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Abstract

We present three criteria for compactness in the context of apartness spaces
and Bishop-style constructive mathematics. Each of our three criteria can
be summarised as requiring that there is a positive distance between any
two disjoint closed sets. Neat locatedness and the product apartness give us
three variations on this theme. We investigate how our three criteria relate
to one another and to several existing compactness criteria, namely classical
compactness, completeness, total boundedness, the anti-Specker property,

and Diener’s neat compactness.
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Outline

Chapters 1 and 2 briefly introduce constructive mathematics and apartness spaces
respectively. These are fascinating areas of research that can reveal elaborate mathe-
matical structures that are lost classically. Neither subject can be done justice in the
space we afford it. So we refer the reader to [9], [10], [19], and [27] for a more complete

exposition.

Chapter 3 discusses the problems faced when framing the notion of compactness in a
constructive setting. We discuss several existing criteria, which provide the backdrop
for Chapter 4.

In Chapter 4 we introduce a three new conditions that capture various aspects of
compactness in an apartness space. We then investigate these conditions and how
they relate to one another and to the existing criteria. We show that these criteria
characterise similar notions to those in Chapter 3. The differences between our criteria
highlight the importance of locatedness and the need for something like the product

apartness.

Finally, we conclude in Chapter 5.
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Chapter 1

Constructive Mathematics

“The interesting thing about this book is that it reads essentially like ordi-
nary mathematics, yet it is entirely algorithmic in nature if you look between
the lines.” —Donald Knuth on Errett Bishop’s Foundations of Construc-
tive Mathematics [6] (in [20])

What is constructive mathematics and why is it interesting” In short, constructive
mathematics is the result of demanding more from proofs. The reason it is interesting is
because (i) stronger proofs are philosophically satisfying, (ii) it exposes a rich structure
that is not otherwise visible, and (iii) it has connections to other areas of mathematics,
most notably recursive analysis. In this chapter we give a brief introduction to the

principles of constructive mathematics, which we use throughout this thesis.

What is mathematical truth? When one classically asserts a statement P, it means that
P is a tautology—that is, P must be true with respect to any reasonable truth assign-
ment. However, if one asserts P constructively, one interprets that as “I can find a proof
of P”. The constructive interpretation is stronger than the classical interpretation—any
constructively true statement is classically true, but not all classically true statements

satisfy the constructive interpretation.

Let us look at an example to clarify this distinction. The following proposition is given
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with a classical proof.

Proposition 1.1. There exist irrational real numbers a and b such that a® is ra-

tional.

Proof. Note that +/2 is irrational. Consider \/5‘/5 If this is rational, set a = b = /2
/3
and we are done. If not, set a = \/5‘/5 and b = /2. Then a® = (\/ﬁﬂ> — 2, whence

we are also done. [ |

The above proof shows that a and b must exist, but it does not give explicit values
for them. The problem is that we don’t know whether or not \/5\/5 is rational. A

constructivist is therefore not satisfied by this proof.

What is the motivation for this interpretation of truth? There are two primary reasons.
First, this interpretation means that truth and provability are equivalent, in the sense
that there is no a prior: notion of truth, only one of provability. The second reason is
a practical consequence of the first; any constructive proof gives rise to an algorithm.
This means that, at least in theory, constructive mathematics has applications to areas
such as recursive analysis, algorithms, and numerical analysis; see [12], [16], [23], [8],

[7], and [29] for more details.

1.1 Bishop-style Mathematics

There are actually many variants of constructive mathematics, some of which we will
discuss. We use Bishop-style mathematics (abbreviated as BISH). BISH uses

intuitionistic logic.!

Let A and B be statements, X a set and P a unary predicate. The intuitionistic

interpretations of the basic logical connectives as follows.

! Aside from intuitionistic logic, which we describe here, BISH also requires a formal set- or type-
theoretic foundation. The standard foundations are Aczel-Myhill set theory [1, 2, 26] and Martin-Lof’s
type theory [24, 25]. We use Intuitionistic Set Theory (IZF), as it has full separation; although there
is strong evidence that Constructive Set Theory (CZF) can also be used, see [9] Chapter 2 and [17].

14



—A means that we can derive a contradiction from A.
A N B means we can find a proof of A and a proof B.

AV B means we can find a proof of A or we can find a proof of B. Note that this
implies that we can decide which of the two holds. Thus A Vv B is stronger than
- (A A -B).

A = B means that, given a proof of A, we can find a proof of B. Essentially, this
statement says that there is an algorithm for converting a proof of A into a proof
of B.

Vz € X P(z) means that, given z and a proof that £ € X, we can find a proof that
x satisfies P; in other words, we have an algorithm which, applied to an object =

and the data arising from a proof that z € X, shows that P(z) holds.

Jz € X P(z) means that we can construct an object z which is in X and which

satisfies P.

These interpretations form the building blocks of Bishop-style mathematics. Careful
thought should make it clear which deductions can be made constructively and which

deductions are not constructive. For example,

-3z € X P(z) = Vz € X ~P(z),
is constructively derivable, but

-Vz € X P(z) = dz € X -P(z)

is not. Proving an existence statement is more difficult constructively, as we need to
be able to describe the object; it is not sufficient to prove that an object cannot fail to

exist.

Note that, contrary to popular belief, there is room for proof by contradiction in con-
structive mathematics. However, we can only use it to prove negative statements. The

following is an example of its use.

Proposition 1.2. The real number /2 is not rational.
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Proof. Suppose that /2 is rational. Then choose integers a and b with (a/b)? =
2. Assume, without loss of generality, that a and b are coprime. Now a? = 2b?%
whence a must be even. Hence, 4(a/2)? = 2b% and 2(a/2)? = b*. So b is also even—a

contradiction. [}

Constructive definitions are also slightly different to their classical counterparts. For
example, we might take irrational to mean more than just “not rational”; instead we
demand that an irrational number is not equal to any rational number—that is, z is
irrational means?

Va,b € Z (b>0 — %;éx)

This is classically equivalent to not being rational, but in the constructive setting this
is a stronger criterion. The following proposition shows how we can work with this

definition.

Proposition 1.3. The real number V2 is irrational.

Proof. Let a and b be integers with b > 0. Proposition 1.2 shows that a? # 2b%.
Consider the case where b < a < 2b. We have

-

whence /2 # a/b. Ifa < b, thena/b < 1 < 4/2. And, ifa > 2b,thena/b>2>+v2. R

|20 — a?|

b? g

a a 1
214> _ _
Va-glaz|va-g

\/§+%

1.2 Equality, Inequality, and Counting

Terms such as “finite” and “countable” take slightly different meanings in the construc-

tive setting.

e A set S is called finitely enumerable if S = {sq, 51, -, S, } for some n € N.

2See the next section for a more precise definition of inequality.
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e A set S is called finite if S = {so,s1,---,5,} for some n € N and s; # s;
whenever 1 # 7. We take the empty set to be finite.

e A set S is called countable if S = {sq, s, -} for some sequence (s, )neN-

e A set S is called denumerable if S is finite or S = {sy, 51, ...} for some sequence

(Sn)nen such that, for each 4,7 € N with ¢ # 7, s; # ;.

Equality and inequality are separate notions constructively. Let X and Y be sets and
f: X — Y afunction. We always assume that X and Y have an equality relation =
and that f is extensional—that is, if a = b, then f(a) = f(b). We also require that,
for any set S, if z = y, then £ € S if and only if y € S. In BISH a set sometimes
comes equipped with an inequality relation # distinct from the denial of equality and

satisfying the two properties

Ve,ye X (z#y=-(z=1y)),
V,ye X (z#y=y#z).

An inequality relation # on a set X is not generally decidable, in the sense that for

each z,z’ € X, either £ = ' or  # z'. Indeed, the denial inequality, defined by
Vz,y € X (z#y & ~(z=1y)),

on the set R of real numbers is not decidable. However, denumerable sets, such as Z

and Q, do have decidable inequalities.

An inequality relation # on a set X is said to be tight if, for each z,y € X,
“(zFy) =z =y,
For example, the standard inequality on a metric space (X, p) is given by
£y < p(z,y)>0

and is tight.
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In the presence of inequality relations on the domain X and codomain of a function f,

we say that f is strongly extensional if

Vz,y € X (f(z) # f(y) =z #v).

We define the standard inequalities on real numbers and sets as follows.

Ve,ye R (z#y < IneN(lz—y|>27").
VST (S#T < 2z S(z¢T)vIzeT(z¢S)).

In light of this, we prefer to refer to a set S as being inhabited if S # 0, rather than

using the double negative term nonempty.

1.3 Non-constructive Principles

There are a number of statements that are known not to be derivable in BISH. The
canonical example is the law of excluded middle (LEM)—the assertion that, for any

statement P, P or its negation holds.

Let us investigate why LEM is not constructive. Classically, every statement is assigned
a truth value and its negation is assigned the opposite value; thus it is impossible for
both P and —P to be assigned the value false; likewise, it is impossible for PV —P to be
assigned the value false, whence the statement must be true. However, the constructive

interpretation of LEM is

Gwven an arbitrary statement P, I can find a proof of P or I can find a proof of
-P.

This assertion is clearly unreasonable, as Godel sentences, the continuum hypothesis,

and the Riemann hypothesis are all examples of statements for which, in some sense,
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we cannot find proofs or counter-proofs.

We can formally show that a statement is non-constructive by providing a model of
BISH in which it is provably false. Alternatively, we can use a Brouwerian counterex-
ample which reduces the statement in question to a known non-constructive statement.
For example, the following proves that the axiom of choice is non-constructive using
LEM.

