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AbstratWe present three riteria for ompatness in the ontext of apartness spaesand Bishop-style onstrutive mathematis. Eah of our three riteria anbe summarised as requiring that there is a positive distane between anytwo disjoint losed sets. Neat loatedness and the produt apartness give usthree variations on this theme. We investigate how our three riteria relateto one another and to several existing ompatness riteria, namely lassialompatness, ompleteness, total boundedness, the anti-Speker property,and Diener's neat ompatness.
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OutlineChapters 1 and 2 brie�y introdue onstrutive mathematis and apartness spaesrespetively. These are fasinating areas of researh that an reveal elaborate mathe-matial strutures that are lost lassially. Neither subjet an be done justie in thespae we a�ord it. So we refer the reader to [9℄, [10℄, [19℄, and [27℄ for a more ompleteexposition.Chapter 3 disusses the problems faed when framing the notion of ompatness in aonstrutive setting. We disuss several existing riteria, whih provide the bakdropfor Chapter 4.In Chapter 4 we introdue a three new onditions that apture various aspets ofompatness in an apartness spae. We then investigate these onditions and howthey relate to one another and to the existing riteria. We show that these riteriaharaterise similar notions to those in Chapter 3. The di�erenes between our riteriahighlight the importane of loatedness and the need for something like the produtapartness.Finally, we onlude in Chapter 5.
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Chapter 1
Construtive Mathematis

�The interesting thing about this book is that it reads essentially like ordi-nary mathematis, yet it is entirely algorithmi in nature if you look betweenthe lines.� �Donald Knuth on Errett Bishop's Foundations of Constru-tive Mathematis [6℄ (in [20℄)What is onstrutive mathematis and why is it interesting? In short, onstrutivemathematis is the result of demanding more from proofs. The reason it is interesting isbeause (i) stronger proofs are philosophially satisfying, (ii) it exposes a rih struturethat is not otherwise visible, and (iii) it has onnetions to other areas of mathematis,most notably reursive analysis. In this hapter we give a brief introdution to thepriniples of onstrutive mathematis, whih we use throughout this thesis.What is mathematial truth? When one lassially asserts a statement P , it means thatP is a tautology�that is, P must be true with respet to any reasonable truth assign-ment. However, if one asserts P onstrutively, one interprets that as �I an �nd a proofof P �. The onstrutive interpretation is stronger than the lassial interpretation�anyonstrutively true statement is lassially true, but not all lassially true statementssatisfy the onstrutive interpretation.Let us look at an example to larify this distintion. The following proposition is given13



with a lassial proof.Proposition 1.1. There exist irrational real numbers a and b suh that ab is ra-tional.Proof. Note that p2 is irrational. Consider p2p2. If this is rational, set a = b = p2and we are done. If not, set a = p2p2 and b = p2. Then ab = �p2p2�p2 = 2, whenewe are also done. �The above proof shows that a and b must exist, but it does not give expliit valuesfor them. The problem is that we don't know whether or not p2p2 is rational. Aonstrutivist is therefore not satis�ed by this proof.What is the motivation for this interpretation of truth? There are two primary reasons.First, this interpretation means that truth and provability are equivalent, in the sensethat there is no a priori notion of truth, only one of provability. The seond reason isa pratial onsequene of the �rst; any onstrutive proof gives rise to an algorithm.This means that, at least in theory, onstrutive mathematis has appliations to areassuh as reursive analysis, algorithms, and numerial analysis; see [12℄, [16℄, [23℄, [8℄,[7℄, and [29℄ for more details.
1.1 Bishop-style MathematisThere are atually many variants of onstrutive mathematis, some of whih we willdisuss. We use Bishop-style mathematis (abbreviated as BISH). BISH usesintuitionisti logi.1Let A and B be statements, X a set and P a unary prediate. The intuitionistiinterpretations of the basi logial onnetives as follows.1Aside from intuitionisti logi, whih we desribe here, BISH also requires a formal set- or type-theoreti foundation. The standard foundations are Azel-Myhill set theory [1, 2, 26℄ and Martin-Löf'stype theory [24, 25℄. We use Intuitionisti Set Theory (IZF), as it has full separation; although thereis strong evidene that Construtive Set Theory (CZF) an also be used, see [9℄ Chapter 2 and [17℄.14



:A means that we an derive a ontradition from A.A ^B means we an �nd a proof of A and a proof B.A _ B means we an �nd a proof of A or we an �nd a proof of B. Note that thisimplies that we an deide whih of the two holds. Thus A _ B is stronger than: (:A ^ :B).A ) B means that, given a proof of A, we an �nd a proof of B. Essentially, thisstatement says that there is an algorithm for onverting a proof of A into a proofof B.8x 2 X P (x) means that, given x and a proof that x 2 X, we an �nd a proof thatx satis�es P ; in other words, we have an algorithm whih, applied to an objet xand the data arising from a proof that x 2 X, shows that P (x) holds.9x 2 X P (x) means that we an onstrut an objet x whih is in X and whihsatis�es P .These interpretations form the building bloks of Bishop-style mathematis. Carefulthought should make it lear whih dedutions an be made onstrutively and whihdedutions are not onstrutive. For example,:9x 2 X P (x)) 8x 2 X :P (x);is onstrutively derivable, but:8x 2 X P (x)) 9x 2 X :P (x)is not. Proving an existene statement is more di�ult onstrutively, as we need tobe able to desribe the objet; it is not su�ient to prove that an objet annot fail toexist.Note that, ontrary to popular belief, there is room for proof by ontradition in on-strutive mathematis. However, we an only use it to prove negative statements. Thefollowing is an example of its use.Proposition 1.2. The real number p2 is not rational.15



Proof. Suppose that p2 is rational. Then hoose integers a and b with (a=b)2 =2. Assume, without loss of generality, that a and b are oprime. Now a2 = 2b2,whene a must be even. Hene, 4(a=2)2 = 2b2 and 2(a=2)2 = b2. So b is also even�aontradition. �Construtive de�nitions are also slightly di�erent to their lassial ounterparts. Forexample, we might take irrational to mean more than just �not rational�; instead wedemand that an irrational number is not equal to any rational number�that is, x isirrational means2 8a; b 2 Z

�b > 0 =) ab 6= x� :This is lassially equivalent to not being rational, but in the onstrutive setting thisis a stronger riterion. The following proposition shows how we an work with thisde�nition.Proposition 1.3. The real number p2 is irrational.Proof. Let a and b be integers with b > 0. Proposition 1.2 shows that a2 6= 2b2.Consider the ase where b � a � 2b. We have����p2� ab ���� 4 � ����p2� ab ���� ����p2 + ab ���� = �����2� �ab�2����� = j2b2 � a2jb2 � 1b2 ;whene p2 6= a=b. If a < b, then a=b < 1 < p2. And, if a > 2b, then a=b > 2 > p2. �
1.2 Equality, Inequality, and CountingTerms suh as ��nite� and �ountable� take slightly di�erent meanings in the onstru-tive setting.� A set S is alled �nitely enumerable if S = fs0; s1; � � � ; sng for some n 2 N.2See the next setion for a more preise de�nition of inequality.16



� A set S is alled �nite if S = fs0; s1; � � � ; sng for some n 2 N and si 6= sjwhenever i 6= j: We take the empty set to be �nite.� A set S is alled ountable if S = fs0; s1; � � � g for some sequene (sn)n2N.� A set S is alled denumerable if S is �nite or S = fs0; s1; : : :g for some sequene(sn)n2N suh that, for eah i; j 2 N with i 6= j, si 6= sj.Equality and inequality are separate notions onstrutively. Let X and Y be sets andf : X ! Y a funtion. We always assume that X and Y have an equality relation =and that f is extensional�that is, if a = b, then f(a) = f(b). We also require that,for any set S, if x = y, then x 2 S if and only if y 2 S. In BISH a set sometimesomes equipped with an inequality relation 6= distint from the denial of equality andsatisfying the two properties8x; y 2 X (x 6= y ) :(x = y)) ;8x; y 2 X (x 6= y ) y 6= x) :An inequality relation 6= on a set X is not generally deidable, in the sense that foreah x; x0 2 X, either x = x0 or x 6= x0. Indeed, the denial inequality, de�ned by8x; y 2 X (x 6= y , : (x = y)) ;on the set R of real numbers is not deidable. However, denumerable sets, suh as Zand Q, do have deidable inequalities.An inequality relation 6= on a set X is said to be tight if, for eah x; y 2 X,: (x 6= y)) x = y;For example, the standard inequality on a metri spae (X; �) is given byx 6= y , � (x; y) > 0and is tight. 17



In the presene of inequality relations on the domain X and odomain of a funtion f ,we say that f is strongly extensional if8x; y 2 X (f(x) 6= f(y)) x 6= y) :We de�ne the standard inequalities on real numbers and sets as follows.8x; y 2 R (x 6= y () 9n 2 N (jx� yj � 2�n):8S; T (S 6= T () 9x 2 S(x =2 T ) _ 9x 2 T (x =2 S)):In light of this, we prefer to refer to a set S as being inhabited if S 6= ;, rather thanusing the double negative term nonempty.
1.3 Non-onstrutive PriniplesThere are a number of statements that are known not to be derivable in BISH. Theanonial example is the law of exluded middle (LEM)�the assertion that, for anystatement P , P or its negation holds.Let us investigate why LEM is not onstrutive. Classially, every statement is assigneda truth value and its negation is assigned the opposite value; thus it is impossible forboth P and :P to be assigned the value false; likewise, it is impossible for P _:P to beassigned the value false, whene the statement must be true. However, the onstrutiveinterpretation of LEM isGiven an arbitrary statement P , I an �nd a proof of P or I an �nd a proof of:P .This assertion is learly unreasonable, as Gödel sentenes, the ontinuum hypothesis,and the Riemann hypothesis are all examples of statements for whih, in some sense,18



we annot �nd proofs or ounter-proofs.We an formally show that a statement is non-onstrutive by providing a model ofBISH in whih it is provably false. Alternatively, we an use a Brouwerian ounterex-ample whih redues the statement in question to a known non-onstrutive statement.For example, the following proves that the axiom of hoie is non-onstrutive usingLEM.Sine, in our urrent onstrutive model we do not aept LEM, we must also rejet theaxiom of hoie, as it implies LEM. The axiom of hoie states that, for any binaryprediate P and sets X and Y ,(8x 2 X 9y 2 Y P (x; y)) =) �9f 2 Y X 8x 2 X P (x; f(x))� :To derive LEM from this, let P be an arbitrary statement. Let3a = f0g [ f1 : Pg; b = f0 : Pg [ f1g;and X = fa; bg; Y = f0; 1g:Then, for every x 2 X, there exists y 2 Y suh that y 2 x: for if x = a, then 0 2 x,and, if x = b, then 1 2 x. So, by the axiom of hoie, there exists a funtion f : X ! Ysuh that, for every x 2 X, f(x) 2 x. Now, we an deide whether f(a) = f(b) orf(a) 6= f(b), as the values of f belong to f0; 1g. If f(a) = f(b), then f(a) 2 a \ b,whene P holds. On the other hand, if f(a) 6= f(b), then,: (a = b) and P is false. Thisproves that LEM holds.
Despite the onstrutive failure of the full axiom of hoie, there are two weaker formsthat are normally aepted by pratitioners of BISH.43We use fa : Pg to denote fx : x = a ^ Pg.4See, however, the work of Rihman on hoie-free onstrutive mathematis [28℄.19



