
A DYNAMIC COMPILER FOR SCHEME

A THESIS

SUBMITTED IN PARTIAL FULFILMENT

OF THE REQUIREMENTS FOR THE DEGREE

OF

MASTER OF SCIENCE IN COMPUTER SCIENCE

IN THE

UNIVERSITY OF CANTERBURY

by

Mark Alexander Hugh Emberson

University of Canterbury

1995

Abstract

Traditionally, dynamically-typed languages have been difficult to compile effi­

ciently. This thesis explores dynamic compilation, a recently developed technique

for compiling dynamically-typed languages. A dynamic compiler compiles and

optimizes programs as they execute, using information collected from the running

program to perform optimizations that are impossible to perform in a conven­

tional batch compiler.

To explore these techniques we developed SKI, a dynamic compiler for Scheme.

Tests on programs compiled by SKI, have shown that dynamic compilation tech­

niques can give a substantial increase in the performance Scheme programs. In

some cases they can increase performance by up to 400%.

Acknowledgements

I would like to thank my supervisor Bruce McKenzie for the help he has given me,

and for his patience while I was writing this thesis. I would also like to thank my

friends and colleagues, especially David Bainbridge and Nigel Waston for putting

up with me for the past two years.

Finally, I would like to thank: my friends Mark Cox, Karen Ameye, Simon

Lipscombe, Hana Rakena and Mark Dunlop for keeping me sane; my cat Damm

Thing for being a cat; and my mother Mavis for housing and feeding me.

Contents

1 Introduction

1.1 Introduction .

1.2 Outline

1.3 Typographical Conventions

2 Previous Work

2.1 SELF •• 0 0 0 0

2.1.1 Customization .

2.1.2 Type Prediction .

2.1.3 Type Analysis and Splitting

2.1.4 Inlining

2.2 APL\3000 .

2.3 Napier88 ..

2.4 Soft Scheme

2.5 Bitblt ...

3 Overview of the SKI Compiler

3.1 Structure of the Compiler

4 The Front End

4.1 Rewriting

4.2 a-conversion .

4.3 Assignment conversion

4.4 The Intermediate Language

4.4.1 CPS example • 0 0 •

1

1

1

3

3

5

5

8

9

10

11

12

13

14

16

19

19

23

24

26

26

29

30

11

4.4.2 SKI's CPS intermediate language

4.5 CPS-conversion

4.6 Redundant Binding Elimination

4. 7 ,8-reduction

4.8 ry-reduction

4.9 Conditional Optimizations

4.10 Implementation

CONTENTS

32

34

38

39

41

41

42

5 The Back End 45

45

53

56

58

64

65

74

82

83

87

5.1 Closure conversion

5.1.1 Stack Allocation vs. Heap Allocation

5.2 Callee-save variables

5.3 SKI's closure allocation algorithm

5.4 C as a Target .

5.4.1 Tailcalls

5.5 Generating C .

5.6 Run-Time Type System

5.6.1 SKI's types ...

5.6.2 Other typing schemes .

6 The Dynamic Optimizer

6.1 Type Predictor

6.1.1 Dynamic Type Prediction

6.1.2 Static Type Prediction

6.1.3 Type Propagation ..

6.2 Specializer

6.2.1 When to specialize? .

6.3 ,8-expander or Inliner

6.3.1 Deciding what ,8-expand

91

92

93

94

95

96

97

97

99

6.4 Constant Folding 100

6.5 Common Subexpression Eliminator 102

6.6 Other optimizations. 104

6.6.1 Known Procedure Calls, ry-splitting and Once-Cell Elimi-

nation 104

CONTENTS lll

6.6.2 Inlining Rest Lists 107

7 Performance 109

7.1 Methodology 109

7.1.1 Details . 110

7.2 Loop 111

7.3 Fibonacci 115

7.4 Deriv .. 117

8 Conclusions 121

8.1 Discussion 121

8.2 Future Work . 121

8.3 Conclusion . 122

A Miscellaneous 123

A.1 Example SELF code . •• 0 0 • 0 0 0 0 123

A.2 CPS version of nested if optimization 124

A.3 Tail call macro for the SP ARC . 125

A.4 Tail call macro for the i386 . 128

A.5 Library procedures D 0 0 0 0 129

A.6 The Deriv Benchmark Program 134

Appendices

Bibliography 137

lV

Chapter 1

Introduction

1.1 Introduction

Dynamically-typed languages can not usually be compiled as efficiently as statically­

typed languages. This has prevented the widespread adoption of dynamically­

typed languages such as Scheme, Lisp and Smalltalk.

There are three reasons why dynamically-typed languages are hard to compile

efficiently:

1. There is very little type information available to the compiler.

2. They often have dynamic environments which permit the redefinition of

existing procedures.

3. They have a high procedure call frequency which impedes optimization.

These reasons conspire to make it hard to compile even the simplest expressions.

Consider this Scheme expression

(define (add x y) (+ x y))

which creates a procedure called 'add' that adds two numbers together and re­

turns the result. Or does it? Let us look at it from a compiler's point of view. For

one thing, there is nothing to indicate that 'x' and 'y' will be bound to numbers.

Furthermore, the expression '(+ x y)' calls the procedure bound to the variable

'+',but at compile time we can not be sure that'+' will be bound to a procedure,

let alone which procedure. Even if we assume that '+' is the standard addition

1

2 Chapter 1. Introduction

procedure and that 'x' and 'y' are numbers, we still do not know what type of

numbers they are-they could be integers, floating point numbers or complex

numbers.

In contrast the equivalent C function is full of information:

int add(int a, int b) { return a + b; }

A quick glance tells us that 'a' and 'b' are numbers, in fact they are integers. We

also know that '+' is a builtin operator, which in this context adds two integers

and returns an integer.

The C version will execute in a few cycles. The Scheme version will take

much longer. It has to check that '+' is a procedure and call it. Then, assuming

that '+' is the standard addition procedure, it will have to check the types of its

arguments and select the appropriate method for adding them together.

Traditionally, there have been two approaches to solving these problems: com­

piler options and type declarations.

Many Scheme compilers have options that allow the user to disable some of

the dynamic features of the language. For instance, the user could specify that

the standard procedures can not be changed. This would allow the compiler

to inline the call to '+' in our example. Another option might specify that all

variables that appear in numeric contexts contain small integers. Combining

these two flags would allow the compiler to generate code for our example similar

to that generated by the C compiler. Unfortunately, compiler options change the

semantics of the language and in the case of the second option, compromise the

safety of the language.

Common Lisp is dynamically-typed, but it also allows type declarations [Ste84].

Common Lisp programmers can add type declarations to the parts to the program

that need to be fast and leave the types unspecified in the rest of the program.

This hybrid approach is becoming increasingly popular and has been adopted by

two recent object oriented languages Cecil [Cha93] and Dylan [Sha92].

An alternative approach to efficiently compiling dynamically-typed languages

is to use a dynamic compiler. A dynamic compiler is compiler that compiles and

optimizes programs as they execute. The compiler can collect information from

the running program and use it to optimize program as it runs. For instance,

the compiler can collect information about the types of the arguments that a

1.2. Outline 3

procedure is commonly invoked with and create a special version of the procedure

optimized for the common types. The compiler can also inline frequently executed

procedures. If an inlined procedure is changed, then the compiler can undo the

optimization.

The objective of this thesis is to apply the techniques of dynamic compilation

to Scheme [CR91]. To this end, we have developed SKI, a dynamic compiler for

Scheme. SKI conforms to the "Revised4 Report on the Algorithmic Language

Scheme" 1 (or R4RS) which is the de-facto standard for Scheme.

1.2 Outline

The next chapter discusses previous work in the field of dynamic compilation.

Chapter 3 gives an overview of the structure of SKI, which is discussed in detail

in Chapters 4, 5 and 6. The performance of SKI is analyzed in Chapter 7 and

Chapter 8 concludes this thesis.

1.3 Typographical Conventions

There are many small programs and code fragments embedded in the text of this

thesis. To make them easier to read, they are are laid out according to a set of

typographical rules:

Bold font is used for program keywords, e.g., if, lambda.

'Roman font' is used for all other lexical forms, e.g., a-variable, 1234. If necessary

these are enclosed in single quotes to distinguish them from the surrounding

text, e.g., the variable 'a' is ...

Italic font is used for meta-variables; variables which are used to hold unspecified

parts of a program. E.g., (if abc).

(Angle brackets) are used to denote non-terminals in extended BNF style gram­

mars. E.g., (if (exp1) (exp2) (expa)).

1 Revised4 = Revised Revised Revised Revised.

4 Chapter 1. Introduction

are used to denote repetition and as an anonymous meta-variable. E.g., a1 ,

a2 , ••• an and (lambda (x) ...).

[Square brackets] in Scheme code are equivalent to round brackets, selectively in­

termixing the round and square brackets makes Scheme code more readable.

E.g., (let ([x 1]) (+ x 1)).

Chapter 2

Previous Work

In this chapter we discuss previous and current research that is related to the

goal of this thesis. This research falls into three categories:

1. Research into using similar methods to achieve similar goals. E.g., using

dynamic optimisation to increase the performance of dynamically typed

languages. SELF, APL\3000 and Napier88 (Sections 2.1, 2.2 and 2.3) fall

into this category.

2. Research into using different methods to achieve the same goals. E.g., using

type inference to eliminate type checking, like Soft Scheme (Section 2.4).

3. Techniques that are somehow related, like BitBlt (Section 2.5).

2.1 SELF

SELF is a dynamically typed pure object oriented language under development

by Stanford University and Sun Microsystems [US87, US91]. In SELF everything

is an object and there are no classes. Each object encapsulates both its state

and its behaviour. Unlike C++ [Str91], CLOS [Pae93] and other hybrid object

oriented languages, there are no "simple" or "builtin" types. Even the simplest

types are objects and the simplest operations are implemented as methods.

Figure 2.1 shows the objects involved in adding two Cartesian points (3, 5)

5

6 Chapter 2. Previous Work

Point traits

oarent• Add Points method

+ self "'"'''""'

arg ... , ,
code

p

~~
Polar Point traits

parent• I parent'

~\
I \ I . I I

X rho I y theta

I
c

~1 Polar Point object Cartesian Point object

parent• parent' parent•

rho 5 X 3 X 7
rho: x: - x: -theta 60 y 5 y 9

theta: y: - -'11 -
A

Figure 2.1: The objects involved in adding two Cartesian points in SELF.

2.1. SELF 7

and (7, 9) together in SELF.1 Each object consists of a number of slots and each

slot has a name and a value. Sending a message consisting of a slot's name to

an object returns the value of that slot or, if the value is a method, the method

is executed. E.g., sending 'x' to A would return 3. The slots with names ending

in a colon hold special methods which set the values of the slots with the same

base name. Kg., sending 'x: 2' to object A sets the value of A's 'x' slot to 2.

The traits objects hold the attributes shared by all objects of a type and have

the same function as class objects in Smalltalk. The Point traits object holds

attributes shared by all points such as the Add Points method. The Cartesian

Points traits holds all attributes shared by Cartesian Point objects such as the

methods for simulating a polar point, 'rho' and 'theta',

To add the two points A and B, the message '+' is sent to A with B as an

argument. Since A has no slot called '+' it passes the message onto its 'parent*'

slot2 which references the point traits object C. C doesn't have a slot called '+'
either, so it passes the message onto its parent P. P has a slot called '+' which

contains a method, so the method is called with its argument slots,3 'self' and

'arg', bound to the message's original receiver, A, and argument, B, as shown by

the gray lines.

The SELF code for the add points method is shown in Appendix A. L The

line which sets the x value of the new point is

newPoint x: x + ~·

This line is composed of a number of message send operations. Each message

and its arguments is indicated by an underline. The first message, 'x', is short

for 'self x', It retrieves the x-coordinate from 'self', Le., the integer object 3.

The second message, retrieves the x-coordinate from 'arg', Le. 7. The third

sends the message '+' is sent to the result of 'x', 3, with the result of 'arg x',

7, as its argument, i.e., '3 + 7'. The final message sets the x-coordinate of the

new point 'newPoint' to the result of the previous message, 10. So, adding two

1This is the "standard" SELF example which appears in many of the papers about SELF,

This one is a composite of examples in [US91, CU89).
2 An object may have one or more parent slots, they are distinguished from normal slots by

a trailing asterisk
3In SELF methods are a special kind of object and the method's slots are used for the same

purpose as variables in other languages.

8 Chapter 2, Previous Work

integers together and storing the result in an object takes at least four message

send operations4 and as we have seen each message send requires at least one

lookup in the object, If SELF programs are to be fast then message sends will

have to be fast,

The best way to make a message send fast is to perform the lookup part of

the operation statically-at compile time, If this can be done, then slot access

messages, like 'x', can be inlined and messages which invoke a method can be

transformed into standard procedure calls or the method can be inlined, However,

to perform the lookup at compile time, the compiler must know the type of the

receiver of the message, but since SELF is dynamically typed, there is very little

type information available to the compiler,

To provide type information for the compiler the SELF team have used a

number of techniques [CUL89, CU89, CU90, CU91, HCU91, Cha92, H94] which

are described in the following sections,

2.1.1 Customization

Customization creates multiple versions of methods each of which is specialized

on a the type of a different receiver,

Specialization is a general technique which makes a special copy of a block of

code in which the values of some parameters which were variable in the original

are held constant, The parameters that the code is specialized on are generally

the types or values of a set of variables, In some cases a runtime check is needed

to ensure that the specialized version is executed only when the runtime values

of the parameters match the values it was specialized on and if the check fails

then the original version of the code is executed, In other cases, the check may

be unnecessary or accomplished by other means,

When a method is customized, it is specialized on one particular type of re­

ceiver, Within the customized method the type of 'self' slot is known statically

and the lookup operations for all message sends to 'self' can be done statically,

Since a large percentage of all messages are sent to 'self' this can increase perfor­

mance substantially,

4We say "at least four" because the'+' method for numbers is probably implemented using

2.1. SELF 9

Cartesian Point traits

parent•

rho Add Points method

theta (Cartesian)

+ sell I
ara I

code

Figure 2.2: Customization

In the example in Figure 2.1 customized versions of the Add Points could be

produced for both Cartesian and Polar points. The compiler can then ensure

that specialized method is called only ever called for the correct type by adding a

slot to that types' traits object as shown in Figure 2.2, to ensure that the method

will only be called with the intended type as the receiver.

2.1.2 Type Prediction

Type prediction is used to predict the type of the receiver of a message based on

the name of the message.

Early versions of the SELF compiler [CUL89, CU89, CU91] used static rules

like "the receiver of '+' is a small integer 90% of the time". Later versions of

the compiler [HCU91, H94] uses dynamic type information obtained from the

running program to predict the types of the receivers.

When the compiler has predicted the type of the receiver of the message it

"splits the message" and generates two copies of the message send, one for the

expected case with the lookup done statically, the other for the general case

which will perform the lookup at runtime. A runtime check also is generated

which branches to the expected case if the prediction is correct and the general

case otherwise. E.g., when the compiler encounters the expression

i + 1

it will predict that 'i' is an integer and generate the following (in psuedocode):

a technique called double dispatching which would require another message send.

10 Chapter 2. Previous Work

if islnteger{i) then

i + 1 - Static lookup.

else

i + 1 - Dynamic lookup.

end if.
In this case the statically bound message send could be inlined and reduced to a

call to a primitive.

2.1.3 Type Analysis and Splitting

Type analysis [CU90, Cha92) is used to propagate type information though a

method so that type checks can be eliminated and message sends can be statically

bound or eliminated.

The sources of the type information are literal values, primitive operations,

slots with known types and type tests. The type of a literal (e.g., a constant like

'1') can be determined trivially and compiler also knows the types returned by

all primitive operations. The types of some slots are also known , for instance in

a customized method the type of 'self' is known.

(a) Type information
created by a type check.

(b) Type information
lost after a join.

Figure 2.3:

(c) Splitting preserves type
information.

Type tests can also be a source of type information. Figure 2.3a5 shows part

of the control flow graph (or CFG, see Chapter 10 of [ASU86]) for the previous

example. Before the type check the type of 'i' is unknown, in the true branch the

5Figures adapted from (CU90].

2.1. SELF 11

type of 'i' is known to be an integer and in the false branch it is anything but an

integer.

However, joins in the CFG can destroy type information as shown in Fig­

ure 2.3b. In cases like this the compiler can eliminate the join and split the code

following the join into two copies as shown in Figure 2.3c.

Early versions to the SELF compiler [CUL89, CU89] performed splitting only

on the message send immediately following the join. Later versions [CU90] use

extended splitting which can split many message sends if it is profitable, although

the amount of splitting must be limited to keep the code size in check.

(a) Before. (b) After.

Figure 2.4: Loop splitting.

Type analysis and splitting can also be applied to loops [CU90] to split off

loops in which the types of some of the slots are constant for the entire loop.

Figure 2.46 shows an example of loop splitting.

2 .1.4 Inlining

If the lookup part of a message send can be resolved statically and the message

invokes a method, then the SELF compiler can choose to inline that method if it

is small and not recursive.

6 Figures adapted from [CU90].

12 Chapter 2. Previous Work

Inlining a method doesn't just eliminate the call overhead, it can also provide

opportunities for further optimization. In particular the types of the methods

arguments can be propagated through the inlined body and the type of the return

value of the method can be determined.

2.2 APL\3000

APL\3000 [Van77] is a dynamic incremental compiler/interpreter for APL which

runs on Hewlett-Packard 3000 Series II minicomputers. APL is a dynamically

typed language for mathematics with a rich set of data types and operators. Like

Scheme, APL is also a dynamic in the sense that the meaning of names can be

changed by the user and that the interpretation of an expression depends on the

context. Figure 2.57 shows a three apparently identical expressions which have

different meanings depending on the context in which they appear.

X- A+B

Integer Scalar Variable q Dyadic Primitive Function
Integer Scalar Variable

(a)

X- A+B

Integer Matrix Variable q Dyadic Primitive Function
Real Matrix Variable

(b)

X- A+B

Monadic User-Delined Function +q
Monadic Primitive Function
Niladic User-Delined Function

(c)

Figure 2.5: The meaning of APL expressions depends on the context.

7Figure adapted from [Van77].

2.3. Napier88 13

Clearly the dynamic properties of APL make it difficult to compile. The

solution adopted in APL\3000 is to compile each expression the first time it

is evaluated, assuming that the types of the variables and the bindings of the

operators remain constant. For instance, the expression in Figure 2.5b would be

compiled with the assumptions that A is a variable holding an integer matrix,

B is a variable holding a real matrix and + is the primitive addition function.

The compiler also generates a prologue, or signature, for the compiled expression

which checks that the assumptions are still valid. The first time the expression

is executed the signature is skipped since the assumptions are guaranteed to be

valid, but every subsequent time the signature is executed. If the signature fails

the interpreter is signalled and the expression is recompiled.

There are two kinds of code that the compiler can generate. These are known

as hard and soft code. Hard code assumes that the size of the values in an

expression will remain constant. If the signature fails because the size of values

changes, then soft code is generated which will operate on any size arguments,

but which may be less efficient. For instance, if A and B are bound to 2 x 2

matrices the first time the expression is executed then the hard code generated

will assume that they will always be 2 x 2 matrices. If the expression is executed

with A and B bound to 4 x 4 then soft code will be generated.

2.3 N apier88

Napier88 [MBCD89] is a polymorphic language coupled with a persistent object

store. Napier88 is statically typed, but has polymorphic procedures and data

types, similar to generic packages in Ada [DOD83] and templates in C++ [Str91].

let sort= proc[T](v : *T; lessThan : proc(T, T---+ bool))
begin

end

Figure 2.6: A polymorphic sort procedure

14 Chapter 2. Previous Work

Figure 2.6a8 shows the declaration of a polymorphic sort procedure which

can sort a vector of any type. The type is specified by a type variable 'T'. The

arguments to the procedure are 'v', a vector of objects of type 'T', and 'lessThan',

a procedure which takes two arguments of type 'T', compares them and returns

a boolean.

There are at least two strategies for compiling polymorphic procedures such

as 'sort':

1. The compiler can generate a single polymorphic procedure which works on

any type. This is the strategy used by ML [MTH89].

2. The compiler can generate multiple copies of the procedure, each specialized

to a particular type. This strategy is used by Ada and C++.

Code generated using the first strategy requires less space, but runs more slowly.

The second strategy produces faster code because the compiler has more informa­

tion to work with. E.g., the compiler knows the size of the objects the procedure

manipulates.

The strategy used in Napier88 is a mixture of the two. Initially, a single

polymorphic procedure is compiled. This procedure is instrumented with profiling

code to count the number of times it is invoked and the types that it is invoked

with. When the procedure has been run a number of times the profiling data

is examined and if the procedure is called frequently with some type then a

specialised version of the procedure is generated for that type and linked into the

system.

2.4 Soft Scheme

Soft Scheme [WC93] is a soft type system for Scheme. A type system infers

and checks the types of variables and expressions in a program. Languages like

ML [MTH89] and Haskell [HPJW+92] have static type systems that can infer the

types of most expressions with no need for type declarations. However, static type

system can occasionally fail and reject a correctly typed program. If this happens

8Figures adapted from (CCKM94].

2.4. Soft Scheme 15

then the programmer must insert a type declaration or rewrite the portion of the

program that caused the failure. The type system will also reject incorrectly

typed programs.

In contrast, a soft type system attempts to infer the types of the variables and

expressions in a program. Soft type systems represent the types of variables and

expressions as sets of simple types. This makes them ideal for dynamically typed

languages where variables and expressions can have a range of types. When the

a soft type system fails, it does not reject the program but simply assumes that

the expression that caused the failure can have any type and continues.