Since, in our current constructive model we do not accept LEM, we must also reject the
axiom of choice, as it implies LEM. The axiom of choice states that, for any binary
predicate P and sets X and Y,

(Vee X yeY P(z,y)) = (If €Y*Vze X P(z, f(z))).
To derive LEM from this, let P be an arbitrary statement. Let?

a={0}u{1:P}, b={0:P}U{l},

and
X ={a,b}, Y ={0,1}.

Then, for every z € X, there exists y € Y such that y € z: for if z = a, then 0 € z,
and, if £ = b, then 1 € z. So, by the axiom of choice, there exists a function f : X - Y
such that, for every z € X, f(z) € z. Now, we can decide whether f(a) = f(b) or
f(a) # f(b), as the values of f belong to {0,1}. If f(a) = f(b), then f(a) € a N b,
whence P holds. On the other hand, if f(a) # f(b), then,— (a = b) and P is false. This
proves that LEM holds.

Despite the constructive failure of the full axiom of choice, there are two weaker forms

that are normally accepted by practitioners of BISH.*

3We use {a : P} to denote {z : z = a A P}.
4See, however, the work of Richman on choice-free constructive mathematics [28].

19



e The axiom of countable choice: for any binary predicate P and set Y,

(VrneNTyEY P(n,y)) = (If €YNVneN P(n,f(n).

e The axiom of dependent choice: for any binary predicate P and set A,

(Va € AJa' € A P(a,d)) =
Va € A3f € AN(f(0) =aAVn € N P(f(n), f(n+1)).

The axiom of choice and LEM are two highly non-constructive statements. There
are many weaker statements, often trivially true classically, that cannot be proved

constructively. A partial list is the following.

WLEM: The weak law of excluded middle: for any statement P, =PV ——P.

LPO: The limited principle of omniscience: for any binary sequence a, either a,, =0

for each n or there exists n such that a, = 1; in symbols,
Va € {0,1}" (Vn (a, = 0) V In(a, = 1))

LLPO: The lesser limited principle of omniscience: for any binary sequence a such
that a;a, = 0 whenever j # k, either a,, = 0 for each n € N or as,41 = 0 for

each n € N.

MP: Markov’s principle: for any binary sequence a for which it is false that a, =0

for each n, there exists n € N such that a, = 1.

It is worth noting that LPO is equivalent to the statement
Ve R (z=0Vz#0).
Similarly, MP is equivalent to

Ve R (—(z=0) = z #0).
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Clearly, LPO implies LLPO and MP and LEM implies WLEM and LPO. See [10] for a

further discussion on the constructive properties of the constructive real numbers.

1.4 Models of BISH

Models of BISH are systems in which we can prove at least as much as we can prove
in BISH. These are helpful for two reasons. Firstly, results in a model give us intuition
about what to expect in BISH. And, secondly, if we can disprove a statement in a model
of BISH, then we know that that statement cannot be proved in BISH.

1.4.1 CLASS

Classical mathematics (abbreviated CLASS) is a model of BISH. This is simply because
any statement that holds in the constructive sense is also true classically. Classical logic
is BISH with LEM added.

1.4.2 RUSS

Russian constructivism (abbreviated RUSS) [10, 30, 22] is also known as the re-
cursive model. RUSS attempts to capture recursive analysis in logical form. RUSS

adds two main axioms to BISH. The first is MP and the second is

CPF': There is an enumeration ¢, s, --- of the set of partial functions from N to N

with countable domains.

Note that a partial function f from X to Y is a function from a subset dom(f) of X
(called the domain of f) to Y. This is a form of the Church-Markov-Turing thesis.
CPF can be interpreted as asserting that all functions are computable. Note that CPF

is provably false in CLASS, by a diagonalisation argument.
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The “spirit” of RUSS is that everything can be represented by a natural number. Every

statement in RUSS is to be interpreted as a statement about computability.

RUSS is inconsistent with CLASS. In particular, LPO and LLPO are provably false in
it. Indeed, LPO corresponds to the halting problem. This justifies our earlier assertion

that LPO and LLPO are non-constructive.

Another interesting result in RUSS is Specker’s theorem. This theorem is important in
our later study of compactness. It essentially states that [0, 1] is not compact in RUSS

in a very strong way.

Theorem 1.4 (Specker). In RUSS, there ezists a strictly increasing sequence (Tn)neN
m QN I0,1] that s eventually bounded away from every point in [0,1]—that is,
for every =z € [0,1], there exist 6 > 0 and N € N such that, for every n > N,
|z —r,| > 0.

For a proof of Specker’s theorem see [10] Chapter 3, Theorem 3.1. The basic idea

behind the proof is that the “limit” of the sequence is not a computable real number.

Additionally, in RUSS all functions from R to R are continuous (though this requires
slightly more than just MP and CPF to prove) and the intermediate value theorem is

false.

1.4.3 INT

The last model we discuss is Brouwer’s intuitionism (abbreviated INT) [10, 30, 14].
Again, we obtain it by adding two main principles to BISH. First, we must give several

definitions.

We define a metric p on NN by

p(a,b) = inf{2‘” Vi<na; = bi} .
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Relative to this metric N~ is a complete, separable metric space.

First we add the principle of continuous choice:

CC Any function from NN to N is continuous. And, if P C N~ x N and, for each
a € NN, there exists n € N with (a,n) € P, then there is a choice function
f: NN — N such that (a, f(a)) € P for each a € NN,

Note that CC is incompatible with CPF ([10] Chapter 5, Theorem 2.2). Thus INT and
RUSS are incompatible. Also, LPO and LLPO are incompatible with CC.

We say that a set S is detachable if, for any z, either z € S or z ¢ S. For any set
S, let S* be the set of all finite sequences in S and let SN be the set of all infinite
sequences in S. A detachable subset o of {0,1}* is called a binary fan if, for each
(ao,as,---,a,) € 0 with n > 0, the restriction (ap,as,---,a, 1) is also in 0. An
infinite sequence a = (ag,a1,---) € {0,1}N is called a path in the binary fan o if, for
each n € N, (ao, a1, ,a,) € 0. A subset B of a binary fan o is called a bar for o if
every path a in o has a prefix in B—that is, (a,a1, - ,a,) € B for some n € N. A
bar B for a binary fan o is called uniform if there exists N € N such that, for every

path a in o, there exists n € N with n < N and (a¢, a1, ,a,) € B.

The second principle we add is called the fan theorem:

FT Every detachable bar of a binary fan is uniform.

The fan theorem is a contrapositive form of the classical Konig’s lemma [21]. Thus it is
also true in CLASS. Note that the name “fan theorem” is a misnomer, as we consider

it to be an axiom, rather than a theorem.

In fact F'T is equivalent to the following result [10, 5, 18|.

Theorem 1.5. Every uniformly continuous f : [0,1] — (0, 00) has positive infimum.
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Theorem 1.5 is, however, false in RUSS via an explicit counterexample [10]. Thus
Theorem 1.5 is independent of BISH.

We can also add the following axiom to INT to make MP provably false.

Kripke’s Schema: For each proposition P there exists an increasing binary

sequence a € {0, 1} such that P holds if and only if a, = 1 for some n € N.

This concludes our introduction to the principles of constructive mathematics. In the

next chapter we build a framework for topology in BISH.
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Chapter 2

Apartness and Uniformity

“Very little is left of general topology after that vehicle of classical math-
ematics has been taken apart and reassembled constructively. With some
regret, plus a large measure of relief, we see this lamboyant engine collapse

to constructive size.”—Errett Bishop ([6], page 63)

Apartness spaces provide a constructive framework for topology. They were developed
by Bridges and Vitd [9] in 2000. Before giving the axioms for those spaces, we introduce

some notions of complement for a subset S of a set X with an inequality. We have

the logical complement
~S={zeX:-(ze€ )},

the complement
~S={zeX:VseS(z#5s)},

and the apartness complement

—S={zeX:{z} =S},

where <1 is an apartness relation as introduced below.
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Definition 2.1. A apartness space 1s an inhabited set X and a binary relation <
on subsets of X satisfying the following for A,B,C C X.

B0 AxB = B A.

B1 X 0.

B2 —AC~ A.

B3 Ax(BUC) < (ABANAXDCO).
B) -AC~B — —-AC —B.

B5Vze-AdDC X (z€e -DANX =—-AUD,).

Note that we will not discuss non-symmetric apartness spaces (those without BO) or
pre-apartness spaces (those lacking B5). If A >1 B, we say that A is apart from B or
that A and B are apart. For z € X and S C X, we write z b1 S rather than {z} > S.

An apartness space (X, 1) induces a topology on X in which the apartness complements
form a base of open sets. Classically, given a topological space (X, T), one can define

an apartness > on X by
VABCX (AxB < AnB=0). (2.1)

However, an apartness space is designed to capture more information than just the
topology of the space. Two sets being apart should capture the notion of them having
a positive distance between them. In this sense, the definition given in (2.1) is not very

useful. For example, in R2?, the sets

{(w,y)GRZ:wy:O},
{(:r,y) eER?:zy = 1}

have disjoint closures, but they do not have a positive distance between them.
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2.1 Uniform Spaces

Abstractions of metric or distance notions are usually defined in the context of uniform
spaces. We will give a constructive definition of a uniform space and show how this
induces an apartness. First we introduce some notation connected with subsets of the

Cartesian product of a set X with itself.

The diagonal of X2 is
A={(z,z):z€ X}.

For W,W' C X2,
WoW' ={(z,2) € X*: 3y € X ((z,9) €W A(y,2) € W)},

W'=W, and W' =W"oW (n€N),

and
wt= {(:r,y) € X?:(y,z) € W}
We call W symmetric if W = W~ If § C X, then
WiS|={yeX:3s€ 8 (s,y) € W}.
If S ={z} with z € X, we write
Wiz] =W[{z} ={y € X : (z,y) € W}.

