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The selection of optimal positive end expiratory pressure (PEEP) levels during ventilation therapy of 

patients with ARDS (acute respiratory distress syndrome) remains a problem for clinicians. One particular 

mooted strategy states that minimizing the energy transferred to the lung by mechanical ventilation could 

potentially be used to determine the optimal PEEP level. This minimization could potentially be 

undertaken by finding the minimum range of dynamic elastance.  

In this study, we compare an adapted Gauss-Newton method with the typical gauss newton method in 

terms of the level of agreement obtained in elastance-pressure curves across different PEEP levels in 10 

patients. The Gauss-Newton adaptation effectively ignored characteristics in the data that are un-modelled. 

The adapted method successfully determined regions of the data that were un-modelled, as expected. In 

ignoring this un-modelled behavior, the adapted method captured the desired elastance-pressure curves 

with more consistency than the typical least-squares Gauss Newton method.  
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1. INTRODUCTION 

Many studies have been carried out to determine the optimal 

mechanical ventilation settings (Amato et al. 1998). In 

particular, the selection of the optimal positive end expiratory 

pressure (PEEP) level remains a challenge in the treatment of 

patients with acute respiratory distress syndrome (ARDS) 

(Donahoe 2011; Halter et al. 2003; Silversides and Ferguson 

2013). Physiological modelling of the lung is one way to 

determine the best possible settings for mechanical 

ventilation. 

A simple model to describe the respiratory behaviour of the 

lung is a first order model (FOM) (Cobelli 2008). In this 

model, the airway passage is symbolized by a single constant 

resistance term and the tissue resistance to expansion is 

described by a constant elastance term. The FOM equation is 

shown in Eq. 1. 

𝑃 = 𝐸𝑉 + 𝑅𝑉̇ + 𝑃0     (1) 

where: P is the airway pressure, P0 is the offset pressure, V is 

the volume, 𝑉̇ is the flow, R is the respiratory system 

resistance and E is the respiratory system elastance.  

The FOM offers modelling simplicity at the cost of 

descriptive ability and thus cannot capture all pressure flow 

characteristics of the breathing process. Bates et al. (Bates 

2009) refers to two different strategies to counter that 

problem, either the increase in complexity of the model or 

introduction of nonlinear parameters. A modification of the 

FOM includes a non-linear time-variant dynamic elastance 

E(t) term (Chiew et al. 2011; Guttmann et al. ; van Drunen et 

al. 2014). E(t) was determined after linear regression 

identification of the constant R value over a single breath. 

The time-variant dynamic elastance can also be rewritten as 

pressure dependent elastance E(P) as shown in Eq. 2. 

 𝐸(𝑃) =  
𝑃−𝑃0−𝑅𝑉̇

𝑉
     (2) 

Chiew et al. (Chiew et al. 2011) utilised a concept of optimal 

PEEP via the minimization of the respiratory system 

elastance (Suter et al.). Furthermore, Chiew et al. showed 

that this elastance energy is correlated to the work transferred 

to the lung. Therefore, a well-supported assumption was 

made that the optimal PEEP level can be set in the region of 

the tidal pressure where the minimum of the E(P) curve 

appears. Subsequent studies modelled the E(P) across 

different PEEP-levels to obtain a continuous prediction curve 

(Knörzer 2014; Laufer 2015) where their overall goal was to 

find the minimal E(P) using different extensions to the FOM. 

This analysis further investigates a volume correction method 

(V-method) that determines E(P) in concert with R across a 

number of breaths and PEEP levels and was initially 

hypothesised by Laufer (2015). 

 2. METHODS 

This study used data from Bersten et al. (1998). The data 

consists of 10 ARDS patients ventilated in square wave flow, 

volume controlled mode at different PEEP levels. At the end 

of each PEEP level, patients were ventilated for some time 

with ZEEP (Zero End Expiratory Pressure) before the next 



 

 

     

 

PEEP level was applied. The last breathing cycles before the 

PEEP changes were analysed in this study.  

It was observed that the elastance-pressure curves were offset 

from one another across PEEP levels – most likely due to 

recruitment. Hence, correction terms were applied to the 

model (Eq. 2). The V-method introduced a variable volume 

correction term (Vi) for each PEEP level (P0,i) and was 

represented by Eq. 3.  