A soft type system can be used for two purposes:

1. An aid for understanding and debugging programs. The type system can

report the types it discovers to the programmer so that he/she can check

them against the model of the program in his/her head. It can also indicate

the places where it failed so that the programmer can check them-if the

type system failed then the program may be incorrect.

2. The type system can pass the type information to the compiler so that type

checks can be eliminated.

Wright and Cartwright [WC93] modified the Chez Scheme compiler to make

use of the type information generated by Soft Scheme. Programs compiled using

the type system achieved speedups of up to 70% over programs with full type

checking.

Unfortunately, there are a two of major problems with Soft Scheme and soft

type systems:

1. They must operate over the entire program. Parts of the program cannot

be checked in isolation. This can be impractical for large programs.

2. They are imprecise in the presence of assignment or mutation. Assignment

to a variable, particularly a global variable, can result in very large sets

of types. This imprecision is propagated to expressions that reference the

variable (see [WC93]).

3. The type system depends on the types of the standard procedures. If the

standard procedures are changed then the type system will fail.

16 Chapter 2. Previous Work

These magnitude of these problems could be reduced if Scheme had a module

system like ML. Modules could be checked in isolation and the effects of mutation

might be limited to a module. Unfortunately standard Scheme doesn't yet have

a module system.

2.5 Bitblt

Bitmap graphics kernels often make heavy use of the bit block transfer, or bitblt

operation. Bitblt takes each bit from a source rectangle, src, and combines it

with the corresponding bit in a destination rectangle, dest, using an operation

6.9

destx,y = srcx,y 6 destx,y

Where x and y range over the rectangle, and 6 is a simple logical operator like

and, or, xor, nand, ... , etc.

Bitblt is typically implemented using two nested loops, the outer loop iterates

along the y-axis and the inner loop iterates along the x axis. If bitblt is to be

efficient then the inner loop must operate on machine words rather individual bits,

but since the source and destination rectangles can have arbitrary bit alignment

and may overlap, the inner loop can become quite complex and slow.

One way to speed bitblt up is to specialize the inner loop for all combinations

of operation, alignment and overlap. If there are 16 possible operations and 32

possible alignments, then neglecting overlap there are 512 possible combinations.

Clearly specialising for all possible cases will be expensive in terms of code size.

Another solution [KEH91] is to generate specialized machine code for the

inner loop at runtime. The runtime code generator needn't be very complex,

essentially it just has to choose from a small number of templates and fill in the

blanks. For instance, there might be a template for non-overlapping rectangles

and several templates to handle overlapping rectangles. The blanks would be for

the shifts to handle alignment and the instructions to perform the operation.

Simple runtime generated code can outperform a highly optimized static code

by a factor of four [KEH91]. If the runtime code generator does some simple

9Some bitblts have two sources and two operators. destx,y = (srclx,y 61 src2x,y) 62 destx,y·

2.5. Bitblt 17

optimizations, for instance unrolling the inner loop, the generated code can be

as much as ten times faster.

18

Chapter 3

Overview of the SKI Compiler

This chapter presents an overview of the structure of the SKI compiler as a prelude

to the in-depth discussion of the comp.iler in the following chapters.

3.1 Structure of the Compiler

Figure 3.1 shows the basic structure and modus operandi of the compiler:

L The front end (Chapter 4) takes standard Scheme expressions, transforms

them into equivalent expressions in an intermediate language called SKI­

CPS and then performs some simple optimizations on them.

2. The back end (Chapter 5) takes SKI-CPS expressions and transforms them

into executable code.

3. The code is executed and information is gathered about the procedures

that are executed, how frequently they are executed and what types they

are executed with.

4. Based on the information collected, the compiler decides whether the ex­

pressions are worth further optimization.

5. Using the information and the SKI-CPS versions of the expressions, the

compiler attempts to further optimize the code and produces new SKI­

CPS expressions and passes them to the back end to be executed again

(see Chapter 6).

19

20 Chapter 3. Overview of the SKI Compiler

Front End

Transforms program Into
lntermeadlate language.

Does simple optimisations.

Back End
Generates execuatable

code.

Dynamic Optimiser

Optimises code using
Information gathered

when It was run.

Figure 3.1: Overview of SKI

3.1. Structure of the Compiler 21

6. This process is repeated until it is no longer profitable to optimize the

expressions any further.

22

Chapter 4

The Front End

SKI's front end performs the initial transformation of Scheme programs into an

intermediate language and some simple optimizations on this intermediate form.

The front end is structured as a sequence of passes. As shown in Figure 4.1,

each pass takes the output of the previous pass and performs a simple transforma­

tion on it. The overall effect is that the program is transformed into successively

simpler forms.

The front end can be further divided into two halves. The first half trans­

forms programs into the CPS intermediate language. The second half performs

simple optimizations on the CPS representation before passing it to the back

end for code generation (Chapter 5). The output of the front end is also stored

and, together with dynamically collected information, used as the input for the

dynamic optimizations (Chapter 6).

This chapter is structured as follows: Sections 4.1, 4.2 and 4.3 cover the initial

passes leading up to the transform into the intermediate language. Sections 4.4

and 4.5 discuss the CPS intermediate language and CPS transformation pass

respectively. Sections 4.6, 4. 7 and 4.9 cover the optimization passes. Finally,

section 4.10 discusses the implementation of the front end and the internal rep­

resentation of the intermediate language.

23

24 Chapter 4. The Front End

Figure 4.1: Overview of the front end. Passes are in bold.

4.1 Rewriting

Scheme expressions can be composed of a number of different types of expres­

sion. Some, such as lambda, if and variable reference, are known as primitive

expressions because they are essential and it would be impossible to write pro­

grams without them. Other types of expression are known as derived expressions

because they can be written in terms of primitive expressions.

SKI's rewriting pass transforms a Scheme program by rewriting most of the

derived expressions as primitive expressions. This simplifies subsequent passes as

they have fewer types of expression to deal with.

A good example of a derived expression is the and expression. The and

expression has the syntax:

(and (exp1) (exp2) ...)

The (exp)s are evaluated in order and if one of them evaluates to false then false

is returned. If all the (exp)s evaluate to true values then the value of the last

(exp) is returned1 .

1 In Scheme any value that is not false, '#f', is true, though in some older versions of Scheme
the empty list, '()',is also considered to be false.

4.1. Rewriting 25

An and expression can be rewritten by (repeatedly) applying these three rules

from Section 7.3 of the R4RS [CR91]:

(and) - #t

(and (exp)) (exp)

(and (exp1) (exp2) ...)

(let ((x (expt))

(thunk (lambda () (and (exp2) ...))))

(ifx (thunk) x))
In the third rule, the value of (exp1) is bound to the variable 'x' since it must

be evaluated once only, but its value is used twice in the if. The rest of the

(exp)s are placed inside a lambda to delay the their evaluation until their values

are required, and to prevent them from "capturing" the variable 'x'2 . Creating

and calling the procedure 'thunk' may.look inefficient, but the procedure will be

inlined by the .8-reduction pass (Section 4.7). The following is an example of

applying these rules to an expression:

(and (null? left) (null? right))

::::? (let ((x (null? left))

(thunk (lambda() (and (null? right)))))

(if x (thunk) x))

::::? (let ((x (null? left))

(thunk (lambda () (null? right))))

(ifx (thunk) x))

It is possible to rewrite any Scheme expression in terms of the six primitive

expression types: literal, variable reference, procedure call, lambda, if and set!.

We choose not to rewrite letrec and let expressions in this pass, leaving them

for subsequent passes to rewrite, but we do rewrite let* and let loop. Letrecs

will be rewritten in the assignment conversion pass (section 4.3) and lets in the

cps-conversion pass (Section 4.4). This pass also recognizes and emits prim

expressions which are not defined by the R4RS [CR91]. These are used used

extensively in the standard library to directly call SKI's primitives.

2The initialization expressions of a let are evaluated in the scope enclosing the let and can't
"see" variables bound by the let.

26 Chapter 4. The Front End

The rewriting pass also rewrites quasiquote3 expressions into expressions using

builtin procedures like 'cons' and 'append'. The procedures that do this were

borrowed from the Scheme->C compiler [Bar89] .

4.2 • a-conversion

The a-conversion pass renames all variables so that they have unique names.

These are generated by concatenating the original variable name, an underscore

and an unique number. Counters are maintained for each variable name en­

countered, so the first occurrence of 'x' becomes 'x_O', the second 'x_l ', and so

on.

So that variable names can be used as C identifiers in generated code, all

non-alphanumeric .characters in identifiers, such as '+', '?' and '!', are replaced

by underscore delimited names. For example 'eq?' becomes 'eq_hook_O'. Minus

characters, '-', are replaced by underscores except when they are at the beginning

or end of an identifier. So 'frobnicate-thing' becomes 'frobnicate_thing_O', but '-'

becomes 'minus_O'. These transformations try to maintain the readability of the

Scheme identifiers while converting them into legal C identifiers.

Global variables are also detected in this pass and assigned locations in the

global table. These are discussed further in the next section.

4.3 Assignment conversion

The assignment .conversion pass removes all variable assignment expressions. This

is achieved by detecting all the variables that are assigned to and replacing them

with memory cells to hold their values.

More formally: for each local variable v which is assigned in a set! expression,

we introduce a variable v' which has the same scope as v and which is bound to

a cell that contains the initial value of v. We then replace all references to v with

expressions that return the value of cell v' and replace all assignments (set! v x)

with expressions that set the value of cell v' to x.

3 Quasiquote is a way of generating almost constant data structures. For example the
quasiquote expression '(1 a ,x) evaluates to (1 a 3) when 'x' is bound to 3.

4.3. Assignment conversion 27

For variables bound by a let we can substitute a cell for the set!'d variable:

(let ((v (in it))) ==> (let ((v' (prim $make-cell (in it))))

.. . v ...

(set! v (exp))

...)

. . . (prim $get-cell v') ...

(prim $set-cell! v' (exp))

...) '
but for variables bound by a lambda we introduce a new cell variable:

(lambda (v) ==> (lambda (v)

... v ...

(set! v (exp))

...)

(let ((v' (prim $make-cell v)))

. . . (prim $get-cell v') ...

(prim $set-cell! v' (exp))

...)).
The expression (prim $make-cell x) returns a new cell initialized to x, (prim

$get-cell y) returns the current value of cell y and (prim $set-cell! y w) stores w

in cell y.

As we mentioned in Section 4.1, the assignment conversion pass also rewrites

letrec expressions. The reason for this is that letrecs are rewritten using a

special kind of assignment and the assignment conversion pass has all the infor­

mation about which variables are assigned. Letrecs can be rewritten as follows:
(letrec ((v1 (init1)) ==> (let ((v1 (undefinect))

...) ...)
(body)) (set! v1 (init1))

(body)).
However if we use these rules and then use the standard assignment conversion

discussed above, the simple data and control flow analysis in the Known call

optimization pass (Section 6.6.1) will be impeded because it will have to try to

trace values through cells.

Rather than this we introduce the notion of once-cells. Once-cells are similar

to normal cells except that they are assigned once and only once. The conversion

becomes:

28

(letrec ((v1 (init1))

" .)

" .)

Chapter 4. The Front End

(let ((v~ (prim $make-once-cell))

" .)
(prim $set-once-cell! v~ (init1))

(prim $get-once-cell vD
" .)

unless any of the vi are set!'d, in which case the set!'d variables are replaced

with normal cells. E.g.,

(letrec ((a (in ita))

(b (initb)))

(set! a (exp))

" .)

(let ((a' (prim $make-cell-undef))

(b' (prim $make-once-cell)))

(prim $set-cell! a' (inita))

(prim $set-once-cell! b' (initb))

(prim $set-cell! a' (exp))

...) .
The primitive '$make-cell-undef' makes a cell initialized to a undefined value.

This transformation makes analysis much easier since once-cells will only ever

have one value after they have been set-essentially the initialization of the vari­

able is separated from it's declaration.

Global variables are assumed to be set!'d, but rather than store them in sep­

arate cells we store them in a mutable table called the global table. All references

to globals are replaced with calls to the primitive '$get-global' and all assignments

to globals, including defines, are replaced with a call to '$set-global!':
(define x 3) =} (prim $set-global! n 3)

(... x ...) (... (prim $get-global n) ...)
where n is the offset of 'x' in the global table. This is the offset allocated by the

a-conversion pass.

After assignment conversion the values of variables don't change all mutation

happens in memory. This simplifies the following passes because we don't have

to keep track of changing variables and we are free to substitute values for vari­

ables or equivalent variables for one another. The real advantage of assignment

conversion only becomes apparent when we introduce closures, see Section 5.1.

Assignment conversion was introduced by Kranz et al. in the Orbit Scheme

4.4. The Intermediate Language 29

compiler [KKR+86]. Scheme->C [Bar89] also uses a similar idea.

The ScHEMEXEROX [ACS93] compiler also performs assignment conversion

and treats cells which are assigned only once specially. It attempts to collect

these cells and transform the assignments into a letrec!

4.4 The Intermediate Language

Many compilers transform programs into an intermediate representation which

is more amenable to analysis and optimization than the source language. This

intermediate representation is often considered to be a language in itself and is

often referred to as an intermediate language.

Intermediate languages may also be independent of source language and the

target architecture making it easy to reuse parts of compilers for new languages

and architectures. The Amsterdam Compiler Kit and GNU C<J4 [Sta92] are good

examples, supporting several source languages and many target architectures.

There are many different kinds of intermediate languages. A few examples

are:

RTL or Register Transfer Language is the language used by GNU CC [Sta92]

and a number of other GNU compilers. RTL represents a program as a

sequence of simple instructions for an abstract register machine. RTL is a

kind of three address code (see [ASU86]).

SSA or Static Single Assignment form. SSA is a restricted form of a three

address code, in which each variable or register is assigned only once and

never changes.

EM is the intermediate language used by the Amsterdam Compiler Kit. It is a

language for a simple abstract stack machine.

STG or Spineless Tagless G-machine. STG is a language for an abstract graph

reduction machine. STG is used for compiling non-strict functional lan­

guages such as Haskell [Jon92].

4GNU CC was originally a C compiler, but it now has "front-ends" for Ada 9X, Pascal,
C++, Fortran77 and Objective-C, with further languages planned.

30 Chapter 4. The Front End

CPS or Continuation Passing Style. CPS is a style of writing programs in which

flow of control and data is represented by continuations. Continuations are

functions which represent the rest of the program and which take a sin­

gle argument, the result of executing the current expression. Continuation

passing style intermediate languages are used in the Rabbit [Ste78] and Or­

bit [KKR+86] Scheme compilers and the SML/NJ [App92] SML compiler.

SKI uses CPS. Like SSA and three address codes, CPS isn't a single language,

but rather a style of language. Before we introduce SKI's version of CPS, we will

demonstrate the ideas behind CPS with an example.

4.4.1 CPS example

The Scheme procedure:5

(define f

(lambda (x)

(4- (* x x) (* 2 x) 1)))
can be expressed in continuation passing style Scheme as: 6

(define f

(lambda (x k)

(* x x [lambda (u)

(* 2 x [lambda (v)

(4- u v 1 k)])])))
Each function ('f', '4-', '*') has been given a new parameter, which holds its

continuation, and a continuation is supplied to each function call. Specifically,

'k' is the continuation of 'f', and the continuation of the first call to '*' is

[lambda (u) ...]. Each continuation takes exactly one argument, which is there­

sult of the function which calls it. So 'v' in the continuation [lambda (v) (4- u v 1 k)]

will be bound to 2 · x and the result of 'f' is passed to 'k'.

If we step through the example, expression by expression, we can see exactly

what happens at each point.

5 Note that in Scheme'+' and'*' are procedures of zero or more arguments.
6Note that this is still a legal Scheme program.

4.4. The Intermediate Language

(lambda (x k) ...) Entering the function, 'x' is bound to some

number, 'k' is the continuation of the whole

function.

(*XX ...)

[lambda (u) ...]

(*2x ...)

[lambda (v) ...]

The function '*' is called, with arguments

'x' and 'x' and a continuation. '*' multi­

plies its arguments and calls its continua­

tion with the result.

The result of * is bound to 'u'.

* is called again and passes its result to

which binds the result to 'v'.

(+ u v 1 k) '+' is called with arguments 'u', 'v' and 1.

It calls 'k', with the result of the 'f'.

31

It should now be clear why this is called continuation passing style. For each

procedure call, a continuation is passed to the procedure, which calls the contin­

uation with its result. This is equivalent to the procedure call/return mechanism

in imperative languages, but the "return" mechanism, calling the continuation,

is made explicit. Kranz et al. [KKR+86] say that:

... procedures do not 'return,' but rather 'continue into' the code

represented by the continuation.

Two of the advantages of CPS as a intermediate language are :

1. The flow of control is absolutely explicit. At any point, the current contin­

uation represents the rest of the programs execution-it is easy see what

happens next. For example, the order of evaluation of function arguments

is explicit, and as we will see later, all transfers of control are represented

by continuations. All procedure calls in CPS are tail calls, that is, they

never need to save information on a stack to use when they return, this

makes tail recursion optimization trivial.

2. The flow of data is absolutely explicit. Data is propagated by the well

understood, and simple, mechanisms of lexical scoping and procedure calls.

The closure conversion transformation (Section 5.1) makes this even more

explicit by eliminating the lexical scoping.

32 Chapter 4. The Front End

(exp) --+ (jmp (carg) (cant))
I (app (var) ((arg) ...) (cant))
I (cif (arg) (consequent-cant) (alternate-cant) (cant))

(carg) --+ (arg)
I (nlambda (kvar) ((var) .. .) (rest-var) (exp))
I (prim (name) ((arg) ...))
I (cant)

(arg) --+ (var)
I (litera0

(cant) --+ (clambda ((var)) (exp))
I (kvar)

Figure. 4.2: The SKI-CPS language.

4.4.2 SKI's CPS intermediate language

SKI uses a CPS based intermediate language, SKI-CPS, which is similar in

spirit, but different in appearance, to that used in the Orbit paper [KKR+86].

This is a consequence of our decision to use Orbits CPS-conversion algorithm

(Section 4.5).

Orbit uses a dialect of Scheme with continuations, called CPS-Scheme, which

is the similar to the language used in the example in the previous section, with

the exception that the continuation is always the first argument in a function

call.

Figure 4.2 shows the SKI-CPS intermediate language. We will now explain

what each form in the language does and show how they fit together. For clarity

of explanation, we will start with (cant).

A (cant) can either be a clambda or a (kvar). A clambda is continuation

procedure, it binds the value passed to it to the variable, (var), and executes the

expression, (exp). The scope of the binding is the (exp). A (kvar) is a variable

which holds a continuation.

The top level forms are the expressions, (exp). This name is probably a

misnomer since (exp)s don't return a result, they call a continuation.

A jmp form jumps to a continuation, (cant), passing value (carg). A (carg) is a

4.4. The Intermediate Language 33

continuation argument, it generates a value that can be passed to a continuation.

An app form calls the procedure in (var) passing it some arguments, ((arg) ...)

and a continuation (cant).

A cif is the CPS conditional expression. If the test-value (arg) is not false

then the consequent branch continuation, (consequent-cant) is called, otherwise

the alternate branch continuation (alternate-cant) is called. The value passed to

the branch continuations is the continuation of the whole expression (cant). The

branch continuations call their argument when they are finished. E.g., in the

example below 'v' will be bound to "true" if 'x' is true and "false" otherwise.

(cifx

(clambda (k1) (jmp "true" k1))

(clambda (k2) (jmp "false" k2))

(clambda (v) ...))
This is one of the places where SKI-CPS differs from CPS-Scheme. CPS-Scheme

binds the continuation of the whole expression to a variable and the branch

continuations call this variable when they are finished. E.g., the previous example

would look like this:

(jmp (clambda (v) ...)

(clambda (k)

(cifx

(clambda () (jmp "true" k))

(clambda () (jmp "false" k)))))
Each approach has some advantages, the first keeps all of the information in

one place, the cif, and this makes some of the conditional optimizations easier

(Section 4.9). However it can result in one continuation having multiple names

which complicates analysis in latter phases.

As we mentioned previously, a (carg) is something that has or produces a

value which can be passed to a continuation. The reason that we have two kinds

of arguments, the other being (arg), is to limit the number of places that the

more complex kinds argument (prims, nlambdas and clambdas) can appear.

This simplifies the rest of the compiler a great deal.

A nlambda makes a "normal" procedure which takes three kinds of argu­

ments. The (kvar) is bound to the continuation of the procedure, the (var)s are

34 Chapter 4. The Front End

bound to the fixed7 arguments and the (rest-var) is bound to the rest arguments.

If the procedure has no rest arguments then we replace (rest-var) with '#f'.

A prim calls the primitive (name) with some arguments. The value of the

prim is the value returned by the primitive. Primitives don't take continuations,

this allows us to write primitives as normal 'C' functions or macro.

Finally, an (arg), is an argument to a procedure, primitive, etc. It can either

be a variable or a literal. A (litera0 can be any Scheme literal, e.g., 1, "hello

world", 'a-symbol, '(a list).

4.5 CPS-conversion

As we mentioned in the previous section, SKI uses the same CPS conversion

algorithm as Orbit [KKR+86) .with a few minor differences. The CPS converter

is implemented as a small number of rewrite rules, which we will express using

the function C and the helper function S. These functions take a Scheme form

and a continuation, and yield a SKI-CPS expression, e.g., C[(exp)] k.

Variables and literals are simply passed to the continuation:

C[(var)] k

C[(litera0] k

(jmp (var) k)

(jmp (litera0 k)

To convert a procedure call we simply convert all the operand expressions,

(argi), binding their values to temporary variables ti, then we convert the oper­

ator expression, (op), binding it to t 0 and finally we call the procedure with its

continuation

C[((op) (arg1) (arg2) ...)]k =
C[(arg1)] (clambda (t1)

C[(arg2)] (clambda (t2)

C[(op)] (clambda (to)

(app to (h ...) k))))

7 A Scheme procedures can take a variable number of arguments. For instance '(lambda (x
y . r) ...)' takes two or more arguments. The first two will are bound to the fixed argument
variables, 'x' and 'y', and the rest of the arguments are put in a list which is bound to the rest
argument variable, 'r'.