We recall here that an inhabited set F of inhabited subsets of X is a filter if

— the intersection of two sets in F belongs to F, and

— supersets of sets in F belong to F.

Definition 2.2. A uniform space s an inhabited set X equipped with an inequality
relation # and a set U of subsets of X? such that the following hold.
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Ul U is a filter on X2.

U2 For each z,y € X, = # y if and only if there exists U € U such that (z,y) €
-U.

U3 For each U € U, there exists V € U such that V2 C U.
U4 For each U € U, there exists V € U such that X? =U U V.

U5 For each U € U, there exists V € U such that V C UL,

A member of U is called an entourage. A base of entourages is a set B C U such that,
for each U € U there exists V € B with V C U. A uniform space has an associated
uniform topology, in which the sets of the form U[z] with U € U form a base of
neighbourhoods of the point z € X.

Any metric space (X, p) is also a uniform space in which

(o ([o5ia]) ey

is a base of entourages.

The Cartesian product
X=[]x

iel
of a family ((X;,U;)),.; of uniform spaces has a natural uniform structure, the product

uniformity, in which a base of entourages consists of all sets of the form
{(xy) € X*: Vi€ F((zi,u:) € Us)}

with F' a finitely enumerable subset of I and U; € U; for each ¢ € F'.

Given a uniform space (X,U) we define a binary relation 1 between subsets A, B of X
by
AxB < U eU (AxBCU). (2.2)

It can be shown that this relation is an apartness (we call it the uniform apartness)
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on X, and that, for each A C X,
—A={z e X:3U el (Ulz] C 7A)}.

This implies that the topology induced by the apartness is the same as the uniform

topology on X.

2.2 Product Apartnesses

There are two natural categorical notions in apartness spaces: the product of two

apartness spaces and subspaces.

A subspace of an apartness space is defined in the obvious manner and behaves mostly
as expected. Note that some properties do not pass immediately to subspaces. For
example, a subspace of a separable space is not necessarily separable. Regularity con-
ditions such as weak or neat locatedness (which we define later) will ensure that a

subspace inherits more properties. See [9] for more details.

The product of two apartness spaces is more interesting for our purposes.

Definition 2.3. Let (X,xx) and (Y,<y) be apartness spaces. Then the product
apartness Xixyyon X XY 1s defined as follows. Let S, T be subsets of X XY . Then
S > T 1f and only if there exist m,n € N,

AI)AZ)""Am)BI;BZ"" ’BnC-X

and
AI1;A12; ;A;n;B;_’Bé"" ’B;CY

such that
SclJAix 4, Tcl|JB;xB;

=1 71=1
and, for each 1,5 with 1 <1 <m and 1 < j < n, either A; >xix B; or A; <y B.
The pair (X X Y,Xxyy) is called the product of the apartness spaces (X,<x)
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and (Y, >y ).

Applying B5 we see that, for each AC X x Y,
—A={(z,9) e XxY:AECXIFCY ((z,y) € —E x —F C~ A)}.

It follows from this that the product apartness induces the usual product topology.
However, the product apartness is somewhat irregular, in the sense that it does not

coincide with the product of uniform spaces. Consider, for example, R?. Let

S = {(z,2):z € R},

= {(x,y)€R2:|x—y|21}.

Considered as subsets of the metric space R?, S and T are apart, since for each (z,2) € S
and (z,y) € T,

1

1 1
max{lw—Z|,|y—ZI}2§(|w—z|+|z—y|)25|w—y|25-

However, if S and T are considered as subsets of the product apartness space R x R,

they are not apart. To see this, suppose that
SC|JAix A CR?
i=0

Then, for each n € N, choose 7, € {0,1,---,m} such that (n,n) € A;, x A} . Since
1, can only take finitely many values over infinitely many indices n € N, there exist
n,n’ € N with n # n’ and 7,, = 1,,—this is an application of the pigeonhole principle,

which states that
Vn S N Vf S {0’1) ’n}{o,l,---,n—l-l} 32)] S {0)1’ ’n+ 1} (2#]/\f(7’) — f(]))

Now, |n —n/| > 1, so
(n,n")€TN (Ain X Ain> :

This shows that =(S 1 T'). Note that we now have two different apartnesses on R?

that induce the same topology.
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2.3 Total Boundedness

We now discuss some notions that are closely connected with the compactness proper-

ties that are the main object of our investigations.

Definition 2.4. Let (X,U) be a uniform space. We say that X is weakly totally
bounded if, for each U € U, there exist n € N and A;,---,A, C X such that
X = U~ A; and such that, for each i € N with 1 <i<mn, A; x A, CU. If also A;
1s inhabited for each applicable 1, then X s said to be strongly totally bounded.

Note that these conditions are classically equivalent, and that, constructively, a strongly

totally bounded space is weakly totally bounded.

Given a strongly totally bounded uniform space, we can recover the uniformity from
the apartness it induces: Let (X,t<) be an apartness space. We say that A C X is
well-contained in B C X if there exists C C X such that BUC = X and C 1 4;
we write A < B to denote this. Let n € N and Ay, A4,,--- ,A,,B1,Bs,---,B, C X
satisfy U ; A; = X and A; < B; for each applicable :. If the apartness 0t on X is
induced by a uniform structure ¢, then | ; B; X B; is an entourage of &. Moreover,
entourages of this form with each A; inhabited form a base of entourages if and only if
the uniform space is strongly totally bounded. See [9] Propositions 3.9.13 and 3.9.14

for more details.

2.4 Continuity Properties

Definition 2.5. Let (X, xix) and (Y,<y) be apartness spaces, and f : X — Y a
function. We say that f 1s

e topologically continuous if f~*(U) is open in X whenever U is an open
subset of Y;
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e continuous if, for each z € X and A C X,
f(z) € —vf(A) =z € —xA
—that is to say [ (—yf(A)) C —xA;

e strongly continuous if, for each A,B C X, f(A) >y f(B) tmplies that A xix
B.

Clearly, strong continuity implies continuity. Moreover, in a metric space, continuity
corresponds to the usual e-§ definition of continuity. Continuity and topological con-
tinuity are equivalent if the range Y has the so-called weak nested neighbourhoods

property, which asserts that

VACYVze-A3aBCY (z€—-B AN -BC —A).

Strong continuity is related to the well-studied notion of uniform continuity, which we
now introduce. Let f be a function from a uniform space (X,U) to a uniform space
(Y,V), and define f x f: X x X - Y xY by

(f x f) (z,2') = (f(2), £(z)) .

We say that f is uniformly continuous if (f x f)~}(V) € U for each V € V. Uniform
continuity implies strong continuity. It can be shown that f is uniformly continuous
if and only if f x f is strongly continuous with respect to the product apartnesses on

X x X and Y x Y see [9], Proposition 3.3.4.

2.5 Locatedness Properties

In a metric space (X, p), we say that S C X is located if

p(z,S) = inf{p(z,y) : y € S}
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exists for each z € X—that is, for each a, 8 € R with a < B, either there exists y € S
with p(z,y) < B or p(z,y) > « for each y € S. Classically, every subset of a metric
space is located. However, constructively this is not always the case: for any statement
P, the inhabited set

S={0}u{l: P}

is located subset of the discrete metric space {0, 1} if and only if P VvV =P holds. Lo-
catedness is a very useful condition in the constructive study of metric spaces, so we

would like an analogue for locatedness in apartness spaces.

There is at least one natural analogue of the metric property of locatedness in the
context of a uniform space (X,U). A subset S of X is called almost located [11] if,
for each U € U, there exists V' € U such that, for every z € X, either SN U[z] # 0
or SN V[z] = 0. Although there is no obvious analogue of locatedness for subsets of a

general apartness space, there are two useful locatedness notions therein.

Definition 2.6. Let (X,<) be an apartness space, and S C X. We say that S is
weakly located if, for each z € X and A C X with z € —A, either SN—A #0 or
e -S.

Weak locatedness is strictly weaker than locatedness. A stronger alternative is given in

Definition 2.7. Let (X,<) be an apartness space. We say that an ordered pair
(A, B) of subsets of X is a meat cover of X if there exrist A", B' C X such that
AUA =BUB' =X and A' <1 B'. We say that S C X 1s neatly located if for any
neat cover (A, B) of X, either ANS #0 or S C B.

Intuitively, a neat cover is a pair of sets covering the whole space and with a “positive
overlap”. Note that, if (A, B) is a neat cover of an apartness space X, then AUB = X
and (B, A) is also a neat cover. Classically, all sets are neatly located. In a metric
space, neat locatedness implies locatedness. Constructively, in an arbitrary apartness
space, neat locatedness does not necessarily imply weak locatedness; however, Lemma
2.9, for which we introduce the next definition, shows that under a certain separation

condition, this is the case.
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Definition 2.8. Let (X,x) be an apartness space. We say that X has the nested
neighbourhoods property if

Ve XVACX (€ -A = IBC X (€ —BAB<A)).

Any uniform space has the nested neighbourhoods property.

Lemma 2.9. Let X be an apartness space with the nested neighbourhoods property.

Then any neatly located subset of X 1s weakly located.

Proof. Let S C X be neatly located. Let A C X and z € —A. Then, by B5, there
exists B C X such that € —B and BU —A = X. By the nested neighbourhoods
property, there exists C C X such that z € —C and —C < B, whence —C 1 B. Again,
by B5, there exists D C X such that € —D and DU —C = X. Then (—A4,D) is a
neat cover,as —~AUB =DU-C = X and Bixx1 —C. So either SN—-A#QorSCD
andz € —D C —-S. [ |

Lemma 2.10. A strongly totally bounded subset of a uniform space is neatly lo-

cated.

