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Abstra
tWe present three 
riteria for 
ompa
tness in the 
ontext of apartness spa
esand Bishop-style 
onstru
tive mathemati
s. Ea
h of our three 
riteria 
anbe summarised as requiring that there is a positive distan
e between anytwo disjoint 
losed sets. Neat lo
atedness and the produ
t apartness give usthree variations on this theme. We investigate how our three 
riteria relateto one another and to several existing 
ompa
tness 
riteria, namely 
lassi
al
ompa
tness, 
ompleteness, total boundedness, the anti-Spe
ker property,and Diener's neat 
ompa
tness.
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OutlineChapters 1 and 2 brie�y introdu
e 
onstru
tive mathemati
s and apartness spa
esrespe
tively. These are fas
inating areas of resear
h that 
an reveal elaborate mathe-mati
al stru
tures that are lost 
lassi
ally. Neither subje
t 
an be done justi
e in thespa
e we a�ord it. So we refer the reader to [9℄, [10℄, [19℄, and [27℄ for a more 
ompleteexposition.Chapter 3 dis
usses the problems fa
ed when framing the notion of 
ompa
tness in a
onstru
tive setting. We dis
uss several existing 
riteria, whi
h provide the ba
kdropfor Chapter 4.In Chapter 4 we introdu
e a three new 
onditions that 
apture various aspe
ts of
ompa
tness in an apartness spa
e. We then investigate these 
onditions and howthey relate to one another and to the existing 
riteria. We show that these 
riteria
hara
terise similar notions to those in Chapter 3. The di�eren
es between our 
riteriahighlight the importan
e of lo
atedness and the need for something like the produ
tapartness.Finally, we 
on
lude in Chapter 5.
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Chapter 1
Constru
tive Mathemati
s

�The interesting thing about this book is that it reads essentially like ordi-nary mathemati
s, yet it is entirely algorithmi
 in nature if you look betweenthe lines.� �Donald Knuth on Errett Bishop's Foundations of Constru
-tive Mathemati
s [6℄ (in [20℄)What is 
onstru
tive mathemati
s and why is it interesting? In short, 
onstru
tivemathemati
s is the result of demanding more from proofs. The reason it is interesting isbe
ause (i) stronger proofs are philosophi
ally satisfying, (ii) it exposes a ri
h stru
turethat is not otherwise visible, and (iii) it has 
onne
tions to other areas of mathemati
s,most notably re
ursive analysis. In this 
hapter we give a brief introdu
tion to theprin
iples of 
onstru
tive mathemati
s, whi
h we use throughout this thesis.What is mathemati
al truth? When one 
lassi
ally asserts a statement P , it means thatP is a tautology�that is, P must be true with respe
t to any reasonable truth assign-ment. However, if one asserts P 
onstru
tively, one interprets that as �I 
an �nd a proofof P �. The 
onstru
tive interpretation is stronger than the 
lassi
al interpretation�any
onstru
tively true statement is 
lassi
ally true, but not all 
lassi
ally true statementssatisfy the 
onstru
tive interpretation.Let us look at an example to 
larify this distin
tion. The following proposition is given13



with a 
lassi
al proof.Proposition 1.1. There exist irrational real numbers a and b su
h that ab is ra-tional.Proof. Note that p2 is irrational. Consider p2p2. If this is rational, set a = b = p2and we are done. If not, set a = p2p2 and b = p2. Then ab = �p2p2�p2 = 2, when
ewe are also done. �The above proof shows that a and b must exist, but it does not give expli
it valuesfor them. The problem is that we don't know whether or not p2p2 is rational. A
onstru
tivist is therefore not satis�ed by this proof.What is the motivation for this interpretation of truth? There are two primary reasons.First, this interpretation means that truth and provability are equivalent, in the sensethat there is no a priori notion of truth, only one of provability. The se
ond reason isa pra
ti
al 
onsequen
e of the �rst; any 
onstru
tive proof gives rise to an algorithm.This means that, at least in theory, 
onstru
tive mathemati
s has appli
ations to areassu
h as re
ursive analysis, algorithms, and numeri
al analysis; see [12℄, [16℄, [23℄, [8℄,[7℄, and [29℄ for more details.
1.1 Bishop-style Mathemati
sThere are a
tually many variants of 
onstru
tive mathemati
s, some of whi
h we willdis
uss. We use Bishop-style mathemati
s (abbreviated as BISH). BISH usesintuitionisti
 logi
.1Let A and B be statements, X a set and P a unary predi
ate. The intuitionisti
interpretations of the basi
 logi
al 
onne
tives as follows.1Aside from intuitionisti
 logi
, whi
h we des
ribe here, BISH also requires a formal set- or type-theoreti
 foundation. The standard foundations are A
zel-Myhill set theory [1, 2, 26℄ and Martin-Löf'stype theory [24, 25℄. We use Intuitionisti
 Set Theory (IZF), as it has full separation; although thereis strong eviden
e that Constru
tive Set Theory (CZF) 
an also be used, see [9℄ Chapter 2 and [17℄.14



:A means that we 
an derive a 
ontradi
tion from A.A ^B means we 
an �nd a proof of A and a proof B.A _ B means we 
an �nd a proof of A or we 
an �nd a proof of B. Note that thisimplies that we 
an de
ide whi
h of the two holds. Thus A _ B is stronger than: (:A ^ :B).A ) B means that, given a proof of A, we 
an �nd a proof of B. Essentially, thisstatement says that there is an algorithm for 
onverting a proof of A into a proofof B.8x 2 X P (x) means that, given x and a proof that x 2 X, we 
an �nd a proof thatx satis�es P ; in other words, we have an algorithm whi
h, applied to an obje
t xand the data arising from a proof that x 2 X, shows that P (x) holds.9x 2 X P (x) means that we 
an 
onstru
t an obje
t x whi
h is in X and whi
hsatis�es P .These interpretations form the building blo
ks of Bishop-style mathemati
s. Carefulthought should make it 
lear whi
h dedu
tions 
an be made 
onstru
tively and whi
hdedu
tions are not 
onstru
tive. For example,:9x 2 X P (x)) 8x 2 X :P (x);is 
onstru
tively derivable, but:8x 2 X P (x)) 9x 2 X :P (x)is not. Proving an existen
e statement is more di�
ult 
onstru
tively, as we need tobe able to des
ribe the obje
t; it is not su�
ient to prove that an obje
t 
annot fail toexist.Note that, 
ontrary to popular belief, there is room for proof by 
ontradi
tion in 
on-stru
tive mathemati
s. However, we 
an only use it to prove negative statements. Thefollowing is an example of its use.Proposition 1.2. The real number p2 is not rational.15



Proof. Suppose that p2 is rational. Then 
hoose integers a and b with (a=b)2 =2. Assume, without loss of generality, that a and b are 
oprime. Now a2 = 2b2,when
e a must be even. Hen
e, 4(a=2)2 = 2b2 and 2(a=2)2 = b2. So b is also even�a
ontradi
tion. �Constru
tive de�nitions are also slightly di�erent to their 
lassi
al 
ounterparts. Forexample, we might take irrational to mean more than just �not rational�; instead wedemand that an irrational number is not equal to any rational number�that is, x isirrational means2 8a; b 2 Z

�b > 0 =) ab 6= x� :This is 
lassi
ally equivalent to not being rational, but in the 
onstru
tive setting thisis a stronger 
riterion. The following proposition shows how we 
an work with thisde�nition.Proposition 1.3. The real number p2 is irrational.Proof. Let a and b be integers with b > 0. Proposition 1.2 shows that a2 6= 2b2.Consider the 
ase where b � a � 2b. We have����p2� ab ���� 4 � ����p2� ab ���� ����p2 + ab ���� = �����2� �ab�2����� = j2b2 � a2jb2 � 1b2 ;when
e p2 6= a=b. If a < b, then a=b < 1 < p2. And, if a > 2b, then a=b > 2 > p2. �
1.2 Equality, Inequality, and CountingTerms su
h as ��nite� and �
ountable� take slightly di�erent meanings in the 
onstru
-tive setting.� A set S is 
alled �nitely enumerable if S = fs0; s1; � � � ; sng for some n 2 N.2See the next se
tion for a more pre
ise de�nition of inequality.16



� A set S is 
alled �nite if S = fs0; s1; � � � ; sng for some n 2 N and si 6= sjwhenever i 6= j: We take the empty set to be �nite.� A set S is 
alled 
ountable if S = fs0; s1; � � � g for some sequen
e (sn)n2N.� A set S is 
alled denumerable if S is �nite or S = fs0; s1; : : :g for some sequen
e(sn)n2N su
h that, for ea
h i; j 2 N with i 6= j, si 6= sj.Equality and inequality are separate notions 
onstru
tively. Let X and Y be sets andf : X ! Y a fun
tion. We always assume that X and Y have an equality relation =and that f is extensional�that is, if a = b, then f(a) = f(b). We also require that,for any set S, if x = y, then x 2 S if and only if y 2 S. In BISH a set sometimes
omes equipped with an inequality relation 6= distin
t from the denial of equality andsatisfying the two properties8x; y 2 X (x 6= y ) :(x = y)) ;8x; y 2 X (x 6= y ) y 6= x) :An inequality relation 6= on a set X is not generally de
idable, in the sense that forea
h x; x0 2 X, either x = x0 or x 6= x0. Indeed, the denial inequality, de�ned by8x; y 2 X (x 6= y , : (x = y)) ;on the set R of real numbers is not de
idable. However, denumerable sets, su
h as Zand Q, do have de
idable inequalities.An inequality relation 6= on a set X is said to be tight if, for ea
h x; y 2 X,: (x 6= y)) x = y;For example, the standard inequality on a metri
 spa
e (X; �) is given byx 6= y , � (x; y) > 0and is tight. 17



