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Abstract: A structure’s level of damage is determined using a non-linear model-based method 
utilising a Bouc-Wen hysteretic model. It employs adaptive Least Mean Squares (LMS) filtering 
theory in real time to identify changes in stiffness due to modelling error damage, as well as 
plastic and permanent displacements, which are critical to determining ongoing safety and use. 
The Structural Health Monitoring (SHM) method is validated on a four-story shear structure 
model undergoing seismic excitation. For the simulated structure, the algorithm identifies 
stiffness changes to within 10% of the true value in 0.20 s, and permanent deflection is identified 
to within 5% of the actual as-modelled value using noise-free simulation-derived structural 
responses. 
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1 Introduction 

Structural Health Monitoring (SHM) is the process of 
comparing the current state of a structure’s condition relative to 
a baseline state to detect existence, location and degree of 
likely damage, particularly after a damaging input (Doherty, 
1987). SHM can simplify typical procedures of visual or 
localised experimental methods, as it does not require visual 
inspection of the structure. It thus provides valuable data for 
post-event safety assessments to help optimise recovery planning. 

Many current vibration-based SHM methods are based on 
the idea that changes in modal parameters – frequencies, 
mode shapes and modal damping – are a result of changes in 
the physical mass, damping and stiffness properties of the 
structure (Doebling et al., 1996). These modal methods are 
typically more applicable to steel-frame and bridge structures 
where vibration response is highly linear (Doebling et al., 
1996; Chase et al., 2004). Wavelet approaches offer a similar 
approach determining the time at which damage occurred. 

A major drawback of all these approaches is their inability 
to be implemented in real time, on a sample-to-sample basis as 
the event occurs. Further, their reliance on modal properties has 
potential problems. The modal properties have been shown in 
some cases to be non-robust in the presence of strong noise and 
insensitive to small amounts of damage (Hou et al., 2000). 

Adaptive fading Kalman filter (Loh et al., 2000) and 
adaptive H∞ filter techniques (Sato and Qi, 1998) to achieve 
real-time capable, or near real-time capable results, provide 
identification of modal parameters in real time that comes with  
significant computational cost and complexity. Moreover, like 
other linear approaches they are not applicable to the typical 
non-linearities found in seismic structural responses. 

 
 
 

In contrast, direct identification of changes in stiffness 
and/or plastic and permanent deflections would offer the post-
earthquake outputs desired by engineers. The goal is to obtain 
these stiffness changes in real time in a computationally 
efficient and robust fashion. Model-based methods combined 
with modern filtering theory offer that opportunity. 

Least Mean Squares (LMS)-based SHM has been used 
for a benchmark problem (Chase et al., 2004), and also for a 
non-linear rocking structure (Chase et al., 2005), to directly 
identify changes in structural stiffness only. They are robust 
with fast convergence and low computational cost. However, 
they do not identify plastic and permanent deflections and 
require full state structural response measurement. 

This preliminary research shows that the modified LMS-
based SHM algorithm proposed for non-linear yielding 
structures offers real-time identification of changes in 
stiffness plus plastic deflections using noise-free structural 
responses. The noise effect will be taken into account at 
later stages. 

Due to a variety of practical constraints, direct high 
frequency measurement of displacement and velocity is not 
typically possible. Displacement and velocity are often 
estimated by integration of measured acceleration and are 
subject to drift and error. However, this error can be 
corrected using low frequency displacement data obtained 
via a variety of sensors, such as ground-based GPS or fibre 
optics. The work described below is predicated on the idea  
that emerging high-speed line scan cameras can offer a 
robust and high-speed displacement measure required for 
the modified LMS-based SHM algorithm proposed for non-
linear yielding structures undergoing seismic excitation. 
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2 Definition of the SHM Problem 

A seismically excited non-linear structure can be modelled 
at each time step using the incremental equations of motion: 