4.5. CPS-conversion 35

This is slightly different from the way that Orbit does this transformation. Orbit

converts (op) first, then converts the (argi)· In some cases slightly better code will

be generated if we convert the operator last. The reason is that if the operator is

a global variable and one of the arguments is a function call, then if we converted

the operator first, the value of the global variable will be read into a local variable

which will then have to be preserved across the function call (see section 5.1).

For instance

(+l(fx))

becomes

((prim $get-globall) 1 (f x))

after assignment conversion. If we convert the operator first, we get8

(jmp (prim $get-global 1)

(clambda (to)

(app f (x)

(clambda (t 1)

(app t 0 (1 t1))))))
and the value of 'to' will have to be preserved across the call to 'f', but if we

convert the operator last then the following code will be generated

(app f (x)

(clambda (t1)

(jmp (prim $get-global1)

(clambda (to)

(app t0 (1 t1))))))
and there is no need to save any temporary variables.

Converting primitives is similar to converting procedure calls.

C[(prim (prim-name) (arg1) (arg2) ••.)] k =

C[(arg1)] (clambda (t1)

C[(arg2)] (clambda (t2)

(jmp (prim (prim-name) (t1 tz ...)) k)))

8 For clarity, all redundant bindings have been eliminated from these examples. The SKI­
CPS code in these examples is more representative of the output of the redundant binding
elimination phase (Section 4.6) rather than the CPS conversion phase. The output of the CPS
conversion phase is considerably more verbose.

36 Chapter 4. The Front End

Converting lambdas requires three rules. The first rule converts lambdas

with fixed arguments, the second converts lambdas with a fixed number of ar­

guments and a rest argument, and the last converts lambdas with only a rest

argument.

C[(lambda ((arg1) (arg2) ...) (body))] k

(jmp (nlambda k1 ((arg1) (arg2) ...) #f S[(body)] k1) k)
C[(lambda ((arg1) (arg2) (rest)) (body))] k =

(jmp (nlambda k1 ((arg1) (arg2) ...) (rest) S[(body)] k1) k)

C[(lambda (rest) (body))] k =

(jmp (nlambda k1 () (rest) S[(body)] k1) k)

S converts the bodies of lambdas and lets which are sequences of expressions.

S[(exp1) (exp2) ...] k

S[(exp)] k

C[(exp1)] (clambda (ign) S[(exp2) ...] k)

C[(exp)] k

'ign' is a temporary variable which will never be used.

It is possible to transform lets into lambdas in the rewriting phase (Sec­

tion 4.1), but we chose not to since lets are useful in assignment conversion

phase. Transforming lets directly into CPS also reduces the amount of work for

later phases, in particular rewriting lets as lambdas and then CPS transforming

would produce many candidates for ,8-reduction (Section 4.7).

C[(let (((var1) (exp1))

((var2) (exp2))

...)
(body))] k =
C[(exp1)] (clambda ((var1))

C[(exp2)] (clambda ((var2))

S[(body)] k))

The final type of expression that we have to convert is the if expression.

4.5. CPS-conversion

C[(if (test-exp) (exp1) (exp2))] k

C[(test-exp)] (clambda (t)

(cif t

(clambda (k1) C[(exp1)] k1)

(clambda (k2) C[(exp2)] k2)

k))

37

To complete the CPS conversion, we have to provide the first continuation.

To do this we wrap a clambda around the top-level continuation using the 7
function, which takes a top-level expression and returns a SKI-CPS expression.

/[(exp)] = (clambda (k) C[(exp)] k)

When the SKI-CPS expression is exe~uted, the runtime environment calls this

clambda with another continuation which is bound to k, the expression is exe­

cuted and eventually calls k with its result and the runtime resumes execution.

38 Chapter 4. The Front End

4.6 Redundant Binding Elimination

The SKI-CPS expressions produced by the CPS-converter in the previous section

are rather verbose. In particular there are many sub-expressions of the form:

(jmp a (clambda (v) ...) ; Binds value of a to v.

which are redundant in since references to the variable v can be replaced with a.

In practice it is possible to eliminate all such sub-expressions when:

1. a is a variable or a literal of an immediate type and not a symbol,9

2. v is never referenced and a is not a side-effecting primitive, or,

3. a is a clambda and vis. referenced exactly once.

The condition on the first rule is for two reasons. Firstly, removing the binding

may result in duplication of the literal and therefore duplication of the code

required to construct the literal, this code can be quite complex (see Section 5.5).

Secondly, some aggregate types (e.g. pairs and strings) are mutable and if they

were duplicated then mutation might lead to unpredictable results. 10

Rule two removes dead code-code that will never be executed and values

that will never be used, but doesn't remove primitives which cause side effects.

The last rule moves continuations which are only used once to the point where

they are used, but avoids duplicating continuations.

Redundant binding elimination is a simple case of the /3-reduction transfor­

mation discussed in the next section, but it is desirable for it to be a separate

pass since it is used to "tidy up" after other optimization passes. It also simplifies

other passes since it ensures that SKI-CPS expressions are in a regular form in

which any value is bound to at most one variable.

9See section 5.6.1 for definition of immediate types.
10The R4RS states that the it is an error to mutate the value of a literal expression, but

doesn't require implementations to raise an error if a literal value is mutated. SKI, like many
other Scheme implementations, will not raise an error, this would complicate the run-time
system (see Section 5.6). Therefore it is desirable that if a constant is mutated then the result
should be predictable.

4. 7. {3-reduction 39

4. 7 jJ-reduction

The /3-reduction transformation performs inline expansion [Bak92, App92] of all

procedures which are called exactly once and and don't escape. Escaping pro­

cedures are procedures which are stored in data structures or global variables,

passed to other procedures, or returned by the enclosing procedure. For instance

in the following example, the procedure 'g' escapes 3 times:

(lambda()

(let ([g (lambda () ...)])

(set! global g)

(h g)

g))

; Stored in global,

; passed to a function, and

; returned.

When the /3-reduction pass detects a procedure that meets the above condi­

tions, its call is replaced with a copy body of the procedure in which all references

to the formals have been replaced with the call's arguments. For simplicity this

is actually done in two phases. The first phase replaces the application with the

body and binds the arguments to the formals:
(jmp (nlambda k (x1 ...) #f ==? (jmp (cant) (clambda (k)

(body)) (jmp a1 (clambda (x1)

(clambda (!)

(app f (a1 ...) (cant)))) (body))))))).

The second phase finishes the renaming by running the redundant binding elim­

ination transform to remove the bindings we just introduced. Figure 4.3 shows

an example of a /3-reduction.

If a procedure has a rest argument it can still be /3-reduced, but it is neces­

sary to insert code to construct the rest list. E.g. if a procedure which takes one

fixed argument and a rest argument 'r' is called with arguments (1 2 3) then the

following code would be generated to construct the rest list:

(jmp (prim $cons 3 '())

(clambda (t)

(jmp (prim $cons 2 t)

(clambda (r) ...)))).

40

(jmp (nlambda k (x y z) #f
(app + (x y)

(clambda (t)
(app + (t z) k))))

(clambda (f)
(app f (1 2 3)

(clambda (r) ...))))

(a) The nlambda 'f' is called once and
doesn't escape-,8-reduce it.

(app + (1 2)
(clambda (t)

Chapter 4. The Front End

(jmp (clambda (r) ...)
(clambda (k)

(jmp 1
(clambda (x)

(jmp 2
(clambda (y)

(jmp 3
(clambda (z)

(app + (x y)
(clambda (t)

(app + (t z) k)
))))))))))

(b) Pass 1: Substitute the body and bind the
arguments.

(app + (t 3)
(clambda (r) ...))))

(c) Pass 2: Remove the redundant
bindings introduced in pass 1.

Figure 4.3: A example of ,8-reduction.

4.8. 7]-reduction 41

/)-reduction is different from general inline expansion in that it is guaranteed

not to increase the size of the program-it will always result in a simpler program.

4.8 '1}-reduction

7]-reduction is similar to /)-reduction. Like /)-reduction it is a form of inline ex­

pansion, but rather than expanding procedures which are called once, it expands

procedures which do nothing but call other procedures. E.g.,

(jmp (nlambda k (a1 ...) => (app g (x1 ... b1 ...) (cant)).

(app g (a1 ... b1 ...) k))

(clambda (f)

(app f (xl ...))))
The bi above are to indicate that the. g may take more arguments than f, but

the order of the extra arguments is not important to the transform.

77-reduction is accomplished using the same two phase technique as /)-reduction

(see previous section), and like /)-reduction it always results in a simpler program.

4. 9 Conditional Optimizations

The conditional optimization pass consists of three transformations for optimizing

conditional, cif expressions. These transformations were taken from the Orbit

paper [KKR+86]P

The first transformation eliminates the unreachable branches in cifs where

the test value is a literal. E.g.,
(cif l =}

then-branch

else-branch

cant)

(jmp cant then-branch) l -1= #f,

(jmp cant else-branch) l = #f,

The jmp may then become a candidate for redundant binding elimination.12

The second transformation is very similar to the first, it propagates the

11 This paper also contains a long example showing how effective these optimizations can be,
which we will not duplicate here.

12Remember that branch continuations of a cif take the continuation of the cif as an
argument.

42 Chapter 4. The Front End

boolean values of variables into the branches of a conditionals. For example,

in

(cif v then-branch else-branch cant)

the boolean value of the variable v is known to be true in then-branch and false

in else-branch. Therefore if a cif which tests v is encountered in the branches we

can eliminate one of the branches.
(cif v =}

consequent

alternate

cant)

(jmp cant consequent) if v true,

(jmp cant alternate) if v false.

The last transformation rearranges nested conditional expressions where the

result of one conditional is used as the test value of the other. E.g., in Scheme:13

(if (if a b c) d e) .

Which, by rearranging the order of the ifs, can be transformed into:

(if a (ifb de) (ifc de)),

or to avoid duplicating d and e:

(let ([x (lambda () d)]

[y (lambda() e)])

(if a (if b (x) (y)) (if c (x) (y)))).
Unlike the previous optimizations this one actually increases the complexity of

the program, but it is worthwhile since it often leads to more optimizations. In

particular it is often possible to eliminate one, or sometimes both of the ifs that

were introduced. Kranz et al. (KKR+86] gives an example of this.

4.10 Implementation

At the start of this chapter we stated that the front end is structured as a num­

ber of passes, each of which performs some transformation on the program and

hands it onto the next pass. In practice it is organised slightly differently. Some

logically independent passes are combined into a single pass, and some logical

13We will use Scheme for the following examples since the CPS versions are rather verbose.
The full CPS version of this transform is shown in Section A.2

4.1 0. Implementation 43

passes require two passes over the program, one to gather information, the sec­

ond to perform the transformations. For example, rewriting and a-conversion

(Sections 4.1 and 4.2) are done in a single pass. ,8-reduction and 17-reduction

(Sections 4.7 and 4.8) are also done in a single pass, but require a separate infor­

mation gathering pass to discover which procedures escape and how often each

procedure is used.

The optimization passes are actually performed several times since some opti­

mizations introduce or uncover opportunities for further optimization, and as we

mentioned above redundant binding elimination pass is used to "tidy up" after

the transformations.

44

Chapter 5

The Back End

The back end takes SKI-CPS expressions generated by either the front end

(Chapter 4) or the dynamic optimize),' (Chapter 6) and generates C code which

is compiled by the C compiler and linked into the running system. Figure 5.1

shows an overview of the back end.

In the remainder of this chapter we dicuss the reasons for closure allocation

and callee save variables (section 5.1 and 5.2). We then detail the closure allo­

cation algorithm used by SKI (Section 5.3). Sections 5.4 and 5.5 discuss issues

invloved in generating C code and finally Section 5.6 discusses the runtime type

system.

5.1 Closure conversion

Before we can generate executable code, there are two problems that must be

solved:

1. SKI-CPS, like Scheme, has lexically scoped procedures. This means that

procedures can be nested inside other procedures, and these nested pro­

cedures can refer to variables declared in the procedures enclosing them.

Variables which are referenced in one procedure, but declared in an enclos­

ing procedure are said to be free in the inner procedure.

2. When a procedure, a, calls another procedure, b, the values of a's variables

must be saved somewhere so that they can be restored when b returns, or

45

46 Chapter 5. The Back End

Figure 5.1: Overview of the back end of SKI.

5.1. Closure conversion 47

equivalently, when b calls a's continuation.

It turns out that these problems are very closely related and that the mechanisms

used to solve them are very similar.

Note: In the following discussion we assume that the target architecture of

the compiler is register based, rather than stack based. We also assume that each

variable is mapped onto a register and that there are sufficient registers to hold

all active variables.

Traditionally, languages with lexically scoped procedures, like Algol and Pas­

cal, put free variables into linked activation records on a stack (see Chapter 7

of The Dragon Book [ASU86]). If we were to use linked activation records on a

stack for Scheme, the program in Figure 5.2a would have a stack like the one in

Figure 5.2b when executing procedure .'g'. The variable 'x' which is free in 'g' can

be accessed in 'g' by indirection through the access link. The stack can also be

used to save variables across procedure calls, the variables are pushed onto the

stack before the procedure call and restored from the stack after the call returns.

(define f
(lambda (x)

(let ([g (lambda (y z)
(+ (* x y) z))])

(g 2 3))))

(a)

Stack

Activation record for 'I'

Activation record for 'g'

(b)

Figure 5.2: A Scheme program with nested procedures and the corresponding stack with access
links between activation records. Note: The stack grows downwards.

Stack allocation of activation records would work well if nested procedures

never escaped from the enclosing procedures. However, Scheme procedures can

be passed as arguments to other procedures, returned from their enclosing pro­

cedures and stored indefinitely in data structures. Consider what happens if we

change the program in Figure 5.2a so that 'f' now returns 'g':

48

(define f

(lambda (x)

(let ([g (lambda (y z)

(+ (* x y) z))])
g))).

Chapter 5. The Back End

When 'f' returns its activation record is popped off the stack and destroyed, so

there is nowhere for 'g's access link to point.

Heap

Activation record for 'f'

Closure for 'g'

Figure 5.3: A heap allocated activation record and closure.

The obvious solution to this problem is to store the activation records on the

heap rather than the stack and when we return a procedure we can return a

pointer to the procedure plus a pointer to its enclosing activation record. This

pair of pointers is called a closure. Since the heap is garbage collected activation

records that are no longer necessary will be reclaimed eventually and activation

records which are still pointed to by a closure will be retained. Figure 5.3 shows

the closure returned by the modified version of 'f'.

There are many ways to represent closures, the two most obvious are called

linked and fiat. Linked closures are similar to linked activation records. The

closure for each procedure has a pointer to the closure of the enclosing procedure.

In contrast, a flat closure holds copies of all the variables that are free in its

procedure. Figure 5.4a shows the linked closures for the case where procedure 'C'

is nested inside procedure 'B' which is nested inside procedure 'A' and Figure 5.4b

shows the flat closures for the same case. Note that it is unnecessary to store

all of a procedures variables in the closures. In the linked case, 'A's closure only

needs to contain those variables which are free in 'B' and 'C', and 'C's closure

doesn't need to hold any variables since it encloses no other procedures. In the

5.1. Closure conversion 49

Closure for 'A'
Closure for 'A'

codeptr

Closure for 'B'

Closure for 'C'

--~".J!.fr__
Closure for 'C' 'A's varlabkls

'B's varlabes

(a) (b)

Figure 5.4: Linked closures and flat closures

flat case, 'B's closure need only hold copies of those variables which belong to 'A'

and are free in 'B', 'A's closure need not hold any variables since 'A' has no free

variables.

Flat closures have the advantage that access to the variables they contain

takes a small constant time, whereas access to variables in linked closures is

linear in the depth of nesting. The disadvantage of flat closures is that they

may require more memory than linked closures since variables may be duplicated

among many closures, flat closures may also take more time to create than linked

closures.

One possible problem with flat closures is that assignment to a variable which

is duplicated in two or more closures might lead to inconsistent results. E.g., in

the code fragment shown in Figure 5.5a, 'm' is free in 'p' and 'q'. If we make

make closures for 'p' and 'q' naively, as shown in Figure 5.5b, then the value

of 'm' in 'p's closure could be updated independently of the value of 'm' in 'q's

closure. Fortunately we will not encounter this problem in SKI since the code will

have been assignment converted (Section 4.3) and, as shown in Figure 5.6, 'm' is

no longer free in 'p' and 'q' as it has been replaced by a cell, the reference to this

cell, 'm-cell' may be duplicated freely. Without assignment conversion we would

50

(definer
(lambda (m)

(let ([p (lambda ()

(set! m ...)
...)]

[q (lambda()

...)))

(set! m ...)

. ")])

(a)

Chapter 5. The Back End

Closure for 'p'

E-~~~~-1

Closure for 'q'

E-~~~~-1

(b)

Figure 5.5: Assignments can lead to problems when variables are copied.

(definer
(lambda (m)

(let ([m-cell (prim $make-cell m)])
(let ([p (lambda ()

(prim $set-cell! m ...)
...)]

[q (lambda()

(prim $set-cell! m ...)
...)])

...))))

(a)

Closure for 'p'

(b)

Figure 5.6: Mutable variables are shared with assignment conversion.

5.1. Closure conversion 51

have to arrange to do something similar when we introduce closures or discard

the idea of fiat closures. Of course, linked closures don't have this problem, since

'm' would be in 'r's closure.

The problem of how and where to save variable across procedure calls still

remains. It is still possible to save variables on the stack, but this can lead to

problems with first class continuations. These problems occur when a continua­

tion "captures" the stack.

(define task-queue '())
(define (enqueue-task k) ...)
(define (dequeue-task) ...)
(define (suspend-task)

(call-with-current-continuation [lambda (k)
(enqueue-task k)
((dequeue-task) #f)]))

Figure 5. 7: A simple coroutine package.

Consider the simple coroutine package outlined in Figure 5.7. 'enqueue-task'

puts a coroutine, represented by a continuation, in the task queue, 'dequeue­

task' gets the next coroutine off the task list and 'suspend-task' suspends the

current coroutine and resumes execution of the next coroutine in the task queue.

When 'suspend-task' is executed by a coroutine, it calls the builtin procedure

'call-with-current-continuation' (or 'call/ cc').

'Call/cc' stores the current state of execution into a continuation object,

'calljcc' then passes the continuation object to its argument which must be a

single argument procedure. A continuation object behaves as if it were a proce­

dure of one argument, calling the continuation object resumes execution at the

point immediately after the call to 'call/cc' that created the continuation. The

return value of 'call/ cc' is the argument that was passed to the continuation.1

Continuations are first-class objects with indefinite extent, they may be stored in

variables and called again at anytime in the future, they may also be called any

number of times.

1E.g., (calljcc [lambda (k) (k 1)])::::} 1.

52 Chapter 5. The Back End

So in 'suspend-task', the continuation object is bound to 'k' and stored in the

task-queue. The next coroutine is resumed by retrieving its continuation object

from the task queue and calling it.

Coroutine A

'suspend-task'
-1---------l

i'3
lll
.2

r-1---------1

5 CoroutlneB ,
!

'--1-------1

Figure 5.8: Using a stack in the presence of first class continuations leads to excessive copying.

If variables are saved on the stack then the "current state of execution" in­

cludes the stack. This means that when a continuation is created the stack must

be copied into the continuation object, and when the continuation is called the

stack must be copied back again. Figure 5.8 shows what happens when we switch

coroutines. When coroutine A invokes 'suspend-task' a copy of the stack is copied

into a continuation object by 'call/cc'. The stack is "unwound" and when the

next task is resumed, its stack is restored when its continuation is called.

Copying the stack back and forth can be very expensive in both time and mem­

ory. There have been several attempts to reduce this cost. Hieb et al. [HDB90]

proposed a scheme that uses stack segments to limit the amount of copying. In

this scheme it is only necessary to copy some part of a stack segment when a

continuation is invoked. This is especially useful when continuations are used to

implement exceptions which are often created but rarely invoked.

A far simpler, but more contentious scheme is to dispense with the stack

entirely and save variables in special records, which we will call closures, on the

heap. This is much simpler than saving variables on the stack since we do not

have to worry about copying anything for continuations-the saved variables part

of the "current state of execution" is just a reference to a closure, which may refer

to previous closures if they are necessary.

5.1. Closure conversion 53

It may seem confusing that we call these new records closures when we already

have objects called closures that do something entirely different, but it turns out

that these records perform exactly the same function as "normal" closures. Con­

sider this expression and its SKI-CPS equivalent:
(let ([s ...]) =? (jmp ...

(+ (* 3 t) s)) (clambda (s)

(app * (3 t)

(clambda (u)

(app + (us) ...))))).
The variable 's' must be saved across the call to '*'. Interestingly, 's' is also a

free variable in the continuation of the call to '*', (clambda (u) ...), in fact it

turns out that those variables which have to be saved across procedure calls are

those variables which are free in the continuation of the call, therefore the record

that we save these variables in is a closure for the continuation of the call.

In practice the closures created for continuation procedures are slightly dif­

ferent from the closures created for "normal" procedures. Continuation closures

don't contain a pointer to the continuation's code for two reasons.

1. There is no need to represent the continuation and its closure as a single

value. The compiler can maintain a mapping between a continuation and

its closure.