In the presen
e of inequality relations on the domain X and 
odomain of a fun
tion f ,we say that f is strongly extensional if8x; y 2 X (f(x) 6= f(y)) x 6= y) :We de�ne the standard inequalities on real numbers and sets as follows.8x; y 2 R (x 6= y () 9n 2 N (jx� yj � 2�n):8S; T (S 6= T () 9x 2 S(x =2 T ) _ 9x 2 T (x =2 S)):In light of this, we prefer to refer to a set S as being inhabited if S 6= ;, rather thanusing the double negative term nonempty.
1.3 Non-
onstru
tive Prin
iplesThere are a number of statements that are known not to be derivable in BISH. The
anoni
al example is the law of ex
luded middle (LEM)�the assertion that, for anystatement P , P or its negation holds.Let us investigate why LEM is not 
onstru
tive. Classi
ally, every statement is assigneda truth value and its negation is assigned the opposite value; thus it is impossible forboth P and :P to be assigned the value false; likewise, it is impossible for P _:P to beassigned the value false, when
e the statement must be true. However, the 
onstru
tiveinterpretation of LEM isGiven an arbitrary statement P , I 
an �nd a proof of P or I 
an �nd a proof of:P .This assertion is 
learly unreasonable, as Gödel senten
es, the 
ontinuum hypothesis,and the Riemann hypothesis are all examples of statements for whi
h, in some sense,18



we 
annot �nd proofs or 
ounter-proofs.We 
an formally show that a statement is non-
onstru
tive by providing a model ofBISH in whi
h it is provably false. Alternatively, we 
an use a Brouwerian 
ounterex-ample whi
h redu
es the statement in question to a known non-
onstru
tive statement.For example, the following proves that the axiom of 
hoi
e is non-
onstru
tive usingLEM.Sin
e, in our 
urrent 
onstru
tive model we do not a

ept LEM, we must also reje
t theaxiom of 
hoi
e, as it implies LEM. The axiom of 
hoi
e states that, for any binarypredi
ate P and sets X and Y ,(8x 2 X 9y 2 Y P (x; y)) =) �9f 2 Y X 8x 2 X P (x; f(x))� :To derive LEM from this, let P be an arbitrary statement. Let3a = f0g [ f1 : Pg; b = f0 : Pg [ f1g;and X = fa; bg; Y = f0; 1g:Then, for every x 2 X, there exists y 2 Y su
h that y 2 x: for if x = a, then 0 2 x,and, if x = b, then 1 2 x. So, by the axiom of 
hoi
e, there exists a fun
tion f : X ! Ysu
h that, for every x 2 X, f(x) 2 x. Now, we 
an de
ide whether f(a) = f(b) orf(a) 6= f(b), as the values of f belong to f0; 1g. If f(a) = f(b), then f(a) 2 a \ b,when
e P holds. On the other hand, if f(a) 6= f(b), then,: (a = b) and P is false. Thisproves that LEM holds.
Despite the 
onstru
tive failure of the full axiom of 
hoi
e, there are two weaker formsthat are normally a

epted by pra
titioners of BISH.43We use fa : Pg to denote fx : x = a ^ Pg.4See, however, the work of Ri
hman on 
hoi
e-free 
onstru
tive mathemati
s [28℄.19



� The axiom of 
ountable 
hoi
e: for any binary predi
ate P and set Y ,(8n 2 N 9y 2 Y P (n; y)) =) �9f 2 Y N 8n 2 N P (n; f(n))� :� The axiom of dependent 
hoi
e: for any binary predi
ate P and set A,(8a 2 A 9a0 2 A P (a; a0)) =)8a 2 A 9f 2 AN(f(0) = a ^ 8n 2 N P (f(n); f(n+ 1)):
The axiom of 
hoi
e and LEM are two highly non-
onstru
tive statements. Thereare many weaker statements, often trivially true 
lassi
ally, that 
annot be proved
onstru
tively. A partial list is the following.WLEM: The weak law of ex
luded middle: for any statement P , :P _ ::P .LPO: The limited prin
iple of omnis
ien
e: for any binary sequen
e a, either an = 0for ea
h n or there exists n su
h that an = 1; in symbols,8a 2 f0; 1gN (8n (an = 0) _ 9n (an = 1))LLPO: The lesser limited prin
iple of omnis
ien
e: for any binary sequen
e a su
hthat ajak = 0 whenever j 6= k, either a2n = 0 for ea
h n 2 N or a2n+1 = 0 forea
h n 2 N.MP: Markov's prin
iple: for any binary sequen
e a for whi
h it is false that an = 0for ea
h n, there exists n 2 N su
h that an = 1.It is worth noting that LPO is equivalent to the statement8x 2 R (x = 0 _ x 6= 0):Similarly, MP is equivalent to8x 2 R (:(x = 0) =) x 6= 0):20



Clearly, LPO implies LLPO and MP and LEM implies WLEM and LPO. See [10℄ for afurther dis
ussion on the 
onstru
tive properties of the 
onstru
tive real numbers.
1.4 Models of BISHModels of BISH are systems in whi
h we 
an prove at least as mu
h as we 
an provein BISH. These are helpful for two reasons. Firstly, results in a model give us intuitionabout what to expe
t in BISH. And, se
ondly, if we 
an disprove a statement in a modelof BISH, then we know that that statement 
annot be proved in BISH.1.4.1 CLASSClassi
al mathemati
s (abbreviatedCLASS) is a model of BISH. This is simply be
auseany statement that holds in the 
onstru
tive sense is also true 
lassi
ally. Classi
al logi
is BISH with LEM added.1.4.2 RUSSRussian 
onstru
tivism (abbreviated RUSS) [10, 30, 22℄ is also known as the re-
ursive model. RUSS attempts to 
apture re
ursive analysis in logi
al form. RUSSadds two main axioms to BISH. The �rst is MP and the se
ond isCPF: There is an enumeration '1; '2; � � � of the set of partial fun
tions from N to Nwith 
ountable domains.Note that a partial fun
tion f from X to Y is a fun
tion from a subset dom(f) of X(
alled the domain of f) to Y . This is a form of the Chur
h-Markov-Turing thesis.CPF 
an be interpreted as asserting that all fun
tions are 
omputable. Note that CPFis provably false in CLASS, by a diagonalisation argument.21



The �spirit� of RUSS is that everything 
an be represented by a natural number. Everystatement in RUSS is to be interpreted as a statement about 
omputability.RUSS is in
onsistent with CLASS. In parti
ular, LPO and LLPO are provably false init. Indeed, LPO 
orresponds to the halting problem. This justi�es our earlier assertionthat LPO and LLPO are non-
onstru
tive.Another interesting result in RUSS is Spe
ker's theorem. This theorem is important inour later study of 
ompa
tness. It essentially states that [0; 1℄ is not 
ompa
t in RUSSin a very strong way.Theorem 1.4 (Spe
ker). In RUSS, there exists a stri
tly in
reasing sequen
e (rn)n2Nin Q \ [0; 1℄ that is eventually bounded away from every point in [0; 1℄�that is,for every x 2 [0; 1℄, there exist Æ > 0 and N 2 N su
h that, for every n � N ,jx� rnj � Æ.For a proof of Spe
ker's theorem see [10℄ Chapter 3, Theorem 3.1. The basi
 ideabehind the proof is that the �limit� of the sequen
e is not a 
omputable real number.Additionally, in RUSS all fun
tions from R to R are 
ontinuous (though this requiresslightly more than just MP and CPF to prove) and the intermediate value theorem isfalse.
1.4.3 INTThe last model we dis
uss is Brouwer's intuitionism (abbreviated INT) [10, 30, 14℄.Again, we obtain it by adding two main prin
iples to BISH. First, we must give severalde�nitions.We de�ne a metri
 � on NN by�(a; b) � inf n2�n : 8i � n ai = bio :22



Relative to this metri
 NN is a 
omplete, separable metri
 spa
e.First we add the prin
iple of 
ontinuous 
hoi
e:CC Any fun
tion from NN to N is 
ontinuous. And, if P � NN �N and, for ea
ha 2 NN, there exists n 2 N with (a; n) 2 P , then there is a 
hoi
e fun
tionf : NN ! N su
h that (a; f(a)) 2 P for ea
h a 2 NN.Note that CC is in
ompatible with CPF ([10℄ Chapter 5, Theorem 2.2). Thus INT andRUSS are in
ompatible. Also, LPO and LLPO are in
ompatible with CC.We say that a set S is deta
hable if, for any x, either x 2 S or x =2 S. For any setS, let S� be the set of all �nite sequen
es in S and let SN be the set of all in�nitesequen
es in S. A deta
hable subset � of f0; 1g� is 
alled a binary fan if, for ea
h(a0; a1; � � � ; an) 2 � with n > 0, the restri
tion (a0; a1; � � � ; an�1) is also in �. Anin�nite sequen
e a = (a0; a1; � � � ) 2 f0; 1gN is 
alled a path in the binary fan � if, forea
h n 2 N, (a0; a1; � � � ; an) 2 �. A subset B of a binary fan � is 
alled a bar for � ifevery path a in � has a pre�x in B�that is, (a0; a1; � � � ; an) 2 B for some n 2 N. Abar B for a binary fan � is 
alled uniform if there exists N 2 N su
h that, for everypath a in �, there exists n 2 N with n � N and (a0; a1; � � � ; an) 2 B.The se
ond prin
iple we add is 
alled the fan theorem:FT Every deta
hable bar of a binary fan is uniform.The fan theorem is a 
ontrapositive form of the 
lassi
al König's lemma [21℄. Thus it isalso true in CLASS. Note that the name �fan theorem� is a misnomer, as we 
onsiderit to be an axiom, rather than a theorem.In fa
t FT is equivalent to the following result [10, 5, 18℄.Theorem 1.5. Every uniformly 
ontinuous f : [0; 1℄! (0;1) has positive in�mum.23



Theorem 1.5 is, however, false in RUSS via an expli
it 
ounterexample [10℄. ThusTheorem 1.5 is independent of BISH.We 
an also add the following axiom to INT to make MP provably false.Kripke's S
hema: For ea
h proposition P there exists an in
reasing binarysequen
e a 2 f0; 1gN su
h that P holds if and only if an = 1 for some n 2 N.This 
on
ludes our introdu
tion to the prin
iples of 
onstru
tive mathemati
s. In thenext 
hapter we build a framework for topology in BISH.

24



Chapter 2
Apartness and Uniformity

�Very little is left of general topology after that vehi
le of 
lassi
al math-emati
s has been taken apart and reassembled 
onstru
tively. With someregret, plus a large measure of relief, we see this �amboyant engine 
ollapseto 
onstru
tive size.��Errett Bishop ([6℄, page 63)Apartness spa
es provide a 
onstru
tive framework for topology. They were developedby Bridges and Vîµ  [9℄ in 2000. Before giving the axioms for those spa
es, we introdu
esome notions of 
omplement for a subset S of a set X with an inequality. We havethe logi
al 
omplement :S � fx 2 X : : (x 2 S)g ;the 
omplement �S � fx 2 X : 8s 2 S (x 6= s)g ;and the apartness 
omplement�S � fx 2 X : fxg ./ Sg ;where ./ is an apartness relation as introdu
ed below.25



De�nition 2.1. A apartness spa
e is an inhabited set X and a binary relation ./on subsets of X satisfying the following for A;B;C � X.B0 A ./ B =) B ./ A.B1 X ./ ;.B2 �A �� A.B3 A ./ (B [ C) () (A ./ B ^A ./ C).B4 �A �� B =) �A � �B.B5 8x 2 �A 9D � X (x 2 �D ^X = �A [D).Note that we will not dis
uss non-symmetri
 apartness spa
es (those without B0) orpre-apartness spa
es (those la
king B5). If A ./ B, we say that A is apart from B orthat A and B are apart. For x 2 X and S � X, we write x ./ S rather than fxg ./ S.An apartness spa
e (X; ./) indu
es a topology onX in whi
h the apartness 
omplementsform a base of open sets. Classi
ally, given a topologi
al spa
e (X; � ), one 
an de�nean apartness ./ on X by8A;B � X �A ./ B () �A \ �B = ;� : (2.1)However, an apartness spa
e is designed to 
apture more information than just thetopology of the spa
e. Two sets being apart should 
apture the notion of them havinga positive distan
e between them. In this sense, the de�nition given in (2.1) is not veryuseful. For example, in R2, the setsn(x; y) 2 R2 : xy = 0o ;n(x; y) 2 R2 : xy = 1ohave disjoint 
losures, but they do not have a positive distan
e between them.26