𝐸(𝑃) =  
𝑃−𝑃0,𝑖−𝑅𝑉̇

𝑉+𝑉𝑖
    (3) 

Changes in Vi effectively shifts recruitment and distension 

characteristics on the E(P) curve. The model shown in Eq. 2 

was optimized directly by reducing the disagreement in E(P) 

across PEEP levels and breaths for each patient. Eq. 4 shows 

the optimization goal:  

[𝑉1, . . , 𝑉𝑚]𝑜𝑝𝑡 = 

𝑚𝑖𝑛 (∑ ∑ ∑ (𝐸(0.1⌊10𝑃𝑖⌋) − 𝐸(0.1⌊10𝑃𝑗⌋))
2

𝑃𝑖𝑗,𝑚𝑎𝑥

𝑃=𝑃𝑖𝑗,𝑚𝑖𝑛

𝑛∙𝑚

𝑗=𝑖+1

𝑛∙𝑚

𝑖=1

 ) 

(4) 

Eq. 4 was evaluated on where 2 airway pressure curves of 

different PEEP overlap ( 𝑃 ∈ [𝑃𝑖𝑗,𝑚𝑖𝑛 , 𝑃𝑖𝑗,𝑚𝑎𝑥] . 𝑃𝑖𝑗,𝑚𝑖𝑛  and 

𝑃𝑖𝑗,𝑚𝑎𝑥  were defined as 𝑃𝑖𝑗,𝑚𝑖𝑛  =  𝑚𝑎𝑥(𝑚𝑖𝑛(𝑃𝑖),𝑚𝑖𝑛(𝑃𝑗)) 

and 𝑃𝑖𝑗,𝑚𝑎𝑥 =  𝑚𝑖𝑛(𝑚𝑎𝑥(𝑃𝑖),𝑚𝑎𝑥(𝑃𝑗))). 𝑃0,𝑖  was the offset 

pressure (PEEP level) (i = 1…m), m was the number of PEEP 

levels, n was the number of analysed breaths per PEEP level 

(in this case, n = 1 breathing cycle) and the Vi were the 

volume correction factors. ⌊𝑥⌋ indicates rounding down to the 

next integer and thus the optimization was conducted in bins 

with a width of 0.1 cmH2O. 

Two parameter identification strategies were used to identify 

Vi. The first strategy utilized Levenberg-Marquardt  

lsqnonlin.m function in MATLAB® 2013a (MathWorks, 

USA), which matched the E(P) curves only in the end 

inspiratory pressure range of the E(P) curve of the lower 

PEEP setting. The parameters of the V-method were 

identified by minimizing the difference between E(P) levels 

across PEEP levels of the 20 data points that corresponded to 

the highest pressure reached at the lower PEEP setting (on 

the range of [𝐸𝐼𝑃𝑖
∗, 𝐸𝐼𝑃𝑖]). This method will be referred to as 

‘trend fitting’ and is represented in Eq. 5. 

[𝑉1, . . , 𝑉m]𝑜𝑝𝑡 = 

min (∑ ∑ (𝐸(0.1⌊10𝑃𝑖⌋) − 𝐸(0.1⌊10𝑃𝑖+1⌋))
2𝐸𝐼𝑃𝑖

𝑃=𝐸𝐼𝑃𝑖
∗

𝑚−1
𝑖=0 )

      (5) 

The second strategy was to optimize Eq. 5 using an adapted 

Gauss-Newton (GN) algorithm, introduced by Gray et al. 

(Docherty et al. ; Gray et al.). This approach was designed to 

reduce the influence of outlier data or un-modelled 

characteristics on the outcomes of model-based analysis. The 

GN method iterates the parameter vector according to Eq. 6. 