{ } { } { }( ) gv v v x⋅ Δ + ⋅ Δ + ⋅ Δ = − ⋅ΔTM C K t M�� � ��  (1) 

where M, C and KT are the mass, damping and tangent 
stiffness matrices of the model, respectively; {Δv}, { }Δ �v  

and { }Δ��v  are the changes in displacement, velocity and 
acceleration vectors, respectively; and gxΔ��  is the change in 
the ground motion acceleration over the time step. The 
tangent stiffness matrix of a hysteretic structure can be 
represented using Bouc-Wen model. For instance, the 
tangent stiffness matrix of a 4-DOF (four-degree-of-freedom) 
four-storey shear-type structure, as an example for the 
tangent stiffness matrix of a hysteretic structure in multi-
degree-of-freedom case, can be written as: 
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where αi, i = 1,…,4, is the ith storey bi-linear factor, which 
determines the change in slope between elastic and plastic  
regimes of that storey, and zi, i = l,...,4, is the dimensionless  
hysteretic component of the ith storey and is governed by 
the following first order non-linear differential equation 
(Constantinou and Tadjbakhsh, 1985): 

1
( ) ( ) ( )

( ) , 1,...,
i in n

i i i i i i i i i
i

i

A r t r t z z r t z
z t i N

Y

−
− −

= =
� � �

�
β γ

 (3) 

where Ai (usually 1.0), iβ  (0.1 to 0.9), γi (–0.9 to 0.9) and ni 
(1 to 3, usually 1) are stiffness, loop fatness, loop pinching 
and abruptness parameters in a classical Bouc-Wen model, 
respectively. Further, ni, the power factor, determines the 
curve from elastic to plastic force-deflection behaviour of 
each storey. ( )�ir t  is the velocity of storey i relative to storey 
i-1, Yi is the yield displacement of ith story, and N is the 
number of stories. The five dimensionless parameters, Ai, βi, 

,iγ  in and αi determine the hysteresis loops shape. Neither 
degradation nor pinching of hysteresis is accounted for by 
the classical Bouc-Wen model. Over the years, this classical 
model has been modified to accommodate changes in 
hysteresis loops arising from deteriorating systems, and the 
contemporary model can be found in the studies of Baber 
and Noori (1986). In this study, the classical Bouc-Wen 
model has been used, and only non-linearities arising from 
the hysteresis behaviour of the building has been considered. 

If damage occurs in the structure from an earthquake, or 
any other source of damaging excitation, structural properties, 
such as natural frequency and stiffness may also change,  
and may be time-varying. For the damaged structure, the 
equations of motion can be redefined as: 

{ } { } ( ) { } gv v v x⋅ Δ + ⋅ Δ + + Δ ⋅ Δ = − ⋅ΔT TM C K K M�� � ��  (4) 

where { } ,Δ��v  { }vΔ �  and { }Δv  are the measured changes in 

responses of the damaged structure, TK  is the tangent 
stiffness matrix of the damaged structure from equation (2) 
using damaged structural responses, and Δ TK  contains 
changes in the tangent stiffness of the structure due to 
modelling or construction error damage and can be a 
function of time. Using equation (2), Δ TK due to modelling 
or construction damage can be written as: 
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Identifying the Δ TK term enables the structure’s condition 
to be directly monitored without using modal parameters. 

To determine Δ TK using adaptive LMS, following the 
method proposed by Chase et al. (2004), a new form of 
Δ TK  is defined with time-varying scalar parameters ˆ ,iα  to 
be identified using the LMS filter. For instance, Δ TK for  
a 4-DOF four-story shear building is sub-divided into  
four matrices to allow independent identification of  
changes in linear elastic stiffness of each story, i.e. 
( ) ( ) ( ) ( )0 0 0 01 2 3 4
Δ , Δ , Δ  and Δ :k k k k  
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Hence equation (6) can be expressed as: 
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where n is the number of degrees of freedom of the model, 
and Ki is the corresponding time-varying matrix to ith  
DOF in equations (6)–(10). Rewriting equation (4) using 
equations (6)–(12) yields: 
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In equation (13), changes in responses of the damaged structure 
{ } { },v vΔ Δ�� �  and { }Δv  are measured, and the matrix TK at 
each time step is calculated using equations (2) and (3). The 
Δi iY z  term in TK and iK  matrices can be redefined by 

introducing a hysteretic displacement, hi for each storey as: 