Proof. Let (X,U) be a uniform space and S a strongly totally bounded subset thereof.
Let (A, B) be a neat cover of X and choose A', B’ C X and U € U such that AU A' =
BUB' = X and A'x B' C =U. Choose a finitely enumerable F' C S such that S C U[F].
Since AU A’ = X and F is finite, either FN A # 0 or F C A'. In the former case we
are done, as SN A D FnNA#0. Suppose, on the other hand, that F C A’. Let y € S.
Then there exists z € F with y € U[z]. If y € B, then (z,y) € Ax B NU=0—a
contradiction. Thus S C -B' C B. [

2.6 The Hausdorff Property

The following defines a very useful regularity condition for apartness spaces, namely

the ability to separate distinct points by open sets.
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Definition 2.11. Let (X,) be an apartness space. We say that X is Hausdorff
if, for every z,y € X with ¢ # y, there exist U,V C X such thatxz € —U, y € -V
and ~UN -V =0.

Any uniform space is Hausdorff. A simple consequence of a space being Hausdorff is

that, for every z,y € X, ¢ # y if and only if {z} < {y}.

2.7 Sequences, Nets, and Completeness

Next we discuss nets, convergence, and completeness in apartness spaces.

Definition 2.12. A directed set consists of an inhabited set D and a binary relation
>~ on D such that

e n>n for eachn € Dy
e ifimneD,l>m, and m > n, thenl > n; and

e for each m,n € D there exists | € D such thatl > m Al > n.

A net in a space X consists of a directed set (D, >) and a functionz : D — X; we
denote such a net by (Tn),cp- A subnet of a net (Tn)nep 15 a net (ng)rce tn D with
the property that for each n € D, there exists k € £ such that ny > n whenever
k' € € and k' > k; this subnet is denoted by (T, )ree-

Definition 2.13. A net (z.),.p, n an apartness space X is said to converge to
z € X if, for each A C X with x € —A , there exists m € D such that z, € —A

whenever n € D and n > m. The point = 1s then called a limit of the net.

Cauchy sequences play an important role in the theory of metric spaces, and, in par-
ticular, in compact ones. We now define analogues of Cauchyness for nets, and then of

completeness, in uniform and apartness spaces.
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Definition 2.14. Let (X,U) be a uniform space and z = (Z,).cp a net in X. We
say that = 1s a Cauchy net if, for each U € U, there exists m € D such that

z, € Ulz,] whenever n € D and n = m.

Definition 2.15. Let (X,) be an apartness space and z = (zZ,)ncp a net in X.
We say that z is totally Cauchy if, for each S, T C D such that z(S) < z(T'), there
exists m € D such that it is impossible for there to be n,n' € D withn = m, n € S,

n'>m, andn' €T.

Definition 2.16. A uniform space or an apartness space X 1s said to be complete
(respectively, totally complete) if every Cauchy (respectively, totally Cauchy) net

converges to a limit in X.

Note that every sequence is a net. By restricting ourselves to sequences rather than
nets, we can define sequentially complete and sequentially totally complete by

making the obvious modifications in Definition 2.16.

It is clear that in a uniform space, a Cauchy net is totally Cauchy, and hence that
a totally complete uniform space is complete. In a strongly totally bounded uniform
space, a totally Cauchy net is Cauchy. A difficult argument shows that a totally Cauchy

sequence in a uniform space is Cauchy; see [9], Theorem 3.5.12.

What is the motivation for studying apartness spaces? In terms of structure, apartness
spaces lie between topological spaces and uniform spaces. An apartness space allows
one to define strong continuity, which cannot be defined on an arbitrary topological
space. Also, different apartnesses may induce the same topology. So this shows that
an apartness space has strictly more structure than a topological space. On the other
hand, an apartness space lacks any axiom similar to the powerful U3 axiom of uniform
spaces and it also lacks a natural analogue to locatedness, which indicates that it has
strictly less structure than a uniform space. This already makes apartness spaces very

interesting, and has led to extensive research. A classical exposition, based on the
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notion of proximity rather than that of apartness, is given in [27, 3|; a constructive

exposition will appear as [9].

Constructively, apartness spaces provide significant computational information; the
apartness of two sets is a much stronger property than the mere disjointness of the
sets, or even their closures. For example, if an apartness space is derived from a
totally bounded uniform space, then the uniformity can be recovered from the apartness
[9], which is not true of a mere toplogy. And, classicaly, every apartness space with
the Efremovi¢ property is uniformisable [27]. This makes apartness spaces a strong

foundation upon which to build a constructive theory of topology.
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Chapter 3

Compactness Properties for Apartness

Spaces

“The classic theorem of Heine-Borel-Lebesgue asserts that every open cover
of a closed and bounded subset of the space of real numbers has a finite
subcover. This theorem has extraordinarily profound consequences, and,
like most good theorems, its conclusion has become a definition.”—John L.
Kelley ([19], page 135)

Classically, compactness is a very strong regularity condition; it has nice categorical
properties and has numerous applications. In this chapter we will take a look at classical

compactness and then previous attempts to develop a constructive version thereof.

Definition 3.1. Let (X, T) be a topological space. Then X is said to be compact,
if every open cover has a finitely enumerable subcover—that is to say, for each
C C 1 with UC = X, there exists a finitely enumerable F C C with UF = X.

This definition, unfortunately, is not very useful constructively, because it is too strong.?
We cannot even prove that [0, 1] is compact. Note that we cannot demand a finite
subcover, rather than a finitely enumerable one: otherwise the compactness of {0, 1} is

equivalent to LEM.

1Some constructive formal topologists, however, find this definition acceptable.
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A classically equivalent characterisation of compactness is that every net in X has a
convergent subnet. And, in a uniform space, compactness is classically equivalent to
the space being complete and totally bounded. The product of compact spaces is a
compact space; a closed subset of a compact space is compact; and the continuous image
of a compact space is compact. An important theorem about compact uniform spaces
is the so-called uniform continuity theorem, which states that a continuous function

from a compact uniform space to a uniform space is uniformly continuous.

Constructively, completeness and total boundedness are very useful notions. We can
prove that, say, [0, 1] possesses both of these properties. We can also show that they
are both preserved by countable products and by closed almost located subspaces. And
total boundedness (in either the strong or weak form) and sequential completeness are

preserved by uniformly continuous functions.

So it seems that “complete and totally bounded” is a satisfactory constructive criterion
for compactness. However, this definition requires the structure of a uniform space.
We would like to have a definition which only requires the structure of an apartness

space.

We now discuss several candidate criteria from the literature.

3.1 Total Completeness

Since we can define total completeness in an apartness space (see Definition 2.16), it
seems that this would make a good approximation to completeness. However, it turns
out that total completeness is classically equivalent to compactness; see [9], Section
3.5. Have we found a constructive criterion for compactness? To an extent yes, but,

unfortunately, there are still problems with total completeness.

The problem arises firstly from the fact that total completeness doesn’t “look” like a
compactness condition and secondly from the fact that it is a very strong condition. To

derive compactness from total completeness we need ultrafilters, which require heavy
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use of the axiom of choice; it seems unlikely that there is a direct or constructive proof.
We are also unable to prove that [0, 1] is totally complete; we are, however, able to

show that R is totally sequentially complete.

3.2 Anti-Specker Properties

The alternative approach to defining compactness—via convergent subnets or
subsequences—also has some problems. In the recursive model of constructive mathe-
matics we can show that [0, 1] is not compact—this is the result of Specker’s theorem
(Theorem 1.4).

Specker’s theorem implies that we cannot constructively prove that an increasing ra-
tional sequence in [0, 1] converges. However, the antithesis of Specker’s theorem is a

useful compactness criterion.

Definition 3.2. Let (X,<1) be an apartness space. Then we say that X has the
weak anti-Specker property if it is impossible for there to be a sequence (ZT,)neN
in X that 1s eventually bounded away from each point in X —that 1s, for every
x € X, there exists N € N such that

ze—{z,:neNAN>N}.

We also say that X has the (strong) anti-Specker property if, for any sequence
(Zp)nen tn XU{oo0} (where 0o is bounded away from X ) that is eventually bounded

away from every point in X, there exists n € N such that z, = co.

Note that the strong anti-Specker property implies the weak anti-Specker property and
the converse is true if one assumes Markov’s principle. Classically, the anti-Specker
property is implied by sequential compactness and the converse is true if the space is

first-countable.

It can be shown that the strong anti-Specker property for [0, 1] is equivalent to a form
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of Brower’s fan theorem and that the product of two anti-Specker spaces is anti-Specker

under the assumption of BD-Nj; see [4].

3.3 Neat Compactness

There is one more approach to defining compactness that is worth discussing. This

approach is due to Diener [13].

Definition 3.3. Let (X,1) be an apartness space. We say that

e X 15 neatly compact if X 1s neatly located and it 1s impossible that both
LPO hold and there is a sequence (U,)ncn of open subsets of X such that
Unen Un = X and, for each n € N, U, C U,,1 and —U, # 0;

e anet (Z,)nep tn X 1s neatly Cauchy if, for any finitely enumerable collection
{(S;,T;): 3 € F} of neat covers of X, there exists N € D such that either
zy € T; for each 7 € F or there erists k € F' such that z,, € Sy for alln € D
with n > N;

e a net (z,)nep tn X converges neatly to a point ¢ € X if, for any finitely
enumerable collection {(S;,T;): 7 € F} of neat coverings of X, either z € T}
for each 5 € F or there exist k € F and N € D such that x € S, and =, € Si
for each n € D with n > N, and

e X 15 neatly complete if every neatly Cauchy sequence in X converges neatly

to a limit in X.