𝐱𝑖+1 = 𝐱𝑖 − (𝐉
𝐓𝐉)−𝟏𝐉𝐓𝛙     (6) 

where x is the vector of parameters to be identified, ψ is the 

residual vector and J is the Jacobian: 

𝐱 = (
𝑉1
⋮
𝑉𝑚

) ;  𝛙 ≔ (
∑ ∑ |𝐸𝑖(𝑃1) − 𝐸𝑗(𝑃1)|

𝑛∙𝑚
𝑗=𝑖+1

𝑛∙𝑚
𝑖=1

⋮
∑ ∑ |𝐸𝑖(𝑃𝑚𝑎𝑥) − 𝐸𝑗(𝑃𝑚𝑎𝑥)|

𝑛∙𝑚
𝑗=𝑖+1

𝑛∙𝑚
𝑖=1

) ; 

 𝐉: =

(

 

𝜕𝜓1

𝜕𝑉1
⋯

𝜕𝜓1

𝜕𝑉𝑚

⋮ ⋱ ⋮
𝜕𝜓𝑘

𝜕𝑉1
⋯

𝜕𝜓𝑘

𝜕𝑉𝑚)

     (6*) 

Gray et al. (2015) modified Eq. 6 by modulating the 

magnitude of the residual vector and thus changing the 

weighting given to each data point in the iterations. 

𝐱𝑖+1 = 𝐱𝑖 − (𝐉
𝐓𝐉)−𝟏𝐉𝐓𝛙̂    (7) 

where the modification ψ ̂  is defined as follows:  

𝛙̂ =  [𝜓̂𝑗] = [𝜓𝑗𝑒
(
−|𝜓𝑗|

𝛽|𝜓|̃
)

]    (7*) 

where |𝜓|̃ is the median absolute residual and ß is a scaling 

factor. 

After the identification of the correction factors Vi via 

optimizing the equivalence in the characteristics of the E(P) 

curves, the E(P) curve indicated an exponential decrease at 

the beginning followed by a linear increase. This E(P) profile  

can be captured by a function given by: 

𝐸𝑓𝑖𝑡(𝑃) = 𝑎1𝑒
𝑎2𝑃 + 𝑎3𝑃 + 𝑎4   (8) 

This function Efit(P) was fitted to the curve after the 

optimization using the same adapted Gauss-Newton 

algorithm and the residual vector was given by  

𝛙(𝑃) =  (
|𝐸𝑓𝑖𝑡(𝑃1)−𝐸(𝑃1)|

⋮
|𝐸𝑓𝑖𝑡(𝑃𝑚𝑎𝑥)−𝐸(𝑃𝑚𝑎𝑥)|

)   (9) 

The three methods were compared in their ability to capture 

consistent patient E(P) curves across different PEEP levels. 

The three methods were: 

o trend fitting (Eq. 5, [𝐸𝐼𝑃𝑖
∗, 𝐸𝐼𝑃𝑖]) 

o original GN (Eq. 6 - least squares) 

o adapted GN (using Eq. 5, full data, least squares and 

reducing un-modelled effects) applied with different 

scaling factors (ß = 10, 2 and 1) 

Evaluation of the methods is conducted by the level of 

agreement observed in the E(P) curves, and the repeatability 

of the optimal PEEP as defined by Eq. 8 in a bootstrapping 

exercise (repetition of the analysis with random breath 

omission). 

3. RESULTS 

Figs. 2 and 3 show the E(P) curves after optimization and the 

impact of each data point on the optimization results. Fig. 2A 

shows the original E(P) curves obtained by Eq. 2. The V-

method (Eq. 3) was designed to counteract the offset that 

implies different elastance at different PEEP levels. Fig. 2B 

shows the results of the trend fitting approach. The trend 

fitting used only the higher pressure ranges of the data (Eq. 



 

 

     

 

6). This use of high pressure data only can be seen as well in 

Fig. 2C. E(P) curves optimized according to typical least-

squares criteria and the corresponding influences of the data 

points is shown in Fig. 2D-F. The typical least-squares GN 

algorithms treat all data points as representative of the 

modelled behaviour, and thus, all points have an unmodified 

contribution to the objective function (Fig. 2E-F). A 

continuous prediction curve for E(P) could not be obtained.  

Fig. 3 shows changes achieved by the application of the 

adapted GN algorithm using different scaling factors. Figs. 

3A-C show the results for ß=10. ß=10 yields no significant 

changes compared to the original GN algorithm (Fig. 2E 

compared to Fig. 3B). 