2. Memory usage can be reduced by sharing closures between continuations.

5.1.1 Stack Allocation vs. Heap Allocation

We mentioned previously that saving variables on the heap is contentious. There

is currently some debate about whether saving variables on the heap is as efficient

as saving them on a stack, which is summarised in the rest of this section. The fol­

lowing assumes the reader has some knowledge of modern computer architecture

and in particular cached memory subsystems.2

In Garbage Collection Can Be Faster that Stack Allocation [App87], Appel

2 A good book about computer architecture is Computer Architecture: a Quantitative Ap­
proach by Hennessy and Patterson [HP90] and a good overview of garbage collection can be
found in Uniprocessor Garbage Collection Techniques by Wilson [Wil92].

54 Chapter 5. The Back End

calculated that in terms of instruction counts, allocation of continuation closures3

on a garbage collected heap is faster than allocation on the a stack. His argument

is as follows:

• Copying garbage collectors only ever touch live date and the amount of live

data in a heap is (usually) much smaller than the amount of garbage.

• The cost of reclaiming the memory occupied by garbage is proportional to

the amount of live data.

• The costs of allocating memory on heaps and stacks is roughly the same.

When the heap is managed by a copying, compacting garbage collector

allocation is just a matter of an add to the heap's free pointer. On a stack

it is just an add to the stack pointer.

• The cost of reclaiming memory from a stack is one instruction per object,

an add to adjust the stack pointer.

• So, if the amount of memory occupied by dead closures is sufficiently larger

that that occupied by live closures then reclaiming it using garbage collec­

tion is faster than reclaiming it from the stack.

Appel calculated that the crossover point is when the number of dead clo­

sures is about 7 times the number of live closures, and that when this ratio is

exceeded then heap allocation with copying garbage collection is cheaper than

stack allocation.

The principle argument against Appel's theory is that it failed to account for

the fact that modern computers have cached, hierarchical memory systems and

that stacks exhibit good cache locality whereas heaps have poor locality and tend

to "thrash" caches [HDB90].

Recently, Tarditi et al. [TDM94) and, Appel and Shao [AS94] have published

results which indicate that programs using heap allocation do have good locality

of reference.

They re-did Appel's original analysis in greater detail and found that the

instruction count costs of heap allocation and stack allocation are exactly the

3 For the purposes of this discussion we are only interested in continuation closures, it is
assumed that normal closures an other large objects are heap allocated.

5.1. Closure conversion 55

same. They also simulated cache behaviour for a variety of cache sizes and found

that while heap allocation and stack allocation have similar read miss rates,

heap allocation results in a much higher write miss rate. Depending on cache

architecture, the high write miss rate can have significant performance impact or

none at all.

There are a number of policies for handling write misses (Jou93]:

Write-allocate: When a write misses, allocate a line in the cache and either:

Fetch-on-write: Fetch the contents of the cache line from memory (ex­

cept for the word that is to be overwritten) and perform the write.

Write-validate: Mark the words in the cache line as invalid, except for

the one written to. If a read hits a word that is marked invalid then

read the word (or the rest of the line) from memory.

Write-through: When a write misses, perform the write in memory. Only

allocate cache lines on read misses.

If write-allocate with write-validate4 is used, then write misses cost nothing,

but fetch-on-write results in wasted memory traffic as the words fetched to fill

the cache line will probably be overwritten. Write-through will also cause much

memory traffic, since the locations written out to memory will probably be read

soon afterward and will have to loaded back into the cache.

Appel and Shao [AS94] concluded that heap allocation will have similar perfor­

mance to stack allocation if the cache supports write-allocate with write-validate,

or there are cache hint or pre-fetch instructions which can be used to simulate

write allocation [App94].

Unfortunately, current implementations of the two architectures SKI currently

runs on, the SPARC and the Intel 386, do not have good policies for handling

cache write misses. However, this is an implementation issue rather than a ar­

chitectural issue-maybe future implementations of the architectures will have

better cache write miss policies.5 Despite this SKI uses heap allocation since

4 Also known as write-allocate with sub-block-placement.
5The UltraSPARC processor, due to be released sometime in 1995 will have a write-allocate

with write-validate second level cache [Nor95].

56 Chapter 5. The Back End

it is much than simpler stack allocation and 'call/ cc' can be implemented very

efficiently.

5.2 Callee-save variables

The problem with saving variables in closures across function calls is that many

closures are created and almost immediately discarded. This is costly for two

reasons.

1. Referencing memory is expensive. Creating a closure to store n variables

takes n + 1 store instructions, 1 for each of the variables and 1 for the

tag (see Section 5.6), and loading them back into registers takes n load

instructions.

2. Since the memory used by closures must be reclaimed by garbage collection,

the more closures we allocate the more frequently we have to garbage collect.

These problems are also faced in more conventional languages which store

variables on the stack. There are two policies that can be used for saving reg­

isters. The policy we have assumed until now is to have the calling function

(the caller) save those registers which are live across the call, or equivalently

save those registers which are imported by the continuation. This is called the

caller-save policy. The other policy to have the called function (the callee) save

those registers which it needs and restore them before it returns.

Both policies have their advantages and disadvantages. The callee-save policy

has the advantage that it only saves those registers which it needs use, but it has

no way of knowing whether the registers it saves contain useful information-it

could save some registers needlessly. Conversely, the advantage of the caller-save

policy is that only those registers which need to be saved are saved, but the caller

has no way of knowing that the callee will use any of the registers it saves-it

too could save some registers needlessly.

In practice a mixture of the two policies appears best. The registers are

partitioned into two sets, one set is caller-save and the other is callee-save.

5.2. Callee-save variables 57

Appel [App92, AJ89] showed how it is possible to use the callee-save policy

in CPS. Each continuation is given m6 extra arguments in addition to the result

argument. E.g.,

(clambda (v) ...) (clambda (v c1 c2 ... em) ...).

These are used to pass either the values of the variables that the continuation im­

ports, if there are less than m, or the first m- 1 imported variables and reference

to a closure containing the rest. Each procedure is also given m extra arguments

in addition to its continuation and its "normal" arguments. E.g.,

(nlambda k (a1 a2 ...) =* (nlambda k (c1 c2 ... Cm a1 a2 ...)

...) ...).
The values of these arguments must be passed to continuation of the procedure.

(app f (a b)
(clambda (v)

(app g (x y)
(clambda (w)

;; Uses v, y, z.
))))

(a)

(app f (x y z a b)
(clambda (x1 y1 z1 v)

(app g (v y1 z1 X1 Y1)

(clambda (v1 y2 Z2 w)

))))

(b)

Figure 5.9: Adding callee-save variables. The callee-save variables are indicated by sans-serif.

Using these arguments a caller can pass variables to its continuation across a

procedure call without having to save them in memory. The callee is, of course,

free to save the variables as long as it restores them before passing them to

its continuation. We therefore call the variables we pass using these arguments

callee-save variables.

Figure 5.9a shows a (somewhat idealised) sequence of two procedure calls.

The first continuation, (clambda (v) ...), imports the variables 'x', 'y' and 'z'

from an enclosing scope. The second continuation imports 'v', 'y' and 'z'. Using

only closures7 we would have to save 'x', 'y' and 'z' in closure, and pass the closure

to the first continuation. We would then retrieve 'x', 'y' and 'z' from the first

6The value of m is constant over the entire program.
7I.e., a pure caller-save policy.

58 Chapter 5. The Back End

closure and save 'v', 'y' and 'z' into a second closure and pass it to the second

continuation ... The cost to the caller of this would be 2 x (3 + 1) = 8 stores

to create two 3 variable closures and 2 x 3 = 6 loads to retrieve the variables.

However if we use callee-save variables (as shown in Figure 5.9b) we can reduce

the cost of saving the variables to almost zero.8

5.3 SKI's closure allocation algorithm

In the previous two sections we have discussed methods for saving variables across

procedure calls and for accessing variables declared in lexically enclosing proce­

dures. In this section we present an overview of the algorithm that SKI uses to

decide whether a variable needs to be stored and where it should be stored. We

call this algorithm the closure allocation algorithm, but it really should be called

the closure and callee-save variable allocation algorithm since it has to decide

whether to make a variable callee-save or store it in a closure.

Closure allocation is a difficult problem [SA94, App92] and finding a perfect

solution to it may be impossible. SKI uses a simple heuristic algorithm which

appears to perform quite well. 9 SKI's algorithm is influenced by the algorithm

recently developed by Shao and Appel [SA94] for the SML/NJ compiler, but is

much simpler.

As mentioned previously there are two kinds of closures: closures for "normal"

procedures which hold variables that a procedure imports from enclosing scopes

and continuation closures which are used to save variables across procedure calls.

We will call these nlambda closures and clambda closures.

Allocating nlambda closures is very easy, we simply have to calculate the

imports set for each nlambda and make a closure that contains the imports set

and a pointer to the code for the nlambda.

The imports set of a lambda (nlambda or clambda) is defined as the set­

difference10 of the set of variables referenced in the body of the lambda and the

8 The extra cost could probably be reduced to one register-to-register move instruction to
move 'v' from the result register to the first callee save register in the first continutation.
Assuming that all variables are mapped into registers.

9 All that can be said about it is that it is better than the algorithms that came before it.
10The set-difference of two sets A and B is defined as the set of elements in A which are not

5.3. SKI's closure allocation algorithm

set of variables declared by the lambda.

So the transformation for nlambdas is:

(jmp (nlambda k (a1 a2 ...)

...)
(clambda (f)

...))
=*
(jmp (nlambda k cl (c1 c2 ... em a1 a2 ...)

...)
(clambda (t)

(jmp (prim $make-clo t it i2 ...)

(clambda (f)

...)))).

59

Where the t is a temporary introduced to hold the pointer to the procedures

code, f now references the procedures closure, it, i 2, ... are the variables that

the procedure imports, cl is the procedures closure and c1 , c2 , ... em are the pro­

cedures callee-save variables. Within the body of the procedure, the callee-save

variables are associated with the procedures continuation, k, and wherever the

continuation is called the callee-save variables are passed. E.g.,

(jmp r k) =* (jmp c1 c2 ... Cm r k)

(app g (Pl P2 ...) k) (app g (cl c2 ... Cm P1 P2 ...) k)
and if k appears as the continuation of a cif,

(cif v (clambda (k1) ...) (clambda (k2) ...) k)

then the callee-save variables are associated with k1 and k2 as well.

Allocating clambda closures is harder. Firstly, we have to decide which

clambdas escape and therefore need special attention, and secondly, we have to

decide whether the escaping clambda needs a new closure or whether we can

provide all the variables it imports using using callee-save variables and existing

closures.

An escaping clambda is defined as one which is passed as the continuation

to a procedure, e.g.,

(app f (a1 a2 ...) (clambda (v) ...)),

in B.

60 Chapter 5. The Back End

or one which appears in the continuation position of a cif, which has a procedure

application in either of its branches, e.g.,

(cif v (clambda (k1) ...)

(clambda (k2)

(app f (...)
...))

(clambda (v) ...)).
This special case is because we can generate better code for cifs which don't have

applications in the branches (see Section 5.5).

Before allocating closures we first determine the imports and uses sets for

each lambda (clambda or nlambda) and the range information on each im­

ported variable. The uses set .is a subset of the imports set mentioned above, it

contains those variables which are imported and used within the lambda before

any enclosed clambdas. E.g.,

(clambda (a)

(jmp (prim $cons b a)

(clambda (p)

(jmp (prim $cons c p)

(clambda ...)))))

j imports: (c b) uses: (b)

j imports: (c) uses: (c)

The uses set determines which variables need to be in registers for each clambda.

The range information is the number of escaping clambdas that must be

crossed before a variable is next used. The number of escaping clambdas is

an indication of the amount of time until the variable is next used. This is

determines whether a variables is made callee-save or whether it is stored in a

closure, variables which are to be used soon are made callee-save if possible,

variables that are not used for a long time are stored in closures.

Figure 5.10 shows SKI's strategy for saving variables for escaping clambdas:

• Every escaping clambda gets m callee-save variables. If the clambdas

imports can be satisfied by the with m or fewer variables then they are

passed via the callee-save variables (Figure 5.11a).

• If the clambda imports more than m variables then the first m- 1 are

5.3. SKI's closure allocation algorithm 61

Figure 5.10: SKI's strategy for clambda closures. Parts in grey are optional.

passed by making them callee-save and the last callee-save variable is used to

pass a closure containing the rest of the imports (Figure 5.11b). Variables

are made callee-save according to their priority. A variable's priority is

determined using the range information and by whether the variable is

already callee-save or not. Variables which will be used sooner are given

priority over those that will be ·used later and variables that are already

callee-save are given priority over those that aren't, these two rules help

make closures last longer and help keep the most frequently used variables

in registers.

If a first level closure already exists then we check it to see whether it can be

reused. This is possible when the set of variables in the existing closure is a

superset of the variables imported by the clambda or when the differences

between the two sets can be covered by the changing some of the callee-save

variables.

• The second level closure is used to hold variables which are long lived but

referenced infrequently and would otherwise be copied from one first level

closure to another. As an approximation we fill the second level closure

with the enclosing nlambdas callee-save variables and it's continuation.

As a further approximation, we only make the second level closure if there

are two or more escaping clambdas between the start of the nlambda and

the use of the continuation. The second level closure is created at the start

of the nlambda, if a first level closure is created for any escaping clambda

then the first level closure is is made to reference the second level closure

(Figure 5.11 c) otherwise the last callee-save variable references the second

level closure (Figure 5.1ld).

62 Chapter 5. The Back End

I Callaa-sava varlablas I

(a) No closures.

First laval clambda closure

Callaa-sava varlables

(b) Just the first level closure.

Second level clambda closure

Callee-sava varlablas

(c) The first level and second level closures.

Second level clambda closure

Callaa-sava varlables

(d) Just the second level closure.

Callaa-save varlables
Nlambda closure

(e) Second level and nlambda closures, empty first­
level closure.

Figure 5.11: Some of the permutations possible for SKI's clambda closure strategy.

5.3. SKI's closure allocation algorithm 63

• The nlambda closure is the enclosing nlambdas closure. A reference to it

is kept if it holds more than one variable that is not referenced until after

an escaping clambda. This also helps to reduce copying from closure to

closure. If a first level closure is created then it will reference the nlambda

closure, if there is no first level closure then the last callee-save variable

will reference the last nlambda closure, unless there is also a second level

closure in which case a otherwise empty first level closure will be created

to reference both (Figure 5.11e).

At the start of each clambda we check that the variables in the clambda's

uses set are in registers. If they are not then code is generated to load them

from whichever closure they are in. Loading variables from the second level and

nlambda closures when there is a first level closure is made as efficient as possible,

as we cache the reference to the second level closure in a register. Loading the

first variable from a second level closure costs two loads, one to load the reference

to the second level closure from the first level closure and a second to load the

variable, but loading another variable from the same closure only costs a single

load.

64 Chapter 5. The Back End

5.4 C as a Target

SKI generates C code as its target language. In recent years this has become a

popular method of code generation. Several other Scheme compilers generate C

including Bartlett's Scheme->C compiler [Bar89], and more recently SCHEMEXE­

ROX [ACS93], Bigloo Scheme compiler and GambitC. Other languages which have

been compiled to C include: procedural languages such as Pascal [Gil91], Fortran

(the GNU f2c compiler) and Napier88 [CCKM94]; statically typed object-oriented

languages such as Eiffel [Mey88] and Sather [Omo93]; strict and non-strict func­

tional languages such as ML [TAL91, Cri92, SW94], Erlang [Hau94], Sisal and

Haskell [Jon92]; declarative languages such as Mercury [SHC94] and RML [Pet94];

dialects of Lisp such as Kyoto[YH85] Common Lisp and GNU Common Lisp.

Reasons for choosing C as the target, rather assembly language or raw machine

code are:

1. It simplifies the compiler. Generating assembler or raw machine code is

difficult, although there are tools such as code generator generators which

can help. If a code generator generator had been used it would still be

neccessary to write tables to drive it (i.e. to map our primitive operations

onto the machines), and have to present our intermediate language to it

in a form that it could understand. Even then other problems like register

allocation might have to be solved.

Generating C is much easier. Furthermore it is possible to take advantage

to the C compiler to do register allocation, instruction scheduling and other

optimizations.

2. C is easy to debug. The C code generated by the compiler can be debugged

using standard debugging tools. On the other hand, code generators and

the code generated by them are notoriously difficult to debug.

3. C is portable. Because it generates C, SKI is easily portable and in fact has

already been ported from Sun SPARCstations running SunOS 4.1 to Intel

386 based PCs running Linux. SKI should be portable to any architecture

that runs a modern version of Unix.

5.4. Cas a Target 65

If we generated assembly language or machine code we would have to write

a new code generator for each architecture, or if we used code generator

generator then we would have to write new tables to drive it.

However, generating C is not without disadvantages:

1. It is slow and inefficient. To execute some code m our scheme system

we have to generate the C code, write it to a file, invoke the C compiler

to compile it, link the object file that the C compiler generated into our

Scheme system and finally run it. All this takes quite a long time, generally

a few seconds on a fast workstation. It is also wastes CPU time, since the

code has to be written to a file, read back in, parsed, etc.

Clearly this kind of performance is not suitable for a production quality in­

teractive environment, but for an experimental system it is quite sufficient.

2. The semantics of Scheme do not map exactly onto the semantics of C. In

particular C procedure calls are not properly tail recursive, integer arith­

metic in C doesn't not detect overflows and we have to interface the gen­

erated code with the garbage collector that manages the Scheme systems

heap. Fortunately, it is not too hard to work around these problems, (see

Section 5.4.1).

The remainder of this section deals with generating C code. First we discuss

the problem of making C procedure calls properly tail recursive. We then describe

SKI generates C code from SKI-CPS. Finally, we describe the interface between

the generated code and the garbage collector.

5.4.1 Tailcalls

The major difficulty with generating efficient C code is that function calls in C

are not properly tail recursive. To be properly tail recursive, the compiler must

generate efficient code for tail calls.

A function call is a tailcall if it is the last thing that happens in a function

before it returns. For example, the function call 'f(i-1)' in Figure 5.12 is a tailcall,

but 'g(i-1)' is not. Since a tailcall is the last thing that happens in a function

66

void f(int i)
{

f(i- 1);
}

(a) A tailcall.

Figure 5.12:

Chapter 5. The Back End

void g(int i)
{

g(i- 1);

}

(b) Not a tailcall.

before the function returns, it is not necessary to save the state of the function

across the call. A efficient tailcall not should increase the size of the stack and in

general should not increase the amount of memory used by the program.

void fl(int i)
{

}

again:

i = i- 1;
goto again;

Figure 5.13: Simple tail recursion elimination.

Some C compilers11 can recognize simple recursive tailcalls and perform the

tail recursion elimination, transforming a function like 'f' in Figure 5.12 into

something similar to 'fl' in Figure 5.13, which is functionally identical, but will

not cause any stack growth.

However the author is not aware of any C compiler that can generate properly

tail recursive code when the functions are not immediately recursive, like the

functions in Figure 5.14 where 'j' calls 'k' in the tail position and and 'k' calls 'm'

in the tail position, all of these calls could be done with no net growth in stack

space.

11For instance GNU CC [Sta92].

5.4. C as a Target

void j(int x)
{

k(x + 1);
}

void k(int y)
{

m(y- 1);
}

Figure 5.14: Non recursive tailcalls.

Efficient tailcalls are necessary for two reasons:

67

1. The R4RS standard requires all Scheme implementations to be properly tail

recursive.

2. All calls in CPS are tailcalls. If the compiler doesn't generate efficient code

for tailcalls then our programs may run very slowly and use a lot of memory .

. The problem of efficient tailcalls in C and other languages which don't have

them has been encountered before and there are a number of possible solutions.

Ignore Tailcalls

One non-solution is to ignore the problem. The Scheme->C compiler [Bar89]

performs its own tail recursion elimination for simple tail recursive procedures

like the one shown in Figure 5.12, but generates normal C function calls for all

other tailcalls.

The advantage of this scheme is that the C code emitted by the compiler is

very portable and most of the time the performance will be reasonable compared

to some of the other schemes discussed later. The disadvantages are that the

compiler no longer conforms to the standard and that sometimes programs will

use a large amount of memory or even fail to work owing to limits on the amount

of memory available.

68 Chapter 5. The Back End

The Pushy scheme

sp+l-------l

(a) Save sp by calling
'setjmp' ...

Stack frames and
objects.

sp + 1--------l

(b) When the stack
reaches a certain size,
reset it by calling
'longjmp' ...

sp+l-------l

(c) Continue execu­
tion ...

Figure 5.15: Using the Pushy scheme. sp is the stack pointer.

A similar solution is the Pushy scheme which was recently invented by Baker

[Bak94]. The Pushy scheme uses normal C function calls in place of tailcalls.

When the stack gets larger than a certain limit it fixes up the stack by calling

the standard C function 'longjmp', discarding all the old activation records, as

shown in Figure 5.15. In addition the stack can also be used for first generation

storage in a generational garbage collection system-objects are allocated on the

stack and before the stack is fixed up the live objects are copied into the second

generation space. This relies on all calls being tail calls and no call may return

since it might pop objects off the stack. The Pushy scheme is therefore well suited

to use with CPS since in CPS all calls are tailcalls and no call ever returns.

A recent study of the performance of a number of tailcall schemes on various

architectures [Pet95] and found that the performance of the Pushy scheme is

competitive with other techniques on some architectures and quite bad on others.

The reasons for its bad performance appear on other to be:

• The Pushy scheme interacts badly with Register Windows on the SPARC [SPA92]

and causes many register window flushes which are quite expensive andre­

quire intervention from the operating system. This problem can be solved

with a small amount of inline assembler similar to that shown on Page 72.

5.4. Cas a Target 69

• Many modern architectures (e.g., SPARC, Alpha, Power) allocate large

stack frames for function calls. This results in frequent stack fix-ups or

poor cache performance.

