recent EWMA mean charts

Similarly, in Figure we compare the proposed EWMA-OIDRSS chart with EWMA charts considered
in Figure It is clear that the proposed EWMA-OIDRSS chart has better run length performance than
the existing EWMA charts. However, for large shifts, the proposed EWMA chart is less efficient than the
FIR-EWMA chart when o2, = 0.50. Moreover, for all values of §, the EWMA-OIDRSS chart is able to
perform substantially better than the EWMA-OIRSS chart.
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Figure 8.2: Comparison of the EWMA-OIDRSS mean chart with some classical and
recent EWMA mean charts

(ii) EWMA-ODRSS mean chart versus CS-EWMA-RSS, CS-EWMA-MRSS and

EWMA-ORSS mean charts

Recently, Abujiya et al| (2013a) proposed combined Shewhart-EWMA charts based on RSS and MRSS

schemes for monitoring the process mean and named them CS-EWMA-RSS and CS-EWMA-MRSS charts.

They showed that these charts perform better than many other mean charts based on SRS. In Figure [8.3] we

compare the proposed EWMA-ODRSS chart with the CS-EWMA-RSS and CS-EWMA-MRSS mean charts

for different values of €. Figure [8.3| demonstrates that the EWMA-ODRSS is more sensitive than the EWMA

charts based on RSS, MRSS and ORSS methods.
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Figure 8.3: Comparison of the EWMA-OIDRSS mean chart versus combined
Shewhart-EWMA-RSS, combined Shewhart-EWMA-MRSS and EWMA-ORSS mean
charts

(iii) EWMA-ODRSS dispersion chart versus EWMA dispersion charts

Crowder and Hamilton| (1992) applied the logarithmic transformation to S? based on SRS and suggested
an EWMA control chart for monitoring increases in the process standard deviation. Later on, their work
was extended by [Shu and Jiang| (2008), and they proposed another EWMA chart for monitoring the process
dispersion. For simplicity, we denote the EWMA charts suggested by |Crowder and Hamilton| (1992) and Shu
and Jiang| (2008) by CH-EWMA and SJ-EWMA charts, respectively. [Huwang et al.| (2010) suggested new
EWMA charts for monitoring the process dispersion and named them HHW1-EWMA and HHW2-EWMA.
Recently, Haq et al.| (2013a) proposed an improved EWMA chart based on ORSS (EWMA-ORSS) for
monitoring the process dispersion. For a fair comparison of these dispersion charts, in Figure we compare
the proposed EWMA-ODRSS dispersion chart with these EWMA dispersion charts for different values of £
and 7. For each chart, the in-control ARL is fixed to 200. It is notable from Figure that the proposed
EWMA-ODRSS dispersion chart outperforms all EWMA dispersion charts considered here.
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Figure 8.4: Comparison of the two-sided EWMA-ODRSS dispersion chart versus
two-sided EWMA dispersion charts

Similarly, in Figure we compare the performances of the one-sidled EWMA charts for detecting
increases in the process dispersion. It is worth mentioning that the the EWMA-ODRSS chart performs
uniformly better than its existing counterparts. Moreover, in Figure we also compare the performances
of the one-sided EWMA-OIDRSS and EWMA-OIRSS charts with the existing one-sided EWMA dispersion
charts. Figure shows that, even under imperfect rankings, the proposed one-sided EWMA-OIDRSS

dispersion chart has better run length performance than that of its counterparts.
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Figure 8.5: Comparison of the one-sided EWMA-ODRSS dispersion chart versus
one-sided EWMA. dispersion charts
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Figure 8.6: Comparison of the one-sided EWMA-OIDRSS dispersion chart versus
one-sided EWMA dispersion charts
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8.5 Illustrative examples

Many authors provide illuminating examples for a better understanding of the quality control schemes. These
examples include real or simulated data sets. Following the works of |Abbas et al.| (2013, 2011), Riaz et al.
(2011) and Hag (2013), in this section, we provide examples to show how the proposed EWMA charts can be

easily implemented in real-life practical situations.
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Figure 8.7: EWMA-ODRSS and EWMA-ORSS mean charts for simulated data

Recently, [Haq et al.| (2013a) showed that the EWMA-ORSS charts are more powerful than the existing
EWMA charts in detecting overall changes in the process mean and in the process dispersion. Therefore,
for brevity of discussion, we compare the proposed EWMA-ODRSS charts with the EWMA-ORSS charts.
Assume that, at time ¢, the underlying quality characteristic is normally distributed with mean zero and
variance unity, i.e., ¥; ~ N(0,1) for ¢ > 1. For a fair comparison of both EWMA-ODRSS and EWMA-ORSS
mean charts, the in-control ARLSs of these charts are fixed to 500 with £ = 0.10. We generate 30 samples,
each of size 5, from a standard normal distribution under both ORSS and ODRSS schemes, i.e., ¥; ~ N(0,1)
for ¢ < 30. Now suppose that, when ¢ > 30, the underlying process gets out-of-control due to an unknown
shift in the underlying process mean. In order to capture this situation, we again generate 20 samples, each
of size 5, under both sampling schemes, from a normal distribution with mean 0.2 and variance unity, i.e.,
Y; ~ N(0.2,1) for t > 30. Then, we apply the proposed EWMA-ODRSS and EWMA-ORSS mean charts on
the generated samples. The values of the plotting-statistics and control limits of both EWMA mean charts
are displayed in Figure Figure shows that the underlying process remains in-control when ¢ < 30.
However, when ¢ > 30, both EWMA charts are showing out-of-control signals. The proposed EWMA-ORSS
mean chart detects an out-of-control signal at the 37th sample, whereas the EWMA-ORSS mean chart detects

an out-of-control signal at the 46th sample for this data set.
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Figure 8.8: EWMA-ODRSS and EWMA-ORSS dispersion charts for simulated data

Similarly, we also compare the performances of the EWMA-ODRSS and EWMA-ORSS dispersion charts.
Assume that the underlying process remains in control state when ¢ < 30 and gets out-of-control when ¢ > 30.
For this purpose, we first generate 30 samples, each of size 5, from a standard normal distribution under both
sampling schemes. Next we generate 20 samples, each of size 5, from a normal distribution with mean zero
and variance 1.69, i.e., Y; ~ N(0,1.69) for ¢ > 30. The in-control ARLs of both EWMA dispersion charts
are fixed to 200 with £ = 0.10. Based on these 50 samples, under both sampling schemes, the test-statistics
and control limits of both EWMA dispersion charts calculated and displayed in Figure 8.8 It is clear from
Figure that both charts are showing out-of-control signals when ¢ > 30. It is interesting to note that the
proposed EWMA-ODRSS chart detects an upward shift in the process dispersion at the 34th sample, while

the EWMA-ORSS chart detects the same shift at the 46th sample.

8.6 Conclusion

In this chapter, we proposed some improved EWMA control charts for monitoring changes in the process mean
and in the process dispersion. These EWMA control charts are based on the BLUEs-ODRSS and BLUEs-
OIDRSS obtained under ODRSS and OIDRSS schemes, respectively. Extensive Monte Carlo simulations have
been used to estimate the run length characteristics of the proposed EWMA charts. In order to evaluate the
detection abilities of the proposed EWMA charts, we compared their run length performances with some of
the recently proposed EWMA charts. It is worth mentioning that the EWMA-ODRSS and EWMA-OIDRSS
charts perform uniformly better than the EWMA-ORSS and EWMA-OIRSS charts when detecting overall
changes in the process mean and in the process dispersion. Moreover, these charts are also able to perform
substantially better than their counterparts based on SRS, RSS, and MRSS schemes. Finally, we considered

some illuminating examples to explain the implementation of the proposed EWMA-ODRSS charts.
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Chapter 9

New Exponentially Weighted Moving
Average Control Charts for

Monitoring Process Dispersion

This chapter appeared in:
Haq, A., Brown, J., Moltchanova, E., 2013, New exponentially weighted moving average control charts for
monitoring process dispersion, Quality and Reliability Engineering International, Early view, DOI:

10.1002/qre.1553.

Exponentially weighted moving average (EWMA) control charts have received considerable attention for
detecting small changes in the process mean or the process variability. Several EWMA control charts are
constructed using logarithmic and normalizing transformations on unbiased sample variance for monitoring
changes in the process dispersion. In this chapter, we propose new EWMA control charts for monitoring
process dispersion based on the best linear unbiased absolute estimators obtained under simple random
sampling (SRS) and ranked set sampling (RSS) schemes, named EWMA-SRS and EWMA-RSS control charts.
The performance of the proposed EWMA control charts is evaluated in terms of average run length and
standard deviation of run length, estimated by using Monte Carlo simulations. The proposed EWMA control
charts are then compared with their existing counterparts for detecting increases and decreases in the process
dispersion. It turns out that the EWMA-RSS control chart performs uniformly better than its analogues for
detecting overall changes in process dispersion. Moreover, the EWMA-SRS chart significantly outperforms
the existing EWMA charts for detecting increases in process variability. A real data set is also used to explain

the construction and operations of the proposed EWMA control charts.
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9.1 Introduction

Statistical quality control charts are well-known process monitoring tools, primarily used to track the unusual
variations in industrial processes. These charts include location and dispersion control charts. The location
charts are used to monitor changes in the process mean level whereas dispersion charts identify changes
in process dispersion. In practice, it is vital to monitor changes in the process dispersion rather than the
mean, because an increase in process dispersion leads to an increase in the number of defective items while
a decrease in the process variance implies an improvement in the production process. The identification
and monitoring of special cause of variations in the manufacturing processes are fundamental features of
statistical process control (SPC) that help in improving the process productivity and the quality of products.