, 1,...,i i ih Y z i N= =  (14) 

where Yi and zi are the yield displacement and the hysteretic 
component of the ith storey, respectively. Assuming  
Ai = 1, βi = 0.5 and γi = 0.5 in equation (3), ( )ih t�  can be 
written as: 
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where ( )�ir t  is the velocity of storey i relative to storey i–1, 
Yi is the yield displacement of ith story, ni is the power 
factor and N is the number of stories. Using equation (15) 
and assuming constant �ih  at each time step, Δi iY z  or ,Δ ih  
changes in hysteretic displacement of storey i over each 
time step can be calculated as: 
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where Δt is the time step. Thus, Δi iY z  or ,Δ ih  changes in 
damaged hysteretic displacement of ith storey over each 
time step, can be determined from equation (16) using 
damaged structural responses. 

In this fashion, plastic displacement of storey i in the 
Bouc-Wen model, Di(t), is defined as: 

( ) ( )
( ) , 1,...,

1
1

i i
i

i

i

r t h t
D t i N

−
= =

⎛ ⎞
+ ⎜ ⎟−⎝ ⎠

α
α

 (17) 

where ri(t) is the relative displacement between storey i and 
storey i–1, hi is the hysteretic displacement and iα  is the 
bilinear factor of ith story. 

The damaged structure stiffness, or the effective stiffness 
changes due to non-linear behaviour such as hysteresis, can 
then be determined by identifying the ˆiα  in equation (13) at 
every discrete time step using equation (18). 
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where ( )Δ��g k
x  is the change in the input ground acceleration 

over a given time step of k, and { } ,Δ�� kv { }Δ � kv  and { }Δ kv are 
the measured changes in the acceleration, velocity and 
displacement vectors of the damaged structure over the same 
time step, respectively. Matrices of TK  and Ki are calculated 
sample to sample using equations (2) and (6) with the 
measured damaged structural responses. The elements of the 
vector signal {y}k can be readily modelled in real time using 
an adaptive LMS filter so that the coefficients ˆ ,iα  changes  
in linear elastic stiffness of each storey due to modelling or 
construction damage, can be readily determined. 

3 Adaptive LMS filtering 

Adaptive filters are digital filters with coefficients that can 
change over time. The general idea is to update filter 
coefficients and assess how well the existing coefficients are 
performing in modelling a noisy signal, and then adapt  
the coefficient values to improve performance. The LMS 
algorithm is one of the most widely used of all the adaptive 
filtering algorithms and is relatively simple to implement. It 
is an approximation of the Steepest Descent Method using 
an estimator of the gradient instead of its actual value, 
considerably simplifying the calculations and to be readily 
performed in real-time applications. The goal in this case is 
to model the individual, scalar elements of the signal {y}k 
of equation (18) using the adaptive LMS filter. 

In adaptive LMS filtering, the coefficients are adjusted 
from sample to sample to minimise the Mean Square Error 
(MSE), between a measured scalar signal and its modelled 
value from the filter. 

1
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i

e y W X y w i x  (19) 

where Wk is the adjustable filter coefficient vector or weight 
vector at time k, yk is the measured scalar signal at time k to 
be modelled or approximated, Xk is the input vector to the 
filter, model of current and previous filter inputs, xk−i, so 

T
k kW X  is the vector dot product output from the filter at 

time k to model a scalar signal yk, and m is the number of 
prior time steps or taps considered. The Widrow–Hopf LMS 
algorithm for updating the weights to minimise the error, ek, 
is defined as (Ifeachor and Jervis, 1993): 

1 2+ = +k k k kW W e Xμ  (20) 

where µ is a positive scalar, called step size, that controls 
the stability and rate of convergence. 

To identify TΔK  at time k, using LMS adaptive filters, 
we will follow the One-Step method (Chase et al., 2004) 
and rewrite equation (19) in matrix form by substituting 

T
k kW X  with its equivalent from equation (18): 

{ } { }
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0 1

ˆ{ }
m n

k ijk k
j i

e y vα
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= =
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Minimising the mean square error with respect to ˆijα  using 
equation (20) yields the following weight update formula 
for each coefficient in the weight matrix of the SHM 
problem: 

{ } { }1 2 T
k k k k jw w e vμ+ −

= + ⋅ ΔiK  (22) 

Summing ˆijα  over j, yields the ˆ ,iα  changes in stiffness of 
each story in equation (18). 