2.1 Uniform Spa
esAbstra
tions of metri
 or distan
e notions are usually de�ned in the 
ontext of uniformspa
es. We will give a 
onstru
tive de�nition of a uniform spa
e and show how thisindu
es an apartness. First we introdu
e some notation 
onne
ted with subsets of theCartesian produ
t of a set X with itself.The diagonal of X2 is � � f(x; x) : x 2 Xg :For W;W 0 � X2,W ÆW 0 � n(x; z) 2 X2 : 9y 2 X ((x; y) 2 W ^ (y; z) 2 W 0)o ;W 1 � W; and W n+1 � W n ÆW (n 2 N) ;and W�1 � n(x; y) 2 X2 : (y; x) 2 Wo :We 
all W symmetri
 if W = W�1. If S � X, thenW [S℄ � fy 2 X : 9s 2 S (s; y) 2 Wg :If S = fxg with x 2 X, we writeW [x℄ � W [fxg℄ = fy 2 X : (x; y) 2 Wg :We re
all here that an inhabited set F of inhabited subsets of X is a �lter if� the interse
tion of two sets in F belongs to F , and� supersets of sets in F belong to F .De�nition 2.2. A uniform spa
e is an inhabited set X equipped with an inequalityrelation 6= and a set U of subsets of X2 su
h that the following hold.27



U1 U is a �lter on X2.U2 For ea
h x; y 2 X, x 6= y if and only if there exists U 2 U su
h that (x; y) 2:U .U3 For ea
h U 2 U , there exists V 2 U su
h that V 2 � U .U4 For ea
h U 2 U , there exists V 2 U su
h that X2 = U [ :V .U5 For ea
h U 2 U , there exists V 2 U su
h that V � U�1.A member of U is 
alled an entourage. A base of entourages is a set B � U su
h that,for ea
h U 2 U there exists V 2 B with V � U . A uniform spa
e has an asso
iateduniform topology, in whi
h the sets of the form U [x℄ with U 2 U form a base ofneighbourhoods of the point x 2 X.Any metri
 spa
e (X; �) is also a uniform spa
e in whi
h���1 ��0; 1n+ 1�� : n 2 N

�is a base of entourages.The Cartesian produ
t X = Yi2IXiof a family ((Xi;Ui))i2I of uniform spa
es has a natural uniform stru
ture, the produ
tuniformity, in whi
h a base of entourages 
onsists of all sets of the formn(x;y) 2 X2 : 8i 2 F ((xi; yi) 2 Ui)owith F a �nitely enumerable subset of I and Ui 2 Ui for ea
h i 2 F .Given a uniform spa
e (X;U) we de�ne a binary relation ./ between subsets A;B of Xby A ./ B () 9U 2 U (A�B � :U) : (2.2)It 
an be shown that this relation is an apartness (we 
all it the uniform apartness)28



on X, and that, for ea
h A � X,�A = fx 2 X : 9U 2 U (U [x℄ � :A)g :This implies that the topology indu
ed by the apartness is the same as the uniformtopology on X.
2.2 Produ
t ApartnessesThere are two natural 
ategori
al notions in apartness spa
es: the produ
t of twoapartness spa
es and subspa
es.A subspa
e of an apartness spa
e is de�ned in the obvious manner and behaves mostlyas expe
ted. Note that some properties do not pass immediately to subspa
es. Forexample, a subspa
e of a separable spa
e is not ne
essarily separable. Regularity 
on-ditions su
h as weak or neat lo
atedness (whi
h we de�ne later) will ensure that asubspa
e inherits more properties. See [9℄ for more details.The produ
t of two apartness spa
es is more interesting for our purposes.De�nition 2.3. Let (X; ./X) and (Y; ./Y ) be apartness spa
es. Then the produ
tapartness ./X�Y on X�Y is de�ned as follows. Let S; T be subsets of X�Y . ThenS ./ T if and only if there exist m;n 2 N,A1; A2; � � � ; Am; B1; B2; � � � ; Bn � Xand A01; A02; � � � ; A0m; B01; B02; � � � ; B0n � Ysu
h that S � m[i=1Ai �A0i; T � n[j=1Bj � B0jand, for ea
h i; j with 1 � i � m and 1 � j � n, either Ai ./X Bj or A0i ./Y B0j.The pair (X � Y; ./X�Y ) is 
alled the produ
t of the apartness spa
es (X; ./X)29



and (Y; ./Y ).
Applying B5 we see that, for ea
h A � X � Y ,�A = f(x; y) 2 X � Y : 9E � X 9F � Y ((x; y) 2 �E ��F �� A)g :It follows from this that the produ
t apartness indu
es the usual produ
t topology.However, the produ
t apartness is somewhat irregular, in the sense that it does not
oin
ide with the produ
t of uniform spa
es. Consider, for example, R2. LetS = f(z; z) : z 2 Rg ;T = n(x; y) 2 R2 : jx� yj � 1o :Considered as subsets of the metri
 spa
eR2, S and T are apart, sin
e for ea
h (z; z) 2 Sand (x; y) 2 T ,max fjx� zj ; jy � zjg � 12 (jx� zj+ jz � yj) � 12 jx� yj � 12 :However, if S and T are 
onsidered as subsets of the produ
t apartness spa
e R �R,they are not apart. To see this, suppose thatS � m[i=0Ai �A0i � R2:Then, for ea
h n 2 N, 
hoose in 2 f0; 1; � � � ;mg su
h that (n; n) 2 Ain � A0in . Sin
ein 
an only take �nitely many values over in�nitely many indi
es n 2 N, there existn; n0 2 N with n 6= n0 and in = in0�this is an appli
ation of the pigeonhole prin
iple,whi
h states that8n 2 N 8f 2 f0; 1; � � � ; ngf0;1;��� ;n+1g 9i; j 2 f0; 1; � � � ; n+ 1g (i 6= j ^ f(i) = f(j)) :Now, jn� n0j � 1, so (n; n0) 2 T \ �Ain �A0in� :This shows that :(S ./ T ). Note that we now have two di�erent apartnesses on R2that indu
e the same topology. 30



2.3 Total BoundednessWe now dis
uss some notions that are 
losely 
onne
ted with the 
ompa
tness proper-ties that are the main obje
t of our investigations.De�nition 2.4. Let (X;U) be a uniform spa
e. We say that X is weakly totallybounded if, for ea
h U 2 U , there exist n 2 N and A1; � � � ; An � X su
h thatX = Sni=1Ai and su
h that, for ea
h i 2 N with 1 � i � n, Ai � Ai � U . If also Aiis inhabited for ea
h appli
able i, then X is said to be strongly totally bounded.Note that these 
onditions are 
lassi
ally equivalent, and that, 
onstru
tively, a stronglytotally bounded spa
e is weakly totally bounded.Given a strongly totally bounded uniform spa
e, we 
an re
over the uniformity fromthe apartness it indu
es: Let (X; ./) be an apartness spa
e. We say that A � X iswell-
ontained in B � X if there exists C � X su
h that B [ C = X and C ./ A;we write A � B to denote this. Let n 2 N and A1; A2; � � � ; An; B1; B2; � � � ; Bn � Xsatisfy Sni=1Ai = X and Ai � Bi for ea
h appli
able i. If the apartness ./ on X isindu
ed by a uniform stru
ture U , then Sni=1Bi � Bi is an entourage of U . Moreover,entourages of this form with ea
h Ai inhabited form a base of entourages if and only ifthe uniform spa
e is strongly totally bounded. See [9℄ Propositions 3.9.13 and 3.9.14for more details.
2.4 Continuity PropertiesDe�nition 2.5. Let (X; ./X) and (Y; ./Y ) be apartness spa
es, and f : X ! Y afun
tion. We say that f is� topologi
ally 
ontinuous if f�1(U) is open in X whenever U is an opensubset of Y ; 31



� 
ontinuous if, for ea
h x 2 X and A � X,f(x) 2 �Y f(A)) x 2 �XA�that is to say f�1(�Y f(A)) � �XA;� strongly 
ontinuous if, for ea
h A;B � X, f(A) ./Y f(B) implies that A ./XB.Clearly, strong 
ontinuity implies 
ontinuity. Moreover, in a metri
 spa
e, 
ontinuity
orresponds to the usual "-Æ de�nition of 
ontinuity. Continuity and topologi
al 
on-tinuity are equivalent if the range Y has the so-
alled weak nested neighbourhoodsproperty, whi
h asserts that8A � Y 8x 2 �A 9B � Y (x 2 �B ^ :B � �A):Strong 
ontinuity is related to the well-studied notion of uniform 
ontinuity, whi
h wenow introdu
e. Let f be a fun
tion from a uniform spa
e (X;U) to a uniform spa
e(Y;V), and de�ne f � f : X �X ! Y � Y by(f � f) (x; x0) � (f(x); f(x0)) :We say that f is uniformly 
ontinuous if (f � f)�1(V ) 2 U for ea
h V 2 V. Uniform
ontinuity implies strong 
ontinuity. It 
an be shown that f is uniformly 
ontinuousif and only if f � f is strongly 
ontinuous with respe
t to the produ
t apartnesses onX �X and Y � Y ; see [9℄, Proposition 3.3.4.
2.5 Lo
atedness PropertiesIn a metri
 spa
e (X; �), we say that S � X is lo
ated if�(x; S) � inf f�(x; y) : y 2 Sg32



exists for ea
h x 2 X�that is, for ea
h �; � 2 R with � < �, either there exists y 2 Swith �(x; y) < � or �(x; y) > � for ea
h y 2 S. Classi
ally, every subset of a metri
spa
e is lo
ated. However, 
onstru
tively this is not always the 
ase: for any statementP , the inhabited set S = f0g [ f1 : Pgis lo
ated subset of the dis
rete metri
 spa
e f0; 1g if and only if P _ :P holds. Lo-
atedness is a very useful 
ondition in the 
onstru
tive study of metri
 spa
es, so wewould like an analogue for lo
atedness in apartness spa
es.There is at least one natural analogue of the metri
 property of lo
atedness in the
ontext of a uniform spa
e (X;U). A subset S of X is 
alled almost lo
ated [11℄ if,for ea
h U 2 U , there exists V 2 U su
h that, for every x 2 X, either S \ U [x℄ 6= ;or S \ V [x℄ = ;. Although there is no obvious analogue of lo
atedness for subsets of ageneral apartness spa
e, there are two useful lo
atedness notions therein.De�nition 2.6. Let (X; ./) be an apartness spa
e, and S � X. We say that S isweakly lo
ated if, for ea
h x 2 X and A � X with x 2 �A, either S \ �A 6= ; orx 2 �S.Weak lo
atedness is stri
tly weaker than lo
atedness. A stronger alternative is given inDe�nition 2.7. Let (X; ./) be an apartness spa
e. We say that an ordered pair(A;B) of subsets of X is a neat 
over of X if there exist A0; B0 � X su
h thatA [A0 = B [ B0 = X and A0 ./ B0. We say that S � X is neatly lo
ated if for anyneat 
over (A;B) of X, either A \ S 6= ; or S � B.Intuitively, a neat 
over is a pair of sets 
overing the whole spa
e and with a �positiveoverlap�. Note that, if (A;B) is a neat 
over of an apartness spa
e X, then A[B = Xand (B;A) is also a neat 
over. Classi
ally, all sets are neatly lo
ated. In a metri
spa
e, neat lo
atedness implies lo
atedness. Constru
tively, in an arbitrary apartnessspa
e, neat lo
atedness does not ne
essarily imply weak lo
atedness; however, Lemma2.9, for whi
h we introdu
e the next de�nition, shows that under a 
ertain separation
ondition, this is the 
ase. 33