In order to detect the infrequent changes in the process dispersion, rational subgrouping is often used. The
efficient measures of dispersion, such as the unbiased sample variance S2, sample range R and many others
are then computed from each subgroup. Then, it is customary to apply the classical Shewhart, cumulative
sum (CUSUM) and exponentially weighted moving average (EWMA) control charts on these subgroup
statistics for monitoring the process variance. In the last decades, dispersion control charts have gained
a great deal of attention. Therefore, the literature on these control charts is enormous and growing at a
fast pace. Roberts| (1959) was the first one to introduce the EWMA control chart for monitoring process
mean. The CUSUM control chart based on the sample range for monitoring the standard deviation of a
normally distributed process was suggested by Page| (1954). It is clear that when the underlying process is
normally distributed, then S? is a chi-square random variable. Therefore, when a control chart is constructed
based on S?, it is difficult to obtain an unbiased average run length (ARL) for that chart. Here, ARL is the
average number of observations or subgroups that are required to issue a particular size shift in the process
location or dispersion or both. An ARL is said to be unbiased if there does not exist any out-of-control ARL
greater than the in-control ARL. |Crowder and Hamilton| (1992) applied logarithmic transformation to 52,
i.e., In(S5%/02), and suggested one-sided EWMA control charts based on log(S?) for monitoring increases in
the process standard deviation. Here, 02 is the in-control process variance. The performance comparison
of the CUSUM control charts based on S? and In(S?) was done by (Chang and Gan| (1995). They showed
that S2-CUSUM chart is partially better than the In(S2)-CUSUM chart when detecting an increase in the
process dispersion. However, for monitoring overall changes in the process dispersion, the out-of-control
ARLSs of the In(S2)-CUSUM control chart are more likely to be unbiased than the corresponding ARLs
of the $2-CUSUM chart. |Acosta-Mejia et al.| (1999) made a comprehensive comparison of the dispersion
control charts. They suggested new CUSUM control charts based on normalizing transformation and a
likelihood ratio test for monitoring increases and decreases in process dispersion. (Castagliola (2005) applied
a three-parameter logarithmic transformation to S? and suggested and improved S2-EWMA control chart
for monitoring changes in process variance. [Shu and Jiang (2008) suggested a new EWMA control chart

for monitoring process dispersion by truncating the distribution of In(S?/03) to its in-control approximated
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mean whenever it is less than its approximated mean. Recently, Huwang et al. (2010) suggested some new
EWMA control charts for monitoring process dispersion by applying some normalizing transformations to
S2/02 and (n—1)S2/0Z, where n is the sample size. They showed that their proposed EWMA control charts
are better than the EWMA charts suggested by |Crowder and Hamilton| (1992) and [Shu and Jiang| (2008).
For some recent literature review and advancements related to dispersion control charts, see Reynolds Jr and
Stoumbos| (2006)), Maravelakis and Castagliolal (2009), Riaz (2008a)), /Abbasi and Miller| (2012), |Abbas et al.
(2013a) and references therein.

The ranked set sampling (RSS) was first suggested by McIntyre| (1952) for estimating mean pasture and
forage yields. This scheme now has many applications in ecological and environmental studies (cf. Dell
and Clutter) 1972} |Al-Saleh and Zheng, 2002), reliability theory (cf. Kvam and Samaniego, 1994), medical
studies (cf. Samawi and Al-Sagheer, [2001)) and quality control (cf. Abujiya et al., 2013a; |Al-Omari and Hag)
2012; Haq, 2014; [Jafari Jozani and Mirkamali, 2011}, and references therein). RSS scheme is useful when
measurements of interest are expensive or time-consuming, but it is easy to rank a small set of selected units
visually with respect to the study variable or by any correlated variable (cf. |Stokes| [1977). Takahasi and
Wakimoto| (1968) were the first to develop the statistical theory of RSS. They showed that, under perfect
ranking, the sample mean based on RSS is an unbiased estimator of the population mean, and at the same
time, it is more efficient than the sample mean based on simple random sampling (SRS). Dell and Clutter
(1972) examined the effect of imperfect ranking on the efficiency of RSS-based mean estimator. They showed
that even under imperfect RSS (IRSS), the RSS mean estimator remain unbiased, and it is better than the
SRS mean estimator, but ranking should be better than random ordering. The RSS-based control chart for
monitoring process mean was first suggested by [Salazar and Sinha) (1997). Muttlak and Al-Sabah| (2003)
extended their work and suggested some improved Shewhart-type control charts for monitoring process mean
based on RSS, median RSS and extreme RSS methods. They showed that the RSS-based control charts
detect random shift in the process location substantially quicker than the Shewhart control chart based on
SRS. The performance of RSS schemes can be increased by using double RSS (DRSS) schemes. Using this
fact, |Abujiya and Muttlak| (2004) suggested Shewhart-type control charts for monitoring process mean based
on DRSS methods. They proved that the DRSS-based control charts are better than the control charts
with RSS. |Al-Omari and Haq| (2012) suggested Shewhart-type control charts for monitoring process mean
based on some efficient DRSS schemes. |Abujiya et al. (2013a) suggested Shewhart-EWMA control charts for
detecting changes in process mean based on RSS and MRSS schemes. Recently, Haq| (2014)) proposed an
improved mean deviation-based EWMA control chart for monitoring process dispersion under RSS. For more
details about RSS-based control charts, see Abujiya et al.| (2014), Mehmood et al. (2013) and references cited
therein.

Rao et al.| (1991) and Rosaiah et al.| (1991) derived the best linear unbiased estimator (BLUE) for the
scale parameter using the absolute value of the order statistics obtained under SRS. They showed that, when

estimating the scale parameter, the variance of the BLUE obtained from absolute values of order statistics
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is more precise than the BLUE obtained without taking the absolute value. Later on, |Zheng and Al-Saleh
(2003) extended the same work by using RSS and derived the BLUE of the scale parameter by using the
absolute value of the order statistics coming from RSS method. They named this estimator as best linear
unbiased absolute estimator (BLUAE) and showed that the BLUAE based on RSS is more efficient than the
BLUAE with SRS.

In this chapter, we propose new EWMA control charts for monitoring overall changes in the variance of a
normally distributed process. The proposed EWMA control charts are based on BLUAESs obtained under
SRS, RSS and IRSS schemes, named EWMA-SRS, EWMA-RSS and EWMA-IRSS charts, respectively. We
use Monte Carlo simulations to estimate the run length characteristics of these control charts. The proposed
EWMA control charts are then compared with their counterparts. It is noteworthy that the proposed EWMA
control charts outperform their analogues for detecting increases and decreases in process dispersion.

The rest of the paper is as follows: In Section [9.2] we provide a brief introduction related to the existing
EWMA control charts. Section [9.3] contains the details about the proposed EWMA control charts. Section
provides a comprehensive comparison of the EWMA control charts. A real data example is given in Section [9.5]

and Section [9.6] provides the concluding remarks.

9.2 Dispersion control charts available in literature

In this section, we provide a brief introduction about some EWMA control charts that were designed to
monitor the process dispersion.

Let Y1+,Y54,..., Y, ; be a random sample of size n, at time ¢, from a normally distributed process with
mean p; and variance o2, i.e., Yi: ~ N(ps, 02), fori=1,2,...,n,t=1,2,.... Here, our objective is to monitor
the changes in process dispersion. It is assumed that the process remains in-control when ¢ < 7 with variance
0% = 02, and the process gets out-of-control when ¢ > 7 with variance o2 # o2. Let &; = 04/, where 6&;
represents the amount of shift in the nominal process standard deviation og. Let SZ = -1- 3" (¥;; — Y)?

be the unbiased sample variance based on Y1 ¢, Y24, ..., Yy ¢, Where Y; is the sample mean of the ¢th subgroup

of size n. For brevity, without loss of generality, we set p; = 0.

(i) Crowder and Hamilton| (1992) EWMA control chart

In order to monitor the changes in process dispersion, (Crowder and Hamilton (1992) applied natural
logarithmic (In) transformation (suggested by Box, [1954) to SZ, i.e., In(S?/03). Let A; = In(S?/02), where
S? /o2 is a gamma random variable with shape parameter (n — 1)/2 and scale parameter 262/(n — 1), i.e.,
S2/o2 ~T ((n—1)/2,26%/(n — 1)). The resulting distribution of A; is log-gamma distribution, which can

be approximated by a normal distribution (cf. Lawless, [2003), i.e., A; = N(u4,0%), where

S
—1 3(n—-12 " 15(n—1)*

and 0% = 2 + 2 + 4 - 16
AT n-1" (n-12  3nm-173 15(n-1)5

pa =In(5) - —

Following this transformation, (Crowder and Hamilton (1992) proposed an EWMA chart for monitoring



9.2 Dispersion control charts available in literature 181

the process dispersion, named CH-EWMA chart. The upper and lower plotting-statistics of the CH-EWMA

chart are

Cuy max[0, AA; + (1 — A)Cu-1], Cuo =0,

Cr: = min[O, A + (1 — )\)CL,t—l]a CL,O =0,

’

respectively, where A(0 < A < 1) is a smoothing constant. In order to detect an increase in the process
dispersion, the CH-EWMA chart triggers an out-of-control signal if Cy; > by \/W . The value of by
is selected such that the in-control ARL of the CH-EWMA chart reaches to a specific level. Similarly, when
detecting a decrease in the process dispersion, the CH-EWMA chart generates an out-of-control signal if
Crs < —br \/W . Here, by, is chosen such that the in-control ARL of the CH-EWMA chart reaches

to a particular level. For more details, see |Crowder and Hamilton| (1992).

(ii) [Shu and Jiang (2008) EWMA control chart

Shu and Jiang| (2008) proposed another EWMA chart for monitoring process dispersion by truncating the
distribution of the transformation In(S?/03) to its in-control approximated mean, i.e., s Alos=ao, Whenever it
becomes less that p4|s,—,. Recall that A; is approximately a normal random variable with its approximated
in-control mean p14|s,—o,- Then, define the standardized quantity Z; = A*_”‘;‘%L‘““O. It is clear that o4
is a function of n only; thus, the changes in o2 will only affect the approximated in-control mean of As.
Let Z;7 = max(0, Z;), Barr and Sherrill (1999) showed that when Z; ~ N(0,1), then E(Z;") = 1/4/27 and
Var(Z7) = 0’%2_ =1/2—1/(2r). Using this fact, [Shu and Jiang| (2008) suggested an EWMA control chart for
monitoring process variability. We name this chart as SJ-EWMA control chart. The plotting-statistic of the

SJ-EWMA chart when detecting an increase in the process dispersion, at time ¢, is given by
D;":)\(Zt'"—l/\/%r) +(1-NDf,, Df=0,0<A<Ll.