 

Fig. 2. E(P) curves for Patient 10 using: direct evaluation of Eq. 4 (A); data contribution during trend optimization (B-C); 

and the weighting of points in the GN method (C); the E(P) curves and their fits using equal weighting of all data (D-F); the 

contribution of the datapoints towards fitting Eq. 5 (E); and the contribution of the datapoints on fitting to Efit(P) (F) 
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Fig. 3. E(P) curves fits for Patient 10 using the adapted GN method with: ß = 10 (A-C), ß = 2 (D-F) and ß = 1 (G-I)). The 

left figures (A, D, G) show the E(P) simulations for each breath. The central column (B, E, H) shows the contribution of 

each point towards the minimisation of Eq. 5. The right column of figures (C, F, I) shows the contribution of each data point 

to the fitting of Efit(P) 

The changes due to the adaptation of the GN method can be 

seen for smaller values of ß. In particular, in Figs. 3B, 3E and 

3H show that the contribution from some poorly captured 

data points is significantly reduced. Hence, the adapted GN 

was able to ensure much greater consistency in outcomes for 

the remainder of the E(P) curves. The advantage of this 

method can be seen obviously when ß=1. Fig 3I shows that 

the E(P) curves are very close together for significant periods 

of the breath cycles when ß=1. However, the corresponding 

weighting plots demonstrated that this is achieved by a 

significant reduction in the weighting of the data, that is 

distant from the given E(P) curve. Thus the impact of the 

unmodelled effects is suppressed significantly, and the results 

are close to the result of the trend fitting method (Fig. 2C). 

The adherence to the Efit(P) line is much better for the 

majority of the curve when the ß value is at a minimum (Fig. 

3H). 

Table 1 shows the formulations of Efit(P) (Eq. 8) used to fit 

the E(P) curves. Fig. 4 shows the distribution of optimal 

PEEP settings as found via Eq. 8 and the corresponding 

elastance levels obtained in a bootstrapping analysis of 

randomly selected breaths. 
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Fig. 4. Optimal PEEP determined by Eq. 8 and the corresponding elastance as determined in a bootstrapping analysis of the 

standard GN (left) and the adapted GN (right). 

Table 1. Eq. 8 fits for Patient 10 using the various curve 

fitting algorithms  

Method Equation 8 

Trend optimization 𝐸𝑓𝑖𝑡(𝑃)  =  300𝑒
−0.21𝑃 − 0.5𝑃 + 10 

Gauss Newton (ß = ∞) 𝐸𝑓𝑖𝑡(𝑃)  =  470𝑒
−0.27𝑃 − 0.43𝑃 + 15 

Adapted GN (ß = 10) 𝐸𝑓𝑖𝑡(𝑃)  =  540𝑒
−0.27𝑃 − 0.41𝑃 + 17 

Adapted GN (ß = 2) 𝐸𝑓𝑖𝑡(𝑃)  =  640𝑒
−0.29𝑃 − 0.36𝑃 + 17 

Adapted GN (ß = 1) 𝐸𝑓𝑖𝑡(𝑃)  =  190𝑒
−0.17𝑃 − 0.66𝑃 + 7 

 4. DISCUSSION 

In this analysis, we have presented two methods for 

determination of a pressure dependent elastance term, E(P). 

This non-linear curve captures the pressure-volume 

relationship across PEEP levels. Hence, the E(P) curves fulfil 

one of the criteria of Bates (Bates 2009) that calls for non-

linear parameters to improve the fitting capability of the 

FOM. 

In order for the E(P) curves to describe the same lung 

physiology across PEEP levels, a volume correction term (Vi)    

is added. This correction term captures the recruited lung 

volume that occurs at PEEP steps (Hickling). It is necessary 

to eliminate volume creep in the numerical integration of 

flow data. Thus, precise determination of the recruited 

volume due to PEEP increments is not possible. Hence, the Vi 

terms are necessary to ensure that the elastance derived is 

representative of equivalent pressure levels. 

The first method presented in this study was the trend fitting 

algorithm. This method matched the high pressure segments 

of each breath, and thus was relatively easily implemented. 