De�nition 2.8. Let (X; ./) be an apartness spa
e. We say that X has the nestedneighbourhoods property if8x 2 X 8A � X (x 2 �A =) 9B � X (x 2 �B ^ :B ./ A)):Any uniform spa
e has the nested neighbourhoods property.Lemma 2.9. Let X be an apartness spa
e with the nested neighbourhoods property.Then any neatly lo
ated subset of X is weakly lo
ated.Proof. Let S � X be neatly lo
ated. Let A � X and x 2 �A. Then, by B5, thereexists B � X su
h that x 2 �B and B [ �A = X. By the nested neighbourhoodsproperty, there exists C � X su
h that x 2 �C and :C ./ B, when
e �C ./ B. Again,by B5, there exists D � X su
h that x 2 �D and D [ �C = X. Then (�A;D) is aneat 
over, as �A [ B = D [ �C = X and B ./ �C. So either S \ �A 6= ; or S � Dand x 2 �D � �S. �Lemma 2.10. A strongly totally bounded subset of a uniform spa
e is neatly lo-
ated.Proof. Let (X;U) be a uniform spa
e and S a strongly totally bounded subset thereof.Let (A;B) be a neat 
over of X and 
hoose A0; B0 � X and U 2 U su
h that A [ A0 =B[B0 = X and A0�B0 � :U . Choose a �nitely enumerable F � S su
h that S � U [F ℄.Sin
e A [ A0 = X and F is �nite, either F \ A 6= ; or F � A0. In the former 
ase weare done, as S \A � F \A 6= ;. Suppose, on the other hand, that F � A0. Let y 2 S.Then there exists x 2 F with y 2 U [x℄. If y 2 B0, then (x; y) 2 A0 � B0 \ U = ; � a
ontradi
tion. Thus S � :B0 � B. �
2.6 The Hausdor� PropertyThe following de�nes a very useful regularity 
ondition for apartness spa
es, namelythe ability to separate distin
t points by open sets.34



De�nition 2.11. Let (X; ./) be an apartness spa
e. We say that X is Hausdor�if, for every x; y 2 X with x 6= y, there exist U; V � X su
h that x 2 �U , y 2 �Vand �U \ �V = ;.Any uniform spa
e is Hausdor�. A simple 
onsequen
e of a spa
e being Hausdor� isthat, for every x; y 2 X, x 6= y if and only if fxg ./ fyg.
2.7 Sequen
es, Nets, and CompletenessNext we dis
uss nets, 
onvergen
e, and 
ompleteness in apartness spa
es.De�nition 2.12. A dire
ted set 
onsists of an inhabited set D and a binary relation� on D su
h that� n � n for ea
h n 2 D;� if l;m; n 2 D, l � m, and m � n, then l � n; and� for ea
h m;n 2 D there exists l 2 D su
h that l � m ^ l � n.A net in a spa
e X 
onsists of a dire
ted set (D;�) and a fun
tion x : D ! X; wedenote su
h a net by (xn)n2D. A subnet of a net (xn)n2D is a net (nk)k2E in D withthe property that for ea
h n 2 D, there exists k 2 E su
h that nk0 � n wheneverk0 2 E and k0 � k; this subnet is denoted by (xnk)k2E .De�nition 2.13. A net (xn)n2D in an apartness spa
e X is said to 
onverge tox 2 X if, for ea
h A � X with x 2 �A , there exists m 2 D su
h that xn 2 �Awhenever n 2 D and n � m. The point x is then 
alled a limit of the net.Cau
hy sequen
es play an important role in the theory of metri
 spa
es, and, in par-ti
ular, in 
ompa
t ones. We now de�ne analogues of Cau
hyness for nets, and then of
ompleteness, in uniform and apartness spa
es.35



De�nition 2.14. Let (X;U) be a uniform spa
e and x = (xn)n2D a net in X. Wesay that x is a Cau
hy net if, for ea
h U 2 U , there exists m 2 D su
h thatxn 2 U [xm℄ whenever n 2 D and n � m.De�nition 2.15. Let (X; ./) be an apartness spa
e and x = (xn)n2D a net in X.We say that x is totally Cau
hy if, for ea
h S; T � D su
h that x(S) ./ x(T ), thereexists m 2 D su
h that it is impossible for there to be n; n0 2 D with n � m, n 2 S,n0 � m, and n0 2 T .De�nition 2.16. A uniform spa
e or an apartness spa
e X is said to be 
omplete(respe
tively, totally 
omplete) if every Cau
hy (respe
tively, totally Cau
hy) net
onverges to a limit in X.Note that every sequen
e is a net. By restri
ting ourselves to sequen
es rather thannets, we 
an de�ne sequentially 
omplete and sequentially totally 
omplete bymaking the obvious modi�
ations in De�nition 2.16.It is 
lear that in a uniform spa
e, a Cau
hy net is totally Cau
hy, and hen
e thata totally 
omplete uniform spa
e is 
omplete. In a strongly totally bounded uniformspa
e, a totally Cau
hy net is Cau
hy. A di�
ult argument shows that a totally Cau
hysequen
e in a uniform spa
e is Cau
hy; see [9℄, Theorem 3.5.12.
What is the motivation for studying apartness spa
es? In terms of stru
ture, apartnessspa
es lie between topologi
al spa
es and uniform spa
es. An apartness spa
e allowsone to de�ne strong 
ontinuity, whi
h 
annot be de�ned on an arbitrary topologi
alspa
e. Also, di�erent apartnesses may indu
e the same topology. So this shows thatan apartness spa
e has stri
tly more stru
ture than a topologi
al spa
e. On the otherhand, an apartness spa
e la
ks any axiom similar to the powerful U3 axiom of uniformspa
es and it also la
ks a natural analogue to lo
atedness, whi
h indi
ates that it hasstri
tly less stru
ture than a uniform spa
e. This already makes apartness spa
es veryinteresting, and has led to extensive resear
h. A 
lassi
al exposition, based on the36



notion of proximity rather than that of apartness, is given in [27, 3℄; a 
onstru
tiveexposition will appear as [9℄.Constru
tively, apartness spa
es provide signi�
ant 
omputational information; theapartness of two sets is a mu
h stronger property than the mere disjointness of thesets, or even their 
losures. For example, if an apartness spa
e is derived from atotally bounded uniform spa
e, then the uniformity 
an be re
overed from the apartness[9℄, whi
h is not true of a mere toplogy. And, 
lassi
aly, every apartness spa
e withthe Efremovi£ property is uniformisable [27℄. This makes apartness spa
es a strongfoundation upon whi
h to build a 
onstru
tive theory of topology.
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Chapter 3
Compa
tness Properties for ApartnessSpa
es

�The 
lassi
 theorem of Heine-Borel-Lebesgue asserts that every open 
overof a 
losed and bounded subset of the spa
e of real numbers has a �nitesub
over. This theorem has extraordinarily profound 
onsequen
es, and,like most good theorems, its 
on
lusion has be
ome a de�nition.��John L.Kelley ([19℄, page 135)Classi
ally, 
ompa
tness is a very strong regularity 
ondition; it has ni
e 
ategori
alproperties and has numerous appli
ations. In this 
hapter we will take a look at 
lassi
al
ompa
tness and then previous attempts to develop a 
onstru
tive version thereof.De�nition 3.1. Let (X; � ) be a topologi
al spa
e. Then X is said to be 
ompa
t,if every open 
over has a �nitely enumerable sub
over�that is to say, for ea
hC � � with SC = X, there exists a �nitely enumerable F � C with SF = X.This de�nition, unfortunately, is not very useful 
onstru
tively, be
ause it is too strong.1We 
annot even prove that [0; 1℄ is 
ompa
t. Note that we 
annot demand a �nitesub
over, rather than a �nitely enumerable one: otherwise the 
ompa
tness of f0; 1g isequivalent to LEM.1Some 
onstru
tive formal topologists, however, �nd this de�nition a

eptable.39



A 
lassi
ally equivalent 
hara
terisation of 
ompa
tness is that every net in X has a
onvergent subnet. And, in a uniform spa
e, 
ompa
tness is 
lassi
ally equivalent tothe spa
e being 
omplete and totally bounded. The produ
t of 
ompa
t spa
es is a
ompa
t spa
e; a 
losed subset of a 
ompa
t spa
e is 
ompa
t; and the 
ontinuous imageof a 
ompa
t spa
e is 
ompa
t. An important theorem about 
ompa
t uniform spa
esis the so-
alled uniform 
ontinuity theorem, whi
h states that a 
ontinuous fun
tionfrom a 
ompa
t uniform spa
e to a uniform spa
e is uniformly 
ontinuous.Constru
tively, 
ompleteness and total boundedness are very useful notions. We 
anprove that, say, [0; 1℄ possesses both of these properties. We 
an also show that theyare both preserved by 
ountable produ
ts and by 
losed almost lo
ated subspa
es. Andtotal boundedness (in either the strong or weak form) and sequential 
ompleteness arepreserved by uniformly 
ontinuous fun
tions.So it seems that �
omplete and totally bounded� is a satisfa
tory 
onstru
tive 
riterionfor 
ompa
tness. However, this de�nition requires the stru
ture of a uniform spa
e.We would like to have a de�nition whi
h only requires the stru
ture of an apartnessspa
e.We now dis
uss several 
andidate 
riteria from the literature.
3.1 Total CompletenessSin
e we 
an de�ne total 
ompleteness in an apartness spa
e (see De�nition 2.16), itseems that this would make a good approximation to 
ompleteness. However, it turnsout that total 
ompleteness is 
lassi
ally equivalent to 
ompa
tness; see [9℄, Se
tion3.5. Have we found a 
onstru
tive 
riterion for 
ompa
tness? To an extent yes, but,unfortunately, there are still problems with total 
ompleteness.The problem arises �rstly from the fa
t that total 
ompleteness doesn't �look� like a
ompa
tness 
ondition and se
ondly from the fa
t that it is a very strong 
ondition. Toderive 
ompa
tness from total 
ompleteness we need ultra�lters, whi
h require heavy40