This EWMA chart gives an out-of-control signal if D} > d;}ath- VA2 — X)~1, where df; is selected such that
the in-control ARL of SJ-EWMA chart reaches to a particular level. Similarly, in order to detect a decrease

in the process dispersion, the plotting-statistic of the SI-EWMA chart is defined by
Dy = (Z; + 1/\/27r) +(1-MNDj,, Dy =0,

where Z; = min(0,Z;). The SJ-EWMA chart triggers an out-of-control signal as soon as D; <

e — =T - . N :
dLoz-+/A(2—A)~'. Here, df is chosen to achieve the desired in-control ARL for the SJ-EWMA chart.

Note that due to the symmetry of standard normal distribution, we have Ozt =0z For more details, see

Shu and Jiang| (2008]).
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(iii) Huwang et al. (2010) EWMA control charts

Recently, Huwang et al| (2010) suggested some improved EWMA control charts for detecting increases
and decreases in the process dispersion. As aforementioned, SZ/03 ~ T ((n —1)/2,26}/(n — 1)). Then, the

EWMA-statistic based on SZ/02, at time ¢, is given by
E, = )\(St2/0'(2)) + (]. - A)Et_]_, Ey=1.

They showed that E} = E; — (1 — \)!E has an approximated gamma distribution, i.e., E} =~ I'(¢1, ¢2), where

¢ = ("_1%5\2{;?({11__)‘()12:}»%2 and ¢ = (n_12)>2~;1_—)‘()1{13)(21t_} T Similarly, In(EY) is a log-gamma random variable,

and it can be approximated by a normal random variable, i.e., In(E}) = (u}, 03?), where u = In(¢142) —

and o2 = L+ ﬁ + ﬁ — ﬁ. Define the standardized quantity E}* = L;E ~ N(0,1).

1 g

114 1
2¢1 ~ 12¢2 T 12047

We name the EWMA chart based on E;* as HHW1-EWMA chart.

The control limits of the HHW1-EWMA chart are
UCLt =4dg, CLt = 0, LCLt = —g,

where g is the upper control limit. Here, UCL;, CL; and LC'L; are the upper, center and lower control
limits, at time ¢, respectively. Similarly, it is easy to derive the one-sided (upper and lower) versions of the
HHW1-EWMA control chart when detecting increases or decreases in the process dispersion.

Huwang et al.|(2010) also suggested another EWMA control chart by transforming S2 /02 to an exact normal
random variable. It is easy to show that (n—1)S2/02 is a chi-square random variable with n — 1 as degrees of
freedom. Let Gp,—1(+) be the cumulative distribution function (CDF) of the chis-square random variable, i.e.,
(n —1)S2/03. Then, apply the CDF transformation on (n —1)52 /03, i.e., % = Gn_1 ((n — 1)S%/0%). The
resulting distribution of 9 is uniform, i.e., 9; ~ U(0,1). Let {; = ¢~1(+J;), which is a standard normal random
variable, i.e., (¢ ~ N(0,1), where ¢(-) is the CDF of the standard normal distribution. The plotting-statistic
of the EWMA chart based on (; is given by

Hy =XG+ (1 —NHy_y, Ho=0.

Here, H; is also a normal random variable with mean zero and variance 0%, i.e., H; ~ N(0,0%,), where
0%, = %};‘)%} Define the standardized quantity H} = UHTZ’ ie., Hf ~ N(0,1). The EWMA chart
based on H} is named as HHW2-EWMA chart. Let h and —h be the upper and lower control limits of the
HHW2-EWMA chart, respectively. The HHW2-EWMA charts gives an out-of-control signal when either
Hf > h or Hf < —h. For more details, see Huwang et al. (2010).

Note that all above EWMA control charts are based on SRS method.
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9.3 Proposed EWMA control charts

In this section, we propose new EWMA control charts for monitoring the process dispersion based on SRS,

RSS and IRSS schemes, named EWMA-SRS, EWMA-RSS and EWMA-IRSS charts.

9.3.1 New EWMA-SRS chart

As aforementioned, recall that Y;; ~ N(0,02), for i = 1,2,...,n, at time ¢. Let Y = Yis — s, then
Yi~N (0,02), which belongs to a scale family, symmetric about zero, with scale parameter o;. Define
Y.
Ot

Zig =

be the standardized variate with probability density function (PDF) independent of oy, i.e.,
Z;t ~ N(0,1), at time ¢. Let Ygrs: = (Y(’;m),t, Yém)’t, ey Y(’:m),t)' be n x 1 vector of observed order statistics
obtained from a random sample of size n, i.e., Y7';, Y5, ..., Y4, and let Zy = (Z(1:n),t) Z(2:n),t> > Z(nin) 1)’
be the corresponding n x 1 vector of standardized order statistics. Let o, = (f(1:m),¢> K(2in),» -+s H(nin),t) D€
the mean vector of Z;, where fi(;.n)+ = E(Z(iin),¢), for i = 1,2,...,n, and 3¢ = {0(; j:n),:} be the covariance
matrix of Z;, where 0(; jin),s = CoV(Z(iin) 1) Z(jin),t), for 4,5 = 1,2,...,n. Then, following Lloyd (1952), at

time ¢, the BLUE of oy, say &%%%E,t’ and its variance are, respectively, given by
N _ -1 _ N _ -1
U]?’,IEISJE,t = (/J';:zt lﬂt) uézt 1YSRS,t and Var(alsg%%E’t) = Utz (I"’;:Et lﬂt) .

Rao et al.| (1991) and Rosaiah et al.| (1991) derived the BLUE for the scale parameter of a symmetric
distribution using the absolute value of the order statistics obtained from a simple random sample of size
n, named BLUAE. They showed that, for a symmetric distribution, when estimating the scale parameter,
the variance of the BLUAE is less than the variance of the BLUE. In order to obtain the BLUAE of o;, say
8BLUAR,:» We take absolute of Y'sgs s, i.€., |[Y'srs,¢|- Then, following Lloyd (1952), at time #, the BLUAE of

o; based on |Y'ggrs,:| and its variance are, respectively, given by

63 am,e = (T ") fIL [Yismsyl and  Var(@§iam,) = o7 (el ')
where a; = (0(1:n),¢) O(2:n) t5 -+ X(nin),t)” 15 the mean vector of |Z;|, a(iin),t = E(|Z(sm) ), for i =1,2,...,n,
and IT; = {m(; j.n)+} be the covariance matrix of |Z;|, where 7(; jin)+ = Cov(|Z(in).ts | Z(jmm),e]), for 4,5 =
1,2,...,n.

Rosaiah et al.| (1991) showed that when the underlying distribution is symmetric about zero, then it is
possible to express the moments and cross-moments of the standardized absolute order statistics (| Z(;.n),+|)
in terms of moments and cross-moments of the standardized order statistics in the corresponding folded
distribution. Recall that Y%, ~ N(0, 0?), for i = 1,2,...,n, at time ¢t. Here, Zl = ‘7%|Y:t|, having PDF

*2
2 2t

9(2f) =4/ % exp (_T)’ zf > 0. Here, g(2;) is the folded normal or half-normal distribution.
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(i) For all positive integer value of w, we have

i—1 n
w 1 *TT >0
E(lz(zn),tl ) = 27 {Z C’n,wE ( (i—w:n—w),t) =+ Z C‘n,’wE(Z(w—i+1:w),t)} ’ (91)
w=0

where C, o, = nl{w!(m — w)!} L.

(i) For positive i, j and 1 < i < j < n, we have

i-1 j—1
1 . "
E(lz(’tn),t”Z(Jn),tl) = 27 {Z CnawE(Z(i—w,j—w:n—w),t) + Z Cn,wE(Z(w—i+1:w),t)

w=0 w=1

n
E(Z(*j—w:n—w),t) + Z Cn,wE(Zzw—j+1,w—i+1:w),t) . (9-2)
w=j
Here, E(Z7, ;) is the wth moments of the ith order statistic, and E(Z; ,.,, ;) is the product of the ith and
jth order statistics (¢ < ) in a sample of size n drawn from a standardized density g(z;) at time ¢. Solving
and (9.2), it is easy to find the values of a; and II;, which are needed in computing 6§5sx , and its
corresponding variance.

Assume that the underlying process is in-control and let Y%, for ¢ = 1,2,...,n, be a simple random
sample of size n, drawn from a normally distributed process with mean zero and variance o2 at time ¢, i.e.,
Y ~ N(0,03), for t = 1,2,...,7. Let 6580 AR 1) OBrUAR 29 -+ OBLUAR,¢ - D & sequence of independent and
identically distributed (IID) random variables and let £(0 < £ < 1) be a smoothing constant. Based on this

sequence, we define another sequence, say {M;}, by using a recurrence formula, given by
M, = £6510am,, + (1 =M1, 0<E<1,

which is an EWMA sequence. We name the control chart based on this plotting-statistic as EWMA-SRS chart.
It is easy to show that E(M;) = E(6§5yag,) = 0o for My = 0o, and Var(M,) = R(t;£)o3(c}IT;  a) 7,
where R(t;€) = (2576){1 — (1 —¢)%}. The control limits of the EWMA-SRS chart, at time ¢, are given by the

following;:

UCL, = oo+ Looy/R(t; €)(@IL; "a),

CLt = 00,

LCL, = oo—hooy/Rt€) (I a)

where (I1,I2) is determined such that the desired in-control ARL of the EWMA-SRS chart is achieved.
Similar to the aforementioned EWMA control charts in Section here EWMA-SRS chart generates an
out-of-control signal as soon as My > UCL; or My < LCL;. At time t, when M; > UCL;, then there is

a positive shift in the process dispersion or when M; < LCL;, this shows a negative shift in the process
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Table 9.1: Run length characteristics of the two-sided EWMA-SRS control chart