� The axiom of ountable hoie: for any binary prediate P and set Y ,(8n 2 N 9y 2 Y P (n; y)) =) �9f 2 Y N 8n 2 N P (n; f(n))� :� The axiom of dependent hoie: for any binary prediate P and set A,(8a 2 A 9a0 2 A P (a; a0)) =)8a 2 A 9f 2 AN(f(0) = a ^ 8n 2 N P (f(n); f(n+ 1)):
The axiom of hoie and LEM are two highly non-onstrutive statements. Thereare many weaker statements, often trivially true lassially, that annot be provedonstrutively. A partial list is the following.WLEM: The weak law of exluded middle: for any statement P , :P _ ::P .LPO: The limited priniple of omnisiene: for any binary sequene a, either an = 0for eah n or there exists n suh that an = 1; in symbols,8a 2 f0; 1gN (8n (an = 0) _ 9n (an = 1))LLPO: The lesser limited priniple of omnisiene: for any binary sequene a suhthat ajak = 0 whenever j 6= k, either a2n = 0 for eah n 2 N or a2n+1 = 0 foreah n 2 N.MP: Markov's priniple: for any binary sequene a for whih it is false that an = 0for eah n, there exists n 2 N suh that an = 1.It is worth noting that LPO is equivalent to the statement8x 2 R (x = 0 _ x 6= 0):Similarly, MP is equivalent to8x 2 R (:(x = 0) =) x 6= 0):20



Clearly, LPO implies LLPO and MP and LEM implies WLEM and LPO. See [10℄ for afurther disussion on the onstrutive properties of the onstrutive real numbers.
1.4 Models of BISHModels of BISH are systems in whih we an prove at least as muh as we an provein BISH. These are helpful for two reasons. Firstly, results in a model give us intuitionabout what to expet in BISH. And, seondly, if we an disprove a statement in a modelof BISH, then we know that that statement annot be proved in BISH.1.4.1 CLASSClassial mathematis (abbreviatedCLASS) is a model of BISH. This is simply beauseany statement that holds in the onstrutive sense is also true lassially. Classial logiis BISH with LEM added.1.4.2 RUSSRussian onstrutivism (abbreviated RUSS) [10, 30, 22℄ is also known as the re-ursive model. RUSS attempts to apture reursive analysis in logial form. RUSSadds two main axioms to BISH. The �rst is MP and the seond isCPF: There is an enumeration '1; '2; � � � of the set of partial funtions from N to Nwith ountable domains.Note that a partial funtion f from X to Y is a funtion from a subset dom(f) of X(alled the domain of f) to Y . This is a form of the Churh-Markov-Turing thesis.CPF an be interpreted as asserting that all funtions are omputable. Note that CPFis provably false in CLASS, by a diagonalisation argument.21



The �spirit� of RUSS is that everything an be represented by a natural number. Everystatement in RUSS is to be interpreted as a statement about omputability.RUSS is inonsistent with CLASS. In partiular, LPO and LLPO are provably false init. Indeed, LPO orresponds to the halting problem. This justi�es our earlier assertionthat LPO and LLPO are non-onstrutive.Another interesting result in RUSS is Speker's theorem. This theorem is important inour later study of ompatness. It essentially states that [0; 1℄ is not ompat in RUSSin a very strong way.Theorem 1.4 (Speker). In RUSS, there exists a stritly inreasing sequene (rn)n2Nin Q \ [0; 1℄ that is eventually bounded away from every point in [0; 1℄�that is,for every x 2 [0; 1℄, there exist Æ > 0 and N 2 N suh that, for every n � N ,jx� rnj � Æ.For a proof of Speker's theorem see [10℄ Chapter 3, Theorem 3.1. The basi ideabehind the proof is that the �limit� of the sequene is not a omputable real number.Additionally, in RUSS all funtions from R to R are ontinuous (though this requiresslightly more than just MP and CPF to prove) and the intermediate value theorem isfalse.
1.4.3 INTThe last model we disuss is Brouwer's intuitionism (abbreviated INT) [10, 30, 14℄.Again, we obtain it by adding two main priniples to BISH. First, we must give severalde�nitions.We de�ne a metri � on NN by�(a; b) � inf n2�n : 8i � n ai = bio :22



Relative to this metri NN is a omplete, separable metri spae.First we add the priniple of ontinuous hoie:CC Any funtion from NN to N is ontinuous. And, if P � NN �N and, for eaha 2 NN, there exists n 2 N with (a; n) 2 P , then there is a hoie funtionf : NN ! N suh that (a; f(a)) 2 P for eah a 2 NN.Note that CC is inompatible with CPF ([10℄ Chapter 5, Theorem 2.2). Thus INT andRUSS are inompatible. Also, LPO and LLPO are inompatible with CC.We say that a set S is detahable if, for any x, either x 2 S or x =2 S. For any setS, let S� be the set of all �nite sequenes in S and let SN be the set of all in�nitesequenes in S. A detahable subset � of f0; 1g� is alled a binary fan if, for eah(a0; a1; � � � ; an) 2 � with n > 0, the restrition (a0; a1; � � � ; an�1) is also in �. Anin�nite sequene a = (a0; a1; � � � ) 2 f0; 1gN is alled a path in the binary fan � if, foreah n 2 N, (a0; a1; � � � ; an) 2 �. A subset B of a binary fan � is alled a bar for � ifevery path a in � has a pre�x in B�that is, (a0; a1; � � � ; an) 2 B for some n 2 N. Abar B for a binary fan � is alled uniform if there exists N 2 N suh that, for everypath a in �, there exists n 2 N with n � N and (a0; a1; � � � ; an) 2 B.The seond priniple we add is alled the fan theorem:FT Every detahable bar of a binary fan is uniform.The fan theorem is a ontrapositive form of the lassial König's lemma [21℄. Thus it isalso true in CLASS. Note that the name �fan theorem� is a misnomer, as we onsiderit to be an axiom, rather than a theorem.In fat FT is equivalent to the following result [10, 5, 18℄.Theorem 1.5. Every uniformly ontinuous f : [0; 1℄! (0;1) has positive in�mum.23



Theorem 1.5 is, however, false in RUSS via an expliit ounterexample [10℄. ThusTheorem 1.5 is independent of BISH.We an also add the following axiom to INT to make MP provably false.Kripke's Shema: For eah proposition P there exists an inreasing binarysequene a 2 f0; 1gN suh that P holds if and only if an = 1 for some n 2 N.This onludes our introdution to the priniples of onstrutive mathematis. In thenext hapter we build a framework for topology in BISH.
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Chapter 2
Apartness and Uniformity

�Very little is left of general topology after that vehile of lassial math-ematis has been taken apart and reassembled onstrutively. With someregret, plus a large measure of relief, we see this �amboyant engine ollapseto onstrutive size.��Errett Bishop ([6℄, page 63)Apartness spaes provide a onstrutive framework for topology. They were developedby Bridges and Vîµ  [9℄ in 2000. Before giving the axioms for those spaes, we introduesome notions of omplement for a subset S of a set X with an inequality. We havethe logial omplement :S � fx 2 X : : (x 2 S)g ;the omplement �S � fx 2 X : 8s 2 S (x 6= s)g ;and the apartness omplement�S � fx 2 X : fxg ./ Sg ;where ./ is an apartness relation as introdued below.25



De�nition 2.1. A apartness spae is an inhabited set X and a binary relation ./on subsets of X satisfying the following for A;B;C � X.B0 A ./ B =) B ./ A.B1 X ./ ;.B2 �A �� A.B3 A ./ (B [ C) () (A ./ B ^A ./ C).B4 �A �� B =) �A � �B.B5 8x 2 �A 9D � X (x 2 �D ^X = �A [D).Note that we will not disuss non-symmetri apartness spaes (those without B0) orpre-apartness spaes (those laking B5). If A ./ B, we say that A is apart from B orthat A and B are apart. For x 2 X and S � X, we write x ./ S rather than fxg ./ S.An apartness spae (X; ./) indues a topology onX in whih the apartness omplementsform a base of open sets. Classially, given a topologial spae (X; � ), one an de�nean apartness ./ on X by8A;B � X �A ./ B () �A \ �B = ;� : (2.1)However, an apartness spae is designed to apture more information than just thetopology of the spae. Two sets being apart should apture the notion of them havinga positive distane between them. In this sense, the de�nition given in (2.1) is not veryuseful. For example, in R2, the setsn(x; y) 2 R2 : xy = 0o ;n(x; y) 2 R2 : xy = 1ohave disjoint losures, but they do not have a positive distane between them.26