use of the axiom of 
hoi
e; it seems unlikely that there is a dire
t or 
onstru
tive proof.We are also unable to prove that [0; 1℄ is totally 
omplete; we are, however, able toshow that R is totally sequentially 
omplete.
3.2 Anti-Spe
ker PropertiesThe alternative approa
h to de�ning 
ompa
tness�via 
onvergent subnets orsubsequen
es�also has some problems. In the re
ursive model of 
onstru
tive mathe-mati
s we 
an show that [0; 1℄ is not 
ompa
t�this is the result of Spe
ker's theorem(Theorem 1.4).Spe
ker's theorem implies that we 
annot 
onstru
tively prove that an in
reasing ra-tional sequen
e in [0; 1℄ 
onverges. However, the antithesis of Spe
ker's theorem is auseful 
ompa
tness 
riterion.De�nition 3.2. Let (X; ./) be an apartness spa
e. Then we say that X has theweak anti-Spe
ker property if it is impossible for there to be a sequen
e (xn)n2Nin X that is eventually bounded away from ea
h point in X�that is, for everyx 2 X, there exists N 2 N su
h thatx 2 �fxn : n 2 N ^ n � Ng :We also say that X has the (strong) anti-Spe
ker property if, for any sequen
e(xn)n2N in X[f1g (where 1 is bounded away from X) that is eventually boundedaway from every point in X, there exists n 2 N su
h that xn =1.Note that the strong anti-Spe
ker property implies the weak anti-Spe
ker property andthe 
onverse is true if one assumes Markov's prin
iple. Classi
ally, the anti-Spe
kerproperty is implied by sequential 
ompa
tness and the 
onverse is true if the spa
e is�rst-
ountable.It 
an be shown that the strong anti-Spe
ker property for [0; 1℄ is equivalent to a form41



of Brower's fan theorem and that the produ
t of two anti-Spe
ker spa
es is anti-Spe
kerunder the assumption of BD-N; see [4℄.
3.3 Neat Compa
tnessThere is one more approa
h to de�ning 
ompa
tness that is worth dis
ussing. Thisapproa
h is due to Diener [13℄.De�nition 3.3. Let (X; ./) be an apartness spa
e. We say that� X is neatly 
ompa
t if X is neatly lo
ated and it is impossible that bothLPO hold and there is a sequen
e (Un)n2N of open subsets of X su
h thatSn2N Un = X and, for ea
h n 2 N, Un � Un+1 and :Un 6= ;;� a net (xn)n2D in X is neatly Cau
hy if, for any �nitely enumerable 
olle
tionf(Sj; Tj) : j 2 Fg of neat 
overs of X, there exists N 2 D su
h that eitherxN 2 Tj for ea
h j 2 F or there exists k 2 F su
h that xn 2 Sk for all n 2 Dwith n � N ;� a net (xn)n2D in X 
onverges neatly to a point x 2 X if, for any �nitelyenumerable 
olle
tion f(Sj; Tj) : j 2 Fg of neat 
overings of X, either x 2 Tjfor ea
h j 2 F or there exist k 2 F and N 2 D su
h that x 2 Sk and xn 2 Skfor ea
h n 2 D with n � N ; and� X is neatly 
omplete if every neatly Cau
hy sequen
e in X 
onverges neatlyto a limit in X.Neat 
ompa
tness implies total boundedness in a separable uniform spa
e, and, in auniform spa
e, neat 
ompleteness implies 
ompleteness. Conversely, a 
omplete andtotally bounded uniform spa
e with a 
ountable base of entourages is neatly 
ompa
t,neatly 
omplete, and, of 
ourse, separable. Moreover, if f is a strongly 
ontinuousand topologi
ally 
ontinuous fun
tion from a neatly 
ompa
t apartness spa
e to anapartness spa
e, then the range of f is neatly 
ompa
t. This implies that, if f is a42



strongly 
ontinuous fun
tion from a neatly 
ompa
t apartness spa
e X to the real line,then sup f(X) exists.Neat 
ompa
tness and 
ompleteness seem to be very good 
riteria for 
ompa
tness, asthey have desirable 
ategori
al properties and they are more-or-less equivalent to thespa
e being totally bounded and 
omplete. However, the de�nitions are very unwieldyand neat 
ompa
tness is mostly a negative 
ondition.
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Chapter 4
Compa
tness Criteria

�Just be
ause something doesn't do what you planned it to do doesn't meanit's useless.��Thomas Edison [15℄

It already seems that we will have di�
ulty �nding one 
ompa
tness 
riterion that is asuniversally a

epted as De�nition 3.1 is 
lassi
ally. So we will work with several 
riteria.All of the 
riteria dis
ussed in the previous 
hapter, apart from neat lo
atedness andneat 
ompleteness, used only the topology of the spa
e; none of them refer to apartnessbetween sets. We will make use of the extra stru
ture of apartness spa
es. We have
ome up with three 
riteria whi
h are based on the observation that, in a 
lassi
al
ompa
t uniform spa
e, disjoint 
losed sets have a positive distan
e between them.Our three 
riteria di�er in their use of neat lo
atedness and the produ
t apartness.As we have mentioned before, di�erent apartnesses 
an indu
e the same topology. Asour 
riteria depend on the apartness, they are more sensitive to the stru
ture of thespa
e than those dis
ussed in Chapter 3. 45



De�nition 4.1. Let (X; ./) be an apartness spa
e. We say that X isCC1 if, for any neatly lo
ated S; T � X with �S [ �T = X, S ./ T ;CC2 if, for any neatly lo
ated S � X2 with �S [ �� = X2, S ./ � in the produ
tapartness; andCC3 if, for any S � X2 su
h that �S [�� = X2, S ./ � in the produ
t apartness.We immediately note that any CC3 spa
e is also a CC2 spa
e. Moreover, Lemma4.2 shows that a Hausdor� CC3 spa
e is CC1 under either a uniformity or LEM. And,
lassi
ally, CC2 and CC3 are equivalent. Thus the above 
onditions are roughly orderedby strength. Also CC1, CC2 and CC3 are all preserved by strong homeomorphisms.Lemma 4.2. Let (X; ./) be a Hausdor� apartness spa
e. If X is CC3, then it isalso CC1 if we assume that either(i) X is a uniform spa
e1 or(ii) LEM holds.Proof. Let X be a CC3 apartness spa
e and S; T � X with �S [ �T = X. Take anarbitrary (x; y) 2 X2. If x 2 �S or y 2 �T , then (x; y) 2 �(S � T ). Suppose, on theother hand, that x 2 �T and y 2 �S. By B5 there exists A � X su
h that x 2 �A and�T [ A = X. If y 2 �T , then (x; y) 2 �(S � T ). So we suppose instead that y 2 A,when
e x 2 �fyg and x 6= y. Sin
e X is Hausdor� there exist U; V � X su
h thatx 2 �U , y 2 �V and �U \ �V = ;. Thus (x; y) 2 �U � �V � � and (x; y) 2 ��.So �(S � T ) [ �� = X2, when
e, by CC3, S � T ./ �. Now 
hoose m;n 2 N andA1; A2; � � � ; Am; A01; A02; � � � ; A0m; B1; B2; � � � ; Bn; B01; B02; � � � ; B0n � X su
h thatS � T � m[i=1Ai � A0i; � � n[j=1Bj �B0j;and, for ea
h i; j 2 N with 1 � i � m and 1 � j � n, either Ai ./ Bj or A0i ./ B0j.1Note that a uniform spa
e is ne
essarily Hausdor�.46



(i) Suppose that (X;U) is a uniform spa
e. Then, for ea
h i; j 2 N with 1 � i � m and1 � j � n, we 
an 
hoose Ui;j 2 U su
h that either Ai�Bj\Ui;j = ; or A0i�B0j\Ui;j = ;.Let U = Ti;j Ui;j and suppose that (s; t) 2 S�T \U . Choose i su
h that (s; t) 2 Ai�A0iand 
hoose j su
h that (s; s) 2 Bj � B0j. Sin
e (s; s) 2 Ai � Bj \ Ui;j, we must haveA0i � B0j \ Ui;j = ;. This 
ontradi
tion shows that S � T \ U = ; and thus S ./ T .(ii) Instead suppose that LEM holds. Fix j 2 N with 1 � j � n and 
hoose Ij; I 0j �f1; 2; � � �mg with Ij \ I 0j = ; and Ij [ I 0j = f1; 2; � � �mg su
h that, for every i 2 Ij,Ai ./ Bj and, for every i 2 I 0j, A0i ./ B0j. Let Cj = Si2Ij Ai and C 0j = Si2I0j A0i. Then, byB3, Bj ./ Cj and B0j ./ C 0j. We also haveS � T � (Cj �X) [ (X � C 0j);when
e, by LEM, either S � Cj or T � C 0j. Otherwise 
hoose s 2 SnCj and t 2 TnC 0j;then (s; t) 2 S � Tn((Cj � X) [ (X � C 0j))�a 
ontradi
tion. Thus either S ./ Bj orT ./ B0j .Now 
hoose J; J 0 � f1; 2; � � �ng with J \ J 0 = ; and J [ J 0 = f1; 2; � � �ng su
h that, forevery j 2 J , S ./ Bj and, for every j 2 J 0, T ./ B0j. Let D = Sj2J Bj and D0 = Sj2J 0 B0j.Then S ./ D, T ./ D0, and X � D [D0. Now T � D, when
e S ./ T . �

We will now investigate these de�nitions further. Some of the following results arenot 
onstru
tive; this is either be
ause they deal with non
onstru
tive ideas or be
ausewe have not yet been able to �nd a 
onstru
tive version. Non
onstru
tive results aremarked with a y. 47



The following diagram summarizes the results of this 
hapter.

The highlights of this 
hapter are as follows.� CC2 and CC3 are 
lassi
ally equivalent to open-
over 
ompa
tness in a separablemetri
 spa
e.� CC2 and CC3 
an be 
onne
ted to the anti-Spe
ker property and total bounded-ness.� CC1 is weaker than 
ompa
tness, but it implies 
ompleteness.� CC1 
an be 
hara
terised in terms of an analogue of the uniform 
ontinuity the-orem.
4.1 CC1First we relate CC1 to the 
ompa
tness notions dis
ussed in Chapter 3. Then we givea 
hara
terisation of CC1 in terms of an analogue to the uniform 
ontinuity theorem.We begin with some lemmas. 48



Lemma 4.3. Let (X;U) be a uniform spa
e and S � X. If S is neatly lo
ated, thenS is almost lo
ated.Proof. Choose an arbitrary U 2 U . Pi
k symmetri
 W;W 0; V 2 U su
h that U [:W = X2, W 0 ÆW 0 � W , and W 0 [ :V = X2. Then, for any x 2 X, (U [x℄;:V [x℄)is a neat 
over of X. To see this, let x 2 X be arbitrary. Given y 2 X, either(x; y) 2 U or (x; y) =2 W . Thus U [x℄ [ :W [x℄ = X2. Similarly, W 0[x℄ [ :V [x℄ = X2. If(y; z) 2 (:W [x℄)�W 0[x℄ \W 0, then y 2 (W 0 ÆW 0)[x℄ � W [x℄, whi
h is impossible. So:W [x℄ ./ W 0[x℄. Now either U [x℄ \ S 6= ; or S � :V [x℄. �Lemma 4.4. Let (X;U) be a uniform spa
e and S � X almost lo
ated. Then, forany symmetri
 U 2 U , there exists a symmetri
 V 2 U su
h that (U [S℄;:V [S℄) isa neat 
over of X.Proof. Choose symmetri
 W;W 0 2 U su
h that, for any x 2 X, either U [x℄ \ S 6= ; orW [x℄\ S = ; and W 0 ÆW 0 � W . For an arbitrary x 2 X, either x 2 U [S℄ or x =2 W [S℄.So U [S℄[:W [S℄ = X. If (x; y) 2 (:W [S℄)�W 0[S℄\W 0, then x 2 (W 0ÆW 0)[S℄ � W [S℄,whi
h is impossible. So :W [S℄ ./ W 0[S℄. Again, by the almost lo
atedness of S, we 
an
hoose a symmetri
 V 2 U su
h thatW [S℄[:V [S℄ = X. This shows that (U [S℄;:V [S℄)is a neat 
over. �Proposition 4.5. Let (X;U) be a uniform spa
e with a 
ountable base of entouragesand the strong anti-Spe
ker property. Then X is CC1.Proof. Let S; T � X be neatly lo
ated and satisfy �S [ �T = X. By Lemma 4.3,S is almost lo
ated. By Lemma 4.4, we 
an 
hoose an 
ountable base of entouragesfUn : n 2 Ng su
h that, for ea
h n 2 N, U2n+1 � Un = U�1n and (Un[S℄;:Un+1[S℄) is aneat 
over of X.As T is neatly lo
ated, for ea
h n 2 N, either Un[S℄ \ T 6= ; or Un+1 \ T = ;. We 
an
hoose a sequen
e (xn)n2N in X [ f1g su
h that8n 2 N (xn 2 Un[S℄ \ T _ (xn =1^ Un+1[S℄ \ T = ;)) :49