Symmetric limits Asymmetric limits

&= 0.05 0.10 0.02 0.30 0.05 0.10 0.20 0.30

Ii— 22729 24777 2.6440 2.7259 21291 2.3200 2.4100 2.4300

Ip— 22729 24777 2.6440 2.7259 2.4400 2.6488 2.8760 2.9847

0.50

0.55

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

1.10

1.20

1.30

1.40

1.50

1.60

1.70

1.80

1.90

2.00

2.50

3.00

ARL 2.87 3.31 3.78 4.26 2.58 2.96 3.20 3.37
SDRL 1.04 1.14 1.30 1.63 0.98 1.06 1.16 1.29
ARL 3.41 3.96 4.58 5.33 3.07 3.54 3.85 4.12
SDRL 1.37 1.50 1.78 2.37 1.29 1.40 1.55 1.81
ARL 4.16 4.85 5.74 6.99 3.73 4.33 4.77 5.20
SDRL 1.84 2.04 2.54 3.68 1.73 1.90 2.17 2.63
ARL 5.23 6.14 7.49 9.75 4.67 5.44 6.09 6.89
SDRL 2.55 2.85 3.79 6.05 2.38 2.64 3.11 4.05
ARL 6.81 8.04 1030 14.66 6.04 7.08 8.16 9.61
SDRL 3.65 4.17 6.09 10.61 3.36 3.80 4.75 6.46
ARL 9.27 11.15 1536  24.38 8.23 9.69 11.62 14.41
SDRL 5.43 6.47 10.55 19.96 5.04 5.78 7.81 11.06
ARL 13.50 16.65 2546 4456 11.85 14.31 18.06 23.30
SDRL 871 11.02 20.19 40.07 7.97 9.60 13.86 19.85
ARL 21.87 2820 4848 90.17 1897 2345 31.32  41.68
SDRL  15.89 21.58 42.73 8578 1419 1790 27.02 38.10
ARL 42.02  58.06 105.23 190.18 3528 4549 62.06 80.69
SDRL  35.22 51.13 100.14 186.79 29.86 40.09 58.14 77.82
ARL 106.25 143.95 220.25 301.42 86.61 108.61 133.04 153.58
SDRL 104.36 141.44 218.27 299.57 85.46 106.17 130.44 151.31
ARL 200.26 200.87 200.10 200.29 199.89 200.94 200.41 200.28
SDRL 214.20 205.79 201.33 199.44 213.61 205.66 200.31 200.55
ARL 33.73 37712 4167 4436 39.63 4553 56.36 63.96
SDRL 3291 36.29 40.52 43.34 37.78 43.20 55.13 62.52
ARL 1220 1349 1486 1597 13.80 1545 1846  21.02
SDRL 1097 11.69 13.30 14.61 1208 13.3¢4 16.50 19.34
ARL 6.66 7.31 7.93 8.36 7.39 8.16 9.31 10.35
SDRL 5.71 6.04 6.56 7.12 6.18 6.63 7.67 8.86
ARL 4.43 4.85 5.17 5.42 4.88 5.35 5.96 6.37
SDRL 3.65 3.82 4.07 4.36 3.92 4.19 4.61 5.09
ARL 3.30 3.58 3.83 3.94 3.59 3.90 4.29 4.52
SDRL 2.58 2.72 2.86 297 277 2.92 3.18 3.42
ARL 2.63 2.85 3.02 3.11 2.84 3.06 3.34 3.49
SDRL 1.95 2.07 2.15 2.24 2.10 2.21 2.38 2.52
ARL 2.21 2.37 2.50 2.58 2.36 2.55 2.74 2.86
SDRL 1.55 1.64 1.72 1.77 1.65 1.77 1.88 1.97
ARL 1.93 2.06 2.16 2.21 2.05 2.19 2.35 244
SDRL 1.27 1.36 1.41 1.44 1.36 1.46 1.55 1.62
ARL 1.73 1.84 1.92 1.96 1.82 1.93 2.06 2.14
SDRL 1.07 1.15 1.20 1.22 1.14 1.22 1.30 1.36
ARL 1.59 1.67 1.74 1.77 1.66 1.75 1.85 1.91
SDRL 0.93 0.99 1.03 1.05 0.99 1.05 1.12 1.16
ARL 1.23 1.27 1.30 1.31 1.26 1.30 1.35 1.37
SDRL 0.52 0.56 0.59 0.60 0.55 0.59 0.64 0.65
ARL 1.11 1.12 1.14 1.15 1.12 1.14 1.17 1.18
SDRL 0.34 0.36 0.39 0.40 0.36 0.39 0.42 0.43

variability.

The performance of a control chart is generally evaluated in terms of the run length properties, i.e., ARL

and standard deviation of run length (SDRL). Here, we use Monte Carlo simulations to estimate the run

length characteristics of the proposed EWMA-SRS control chart. Using extensive Monte Carlo simulations
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Table 9.2: Run length characteristics of the one-sided EWMA-SRS control charts
&— 0.05 0.10 0.20 0.30 &— 0.05 0.10 0.20 0.30
Ot IL,—  1.9225 22200 2.4950 2.6358 4.} I;— 1.8250 2.0488 2.2030 2.2360
1.00 ARL  200.92 199.79 200.20 199.69 1.00 199.93 199.82 200.99 200.91

SDRL 222.77 207.04 204.44 200.32 218.73 203.58 201.52 200.27
1.10 ARL 23.88 28.32 3434 3891 0.95 56.95 68.69 86.09 95.97
SDRL  24.60 2757 33.30 37.88 57.98 66.80 84.10 94.28
1.20 ARL 9.28 1096 1299  14.58 0.90 24.63 30.94 41.05 49.73
SDRL 8.90 9.90 11.61 13.41 2242 2730 38.00 47.15
1.30 ARL 5.26 6.17 7.11 7.82 0.85 13.77 1710 2227 2731
SDRL 4.75 5.26 5.90 6.64 11.24 13563 18.86 24.49
1.40 ARL 3.63 419 4.77 5.13 0.80 885 10.81 13.64 16.50
SDRL 3.11 3.40 3.77 4.13 6.57 761 10.23 13.59
1.50 ARL 2.77 3.15 3.53 3.76 0.75 6.22 7.55 9.17 10.74
SDRL 2.20 2.43 2.65 2.84 4.23 4.78 6.12 7.96
1.60 ARL 2.27 2.54 2.82 2.98 0.70 4.63 5.61 6.64 7.54
SDRL 1.69 1.86 2.02 2.15 2.87 3.23 3.92 4.97
1.70 ARL 1.95 2.16 2.36 2.49 0.65 3.62 4.35 5.06 5.60
SDRL 1.34 1.48 1.61 1.70 2.04 2.28 2.64 3.22
1.80 ARL 1.73 1.89 2.05 2.15 0.60 291 3.50 4.02 4.33
SDRL 1.11 1.23 1.33 1.40 1.49 1.67 1.89 2.19
1.90 ARL 1.56 1.70 1.83 1.91 0.55 241 2.88 3.29 3.48
SDRL 0.93 1.03 1.13 1.19 1.12 1.25 1.38 1.56
2.00 ARL 1.45 1.56 1.68 1.73 0.50 2.05 243 2.75 2.89
SDRL 0.80 0.89 0.98 1.02 0.87 0.96 1.04 1.14
2.50 ARL 1.17 1.22 1.27 1.29 0.40 1.53 1.82 2.05 2.12
SDRL 0.45 0.51 0.56 0.58 0.58 0.62 0.64 0.67
3.00 ARL 1.08 1.10 1.13 1.14 0.30 1.17 1.40 1.61 1.66
SDRL 0.29 0.33 0.37 0.38 0.38 0.50 0.51 0.51

(10%) from standard normal distribution, we have estimated ARLs and SDRLs of the EWMA-SRS chart for
different values of §; and are reported in Tables 0.1 and In Tables[9.1 and we report the run length
properties of both two-sided and one-sidled EWMA-SRS charts, respectively. For two-sided EWMA-SRS
chart, we consider both symmetric and asymmetric control limits and study their effect on the performance
of the EWMA-SRS chart. For the EWMA-SRS chart, the assumed values of the smoothing constant £ are
0.05, 0.10, 0.20 and 0.30. The subgroup size is taken to be five, i.e., n = 5.

From Table it is clear that when 6; > 1, the ARLs tend to decrease as J; increases and vice-versa.
However, the ARLs decrease as the value of 8; decreases when d; < 1. For a fixed value of d;, as the value
of £ increases, the ARLs and SDRLs both tend to increase and vice-versa. Note that when detecting a
small decrease in the process dispersion, i.e., 0.9 < §; < 1, ARLs of the EWMA-SRS chart are biased for
¢ = 0.2,0.3, under symmetric control limits. This shows that the probability distribution of the BLUAE
under SRS is asymmetric. In order to obtain unbiased ARLs for all values of §; and £, we consider asymmetric
control limits for the EWMA-SRS chart. For all values of d; and £, under asymmetric control limits, ARLs of
the EWMA-SRS chart are unbiased, and there is a substantial improvement when detecting decreases in
the process dispersion. However, with these control limits, there is an increase in the values of ARLs of the
EWMA-SRS chart when §; > 1 for each value of £&. Table presents the run length characteristics of the
one-sided EWMA-SRS chart when detecting either increases or decreases in process dispersion. The proposed

EWMA-SRS chart is more sensitive in detecting positive shifts in the process dispersion as compared with the
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negative shifts. The values of d; and £ have similar impact on the performance of the one-sided EWMA-SRS
chart as observed for the two-sided EWMA-SRS chart. For example, given the value of £, under one-sided
EWMA-SRS charts, the estimated ARL is also a decreasing function of d; and vice-versa. Similarly, when &;

is fixed, ARLSs tend to increase as the value of ; increases.

9.3.2 New EWMA-RSS chart

The RSS scheme becomes an efficient alternative to the SRS scheme when the sampling units are difficult or
expensive to measure, but it is relatively easy to rank a small set of selected units visually or by judgment
without knowing the actual measurements. For example, it is easy to rank the products with respect to their
sizes, volume or by using any correlated variable (cf. |Jafari Jozani and Mirkamali, 2011)).

The RSS procedure is as follows: identify m? units from the target population. Randomly allocate these
units to m sets, each of size m units. Without knowing the actual values, rank the units within each set
with respect to the study variable visually or by any low cost method. Then, the ith smallest ranked unit is
quantified from the ith set of m units, for ¢ = 1,2, ..., m. This completes one cycle of ranked set sample of size
m. The whole procedure can be repeated r times in order to obtain a ranked set sample of size n = mr. In
usual practice, it is customary to keep small set sizes (e.g., 2 < m < 5) and increase the number of cycles (r)
in order to avoid ranking errors. Note that in some practical applications, ranking costs cannot be ignored.
For brevity, we here assume that the units are ranked with negligible ranking cost.