Neat compactness implies total boundedness in a separable uniform space, and, in a
uniform space, neat completeness implies completeness. Conversely, a complete and
totally bounded uniform space with a countable base of entourages is neatly compact,
neatly complete, and, of course, separable. Moreover, if f is a strongly continuous
and topologically continuous function from a neatly compact apartness space to an

apartness space, then the range of f is neatly compact. This implies that, if f is a
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strongly continuous function from a neatly compact apartness space X to the real line,
then sup f(X) exists.

Neat compactness and completeness seem to be very good criteria for compactness, as
they have desirable categorical properties and they are more-or-less equivalent to the
space being totally bounded and complete. However, the definitions are very unwieldy

and neat compactness is mostly a negative condition.
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Chapter 4

Compactness Criteria

“Just because something doesn’t do what you planned it to do doesn’t mean

it’s useless.”—Thomas Edison [15]

It already seems that we will have difficulty finding one compactness criterion that is as
universally accepted as Definition 3.1 is classically. So we will work with several criteria.
All of the criteria discussed in the previous chapter, apart from neat locatedness and
neat completeness, used only the topology of the space; none of them refer to apartness
between sets. We will make use of the extra structure of apartness spaces. We have
come up with three criteria which are based on the observation that, in a classical
compact uniform space, disjoint closed sets have a positive distance between them.

Our three criteria differ in their use of neat locatedness and the product apartness.

As we have mentioned before, different apartnesses can induce the same topology. As
our criteria depend on the apartness, they are more sensitive to the structure of the

space than those discussed in Chapter 3.
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Definition 4.1. Let (X,) be an apartness space. We say that X 1s

CC1 if, for any neatly located S,T C X with —SU-T =X, ST,

CC2 if, for any neatly located S C X? with —SU —A = X2, S A in the product

apartness; and

CC3 if, for any S C X? such that —SU—A = X2, S >1 A in the product apartness.

We immediately note that any CC3 space is also a CC2 space. Moreover, Lemma
4.2 shows that a Hausdorff CC3 space is CC1 under either a uniformity or LEM. And,
classically, CC2 and CC3 are equivalent. Thus the above conditions are roughly ordered

by strength. Also CC1, CC2 and CC3 are all preserved by strong homeomorphisms.

Lemma 4.2. Let (X,<1) be a Hausdorff apartness space. If X is CC3, then it is

also CC1 i1f we assume that either

(i) X 1is a uniform space’ or

(i) LEM holds.

Proof. Let X be a CC3 apartness space and S,T C X with —SU —-T = X. Take an
arbitrary (z,y) € X?. lf z € —S or y € —T, then (z,y) € —(S x T). Suppose, on the
other hand, that z € —T and y € —S. By B5 there exists A C X such that z € — A and
—TUA=X. Ifye —T, then (z,y) € —(S x T'). So we suppose instead that y € A,
whence z € —{y} and z # y. Since X is Hausdorff there exist U,V C X such that
t€-U,ye -V and -UN-V = 0. Thus (z,y) € —U x -V C A and (z,y) € —A.
So —(S x T)U —A = X2, whence, by CC3, S x T 1 A. Now choose m,n € N and
Ay, Ag, -+ Ap, AL AL oo (A Bi By -+, By, B, B, -+, B. C X such that

SxTC|JAix A, AcC|]B;xB,

=1 Jj=1

and, for each 7,7 € N with 1 <1 <m and 1 <j <n, either A; > B; or A; < B’.

!Note that a uniform space is necessarily Hausdorff.

46



(i) Suppose that (X,¥) is a uniform space. Then, for each ,7 € N with 1 <7 < m and
1 < j <n, we can choose U ; € U such that either A;x B;NU;; = 0 or A;x B;NU; ; = 0.
Let U =N, ; U;; and suppose that (s,t) € Sx TNU. Choose 4 such that (s,t) € A; x A;
and choose j such that (s,s) € B; x B.. Since (s,s) € A; x B; N U, ;, we must have
A} x B;NU;; = 0. This contradiction shows that S x TNU = 0 and thus S > T

(ii) Instead suppose that LEM holds. Fix 7 € N with 1 < 7 < n and choose I, I} C
{1,2,---m} with ;NI = @ and I; UI; = {1,2,---m} such that, for every i € I,
A; > B; and, for every 1 € I}, A; < B. Let C; = Uj¢y; Ai and C) = Uier; A. Then, by
B3, B; 1 C; and B; > C}. We also have

SxT C(C; x X)U(X xCY),

whence, by LEM, either S C C; or T' C C}. Otherwise choose s € S\C; and t € T\C’;
then (s,t) € S x T\((C; x X) U (X x C}))—a contradiction. Thus either S 1 B; or
T > B’

Now choose J,J' C {1,2,---n} with JNJ' =0 and JU J' = {1,2,---n} such that, for
every j € J, S B; and, for every j € J', T <1 B;. Let D = U,c; B; and D' = Ujc 0 B;.
Then S<xD, T D', and X C DUD'. Now T C D, whence S T. [ |

We will now investigate these definitions further. Some of the following results are
not constructive; this is either because they deal with nonconstructive ideas or because
we have not yet been able to find a constructive version. Nonconstructive results are

marked with a f.
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The following diagram summarizes the

results of this chapter.

Uniform Continuity

Theorem Hausdorff,

CC1l Uniform

Uniform,

Anti-Specker 1st-countable

Complete

Anti-Specker

CC3 CLASS, Uniform
\ Open_cover
Compact
Uniform
CLASS,
Weakly 2nd-countable
Totally Bounded
Neatly
CLASS Separable, Compact
Uniform
Strongly
Totally Bounded
Neatly Located,
Hausdorff
niform, cc2

1st-countable

The highlights of this chapter are as follows.

metric space.

ness.
CC1 is weaker than compactness,

CC1 can be characterised in term

orem.

4.1 CC1

CC2 and CC3 are classically equivalent to open-cover compactness in a separable

CC2 and CC3 can be connected to the anti-Specker property and total bounded-

but it implies completeness.

s of an analogue of the uniform continuity the-

First we relate CC1 to the compactness notions discussed in Chapter 3. Then we give

a characterisation of CC1 in terms of an analogue to the uniform continuity theorem.

We begin with some lemmas.
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Lemma 4.3. Let (X,U) be a uniform space and S C X. If S is neatly located, then

S 15 almost located.

Proof. Choose an arbitrary U € U. Pick symmetric W,W',V € U such that U U
W = X2, WoW' C W, and W U—-V = X2 Then, for any z € X, (Ulz], -V|z])
is a neat cover of X. To see this, let z € X be arbitrary. Given y € X, either
(z,y) € U or (z,y) ¢ W. Thus Ulz] U -W]z] = X?. Similarly, W'[z]U -V [z] = X% If
(y,2) € (-W]z]) x W'[z] N W', then y € (W' o W')[z] C W|z], which is impossible. So
-Wz] <1 W'[z]. Now either U[z] NS # 0 or S C -V|z]. |

Lemma 4.4. Let (X,U) be a uniform space and S C X almost located. Then, for
any symmetric U € U, there exists a symmetric V € U such that (U[S],-V[S]) is

a neat cover of X.

Proof. Choose symmetric W, W' € U such that, for any z € X, either U[z] NS # 0 or
Wiz]nS =0and W' oW’ C W. For an arbitrary z € X, either z € U[S] or z ¢ W|[S].
So U[S|U-WIS] = X. If (z,y) € (-WI[S]) x W'[S]NnW', then z € (W'oW")[S] C W[S],
which is impossible. So "W [S] > W'[S]. Again, by the almost locatedness of S, we can
choose a symmetric V' € U such that W|[S]U-V[S] = X. This shows that (U[S], ~V[S])

is a neat cover. [ |

Proposition 4.5. Let (X,U) be a uniform space with a countable base of entourages

and the strong anti-Specker property. Then X 1s CCI1.

Proof. Let S,T C X be neatly located and satisfy —S U —T = X. By Lemma 4.3,
S is almost located. By Lemma 4.4, we can choose an countable base of entourages
{U, : n € N} such that, for each n € N, U2, C U, = U, * and (U,[S], "U,+1[5]) is a

neat cover of X.

As T is neatly located, for each n € N, either U,[S]NT #0 or U, 1 NT = 0. We can

choose a sequence (z,)nen in X U {oco} such that

Vn € N (2, € Up[SINT V (2, = 00 AU, 1 [S]NT = 0)).
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Let z € X be arbitrary. If z € —T, then, as T D {z,:n € NAz, # 0}, (Zn)neN 18
eventually bounded away from z. Suppose, on the other hand, that £ € —S. Then
there exists N € N such that Uy[z] C =S. If n > N and z, € Uy.i[z], then, as
z, € U,[S], ¢ € (Uns1 0 U,)[S]—a contradiction. So (z,).en is eventually bounded

away from z.

By the anti-Specker property, there exists N € IN such that zy = co. Thus Uyx[S|NT =
0 and S T. m

Proposition 4.6. Let (X,U) be a CC1 uniform space and let (z,).cN be a sequence
mm XU{oo}. Suppose that whenever the sequence falls in X 1t is a Cauchy sequence
and that the sequence 1s eventually bounded away from every point in X. Then

there exists n € N such that z, = 00.

Proof. By applying dependent choice and passing to a subsequence, we may ensure
that
VneNz, € —{z,: ke NAKk>n}.

Let
S={zy, :m €N} and T = {2,411 : n € N}.