UUO handler

int argl, arg2, ... ;

fptr j()
{

}

int x = arg1;

arg1 = x + 1;
return k;

fptr k()
{

}

int y = arg1;

arg2 = y- 1;
returnm;

Figure 5.16: Using a UUO handler. Arguments are passed in global variables.

Another solution is to use a UUO handler, which was invented by Steele for the

Rabbit Scheme compiler [Ste78], which compiles Scheme into MacLisp, though

this technique has also been used in compilers that emit C [TAL91, Jon92]. A

UUO handler is a loop of the form.

fptr next;

while(next =next());

Where 'next' is a pointer to a function which returns a pointer to a function ...

Each function in the program then returns the address of the function to call

next to the UUO handler. E.g., Figure 5.16 shows the functions in Figure 5.14

70 Chapter 5. The Back End

rewritten to use a UUO handler, 'j' returns a pointer to 'k' to the UUO handler,

the UUO handler then calls 'k' which returns 'm' and so on ...

The UUO handler clearly does tailcalls with no net stack growth-the stack

frame of each function is removed when the function returns-but:

1. It is slow. Returning from a function is approximately as costly as calling

a function, therefore a tailcall using a UUO handler is approximately as

expensive as two function calls.

2. Since there is no way for a C function to return more than one value,

arguments to functions can't be passed in registers across tailcalls. The

usual way around this is to store the arguments on a global variables across

the call. This makes tailcalls even slower.

Big Switch

Another alternative is to compile the entire program as a single switch statement,

as shown in Figure 5.17. Each source function becomes a case in the switch and

is given a unique integer is its label. A function is called by storing the number

of the function in 'next' and falling out of the switch. Arguments are passed in

local variables which, hopefully, are mapped onto machine registers.

This scheme is quite straightforward but it has two disadvantages:

1. Calls are indirect-a jump to the beginning of the switch and then, de­

pending on how well the compiler compiled the switch, an indirect jump to

the body of the function. However, this problem can be eliminated using

GNU CC's "Labels as Values" extension [Pet95, Sta92].

2. More seriously, the entire program in the source languages is transformed

into a single very large C function which would take a long time to compile,

especially with optimization.12

This problem can be partially overcome by compiling each source module

(or file) into a separate C function and using the switch for intra-module

calls and a modified UUO handler for intermodule calls. Pettersson [Pet95]

12Many optimizations are quadratic (or worse) in the length of the function.

5.4. C as a Target

int main()
{

}

int arg1, arg2, ... ;
int next;

while(1)
switch(next)
{

case 42:
{

}

int x = arg1;

arg1 = x + 1;
next= 43;
break;

I* j(int x) *I

case 43: I* k{int vJ * 1
{

}

}

int y = arg1;

arg1 = y- 1;
next= 44;
break;

Figure 5.17: The Big function approach.

71

72 Chapter 5. The Back End

found that this technique has very good performance since most calls are

intramodule calls, but unfortunately it is too coarse grained for SKI which

must be able to recompile and replace individual functions. The best we

could do in SKI would be to map each escaping SKI-CPS function onto a

C function with a switch. This would degenerate into the UUO handler

scheme.

Inline Assembler

#define TAIL_CALL2(dest, aO, al)
{

}

register SKI __ argO asm ("%iO");
register SKI __ argl asm C'%i1");
__ argO = (SKI) aO;
__ argl = (SKI) al;
asm volatile (

"jmpl %0, %%gO, %%gO
restore"

"r" (dest), "r'' (__ argO), "r" (__ argl)
"%i7");

DO..NOTHING();

Figure 5.18: A two argument tailcall macro for the SPARC.

The final option is to replace the standard C calling sequence with one of our

own which is tail recursive. GNU CC, and many other C compilers, allow the

programmer to embed assembly language statements into C functions. We can

make use of this facility to define our own tail call sequence. Note that it is only

necessary to replace the calling sequence, we can still make use of the standard

function entry sequence13 with a few restrictions. Figure 5.18 shows a two argu­

ment tailcall macro for the SPARC, the macro makes use of several non-standard

features of GNU C and is explained in full in Appendix A.3.

13 Also known as the function prologue.

5.4. C as a Target 73

The inline assembler solution can be as fast as the standard C calling sequence,

on the SPARC it uses the same sequence of instructions as a call to a function

pointer, and coincidently the same sequence as a return from a function. 14

The disadvantages of this scheme are twofold:

1. It is non-portable. That said, the amount of code that must be changed

is very small, but changing it does require knowledge of the architecture

and calling sequence. Appendix A.4 shows a tailcall macro for Intel 386

machines running Linux so that the reader can compare it with the macro

for the SPARC in Appendix A.3.

2. If it is necessary to pass more arguments than there are registers in the

standard calling sequence then the extra arguments must be passed in global

variables. In a "normal" call the extra arguments would be pushed onto the

stack and then popped off the stack when the call returns by the caller, but

since tailcalls never return this is impossible. This isn't a major handicap on

modern architectures which have many registers, the SPARC for instance,

uses 6 registers for passing arguments in the standard calling sequence,

but on older register poor architectures like the Intel 386 this may lead to a

serious drop in performance, the standard calling sequence uses no registers

on 386s running Linux 1.0.

Storing arguments in global variables is slightly slower than storing them

on the stack. With RISC architectures like the SPARC the extra cost is

in loading the address of the global(s), Pettersson [Pet95) discusses this in

more detail.

14Since calling a continuation is a tail call, this is a good thing!

7 4 Chapter 5. The Back End

5.5 Generating C

Generating C code from SKI-CPS is quite straight forward since each SKI-CPS

construct can be relatively easily transformed into a C construct.

The first step in generating Cis to isolate all nlambdas and escaping clambdas

(see Section 5.3) since each will become a separate C function. The lambdas are

replaced by unique labels which become the names of the functions. At the same

time we isolate all literals of aggregate types and replace them with references to

special global variables which will be initialised to hold the values of the literals.

E.g., for nlambdas

(jmp (nlambda ...)

...)
for escaping clambdas

(app f (...)
(clambda ...))

(cif t (clambda (k1) ...) ~

(clambda (k2) •••)

(clambda ...))
and for aggregate immediates and symbols,

(jmp (imm) ...)

(jmp (label nlambda..x)

...) '

(app f (...)
(label clambda_y))

(cif t (clambda (k1) ...)

(clambda (k2) ...)

(label clambda__z)),

(jmp (prim $get-global q) ...).
Where 'nlambda..x', 'clambda_y' and 'clambda__z' are the labels generated for the

lambdas, and q is the offset of the slot in the global table that the immediate will

be placed in.

Having extracted the functions, we can now generate the code for each. For

notational convenience we express code generation as a function Q which takes a

single argument, a SKI-CPS form, and yields the C equivalent. The transforma­

tion for clambdas is quite simple:

Q[(clambda (c1 ... Cm r) (body))]

~ SKLDEFUNn(clambda..x, SKI c1 , ... , SKI em, SKI r)

Q[(body)]

SKLENDFUN (clambda..x)

'SKI' is the C type for all the Scheme objects. 'SKLDEFUNn' is a C macro of n

arguments which hides the difference between the C calling sequences on different

architectures. Remember that the assembly language tailcall (Section 5.4.1) may

5.5. Generating 0 75

have to pass some arguments in registers and some in globals. For example on a

architecture with two argument passing registers

SKLDEFUN4(clambdaA2, SKI a, SKI b, SKI c, SKI d)

expands to
void clambdaA2(SKI a, SKI b)

{

SKI c = GlobalArgReg[O];

SKId= GlobalArgReg[l];

{
'SKLENDFUN' closes the braces opened by 'SKLDEFUNn'.

The transformation for nlambdas is somewhat harder because nlambdas

have a rather complex calling convention. This calling convention is necessary

for the following reasons:

• The calling site has no knowledge of the number of arguments that the

nlambda takes.

• nlambdas can take a variable number of arguments.

• The number of arguments passed to the nlambda has to be checked against

then number expected, and an exception raised if the number is wrong.

• There is a fixed number of registers (including those simulated with globals)

for passing arguments in.

Table 5.1 shows the calling convention for a procedure of k arguments when

there are n argument passing registers, including those simulated by global vari­

ables. The calling convention is quite complex and is designed to be simple and

fast for the common case when there are a small number of fixed arguments

and no rest argument. In the more complex cases when there are a large num­

ber of fixed arguments and/ or a rest argument then the code generated for the

nlambda gets quite complicated.

In the simple case when the nlambda takes a fixed number of arguments j

and j :::; r, then the code generated is also simple:

Q[(nlambda cant clo (c1 ... Cm a1 ... aj) #f (body))]

76

Register
Number(s)

o ... m-1

m
m+1
m+2
m+3 ... n-1

II

Chapter 5. The Back End

Use

The callee-save variables. m is the number of callee-save
variables.
The continuation variable.
The closure variable.
The number of arguments, an unsigned integer.
The arguments.
If the number of arguments, k, is less than or equal to
the number of registers remaining, r = n - (m + 3), then
all the arguments are passed in registers.
If k ~ r then the first r - 1 arguments are passed in
registers and the last register holds a list containing the
rest of the arguments.

Table 5.1: The calling convention for n argument passing registers (real and simulated).

* SKLDEFUNb(nlambda....x, SKI c1 , ... , SKI cm, SKI cant, SKI clo,

unsigned nargs, SKI a 1, ... , SKI aj)

CHECK_NARGS_FIXED(nargs, j, nlambda....x);

Q[(body)]

SKLEND FUN (nlambda....x)

'CHECK_NARGS_FIXED' checks that the number of arguments passed, nargs,

is the equal to the number expected, j, and if the check fails raises an exception.15

If the nlambda takes a more than r fixed arguments then code is generated

to extract the rest of the arguments from the list passed in the last argument

register. For example, if m = 3 and n = 8 then for:

(nlambda k clo (cs1 cs2 cs3 abc d) #f

" .)
the last three arguments will be passed in the list and code will be generated to

extract them.

15 The exception is raised by calling a special continuation.

5.5. Generating 0

SKLDEFUN8(nlambdaA2, SKI csl, SKI cs2, SKI cs3, SKI k, SKI clo,

unsigned nargs, SKI a, SKI lis)

SKI b, c, d;

CHECK_NARGS_FIXED(nargs, 4, nlambdaA2);

b = SKLCAR(lis); lis= SKLCDR(lis);

c = SKLCAR(lis); lis= SKLCDR(lis);

d = SKLCAR(lis);

SKLENDFUN (nlambdaA2)

77

'SKLCAR' and 'SKLCDR' are C macros which perform the 'car' and 'cdr' prim­

itive operations.

If the number of fixed arguments exceeds the number of argument passing

registers and the nlambda takes a rest argument, then the rest argument is set

to the tail of the list after the fixed arguments have been removed. E.g. if we

modify the previous example so that it takes a rest argument 'r':

(nlambda k clo (csl cs2 cs3 a b c d) r

...)
the code generated is:

SKLDEFUN8(nlambdaA3, SKI csl, SKI cs2, SKI cs3, SKI k, SKI clo,

unsigned nargs, SKI a, SKI lis)

SKI b, c, d, r;

CHECK_NARGS_REST(nargs, 4, nlambdaA3);

b = SKLCAR(lis); lis= SKLCDR(lis);

c = SKLCAR(lis); lis= SKLCDR(lis);

d = SKLCAR(lis); lis= SKLCDR(lis);

r =lis;

SKLEND FUN (nlambdaA3)

'CHECK_NARGS_REST' is similar to 'CHECK_NARGS_FIXED' except that it

checks that at least the expected number of fixed arguments was passed.

When there are fewer r fixed arguments and a rest argument some of the

arguments passed in registers should be in the rest list, so code is generated to

add them onto the list. E.g., the code generated for:

78 Chapter 5. The Back End

(nlambda k clo (csl cs2 cs3) r

" .)
which has no fixed arguments apart from the callee-save variables is:

SKLDEFUN8(nlambda_44, SKI csl, SKI cs2, SKI cs3, SKI k, SKI clo,

unsigned nargs, SKI ttl, SKI tt2)

SKI r;

CHECK_NARGS_REST(nargs, 0, nlambda_44);

r = SKLNULL;

switch(nargs)

{

case 2:

tt2 = SKLCONS(tt2, SKLNULL);

default:

r = tt2;

case 1:

r = SKLCONS(ttl, r);

case 0:

}

SKLEND FUN (nlambda_44)

'SKLCONS' is a macro which implements the 'cons' primitive.

Finally, when there are exactly r fixed arguments and a rest argument code

is generated to distinguish between the case when there are zero rest arguments

and the last register holds the final fixed argument, and the case when there are

one or more rest arguments.

Now that code has been generated for the nlambdas and escaping clambdas,

we are in a position to generate code for the bodies of the lambdas. The code gen­

erated of a jmp depends on the continuation. If the continuation is a clambda

then we generate a declaration for the clambdas argument and assign the value

of the (carg) to it:

Q[(jmp (carg) (clambda (r) . o o))]

==? {SCM r = Q[(carg)];

}

5.5. Generating C 79

If the continuations argument is never used then it is not necessary to declare

it:

Q[(jmp (carg) (clambda ((unused- var)) ...))]
::::} Q [(carg)];

If the continuation is a continuation variable then we generate a call to the con­

tinuation passing the continuationjs callee-save variables and the value of the

jmp:

Q[(jmp (cs1 ... csm (carg)) k)]

::::} TAIL_CALLb(k, cs1l ... , csm, Q[(carg)]);

The transformation for app expressions is similar:

Q[(app (vart) (cs1 ... csm (arg1) ... (argj)) (cant))]

::::} TAIL_CALL_UNKNOWNb(Q[(vart)], cs1, ... , csm, Q[(cont)], Q[(vart)],

j, Q[(arg1)], ... , Q[(argi)]);
The variable (vart) holds the closure of the target procedure and the macro

'TAIL_CALL_UNKNOWN' checks that its first argument is a closure and calls

the procedure in the first slot of the closure.

The only complication arises when the number of arguments, j, exceeds the

number of registers available, r. In this case a list is constructed with the last

j - r + 1 arguments in it and placed in the last argument passing register. E.g.,

if we call procedure 'f' with four arguments 'a', 'b', 'c' and 'd' then the following

code will be generated.
{ SKI tt = SKLNULL;

}

tt = SKLCONS(d, tt);

tt = SKLCONS(c, tt);

tt = SKLCONS(b, tt);

TAIL_CALL_UNKNOWN8(f, csl, cs2, cs3, k, f, 4, a, tt);

Conditional expressions, cifs, are transformed into if statements:

80

(cif (var) (clambda (k1) (body1))

(clambda (k2) (body2))

(cant))

=? if(Q[(var)] =f. SKLFALSE) {

SKI k1 = Q[(cont)];

Q[(bodyl)]

} else {

}

SKI k2 = Q[(cont)];

Q[(body2)]

'SKLFALSE' is the false value '#f'.

Chapter 5. The Back End

If the continuation of the cif is a clambda and it doesn't escape then we can

generate more efficient code which no tail calls. E.g., the code generated for:

(cif x (clambda (kl) (jmp x kl))

(clambda (k2) (jmp y kl))

(clambda (r) ...)),
which binds 'r' to the value of 'x' if 'x' is true and 'y' otherwise, is:

{SKI r;

if(x =f. SKLFALSE) {

r = x;

} else {

r = y;

}

}

The transformation for the continuations of cifs and apps, which can be either

continuation variables or labels, is:

Q[k] =? k

Q[(labell)] =? (SKI) l
The cast, '(SKI) l', is necessary because the label, l, is a C function pointer. This

relies on the fact that function pointers are 4 byte aligned, and therefore appear

5.5. Generating C 81

to be fixnums to the runtime system.16

Finally, the transformations for (carg)s and (arg)s, which can be calls to prim-

itives, labels, literals and variables, are:

Q[(prim name (arg1) ... (argj)) =} c-name(Q[(arg1)], ... , Q[(argj)])

=} (SKI) l Q[(labell)]

Q[(litera0] =} makelit((literal))

9M =} v
c-name is the C name for the primitive, e.g., '$cons' =} 'SKLCONS', '$car'

=} 'SKLCAR', etc., makelit generates an expression which makes a value with

the value of the immediate, e.g., makelit(3) =} INT2SKI(3),17 makelit(#f) =}

SKLFALSE, etc.

16Fixnums have a tag of 00 in the least significant two bits. The least significant two bits of
a 4 byte aligned pointer will also be 00, therefore function pointers will appear to be fixnums
to the runtime system. See Section 5.6.

17 'INT2SKI(3)' makes a fixnum with the value 3.

82 Chapter 5. The Back End

5.6 Run-Time Type System

Language implementations need a way of representing their basic, built-in, types.

Some, like C [KR78, KR88], map their basic types onto those data types provided

by the machine, so that very little effort is required to support them. Others

have more complex basic types requiring more support. Strongly-typed dynamic

languages such as Scheme have a large number of built-in types which require

that instances of types are tagged to distinguish them from one another. Some

statically typed languages which have garbage collection, such as SML [App92],

tag objects so that the garbage collector can know their types.

An efficient tagging scheme is necessary since dynamic language implemen­

tations can spend a large amount of time on tag handling operations. Steen­

skiste [SH87, Ste91] has shown that some dialects of Lisp spend approximately

one quarter of their runtime in tag handling when type checking is disabled and

run 25% slower when checking is enabled.

The cost of tag handling can be reduced in two ways. Firstly, eliminate as

many tag handling operations as possible. This is the focus of the optimizations

presented in Chapter 6. Secondly, make tag handling as inexpensive as possible

by reducing the cost of the basic tag handling operations. These operations are18 :

• Tagging - Converting between the machine representation of a value and

the tagged representation. This usually involves adding some tag bits to

the value and is sometimes called tag insertion.

• Un-tagging - Converting a tagged value back into it's machine represen­

tation so that some operation can be performed on it. This is sometimes

called tag removal.

• Tag checking- Checking that a value is a certain type.

The remainder of this section discusses the implementation of SKI's types and

then compares SKI's types with the type schemes used by some other dynamic

language implementations.

18Steenkiste identifies one other kind of tagging operation which he calls tag extraction -
extracting the tag from a tagged value. Since tags are only ever extracted so that they can be
checked we consider tag extraction to be part of the tag checking.

5.6. Run-Time Type System 83

Fixnum I Signed inte~er bits lool True ID11I101

Pointer I Pointer bits 1111 False I1DDI10I

Other-lmmeadiates !Value bits 1???1101 Undefined 11011101

Character !char bitsloool101 Unintialised 11101101

Symbol I S:tmbol bits loo111DI Aggregate Tag 1????11111101

Empty List lo101101 Unused 1o1j

Figure 5.19: SKI's immediate types

5.6.1 SKI's types

SKI has two classes of types, immediates and aggregates. Immediate types are

those types which hold a single value and which fit into a machine register, e.g.,

small integers, characters, symbols and pointers to aggregates. Aggregate types

hold several values or are too large to fit into a register, e.g., pairs, vectors and

floating point numbers. In this section we assume registers are 32 bits wide and

the natural word size is 32 bits, but everything we discuss will work equally well

on machines with other word sizes, especially 64-bit machines.

Immediate Types

The class of immediate types can be divided into three subclasses, fixnums, point­

ers and other-immediates. All immediates contain a tag field in their least sig­

nificant two bits as shown in figure 5.19.

Fixnums are fixed length integers consist of the least significant 30 bits of a

signed integer and are tagged with 00. Fixnums can be converted into machine

integers with a single shift instruction. Tagging fixnums with 00 means con­

version to machine integers is unnecessary for fixnum addition, subtraction and

comparison, but some method of detecting overflow is required. Checking that a

value is a fixnum requires only a single bitwise-and. For example the following

sequence of SPARC [SPA92] instructions will branch to not_fixnum if the value

in register %11 is not a fixnum:

84 Chapter 5. The Back End

andcc %11, 11b, %gO ! And %11 with 11b setting the condition codes

! (cc) and ignoring the result (%gO is always zero).

bnz not_fixnum ! Branch if not zero.

Pointers are used to reference aggregate types on the heap. They consist of

the most significant 30 bits of a machine pointer and a tag field of 11. Since

aggregates are word aligned (the least significant two bits of a pointer are always

zero) no information is lost by placing the tags in the least significant two bits.

Un-tagging a pointer requires a single bitwise-and or an addition. If an addition

is used for un-tagging then it can often be combined with an offset operation.

For example taking the car of the pair pointed to by the register %12, requires

an un-tagging operation, an offsetting operation and a load:

add %12, -3, %13

add %13, 4, %13

1d [%13], %13

! Un-tag.

Add the offset of the car field.

Load the car.

The two additions can be combined and since the offset is a constant, the addition

can be combined with the load giving:

1d [%12 + 1] ' %13 ! Load the car.

The other-immediates are types which are small enough to fit into a register,

but do not need a special representation. Other-immediates all share a primary

tag of 10, and include a secondary tag of three bits and an optional value. Ta­

ble 5.2 lists all of the other-immediates. Some other-immediate types have many

values (e.g., characters and symbols), in these cases the value is stored in the

upper 27 bits of the word. Other types only have one possible value, for in­

stance the empty list type. The boolean values true and false are also encoded

as separate types. Checking the type of these values requires a bitwise-and and

a comparison if the type is multi-valued or a comparison if the type has a single

value. Un-tagging a multi-valued type requires a shift.

The tag 01 is never used, this allows a pointer to be checked using a single

bitwise-and operation, rather than a bitwise-and operation followed by a compare.

5.6. Run-Time Type System

I Type
Character
Symbols
Null
True
False
Undefined

Uninitialised

I Description

The empty list '0'

The value returned by library procedures and special
forms whose value is undefined or unspecified by the
R4RS [CR91] (e.g., set!, for-each), also the value that
vectors are initialised to if no other value is specified.
The value of an uninitialised global variable, used
internally.