* % * % * % * * 3 H
Let Y77 5.t) Y19k 10 -+ Yimke,t> Yo1k,tr Yook to -+ Yomk,tr -0 Ymdk,ts Ym2ke,tr -+ Yo be m independent simple

n*;mk,tv
random samples, each of size m, in the kth cycle at time ¢, such that Y%, . ~ N(0, 02), for i,j =1,2,....,m,
k=1,2,..,r. Apply the RSS procedure on these samples to obtain a ranked set sample of size n, denoted by
Yiimpe ¢ =1,2,..,m and k=1,2,...,7. Here, Yiimybt = ith min{Y;3y 4, Yiok 10 Yimk ¢} L€t Umyk,e =
o%Yi)Ei:m)k,t be the standardized variate with PDF independent of o;. Let Yggs: = (Y14 Y54, Y7.;)
be n x 1 vector of observed order statistics obtained from a ranked set sample of size n, and let U, =
(U1, Us4s -, Uy ) be n x 1 vector of the standardized order statistics corresponding to Y 'pgg ;, Where
Y;c,t = (Yl*(l:m)k,t’Y;(z:m)k,t’ ...,Yﬂj(m:m)k’t) and U;c,t = (Uaim)k,t» U@im)k,t> s Umim)k,t), for k= 1,2,...,r.
Let v} = (v} 4, Vb, ..., U} ;) be n X 1 mean vector of Uy, and 2, = diag(£21,4, Qay¢, ..., R ¢) is a n X n diagonal
matrix. Here, v}, = (VU(w:m),t V(2:m) b1 s Vim:m),t) and Qg = diag(W(i:m) ¢ W(2im) s -+ W(m:m),t), Where

V(izm),t = E(Ulimyk,t)s Wiimm),e = Var(Ugmyk,e), for i = 1,2,...,m and k = 1,2,...,r. Here, ‘diag’ indicates

the diagonal matrix. Then, following Stokes| (1995), the BLUE of o; and its variance are as follows:
&BE%E,t = (v} 'v) Ui YRsg  and Va'r(a-gEISJE,t) = 07 (Vi ') 7

Following the work of Rao et al|(1991) and Rosaiah et al. (1991), Zheng and Al-Saleh (2003) showed that
under RSS when estimating the scale parameter of a symmetric distribution, it is possible to construct a

more efficient estimator of o than ogfyg , by using the absolute values of ranked set sample, i.e., |Yrss.l,
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say GBS AE,¢+ Lhe estimator B8 AE,: and its variance are, respectively, given by
2RSS — (w18 V-1 w1 ARSS — 2(g'w-14g -1
OBLUAE,t — (B1¥; "B:)” B:¥; |Yrsstl and VaT(UBLUAE,t) =0:(BY, By)

where 8; = (814,854, Br;) is a n x 1 mean vector of |U}|, where 8, ; = (Brimy,tr B@im),tr -+ B(mim),t)»
for k = 1,2,...,7, Blaim),t = E(|Ugim)k,tl), for i = 1,2,...,m, and ¥; = diag{W1¢, Yo ,..., ¥rt} isanxn
diagonal matrix, where ¥ = diag(¥(1:m),t, Y(2:m),ts --+» Y(mim),t)> fr k = 1,2,...,7, Y(im) s = Var(|Ug.mk.t|),
for i =1,2,...,m. Under RSS, the simplified expressions of &%E% AR, and its variance are, respectively, given

by the following:

m —1 Ve
~RSS Ei:l 'B(i:m)’t’w(i:'m),t |Yz(zm),t|

OBLUAE,t — m 2o -1
Ei:l 'B(i:m),tw(i:m),t

-1
A 0-2 s -
and Var(UgEISJAE,t) = 7t (Z ﬂ(zi;m),t"/)(i:lm),t) ’
=1

where |?fzi:m),t| = %22=1 |Yfzi:m)k,t|-

Following Rosaiah et al. (1991), it is easy to express the moments and cross-moments of |U;m)r,
in terms of the moments and cross-moments of the standardized order statistics, i.e., Uim),;, in the
corresponding folded density. As mentioned above, Yiee~N (0,02), for 4,7 =1,2,....m, k=1,2,...,7. Let

Ulsimyrt = (,—%|Yz'(i:m)k,t|; having PDF given by

o (™. [2 u;? u ™.
gua:m)k’t(ut)—z(i>\/;exp( 2){Erf[ﬁ]} 1 Erf\/5 , uy >0,

where Erf[v] = %r J5 exp(—¢*)dq is the error function.

For all positive values of w, we have

i—1 m
w7 1 *T *T
E(|U(7.m)k:,t|) = 27m {Z Cm,wE(U('i.—w:m—w)k,t) + Z E(U(w—i-l—l:w)k,t)} ) (93)
w=0 w=1i

where Cy, oy = m{w!(m — w)!} 1. Solving (9.3), it is easy to find the values of B; and ¥, in order to obtain
the BLUAE of o; and its corresponding variance.

Now, suppose that the underlying process is in-control and Y, ~ N (0,03) for t = 1,2,...,7. For each
t, we obtain a ranked set sample of size n from this process and generate a sequence of the BLUAEs. Let
OB UAE 1) OBLUAE, 2> -+ OBLUAE, 42 -+ be a sequence of IID random variables and let £ be a smoothing constant.

We define another EWMA sequence, say {J;}, based on this sequence by using a recurrence formula, given by
Jy = E&EISJSJAE,t + (=&, 0<€<1L

It is easy to show that E(J;) = E(65tyar,) = 0o for jo = 0o, and Var(J;) = R(;t)o3(8;%; ' B;) L. We
name the EWMA chart based on J; as EWMA-RSS chart. The control limits of the EWMA-RSS chart are



9.3 Proposed EWMA control charts 189

given by the following:

UCL, = oo+ haoo\/R(&)(B1B,),

CLt = 0o,

LCL, = 09— hoo\/R(&1)(B,% 8,

where (h1, h2) is selected such that the in-control ARL reaches to a fixed pre-specified level.

Based on extensive Monte Carlo simulations (10°) from standard normal distribution, we have estimated the
run length characteristics (ARL and SDRL) of the EWMA-RSS chart. The estimated ARLs and SDRLs of
the EWMA-SRS chart for different values of d; and £ are given in Tables 3 and 4. For a fair comparison of
both EWMA-SRS and EWMA-RSS charts, we consider n = 5 based on m =5 and r = 1.

In Table we report the run length properties of the EWMA-RSS chart by using symmetric and
asymmetric control limits. Given the value of £, the estimated ARL is a decreasing function of §; when é; > 1
and increasing function of 4; when é; < 1. Under symmetric control limits, the ARLs of the EWMA-RSS
chart are unbiased when £ < 0.2. However, they become biased for small values of 4, i.e., 0.9 < é; <1
for £ = 0.3. In order to obtain unbiased ARLs for all possible values of §; and £ considered here, we use
asymmetric control limits and estimate the ARLs and SDRLs of the EWMA-RSS chart. With asymmetric
control limits, the performance of the EWMA-RSS chart is greatly improved for small values of 4, i.e.,
0.9 < &; < 1. Nevertheless, the estimated ARLs for §; > 1 are now increased. In Table we report
ARLs and SDRLs of the one-sided EWMA-RSS charts designed to monitor increases or decreases in the
process dispersion. The performance of the EWMA-RSS chart is better in detecting positive (§; > 1) shifts
as compared with the negative shifts (6; < 1) shifts in the process variability.

The performance of RSS depends on the accuracy of ranking of the selected units. The correct ordering
lead to accurate and precise estimates of the population parameters. But, in practice, the judgment ordering
may not match with the actual ordering. Thus, error in ranking are inevitable, particularly when dealing with
large set sizes, and adversely affect the efficiency of estimator under RSS. Dell and Clutter| (1972) investigated
the effect of imperfect ranking on the performance of RSS mean estimator. They showed that even under
imperfect ranking, the RSS-based mean estimator remains unbiased, and it is still better than the SRS-based
mean estimator given that the ranking should be at least better than the random ordering of the selected
units.

In this study, following Dell and Clutter| (1972)), we investigate the effect of imperfect ranking on the
performance of BLUAE. Recall that Y7, , ~ N(0,02), for i,j = 1,2,....,m, k = 1,2,...,7, at time . Let
Vijk,t be the random error term, and it is normally distributed with mean zero and variance o%, i.e.,
Vijkt ~ N(0,0%), for i,j = 1,2,...m, k = 1,2,...,7, at time t. Note that both random variables, i.e.,
Yi;‘-k’t and V;ji,:, are independent. Then, compute X, ; = Y;;.k,t + Vijrg, foré,j =1,2,....m, k=1,2,...,r,