Take an arbitrary z € X. Choose N € N and a symmetric U € U such that (z,z,) ¢ U
for each n > N and (z;,z;) ¢ U? for each ¢,j < N with 1 # j. If (z,z;),(z,z;) € U
for some 7,7 € N, then 4,5 < N and (z;,z;) € U?, whence 7 = j. Choose a symmetric
V € U with UU-V = X2, Now, either (z,z,) € U for exactly onen € Nor (z,z,) ¢ V
for each n € N. Either way, either z € —S or z € —T. Since (z,)nen is @ Cauchy
sequence, S and T are totally bounded and, therefore, neatly located. This implies

that S o< T'. However, since (z,).cn is Cauchy, this is impossible. [ |

Proposition 4.6 immediately implies that, classically, a CC1 uniform space with a count-

able base of entourages is complete.

Propositions 4.5 and 4.6 show that CC1 lies somewhere between completeness and
compactness. However, the following examples show that it is equivalent to neither

compactness nor completeness.
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Example 4.7. The integers are a CC1 metric space, but they are not weakly totally

bounded and, therefore, not compact.

Proof. Let S,T C Z be neatly located and satisfy —SU —-T = Z. If (z,y) € S x T,
then z € —T C~ {y}, whence z # y and |z —y| > 1. Thus S T. So Z is CC1. There
is no finite cover of Z with sets of diameter at most %, as at least one set would contain

two distinct integers. [ ]

It is clear that CC1 cannot be equivalent to classical compactness: Equation 2.1 shows

how, classically, we can find a CC1 apartness for any topological space.

Example 4.8. The plane 1s a complete metric space, but it s not both CC1 and

neatly located.

Proof. Clearly, (R?,d) is a complete metric space, where d is the Euclidean metric.
Let
S:{(m,y)€R2:my:O},andT:{(m,y)ERZ::cyzl}.

We will show that R? being neatly located implies that LPO holds. Both S and T are
separable; thus, by LPO, they are neatly located. We will also show that —SU—T = R?
and —(S 1 T'), whence R? cannot be CC1.

The (a,)nen be a binary sequence. Let

A= |J B ((n,n), %) , A= (] -B ((n,n), %) :

neNAar,=1 neNAa,=1
1 1
B= |J B ((n,n), —) , B= (] -B ((n,n), —) i
neENAap=1 8 neENAanp=1 16

Pick an arbitrary (z,y) € R?. Then either there exists n € N with d((z, y), (n,n)) < 3
or d((z,y),(n,n)) > % for each n € N. So either (z,y) € A or (z,y) € A'. Similarly,
B U B = R? Now, if (z,y) € A’ and (z',y') € B’, then there exists n € N with
a, = 1 and d((z',¥'), (n,n)) < §, but d((z,y),(n,n)) > §, so d((z,y), (=, ¥) > i
Thus (A, B) is a neat cover of R?. So either A # 0 or B = R?. In the former case,
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there exists n € N with a, = 1. On the other hand, if B = R?, then, for every n € N,
(n,n) € B, s0 a, = 0. This shows that LPO must hold.

For any € > 0, (£,0) € S, (,€) € T and

d((l,o),(é,e)) —e

£

Thus S and T are not apart.

Let (z,y) € R? be arbitrary. Now, let

1
41 |+ fy))

€

Choose (z',y') € R? with d((z,v),(2',¥")) < &. Then |z — 2| < € and |y — ¥'| < ¢,

whence
1.1 ! ! ! 1
lzy —z'y'| < |z|ly — | + |z — 2'||¥] §6(|fv|+|y|+6)§6(|x|+|y|+1):1

Either zy >  or zy < 2. In the former case, if (z',y’) € S, then, as |zy — z'y/| > %,

d((z,9), (=" ¢)) > !

>0,
41+ |z + Jyl)

so (z,y) € —S. Similarly, in the latter case, (z,y) € —T. So —SU —-T = R?. |

A more precise characterisation of CC1 is given by an analogue of the uniform continuity

theorem. We first need to define the following two regularity and continuity conditions.

Definition 4.9. We say that an apartness space X has the reverse-CC1 property
iof, for each weakly located S, T C X, St<xT tmplies that —SU -T = X.

Note that, classically, every apartness space has the reverse-CC1 property. Construc-
tively, any uniform space has the reverse-CC1 property, and, if we assume MP, every

first-countable space has the reverse-CC1 property.

Definition 4.10. Let X and Y be apartness spaces and f : X — Y a function. We
say that f 1s almost strongly continuous if, for each neatly located S,T C X with
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f(S) and f(T) weakly located, if f(S) > f(T), then S T.

Now we can state an analogue of the uniform continuity theorem.

Proposition 4.11. Let X and Y be apartness spaces and f : X — Y a continuous
function. Suppose that X 1s CC1 and Y has the reverse-CC1 property. Then f is

almost strongly continuous.

Proof. Let S,T C X be neatly located, with f(S) and f(T") weakly located. Suppose
that f(S) < f(T). By the reverse-CC1 property, —f(S) U —f(T) = Y. Since f is
continuous, f~(—f(S)) C =S and f~!(—f(T)) C —T, whence —-SU-T = X. CC1
now implies that S < T [ |

The following result is a partial converse to Proposition 4.11.

Proposition 4.12. Let X be an apartness space with the nested neighbourhoods
property. Suppose that every continuous function from X to a reverse-CC1 apart-

ness space 1s almost strongly continuous. Then X 1s CC1.

Proof. Define a second apartness <’ on X by
VAL BCX (A{ B <— —-AU-B=X).

Clearly <’ is symmetric. Fix A C X. If x € —A, then, by B5, there exists B C X
such that £ € —B and BU —A = X, whence —{z}U—-A = X and z € —A, as, by
symmetry, B C —{z}. If, on the other hand, z € —'A, then —{z} U —A = X and, as
z ¢ —{z}, ¢ € —A. Thus —A = —'A. This immediately verifies that > satisfies B2,
B4 and B5. Clearly, it also satisfies B1. B3 follows from the observation that, for each
A BCX,—(AuUB)=—-ANn-B.

Now let f : (X,x) — (X,<') be the canonical bijection. Then, as f(—A4) = —'f(4)
for each A C X, f is a homeomorphism. By our supposition, f is almost strongly
continuous. Let S,T C X be neatly located and satisfy —S U —T = X. Then f(S) </
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f(T). By Lemma 2.9, S and T are weakly located, whence f(S) and f(T') are weakly
located. Thus, by almost strong continuity, S > T'. [ |

Propositions 4.11 and 4.12 show that, under appropriate regularity conditions, CC1 is

equivalent to a form of the uniform continuity theorem.

4.2 CC2

First we show that CC2 follows from the anti-Specker property and strong total bound-
edness. We then show that CC2 implies neat compactness, strong total boundedness,

and, classically, compactness.

Lemma 4.13. Let (X,U) be a strongly totally bounded uniform space. Suppose
that S C X? and there exists U € U such that SNU = 0. Then S <1 A in the

product apartness.

Proof. Choose U_1, Uy, Uy, Us, Us, Uy € U such that U_; C U, U, = U, and, for each
n € {-1,0,1,2,3}, U, = U, D U2, and U, U Upny; = X* Let {z; : 1 € F} be a

U,-approximation to X, where F' is a finite set. Then

A C U U4[$k] X U4[$k].

keF

Also, if (z,y) € S C ~U_1, then there exist 7,5 € F such that (z,y) € Ui[z;] x Usz;];
if (z;,z;) € Uy, then
(z,y) EUyoUyo U, CUE C U4,

which is impossible. So
S C | J{Udz:] x Uslzj] 1 2,5 € F A(z4,25) ¢ Up}.

Note that Uy U —-U; = X2. Choose a finite A C F? such that, if (¢,5) € A, then
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(z;,z;) ¢ U1, and, if 2,7 € F and (z;,z;) ¢ Uy, then (¢,7) € A. Then

S C U U4[$i] X U4[$]]
(3,7)€A

Now choose (%,5) € A and k € F. Then (z;,z;) ¢ U;. If both (z;,zx) and (z;, zx)
are in Us, then (z;,z;) € U22 C U; — a contradiction. Since U, U —~U; = X2, either
(z;,z%) ¢ Us or (zj,zx) ¢ Us. Suppose that (z;,z) ¢ Us. If Uslz;] x Usfzi] N Us # 0,
then (z;,z;) € U} C Us, which is impossible. Thus Uy[z;] >t Uy[z,]. Similarly, if
(z;,z) ¢ Us, then Uy[z;] b Uslzy]. |
Lemma 4.14. Let (X,U) be a strongly totally bounded uniform space and let U € U.
Then there exists V € U such that (U,~ V) is a neat cover of X2.

The proof of Lemma 4.14 is similar to that of Lemma 4.13, but it is slightly more

complicated; we have chosen to omit it.

Proposition 4.15. Let (X,U) be a uniform space with a countable base of en-
tourages. Suppose that X 1s strongly totally bounded and has the strong anti-
Specker property. Then X 1s CC2.

Proof. Apply Lemma 4.14 to find a base {U, : n € N} for the uniformity such that,
for each n € N, (Uy, ~ Uy,1) is a neat cover of X? and U, = U, ' D U2 ;. Let S C X?
be neatly located and satisfy A C —S.