Fig. 2C shows that the unmodelled effects that are present at 

low pressure intervals of the breath cycle are effectively 

ignored. However, this means that agreement between the 

E(P) curves across breaths is only maximised in the high 

pressure regions of the breath. This does not preclude 

agreement at low pressures. However, Fig. 2C shows that the 

level of agreement for Patient 10 reduced significantly 

outside of the region that was used in the optimisation set 

optimisation data (Eq. 5, [𝐸𝐼𝑃𝑖
∗, 𝐸𝐼𝑃𝑖]). 

In contrast, the adapted GN method had the opportunity to 

use the entirety of the data set and autonomously determine 

which data was not modelled by the model (Docherty et al. ; 

Gray et al.). This method works by first determining a 

residual profile at the current iteration. Data points that yield 

residuals considerably further away than the median absolute 

residual are considered by the algorithm as representative of 

un-modelled behaviour. The weighting of such data-points is 

then reduced in the algorithm according the value of ß. As 

iterations progress and the model converges, the magnitude 

of the residuals reduces and the adapted method effectively 

tightens the objective surface around the solutions which 

agrees with the majority of the data points. Figs. 3B, 3E and 

3H show what data the method has considered unmodelled. 

The value of ß is an important setting in the adapted method. 

In particular, the value of ß determines how aggressive the 

method is in the reduction of the influence of unmodelled 

effects. Fig. 3B shows that the influence of the low elastance 

– low pressure segment of one of the breaths is having a 

significant effect on the outcomes when ß=10. This effect 

causes a lower level of agreement through the majority of the 

data in comparison to when ß=1 (Fig. 3H).  

Of note, the trend fitting algorithm ignores a similar section 

of the data as the adapted method when ß=1. However, the 

key difference is that the adapted method autonomously 

determines which data could potentially be true to the model. 

In particular, there is more data contributing to the analysis in 

Fig. 3H than in Fig. 2C. This means that the E(P) curves 

determined using the autonomous method are more robust 

and representative across the breaths and PEEP levels. 

Fig. 4 shows that there is greater consistency in the optimal 

PEEP levels determined via Eq. 8 when using the adapted 

method compared to the trend fitting method. However, the 

variance is predominantly in elastance, and not in the key 

clinical metric of optimal PEEP. This is not entirely 
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unexpected since Figs. 2C and 3H are optimised on much the 

same data. Hence, in terms of clinical implementation, the 

added complexity of the adapted method may not be 

warranted due to the equivalent outcome produced by the less 

complex trend fitting method. 

This paper presents an analysis of data from a single ARDS 

patient from the study conducted by Bersten et al. (Bersten 

1998). However, in data not shown, it was confirmed the 

outcomes were indicative of the outcomes of the wider 

dataset of 25 ARDS patients.  

Developing a method that effectively ignores unmodelled 

effects is a contentious concept. Some researchers consider 

every data point to be valuable and consider methods that 

reduce the contribution of any points in the objective function 

to be akin to data manipulation. This paradigm ultimately 

leads to larger more complex model formulations. The 

increased complexity of such models is necessary to capture 

the behaviour that was not modelled by the simple model. 

However, when such models are applied in the absence of the 

unmodelled effects, parameter non-identifiability occurs 

(Docherty et al. ; Docherty et al. 2014). Hence, by using the 

adapted method, a determination of precisely which data 

points can be representative of the modelled behaviour is 

treated autonomously. This further ensures the operator 

independence of the method while concurrently limiting the 

effect of unmodelled effects on the outcomes. 

5. CONCLUSIONS 

Applying volume correction terms to the simple FOM model 

yielded improvements to the agreement of the E(P) curves at 

different PEEP levels. The adapted Gauss-Newton method 

was introduced for curve fitting processes to while reducing 

unmodelled effects. This study showed that the adapted 

method offered increased robustness in E(P) curves. 

However, the added robustness did not have any particular 

clinical utility over the simpler trend-fitting algorithm that 

was also tested. Overall, this approach has the potential to 

yield information regarding the elastance curves of critically 

ill patients and to determine optimal PEEP setting that reduce 

the potential for ventilator induced lung injury. 
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