2.1 Uniform SpaesAbstrations of metri or distane notions are usually de�ned in the ontext of uniformspaes. We will give a onstrutive de�nition of a uniform spae and show how thisindues an apartness. First we introdue some notation onneted with subsets of theCartesian produt of a set X with itself.The diagonal of X2 is � � f(x; x) : x 2 Xg :For W;W 0 � X2,W ÆW 0 � n(x; z) 2 X2 : 9y 2 X ((x; y) 2 W ^ (y; z) 2 W 0)o ;W 1 � W; and W n+1 � W n ÆW (n 2 N) ;and W�1 � n(x; y) 2 X2 : (y; x) 2 Wo :We all W symmetri if W = W�1. If S � X, thenW [S℄ � fy 2 X : 9s 2 S (s; y) 2 Wg :If S = fxg with x 2 X, we writeW [x℄ � W [fxg℄ = fy 2 X : (x; y) 2 Wg :We reall here that an inhabited set F of inhabited subsets of X is a �lter if� the intersetion of two sets in F belongs to F , and� supersets of sets in F belong to F .De�nition 2.2. A uniform spae is an inhabited set X equipped with an inequalityrelation 6= and a set U of subsets of X2 suh that the following hold.27



U1 U is a �lter on X2.U2 For eah x; y 2 X, x 6= y if and only if there exists U 2 U suh that (x; y) 2:U .U3 For eah U 2 U , there exists V 2 U suh that V 2 � U .U4 For eah U 2 U , there exists V 2 U suh that X2 = U [ :V .U5 For eah U 2 U , there exists V 2 U suh that V � U�1.A member of U is alled an entourage. A base of entourages is a set B � U suh that,for eah U 2 U there exists V 2 B with V � U . A uniform spae has an assoiateduniform topology, in whih the sets of the form U [x℄ with U 2 U form a base ofneighbourhoods of the point x 2 X.Any metri spae (X; �) is also a uniform spae in whih���1 ��0; 1n+ 1�� : n 2 N

�is a base of entourages.The Cartesian produt X = Yi2IXiof a family ((Xi;Ui))i2I of uniform spaes has a natural uniform struture, the produtuniformity, in whih a base of entourages onsists of all sets of the formn(x;y) 2 X2 : 8i 2 F ((xi; yi) 2 Ui)owith F a �nitely enumerable subset of I and Ui 2 Ui for eah i 2 F .Given a uniform spae (X;U) we de�ne a binary relation ./ between subsets A;B of Xby A ./ B () 9U 2 U (A�B � :U) : (2.2)It an be shown that this relation is an apartness (we all it the uniform apartness)28



on X, and that, for eah A � X,�A = fx 2 X : 9U 2 U (U [x℄ � :A)g :This implies that the topology indued by the apartness is the same as the uniformtopology on X.
2.2 Produt ApartnessesThere are two natural ategorial notions in apartness spaes: the produt of twoapartness spaes and subspaes.A subspae of an apartness spae is de�ned in the obvious manner and behaves mostlyas expeted. Note that some properties do not pass immediately to subspaes. Forexample, a subspae of a separable spae is not neessarily separable. Regularity on-ditions suh as weak or neat loatedness (whih we de�ne later) will ensure that asubspae inherits more properties. See [9℄ for more details.The produt of two apartness spaes is more interesting for our purposes.De�nition 2.3. Let (X; ./X) and (Y; ./Y ) be apartness spaes. Then the produtapartness ./X�Y on X�Y is de�ned as follows. Let S; T be subsets of X�Y . ThenS ./ T if and only if there exist m;n 2 N,A1; A2; � � � ; Am; B1; B2; � � � ; Bn � Xand A01; A02; � � � ; A0m; B01; B02; � � � ; B0n � Ysuh that S � m[i=1Ai �A0i; T � n[j=1Bj � B0jand, for eah i; j with 1 � i � m and 1 � j � n, either Ai ./X Bj or A0i ./Y B0j.The pair (X � Y; ./X�Y ) is alled the produt of the apartness spaes (X; ./X)29



and (Y; ./Y ).
Applying B5 we see that, for eah A � X � Y ,�A = f(x; y) 2 X � Y : 9E � X 9F � Y ((x; y) 2 �E ��F �� A)g :It follows from this that the produt apartness indues the usual produt topology.However, the produt apartness is somewhat irregular, in the sense that it does notoinide with the produt of uniform spaes. Consider, for example, R2. LetS = f(z; z) : z 2 Rg ;T = n(x; y) 2 R2 : jx� yj � 1o :Considered as subsets of the metri spaeR2, S and T are apart, sine for eah (z; z) 2 Sand (x; y) 2 T ,max fjx� zj ; jy � zjg � 12 (jx� zj+ jz � yj) � 12 jx� yj � 12 :However, if S and T are onsidered as subsets of the produt apartness spae R �R,they are not apart. To see this, suppose thatS � m[i=0Ai �A0i � R2:Then, for eah n 2 N, hoose in 2 f0; 1; � � � ;mg suh that (n; n) 2 Ain � A0in . Sinein an only take �nitely many values over in�nitely many indies n 2 N, there existn; n0 2 N with n 6= n0 and in = in0�this is an appliation of the pigeonhole priniple,whih states that8n 2 N 8f 2 f0; 1; � � � ; ngf0;1;��� ;n+1g 9i; j 2 f0; 1; � � � ; n+ 1g (i 6= j ^ f(i) = f(j)) :Now, jn� n0j � 1, so (n; n0) 2 T \ �Ain �A0in� :This shows that :(S ./ T ). Note that we now have two di�erent apartnesses on R2that indue the same topology. 30



2.3 Total BoundednessWe now disuss some notions that are losely onneted with the ompatness proper-ties that are the main objet of our investigations.De�nition 2.4. Let (X;U) be a uniform spae. We say that X is weakly totallybounded if, for eah U 2 U , there exist n 2 N and A1; � � � ; An � X suh thatX = Sni=1Ai and suh that, for eah i 2 N with 1 � i � n, Ai � Ai � U . If also Aiis inhabited for eah appliable i, then X is said to be strongly totally bounded.Note that these onditions are lassially equivalent, and that, onstrutively, a stronglytotally bounded spae is weakly totally bounded.Given a strongly totally bounded uniform spae, we an reover the uniformity fromthe apartness it indues: Let (X; ./) be an apartness spae. We say that A � X iswell-ontained in B � X if there exists C � X suh that B [ C = X and C ./ A;we write A � B to denote this. Let n 2 N and A1; A2; � � � ; An; B1; B2; � � � ; Bn � Xsatisfy Sni=1Ai = X and Ai � Bi for eah appliable i. If the apartness ./ on X isindued by a uniform struture U , then Sni=1Bi � Bi is an entourage of U . Moreover,entourages of this form with eah Ai inhabited form a base of entourages if and only ifthe uniform spae is strongly totally bounded. See [9℄ Propositions 3.9.13 and 3.9.14for more details.
2.4 Continuity PropertiesDe�nition 2.5. Let (X; ./X) and (Y; ./Y ) be apartness spaes, and f : X ! Y afuntion. We say that f is� topologially ontinuous if f�1(U) is open in X whenever U is an opensubset of Y ; 31



� ontinuous if, for eah x 2 X and A � X,f(x) 2 �Y f(A)) x 2 �XA�that is to say f�1(�Y f(A)) � �XA;� strongly ontinuous if, for eah A;B � X, f(A) ./Y f(B) implies that A ./XB.Clearly, strong ontinuity implies ontinuity. Moreover, in a metri spae, ontinuityorresponds to the usual "-Æ de�nition of ontinuity. Continuity and topologial on-tinuity are equivalent if the range Y has the so-alled weak nested neighbourhoodsproperty, whih asserts that8A � Y 8x 2 �A 9B � Y (x 2 �B ^ :B � �A):Strong ontinuity is related to the well-studied notion of uniform ontinuity, whih wenow introdue. Let f be a funtion from a uniform spae (X;U) to a uniform spae(Y;V), and de�ne f � f : X �X ! Y � Y by(f � f) (x; x0) � (f(x); f(x0)) :We say that f is uniformly ontinuous if (f � f)�1(V ) 2 U for eah V 2 V. Uniformontinuity implies strong ontinuity. It an be shown that f is uniformly ontinuousif and only if f � f is strongly ontinuous with respet to the produt apartnesses onX �X and Y � Y ; see [9℄, Proposition 3.3.4.
2.5 Loatedness PropertiesIn a metri spae (X; �), we say that S � X is loated if�(x; S) � inf f�(x; y) : y 2 Sg32



exists for eah x 2 X�that is, for eah �; � 2 R with � < �, either there exists y 2 Swith �(x; y) < � or �(x; y) > � for eah y 2 S. Classially, every subset of a metrispae is loated. However, onstrutively this is not always the ase: for any statementP , the inhabited set S = f0g [ f1 : Pgis loated subset of the disrete metri spae f0; 1g if and only if P _ :P holds. Lo-atedness is a very useful ondition in the onstrutive study of metri spaes, so wewould like an analogue for loatedness in apartness spaes.There is at least one natural analogue of the metri property of loatedness in theontext of a uniform spae (X;U). A subset S of X is alled almost loated [11℄ if,for eah U 2 U , there exists V 2 U suh that, for every x 2 X, either S \ U [x℄ 6= ;or S \ V [x℄ = ;. Although there is no obvious analogue of loatedness for subsets of ageneral apartness spae, there are two useful loatedness notions therein.De�nition 2.6. Let (X; ./) be an apartness spae, and S � X. We say that S isweakly loated if, for eah x 2 X and A � X with x 2 �A, either S \ �A 6= ; orx 2 �S.Weak loatedness is stritly weaker than loatedness. A stronger alternative is given inDe�nition 2.7. Let (X; ./) be an apartness spae. We say that an ordered pair(A;B) of subsets of X is a neat over of X if there exist A0; B0 � X suh thatA [A0 = B [ B0 = X and A0 ./ B0. We say that S � X is neatly loated if for anyneat over (A;B) of X, either A \ S 6= ; or S � B.Intuitively, a neat over is a pair of sets overing the whole spae and with a �positiveoverlap�. Note that, if (A;B) is a neat over of an apartness spae X, then A[B = Xand (B;A) is also a neat over. Classially, all sets are neatly loated. In a metrispae, neat loatedness implies loatedness. Construtively, in an arbitrary apartnessspae, neat loatedness does not neessarily imply weak loatedness; however, Lemma2.9, for whih we introdue the next de�nition, shows that under a ertain separationondition, this is the ase. 33