Aggregate tags The tag word of an aggregate, used internally.

I Type
Cell

Pair
Vector
String
Extern
Flonum

Forward

Bignum

Closure

Table 5.2: Other immediates.

I Description

Cells hold the values of variables which are assigned to.
See Section 4.3.

Externs hold values which aren't SKI types.
Flonums are SKI's real numbers, represented as a double
precision float. This means fionums must be double-word
aligned.
Forwarding pointers are used by the garbage collector to
point to a new copy of an object.
Bignums are infinite precision integers. They consist of
a word for the size and sign of the number and zero or
more unsigned words for the bits.
Closures hold a pointer to a procedure and the values of
all the procedures free variables.

Table 5.3: Aggregate types.

85

86

Vector
Length (a fixnum)

String

Extern
Anything (32 bits)

Chapter 5. The Back End

Size and Sign (a signed integer)

L~\!~:,~~~~,9L!!!!?!~,,~,~~lll~-~J~!~,:::,"'

Closure I 11000I111I10
I Length (a fixnum) lao
I Pointer to function

Figure 5.20: SKI's aggregate types

Aggregate Types

Aggregate types are types which have several values, or are too large to fit in

a register, or must be stored in memory for some reason. Table 5.3 lists SKI's

aggregate types.

All aggregate values are allocated on the heap and share the same basic for­

mat, a tag word identifing the type of the object followed by the value(s) of the

object in subsequent words. Figure 5.20 shows the format of SKI's aggregates.

Additionally all aggregate values must be at least two words long, so that they can

be overwritten with a forward node during garbage collection. Variable length

values, such as strings and vectors, are stored length first and with zero or more

trailing values.

Strings have a special representation. The characters are packed four to a

word to reduce the space requirements. This means the primitives that insert

and retrieve characters in strings must convert between the packed representation

and the immediate representation.

Bignums also have a special representation, the length word includes the sign

of the bignum and is stored as a signed integer. This representation is used be­

cause bignums are implemented using the GNU MP multi-precision math library.

Aggregates don't need tagging and un-tagging as their values can be accessed

directly, but they do need to have their tags checked. Tag checking an aggregate

5. 6. Run-Time Type System 87

requires a pointer tag check, a load and a comparison. The comparison can be

done in a single instruction, but the load is potentially expensive. Section 5.6.2

discusses alternative tagging schemes that may be more efficient in this case.

5.6.2 Other typing schemes

Virtually every different dynamic language implementation has a different run­

time type system. SKI's was chosen to be simple to implement and reasonably

efficient, but other implementors have chosen different tradeoff's. This section out­

lines the differences between SKI's run-time type system and the run-time type

systems in other language implementations. We will limit the discussion to im­

plementations for general purpose hardware. Implementations on special purpose

hardware such as Lisp Machines [TH~ +s6] have a different set of requirements.

The major differences between run-time type systems are the location and

number of tag bits in immediates and the types which are considered to be im­

mediates. There are two locations where it is reasonable to store the tag bits in

a word, the high (most significant) bits and the low (least significant) bits. The

advantage of putting the tags in the high bits is that more bits can usually be

used. The Portable Standard Lisp compiler [SH87, Ste91] and the CMU Com­

mon Lisp compiler [FM91] both use the high five bits of a word for tags. When

this number of tag bits is used, all the tagging information for aggregates can be

encoded in the tag of a pointer to an aggregate, making a tag word unnecessary.

The benefits of this are that memory usage is reduced and that tag checking

doesn't require a potentially expensive load.

One disadvantage of using the high bits for tags is that two tags must be

used for fixnums, all zeros for positive fixnums and all ones of negative fixnums,

so that addition and subtraction can be done without un-tagging. This means

that checking that a value is a fixnum is quite an expensive operation. Another

disadvantage is that all pointers have to be un-tagged before they are used, al­

though CMU Common Lisp uses a clever trick to avoid this when running on

Mach 19 . Mach can allocate segments of memory at arbitrary addresses in a pro­

cesses address space, so the tag bits in the pointer can be thought of as segment

19Mach is a Unix-like operating system being developed at CMU.

88 Chapter 5. The Back End

selectors and each segment will contain only one type of object. This trick should

be possible on any modern version of Unix which supports the mmap () system

call. SKI uses a trick like this to avoid fragmentation of the C heap.

Putting the tag in the low bits has the advantages that only one tag is nec­

essary for fixnums, and that un-tagging a pointer can often be combined with

using it as we showed in Section 5.6.1.

Combining pointer use and un-tagging can give a speedup of 4% to 9% accord­

ing to Steenskiste [SH87], but doing this limits the number of tag bits that can be

used to two or three. If two bit tags are used then all pointers will word aligned,

if three bits are used then pointer will be double-word aligned and all objects will

have to start on double-word boundaries, which will sometimes result in a word

being wasted between objects. If four tag bits were used, then pointers would

have to be quad word aligned and several words could be wasted between objects

which would be unnacceptable20 . So most implementations use only two or three

tag bits: SELF, Screme [Ple91, VP89], New Jersey SML [App92] and Scheme­

>C [Bar89] all use two bits. SCHEMEXEROX and Lucid Common Lisp [SH87]

use three bits. If three bits are used then the tags of commonly used aggregates

could be encoded in their pointers and only infrequently used aggregates would

need a tag word. Scheme->C uses a restricted version of this idea, it uses two

tag bits but has two types of pointers, one type for pairs and one for all other

aggregates.

The other major difference between run-time type systems is what types are

immediate. Most Scheme and Lisp systems have more or less the same set of

immediates that SKI has, with the exception of symbols. In SKI symbols are

tagged as other-immediates and the top 27 bits are occupied with the hash in­

dex value of the symbol in the global symbol table. In some other systems,

Screme [Ple91, VP89] and Scheme->C for example, symbols are a special kind of

aggregate. They are special in the sense that there can be only one instance of

each symbol since the R4RS [CR91] requires that two symbols that are spelt the

same must be equal in the sense of eq?. Eq? is usually implemented as a word

comparison so the pointers to the symbol aggregates must be the same.

20If most objects were pairs occupying two words each, then 50% of the occupied memory
would be wasted.

5.6. Run-Time Type System 89

SELF has a somewhat different set of immediates. SELF uses a two bit tagging

scheme and tags integers and pointers like SKI. The other two tags are used

for floats and marks. Floats are stored as standard IEEE 32-bit floating point

numbers (see appendix A of [HP90]) except that two bits are "stolen" from the

exponent field so that they can be tagged21 . Marks, like aggregate tags in SKI,

are used to mark the start of an object on the heap, but they have a unique tag

because SELFs run-time system sometimes needs to scan through the heap to

find all object of a certain type.

In summary, SKis' run-time type system is reasonably efficient and is compa­

rable with other systems. There are several ways it could be made more efficient.

The most obvious inefficiency in the run-time typing scheme is that tag-checking

an aggregate requires a potentially expensive memory access. The obvious solu­

tion to this is to encode more type information in the pointer. We could single

out one frequently used type and use the extra immediate tag for pointers to it,

but we would no longer be able to tag-check a pointer in a single instruction. By

using another bit to tag immediates, we could distinguish between three to five22

more types without having to access memory. The cost of this scheme would

be about the same as that of the current one, we wouldn't be able to tag-check

pointers in one instruction, but we wouldn't have to so often.

21The exponent field, which is in the middle of the float, is truncated and then the remainder
of the exponent field and the mantissa field are shifted left to make room for the tag.

22Steenkiste [SH87] suggests that 000 and 100 should be used to tag fixnums, to support fast
indexing into word vectors (they wouldn't need un-tagging) and that 011 and 111 be used for
pointers to other aggregates. In any case we have eight tag values and we need at least one for
fixnums, one for other immediates and one for other pointers, which leaves a maximum of five
values.

90

Chapter 6

The Dynamic Optimizer

The dynamic optimizer optimizes programs while they are executing. It uses

information collected by running the program to assist in the optimization and

then passes the re-optimized program to the back end (see Chapter 5) for code

generation and insertion into the running system.

Figure 6.1: Overview of the Dynamic Optimizations

Figure 6.1 shows the basic structure ofthe dynamic optimizer. The three main

91

92 Chapter 6. The Dynamic Optimizer

strategies employed by the dynamic optimizer are type prediction, specialization

and inlining:

Type prediction (Section 6.1) attempts to predict the types of variables during

the execution of the program. The type information is used to eliminate

type checking and to direct further optimization-effort is concentrated on

the areas where the optimizer is most confident about the types since these

are where the largest benefit can be expected.

Specialization (Section 6.2) produces versions of procedures in which the types

of at least some of the variables are known (see Sections 2.1 and 2.3).

Inlining (Section 6.3) performs inline expansion of procedures1 to eliminate pro­

cedure call overhead and, more importantly, to introduce further optimiza­

tion opportunities.

Other optimizations performed by the dynamic optimizer are: constant fold­

ing (Section 6.4) which tries to remove constant expressions, including constant

type expressions, and common subexpression elimination (Section 6.5) which at­

tempts to eliminate common expressions. The dynamic optimizer also makes use

of the optimizations we introduced in Chapter 4, especially redundant binding

elimination (Section 4.6) and the conditional optimizations (Section 4.9).

The optimizations tend to reinforce each other, each creating opportunities

for the others, so they are applied iteratively until there is nothing further to be

gained.

6.1 Type Predictor

The type predictor attempts to predict the types that variables will have when

a program is executed. To be more precise, it tries to predict the types of the

values contained in the variables, since in scheme a variable is a location which

may hold a value of any type. 2 The scope of the type prediction is limited to

1Similar to ,8-reduction but the size of the code may increase (see Section 4.7).
2In the remainder of this chapter we will talk about "the types of variables" rather than the

"types of values stored in variables" since this extra indirection is confusing and verbose.

6.1. Type Predictor 93

single procedures since trying to predict the types of, for instance, all the variables

in an entire program is much more difficult and time consuming.

The type predictor employs two strategies, dynamic type prediction and static

type prediction, to determine the types of some variables and then uses type prop­

agation to propagate the type information through the procedure in an attempt

to infer the types of the rest of the variables.

6.1.1 Dynamic Type Prediction

Dynamic type prediction uses the running program to gather information about

the types of variables. The primary method of gathering type information is

by instrumenting the program so that. it records the types of variables and then

letting it run for a while. The information gathered while the program was

running can then be used to predict the types of the variables in the future.

This method is based on the assumption that the distribution of the types of the

variables in the program is relatively constant over time, although the values of

the variables may vary.

Another source of dynamic type information is the values stored in the pro­

gram's memory. The values of global variables, cells introduced by assignment

conversion (Section 4.3) and variables stored in closures can be used as addi­

tional sources of type information. For example, all the closures for a particular

procedure could be examined and type distributions determined for the variables

imported by the procedure, likewise the type distribution of a global variable

could be found by sampling it occasionally.

SKI performs dynamic type prediction by instrumenting each nlambda so

that the types of its arguments recorded each time it is invoked. The types are

recorded using counters, one counter for each type and one set of counters for

each argument. Each counter is initialized to 1 since we can not be certain that

a type will never occur. Initialising the counter to 1 ensures that every type

will have a non-zero probability of occurring. When a procedure been called a

number of times, we can determine Pt(a), the probability that an argument a will

be type t, by dividing count for that type Ct(a) by the sum of the counts of all

94

the types C(a).

Pt(a)

C(a)

Chapter 6. The Dynamic Optimizer

ct(a)
C(a)

L ci(a)

When a procedure is optimized, the argument variables are annotated with type

sets which contain the types that the variable may have and the probability of

occurrence of each type. The type sets for the argument variables contain all

possible types since every type has a probability of at least ~·

Currently SKI doesn't obtain any type information from the program's mem­

ory, but the inliner (Section 6.3) does use the values of global variables and closure

variables.

6.1.2 Static Type Prediction

Static type prediction determines the types of variables by examining the struc­

ture of the program. The sources of type information it uses are calls to primitives,

literals and procedure declarations.

The set of types each primitive can return is known by the compiler. Some

primitives can return only one type, for instance the '$cons' primitive always

returns a pair. Other primitives can return a small set of types; the '$fix+'

primitive, which two adds fixnums can return another fixnum or false if the

addition overflows. 3 Finally, some primitives like '$car' can return any type.

In the case where a primitive can return a small number of types, it can be

useful to assign probabilities to the types returned. These probabilities can be

useful for deciding what to optimize. For instance, the '$fix+' primitive will

return a fixnum most of the time and false very occasionally, so the fixnum type

is given a high probability and the false type a low probability. Code which

depends on the type returned by the '$fix+' primitive can then be optimized for

the common case.

3The true and false values are considered to be members of two distinct single-valued types,
because it is easier for the type predictor to keep track of two separate types than a single type
that has two values, especially since the type predictor isn't concerned with the values of other
types.

6.1. Type Predictor 95

The problem with using primitives as the sources of type information is that

programs written by users don't contain any calls to primitives, the primitives are

encapsulated inside the standard library procedures. The static type prediction

therefore depends on the inliner to perform inline expansion of the standard

library procedures and expose the primitives.

SKI's static type predictor annotates each variable which is bound to the

result of a primitive or to a literal or procedure with a type set containing the

types that the variable might have and probabilities of each type. Unlike the type

sets produced by the dynamic type predictor, these type sets need not contain

all possible types.

Static type prediction is a limited form of type inference [WC93]. It is limited

in that it is only concerned with the types of variables, whereas type inferencers

are also concerned with the types of global data structures.

6.1.3 Type Propagation

Type propagation takes the type annotations which have been attached to some

variables by the type predictors and propagates them through the procedure.

Every reference to one of the annotated variables is itself annotated with the

variables type.

In addition, the type propagator tracks changes in a variables type set due to

conditional expressions and type predicates. For example in the expression:

(cifx

(clambda (kl) body1)

(clambda (k2) body2)

cant)
then it is certain that if 'x' is referenced in body1 it cannot be false, so false is

removed from the type set given to references to 'x' in body1. Conversely, we

can be certain that 'x' is false in body2 and all references to 'x' within can be

given a type set which contains only false. This is similar to the boolean value

propagation optimization mentioned in section 4.9.

It is possible to extend this idea further to conditional expressions which

branch on the result of a type predicate primitive. For example in the expression:

96

(jmp (prim $fixnum? y)

(clambda (t)

(cif t

(clambda (k3) body3)

(clambda (k4) body4)

cant)))

Chapter 6. The Dynamic Optimizer

the type predicate, '$fixnum?', guarantees that within body3 'y' is a fixnum, so

all references to 'y' in body3 are annotated with a type set which consists solely

of fixnum and the type sets given to references to 'y' within body4 do not contain

fixnum.

It is also possible to calculate the probability of a type predicate returning

true or false. If a type predicate tests for a type t, and the probability that its

argument x is of type tis Pt(x) then the probability that it returns true is Pt(x)

and the probability the predicate returns false is 1 - Pt(x). When the type of x

is unknown is it is assumed that the predicate will return true or false with equal

probability.

6.2 Specializer

The general idea behind specialization is to make a special copy of a block of code

in which some parameters which were variable in the original are held constant.

At runtime check is then used to decide whether to use the original block or the

specialized block. For specialization to be successful, the parameters which are

held constant must be selected so that they represent the common case, so that

the cost of specialization (the runtime check and the decrease in code density)

is outweighed by decrease in the runtime. To do this the specialization must

increase the number of opportunities for optimization in the specialized block.

SKI uses specialization to remove the uncertainty of type prediction, and spe­

cializes on the types of arguments to nlambdas. It does this by selecting an

argument or combination of arguments whose types are particularly predictable,

making a second copy of the body of the procedure and generating a conditional

with type tests to distinguish between the bodies. Running the type predictors

and the type propagator over the procedure will then annotate the specialized

6.3. f3-expander or Inliner 97

version with the restricted type sets. E.g., if we decide to specialize the proce­

dure:

(nlambda k (abc) #f

body)
for the case when 'a' is a fixnum, we get:

(nlambda k (abc) #f

(jmp (prim $fixnum? a)

(clambda (t)

(cif t

(clambda (kl)

bodys)

(clambda (k2)

body9)

k)))).
If we run the type predictors and the type propagator over the procedure, it will

discover that in specialized copy of the body, body8 , 'a' is must be a fixnum and,

as a side effect, 'a' can not be a fixnum in the unspecialized or general copy of

the body, body9 .

When a procedure is specialized on the types of two or more arguments then

a special primitive '$type-test' is used to test the types, '(prim $type-test $pred1

x $pred2 y)' yields true iff '(prim $pred1 x)' and '(prim $pred2 y)' both yield

true. We use '$type-test' because we can generate more efficient code for it than

we can generate for two or more nested cifs. 4

6.2.1 When to specialize?

6.3 /)-expander or Inliner

/3-expansion performs essentially the same transformation as /3-reduction (see

Section 4. 7). The differences between the two are:

4The argument to '$type-test' are actually written differently, rather than put the names of
type predicates in the list, which would be illegal (see the grammar on page 32), we encode the
names as numbers. E.g., '(prim $type-test $fixnum? x $null? y)' is really encoded as '(prim
$type-test 0 x 4 y)' and the names are decoded when code is generated for the prim.

98 Chapter 6. The Dynamic Optimizer

• ,8-reduction performs inline expansion of procedures which are called once

and never escape from the enclosing scope. ,8-expansion can inline any

procedure.

• The site where a procedure is expanded by ,8-reduction is in the same

scope as the declaration of the procedure. This is not necessarily true for

,8-expansion. The ,8-expander may have to retrieve the values of variables

imported by a procedure it expands from the closure of the procedure.

• When a procedure is ,8-reduced the program is guaranteed to be smaller

and faster. No such guarantees can be made for ,8-expansion. The program

will always be larger after a ,8-expansion, but it should be faster, though

excessive ,8-expansion might increase the size of the program so much that

it becomes slower due to increased paging or bad cache utilisation.

The ,8-expansion transformation is otherwise the same as the ,8-reduction trans­

formation and the details of the transformation will not be repeated here (see

Section 4. 7). 5

When a procedure is ,8-expanded in a scope other than the one it was declared

in, the values of the variables that it imports must be determined. This can be

accomplished by locating the closure belonging to the instance of the procedure

to be expanded in the programs heap and recovering the values from it. We call

this closure inlining. If the value of a variable in the closure is of an immediate

type and not a symbol then we convert it into a literal and generate code that

binds it to the variable. If the value is a aggregate or a symbol then we put it in

a global variable and generate code to retrieve it from the table. For example if

the closure contains the values of two variables, 'a' and 'b', and the value of 'a'

is a string and 'b' is the fixnum 12 then the code generated to inline the closure

is:

(jmp (prim $get-global n)

(clambda (a)

(jmp 12

(clambda (b)

body)))).

5In fact, SKI uses the same code for ,6-expansion, ,6-reduction and ry-reduction.

6.3. {3-expander or Inliner 99

Here n is offset of the variable holding the string in the global table and body is

the body of the procedure.

Closure inlining is possible for two reasons.

1. Closures are immutable and once created they cannot be modified. This

means that it is possible to include a value from a closure in a program,

since it can't be changed.

2. The value of an aggregate in a closure is actually a reference to the real

value in memory and references can be copied freely without copying the

real value.

6.3.1 Deciding what /)-expand

The mechanics of {3-expansion are quite simple. The difficulty is in deciding

which procedures to {3-expand and when to stop {3-expansion. The benefits of

{3-expansion are twofold.

1. The overhead of the procedure call is eliminated.

2. The expansion "uncovers" information which can be used for further opti­

mization.

The cost of {3-expansion is the increase in code size, which may increase paging

and decrease cache locality. In an extreme case it could lead to the program

running out of memory. Obviously we should {3-expand those procedures which

are most likely to benefit, but have the least impact on the cost.

The first benefit is essentially a small constant speedup-if a procedure call

takes x nano-seconds, then inlining a procedure will make it x ns faster every

time it is executed. This leads us to two conclusions.

1. Since the benefit is a small constant, inlining will benefit small procedures

proportionally more than larger ones. Inlining small procedures will also

cost less (in some cases may it cost nothing6) since the code generated for a

small procedure could be smaller than the code generated for the procedure

call.
6 Or less than nothing!

100 Chapter 6. The Dynamic Optimizer

2. Since the benefit is small, it must be allowed to accumulate to produce a

noticeable speedup. To do this, we can either expand a large number of

procedure calls, or expand those procedure calls which are most frequent.

Clearly the latter is better than the former, since expanding a large number

of calls would be expensive. Conversely, infrequently executed procedure

calls should not be expanded since the costs would outweigh the benefits.

The second benefit is harder to quantify. In some cases a ,8-expansion will

generate an opportunity for a very profitable optimization or sequence of opti­

mizations. An obvious example is expansion of a call to a function with constant

arguments which is reduced to another constant, e.g., '(* 3 5)' could be reduced

to '15'. In other cases ,8-expansion may lead to no further optimizations.

The best that we can hope to do is to expand calls which appear to offer

opportunities for further optimization. As a heuristic, procedures with many

calls to primitives are often good candidates for expansion since type prediction

and optimisations like constant folding and common subexpression elimination

operate on primitives (see Sections 6.1, 6.4 and 6.5). Call sites where the type

information on the arguments is good or some of the arguments constant also

make good candidates.

One solution is to have the compiler "learn" which procedures and call sites

,8-expand well. Dean and Chambers [DC93] describe a modification to the SELF

compiler which records details of each ,8-expansion in a database. The details

include the name of the procedure, information about the types and values of the

arguments, and a metric indicating how successful the ,8-reduction was. Using

this information the compiler can deduce rules like: "Procedure 'f' ,8-expands

well when its third argument is an integer" and use these rules to guide further

expansion.