Let x 2 X be arbitrary. If x 2 �T , then, as T � fxn : n 2 N ^ xn 6=1g, (xn)n2N iseventually bounded away from x. Suppose, on the other hand, that x 2 �S. Thenthere exists N 2 N su
h that UN [x℄ � :S. If n > N and xn 2 UN+1[x℄, then, asxn 2 Un[S℄, x 2 (UN+1 Æ Un)[S℄�a 
ontradi
tion. So (xn)n2N is eventually boundedaway from x.By the anti-Spe
ker property, there exists N 2 N su
h that xN =1. Thus UN [S℄\T =; and S ./ T . �Proposition 4.6. Let (X;U) be a CC1 uniform spa
e and let (xn)n2N be a sequen
ein X[f1g. Suppose that whenever the sequen
e falls in X it is a Cau
hy sequen
eand that the sequen
e is eventually bounded away from every point in X. Thenthere exists n 2 N su
h that xn =1.Proof. By applying dependent 
hoi
e and passing to a subsequen
e, we may ensurethat 8n 2 N xn 2 �fxk : k 2 N ^ k � ng :Let S = fx2n : n 2 Ng and T = fx2n+1 : n 2 Ng :Take an arbitrary x 2 X. Choose N 2 N and a symmetri
 U 2 U su
h that (x; xn) =2 Ufor ea
h n � N and (xi; xj) =2 U2 for ea
h i; j < N with i 6= j. If (x; xi); (x; xj) 2 Ufor some i; j 2 N, then i; j < N and (xi; xj) 2 U2, when
e i = j. Choose a symmetri
V 2 U with U [:V = X2. Now, either (x; xn) 2 U for exa
tly one n 2 N or (x; xn) =2 Vfor ea
h n 2 N. Either way, either x 2 �S or x 2 �T . Sin
e (xn)n2N is a Cau
hysequen
e, S and T are totally bounded and, therefore, neatly lo
ated. This impliesthat S ./ T . However, sin
e (xn)n2N is Cau
hy, this is impossible. �Proposition 4.6 immediately implies that, 
lassi
ally, a CC1 uniform spa
e with a 
ount-able base of entourages is 
omplete.Propositions 4.5 and 4.6 show that CC1 lies somewhere between 
ompleteness and
ompa
tness. However, the following examples show that it is equivalent to neither
ompa
tness nor 
ompleteness. 50



Example 4.7. The integers are a CC1 metri
 spa
e, but they are not weakly totallybounded and, therefore, not 
ompa
t.Proof. Let S; T � Z be neatly lo
ated and satisfy �S [ �T = Z. If (x; y) 2 S � T ,then x 2 �T �� fyg, when
e x 6= y and jx�yj � 1. Thus S ./ T . So Z is CC1. Thereis no �nite 
over of Z with sets of diameter at most 12 , as at least one set would 
ontaintwo distin
t integers. �It is 
lear that CC1 
annot be equivalent to 
lassi
al 
ompa
tness: Equation 2.1 showshow, 
lassi
ally, we 
an �nd a CC1 apartness for any topologi
al spa
e.Example 4.8. The plane is a 
omplete metri
 spa
e, but it is not both CC1 andneatly lo
ated.Proof. Clearly, (R2; d) is a 
omplete metri
 spa
e, where d is the Eu
lidean metri
.Let S = n(x; y) 2 R2 : xy = 0o , and T = n(x; y) 2 R2 : xy = 1o :We will show that R2 being neatly lo
ated implies that LPO holds. Both S and T areseparable; thus, by LPO, they are neatly lo
ated. We will also show that �S[�T = R2and :(S ./ T ), when
e R2 
annot be CC1.The (an)n2N be a binary sequen
e. LetA = [n2N^an=1B �(n; n); 12� ; A0 = \n2N^an=1:B �(n; n); 14� ;B0 = [n2N^an=1B �(n; n); 18� ; B = \n2N^an=1:B �(n; n); 116� :Pi
k an arbitrary (x; y) 2 R2. Then either there exists n 2 N with d((x; y); (n; n))< 12or d((x; y); (n; n)) > 14 for ea
h n 2 N. So either (x; y) 2 A or (x; y) 2 A0. Similarly,B [ B0 = R2. Now, if (x; y) 2 A0 and (x0; y0) 2 B0, then there exists n 2 N withan = 1 and d((x0; y0); (n; n)) < 18 , but d((x; y); (n; n)) � 14 , so d((x; y); (x0; y0)) � 14 .Thus (A;B) is a neat 
over of R2. So either A 6= ; or B = R2. In the former 
ase,51



there exists n 2 N with an = 1. On the other hand, if B = R2, then, for every n 2 N,(n; n) 2 B, so an = 0. This shows that LPO must hold.For any " > 0, (1" ; 0) 2 S, (1" ; ") 2 T andd�(1"; 0); (1"; ")� = ":Thus S and T are not apart.Let (x; y) 2 R2 be arbitrary. Now, let" = 14(1 + jxj+ jyj) :Choose (x0; y0) 2 R2 with d((x; y); (x0; y0)) < ". Then jx � x0j < " and jy � y0j < ",when
ejxy � x0y0j � jxjjy � y0j+ jx� x0jjy0j � "(jxj+ jyj+ ") � "(jxj+ jyj+ 1) = 14 :Either xy > 13 or xy < 23 . In the former 
ase, if (x0; y0) 2 S, then, as jxy � x0y0j > 13 ,d((x; y); (x0; y0)) � 14(1 + jxj+ jyj) > 0;so (x; y) 2 �S. Similarly, in the latter 
ase, (x; y) 2 �T . So �S [ �T = R2. �Amore pre
ise 
hara
terisation of CC1 is given by an analogue of the uniform 
ontinuitytheorem. We �rst need to de�ne the following two regularity and 
ontinuity 
onditions.De�nition 4.9. We say that an apartness spa
e X has the reverse-CC1 propertyif, for ea
h weakly lo
ated S; T � X, S ./ T implies that �S [ �T = X.Note that, 
lassi
ally, every apartness spa
e has the reverse-CC1 property. Constru
-tively, any uniform spa
e has the reverse-CC1 property, and, if we assume MP, every�rst-
ountable spa
e has the reverse-CC1 property.De�nition 4.10. Let X and Y be apartness spa
es and f : X ! Y a fun
tion. Wesay that f is almost strongly 
ontinuous if, for ea
h neatly lo
ated S; T � X with52



f(S) and f(T ) weakly lo
ated, if f(S) ./ f(T ), then S ./ T .Now we 
an state an analogue of the uniform 
ontinuity theorem.Proposition 4.11. Let X and Y be apartness spa
es and f : X ! Y a 
ontinuousfun
tion. Suppose that X is CC1 and Y has the reverse-CC1 property. Then f isalmost strongly 
ontinuous.Proof. Let S; T � X be neatly lo
ated, with f(S) and f(T ) weakly lo
ated. Supposethat f(S) ./ f(T ). By the reverse-CC1 property, �f(S) [ �f(T ) = Y . Sin
e f is
ontinuous, f�1(�f(S)) � �S and f�1(�f(T )) � �T , when
e �S [ �T = X. CC1now implies that S ./ T . �The following result is a partial 
onverse to Proposition 4.11.Proposition 4.12. Let X be an apartness spa
e with the nested neighbourhoodsproperty. Suppose that every 
ontinuous fun
tion from X to a reverse-CC1 apart-ness spa
e is almost strongly 
ontinuous. Then X is CC1.Proof. De�ne a se
ond apartness ./0 on X by8A;B � X (A ./0 B () �A [ �B = X) :Clearly ./0 is symmetri
. Fix A � X. If x 2 �A, then, by B5, there exists B � Xsu
h that x 2 �B and B [ �A = X, when
e �fxg [ �A = X and x 2 �0A, as, bysymmetry, B � �fxg. If, on the other hand, x 2 �0A, then �fxg [ �A = X and, asx =2 �fxg, x 2 �A. Thus �A = �0A. This immediately veri�es that ./0 satis�es B2,B4 and B5. Clearly, it also satis�es B1. B3 follows from the observation that, for ea
hA;B � X, �(A [B) = �A \ �B.Now let f : (X; ./) ! (X; ./0) be the 
anoni
al bije
tion. Then, as f(�A) = �0f(A)for ea
h A � X, f is a homeomorphism. By our supposition, f is almost strongly
ontinuous. Let S; T � X be neatly lo
ated and satisfy �S [ �T = X. Then f(S) ./053



f(T ). By Lemma 2.9, S and T are weakly lo
ated, when
e f(S) and f(T ) are weaklylo
ated. Thus, by almost strong 
ontinuity, S ./ T . �
Propositions 4.11 and 4.12 show that, under appropriate regularity 
onditions, CC1 isequivalent to a form of the uniform 
ontinuity theorem.
4.2 CC2First we show that CC2 follows from the anti-Spe
ker property and strong total bound-edness. We then show that CC2 implies neat 
ompa
tness, strong total boundedness,and, 
lassi
ally, 
ompa
tness.Lemma 4.13. Let (X;U) be a strongly totally bounded uniform spa
e. Supposethat S � X2 and there exists U 2 U su
h that S \ U = ;. Then S ./ � in theprodu
t apartness.
Proof. Choose U�1; U0; U1; U2; U3; U4 2 U su
h that U�1 � U , U4 = U�14 and, for ea
hn 2 f�1; 0; 1; 2; 3g, Un = U�1n � U3n+1 and Un [ :Un+1 = X2. Let fxi : i 2 Fg be aU4-approximation to X, where F is a �nite set. Then� � [k2F U4[xk℄� U4[xk℄:Also, if (x; y) 2 S � :U�1, then there exist i; j 2 F su
h that (x; y) 2 U4[xi℄� U4[xj℄;if (xi; xj) 2 U0, then (x; y) 2 U4 Æ U0 Æ U4 � U30 � U�1;whi
h is impossible. SoS � [ fU4[xi℄� U4[xj℄ : i; j 2 F ^ (xi; xj) =2 U0g :Note that U0 [ :U1 = X2. Choose a �nite A � F 2 su
h that, if (i; j) 2 A, then54