at time . Based on the values of X;;i:, we select a ranked set sample of size n = mr, i.e., X;@m)k,t
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Table 9.3: Run length characteristics of the two-sidled EWMA-RSS control chart
Symmetric limits Asymmetric limits
E— 0.05 0.10 0.20 0.30 0.05 0.10 0.20 0.30
hi— 2.2764 24735 2.6399 2.7236 2.1000 2.3000 2.3936 2.4620
Ot ho— 2.2764 2.4735 2.6399 2.7236 24910 2.6970 2.9500 3.0000
0.50 ARL 2.26 2.57 2.90 3.16 2.01 2.30 247 2.63
SDRL 0.81 0.86 0.96 1.09 0.77 0.82 0.86 0.94
0.55 ARL 2.69 3.07 3.48 3.86 2.37 2.73 2.94 3.18
SDRL 1.05 1.14 1.28 1.53 0.98 1.06 1.14 1.29
0.60 ARL 3.26 3.74 4.30 4.92 2.86 3.31 3.59 3.95
SDRL 1.40 1.53 1.78 2.27 1.31 1.42 1.55 1.82
0.65 ARL 4.07 4.70 5.51 6.59 3.57 4.14 4.55 5.14
SDRL 1.93 2.12 2.59 3.58 1.79 1.95 2.20 2.74
0.70 ARL 5.28 6.13 7.41 9.46 4.59 5.37 5.98 7.00
SDRL 2.74 3.04 3.99 6.06 2.52 2.79 3.27 4.31
0.75 ARL 7.19 844 10.73 14.86 6.23 7.29 8.38 10.30
SDRL 4.11 4.69 6.72 11.13 3.78 4.17 5.26 7.33
0.80 ARL 10.47 1247 17.29  26.36 9.01 10.65 12.73  16.69
SDRL 6.60 779 12,72 22.46 5.98 6.87 9.17  13.43
0.85 ARL 17.03 2094 3234 5236 14.35 1739 21.84 29.95
SDRL 1199 1527 27.35 48.48 10.55 12.75  17.87  26.78
0.90 ARL 32.68 43.09 7133 11787 2694 33.96 43.94 60.21
SDRL 26.44 36.85 66.79 114.55 2254 2893 40.37 57.16
095 ARL 88.38 116.38 173.89 23849 69.41 86.68 102.35 128.57
SDRL 85.39 113.62 171.74 236.52 67.65 84.01 99.99 126.29
1.00 ARL 200.86 199.53 199.59 200.59 199.88 200.79 199.58 200.86
SDRL 214.93 204.81 199.11 201.08 214.70 206.28 201.00 200.96
1.10 ARL 27.46 31.00 35.14 3879 3364 3935 53.36 58.25
SDRL 26.04 29.12 3358 37.56 31.01 3650 51.51 56.81
1.20 ARL 9.74 10.75 11.92 13.06 11.34 12.69 15.68 17.18
SDRL 8.49 9.05 10.28  11.60 9.53 1044 1348 15.46
1.30 ARL 5.33 5.85 6.33 6.71 6.12 6.74 7.80 8.25
SDRL 4.42 4.64 5.03 5.44 4.90 5.20 6.07 6.73
1.40 ARL 3.58 3.89 4.17 4.36 4.00 4.37 4.94 5.14
SDRL 2.80 2.95 3.10 3.28 3.06 3.23 3.60 3.88
1.50 ARL 2.69 2.90 3.08 3.20 2.96 3.23 3.58 3.68
SDRL 1.97 2.09 2.18 2.28 2.15 2.29 2.50 2.61
1.60 ARL 2.18 2.33 2.46 2.53 2.36 2.56 2.80 2.84
SDRL 1.49 1.57 1.64 1.70 1.61 1.73 1.87 1.91
1.70 ARL 1.85 1.96 2.07 2.13 1.99 2.13 2.31 2.34
SDRL 1.18 1.25 1.31 1.35 1.28 1.37 1.48 1.50
1.80 ARL 1.64 1.72 1.80 1.84 1.74 1.84 1.99 2.02
SDRL 0.97 1.03 1.07 1.10 1.05 1.12 1.21 1.24
1.90 ARL 1.49 1.55 1.61 1.65 1.57 1.65 1.76 1.78
SDRL 0.81 0.86 0.90 0.93 0.88 0.94 1.01 1.03
2.00 ARL 1.37 1.43 1.49 1.51 1.44 1.50 1.60 1.61
SDRL 0.69 0.74 0.78 0.79 0.75 0.81 0.87 0.88
2.50 ARL 1.13 1.15 1.16 1.18 1.15 1.17 1.21 1.22
SDRL 0.37 0.40 0.42 0.44 0.40 0.43 0.48 0.48
3.00 ARL 1.05 1.06 1.07 1.07 1.06 1.07 1.09 1.09
SDRL 0.23 0.25 0.26 0.28 0.25 0.27 0.30 0.30

fori=1,2,..,m, k =1,2,...,m7. We also observe the corresponding values of Xj(;.m)x,:, i-€., Yi[i:m]x,¢, for

i=1,2,..,m, k=1,2,...,r, where Xj(;.m)x: is the ith order statistic and Y;*[‘i:m] &+ is the corresponding ith

concomitant, both obtained from the ith sample in the kth cycle at time ¢. This scheme is named IRSS. Let
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Table 9.4: Run length characteristics of the one-sided EWMA-RSS control charts
&— 0.05 0.10 0.20 0.30 E— 0.05 0.10 0.20 0.30
Ot ho— 19108 2.2074 2.4613 2.5900 4] hi— 1.8390 2.0756 2.2460 2.2929
1.00 ARL 200.76 200.30 200.73 200.28 1.00 199.99 199.50 200.39 199.84

SDRL 222.76 209.30 201.81 202.63 219.49 205.53 202.64 199.36
110 ARL 1955 2352 28.36 32.20 0.95 48.84 59.95 75.77  86.69
SDRL  19.73 2244 27.03 30.98 49.29 5794 7351  84.40
1.20 ARL 7.40 8.78 10.20 11.46 0.90 20.22 2540 3395 41.33
SDRL 6.89 7.67 8.79 10.13 1797 21.87 30.82  38.82
1.30 ARL 4.23 4.96 5.67 6.14 0.85 11.06 13.67 17.79  21.82
SDRL 3.66 4.06 4.54 4.99 882 1041 14,56 19.15
1.40 ARL 2.94 3.37 3.78 4.05 0.80 7.06 8.66 10.77 12.84
SDRL 2.34 2.60 2.84 3.05 5.06 5.86 774  10.15
1.50 ARL 2.27 2.57 2.85 2.99 0.75 4.97 6.04 7.26 8.35
SDRL 1.66 1.86 2.03 2.13 3.26 3.70 4.57 5.80
1.60 ARL 1.88 2.09 2.29 2.39 0.70 3.70 4.48 5.27 5.87
SDRL 1.26 1.41 1.53 1.60 2.19 247 2.93 3.56
1.70  ARL 1.64 1.79 1.95 2.03 0.65 2.90 3.49 4.03 4.40
SDRL 1.01 1.12 1.22 1.28 1.56 1.76 2.01 2.33
1.80 ARL 1.47 1.60 1.71 1.78 0.60 2.34 2.81 3.22 3.45
SDRL 0.82 0.93 1.01 1.05 1.14 1.29 1.44 1.62
1.90 ARL 1.36 1.46 1.55 1.60 0.55 1.96 2.33 2.65 2.79
SDRL 0.70 0.77 0.85 0.89 0.87 0.97 1.07 1.16
2.00 ARL 1.28 1.35 1.42 1.47 0.50 1.67 1.97 2.23 2.33
SDRL 0.59 0.66 0.72 0.76 0.68 0.76 0.82 0.87
2.50 ARL 1.09 1.12 1.15 1.16 0.40 1.26 1.48 1.67 1.73
SDRL 0.31 0.36 0.40 0.41 0.45 0.53 0.56 0.57
3.00 ARL 1.04 1.05 1.06 1.06 0.30 1.03 1.11 1.24 1.29
SDRL 0.19 0.22 0.25 0.26 0.17 0.32 0.43 0.45

opyiag,s be the BLUAE of o; based on IRSS, given by

m —1 %
AIRSS Ei=1 ﬂ(i=m),t¢(i:m),t|Yi[i:m],t|

OBLUAE,t — m -1
Ei:l ﬂ(zi:m),t’lp(i:'m),t

where |17ifi:m],t| = 2k Yificml, el

In order to examine the effect of judgment error on the performance of &E%JS[?AEJ, we choose o2, = 0.05,

0.15, 0.30 and 0.50. It is difficult to derive the exact mathematical expression for the variance of &llal)f,SUSAE,t-

Therefore, we estimate the variance of 651545 ¢ by using Monte Carlo simulations.

It is possible to construct an EWMA control chart based on 85135, ; for monitoring the process dispersion.

The plotting-statistic of the EWMA chart based on 65} jag ;» named EWMA-IRSS chart, is given by
We = €65t 0aR, + (1= OWems, 0<E<1,

where £ is a smoothing constant and Wy = G AR

Let 615 AR 05 BLUAR: - OnBruar be the estimated values of the BLUAESs obtained from 7 subgroups,

each of size n. Let B ar = 5 >ie1 Orpiyar- The estimated control limits of the EWMA-IRSS control
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chart, at time ¢, are given by

EUCL; = &ftiax + @6smss, VR 1),

_ =zIRSS
ECL; = 6BLuAEs

ELCL; = 6jiias — 0ésmss, VR ),

where EUCL;, ECL; and ELCL; stand for estimated upper, center and lower control limits at time ¢,

; 5 — . /1 s (5IRSS  _ ZIRSS 2 i in-
respectively, and &,mss = = \/ 71 2i-1(0i Bluar — Oplvar)’- Here (q1,g2) is selected such that the in

control ARL of the EWMA-IRSS chart reaches to a desired level. Similarly, it is easy to obtain the one-sided
EWMA-IRSS chart for monitoring increases or decreases in the process dispersion.

In order to estimate the run length characteristics of the (one-sided or two-sided) EWMA-IRSS chart, we
first estimate the control limits based on one million samples obtained under IRSS given that the underlying
process is in-control. Then, based on 10° replications from standard normal distribution, we estimate ARLs
and SDRLs of the EWMA-IRSS chart. The run length properties of the one-sided and two-sided EWMA-IRSS
charts are given in Tables Note that for the two-sided EWMA-IRSS chart, we have used asymmetric
control limits. For all EWMA-IRSS charts, we consider same values of £ as already taken for EWMA-RSS
charts.

From Table [9.5] it is observed that for small values of &, i.e., 0.05 and 0.10, generally, the in-control ARL
of the two-sided EWMA-IRSS chart based on different values of o2 are closer to the fixed in-control ARL,
i.e., 200. However, given the values of £ and &, the out-of-control ARLs of the two-sided EWMA-IRSS chart
tend to increase as the value of o2 increases and vice-versa. It is observed that when o2 > 0.3, the in-control
ARLs become more sensitive when £ > 0.10. An interesting feature of the EWMA-IRSS chart is that with an
increase in the error variance 0%, the performance of the IRSS charts goes down but at the same time the
false alarm rate also decreases.

Tables [9.6] and [9.7] provide the run length properties of the one-sidled EWMA-IRSS chart when detecting
increases and decreases in the process dispersion, respectively. As expected, given £ and d;, the out-of-control
ARLs are increasing function of 6%. From Table it is clear that when the ranking error is small, i.e.,
02, < 0.15, normally the in-control ARLs remain close to 200. However, when o2 > 0.3, the in-control ARLs
tend to decrease as the value of ¢ increases from 0.10, i.e., £ > 0.1. Therefore, we recommend using one-sided
EWMA-IRSS chart with small values of &, i.e., £ < 0.1, when the objective is to monitor an increase in
the process variation. On the other hand, in Table the in-control ARLs of the one-sided EWMA-IRSS
chart tend to increase as o2 increases, which shows a reduction in the false alarm rate associated with this
chart. However, this decrease in the false alarm rate also affects the performance of the EWMA-IRSS chart.