Currently SKI has no rules for deciding what to inline, but instead it interac­

tively asks the user whether it should inline a procedure call.

6.4 Constant Folding

Constants folding is a essentially simple form of partial evaluation [JGS93] which

evaluates simple expressions that are constant at compile time and replaces them

6.4. Constant Folding 101

with constants. In languages like C and Pascal, constant expressions are usually

expressions involving arithmetic operators with constant operands, e.g., a C com­

piler might replace the expression '1 + 2' with the constant 3 (see Section 10.2 of

The Dragon Book [ASU86]).

In SKI constant expressions take the form of calls to primitives where the

arguments are constants or, if the primitive is a type predicate, where the type

of the arguments is known. Constants in SKI-CPS are either immediates or

variables which are bound to immediates. For example, the prim expressions in

both

(jmp (prim $fix+ 2 3)

...)

(jmp 3.14

(clambda (a)

(jmp (prim $flo-negate a)

...)))
are constant expressions which can be eliminated giving

and

(jmp 5

...)

(jmp 3.14

(clambda (a)

(jmp -3.14

...)))
respectively. These expressions can then be further simplified by using the redun-

dant binding eliminator (see Section 4.6). In particular if 'a' is never referenced

again then its binding will be eliminated.

When a primitive is a type predicate and the type of its argument is known

then we may be able to eliminate the predicate according to the following rules.

• If the predicate is true for all types in the type set then it can be replaced

with true.

• If the predicate is false for all types in the type set then it can be replaced

7 '$Flo-negate' negates a flonum

102 Chapter 6. The Dynamic Optimizer

with false.

• Otherwise the predicate remains unchanged.

For example, if the type set of 'i' is {fixnum} in

(jmp (prim $fixnum? i)

(clambda (t)

(cif t brancht branch 1 cant))),
then the predicate (prim $fixnum? i) can be replaced with '#t'. The redundant

binding eliminator can then eliminate the binding of 't' giving

(cif #t brancht branch1 cant),

and the conditional optimiser (see Section 4.9) can eliminate the cif and the

unreachable branch branch1.

6.5 Common Subexpression Eliminator

Common subexpression elimination (or CSE) identifies expressions which are

identical and computed more than once, it then replaces the duplicate expres­

sions with a variable containing the result of evaluating the first expression. E.g.,

in the following C fragment:
x1 = x + i + 1;

y1 = y + i + 1;

the expression 'i + 1' is duplicated and can be eliminated by assigning 'i + 1' to

a temporary, 't', and substituting 't' for each occurrence of 'i + 1':
t = i + 1;

x1 = x + t;
y1 = y + t;

Like constant folding, CSE in SKI operates on primitives. The common subex­

pression eliminator traverses each nlambda procedure and when it encounters a

call to a primitive, m:

(jmp (prim Pm am1 am2 • • • amk)

(clambda (vm) ...))
it stores the name and arguments in a table along with the variable that the

result will be bound to Vm· If it later encounters a primitive call, n:

6.5. Common Subexpression Eliminator

(jmp (prim Pn an1 an2 ••• ank)

(clambda (vn) ...))

103

that is identical to m, i.e., Pn = Pm and an; = amp then it replaces n with a

reference to Vm:

(jmp Vm

(clambda (vn) ...)).

Not all primitives can be eliminated. Primitives that rely on, or side-effect,

global state can't be eliminated, e.g., '$read-char' ,8 '$set-global!', etc. Others

which rely on the values of mutable data structures in memory require special

precautions. For instance, repeated calls to '$vector-ref' with the same arguments

can be eliminated iff there are no intervening calls to '$vector-set!'. 9 If there is a

single call to '$vector-set!' between the two identical calls to '$vector-ref', even

if it appears to mutate a different vector, then the second '$vector-ref' cannot be

eliminated. This last restriction, is a result of alias problem which is illustrated

in Figure 6.2.

(jmp (prim $vector-ref a 10) ; 1
(clambda (s)

(jmp (prim $vector-set! b 10 w) ; 2
(clambda (ign)

(jmp (prim $vector-ref a 10) ; 3
(clambda (t)

...))))))

Figure 6.2: An example of the alias problem.

If 'a' and 'b' are references to distinct vectors then it is possible to eliminate

the the second '$vector-ref' replacing it with a reference to 's'. If, however 'a'

and 'b' refer to the same vector, that is they are aliases for each other, then the

meaning of the program would be changed. So unless it can be proved that 'a'

can never alias 'b' it is illegal to eliminate the second '$vector-ref'.10 In general

8 '$read-char' gets the next char form and input port, like 'getc' in C.
9 (prim $vector-ref vi) returns the value of element 'i' of vector 'v'. (prim $vector-set! vi

x) sets element 'i' of 'v' to the value of 'x'.
10The alias problem occurs with any mutable aggregate type, we use vectors purely as an

example.

104 Chapter 6. The Dynamic Optimizer

it is difficult to decide whether two variables are aliases for each other so SKI

conservatively assumes that all references of the same type are aliases. 11 See

Chapter 10 of The Dragon Book [ASU86) for a more complete discussion of the

alias problem.

6. 6 Other optimizations

In this sections we briefly discuss a number of optimizations which have not been

implemented in the current version of SKI, but which could be included in a

future version.

6.6.1 Known Procedure Calls, 7]-splitting and Once-Cell

Elimination

If the target of a procedure call is known at compile time then it is possible to

optimize the procedure calling sequence in a number of ways:

• The address of the procedure can be included in the generated code as a

constant instead of being fetched from the closure.

• Since the target is known to be a procedure, it is not necessary to check it

at runtime (see Section 5.5).

• If all the calls to a procedure are known calls then we can eliminate the

runtime check on the number of arguments (see Section 5.5).

• If the target procedure is in the same scope as the calling procedure and

does not escape, then the closure can be eliminated and the values of the

variables the procedure imports can be passed to it as arguments. This can

get quite complex in the presence of recursive procedures. For example,

if the set of variables imported by procedure a is I(a) and procedure b

imports I(b). Then if a calls b, I(a) must be augmented to include the

variables in I(b), and if b calls a then I(b) must be augmented to include

11 In some languages, C for instance, it is impossible to assume even this and compilers must
assume that all pointers are aliases.

6.6. Other optimizations 105

I (a). Fortunately it is possible to find the fixed points of these sets by

iteratively computing

In(a) U In(b)

In(b) U In(a)

until In+l(a) = In(a) and In+l(b) = In(b). In this limited case the equations

will converge on their fixed points in a single iteration, but in the general

case when there are multiple recursive it may require a number of iterations.

ry-splitting is the opposite of ry-reduction (see section 4.8). ry-reduction elim­

inates procedures which do nothing but call other procedures, ry-splitting intro­

duces them! E.g., the ry-splitting transform is (in Scheme):

(let ([f (lambda (a) ...)]) ==> (let ([f (lambda (a) ...)])

...) (let ([fl (lambda (b) (fa))])

...)).
If we then replace all escaping references to 'f' with 'fl ', then the first procedure,

'f', becomes a non-escaping known procedure which doesn't need a closure. The

introduced procedure 'fl' becomes a stub which retrieves the variables imported

by 'f' from its, 'fl 's, closure and passes them to 'f'. ry-splitting is especially useful

for recursive procedures like 'fibonacci' in Figure 6.3a. Both the internal recur­

sive calls to 'fib' could be transformed into known procedure calls and no closures

would be needed except for the escaping version of the procedure.

Unfortunately, the cells introduced by assignment conversion will obstruct this

kind of optimization (see Section 4.3). Recall that the assignment conversion pass

introduces once-cells to hold the variables bound by a letrec, see Figure 6.3b.

However, it is possible to eliminate the once-cells. If a once-cell is set to a

constant value or to a variable bound to a constant then the once-cell can be

eliminated and all references to its value can be replaced by that constant, if the

constant is a procedure then we can substitute a reference to the procedure. E.g.,

we can replace (prim $get-once-cell fib-cell) with a reference to the procedure

bound to 'fib'. Calls to this reference then become known calls.

An earlier version of SKI, performed known call optimization, ry-splitting and

once-cell elimination, but the current version does not.

106 Chapter 6. The Dynamic Optimizer

(define fibonacci
(letrec ([fib

fib))

(define fibonacci

(lambda (n)
(if(<= n 1)

1
(+(fib(- n 1))

(fib (- n 2)))))])

(a) Fibbonacci.

(let ([fib-cell (prim $make-once-cell)))
(let ([fib

(lambda (n)

(+ ...
((prim $get-once-cell fib-cell) (- n 2))))])

(prim $set-once-cell fib-cell fib)
(prim $get-once-cell fib-cell))))

(b) Fibonacci with cells

Figure 6.3:

6.6. Other optimizations 107

A more detailed explanation of known call optimization and 17-splitting can

be found in [App92]. As far as we are aware, once-cells and once-cell elimination

are not used in any other compiler. Though once-cell elimination is similar to the

"letrecification" transformation used in the SCHEMEXEROX compiler [ACS93].

6.6.2 Inlining Rest Lists

If a procedure that has a rest argument is inlined either by ,8-reduction or ,8-

expansion (Sections 4.7 and 6.3) then the rest list for the procedure is constructed

and bound to a variable. The inlined body of the procedure can then retrieve the

rest arguments from the list. For example the procedure

(define (foo. r)

(let ([al (car r)])

...))
takes zero or more arguments and binds first value of the first argument to 'al'.

If 'foo' is inlined at

(foo x y z)

then the following code is generated (in Scheme)

(let ([r (prim $cons x (prim $cons y (prim $cons z '())))])

(let ([al (carr)])

...)).
Unfortunately, inlining 'foo' hasn't achieved much, because when we store the

values of 'x', 'y' and 'z' in the list, all the type information we have on them

is lost to the (inlined) body of the procedure. We may, for instance, know that

'x' is a fixnum, but we have to assume that 'al' can have any type because it is

bound to the return value of the procedure 'car'. Even if we inline 'car' and get

(let ([al (prim $carr)]) ...)

we still have to assume that 'al' can have any type since the '$car' primitive can

return any type.

Fortunately this problem can be resolved. During the constant folding we

can evaluate the expression that constructs the rest list and create a special list,

called a rlist, which holds the names of the variables rather than their values.

108 Chapter 6. The Dynamic Optimizer

Then when we encounter a '$car' primitive with the rlist as its argument, we can

eliminate the primitive and replace it with a variable.

For example, constant folding

(prim $cons x (prim $cons y (prim $cons z '())))

will yield the rlist ('x' 'y' 'z'), which will be temporarily bound to 'r'. Then when

we encounter

(let ([al (prim $car r)]) ...)

we can replace it with

(let ([al x]) ...).

Similarly when if encounter

(let ([rl (prim $cdr r)]) ...)

we can bind the remainder of the rlist ('y' 'z') to 'rl' and continue constant

folding. Hopefully, we can eli~inate all the operations on the rest list and if the

list is no longer used, we can eliminate the procedures that construct it.

The next Scheme standard, the Revised5 Report on the Algorithmic Language

Scheme, will include a new form of rest arguments which will be more efficient

and easier to optimise. Each procedure that takes rest arguments will have two

extra parameters: the number of rest arguments, and a procedure that returns

the nth rest argument. This will allow the use of a more efficient data structure for

holding the rest arguments and the procedure used to retrieve the rest arguments

could be easily inlined.

Chapter 7

Performance

In this chapter the performance of the code generated by the SKI compiler is

examined. In particular, we examin~ the effect of the dynamic optimizations

presented in the previous Chapter.

7.1 Methodology

To investigate the effect of the optimizations a number of small benchmark pro­

grams were compiled with varying levels of optimization and the execution times

compared.

The benchmark programs are small for three reasons:

1. The compiler is slow.

2. Some of the dynamic optimizations require human intervention to guide

them. ,6-expansion and specialization optimizations require the user to

interactively tell them when to inline or specialize a procedure.

3. There are still a number of bugs in the compiler, which tend to affect larger

programs.

The compiler is slow because it is a prototype and was designed for flexibility

rather than performance. Many of the optimizations use two or more passes over

the entire procedure that is being compiled, consisting of one or more passes to

collect information and final pass to perform the transformations. Many of these

109

110 Chapter 7. Performance

passes could be combined but have been kept separate for ease of maintenance.

The passes are also wasteful of memory and information with each making a

new copy of the entire procedure and discarding all the information previously

collected. This makes the compiler easier to maintain and modify, but it also

makes it very inefficient. One measure of the inefficiency is that the compiler

spends approximately 25% of its CPU time in garbage collection.

The second reason, that the compiler requires guidance from a human, is

more serious. The frequency of procedure calls in Scheme is so high that even for

relatively small examples, many inlining decisions are required. Specialization

also requires human intervention, but this is a single decision for each procedure.

The thresholding heuristic currently used by the specializer (see Section 6.2.1)

appears to be quite effective in deciding what parameters and types to specialize

a procedure on.

The small size of the benchmarks do have some advantages. It is possible to

try many combinations of optimizations various optimizations to try to isolate

the effect of each optimization. It is also possible to modify the benchmarks to

determine the upper limits of the optimizations.

7.1.1 Details

The tests were conducted on a lightly loaded Sun SPARCStation 10/51 with

128MB of RAM running SunOS 4.1.3u. The SPARCStation 10/51 has a single

SuperSPARC processor clocked at 50MHz. The SuperSPARC processor is three­

way superscalar1 and has 36 kilobytes of on-chip, level 1, cache. The on-chip

cache is split into a 20 kB instruction cache and a 16kB data cache. In addition

the processor module includes a 1 MB level 2 cache.

Each benchmark was run 10 times and the times were averaged. To measure

the CPU time used by the benchmarks we used the getrusage (2) [Sun90) sys­

tem call. We only recorded the user time, the system time was ignored.2 The

1This means it can issue up to 3 instructions per clock cycle, consisting of two integer/ALU
operations and a single "special" instruction. Special instructions include branches and floating
point operations. There are other restrictions on the instructions that can be issued, for instance
only one of the ALU instructions can be a shift.

2getrusage returns two times, the user time, which is the time spent by the process in user
mode, and the system time, which is the time that the process spends running in kernel mode.

7.2. Loop 111

resolution of the clock used by getrusage is 1/100th of a second. We report all

times in milliseconds.

SKI's heap size was set at 4 MB. SKI's runtime system and the code generated

by SKI was compiled using GNU CC version 2.5.8 with the "-02" flag.

Each of the following sections introduces a single benchmark program and

presents the results of running that benchmark with various optimization options.

7.2 Loop

(define (Ioopl n)
(if (=:2 n 0)

n

(loopl (-:2 n 1))))

(a)

(define (looprec n)
(letrec ([lp (lambda (i)

(if(= i 0)
i
(lp (- i 1))))])

(lpn)))

(b)

Figure 7.1: The loop benchmark.

The first benchmark is a simple loop which counts down from the initial value of

its parameter 'n' to zero. Figure 7.1a shows the code for the loop which is written

as a tail recursive function call. We choose not to use either of Scheme's looping

constructs, the named let or the do loop, since they are just "syntactic sugar"

for recursion. The loop is not implemented using an internal procedure, as shown

in Figure 7.1b, since it would be slightly slower because of the extra indirection

introduced by assignment conversion (see Section 4.3). If the compiler did known

procedure call optimizations (Section 6.6.1) then an internal procedure would be

slightly faster.

The procedures '=:2' and '-:2' are simplified versions the standard '=' and

'-' procedures. '=:2' and '-:2' take exactly two arguments while the standard

procedures take one or more arguments and use rest lists. We use '=:2' and '-:2'

to simulate the rest list inlining optimization discussed in Section 6.6.2.

t;3
0"'
ro
:-"
.......

'"1:1
CD ,_,
0' ,_,
8
§
" CD

~
c+
l:r'
CD

0
0
'0
0"'
CD
::::s
g.
8
~
@

Optimizations II Times (ms) II Average I Relative
Time (ms) Time(%)

~-- (loop1 1000000) I
0 - 3911 4020 3980 3940 3930 3981 3970 3921 3980 4091 3972.4 - -

1 Inline '=:2' & '-:2' 1110 1090 1090 1080 1111 1100 1090 1080 1100 1100 1095.1 27.6 0
2 Specialize on fixnum 1000 1000 990 1010 990 1020 1000 990 1000 1010 1001.0 25.2 0

'n'. Inline '=:2' &
'-:2'

3 Unroll xl. Inline all 710 690 721 710 720 710 720 720 730 710 714.1 18.0 0
'=:2' & '-:2'.

4 Specialize on fixnum 670 690 690 670 670 780 690 681 700 750 699.1 17.6 0
'n'. Unroll xl. Inline
all '=:2' & '-:2'.

5 Unroll x3. Inline all 510 500 510 510 510 500 500 600 530 511 518.1 13.0 0
'=:2' & '-:2'.

_ . (loop2 1000000)
- ---- ·-

6 - 780 780 770 780 810 770 790 770 810 790 785.0 71.6 1
7 Unroll xl. 480 470 470 460 470 460 570 460 460 460 476.0 66.7 3
8 Unroll x3. 300 310 310 310 300 300 300 310 300 310 305.0 58.9 5

I (loop3 1000000) ·1
--

9 - 830 790 800 790 810 800 800 811 800 790 802.1 73.2 1
10 Unroll xl. 430 450 440 440 470 460 450 430 450 470 449.0 62.9 3
11 Unroll x3. 260 260 270 260 270 250 270 260 260 250 261.0 49.6 5

f-'
f-'
tv

~
~
M-

f:!l
:"'

~
t;5,
0

~
§
~
C1:l

7.2. Loop 113

Table 7.1 shows results of running the several variations on the loop bench­

mark with an initial argument of 1000000.

Row 0 of the table gives the times collected when none of the dynamic opti­

mizations were enabled but with the front end optimizations enabled (see Chap­

ter 4).

Row 1 of gives the times collected when 'loopl' was re-optimized and the calls

to '=:2' and '-:2' inlined.

The relative time column contains two numbers, the first number is ratio of

the average time of the current row to the average time of the row indicated by

the second number. So the entry in row 1 says that the version of 'loop1' with

both procedure calls inlined executes in 27% of the time taken by the unoptimized

version of 'loopl'.

Why is it so much faster? Examiping the code that the compiler generated

reveals three reasons:

1. Two procedure calls have been eliminated.

2. The un-optimized version creates one first level continuation closure per

loop (see Section 5.3). This closure holds the continuation and one of the

callee-save variables which allows 'n' to become a callee-save variable. When

the two procedures are inlined, no closures are created.

3. The second arguments to both '-:2' and '=:2' are both constants. The con­

stant folding optimization can eliminate the type tests on these arguments.

The code for '-:2' and '=:2' is contained in Appendix A.5.

Row 2 of the table shows the results of specializing 'loop1' for the case when

'n' is a fixnum. The calls to '-:2' and '=:2' are inlined in the specialized version

of the procedure's body and not inlined in the general version (see Chapter 6.2).

Specialization doesn't produce a very dramatic speedup. The reason is that we

are exchanging two type tests for a single type test. When 'loop1' is specialized,

a type predicate is inserted at the head of the procedure to test the value of

'n'. If 'n' is a fixnum then the specialized version of the procedure's body is

executed, otherwise the general version is executed. When '=:2' is inlined in the

specialized version, the constant folder can eliminate all the type tests on the

114 Chapter 7. Performance

'=:2's first argument, which is now 'n', since 'n' is known to be a fixnum. The

same thing happens when '-:2' is inlined. The net result is that one type test is

inserted, and two are removed.

Row 3 shows the results of inlining the recursive call to 'loop1 ', this is equiva­

lent to unrolling the loop by one iteration. All calls to '-:2' and '=:2' are inlined.

The difference is not as large it was when we first inlined '-:2' and '=:2', because

there are no closure creations to eliminate.

Row 4 shows the result of unrolling the specialized version of the loop. This

is not as effective as we might expect since the specialization has no effect on the

unrolled copy of the loop. The reason is that even though 'n' is known to be a

fixnum in the first, specialized, copy of the loop, we don't know the type of 'n'

in the second, unrolled, copy. This is because when we do the subtraction we

have to check the result to m?ke sure that the subtraction didn't overfiow.3 If

the subtraction did overflow then we have to convert its operands to bignums and

do it again. Testing the result of the subtraction requires a branch and after the

branch all type information about the result is lost. So in the unrolled copy of

the loop the type of 'n' is unknown and none of the type tests can be eliminated.

Finally, row 5 shows the result of unrolling the loop 3 times with no special­

ization.

(define (loop2 n)
(if (prim $fix= n 0)

n
(loop2 (prim $fix- n 1))))

(a) loop2

(define (loop3 n)
(if (prim $fix= n 0)

n
(loop3 (prim $fix-non 1)))))

(b) loop3

Figure 7.2:

Rows 6, 7, and 8 show results of performing some of the same tests on 'loop2'.

As shown in Figure 7.2a, 'loop2' is the same as 'loop1' except that the calls to

'=:2' and '-:2' have been replaced with calls to primitives. The point of this

3In ski, a fixnum subtraction overflows when the result less than -(230).

7.3. Fibonacci 115

experiment is to show the cost of generic arithmetic. Unlike all the variations

on 'loopl' discussed above, 'loop2' will fail silently if it is passed a flonum or a

bignum, or if the subtraction causes an overflow; 'loopl' one will always work no

matter what kind of number it is passed.

As we can see from the relative time column, 'loop2' is significantly faster

than 'loopl' and since 'loop2' implicitly assumes that 'n' is a fixnum, it is not

affected by the loss of type information when the loop is unrolled.

Rows 9, 10 and 11 shows the results of performing the same tests on 'loop3',

which is a variation on 'loop2'. The difference between the two is that in 'loop3'

'$fix-' primitive is replaced with '$fix-no'. '$fix-no' doesn't check the subtrac­

tion for overflow.