De�nition 2.8. Let (X; ./) be an apartness spae. We say that X has the nestedneighbourhoods property if8x 2 X 8A � X (x 2 �A =) 9B � X (x 2 �B ^ :B ./ A)):Any uniform spae has the nested neighbourhoods property.Lemma 2.9. Let X be an apartness spae with the nested neighbourhoods property.Then any neatly loated subset of X is weakly loated.Proof. Let S � X be neatly loated. Let A � X and x 2 �A. Then, by B5, thereexists B � X suh that x 2 �B and B [ �A = X. By the nested neighbourhoodsproperty, there exists C � X suh that x 2 �C and :C ./ B, whene �C ./ B. Again,by B5, there exists D � X suh that x 2 �D and D [ �C = X. Then (�A;D) is aneat over, as �A [ B = D [ �C = X and B ./ �C. So either S \ �A 6= ; or S � Dand x 2 �D � �S. �Lemma 2.10. A strongly totally bounded subset of a uniform spae is neatly lo-ated.Proof. Let (X;U) be a uniform spae and S a strongly totally bounded subset thereof.Let (A;B) be a neat over of X and hoose A0; B0 � X and U 2 U suh that A [ A0 =B[B0 = X and A0�B0 � :U . Choose a �nitely enumerable F � S suh that S � U [F ℄.Sine A [ A0 = X and F is �nite, either F \ A 6= ; or F � A0. In the former ase weare done, as S \A � F \A 6= ;. Suppose, on the other hand, that F � A0. Let y 2 S.Then there exists x 2 F with y 2 U [x℄. If y 2 B0, then (x; y) 2 A0 � B0 \ U = ; � aontradition. Thus S � :B0 � B. �
2.6 The Hausdor� PropertyThe following de�nes a very useful regularity ondition for apartness spaes, namelythe ability to separate distint points by open sets.34



De�nition 2.11. Let (X; ./) be an apartness spae. We say that X is Hausdor�if, for every x; y 2 X with x 6= y, there exist U; V � X suh that x 2 �U , y 2 �Vand �U \ �V = ;.Any uniform spae is Hausdor�. A simple onsequene of a spae being Hausdor� isthat, for every x; y 2 X, x 6= y if and only if fxg ./ fyg.
2.7 Sequenes, Nets, and CompletenessNext we disuss nets, onvergene, and ompleteness in apartness spaes.De�nition 2.12. A direted set onsists of an inhabited set D and a binary relation� on D suh that� n � n for eah n 2 D;� if l;m; n 2 D, l � m, and m � n, then l � n; and� for eah m;n 2 D there exists l 2 D suh that l � m ^ l � n.A net in a spae X onsists of a direted set (D;�) and a funtion x : D ! X; wedenote suh a net by (xn)n2D. A subnet of a net (xn)n2D is a net (nk)k2E in D withthe property that for eah n 2 D, there exists k 2 E suh that nk0 � n wheneverk0 2 E and k0 � k; this subnet is denoted by (xnk)k2E .De�nition 2.13. A net (xn)n2D in an apartness spae X is said to onverge tox 2 X if, for eah A � X with x 2 �A , there exists m 2 D suh that xn 2 �Awhenever n 2 D and n � m. The point x is then alled a limit of the net.Cauhy sequenes play an important role in the theory of metri spaes, and, in par-tiular, in ompat ones. We now de�ne analogues of Cauhyness for nets, and then ofompleteness, in uniform and apartness spaes.35



De�nition 2.14. Let (X;U) be a uniform spae and x = (xn)n2D a net in X. Wesay that x is a Cauhy net if, for eah U 2 U , there exists m 2 D suh thatxn 2 U [xm℄ whenever n 2 D and n � m.De�nition 2.15. Let (X; ./) be an apartness spae and x = (xn)n2D a net in X.We say that x is totally Cauhy if, for eah S; T � D suh that x(S) ./ x(T ), thereexists m 2 D suh that it is impossible for there to be n; n0 2 D with n � m, n 2 S,n0 � m, and n0 2 T .De�nition 2.16. A uniform spae or an apartness spae X is said to be omplete(respetively, totally omplete) if every Cauhy (respetively, totally Cauhy) netonverges to a limit in X.Note that every sequene is a net. By restriting ourselves to sequenes rather thannets, we an de�ne sequentially omplete and sequentially totally omplete bymaking the obvious modi�ations in De�nition 2.16.It is lear that in a uniform spae, a Cauhy net is totally Cauhy, and hene thata totally omplete uniform spae is omplete. In a strongly totally bounded uniformspae, a totally Cauhy net is Cauhy. A di�ult argument shows that a totally Cauhysequene in a uniform spae is Cauhy; see [9℄, Theorem 3.5.12.
What is the motivation for studying apartness spaes? In terms of struture, apartnessspaes lie between topologial spaes and uniform spaes. An apartness spae allowsone to de�ne strong ontinuity, whih annot be de�ned on an arbitrary topologialspae. Also, di�erent apartnesses may indue the same topology. So this shows thatan apartness spae has stritly more struture than a topologial spae. On the otherhand, an apartness spae laks any axiom similar to the powerful U3 axiom of uniformspaes and it also laks a natural analogue to loatedness, whih indiates that it hasstritly less struture than a uniform spae. This already makes apartness spaes veryinteresting, and has led to extensive researh. A lassial exposition, based on the36



notion of proximity rather than that of apartness, is given in [27, 3℄; a onstrutiveexposition will appear as [9℄.Construtively, apartness spaes provide signi�ant omputational information; theapartness of two sets is a muh stronger property than the mere disjointness of thesets, or even their losures. For example, if an apartness spae is derived from atotally bounded uniform spae, then the uniformity an be reovered from the apartness[9℄, whih is not true of a mere toplogy. And, lassialy, every apartness spae withthe Efremovi£ property is uniformisable [27℄. This makes apartness spaes a strongfoundation upon whih to build a onstrutive theory of topology.
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Chapter 3
Compatness Properties for ApartnessSpaes

�The lassi theorem of Heine-Borel-Lebesgue asserts that every open overof a losed and bounded subset of the spae of real numbers has a �nitesubover. This theorem has extraordinarily profound onsequenes, and,like most good theorems, its onlusion has beome a de�nition.��John L.Kelley ([19℄, page 135)Classially, ompatness is a very strong regularity ondition; it has nie ategorialproperties and has numerous appliations. In this hapter we will take a look at lassialompatness and then previous attempts to develop a onstrutive version thereof.De�nition 3.1. Let (X; � ) be a topologial spae. Then X is said to be ompat,if every open over has a �nitely enumerable subover�that is to say, for eahC � � with SC = X, there exists a �nitely enumerable F � C with SF = X.This de�nition, unfortunately, is not very useful onstrutively, beause it is too strong.1We annot even prove that [0; 1℄ is ompat. Note that we annot demand a �nitesubover, rather than a �nitely enumerable one: otherwise the ompatness of f0; 1g isequivalent to LEM.1Some onstrutive formal topologists, however, �nd this de�nition aeptable.39



A lassially equivalent haraterisation of ompatness is that every net in X has aonvergent subnet. And, in a uniform spae, ompatness is lassially equivalent tothe spae being omplete and totally bounded. The produt of ompat spaes is aompat spae; a losed subset of a ompat spae is ompat; and the ontinuous imageof a ompat spae is ompat. An important theorem about ompat uniform spaesis the so-alled uniform ontinuity theorem, whih states that a ontinuous funtionfrom a ompat uniform spae to a uniform spae is uniformly ontinuous.Construtively, ompleteness and total boundedness are very useful notions. We anprove that, say, [0; 1℄ possesses both of these properties. We an also show that theyare both preserved by ountable produts and by losed almost loated subspaes. Andtotal boundedness (in either the strong or weak form) and sequential ompleteness arepreserved by uniformly ontinuous funtions.So it seems that �omplete and totally bounded� is a satisfatory onstrutive riterionfor ompatness. However, this de�nition requires the struture of a uniform spae.We would like to have a de�nition whih only requires the struture of an apartnessspae.We now disuss several andidate riteria from the literature.
3.1 Total CompletenessSine we an de�ne total ompleteness in an apartness spae (see De�nition 2.16), itseems that this would make a good approximation to ompleteness. However, it turnsout that total ompleteness is lassially equivalent to ompatness; see [9℄, Setion3.5. Have we found a onstrutive riterion for ompatness? To an extent yes, but,unfortunately, there are still problems with total ompleteness.The problem arises �rstly from the fat that total ompleteness doesn't �look� like aompatness ondition and seondly from the fat that it is a very strong ondition. Toderive ompatness from total ompleteness we need ultra�lters, whih require heavy40



use of the axiom of hoie; it seems unlikely that there is a diret or onstrutive proof.We are also unable to prove that [0; 1℄ is totally omplete; we are, however, able toshow that R is totally sequentially omplete.
3.2 Anti-Speker PropertiesThe alternative approah to de�ning ompatness�via onvergent subnets orsubsequenes�also has some problems. In the reursive model of onstrutive mathe-matis we an show that [0; 1℄ is not ompat�this is the result of Speker's theorem(Theorem 1.4).Speker's theorem implies that we annot onstrutively prove that an inreasing ra-tional sequene in [0; 1℄ onverges. However, the antithesis of Speker's theorem is auseful ompatness riterion.De�nition 3.2. Let (X; ./) be an apartness spae. Then we say that X has theweak anti-Speker property if it is impossible for there to be a sequene (xn)n2Nin X that is eventually bounded away from eah point in X�that is, for everyx 2 X, there exists N 2 N suh thatx 2 �fxn : n 2 N ^ n � Ng :We also say that X has the (strong) anti-Speker property if, for any sequene(xn)n2N in X[f1g (where 1 is bounded away from X) that is eventually boundedaway from every point in X, there exists n 2 N suh that xn =1.Note that the strong anti-Speker property implies the weak anti-Speker property andthe onverse is true if one assumes Markov's priniple. Classially, the anti-Spekerproperty is implied by sequential ompatness and the onverse is true if the spae is�rst-ountable.It an be shown that the strong anti-Speker property for [0; 1℄ is equivalent to a form41