(xi; xj) =2 U1, and, if i; j 2 F and (xi; xj) =2 U0, then (i; j) 2 A. ThenS � [(i;j)2AU4[xi℄� U4[xj℄:Now 
hoose (i; j) 2 A and k 2 F . Then (xi; xj) =2 U1. If both (xi; xk) and (xj; xk)are in U2, then (xi; xj) 2 U22 � U1 � a 
ontradi
tion. Sin
e U2 [ :U3 = X2, either(xi; xk) =2 U3 or (xj; xk) =2 U3. Suppose that (xi; xk) =2 U3. If U4[xi℄� U4[xk℄ \ U4 6= ;,then (xi; xk) 2 U34 � U3, whi
h is impossible. Thus U4[xi℄ ./ U4[xk℄. Similarly, if(xj; xk) =2 U3, then U4[xj℄ ./ U4[xk℄. �Lemma 4.14. Let (X;U) be a strongly totally bounded uniform spa
e and let U 2 U .Then there exists V 2 U su
h that (U;� V ) is a neat 
over of X2.The proof of Lemma 4.14 is similar to that of Lemma 4.13, but it is slightly more
ompli
ated; we have 
hosen to omit it.Proposition 4.15. Let (X;U) be a uniform spa
e with a 
ountable base of en-tourages. Suppose that X is strongly totally bounded and has the strong anti-Spe
ker property. Then X is CC2.Proof. Apply Lemma 4.14 to �nd a base fUn : n 2 Ng for the uniformity su
h that,for ea
h n 2 N, (Un;� Un+1) is a neat 
over of X2 and Un = U�1n � U2n+1. Let S � X2be neatly lo
ated and satisfy � � �S.Now 
hoose a sequen
e ((xn; yn))n2N in X2 [ f(1;1)g su
h that, for ea
h n 2 N, if(xn; yn) = (1;1), then S \Un+1 = ; and, if (xn; yn) 2 X2, then (xn; yn) 2 S \Un. Letx 2 X be arbitrary. Then (x; x) 2 � � �S, so there exists N 2 N su
h thatUN [x℄� UN [x℄ �� S:If n 2 N, n > N , and xn 2 UN+1[x℄, then, sin
e (xn; yn) 2 Un � UN+1,(xn; yn) 2 UN+1[x℄� (UN+1 Æ UN+1)[x℄ � UN [x℄� UN [x℄�a 
ontradi
tion. Thus (xn)n2N is eventually bounded away from x.55



By the anti-Spe
ker property, there exists n 2 N su
h that xn =1, when
e S\Un+1 =;. By Lemma 4.13, S ./ �. �Proposition 4.16. Let (X; ./) be a neatly lo
ated Hausdor� CC2 apartness spa
e.Then X is neatly 
ompa
t.Proof. Suppose that LPO holds and (Un)n2N is a sequen
e of open subsets of X su
hthat Sn2N Un = X and, for ea
h n 2 N, Un � Un+1 and :Un 6= ;. To 
omplete ourproof it su�
es to �nd a 
ontradi
tion. By applying dependent 
hoi
e and passing toa subsequen
e, we may, without loss of generality, assume that there exists a sequen
e(xn)n2N in X su
h that, for ea
h n 2 N, xn 2 Un+1 \ :Un.If i; j 2 N and i < j, then xi 2 Ui+1 � Uj � :fxjg;when
e fxig ./ fxjg. Let S = f(xi; xj) : i; j 2 N ^ i 6= jg :By LPO, S is neatly lo
ated.Let (x; y) 2 X2 be arbitrary and 
hoose N 2 N su
h that x; y 2 UN . Take A;B � Xsu
h that x 2 �A � UN and y 2 �B � UN . If n 2 N and n � N , then xn =2 Un � UN .Thus (x; y) 2 �A��B � :f(xi; xj) : i; j 2 N ^ i 6= j ^ (i � N _ j � N)g :Now let F = f(xi; xj) : i; j 2 N ^ i 6= j ^ i; j < Ng :Take some (xi; xj) 2 F . Then fxig ./ fxjg, and, asX is Hausdor�, there exist C;D � Xsu
h that xi 2 �C, xj 2 �D, and �C \ �D = ;. By applying B5 we get C 0; D0 � Xsu
h that xi 2 �C 0, xj 2 �D0, and �C [ C 0 = �D [ D0 = X. Now, if (x; y) 2�C � �D � :�, then (x; y) 2 ��. On the other hand, if (x; y) 2 C 0 �X [X �D0,then (x; y) 2 �f(xi; xj)g. Sin
e F is �nite, either (x; y) 2 �� or (x; y) 2 �F . In thelatter 
ase, (x; y) 2 �S. Sin
e (x; y) was arbitrary, �S [� = X.56



By CC2, S ./ �. So 
hoose m 2 N and A1; A2; � � � ; Am � X su
h that� � m[k=1Ak � Ak � :S:By the pigeonhole prin
iple, there exist i; j; k 2 N with i 6= j and 1 � k � m su
h thatxi; xj 2 Ak. But then (xi; xj) 2 S \Ak � Ak�a 
ontradi
tion �The proof of Proposition 4.16 is fairly loose. The neat lo
atedness assumption 
arriesstraight through from the hypotheses to 
on
lusion and is not mentioned in the proof.Moreover, when deriving a 
ontradi
tion, we only use LPO on
e to show that a 
ount-able set is neatly lo
ated. If we repla
e the hypothesis CC2 with CC3, we 
an provethis result without any appli
ation of LPO.A 
onverse to Proposition 4.16 seems unlikely, as neat 
ompa
tness is a very negative
ondition, whereas CC2 is very positive.Proposition 4.17. If (X;U) is a separable neatly lo
ated CC2 uniform spa
e, thenX is strongly totally bounded.Proof. Any uniform spa
e is Hausdor�, so, by Proposition 4.16, X is neatly 
ompa
t.Proposition 3.10.12 in [9℄ shows that a separable neatly 
ompa
t uniform spa
e isstrongly totally bounded. �Lemma 4.18 (y). Let (X; ./) be an apartness spa
e with a 
ountable base of opensets. If X is neatly 
ompa
t, then, 
lassi
ally, X is 
ompa
t.Proof. Fix some 
ountable base of open sets fUn : n 2 Ng. Let C be an arbitrary open
over of X. For ea
h W 2 C, there exists BW � N su
h that Sn2BW Un = W . SetB = SW2C BW and, for ea
h n 2 N, Vn = Sk2B^k�n Uk. We see that (Vn)n2N is asequen
e of open subsets of X su
h that Sn2N Vn = X and, for ea
h n 2 N, Vn � Vn+1.Sin
e LPO holds 
lassi
ally and X is neatly 
ompa
t, it is impossible that :Vn 6= ; forea
h n 2 N. Thus there exists n 2 N su
h that Vn = X. However, Vn = Sk2B^k�n Ukand B = SW2C BW . So there exists a �nite F � B su
h that Sk2F Uk = X. For ea
hk 2 F there exists Wk 2 C su
h that Uk � Wk. Consequently, fWk : k 2 Fg is a �nitelyenumerable sub
over of C. �57



Proposition 4.19 (y). Let (X; ./) be a Hausdor� apartness spa
e with a 
ountablebase of open sets. If X is CC2, then it is 
ompa
t.Proof. First note that, as we are working 
lassi
ally, X is neatly lo
ated. Suppose thatX is CC2. Then Proposition 4.16 implies that X is neatly 
ompa
t. Lemma 4.18 nowshows that X is 
ompa
t. �
4.3 CC3We begin by showing that CC3 follows, 
lassi
ally, from 
ompa
tness. Then we showthat CC3 implies weak total boundedness and the anti-Spe
ker property.Lemma 4.20 (y). Let (X; ./) be an apartness spa
e and S; T � X2 su
h that �S\ �T =;. Suppose that X is 
lassi
ally 
ompa
t. Then, 
lassi
ally, there exist n 2 N,E1; � � � ; En; F1; � � � ; Fn � X su
h that �T � Sni=1 �Ei � �Fi �� �S.Proof. First note that � �S = �S and � �T = �T . Take some s 2 �S � � �T . Then thereexist As; Bs � X su
h that s 2 �As � �Bs �� �T . Now n�As ��Bs : s 2 �So is anopen 
over of �S. Sin
e �S is a 
losed subset of a 
ompa
t spa
e, there is a �nite F � �Ssu
h that �S � Ss2F �As ��Bs �� �T .Noting that � (�As ��Bs) = ( �As �X) [ (X � �Bs) and taking 
omplements gives us�T � \s2F( �As �X) [ (X � �Bs) = [f2f0;1gF \s2F Cs;f(s) �� �S;where Cs;0 = �As �X and Cs;1 = X � �Bs. Then, for ea
h f 2 f0; 1gF , setEf = \s2F;f(s)=0 �As; Ff = \s2F;f(s)=1 �Bs:To �nish set n = 2jF j and asso
iate f0; 1gF with f1; � � � ; ng. �Proposition 4.21 (y). Let X be a 
lassi
ally 
ompa
t topologi
al spa
e and de�ne58



an apartness on X by 8S; T � X �S ./ T () �S \ �T = ;� :Then, 
lassi
ally, X is CC3.Proof. Let S � X2 satisfy �S [ �� = X2. Then �S \ �� = ;. Apply Lemma 4.20 to�nd n 2 N, E1; � � � ; En; F1; � � � ; Fn � X su
h that �� � R := Sni=1 �Ei � �Fi �� �S. Now�R\ �S = ;, so we 
an apply Lemma 4.20 again to �ndm 2 N, A1; � � � ; Am; B1; � � � ; Bm �X su
h that �S � Q := Smj=1 �Aj � �Bj �� �R. Note that, for ea
h i; j 2 N with 1 � i � nand 1 � j � m, �Ei � �Fi \ �Aj � �Bj � R \Q = ; and, thus, �Ei ./ �Aj or �Fi ./ �Bj . By thede�nition of the produ
t apartness, S ./ �. �Lemma 4.22 (y). Let (X;U) be a uniform spa
e. Suppose that the topology indu
edon X is 
ompa
t in the 
lassi
al sense. Then, 
lassi
ally, for any S; T � X,S ./ T () �S \ �T = ;:Proof. Let (X;U) be a 
ompa
t uniform spa
e and S; T � X. If S ./ T , then thereexists a symmetri
 U 2 U su
h that S � T 2� U2. Suppose that there exists somex 2 �S \ �T . Then there exist s 2 U [x℄ \ S and t 2 U [x℄ \ T , when
e (s; t) 2 S � T \ U2� a 
ontradi
tion.Now suppose that �S \ �T = ; and :(S ./ T ). Then, for every U 2 U , there existsxU = (sU ; tU) 2 S � T \ U . Ordering U by reverse in
lusion, we have a net (xU)U2U inX �X. Sin
e X and, therefore, X �X are 
ompa
t, there is a subnet (xUn)n2D su
hthat (xUn)n2D 
onverges to some x = (s; t) 2 X �X. Clearly, s 2 �S and t 2 �T .Now let V 2 U be arbitrary. Sin
e (sUn)n2D 
onverges to s and (tUn)n2D 
onverges tot, there exist n0; n1; n2 2 D su
h that, for ea
h n 2 D,�(n � n0 =) sUn 2 V [s℄) ^ (n � n1 =) tUn 2 V �1[t℄) ^ (n � n2 =) Un � V )� :Choose n 2 D su
h that n � n0, n � n1 and n � n2. Then (s; sUn) 2 V , (sUn ; tUn) 2 Vand (t; tUn) 2 V �1. So (s; t) 2 V 3. As V was arbitrary, we 
on
lude that s = t. This is59