Therefore, it is advantageous to use this chart with small values of &.



Table 9.5: Run length characteristics of the two-sidled EWMA-IRSS control chart

0% = 0.05 0% =0.15 0% = 0.30 0% = 0.50
¢» 005 010 020 030 005 010 020 030 005 010 020 030 005 010 020 0.30
qi— 21000 2.3000 2.3936 2.4620 2.1000 2.3000 2.3936 2.4620 2.1000 2.3000 2.3936 2.4620 2.1000 2.3000 2.3936 2.4620
8  gqa— 24910 2.6970 2.9500 3.0000 2.4910 2.6970 2.9500 3.0000 2.4910 2.6970 2.9500 3.0000 2.4910 2.6970 2.9500 3.0000
0.50 ARL 209 241 259 277 221 256 275 295 233 269 290 3.13 | 242 279  3.02  3.27
SDRL 083 089 095 104| 091 098 104 115| 09 1.03 110 123 | 098 107 114 130
0.55 ARL 248 286 308 335| 262 303 328 357 | 277 320 347 380 | 287 333 362  3.99
SDRL 107 115 125 142 | 116 126 136 156 | 1.23 134 146 169 | 128 139 152 179
0.60 ARL 300 346 378 417 | 319 368 402 448 | 335 389 426 478 | 349 406 445 504
SDRL 142 153 169 200 | 154 168 1.86 222 | 1.63 177 199 242 | 170 186 207 258
0.65 ARL 373 434 478 541 | 398 461 508 58| 418 488 539 625 436 511 568 6.6
SDRL 192 211 238 296 | 209 230 260 330 | 222 245 280 363 | 233 257 298 3.8
0.70 ARL 479 561 629 740 | 512 598 672 800 | 541 633 718 857 | 564 664 753 921
SDRL 269 300 353 467 | 293 324 38 519 | 315 348 421 566 | 327 365 445  6.18
0.75 ARL 651 7.63 882 1090 | 6.94 814 941 1176 | 7.33 862 1009 1279 | 7.66  9.05 10.63 13.72
SDRL  4.02 448 562 788 | 434 490 614 870 | 462 522 666 963 | 485 552 714 1048
0.80 ARL 939 1115 1334 1758 | 9.98 11.86 14.30 1898 | 1055 12.64 1543 2061 | 11.09 1331 1631 22.21
SDRL 632 7.35 972 1444 | 682 795 1063 1574 | 7.28 854 1165 1727 | 7.68  9.05 1245 18.78
085 ARL 1505 1821 2298 3154 | 1587 1947 2461 33.84 | 1683 2054 2637 3669 | 17.66 21.63 27.94 39.87
SDRL 1125 13.62 19.16 28.38 | 11.99 1477 20.84 30.75 | 12.83 1568 22.56 33.46 | 13.47 16.65 23.99  36.50
090 ARL 2814 3520 4588 62.67 | 29.64 3746 48.22 66.68 | 31.24 39.71 5172 7172 | 3272 4176 5478  77.02
SDRL  23.74 30.13 4232 59.75 | 25.09 32.65 44.53 63.99 | 26.86 3461 4812 68.63 | 2821 36.66 5091 7415
095 ARL  71.34 88.87 104.24 132.41 | 7440 92.80 109.33 137.36 | 77.51 96.11 114.16 144.51 | 79.94 100.08 118.94 152.60
SDRL 69.90 85.65 101.80 130.73 | 73.09 90.61 107.02 13584 | 76.69 93.40 111.95 142.94 | 7883 97.53 116.78 151.16
1.00 ARL  200.47 20246 199.38 204.79 | 199.09 202.52 202.65 206.59 | 199.33 201.85 204.06 209.92 | 199.90 204.77 205.90 212.83
SDRL 21528 205.95 199.98 204.56 | 214.10 207.42 203.22 205.63 | 214.24 206.50 203.62 209.84 | 213.72 209.73 205.81 212.09
110 ARL 3497 41.13 5549 6056 | 37.32 43.84 59.53 64.79 | 39.38 46.27 61.95 66.97 | 40.85 47.88 64.22  68.58
SDRL  32.32 3837 5341 59.08 | 3474 40.97 5742 63.34 | 36.77 43.65 60.08 6549 | 3854 4524 6217 67.15
120 ARL  11.86 1327 1646 1820 | 1261 1411 17.72 19.62 | 13.34 1498 1894 2092 | 13.98 1575 1980 21.75
SDRL 995 10.86 1417 1643 | 1059 11.69 1541 17.86 | 11.28 1251 1659 19.20 | 11.87 13.16 17.40 19.97
1.30 ARL 635 698 818 866 | 671 744 870 936 | 7.0 7.88 924 993 | 741 824 967 1042
SDRL 507 542 644 709| 541 574 68 777 573 613 737 835| 603 646 778 875
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Table 9.5: (Continued).

0% = 0.05 0% = 0.15 oZ = 0.30 0% = 0.50
¢ 005 010 020 030 005 010 020 030 005 010 020 030 005 010 020 030
qi— 21000 2.3000 2.3936 2.4620 2.1000 2.3000 2.3936 2.4620 2.1000 2.3000 2.3936 2.4620 2.1000 2.3000 2.3936 2.4620
5 q— 24910 2.6970 2.9500 3.0000 24910 2.6970 2.9500 3.0000 2.4910 2.6970 2.9500 3.0000 2.4910 2.6970 2.9500 3.0000
140 ARL 414 456 514 538 | 441 484 546 570 | 466 508 577 608 | 483 534 606  6.35
SDRL 318 337 378 408 | 341 359 403 439 | 362 382 432 472 | 377 403 455 494
1.50 ARL 306 335 372 380 | 322 351 391 402 | 339 371 414 426 | 353 384 431 445
SDRL 224 238 261 271 | 236 251 275 289 | 251 268 294 311 | 263 279 309 3.28
1.60 ARL 243 263 280 295 | 255 276 3.05 311 | 267 290 319 320 | 278 302 335  3.40
SDRL 168 179 194 199 | 178 190 206 214 | 18 200 217 227 | 197 211 230 237
1.70 ARL 204 219 238 242 | 213 229 249 254 | 222 238 261 267| 230 249 271 277
SDRL 133 141 152 156 | 140 150 162 165 147 157 170 177 | 155 166 179  1.85
1.80 ARL 179 189 205 207 | 184 197 213 216 | 1.91 205 222 225 | 198 212 231 234
SDRL  1.09 116 125 126| 114 122 132 135 120 128 138 141 | 127 135 146 149
1.90 ARL 160 169 18 183 | 165 174 187 190 | 171 18 194 198 | 1.7 187 201  2.05
SDRL 091 097 105 108| 096 102 110 112 102 109 116 119 | 106 113 122 125
2.00 ARL 146 154 163 165 | 151 159 169 171 | 156 164 175 176 | 160 169 180  1.82
SDRL 077 08 090 091| 08 08 094 097 08 092 1.00 1.01| 091 097 104 106
2.50 ARL 116 119 122 123 | 118 120 124 1.25| 119 123 127 128 | 121 125 129 130
SDRL 042 045 049 050 | 044 047 052 052 046 050 054 055 | 048 052 057  0.58
3.00 ARL 1.07 108 109 110 | 107 108 110 111 | 108 110 112 112| 109 110 113 113
SDRL 026 028 031 031| 027 030 032 033 029 032 034 035| 030 033 036 037
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9.3 Proposed EWMA control charts
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Table 9.7: Run length characteristics of the one-sided EWMA-IRSS chart when

detecting decreases in the process dispersion

0% = 0.05 0% =0.15 0% = 0.30 0% = 0.50
¢» 005 010 020 030 005 010 020 030 005 010 020 030 005 010 020 0.30
8 qi— 18390 2.0756 22460 2.2929 1.8300 2.0756 2.2460 2.2929 1.8390 2.0756 2.2460 2.2029 1.8390 2.0756 2.2460 2.2029
1.00 ARL 20257 20220 20398 201.48 | 199.69 202.21 208.72 207.08 | 200.95 204.51 21040 213.34 | 203.96 206.96 216.81 223.92
SDRL 220.65 207.73 205.47 200.44 | 218.62 207.42 207.52 206.47 | 219.62 209.74 210.89 212.14 | 223.14 212.51 217.57 221.85
095 ARL 5028 6173 78.00 89.42 | 52.04 63.91 8118 9244 | 5416 66.38 8449 97.08 | 56.30 6894 88.39 102.04
SDRL 5081 59.71 76.13 87.98 | 53.11 6214 79.01 90.30 | 54.88 6505 8216 9515 | 57.26 67.17 86.37 100.12
090 ARL 2089 2628 34.83 4273 | 2211 27.77 37.07 4549 | 2323 2916 39.14 4811 | 2425 3045 41.16 51.11
SDRL 1870 22.84 31.69 40.40 | 19.88 2442 33.95 4292 | 21.24 2585 36.07 4554 | 2214 26.99 37.96 48.61
085 ARL 1154 1429 1849 2293 | 1219 1513 19.69 24.36 | 12.88 1598 20.97 26.13 | 13.44 16.81 22.08 27.87
SDRL 932 1094 1519 20.06 | 997 11.81 1639 21.73 | 10.63 12.59 17.63 23.17 | 11.03 13.30 18.64  25.09
0.80 ARL 738 902 11.23 1345 | 7.80  9.60 1199 1446 | 822 1013 1280 1554 | 861 10.63 1345 16.54
SDRL 542 620 814 1081 | 579 672 884 1L74| 615 713 957 1276 | 653  7.55 1018 13.71
0.75 ARL 519 630 761 878 | 548 669 813 943 | 577  7.09 864 1008 | 6.04 742  9.08 10.72
SDRL 345 393 490 625| 3.73 424 534 683 | 398 454 577 737 | 417 477 610 7.94
0.70 ARL 387 469 553 617 | 412 497 58 659 | 432 526 622 708 | 451 549 655  7.50
SDRL 235 265 315 384 | 257 286 344 418 | 271 307 368 459 | 285 323  3.80  4.94
0.65 ARL 3.02 364 422 461 | 320 387 451 495 | 338 408 477 527 | 352 426 499 556
SDRL 166 1.88 216 251 | 1.82 205 237 280 | 1.94 219 255 304 | 202 228 267 3.23
0.60 ARL 245 293 337 361 | 260 312 359 386 | 273 329 379 410| 283 342 396 431
SDRL 123 1.39 156 175 | 134 151 171 194 | 144 161 182 209 | 150 1.68 190  2.23
0.55 ARL 204 243 277 294 | 216 258 295 312 | 227 271 311 332 | 234 282 323 347
SDRL 094 106 116 128| 1.03 115 127 140 110 122 135 151 | 113 127 141 158
0.50 ARL 174 206 233 245| 183 218 248 259 | 192 229 261 275 | 199 238 272 286
SDRL 074 08 089 09| 08 090 098 1.05| 08 095 103 112| 08 098 107 116
0.40 ARL 132 154 175 18| 139 163 1.8 192 | 144 171 194 202 | 149 178 201  2.09
SDRL 049 057 060 062| 053 060 063 065 056 063 065 068 | 058 064 066  0.69
0.30 ARL 106 118 133 138 | 109 124 141 147 | 112 131 149 155 115 135 156  1.62
SDRL 024 039 047 049| 029 043 050 051 033 046 051 052| 036 048 052  0.52
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9.4 Performance comparison of control charts

In this section, we compare the proposed EWMA charts with some of the recently proposed EWMA charts.
The performance of each chart is evaluated in terms of logarithm of ARL, i.e., log(ARL). For a fair comparison
of the EWMA charts, we fix the in-control ARL of each chart to 200. In each figure, we plot log(ARL) of

different EWMA charts versus different values of ;.