of Brower's fan theorem and that the produt of two anti-Speker spaes is anti-Spekerunder the assumption of BD-N; see [4℄.
3.3 Neat CompatnessThere is one more approah to de�ning ompatness that is worth disussing. Thisapproah is due to Diener [13℄.De�nition 3.3. Let (X; ./) be an apartness spae. We say that� X is neatly ompat if X is neatly loated and it is impossible that bothLPO hold and there is a sequene (Un)n2N of open subsets of X suh thatSn2N Un = X and, for eah n 2 N, Un � Un+1 and :Un 6= ;;� a net (xn)n2D in X is neatly Cauhy if, for any �nitely enumerable olletionf(Sj; Tj) : j 2 Fg of neat overs of X, there exists N 2 D suh that eitherxN 2 Tj for eah j 2 F or there exists k 2 F suh that xn 2 Sk for all n 2 Dwith n � N ;� a net (xn)n2D in X onverges neatly to a point x 2 X if, for any �nitelyenumerable olletion f(Sj; Tj) : j 2 Fg of neat overings of X, either x 2 Tjfor eah j 2 F or there exist k 2 F and N 2 D suh that x 2 Sk and xn 2 Skfor eah n 2 D with n � N ; and� X is neatly omplete if every neatly Cauhy sequene in X onverges neatlyto a limit in X.Neat ompatness implies total boundedness in a separable uniform spae, and, in auniform spae, neat ompleteness implies ompleteness. Conversely, a omplete andtotally bounded uniform spae with a ountable base of entourages is neatly ompat,neatly omplete, and, of ourse, separable. Moreover, if f is a strongly ontinuousand topologially ontinuous funtion from a neatly ompat apartness spae to anapartness spae, then the range of f is neatly ompat. This implies that, if f is a42



strongly ontinuous funtion from a neatly ompat apartness spae X to the real line,then sup f(X) exists.Neat ompatness and ompleteness seem to be very good riteria for ompatness, asthey have desirable ategorial properties and they are more-or-less equivalent to thespae being totally bounded and omplete. However, the de�nitions are very unwieldyand neat ompatness is mostly a negative ondition.
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Chapter 4
Compatness Criteria

�Just beause something doesn't do what you planned it to do doesn't meanit's useless.��Thomas Edison [15℄

It already seems that we will have di�ulty �nding one ompatness riterion that is asuniversally aepted as De�nition 3.1 is lassially. So we will work with several riteria.All of the riteria disussed in the previous hapter, apart from neat loatedness andneat ompleteness, used only the topology of the spae; none of them refer to apartnessbetween sets. We will make use of the extra struture of apartness spaes. We haveome up with three riteria whih are based on the observation that, in a lassialompat uniform spae, disjoint losed sets have a positive distane between them.Our three riteria di�er in their use of neat loatedness and the produt apartness.As we have mentioned before, di�erent apartnesses an indue the same topology. Asour riteria depend on the apartness, they are more sensitive to the struture of thespae than those disussed in Chapter 3. 45



De�nition 4.1. Let (X; ./) be an apartness spae. We say that X isCC1 if, for any neatly loated S; T � X with �S [ �T = X, S ./ T ;CC2 if, for any neatly loated S � X2 with �S [ �� = X2, S ./ � in the produtapartness; andCC3 if, for any S � X2 suh that �S [�� = X2, S ./ � in the produt apartness.We immediately note that any CC3 spae is also a CC2 spae. Moreover, Lemma4.2 shows that a Hausdor� CC3 spae is CC1 under either a uniformity or LEM. And,lassially, CC2 and CC3 are equivalent. Thus the above onditions are roughly orderedby strength. Also CC1, CC2 and CC3 are all preserved by strong homeomorphisms.Lemma 4.2. Let (X; ./) be a Hausdor� apartness spae. If X is CC3, then it isalso CC1 if we assume that either(i) X is a uniform spae1 or(ii) LEM holds.Proof. Let X be a CC3 apartness spae and S; T � X with �S [ �T = X. Take anarbitrary (x; y) 2 X2. If x 2 �S or y 2 �T , then (x; y) 2 �(S � T ). Suppose, on theother hand, that x 2 �T and y 2 �S. By B5 there exists A � X suh that x 2 �A and�T [ A = X. If y 2 �T , then (x; y) 2 �(S � T ). So we suppose instead that y 2 A,whene x 2 �fyg and x 6= y. Sine X is Hausdor� there exist U; V � X suh thatx 2 �U , y 2 �V and �U \ �V = ;. Thus (x; y) 2 �U � �V � � and (x; y) 2 ��.So �(S � T ) [ �� = X2, whene, by CC3, S � T ./ �. Now hoose m;n 2 N andA1; A2; � � � ; Am; A01; A02; � � � ; A0m; B1; B2; � � � ; Bn; B01; B02; � � � ; B0n � X suh thatS � T � m[i=1Ai � A0i; � � n[j=1Bj �B0j;and, for eah i; j 2 N with 1 � i � m and 1 � j � n, either Ai ./ Bj or A0i ./ B0j.1Note that a uniform spae is neessarily Hausdor�.46



(i) Suppose that (X;U) is a uniform spae. Then, for eah i; j 2 N with 1 � i � m and1 � j � n, we an hoose Ui;j 2 U suh that either Ai�Bj\Ui;j = ; or A0i�B0j\Ui;j = ;.Let U = Ti;j Ui;j and suppose that (s; t) 2 S�T \U . Choose i suh that (s; t) 2 Ai�A0iand hoose j suh that (s; s) 2 Bj � B0j. Sine (s; s) 2 Ai � Bj \ Ui;j, we must haveA0i � B0j \ Ui;j = ;. This ontradition shows that S � T \ U = ; and thus S ./ T .(ii) Instead suppose that LEM holds. Fix j 2 N with 1 � j � n and hoose Ij; I 0j �f1; 2; � � �mg with Ij \ I 0j = ; and Ij [ I 0j = f1; 2; � � �mg suh that, for every i 2 Ij,Ai ./ Bj and, for every i 2 I 0j, A0i ./ B0j. Let Cj = Si2Ij Ai and C 0j = Si2I0j A0i. Then, byB3, Bj ./ Cj and B0j ./ C 0j. We also haveS � T � (Cj �X) [ (X � C 0j);whene, by LEM, either S � Cj or T � C 0j. Otherwise hoose s 2 SnCj and t 2 TnC 0j;then (s; t) 2 S � Tn((Cj � X) [ (X � C 0j))�a ontradition. Thus either S ./ Bj orT ./ B0j .Now hoose J; J 0 � f1; 2; � � �ng with J \ J 0 = ; and J [ J 0 = f1; 2; � � �ng suh that, forevery j 2 J , S ./ Bj and, for every j 2 J 0, T ./ B0j. Let D = Sj2J Bj and D0 = Sj2J 0 B0j.Then S ./ D, T ./ D0, and X � D [D0. Now T � D, whene S ./ T . �

We will now investigate these de�nitions further. Some of the following results arenot onstrutive; this is either beause they deal with nononstrutive ideas or beausewe have not yet been able to �nd a onstrutive version. Nononstrutive results aremarked with a y. 47



The following diagram summarizes the results of this hapter.

The highlights of this hapter are as follows.� CC2 and CC3 are lassially equivalent to open-over ompatness in a separablemetri spae.� CC2 and CC3 an be onneted to the anti-Speker property and total bounded-ness.� CC1 is weaker than ompatness, but it implies ompleteness.� CC1 an be haraterised in terms of an analogue of the uniform ontinuity the-orem.
4.1 CC1First we relate CC1 to the ompatness notions disussed in Chapter 3. Then we givea haraterisation of CC1 in terms of an analogue to the uniform ontinuity theorem.We begin with some lemmas. 48



Lemma 4.3. Let (X;U) be a uniform spae and S � X. If S is neatly loated, thenS is almost loated.Proof. Choose an arbitrary U 2 U . Pik symmetri W;W 0; V 2 U suh that U [:W = X2, W 0 ÆW 0 � W , and W 0 [ :V = X2. Then, for any x 2 X, (U [x℄;:V [x℄)is a neat over of X. To see this, let x 2 X be arbitrary. Given y 2 X, either(x; y) 2 U or (x; y) =2 W . Thus U [x℄ [ :W [x℄ = X2. Similarly, W 0[x℄ [ :V [x℄ = X2. If(y; z) 2 (:W [x℄)�W 0[x℄ \W 0, then y 2 (W 0 ÆW 0)[x℄ � W [x℄, whih is impossible. So:W [x℄ ./ W 0[x℄. Now either U [x℄ \ S 6= ; or S � :V [x℄. �Lemma 4.4. Let (X;U) be a uniform spae and S � X almost loated. Then, forany symmetri U 2 U , there exists a symmetri V 2 U suh that (U [S℄;:V [S℄) isa neat over of X.Proof. Choose symmetri W;W 0 2 U suh that, for any x 2 X, either U [x℄ \ S 6= ; orW [x℄\ S = ; and W 0 ÆW 0 � W . For an arbitrary x 2 X, either x 2 U [S℄ or x =2 W [S℄.So U [S℄[:W [S℄ = X. If (x; y) 2 (:W [S℄)�W 0[S℄\W 0, then x 2 (W 0ÆW 0)[S℄ � W [S℄,whih is impossible. So :W [S℄ ./ W 0[S℄. Again, by the almost loatedness of S, we anhoose a symmetri V 2 U suh thatW [S℄[:V [S℄ = X. This shows that (U [S℄;:V [S℄)is a neat over. �Proposition 4.5. Let (X;U) be a uniform spae with a ountable base of entouragesand the strong anti-Speker property. Then X is CC1.Proof. Let S; T � X be neatly loated and satisfy �S [ �T = X. By Lemma 4.3,S is almost loated. By Lemma 4.4, we an hoose an ountable base of entouragesfUn : n 2 Ng suh that, for eah n 2 N, U2n+1 � Un = U�1n and (Un[S℄;:Un+1[S℄) is aneat over of X.As T is neatly loated, for eah n 2 N, either Un[S℄ \ T 6= ; or Un+1 \ T = ;. We anhoose a sequene (xn)n2N in X [ f1g suh that8n 2 N (xn 2 Un[S℄ \ T _ (xn =1^ Un+1[S℄ \ T = ;)) :49