4 Inputs to the SHM problem 

Inputs to this SHM problem are acceleration, velocity and 
displacement of the structure. Acceleration can be easily 
measured with low-cost accelerometers at high sampling rates, 
but due to practical constraints direct high-speed measurement 
of displacement and velocity is not typically possible. A high-
speed displacement sensor would provide displacement, and 
could be used to derive velocity at low added computational 
cost. Estimating the velocity using both acceleration and 
displacement data would provide a more precise estimation of 
the velocity. To measure displacement of a real structure at 
high rates, this paper proposes but does not explore the method 
proposed by Lim and Lim (2008). Using only one high-speed 
line scan camera and a special pattern explained by Lim  
and Lim (2008), multiple displacements and motions can be 

determined in real time at rates of up to tens of kHz. This  
is more than sufficient for the structural seismic monitoring 
problem. 

5 Simulated structure 

The algorithm was tested using simulated input data in order 
to provide proof of concept and quantify the accuracy of the 
identified parameters: changes in linear elastic stiffness and 
plastic/permanent displacements of each storey. MATLAB® 
was used to simulate the responses of the structure shown in 
Figure 1 using Newmark-β integration method. Each storey 
in this building has a pre-yield stiffness of 1600 kN/m and 
mass of 10 tonnes, resulting in an undamped fundamental 
natural period of 0.45 s for the structure. A diagonal mass 
matrix was used in simulation. 

Figure1 Simulated 4-DOF four-story shear building 
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The following damping matrix was constructed for the 
simulated structure using Caughey method assuming 5% 
damping in each mode: 

2

3.2 1.6 0 0
1.6 3.2 1.6 0

10 [kN.s/m]
0 1.6 3.2 1.6
0 0 1.6 1.6

−⎡ ⎤
⎢ ⎥− −⎢ ⎥= ×
⎢ ⎥− −
⎢ ⎥

−⎣ ⎦

C  

Each storey was given a yield displacement, Y, of 0.02 m, 
shaping parameter, n, of 2, and a bilinear factor, α = 0.1. 
These parameters were chosen to provide realistic non-
linear structural behaviour. 

The simulated structure was subjected to the EI Centro 
earthquake record with Peak Ground Acceleration (PGA) of 
0.22 g, with a 10% reduction in pre-yield stiffness applied to 
the bottom story at the 10 s mark. Data was recorded at  
500 Hz. 

6 Results 

Typical responses of the bottom story of the simulated four-
story shear building under the EI Centro earthquake are 
shown in Figure 2. Simulated responses of the structure in 
damaging event have been used to identify changes in 
structural stiffness using the adaptive LMS method. As 
shown in Figures 3, in a worst-case sudden failure situation, 
the changes in linear elastic stiffness converge to 10% of the 
actual value within less than 0.20 s using 10 taps at 500 Hz 
sampling rate. 

Figure 2 Responses of the bottom story of the simulated 
structure subject to the EI Centro earthquake  
and 10% sudden failure in the bottom story 

 

Figures 4 and 5 show that filter approaches faster to the 
final values of the pre-yield stiffness changes after damage 
when a higher sampling rate or a greater tap number is used 
to identify the stiffness changes. 

Figure 3 Identified changes in pre-yield stiffness of the bottom 
story with 10% sudden failure using adaptive LMS 
algorithm 

 

Running the simulation with estimated values for changes in 

pre-yield stiffness of the structure to obtain identified responses 
of the damaged structure using Newmark-β integration method 
and equation (16), and then using equation (17) to get the 
plastic and permanent deflections of the structure, yields  
Figure 6. This figure clearly shows that as the filter approaches 
its final value for changes in stiffness (Δk0), the plastic 
deflection approaches its actual value and the error between 
actual and estimated values for plastic deflections becomes 
smaller. Over the entire record, the ratio between norms of the 
error signal in estimating the plastic deflections of the bottom 
storey and the actual plastic deflection signal is less than 5%. 
Moreover, the permanent deflection of the bottom storey is 
identified within less than 5% of the actual value. 