(i) Proposed two-sided EWMA charts versus two-sided CH-EWMA, SJ-EWMA,
HHW1-EWMA and HHW2-EWMA charts

In Figure 9.1 we compare the proposed two-sided EWMA charts, i.e., EWMA-SRS and EWMA-RSS charts,
with some existing EWMA charts. The ARLs of the two-sided CH-EWMA, SJI-EWMA, HHW1-EWMA and
HHW2-EWMA charts are taken from Huwang et al.| (2010). Note that the proposed EWMA charts are based
on the symmetric control limits. From Figure [9.T] it is clear that for all values of £, the proposed EWMA
charts are more powerful in detecting positive shifts in the process dispersion. They also perform better
than the CH-EWMA and SJ-EWMA charts in detecting decreases in the process variation. However, they
are less sensitive to small downward shifts in the process variations as compared with HHW1-EWMA and
HHW2-EWMA control charts when £ > 0.10. The EWMA-RSS chart performs uniformly better than the
EWMA-SRS chart for detecting all types of random shifts in the process variability.

In Figure [9.2] we make a similar comparison of the EWMA charts, but now the proposed EWMA charts
are based on the asymmetric control limits. It is worth mentioning that the EWMA-RSS chart dominates
all EWMA charts for detecting overall changes in the process dispersion. Similarly, the EWMA-SRS chart
outperforms the CH-EWMA, SJ-EWMA, HHW1-EWMA and HHW2-EWMA charts when detecting an
increase in the process variation. It also performs equally well for monitoring decreases in dispersion.
However, it remains slightly less sensitive to small decreases in the process variation as compared with the

HHW1-EWMA chart.

(ii) Proposed one-sided EWMA charts versus one-sided CH-EWMA, SJ-EWMA,
HHWI1-EWMA and HHW2-EWMA charts

We compare the proposed one-sided EWMA charts with their one-sided counterparts in Figures [9.3] and
In Figure we compare all EWMA charts when detecting a positive change in the process variation. It
is interesting to note that both EWMA-SRS and EWMA-RSS charts perform uniformly better than their
counterparts for all types of positive shifts in the process dispersion. Similarly, in Figure all EWMA
charts are compared for monitoring decreases in the process variability. The EWMA-RSS chart dominates all
EWMA charts when detecting decreases in dispersion. Moreover, EWMA-SRS chart also outperforms the
CH-EWMA, SJ-EWMA and HHW2-EWMA charts for detecting changes in the process dispersion. However,
HHW1-EWMA chart is able to perform slightly better than the EWMA-SRS chart.
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Figure 9.1: Comparison of the two-sided EWMA control charts when EWMA-SRS
and EWMA-RSS charts are based on the symmetric control limits
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Figure 9.2: Comparison of the two-sided EWMA control charts when EWMA-SRS

and EWMA-RSS charts are based on the asymmetric control limits
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Figure 9.3: Comparisons of the one-sided EWMA control charts for monitoring
increases in the process dispersion

(iii) The two-sided EWMA-IRSS charts versus two-sided CH-EWMA, SJ-EWMA,
HHW-EWMA and HHW2-EWMA charts

In Figure we compare the two-sidled EWMA-IRSS charts with its analogues for detecting overall changes
in the process variation. Note here that the two-sided EWMA-IRSS chart is based on the asymmetric control
limits. Recall that we observed in Table that even with errors in ranking, for small values of &, i.e.,
¢ < 0.10, the in-control ARL of EWMA-IRSS chart remains close to 200 for all values of 0. Therefore,
in Figure we compare the performance of EWMA-IRSS chart with other EWMA charts for £ = 0.05,
0.10. It is noteworthy that the EWMA-IRSS chart outperforms CH-EWMA, SI-EWMA, HHW1-EWMA

and HHW2-EWMA charts for detecting overall changes in the process dispersion.
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Figure 9.4: Comparisons of the one-sided EWMA control charts for monitoring
decreases in the process dispersion
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Figure 9.5: Comparisons of the two-sidled EWMA control charts when EWMA-IRSS
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Figure 9.6: Comparisons of the one-sided EWMA control charts with EWMA-IRSS
control chart for monitoring increases in the process dispersion
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Figure 9.7: Comparisons of the one-sided EWMA control charts with EWMA-IRSS
control chart for monitoring decreases in the process dispersion

(iv) The one-sided EWMA-IRSS chart versus one-sided CH-EWMA, SJ-EWMA,

HHWI1-EWMA, HHW2-EWMA charts

The one-sided EWMA-IRSS chart is also compared with its competitors for detecting increases or decreases

in the process dispersion. Figures[9.6]and [9.7 provide a comprehensive comparison of EWMA charts when

& = 0.05 and 0.10. For all kinds of positive shifts in the process variance, the EWMA-IRSS chart detects
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random shifts substantially quicker than its counterparts. Similarly, when detecting decreases in the process
variability, EWMA-IRSS chart dominates CH-EWMA, SJ-EWMA, HHW1-EWMA and HHW2-EWMA
charts for all cases. However, when ¢ = 0.10 with 6% > 0.15, it remains less sensitive to the small shifts as

compared with HHW1-EWMA chart.

9.5 An application to real data

In this section, we consider a real data set to illustrate the construction and applications of the proposed
EWMA quality control charts based on SRS and RSS schemes.

Consider a forging process that produces piston rings for an automotive engine. We want to establish
statistical control of the inside diameter of the piston ring manufactured by this process (cf. Montgomery),
2009). Forty samples, each of size five, have been taken from this process. The inside diameters of the piston
rings are measured in millimeters (mm). We combine the whole data such we have 200 inside diameter
measurements for automobile engine piston rings. The data reasonably satisfy the normality assumption. We

then standardize the whole data.
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Figure 9.8: Comparison of the HHW1-EWMA and HHW2-EWMA control charts

for real data
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Figure 9.9: Comparison of the EWMA-SRS and EWMA-RSS control charts for real
data

For a fair comparison of the EWMA charts, we consider HHW1-EWMA, HHW2-EWMA, EWMA-SRS
and EWMA-RSS charts. Suppose that the underlying process is in-control, we draw 30 samples, each of size
five, from the standardized measurements under SRS and RSS schemes. Note that the samples are drawn
by using with replacement section. For each EWMA chart, the in-control ARL and smoothing parameter
are fixed to 200 and 0.10, respectively. Based on these 30 samples, we estimate the control limits and
plotting-statistics of all of the EWMA control charts considered here. Now, suppose that after 30th sample,
the process gets out-of-control due to a positive shift in the process dispersion. In order to capture this
situation, we again draw 20 samples, each of size five, from the standardized measurements under both
sampling schemes (SRS and RSS). This time we multiply each observation within each sample by 1.2. Then,
we calculate the plotting-statistics of each EWMA control chart. The plotting-statistics and control limits of
HHW1-EWMA and HHW2-EWMA control charts are displayed in Figure Similarly, in Figure we
display the plotting-statistics and control limits of the EWMA-SRS and EWMA-RSS control charts. Note
that HHW1-EWMA and HHW2-EWMA and EWMA-SRS control charts use the same data obtained under
SRS scheme.

In Figure HHWI1-EWMA and HHW2-EWMA control charts show that the process is in-control
state when ¢ < 30 in sub-figures A and C, respectively. However, in sub-figures B and D, the process gets
out-of-control. Both HHW1-EWMA and HHW2-EWMA charts detect the random shift in the process
dispersion at the 45th sample. Similarly, in Figure both EWMA-SRS and EWMA-RSS control charts
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show that the process is in-control in sub-figures A and C, respectively, when ¢ < 30. In Figure the
proposed EWMA control charts also declare out-of-control signals in sub-figures B and D. It is of interest to
note that the EWMA-SRS chart triggers an out-of-control signal at 41st sample whereas the EWMA-RSS
chart detects the same shift at 37th sample. Therefore, in practice, the proposed EWMA control charts can

be used as an efficient alternative to the existing EWMA control charts.

9.6 Concluding remarks

In this article, we proposed new improved EWMA control charts based on SRS, RSS and IRSS schemes
for detecting random shifts in the process dispersion. Extensive Monte Carlo simulations have been used
to estimate the run length characteristics of these EWMA control charts. It is worth mentioning that the
proposed EWMA control charts perform uniformly better than their counterparts in detecting positive shifts
in the process dispersion. With asymmetric control limits, the proposed EWMA-RSS chart significantly
outperforms all other EWMA control charts considered here. Similarly, EWMA-SRS control chart also
performs uniformly better than the CH-EWMA and SJ-EWMA control charts for detecting overall changes in
the process variability. Under IRSS with small values of 0% and £, the EWMA-IRSS control chart is superior
to all other existing EWMA control charts in terms of its ability to quickly detect changes in the process

variation. Therefore, in practice, we recommend the use of the proposed EWMA charts for SPC practitioners.
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