Let x 2 X be arbitrary. If x 2 �T , then, as T � fxn : n 2 N ^ xn 6=1g, (xn)n2N iseventually bounded away from x. Suppose, on the other hand, that x 2 �S. Thenthere exists N 2 N suh that UN [x℄ � :S. If n > N and xn 2 UN+1[x℄, then, asxn 2 Un[S℄, x 2 (UN+1 Æ Un)[S℄�a ontradition. So (xn)n2N is eventually boundedaway from x.By the anti-Speker property, there exists N 2 N suh that xN =1. Thus UN [S℄\T =; and S ./ T . �Proposition 4.6. Let (X;U) be a CC1 uniform spae and let (xn)n2N be a sequenein X[f1g. Suppose that whenever the sequene falls in X it is a Cauhy sequeneand that the sequene is eventually bounded away from every point in X. Thenthere exists n 2 N suh that xn =1.Proof. By applying dependent hoie and passing to a subsequene, we may ensurethat 8n 2 N xn 2 �fxk : k 2 N ^ k � ng :Let S = fx2n : n 2 Ng and T = fx2n+1 : n 2 Ng :Take an arbitrary x 2 X. Choose N 2 N and a symmetri U 2 U suh that (x; xn) =2 Ufor eah n � N and (xi; xj) =2 U2 for eah i; j < N with i 6= j. If (x; xi); (x; xj) 2 Ufor some i; j 2 N, then i; j < N and (xi; xj) 2 U2, whene i = j. Choose a symmetriV 2 U with U [:V = X2. Now, either (x; xn) 2 U for exatly one n 2 N or (x; xn) =2 Vfor eah n 2 N. Either way, either x 2 �S or x 2 �T . Sine (xn)n2N is a Cauhysequene, S and T are totally bounded and, therefore, neatly loated. This impliesthat S ./ T . However, sine (xn)n2N is Cauhy, this is impossible. �Proposition 4.6 immediately implies that, lassially, a CC1 uniform spae with a ount-able base of entourages is omplete.Propositions 4.5 and 4.6 show that CC1 lies somewhere between ompleteness andompatness. However, the following examples show that it is equivalent to neitherompatness nor ompleteness. 50



Example 4.7. The integers are a CC1 metri spae, but they are not weakly totallybounded and, therefore, not ompat.Proof. Let S; T � Z be neatly loated and satisfy �S [ �T = Z. If (x; y) 2 S � T ,then x 2 �T �� fyg, whene x 6= y and jx�yj � 1. Thus S ./ T . So Z is CC1. Thereis no �nite over of Z with sets of diameter at most 12 , as at least one set would ontaintwo distint integers. �It is lear that CC1 annot be equivalent to lassial ompatness: Equation 2.1 showshow, lassially, we an �nd a CC1 apartness for any topologial spae.Example 4.8. The plane is a omplete metri spae, but it is not both CC1 andneatly loated.Proof. Clearly, (R2; d) is a omplete metri spae, where d is the Eulidean metri.Let S = n(x; y) 2 R2 : xy = 0o , and T = n(x; y) 2 R2 : xy = 1o :We will show that R2 being neatly loated implies that LPO holds. Both S and T areseparable; thus, by LPO, they are neatly loated. We will also show that �S[�T = R2and :(S ./ T ), whene R2 annot be CC1.The (an)n2N be a binary sequene. LetA = [n2N^an=1B �(n; n); 12� ; A0 = \n2N^an=1:B �(n; n); 14� ;B0 = [n2N^an=1B �(n; n); 18� ; B = \n2N^an=1:B �(n; n); 116� :Pik an arbitrary (x; y) 2 R2. Then either there exists n 2 N with d((x; y); (n; n))< 12or d((x; y); (n; n)) > 14 for eah n 2 N. So either (x; y) 2 A or (x; y) 2 A0. Similarly,B [ B0 = R2. Now, if (x; y) 2 A0 and (x0; y0) 2 B0, then there exists n 2 N withan = 1 and d((x0; y0); (n; n)) < 18 , but d((x; y); (n; n)) � 14 , so d((x; y); (x0; y0)) � 14 .Thus (A;B) is a neat over of R2. So either A 6= ; or B = R2. In the former ase,51



there exists n 2 N with an = 1. On the other hand, if B = R2, then, for every n 2 N,(n; n) 2 B, so an = 0. This shows that LPO must hold.For any " > 0, (1" ; 0) 2 S, (1" ; ") 2 T andd�(1"; 0); (1"; ")� = ":Thus S and T are not apart.Let (x; y) 2 R2 be arbitrary. Now, let" = 14(1 + jxj+ jyj) :Choose (x0; y0) 2 R2 with d((x; y); (x0; y0)) < ". Then jx � x0j < " and jy � y0j < ",whenejxy � x0y0j � jxjjy � y0j+ jx� x0jjy0j � "(jxj+ jyj+ ") � "(jxj+ jyj+ 1) = 14 :Either xy > 13 or xy < 23 . In the former ase, if (x0; y0) 2 S, then, as jxy � x0y0j > 13 ,d((x; y); (x0; y0)) � 14(1 + jxj+ jyj) > 0;so (x; y) 2 �S. Similarly, in the latter ase, (x; y) 2 �T . So �S [ �T = R2. �Amore preise haraterisation of CC1 is given by an analogue of the uniform ontinuitytheorem. We �rst need to de�ne the following two regularity and ontinuity onditions.De�nition 4.9. We say that an apartness spae X has the reverse-CC1 propertyif, for eah weakly loated S; T � X, S ./ T implies that �S [ �T = X.Note that, lassially, every apartness spae has the reverse-CC1 property. Constru-tively, any uniform spae has the reverse-CC1 property, and, if we assume MP, every�rst-ountable spae has the reverse-CC1 property.De�nition 4.10. Let X and Y be apartness spaes and f : X ! Y a funtion. Wesay that f is almost strongly ontinuous if, for eah neatly loated S; T � X with52



f(S) and f(T ) weakly loated, if f(S) ./ f(T ), then S ./ T .Now we an state an analogue of the uniform ontinuity theorem.Proposition 4.11. Let X and Y be apartness spaes and f : X ! Y a ontinuousfuntion. Suppose that X is CC1 and Y has the reverse-CC1 property. Then f isalmost strongly ontinuous.Proof. Let S; T � X be neatly loated, with f(S) and f(T ) weakly loated. Supposethat f(S) ./ f(T ). By the reverse-CC1 property, �f(S) [ �f(T ) = Y . Sine f isontinuous, f�1(�f(S)) � �S and f�1(�f(T )) � �T , whene �S [ �T = X. CC1now implies that S ./ T . �The following result is a partial onverse to Proposition 4.11.Proposition 4.12. Let X be an apartness spae with the nested neighbourhoodsproperty. Suppose that every ontinuous funtion from X to a reverse-CC1 apart-ness spae is almost strongly ontinuous. Then X is CC1.Proof. De�ne a seond apartness ./0 on X by8A;B � X (A ./0 B () �A [ �B = X) :Clearly ./0 is symmetri. Fix A � X. If x 2 �A, then, by B5, there exists B � Xsuh that x 2 �B and B [ �A = X, whene �fxg [ �A = X and x 2 �0A, as, bysymmetry, B � �fxg. If, on the other hand, x 2 �0A, then �fxg [ �A = X and, asx =2 �fxg, x 2 �A. Thus �A = �0A. This immediately veri�es that ./0 satis�es B2,B4 and B5. Clearly, it also satis�es B1. B3 follows from the observation that, for eahA;B � X, �(A [B) = �A \ �B.Now let f : (X; ./) ! (X; ./0) be the anonial bijetion. Then, as f(�A) = �0f(A)for eah A � X, f is a homeomorphism. By our supposition, f is almost stronglyontinuous. Let S; T � X be neatly loated and satisfy �S [ �T = X. Then f(S) ./053



f(T ). By Lemma 2.9, S and T are weakly loated, whene f(S) and f(T ) are weaklyloated. Thus, by almost strong ontinuity, S ./ T . �
Propositions 4.11 and 4.12 show that, under appropriate regularity onditions, CC1 isequivalent to a form of the uniform ontinuity theorem.
4.2 CC2First we show that CC2 follows from the anti-Speker property and strong total bound-edness. We then show that CC2 implies neat ompatness, strong total boundedness,and, lassially, ompatness.Lemma 4.13. Let (X;U) be a strongly totally bounded uniform spae. Supposethat S � X2 and there exists U 2 U suh that S \ U = ;. Then S ./ � in theprodut apartness.
Proof. Choose U�1; U0; U1; U2; U3; U4 2 U suh that U�1 � U , U4 = U�14 and, for eahn 2 f�1; 0; 1; 2; 3g, Un = U�1n � U3n+1 and Un [ :Un+1 = X2. Let fxi : i 2 Fg be aU4-approximation to X, where F is a �nite set. Then� � [k2F U4[xk℄� U4[xk℄:Also, if (x; y) 2 S � :U�1, then there exist i; j 2 F suh that (x; y) 2 U4[xi℄� U4[xj℄;if (xi; xj) 2 U0, then (x; y) 2 U4 Æ U0 Æ U4 � U30 � U�1;whih is impossible. SoS � [ fU4[xi℄� U4[xj℄ : i; j 2 F ^ (xi; xj) =2 U0g :Note that U0 [ :U1 = X2. Choose a �nite A � F 2 suh that, if (i; j) 2 A, then54