Now choose a sequence ((Zn,¥Yn))nen in X2 U {(00,00)} such that, for each n € N, if
(Zn, Yn) = (00,00), then SNU, ; = 0 and, if (z,,y,) € X?, then (z,,y,) € SNU,. Let
z € X be arbitrary. Then (z,z) € A C -8, so there exists N € N such that

UN[:E] X UN[IE] C~ S.
If n € N,n > N, and z,, € Uy1[z], then, since (z,,y,) € U, C Un.1,
(Tn, Yn) € Unsa[z] X (Ung1 0 Unya)[z] C Un|z] X Un|Z]

—a contradiction. Thus (2, ).en is eventually bounded away from z.
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By the anti-Specker property, there exists n € N such that z,, = oo, whence SNU,,; =
0. By Lemma 4.13, S > A. [

Proposition 4.16. Let (X,<) be a neatly located Hausdorff CC2 apartness space.

Then X 1s neatly compact.

Proof. Suppose that LPO holds and (U,).en is a sequence of open subsets of X such
that Upen Un = X and, for each n € N, U,, C U,,; and U, # 0. To complete our
proof it suffices to find a contradiction. By applying dependent choice and passing to
a subsequence, we may, without loss of generality, assume that there exists a sequence

(zn)nen in X such that, for each n € N, z,, € U, 1 N U,.

If 72,7 € N and 7 < 7, then
x; € Ui_|_1 C Uj C _'{:Ej},

whence {z;} > {z,}. Let
S:{(mi,:cj):z',j EN/\’L#]}

By LPO, S is neatly located.

Let (z,y) € X? be arbitrary and choose N € N such that z,y € Uy. Take A,B C X
suchthat € —ACUyandy € —B C Uy. If n € N and n > N, then z, ¢ U, D Uy.
Thus

(z,y) € —Ax —BC ~{(zs,z;): 5, ENAL#JA(E>NVj > N)}.

Now let
F:{(:E“IEJ)Z,]GN/\'?,#]/\'L,]<N}

Take some (z;,z;) € F. Then {z,} < {z,}, and, as X is Hausdorff, there exist C, D C X
such that z;, € —C, z; € —D, and —C' N —D = 0. By applying B5 we get C', D' C X
such that z;, € —C', z; € —D', and —-CUC' = —DU D' = X. Now, if (z,y) €
—C x —D C A, then (z,y) € —A. On the other hand, if (z,y) € C' x X UX x D,
then (z,y) € —{(zi,z;)}. Since F is finite, either (z,y) € —A or (z,y) € —F. In the
latter case, (z,y) € —S. Since (z,y) was arbitrary, —-SUA = X.
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By CC2, S A. So choose m € N and A, A,,---,A,, C X such that

A C UAkXAkC_'S.
k=1
By the pigeonhole principle, there exist 2, 7,k € N with 2 # 7 and 1 < k < m such that
z;,z; € Ai. But then (z;,z;) € SN A, x Ay—a contradiction |

The proof of Proposition 4.16 is fairly loose. The neat locatedness assumption carries
straight through from the hypotheses to conclusion and is not mentioned in the proof.
Moreover, when deriving a contradiction, we only use LPO once to show that a count-
able set is neatly located. If we replace the hypothesis CC2 with CC3, we can prove
this result without any application of LPO.

A converse to Proposition 4.16 seems unlikely, as neat compactness is a very negative

condition, whereas CC2 is very positive.

Proposition 4.17. If (X,U) ts a separable neatly located CC2 uniform space, then
X 18 strongly totally bounded.

Proof. Any uniform space is Hausdorff, so, by Proposition 4.16, X is neatly compact.
Proposition 3.10.12 in [9] shows that a separable neatly compact uniform space is

strongly totally bounded. [ ]

Lemma 4.18 (f). Let (X,) be an apartness space with a countable base of open

sets. If X 1s mneatly compact, then, classically, X 1s compact.

Proof. Fix some countable base of open sets {U, : n € N}. Let C be an arbitrary open
cover of X. For each W € C, there exists Byy C N such that U,cp, Un = W. Set
B = Uwec Bw and, for each n € N, Vi, = Ugeppr<n U We see that (V,)aen is a
sequence of open subsets of X such that J,.n V, = X and, foreachn € N, V,, C V,.41.
Since LPO holds classically and X is neatly compact, it is impossible that —V,, # 0 for
each n € N. Thus there exists n € N such that V,, = X. However, V,, = Uxcpnr<n Uk
and B = Uwec Bw. So there exists a finite F' C B such that Uycr Ur = X. For each
k € F there exists W}, € C such that U, C W}. Consequently, {W : k € F'} is a finitely

enumerable subcover of C. [ |
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Proposition 4.19 (f). Let (X,<) be a Hausdorff apartness space with a countable
base of open sets. If X 1s CC2, then it 1s compact.

Proof. First note that, as we are working classically, X is neatly located. Suppose that
X is CC2. Then Proposition 4.16 implies that X is neatly compact. Lemma 4.18 now
shows that X is compact. [ |

4.3 CC3

We begin by showing that CC3 follows, classically, from compactness. Then we show

that CC3 implies weak total boundedness and the anti-Specker property.

Lemma 4.20 (1). Let (X, ) be an apartness space and S, T C X? such that SNT =
0. Suppose that X 1is classically compact. Then, classically, there exist n € N,
Ey,-- B, F, - ,F, C X such that T C U~, E; x F; C~ S.

Proof. First note that ~ S = —S and ~ T = —T. Take some s € S C —T. Then there
exist A;, B, C X such that s € —A4, x —B;, C~ T. Now {—As x —B;:s € 5‘} is an
open cover of S. Since S is a closed subset of a compact space, there is a finite F' C S
such that S C U,cp —A4s x —B, C~ T.

Noting that ~ (—A, x —B;) = (4, x X) U (X x B,) and taking complements gives us

T C ﬂ(AsXX)U(XXBs): U ﬂC’s,f(s) CNS_',
seF FE{OL}F sEF

where C; o = A, x X and C,; = X x B,. Then, for each f € {0,1}%, set

E;= ( A, F;= () B,
sEF,f(s)=0 sEF,f(s)=1
To finish set n = 2!¥! and associate {0, 1}¥ with {1,---,n}. u

Proposition 4.21 (}). Let X be a classically compact topological space and define

58



an apartness on X by
VS,TC X (ST <= SnT=0).

Then, classically, X 1s CCS3.

Proof. Let S C X? satisfy —SU —A = X2. Then SN A = 0. Apply Lemma 4.20 to
findn €N, By,---,E,, Fi,---,F, C X such that AC R:= ", E; x F; C~ S. Now
RNS = 0, so we can apply Lemma 4.20 againto find m € N, Ay, , A, B1, -+ , B C
X such that § C Q := U, A; x B; C~ R. Note that, for each ¢,j € N with 1 <7 <n
and 1<j<m, E;x F;NnA; x B; C RNQ = 0 and, thus, B; x 4; or F; > B;. By the
definition of the product apartness, S < A. [ |

Lemma 4.22 (1). Let (X,U) be a uniform space. Suppose that the topology induced

on X 1s compact in the classical sense. Then, classically, for any S, T C X,

ST «— SNnT=0.

Proof. Let (X,U) be a compact uniform space and S,7 C X. If S < T, then there
exists a symmetric U € U such that S x T €~ U?. Suppose that there exists some
z € SNT. Then there exist s € U[z]N S and ¢t € U[z] N T, whence (s,t) € S x TN U?

— a contradiction.

Now suppose that SNT = @ and =(S > T). Then, for every U € U, there exists
zy = (sy,tvy) € S x TNU. Ordering U by reverse inclusion, we have a net (zy)yey in
X x X. Since X and, therefore, X x X are compact, there is a subnet (zy,)nep such

that (zy, )nep converges to some z = (s,t) € X x X. Clearly, s€ Sand t € T.

Now let V' € U be arbitrary. Since (sy,)ncp converges to s and (ty, ).cp converges to

t, there exist ng, n1, ny € D such that, for each n € D,
(n=ny = sp, €VIs) A (n=ny = ty, €VIE) A (n=ny = U, CV)).

Choose n € D such that n > ng, n = n, and n > n,. Then (s,sy,) €V, (su,,tv,) €V
and (¢,ty,) € V1. So (s,t) € V3. As V was arbitrary, we conclude that s = ¢. This is
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a contradiction,as s=t € SNT =0. [ ]

Proposition 4.23 (f). Let (X,U) be a uniform space. Suppose that the topology

induced on X 18 compact in the classical sense. Then, classically, X 1s CCS3.

Proof. Lemma 4.22 implies that the apartness induced on X by U/ is the same as the
one used in Proposition 4.21. Thus, by said proposition, X is CC3. [ |

The following two theorems summarise the above classical results.

Theorem 4.24 (). Let (X,U) be a separable uniform space with a countable base
of entourages. Then X 1s compact if and only if it 1s CC3.

Proof. First note that X has a countable base of open sets. Suppose that X is CC3.
Then X is CC2 and Proposition 4.19 implies that X is compact. Conversely, Proposi-
tion 4.23 shows that, if X is compact, then it satisfies CC3. [ |

Corollary 4.25 (1). A separable metric space is compact if and only if it 1:s CC3.

Proof. Apply Theorem 4.24. [ |

Theorem 4.26 (f). Let (X,) be a Hausdorff apartness space with a countable

base of open sets such that
VS, TCX (ST < SNT=0).

Then X 1s compact if and only if it 1s CC3.

Proof. Proposition 4.19 implies that if X is CC3, then it is compact. Conversely,
Proposition 4.21 shows that, if X is compact, then it is CC3. [ |

Now we look at constructive results concerning CC3. First we show that a CC3 uniform
space is weakly totally bounded. Note that Proposition 4.17 already shows that a
separable, neatly located CC3 uniform space is strongly totally bounded; the following

requires fewer assumptions. We also show that CC3 implies the anti-Specker property.

60



Lemma 4.27. Let (X,U) be a uniform space and U,V € U symmetric with UU ~
V = X2. Then, for eachz € X, ~~V|z] CU.