a 
ontradi
tion, as s = t 2 �S \ �T = ;. �Proposition 4.23 (y). Let (X;U) be a uniform spa
e. Suppose that the topologyindu
ed on X is 
ompa
t in the 
lassi
al sense. Then, 
lassi
ally, X is CC3.Proof. Lemma 4.22 implies that the apartness indu
ed on X by U is the same as theone used in Proposition 4.21. Thus, by said proposition, X is CC3. �The following two theorems summarise the above 
lassi
al results.Theorem 4.24 (y). Let (X;U) be a separable uniform spa
e with a 
ountable baseof entourages. Then X is 
ompa
t if and only if it is CC3.Proof. First note that X has a 
ountable base of open sets. Suppose that X is CC3.Then X is CC2 and Proposition 4.19 implies that X is 
ompa
t. Conversely, Proposi-tion 4.23 shows that, if X is 
ompa
t, then it satis�es CC3. �Corollary 4.25 (y). A separable metri
 spa
e is 
ompa
t if and only if it is CC3.Proof. Apply Theorem 4.24. �Theorem 4.26 (y). Let (X; ./) be a Hausdor� apartness spa
e with a 
ountablebase of open sets su
h that8S; T � X (S ./ T () �S \ �T = ;):Then X is 
ompa
t if and only if it is CC3.Proof. Proposition 4.19 implies that if X is CC3, then it is 
ompa
t. Conversely,Proposition 4.21 shows that, if X is 
ompa
t, then it is CC3. �Now we look at 
onstru
tive results 
on
erning CC3. First we show that a CC3 uniformspa
e is weakly totally bounded. Note that Proposition 4.17 already shows that aseparable, neatly lo
ated CC3 uniform spa
e is strongly totally bounded; the followingrequires fewer assumptions. We also show that CC3 implies the anti-Spe
ker property.60



Lemma 4.27. Let (X;U) be a uniform spa
e and U; V 2 U symmetri
 with U[ �V = X2. Then, for ea
h x 2 X, �� V [x℄ � U .Proof. Let y 2 (� V )[x℄ and z 2 V [x℄. Then (x; y) 2� V and (x; z) 2 V , when
ey 6= z. This shows that (� V )[x℄ �� V [x℄, and � (� V )[x℄ ��� V [x℄. Now lety 2�� V [x℄ �� (� V )[x℄. If (x; y) 2� V , then y 2 (� V )[x℄, whi
h is impossible. So(x; y) 2 U and y 2 U [x℄. �Lemma 4.28. Let (X;U) be a uniform spa
e and U 2 U . Then � U � ��.Proof. Choose symmetri
 V;W 2 U su
h that V 3 � U , W � V and X2 = V [ � W .Pi
k (x; y) 2� U . Then(x; y) 2 � � W [x℄�� � W [y℄� V [x℄� V [y℄ (by Lemma 4.27)� :V ((u; v) 2 V [x℄� V [y℄ \ V =) (x; y) 2 V 3 � U)� � W:Thus (x; y) 2 �W � ��. �Lemma 4.29. Let (X;U) be a uniform spa
e and U 2 U . Then X2 = �� [� � U .Proof. Choose symmetri
 V;W 2 U su
h that V 3 � U , W � V and X2 = V [ � W .Let (x; y) 2 W . Clearly (x; y) 2 � � W [x℄�� � W [y℄. Let(u; v) 2 � � W [x℄�� � W [y℄ � V [x℄� V [y℄(note Lemma 4.27). Now (x; u); (x; y); (y; u) 2 V , so (u; v) 2 V 3 � U ��� U . So(x; y) 2 � � U and W � � � U .Choose W 0 2 U su
h that X2 = W[ � W 0. By Lemma 4.28, �� �� W 0, so X2 = � �U [ ��. �61



Proposition 4.30. Let (X;U) be a CC3 uniform spa
e. Then X is weakly totallybounded.Proof. Let U 2 U be arbitrary and 
hoose a symmetri
 V 2 U su
h that X2 = U[ � V .Then : � V � U . By Lemma 4.29,X2 = ��[� � V . Thus, by CC3 and the de�nitionof the produ
t apartness, there exist n;m 2 N andB1;0; � � � ; Bm;0; B1;1; � � � ; Bm;1; C1;0; � � � ; Cn;0; C1;1; � � � ; Cn;1 � Xsu
h that � � m[i=1Bi;0 �Bi;1; � V � n[j=1Cj;0 � Cj;1;and, for ea
h i; j 2 N with 1 � i � m and 1 � j � n, there exists k 2 f0; 1gsu
h that Bi;k ./ Cj;k. Thus, for ea
h i; j 2 N with 1 � i � m and 1 � j � n,Bi;0 �Bi;1 � :Cj;0 � Cj;1 andBi;0 �Bi;1 � n\j0=1:Cj0;0 � Cj0;1 � : n[j0=1Cj0;0 � Cj0;1 � : � V � U:For ea
h i 2 N with 1 � i � m, set Ai = Bi;0 \Bi;1, when
e Ai �Ai � Bi;0 �Bi;1 � U .And, for ea
h x 2 X, there exists i 2 N su
h that 1 � i � m and (x; x) 2 Bi;0 � Bi;1,whi
h implies that x 2 Ai. �Proposition 4.31. Let (X;U) be a CC3 uniform spa
e. Then X has the stronganti-Spe
ker property.Proof. Let (xn)n2N be a sequen
e in X [ f1g that is eventually bounded away fromea
h point in X. By applying dependent 
hoi
e and passing to a subsequen
e, we may,without loss of generality, assume that, for ea
h n 2 N,xn 2 �fxk : k 2 N ^ k 6= ng :Now let S = f(xi; xj) : i; j 2 N ^ i 6= j ^ xi 6=1^ xj 6=1g :Now let (x; y) 2 X2. Choose a symmetri
 U 2 U and N 2 N su
h that xn 262



:U [x℄ \ :U [y℄ for ea
h n � N and (xi; xj) =2 U3 for ea
h i; j 2 N with i; j < N .Choose a symmetri
 V 2 U su
h that U[ � V 2 = X2. Suppose that (x; y) 2U . If there exists i; j 2 N with i 6= j and (xi; xj) 2 U [x℄ � U [y℄, then i; j < Nand, as (xi; x); (x; y); (y; xj) 2 U = U�1, (xi; xj) 2 U3, whi
h is impossible. ThusU [x℄� U [y℄ \ S = ; and (x; y) 2 �S. Suppose, on the other hand, that (x; y) 2� V 2.If V [x℄ � V [y℄ \ � 6= ;, then (x; y) 2 V 2, whi
h is impossible. Thus (x; y) 2 ��. As(x; y) 2 X2 was arbitrary, we 
on
lude that X2 = �S [ ��.By CC3, S ./ �. There exists a symmetri
 U 2 U su
h that, for ea
h (x; y) 2 S and(z; z) 2 �, either (x; z) 2� U or (y; z) 2� U , when
e S 2� U . Proposition 4.30 allowsus to 
hoose m 2 N and A1; A2; � � � ; Am � X su
h thatX = A1 [ A2 [ � � � [Am and A1 � A1; A2 � A2; � � � ; Am � Am � U:We now apply the pigeonhole prin
iple. There are (m+2)2� (m+2) values of i; j 2 Nwith 1 � i; j � m + 2 and i 6= j; this is at least m + 1 values. Suppose that xi 6= 1for ea
h i 2 N with 1 � i � m+ 2. Then there exist i; j; k 2 N with 1 � i; j � m+ 2,i 6= j, 1 � k � m and xi; xj 2 Ak; this is impossible as it implies that (xi; xj) 2 U . Soour supposition is false and there exists i 2 N su
h that 1 � i � m+2 and xi =1. �This 
on
ludes our investigation of CC1, CC2, and CC3. We now have a good un-derstanding of how these 
riteria relate to other 
ompa
tness 
onditions; we refer thereader ba
k to the summary diagram at the beginning of this 
hapter. The next 
hapterspe
ulates about extending this investigation.
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Chapter 5
Further Work

�What's past is prologue��William ShakespeareThe three 
riteria we have proposed in Chapter 4 all 
apture some aspe
t of 
om-pa
tness. Most 
ru
ially, they make use of set-set apartness rather than just point-setapartness like the 
riteria in Chapter 3. We have demonstrated how our 
riteria relateto other notions of 
ompa
tness, even though our results are not tight.Our results 
ould be strengthened and expanded. This might 
larify whi
h of our three
riteria is most useful; at the moment it seems that CC1 and CC2 are too weak to
lassify 
ompa
tness, while CC3 is too strong. Perhaps further exploration will lead toa 
riterion of intermediate strength. The 
ru
ial issue seems to be lo
atedness: neatlo
atedness is too strong, but, as we mentioned in Se
tion 2.5, there is no naturalanalogue to lo
atedness in apartness spa
es.We have not explored the 
ategori
al properties of 
ompa
tness: subspa
es, produ
ts,and 
ontinuous images. Perhaps produ
ts will be the most interesting of these, as theprodu
t apartness plays an important role in the de�nitions of CC2 and CC3. Thedi�eren
es between CC1 and both CC2 and CC3 stem from the produ
t apartness;this leads one to suspe
t that an analogue to Ty
hono�'s theorem [19℄ would be dif-�
ult to prove. However, the 
ru
ial feature of the produ
t apartness is the �niteness65



requirement it 
ontains, not the fa
t that it produ
es a di�erent spa
e. The reason weneeded the produ
t apartness was be
ause, as we have already remarked, 
lassi
ally,any topologi
al spa
e 
an be equipped with a CC1 apartness; the produ
t is our wayof avoiding this problem. However, be
ause of this almost all of our results resort toworking in uniform spa
es.CC1 
aptures 
ompleteness in an interesting way. Normally, to show that a spa
e is
omplete, we must be able to 
onstru
t a 
ertain point from a Cau
hy sequen
e or net.This 
an be di�
ult, and CC1 does not require the 
onstru
tion of a point. This mayalso make CC1 interesting from a point-free perspe
tive.We have no results that link our 
ompa
tness 
riteria to RUSS and INT. In parti
ular,does [0; 1℄ satisfy CC1 in either of these models? Results of this form will give us amu
h better understanding of the meaning of these 
riteria.Lastly, it remains to 
hoose more 
reative names for CC1, CC2, and CC3.
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