(xi; xj) =2 U1, and, if i; j 2 F and (xi; xj) =2 U0, then (i; j) 2 A. ThenS � [(i;j)2AU4[xi℄� U4[xj℄:Now hoose (i; j) 2 A and k 2 F . Then (xi; xj) =2 U1. If both (xi; xk) and (xj; xk)are in U2, then (xi; xj) 2 U22 � U1 � a ontradition. Sine U2 [ :U3 = X2, either(xi; xk) =2 U3 or (xj; xk) =2 U3. Suppose that (xi; xk) =2 U3. If U4[xi℄� U4[xk℄ \ U4 6= ;,then (xi; xk) 2 U34 � U3, whih is impossible. Thus U4[xi℄ ./ U4[xk℄. Similarly, if(xj; xk) =2 U3, then U4[xj℄ ./ U4[xk℄. �Lemma 4.14. Let (X;U) be a strongly totally bounded uniform spae and let U 2 U .Then there exists V 2 U suh that (U;� V ) is a neat over of X2.The proof of Lemma 4.14 is similar to that of Lemma 4.13, but it is slightly moreompliated; we have hosen to omit it.Proposition 4.15. Let (X;U) be a uniform spae with a ountable base of en-tourages. Suppose that X is strongly totally bounded and has the strong anti-Speker property. Then X is CC2.Proof. Apply Lemma 4.14 to �nd a base fUn : n 2 Ng for the uniformity suh that,for eah n 2 N, (Un;� Un+1) is a neat over of X2 and Un = U�1n � U2n+1. Let S � X2be neatly loated and satisfy � � �S.Now hoose a sequene ((xn; yn))n2N in X2 [ f(1;1)g suh that, for eah n 2 N, if(xn; yn) = (1;1), then S \Un+1 = ; and, if (xn; yn) 2 X2, then (xn; yn) 2 S \Un. Letx 2 X be arbitrary. Then (x; x) 2 � � �S, so there exists N 2 N suh thatUN [x℄� UN [x℄ �� S:If n 2 N, n > N , and xn 2 UN+1[x℄, then, sine (xn; yn) 2 Un � UN+1,(xn; yn) 2 UN+1[x℄� (UN+1 Æ UN+1)[x℄ � UN [x℄� UN [x℄�a ontradition. Thus (xn)n2N is eventually bounded away from x.55



By the anti-Speker property, there exists n 2 N suh that xn =1, whene S\Un+1 =;. By Lemma 4.13, S ./ �. �Proposition 4.16. Let (X; ./) be a neatly loated Hausdor� CC2 apartness spae.Then X is neatly ompat.Proof. Suppose that LPO holds and (Un)n2N is a sequene of open subsets of X suhthat Sn2N Un = X and, for eah n 2 N, Un � Un+1 and :Un 6= ;. To omplete ourproof it su�es to �nd a ontradition. By applying dependent hoie and passing toa subsequene, we may, without loss of generality, assume that there exists a sequene(xn)n2N in X suh that, for eah n 2 N, xn 2 Un+1 \ :Un.If i; j 2 N and i < j, then xi 2 Ui+1 � Uj � :fxjg;whene fxig ./ fxjg. Let S = f(xi; xj) : i; j 2 N ^ i 6= jg :By LPO, S is neatly loated.Let (x; y) 2 X2 be arbitrary and hoose N 2 N suh that x; y 2 UN . Take A;B � Xsuh that x 2 �A � UN and y 2 �B � UN . If n 2 N and n � N , then xn =2 Un � UN .Thus (x; y) 2 �A��B � :f(xi; xj) : i; j 2 N ^ i 6= j ^ (i � N _ j � N)g :Now let F = f(xi; xj) : i; j 2 N ^ i 6= j ^ i; j < Ng :Take some (xi; xj) 2 F . Then fxig ./ fxjg, and, asX is Hausdor�, there exist C;D � Xsuh that xi 2 �C, xj 2 �D, and �C \ �D = ;. By applying B5 we get C 0; D0 � Xsuh that xi 2 �C 0, xj 2 �D0, and �C [ C 0 = �D [ D0 = X. Now, if (x; y) 2�C � �D � :�, then (x; y) 2 ��. On the other hand, if (x; y) 2 C 0 �X [X �D0,then (x; y) 2 �f(xi; xj)g. Sine F is �nite, either (x; y) 2 �� or (x; y) 2 �F . In thelatter ase, (x; y) 2 �S. Sine (x; y) was arbitrary, �S [� = X.56



By CC2, S ./ �. So hoose m 2 N and A1; A2; � � � ; Am � X suh that� � m[k=1Ak � Ak � :S:By the pigeonhole priniple, there exist i; j; k 2 N with i 6= j and 1 � k � m suh thatxi; xj 2 Ak. But then (xi; xj) 2 S \Ak � Ak�a ontradition �The proof of Proposition 4.16 is fairly loose. The neat loatedness assumption arriesstraight through from the hypotheses to onlusion and is not mentioned in the proof.Moreover, when deriving a ontradition, we only use LPO one to show that a ount-able set is neatly loated. If we replae the hypothesis CC2 with CC3, we an provethis result without any appliation of LPO.A onverse to Proposition 4.16 seems unlikely, as neat ompatness is a very negativeondition, whereas CC2 is very positive.Proposition 4.17. If (X;U) is a separable neatly loated CC2 uniform spae, thenX is strongly totally bounded.Proof. Any uniform spae is Hausdor�, so, by Proposition 4.16, X is neatly ompat.Proposition 3.10.12 in [9℄ shows that a separable neatly ompat uniform spae isstrongly totally bounded. �Lemma 4.18 (y). Let (X; ./) be an apartness spae with a ountable base of opensets. If X is neatly ompat, then, lassially, X is ompat.Proof. Fix some ountable base of open sets fUn : n 2 Ng. Let C be an arbitrary openover of X. For eah W 2 C, there exists BW � N suh that Sn2BW Un = W . SetB = SW2C BW and, for eah n 2 N, Vn = Sk2B^k�n Uk. We see that (Vn)n2N is asequene of open subsets of X suh that Sn2N Vn = X and, for eah n 2 N, Vn � Vn+1.Sine LPO holds lassially and X is neatly ompat, it is impossible that :Vn 6= ; foreah n 2 N. Thus there exists n 2 N suh that Vn = X. However, Vn = Sk2B^k�n Ukand B = SW2C BW . So there exists a �nite F � B suh that Sk2F Uk = X. For eahk 2 F there exists Wk 2 C suh that Uk � Wk. Consequently, fWk : k 2 Fg is a �nitelyenumerable subover of C. �57



Proposition 4.19 (y). Let (X; ./) be a Hausdor� apartness spae with a ountablebase of open sets. If X is CC2, then it is ompat.Proof. First note that, as we are working lassially, X is neatly loated. Suppose thatX is CC2. Then Proposition 4.16 implies that X is neatly ompat. Lemma 4.18 nowshows that X is ompat. �
4.3 CC3We begin by showing that CC3 follows, lassially, from ompatness. Then we showthat CC3 implies weak total boundedness and the anti-Speker property.Lemma 4.20 (y). Let (X; ./) be an apartness spae and S; T � X2 suh that �S\ �T =;. Suppose that X is lassially ompat. Then, lassially, there exist n 2 N,E1; � � � ; En; F1; � � � ; Fn � X suh that �T � Sni=1 �Ei � �Fi �� �S.Proof. First note that � �S = �S and � �T = �T . Take some s 2 �S � � �T . Then thereexist As; Bs � X suh that s 2 �As � �Bs �� �T . Now n�As ��Bs : s 2 �So is anopen over of �S. Sine �S is a losed subset of a ompat spae, there is a �nite F � �Ssuh that �S � Ss2F �As ��Bs �� �T .Noting that � (�As ��Bs) = ( �As �X) [ (X � �Bs) and taking omplements gives us�T � \s2F( �As �X) [ (X � �Bs) = [f2f0;1gF \s2F Cs;f(s) �� �S;where Cs;0 = �As �X and Cs;1 = X � �Bs. Then, for eah f 2 f0; 1gF , setEf = \s2F;f(s)=0 �As; Ff = \s2F;f(s)=1 �Bs:To �nish set n = 2jF j and assoiate f0; 1gF with f1; � � � ; ng. �Proposition 4.21 (y). Let X be a lassially ompat topologial spae and de�ne58



an apartness on X by 8S; T � X �S ./ T () �S \ �T = ;� :Then, lassially, X is CC3.Proof. Let S � X2 satisfy �S [ �� = X2. Then �S \ �� = ;. Apply Lemma 4.20 to�nd n 2 N, E1; � � � ; En; F1; � � � ; Fn � X suh that �� � R := Sni=1 �Ei � �Fi �� �S. Now�R\ �S = ;, so we an apply Lemma 4.20 again to �ndm 2 N, A1; � � � ; Am; B1; � � � ; Bm �X suh that �S � Q := Smj=1 �Aj � �Bj �� �R. Note that, for eah i; j 2 N with 1 � i � nand 1 � j � m, �Ei � �Fi \ �Aj � �Bj � R \Q = ; and, thus, �Ei ./ �Aj or �Fi ./ �Bj . By thede�nition of the produt apartness, S ./ �. �Lemma 4.22 (y). Let (X;U) be a uniform spae. Suppose that the topology induedon X is ompat in the lassial sense. Then, lassially, for any S; T � X,S ./ T () �S \ �T = ;:Proof. Let (X;U) be a ompat uniform spae and S; T � X. If S ./ T , then thereexists a symmetri U 2 U suh that S � T 2� U2. Suppose that there exists somex 2 �S \ �T . Then there exist s 2 U [x℄ \ S and t 2 U [x℄ \ T , whene (s; t) 2 S � T \ U2� a ontradition.Now suppose that �S \ �T = ; and :(S ./ T ). Then, for every U 2 U , there existsxU = (sU ; tU) 2 S � T \ U . Ordering U by reverse inlusion, we have a net (xU)U2U inX �X. Sine X and, therefore, X �X are ompat, there is a subnet (xUn)n2D suhthat (xUn)n2D onverges to some x = (s; t) 2 X �X. Clearly, s 2 �S and t 2 �T .Now let V 2 U be arbitrary. Sine (sUn)n2D onverges to s and (tUn)n2D onverges tot, there exist n0; n1; n2 2 D suh that, for eah n 2 D,�(n � n0 =) sUn 2 V [s℄) ^ (n � n1 =) tUn 2 V �1[t℄) ^ (n � n2 =) Un � V )� :Choose n 2 D suh that n � n0, n � n1 and n � n2. Then (s; sUn) 2 V , (sUn ; tUn) 2 Vand (t; tUn) 2 V �1. So (s; t) 2 V 3. As V was arbitrary, we onlude that s = t. This is59