Proof. Let y € (~ V)[z] and 2z € V[z]. Then (z,y) €~ V and (z,2z) € V, whence
y # z. This shows that (~ V)[z] C~ V][z], and ~ (~ V)[z] D~~ V]z|. Now let
Yy E~~ Viz] C~ (~ V)z]. If (z,y) €~ V, then y € (~ V)[z], which is impossible. So
(z,y) € U and y € Ulz]. |

Lemma 4.28. Let (X,U) be a uniform space and U € U. Then ~ U C —A.

Proof. Choose symmetric VW € U such that V3 C U, W C V and X2 = VU ~ W.
Pick (z,y) €~ U. Then

(z,y) € —~Wiz]x -~ Wy
C Viz] xV]y] (by Lemma 4.27)
c -V ((u,v) €EVZ]xV[y]nV = (z,y) € V> CU)
c ~W.

Thus (z,y) € -W C —A. |

Lemma 4.29. Let (X,U) be a uniform space and U € U. Then X> = -AU—~U.

Proof. Choose symmetric VW € U such that V3 C U, W C V and X2 = VU ~ W.
Let (z,y) € W. Clearly (z,y) € — ~ W]z] x — ~ W[y]. Let

(u,v) € = ~ Wz] x — ~ W[y] C V]z] x V]y]

(note Lemma 4.27). Now (z,u),(z,y),(y,u) € V, so (u,v) € V3 C U C~~ U. So
(z,y) e —~Uand W C — ~ U.

Choose W' € U such that X2 = WU ~ W'. By Lemma 4.28, —A D~ W', 50 X? = — ~
Uu-—-A. [ |
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Proposition 4.30. Let (X,U) be a CC3 uniform space. Then X 1is weakly totally

bounded.

Proof. Let U € U be arbitrary and choose a symmetric V € U such that X2 = UuU ~ V.
Then -~ V C U. By Lemma 4.29, X? = —AU— ~ V. Thus, by CC3 and the definition

of the product apartness, there exist n, m € N and
Bl,O) e )Bm,O, Bl,l) e )Bm,h CI,O; e ’Cn,O) Cl,l) e )Cn,l cX

such that
A C U Bi,o X Bi’]_, ~V C U Cj,() X Cj,l;

=1 7=1
and, for each 7,7 € N with 1 < ¢ < m and 1 < j < n, there exists £ € {0,1}
such that B;j > Cj,. Thus, for each 7,7 € N with 1 < ¢ <mand 1 < 7 < n,
Bi,O X Bi,]_ C _IC]',O X Cj,]_ and

n n
Bi,O X B,;,l C ﬂ —|Cj/,0 X Cj’,l C U Cj’,O X Cj’,l C~VCU.

j/:1 ]I:]_

For each 1 € N with 1 <1 <m, set A, = B;(N B;1, whence A; x A; C B, x B;; CU.
And, for each z € X, there exists 1 € N such that 1 <7 < m and (z,z) € B,y x B; 1,
which implies that z € A;. [ |

Proposition 4.31. Let (X,U) be a CC3 uniform space. Then X has the strong
anti-Specker property.

Proof. Let (z,)nen be a sequence in X U {oo} that is eventually bounded away from
each point in X. By applying dependent choice and passing to a subsequence, we may,

without loss of generality, assume that, for each n € N,
T, € —{zr:k e NAk #n}.
Now let

S={(z;,z;): 1, ENA1L# AT, #00ANT; # 00}.

Now let (z,y) € X2. Choose a symmetric U € U and N € N such that z, €
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—-U[z] N ~U[y] for each n > N and (z;,z;) ¢ U® for each ¢,7 € N with 7,7 < N.
Choose a symmetric V' € U such that UU ~ V2 = X2. Suppose that (z,y) €
U. If there exists ¢,7 € N with ¢ # 7 and (z;,z;) € Ulz] x Uly], then ¢,7 < N
and, as (z;,2),(z,v9), (v,z;) € U = U™, (z;,z;) € U? which is impossible. Thus
Ulz] x Uly]N'S = 0 and (z,y) € —S. Suppose, on the other hand, that (z,y) e~ V2.
If Viz] x V[y]N A # 0, then (z,y) € V2, which is impossible. Thus (z,y) € —A. As
(z,y) € X? was arbitrary, we conclude that X? = —S U —A.

By CC3, S 1 A. There exists a symmetric U € U such that, for each (z,y) € S and
(z,2) € A, either (z,2) €~ U or (y,2z) €~ U, whence S €~ U. Proposition 4.30 allows
us to choose m € N and Ay, A,,---, A,, C X such that

X:A1UA2U---UAmandA1><A1,A2><A2,---,AmXAmCU.

We now apply the pigeonhole principle. There are (m +2)*> — (m +2) values of 4,5 € N
with 1 < 2,7 < m + 2 and 7 # 7; this is at least m + 1 values. Suppose that z; # oo
for each ¢ € N with 1 <12 < m + 2. Then there exist 7,7,k € N with 1 <3z,7 <m + 2,
1 # 7,1 <k <mand z;,z; € Ag; this is impossible as it implies that (z;,z;) € U. So

our supposition is false and there exists 2 € Nsuchthat 1 <2 <m+2andz;=00. N

This concludes our investigation of CC1, CC2, and CC3. We now have a good un-
derstanding of how these criteria relate to other compactness conditions; we refer the
reader back to the summary diagram at the beginning of this chapter. The next chapter

speculates about extending this investigation.
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Chapter 5

Further Work

“What’s past is prologue”—William Shakespeare

The three criteria we have proposed in Chapter 4 all capture some aspect of com-
pactness. Most crucially, they make use of set-set apartness rather than just point-set
apartness like the criteria in Chapter 3. We have demonstrated how our criteria relate

to other notions of compactness, even though our results are not tight.

Our results could be strengthened and expanded. This might clarify which of our three
criteria is most useful; at the moment it seems that CC1 and CC2 are too weak to
classify compactness, while CC3 is too strong. Perhaps further exploration will lead to
a criterion of intermediate strength. The crucial issue seems to be locatedness: neat
locatedness is too strong, but, as we mentioned in Section 2.5, there is no natural

analogue to locatedness in apartness spaces.

We have not explored the categorical properties of compactness: subspaces, products,
and continuous images. Perhaps products will be the most interesting of these, as the
product apartness plays an important role in the definitions of CC2 and CC3. The
differences between CC1 and both CC2 and CC3 stem from the product apartness;
this leads one to suspect that an analogue to Tychonoff’s theorem [19] would be dif-

ficult to prove. However, the crucial feature of the product apartness is the finiteness
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requirement it contains, not the fact that it produces a different space. The reason we
needed the product apartness was because, as we have already remarked, classically,
any topological space can be equipped with a CC1 apartness; the product is our way
of avoiding this problem. However, because of this almost all of our results resort to

working in uniform spaces.

CC1 captures completeness in an interesting way. Normally, to show that a space is
complete, we must be able to construct a certain point from a Cauchy sequence or net.
This can be difficult, and CC1 does not require the construction of a point. This may

also make CC1 interesting from a point-free perspective.
We have no results that link our compactness criteria to RUSS and INT. In particular,
does [0, 1] satisfy CC1 in either of these models? Results of this form will give us a

much better understanding of the meaning of these criteria.

Lastly, it remains to choose more creative names for CC1, CC2, and CC3.
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almost located, 33

almost strongly continuous, 51
anti-Specker property, 41
apartness complement, 25

axiom of choice, 19

bar, 23

base of entourages, 28

binary fan, 23

BISH, 14

Bishop-style mathematics, 14
Brouwer’s intuitionism, 22

Brouwerian counterexample, 19

Cauchy net, 36

CC, 23

CC1, 45

CC2, 46

CCs, 46

choice function, 23
Church-Markov-Turing thesis, 21
CLASS, 21
compact, 39
complement, 25
complete, 36
continuous, 32
converge, 35
converges neatly, 42
countable, 17

countable choice, 20

CPF, 21

decidable, 17

denial inequality, 17
denumerable, 17
dependent choice, 20
detachable, 23
diagonal, 27
directed set, 35

entourage, 28
eventually bounded away from, 22

extensional, 17

fan theorem, 23

filter, 27

finite, 17

finitely enumerable, 17
FT, 23

Hausdorft, 35

inhabited, 18
INT, 22
intuitionistic logic, 14

irrational, 16
Kripke’s Schema, 24

law of excluded middle (LEM), 18
lesser limited principle of omniscience, 20
limit, 35
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limited principle of omniscience, 20 subnet, 35
LLPO, 20 symmetric, 27

located, 32 )
) tight, 17
logical complement, 25 ) )
topologically continuous, 31

LPO, 20

totally Cauchy, 36
Markov’s principle, 20 totally complete, 36
MP, 20

uniform, 23

neat cover, 33 uniform apartness, 28

neatly Cauchy, 42 uniform space, 27

neatly compact, 42 uniform topology, 28

neatly complete, 42 uniformly continuous, 32

neatly located, 33 weak anti-Specker property, 41
nested neighbourhoods property, 34

net, 35

weak law of excluded middle, 20

weak nested neighbourhoods property, 32
weakly located, 33

weakly totally bounded, 31
well-contained, 31

WLEM, 20

partial function, 21

path, 23

pigeonhole principle, 30

prefix, 23

principle of continuous choice, 23
product apartness, 29

product uniformity, 28

recursive model, 21
reverse-CC1, 51
RUSS, 21

Russian constructivism, 21

sequentially complete, 36
sequentially totally complete, 36
strong anti-Specker property, 41
strongly continuous, 32

strongly extensional, 18

strongly totally bounded, 31
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