Figure 4 Identified changes in pre-yield stiffness of the bottom 
story with 10% sudden failure using adaptive LMS 
algorithm at different sampling rates 

 
 



 Structural health monitoring using adaptive LMS filters  

Figure 5 Identified changes in pre-yield stiffness of the bottom 
story with 10% sudden failure using adaptive LMS 
algorithm with different tap numbers 

 

Figure 6 Identified plastic displacements of the bottom story 
with 10% sudden failure using estimated changes in 
pre-yield stiffness of the structure 

 

7 Conclusion 

The developed LMS-based SHM method with a baseline 
non-linear Bouc-Wen structural model can directly identify 
plastic deflections and changes in stiffness (modelling or 
construction error) in real time. The simulation results show 
that the algorithm identifies stiffness changes to within 10% 
of true value in less than 0.20 s, and permanent deflection is 
identified to within 5% of actual value using noise-free 
structural responses. Moreover, over the entire record, norm 
of the error signal in identifying the plastic deflections  
over the actual plastic deflection signal is less than 5%.  
The proposed filter-based identification approach to SHM  
problems in comparison with existing adaptive methods  
makes plastic and permanent deflections’ identification 
possible, which is critical for determining ongoing safety of 
the structure. 

References 
Baber, T.T. and Noori, M.N. (1986) ‘Modelling general hysteresis 

behaviour and random vibration application’, Journal of 
Vibration, Acoustics, Stress, and Reliability in Design,  
Vol. 108, pp.411–420. 

Chase, J.G., Hwang, K.L., Barroso, L.R. and Mander, J.B. (2004) 
‘A simple LMS-based approach to the structural health 
monitoring benchmark problem’, Journal of Earthquake 
Engineering and Structural Dynamics, Vol. 34, No. 6, 
pp.575–594. 

Chase, J.G., Spieth, H.A., Blome, C.F. and Mander, J.B. (2005) 
‘LMS-based structural health monitoring of a non-linear 
rocking structure’, Journal of Earthquake Engineering and 
Structural Dynamics, Vol. 34, pp.909–930. 

Constantinou, M.C. and Tadjbakhsh, I.G. (1985, April) ‘Hysteretic 
dampers in base isolation: random approach’, Journal of 
Structural Engineering-ASCE, Vol. 111, No. 4, pp.705–721. 

Doebling, S.W., Farrar, C.R., Prime, M.B. and Shevitz, D.W. 
(1996) Damage Identification and Health Monitoring of 
Structural and Mechanical Systems from Changes in their 
Vibration Characteristics: A Literature Review. Los Alamos 
National Laboratory, Report LA-13070-MS. 

Doherty J.E. (1987) ‘Non-destructive evaluation’, in Kobayashi, 
A.S. (Ed): Handbook on Experimental Mechanics. Society for 
Experimental Mechanics, Bethel, CT, USA. 

Hou, Z., Noori, M. and Amand, R. (2000) ‘Wavelet-based 
approach for structural damage detection’, Journal of 
Engineering Mechanics, Vol. 126, No. 7, pp.677–683. 

Ifeachor, E.C. and Jervis, B.W. (1993) Digital Signal Processing: 
A Practical Approach, Addison-Wesley, Essex, UK. 

Lim, M. and Lim, J. (2008) ‘Visual measurement of pile 
movements for the foundation work using a high-speed  
line-scan camera’, Journal of Pattern Recognition Society, 
Vol. 41, pp.2025–2033. 

Loh, C-H., Lin, C-Y. and Huang, C-C. (2000) ‘Time domain 
identification of frames under earthquake loadings’,  
Journal of Engineering Mechanics, Vol. 126, No. 7,  
pp.693–703. 

Sato, T. and Qi, K. (1998) ‘Adaptive H∞ filter: its application to 
structural identification’, Journal of Engineering Mechanics, 
Vol. 124, No. 11, pp.1233–1240. 