a ontradition, as s = t 2 �S \ �T = ;. �Proposition 4.23 (y). Let (X;U) be a uniform spae. Suppose that the topologyindued on X is ompat in the lassial sense. Then, lassially, X is CC3.Proof. Lemma 4.22 implies that the apartness indued on X by U is the same as theone used in Proposition 4.21. Thus, by said proposition, X is CC3. �The following two theorems summarise the above lassial results.Theorem 4.24 (y). Let (X;U) be a separable uniform spae with a ountable baseof entourages. Then X is ompat if and only if it is CC3.Proof. First note that X has a ountable base of open sets. Suppose that X is CC3.Then X is CC2 and Proposition 4.19 implies that X is ompat. Conversely, Proposi-tion 4.23 shows that, if X is ompat, then it satis�es CC3. �Corollary 4.25 (y). A separable metri spae is ompat if and only if it is CC3.Proof. Apply Theorem 4.24. �Theorem 4.26 (y). Let (X; ./) be a Hausdor� apartness spae with a ountablebase of open sets suh that8S; T � X (S ./ T () �S \ �T = ;):Then X is ompat if and only if it is CC3.Proof. Proposition 4.19 implies that if X is CC3, then it is ompat. Conversely,Proposition 4.21 shows that, if X is ompat, then it is CC3. �Now we look at onstrutive results onerning CC3. First we show that a CC3 uniformspae is weakly totally bounded. Note that Proposition 4.17 already shows that aseparable, neatly loated CC3 uniform spae is strongly totally bounded; the followingrequires fewer assumptions. We also show that CC3 implies the anti-Speker property.60



Lemma 4.27. Let (X;U) be a uniform spae and U; V 2 U symmetri with U[ �V = X2. Then, for eah x 2 X, �� V [x℄ � U .Proof. Let y 2 (� V )[x℄ and z 2 V [x℄. Then (x; y) 2� V and (x; z) 2 V , wheney 6= z. This shows that (� V )[x℄ �� V [x℄, and � (� V )[x℄ ��� V [x℄. Now lety 2�� V [x℄ �� (� V )[x℄. If (x; y) 2� V , then y 2 (� V )[x℄, whih is impossible. So(x; y) 2 U and y 2 U [x℄. �Lemma 4.28. Let (X;U) be a uniform spae and U 2 U . Then � U � ��.Proof. Choose symmetri V;W 2 U suh that V 3 � U , W � V and X2 = V [ � W .Pik (x; y) 2� U . Then(x; y) 2 � � W [x℄�� � W [y℄� V [x℄� V [y℄ (by Lemma 4.27)� :V ((u; v) 2 V [x℄� V [y℄ \ V =) (x; y) 2 V 3 � U)� � W:Thus (x; y) 2 �W � ��. �Lemma 4.29. Let (X;U) be a uniform spae and U 2 U . Then X2 = �� [� � U .Proof. Choose symmetri V;W 2 U suh that V 3 � U , W � V and X2 = V [ � W .Let (x; y) 2 W . Clearly (x; y) 2 � � W [x℄�� � W [y℄. Let(u; v) 2 � � W [x℄�� � W [y℄ � V [x℄� V [y℄(note Lemma 4.27). Now (x; u); (x; y); (y; u) 2 V , so (u; v) 2 V 3 � U ��� U . So(x; y) 2 � � U and W � � � U .Choose W 0 2 U suh that X2 = W[ � W 0. By Lemma 4.28, �� �� W 0, so X2 = � �U [ ��. �61



Proposition 4.30. Let (X;U) be a CC3 uniform spae. Then X is weakly totallybounded.Proof. Let U 2 U be arbitrary and hoose a symmetri V 2 U suh that X2 = U[ � V .Then : � V � U . By Lemma 4.29,X2 = ��[� � V . Thus, by CC3 and the de�nitionof the produt apartness, there exist n;m 2 N andB1;0; � � � ; Bm;0; B1;1; � � � ; Bm;1; C1;0; � � � ; Cn;0; C1;1; � � � ; Cn;1 � Xsuh that � � m[i=1Bi;0 �Bi;1; � V � n[j=1Cj;0 � Cj;1;and, for eah i; j 2 N with 1 � i � m and 1 � j � n, there exists k 2 f0; 1gsuh that Bi;k ./ Cj;k. Thus, for eah i; j 2 N with 1 � i � m and 1 � j � n,Bi;0 �Bi;1 � :Cj;0 � Cj;1 andBi;0 �Bi;1 � n\j0=1:Cj0;0 � Cj0;1 � : n[j0=1Cj0;0 � Cj0;1 � : � V � U:For eah i 2 N with 1 � i � m, set Ai = Bi;0 \Bi;1, whene Ai �Ai � Bi;0 �Bi;1 � U .And, for eah x 2 X, there exists i 2 N suh that 1 � i � m and (x; x) 2 Bi;0 � Bi;1,whih implies that x 2 Ai. �Proposition 4.31. Let (X;U) be a CC3 uniform spae. Then X has the stronganti-Speker property.Proof. Let (xn)n2N be a sequene in X [ f1g that is eventually bounded away fromeah point in X. By applying dependent hoie and passing to a subsequene, we may,without loss of generality, assume that, for eah n 2 N,xn 2 �fxk : k 2 N ^ k 6= ng :Now let S = f(xi; xj) : i; j 2 N ^ i 6= j ^ xi 6=1^ xj 6=1g :Now let (x; y) 2 X2. Choose a symmetri U 2 U and N 2 N suh that xn 262



:U [x℄ \ :U [y℄ for eah n � N and (xi; xj) =2 U3 for eah i; j 2 N with i; j < N .Choose a symmetri V 2 U suh that U[ � V 2 = X2. Suppose that (x; y) 2U . If there exists i; j 2 N with i 6= j and (xi; xj) 2 U [x℄ � U [y℄, then i; j < Nand, as (xi; x); (x; y); (y; xj) 2 U = U�1, (xi; xj) 2 U3, whih is impossible. ThusU [x℄� U [y℄ \ S = ; and (x; y) 2 �S. Suppose, on the other hand, that (x; y) 2� V 2.If V [x℄ � V [y℄ \ � 6= ;, then (x; y) 2 V 2, whih is impossible. Thus (x; y) 2 ��. As(x; y) 2 X2 was arbitrary, we onlude that X2 = �S [ ��.By CC3, S ./ �. There exists a symmetri U 2 U suh that, for eah (x; y) 2 S and(z; z) 2 �, either (x; z) 2� U or (y; z) 2� U , whene S 2� U . Proposition 4.30 allowsus to hoose m 2 N and A1; A2; � � � ; Am � X suh thatX = A1 [ A2 [ � � � [Am and A1 � A1; A2 � A2; � � � ; Am � Am � U:We now apply the pigeonhole priniple. There are (m+2)2� (m+2) values of i; j 2 Nwith 1 � i; j � m + 2 and i 6= j; this is at least m + 1 values. Suppose that xi 6= 1for eah i 2 N with 1 � i � m+ 2. Then there exist i; j; k 2 N with 1 � i; j � m+ 2,i 6= j, 1 � k � m and xi; xj 2 Ak; this is impossible as it implies that (xi; xj) 2 U . Soour supposition is false and there exists i 2 N suh that 1 � i � m+2 and xi =1. �This onludes our investigation of CC1, CC2, and CC3. We now have a good un-derstanding of how these riteria relate to other ompatness onditions; we refer thereader bak to the summary diagram at the beginning of this hapter. The next hapterspeulates about extending this investigation.
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Chapter 5
Further Work

�What's past is prologue��William ShakespeareThe three riteria we have proposed in Chapter 4 all apture some aspet of om-patness. Most ruially, they make use of set-set apartness rather than just point-setapartness like the riteria in Chapter 3. We have demonstrated how our riteria relateto other notions of ompatness, even though our results are not tight.Our results ould be strengthened and expanded. This might larify whih of our threeriteria is most useful; at the moment it seems that CC1 and CC2 are too weak tolassify ompatness, while CC3 is too strong. Perhaps further exploration will lead toa riterion of intermediate strength. The ruial issue seems to be loatedness: neatloatedness is too strong, but, as we mentioned in Setion 2.5, there is no naturalanalogue to loatedness in apartness spaes.We have not explored the ategorial properties of ompatness: subspaes, produts,and ontinuous images. Perhaps produts will be the most interesting of these, as theprodut apartness plays an important role in the de�nitions of CC2 and CC3. Thedi�erenes between CC1 and both CC2 and CC3 stem from the produt apartness;this leads one to suspet that an analogue to Tyhono�'s theorem [19℄ would be dif-�ult to prove. However, the ruial feature of the produt apartness is the �niteness65



requirement it ontains, not the fat that it produes a di�erent spae. The reason weneeded the produt apartness was beause, as we have already remarked, lassially,any topologial spae an be equipped with a CC1 apartness; the produt is our wayof avoiding this problem. However, beause of this almost all of our results resort toworking in uniform spaes.CC1 aptures ompleteness in an interesting way. Normally, to show that a spae isomplete, we must be able to onstrut a ertain point from a Cauhy sequene or net.This an be di�ult, and CC1 does not require the onstrution of a point. This mayalso make CC1 interesting from a point-free perspetive.We have no results that link our ompatness riteria to RUSS and INT. In partiular,does [0; 1℄ satisfy CC1 in either of these models? Results of this form will give us amuh better understanding of the meaning of these riteria.Lastly, it remains to hoose more reative names for CC1, CC2, and CC3.
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Indexalmost loated, 33almost strongly ontinuous, 51anti-Speker property, 41apartness omplement, 25axiom of hoie, 19bar, 23base of entourages, 28binary fan, 23BISH, 14Bishop-style mathematis, 14Brouwer's intuitionism, 22Brouwerian ounterexample, 19Cauhy net, 36CC, 23CC1, 45CC2, 46CC3, 46hoie funtion, 23Churh-Markov-Turing thesis, 21CLASS, 21ompat, 39omplement, 25omplete, 36ontinuous, 32onverge, 35onverges neatly, 42ountable, 17ountable hoie, 20
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