Strangely, the un-optimized version of 'loop3' (Row 9) is slower than the un­

optimized version of 'loop2' (Row 6),. However, the unrolled versions of 'loop3'

(Rows 10 and 11) are faster the the corresponding versions of 'loop2' (Rows 7

and 8), which is what we would expect.

The SELF compiler uses range analysis on integers to eliminate overflow check­

ing [CU90]. If SKI could do the same, then it might be able to compiler 'loop1'

so that it is as fast as 'loop3' without sacrificing safety.

7.3 Fibonacci

(define (fib n)
(if (<=:2 n 1)

1
(+:2 (fib (-:2 n 1))

(fib (-:2 n 2)))))

Figure 7.3: fib

Our second benchmark, 'fib', is the "classic" recursive Fibonacci function. For

the same reasons that we discussed in the previous section, 'fib' is written as a

global procedure and uses simplified, two argument, procedures for arithmetic.4

Table 7.2 shows the results of evaluating '(fib 28)'.

4The source code for '+:2' and '<=:2' is included in Appendix A.5

~
0""
(;)

:'1
~ .,
~
0'

Optimizations Times (ms)

s ~~ §
n
CD

a,
e+
::r'
CD

1-rj
;:
0
i:j
P'
n
Q.
0""

0
g.
s
~

0
1

2

-

Inline '+:2\ '-:2' and
'<=:2'.
Specialize on 'n' is a
fixnum. Inline '+:2',
'-:2' and '<=:2'.

4880 4851 4930 4831 4830 4991
1710 1741 1770 1780 1880 1781

1611 1710 1660 1660 1690 1651

Average
Time (ms)

4830 4821 4980 4821 4876.5
1780 1780 1750 1790 1776.2

1660 1630 1720 1680 1667.2

-------·············

Relative
Time(%)

- -

36.4 0

34.2 0

f-'
f-'
Ol

g
{j
c:-t-

~
:-'l

~
~ a s
§
~
('!)

7.4. Deriv 117

Row 1 of the table shows that inlining '+:2', '-:2' and '<=:2' has results

similar to inlining '-:2' and '=:2' in 'loopl', but the effect is not as large. The

reason is that we can't completely eliminate the creation of continuation closures,

though the number of closures created is reduced from three in the un-optimized

version to one in the optimized version.

Row 2 of the table shows that the effect of specializing 'fib' for the case when

'n' is a fixnum is also quite small. In this case specialization introduces one type

test and eliminates three.

Unfortunately, an elusive bug in the compiler prevented us from inlining the

recursive calls and unrolling 'fib'.

7.4 Deriv

The final benchmark is the Deriv benchmark shown in Figure 7.4. Deriv is

taken from the Gabriel benchmark suite which was created by Richard Gabriel

to measure the performance of Lisp implementations [Gab85]. Deriv was written

by Vaughan Pratt and was ported to Scheme by William Clinger. The full source

for Deriv, including comments, is included in Appendix A.6.

Deriv computes the symbolic derivatives of expressions. Unlike the previous

benchmarks Deriv does no arithmetic, operates mostly on symbols and lists. The

numbers in expressions are treated like symbols.

Table 7.3 shows the results of calling 'deriv' 20,000 times with the argument

'(+ (* 3 x x) (*ax x) (+ b x) 5)'5 .

Unfortunately, the same bug that affected the previous benchmark also affect

'deriv'. The bug appears to occurs when a procedure that starts with sequence

(if exp then (procedurecall))

is inlined, but it does not occur in all such sequences!

Row 1 of the table gives the results of inlining all small procedures except for

those that started with the above sequence. The procedures inlined were 'not',

'pair?', 'eq?' and 'cons'. The procedures that were not inlined because of the bug

were 'car' and 'cdr'. 'map', 'cadr' and 'caddr' were not inlined because of their

size.

118 Chapter 7. Performance

(define (deriv-aux a) (list 'I (deriv a) a))

(define (deriv a)
(cond

((not (pair? a))
(cond ((eq? a 'x) 1) (else 0)))

((eq? (car a) '+)
(cons '+ (map deriv (cdr a))))

((eq? (car a) '-)
(cons '-:- (map deriv

(cdr a))))
((eq? (car a) '*)
(list '*

a
(cons'+ (map deriv-aux (cdr a)))))

((eq? (car a) 'I)
(list '-

(list 'I
(deriv (cadr a))
(caddr a))

(list 'I
(cadr a)
(list '*

(else 'error)))

(caddr a)
(caddr a)
(deriv (caddr a))))))

Figure 7.4: The Deriv Benchmark

~
0"'
Ci)

~
w

""0
~
0',
8
~
(")
CD

2-,
c+
::>"'
CD

t::i
~ ::r
0"'
CD
::I g..
8
~
!""

Optimizations 1 Times (ms)

I -···· (deriv '(+ (* 3 x x) (*ax x) (*b x) 5))
----- -

0 - 4750 4850 4750 4771 4791 4831 4841 '4820
1 Inline all small proce- 3820 3810 3771 3810 3661 3730 3700 3690

dures avoiding bug.
2 As above, inline spe- 3621 3500 3441 3560 3410 3671 3430 3311

cial 'car' and 'cdr' too.
3 As 2, inline 'list' too. 3190 3031 3360 3380 3410 3760 3250 3050

·-

4770 4920
3780 3881

3450 3370

3110 3190

Average I Relative J
Time (ms) Time (%)

4809.4 - -

3765.3 78.3 0

3476.4 72.3 0

3273.1 68.1 0

:'I
~

t;
~
~

1-'
1-'
\.0

120 Chapter 7. Performance

Row 2 gives the results of inlining special versions 'car' and 'cdr' which do

not provoke the compiler bug (see Appendix A.5) as well as all the procedures

inlined above.

Row 3 gives the results of inlining the 'list' procedure as well as all procedures

inlined by the example in row 2.

We did not try specializing 'deriv' as its argument 'a' has no obvious most

frequent type tQ specialize it on. 'a' is pair or a symbol with almost equal fre­

quency.

The speedup achieved by inlining is not as great as that achieved in the

previous two benchmarks. This is probably due to two factors. Firstly, still

makes a large number of procedure calls, and secondly, deriv creates many lists.

Chapter 8

Conclusions

Research is what I'm doing when I don't know what I'm doing.

- Wernher von Braun [Arn86]

8.1 Discussion

As the previous chapter shows, dynamic compilation techniques can yield a sub­

stantial increase the performance of Scheme programs. The execution speed of

simple programs increased by a factor of three or four, but the increase was less

substantial for more complex programs.

Surprisingly, the increase in performance that we observed came primarily

from inlining procedures rather than eliminating type checking. We had expected

that eliminating type checking would have a greater impact on the performance

than we observed. Further work is needed to clarify these issues.

8.2 Future Work

Much work needs to be done on the SKI to increase the stability and useabilty

of the compiler so that its performance can be evaluated on larger programs. In

particular, a set of heuristics for deciding when to inline procedures is urgently

needed.

SKI could also perform more optimizations than it currently does. Known

call optimisation and rest list inlining (see Sections 6.6.1 and 6.6.2) could result

121

122 Chapter 8. Conclusions

substantial increases in performance. Another optimization that could make a

big difference is splitting, as SKI's type predictor loses valuable type information

after conditional expressions (see Section 2.1.3). Finally the specialization opti­

mization could be generalized to the continuations of procedure calls as these are

a major source of uncertainty in type prediction.

8.3 Conclusion

SKI has demonstrated that dynamic compilation is an effective way of increasing

the performance of Scheme programs, although more work is necessary to unleash

its full benefits.

Appendix A

Miscellaneous

A.l Example SELF code

The following is the SELF code to add two points together copied from [US91].

+ arg = (
I newPoint I
newPoint: copy.

new Point x: x + arg x.

newPoint y: y + arg y.

new Point.

123

124 Appendix A. Miscellaneous

A.2 CPS version of nested if optimization

If we CPS convert the nested if expression:

(if (if a b c) de)

we get (assuming for simplicity that a, b, c, d and e are variables or literals):

(cifa

(clambda (k1) (jmp b k1))

(clambda (k2) (jmp c k2))

(clambda (v)

(cif v

(clambda (k3) (jmp d k3))

(clambda (k4) (jmp e k4))

ko))).
which can be transformed into:

(jmp (nlambda k3 () #f (jmp d k3))

(clambda (dt)

(jmp (nlambda k4 () #f (jmp e k4))

(clambda (et)

(cifa

(clambda (jl)

(cif b

(clambda (h) (app dt () j2))

(clambda (j3) (app et () j3))

Jl))
(clambda (j4)

(cif c

ko)))))

(clambda (j5) (app dt () js))

(clambda (j6) (app et () j5))

J4))

The real transform is slightly more complicated since it must be able handle cases

where a, b, c, d and e are more complex expressions.

A.3. Tail call macro for the SPARC 125

A.3 Tail call macro for the SP ARC

o #define TAIL_CALL2(dest 1 a01 al)
1 {
2 register SKI __ argO asm (11 %i0 11

);

3 register SKI __ argl asm (11 %i1 11
);

4 __ argO = (SKI) aO;
5 __ argl = (SKI) al;
6 asm volatile (
7 11 jmpl %0, %%gO, %%gO
8 restore 11

9
10 11 r 11 (dest) 1

11 r 11
(__ arg0) 1

11 r 11
(__ argl)

11 11 %i 7 11
);

12
13 DO.-NOTHIN9();
14 }

Figure A.l: A two argument tailcall macro for the SPARC.

Figure A.l shows a C macro which tailcalls a function 'dese with two argu­

ments 'a01 and 'al 1
• The following is a line-by-line description of how the macro

works:

2-3 The variables ' __ argO' and ' __ argl' are declared to hold the arguments. The

asm syntax is a GNU C extension which instructs the compiler to map the

variables onto specific registers, in this case '%i0' and '%il', the first two

input registers in the current register window.

6 The keyword asm begins an inline assembler sequence. volatile tells the

compiler that it shouldn't try to move or otherwise interfere with the se­

quence.

7 jmpl is the SPARC jump-and-link instruction, it sets the program counter

to the sum of its first two operands and stores the old value of the program

counter in its third operand. The first operand '%0' is replaced by the

register holding the destination address 'dest' (which is mapped into an

unspecified register on line 10), the second and third operands specify the

126 Appendix A. Miscellaneous

'%gO' register which is always zero. So this instruction jumps to 'dest + 0'

and discards the old value of the programme counter.

8 The restore instruction, which is executed in the delay slot of the jmpl, 1

switches to the previous register window. This means that the ''input"

registers '%i0-%i7' become the output registers '%oO-%o7' of the previous

register window. When the destination function is reached the first in­

struction executed in the standard function prologue will be a save which

switches to the next register window and the output registers become the

input registers again.

The restore instruction also sets the stack pointer back to the value that

it had when the calling function was entered, deallocating anything that

was allocated on the sta<;:k.

9 This line is used to tell the compiler where to find the result of the sequence,

in this case there isn't one.

10 This line tells the compiler where to put the arguments to the sequence.

'
11 r 11 (dest)' tells the compiler to make sure that 'dest' is in a register,

the string %0 in the sequnce is replaced with the name of the register.

'
11 r 11

(__ argO)' and ' 11 r 11
(__ argl)' tell the compiler that the values of ' __ argO'

and ' __ argl' are used to prevent it from eliminating them.

11 This line tells the compiler that the value of '%i7', the stack pointer, is

changed.

13 This line, which is never executed, is used to inform the compiler that this

macro never "returns." 'DO_NOTHING' is declared:

volatile void DO_NOTHING(void)

{

abort();

}

1 I.e., before the jump is completed.

A.3. Tail call macro for the SPARC 127

Using the keyword volatile like this indicates that 'DO_NOTHING' never

returns and as an aid to debugging a core dump is generated (by 'abort')

if 'DO..NOTHING' is ever executed. A better solution would be to declare

that the asm sequence never returns but this is not currently possible.

128

A.4

Appendix A. Miscellaneous

Tail call macro for the i386

0 SKI ExtraArgRegs[];
1
2 #define TAIL_CALL2(dest, aO, al)
3 {
4 SKI *--ear = ExtraArgRegs;
5 __ ear[O) = (SKI) aO;
6 __ ear[l) = (SKI) al;
7 asm volatile (
8 11 movl %%ebp, %%esp
9 popl %%ebp
10 jmp %0 11

11
12
13
14
15
16 }

11 r 11 (dest)
n%ebpu' n%espn);

DO_NOTHING();

Figure A.2: Two argument tail call macro for the i386.

Figure A.2 shows a two argument tailcall macro used by SKI on i386 based

machines running Linux. It is similar in structure to the tailcall macro shown in

Appendix A.3. The following discusses the differences on a line-by-line basis:

4-6 The standard calling convention used on i386 machines running Linux 1.0

doesn't pass any arguments in registers. Therefore we have to pass all

arguments in a global array 'ExtraArgRegs)) ' __ ear' is a local pointer to the

array which will (hopefully) be allocated in a register.

8-9 These lines restore the stack pointer, %esp, and and base pointer, %ebp to

the values that they had when the calling function was entered, deallocating

anything that was allocated on the stack by the calling function.

10 Finally we jump to the destination function, the address of which was placed

in an unspecified register by line 12.

A.5. Library procedures 129

A.5 Library procedures

The following is the Scheme code for some of the library procedures discussed

in 7.

(define =:2

(lambda (x y)

(cond ([prim $fixnum? x]

(cond ([prim $fixnum? y]

(prim $fix= x y))

([prim $bignum? y]

(prim $big= (prim $fixnum->bignum x) y))

([prim $flonum? y]

(prim $flo= (prim $fixnum->flonum x) y))

))

([prim $bignum? x]

(cond ([prim $fixnum? y]

(prim $big= x (prim $fixnum->bignum y)))

([prim $bignum? y]

(prim $big= x y))

([prim $flonum? y]

(prim $flo= (prim $bignum->flonum x) y))

))

([prim $flonum? x]

(cond ([prim $fixnum? y]

)))

(prim $flo= x (prim $fixnum->flonum y)))

([prim $flonum? y]

(prim $flo= x y))

([prim $bignum? y]

(prim $flo= x (prim $bignum->flonum y)))

))

130 Appendix A. Miscellaneous

(define -:2

(lambda (x y)

(cond ([prim $fixnum? x]

(cond ([prim $fixnum? y]

(or (prim $fix- x y)

(prim $big- (prim $fixnum->bignum x)

(prim $fixnum->bignum y))))

([prim $bignum? y]

(prim $big- (prim $fixnum->bignum x) y))

([prim $flonum? y]

(prim $flo- (prim $fixnum->flonum x) y))

))

([prim $bignum? x]

(cond ([prim $fixnum? y]

(prim $bignum->fixnum?

(prim $big- x (prim $fixnum->bignum y))))

([prim $bignum? y]

(prim $big- x y))

([prim $flonum? y]

(prim $flo- (prim $bignum->flonum x) y))

))

([prim $flonum? x]

(cond ([prim $fixnum? y]

)))

(prim $flo- x (prim $fixnum->flonum y)))

([prim $flonum? y]

(prim $flo- x y))

([prim $bignum? y]

(prim $flo- x (prim $bignum->flonum y)))

))

A.5. Library procedures

(define <=:2

(lambda (x y)

(cond ([prim $fixnum? x]

(cond ([prim $fixnum? y]

(prim $fix<= x y))

([prim $bignum? y]

(prim $big<= (prim $fixnum->bignum x) y))

([prim $flonum? y]

(prim $flo<= (prim $fixnum->flonum x) y))

))

([prim $bignum? x]

(cond ([prim $fixnum? y]

(prim $big<= x (prim $fixnum->bignum y)))

([prim $bignum? y]

(prim $big<= x y))

([prim $flonum? y]

(prim $flo<= (prim $bignum->flonum x) y))

))

([prim $flonum? x]

(cond ([prim $fixnum? y]

)))

(prim $flo<= x (prim $fixnum->flonum y)))

([prim $flonum? y]

(prim $flo<= x y))

([prim $bignum? y]

(prim $flo<= x (prim $bignum->flonum y)))

))

131

132 Appendix A. Miscellaneous

(define +:2

(lambda (x y)

(cond ([prim $fixnum? x]

(cond ([prim $fixnum? y]

(or (prim $fix+ x y)

(prim $big+ (prim $fixnum->bignum x)

(prim $fixnum->bignum y))))

([prim $bignum? y]

(prim $big+ (prim $fixnum->bignum x) y))

([prim $flonum? y]

(prim $flo+ (prim $fixnum->flonum x) y))

))

([prim $bignum? x]

(cond ([prim $fixnum? y]

(prim $bignum->fixnum?

(prim $big+ x (prim $fixnum->bignum y))))

([prim $bignum? y]

(prim $big+ x y))

([prim $flonum? y]

(prim $flo+ (prim $bignum->flonum x) y))

))

([prim $flonum? x]

(cond ([prim $fixnum? y]

)))

(prim $flo+ x (prim $fixnum->flonum y)))

([prim $flonum? y]

(prim $flo+ x y))

([prim $bignum? y]

(prim $flo+ x (prim $bignum->flonum y)))

))

A.5. Library procedures

The following are the standard versions of the 'car' and 'cdr'.

(define (car x)

(if (prim $pair? x)

(prim $car x)

(c*r-err 'car)))

(define (cdr x)

(if (prim $pair? x)

(prim $cdr x)

(c*r-err 'cdr)))

133

These are the special versions of 'car' and 'cdr' which do not provoke the bug

mentioned in Section 7.4.

(define (car x)

(if (prim $pair? x)

(prim $car x)

'error))

(define (cdr x)

(if (prim $pair? x)

(prim $cdr x)

'error))

The difference between the two versions is that the special versions do not call

the error reporting procedure 'c*r-err' if they are passed arguments of the wrong

type.

134 Appendix A. Miscellaneous

A.6 The Deriv Benchmark Program

The following is the full Scheme source of the Deriv benchmark from the Gabriel

benchmark suite [Gab85].

;

File: deriv.sch

Description: The DERIV benchmark from the Gabriel tests.

Vaughan Pratt Author:

Created: 8-Apr-85

Modified: 10-Apr-85 14:53:50 (Bob Shaw)

23-Jul-87 (Will Clinger)

9-Feb-88 (Will Clinger)

Scheme Language:

Status: Public Domain

;

'''
'''

DERIV -- Symbolic derivative benchmark written by Vaughn Pratt.

It uses a simple subset of Lisp and does a lot of CONSing.

Returns the wrong answer for quotients.

Fortunately these aren't used in the benchmark.

(define (deriv-aux a) (list '/ (deriv a) a))

(define (deriv a)

(cond

((not (pair? a))

(cond ((eq? a 'x) 1) (else 0)))

((eq? (car a) '+)

(cons '+ (map deriv (cdr a))))

((eq? (car a) '-)

(cons '- (map deriv

((eq? (car a) '*)

(list '*

(cdr a))))

A.6. The Deriv Benchmark Program

a

(cons '+ (map deriv-aux (cdr a)))))

((eq? (car a) '/)

(list '-

(list 'I
(deriv (cadr a))

(caddr a))

(list 'I
(cadr a)

(list '*
(caddr a)

(caddr a)

(deriv (caddr a))))))

(else 'error)))

(define (run)

(do ((i 0 (+ i 1)))

((= i 1000))

(deriv ' (+ (* 3 x x) (* a x x) (* b x) 5))

(deriv '(+ (* 3 x x) (* a x x) (* b x) 5))

(deriv '(+ (* 3 x x) (* a x x) (* b x) 5))

(deriv '(+ (* 3 x x) (* a x x) (* b x) 5))

(deriv '(+ (* 3 x x) (* a x x) (* b x) 5))))

, , , call: (run)

(run-benchmark 11 Deriv 11 (lambda () (run)))

135

136

Bibliography

[ACS93]

[AJ89]

[App87]

[App92]

[App94]

[Arn86]

[AS94]

Norman Adams, Pavel Curtis, and Mike Spreitzer. First-Class Data­

type Representations in SCHEMEXEROX. In Proceedings of the BIG­

PLAN '93 Conference on Programming Language Design and Imple­

mentation, pages 139-146, 1993. Published as SIGPLAN Notices,

28(6).

Andrew W. Appel and Trevor Jim. Continuation-passing, closure­

passing style. In Sixteenth ACM Symposium on Princples of Pro­

gramming Languages, pages 293-302, New York, 1989. ACP Press.

Andrew W. Appel. Garbage Collection Can Be Faster than Stack

Allocation. Information Processing Letters, 25(4):275-279, June

1987.

Andrew W. Appel. Compiling with continuations. Cambridge Uni­

versity Press, 1992.

Andrew W. Appel. Emulating Write-Allocate on a No-Write­

Allocate Cache. Technical Report CS-TR-459-94, Princeton Uni­

versity, June 1994.

Ken Arnold. fortune(1), 1986.

Andrew W. Appel and Zhong Shao. An Empirical and Analytic

Study of Stack vs. Heap Cost for Languages with Closures. Techni­

cal Report CS-TR-450-94, Princeton University, 1994. A vailible for

FTP from ftp.cs.princeton.edu:/reports/1994/.

137

138

[ASU86]

[Bak92]

[Bak94]

[Bar89]

BIBLIOGRAPHY

Alfred V. Aho, Ravi Sethi, and Jeffrey D. Ullman. Compilers
1

Prin­

ciples) Techniques and Tools. Addison-Wesley, 1986.

Henry G. Baker. Inlining Semantics for Subroutines which are Re­

cursive. SIGPLAN Notices, 27(12):39-46, December 1992.

Henry G. Baker. CONS Should Not CONS Its Arguments, Part II:

Cherry on the M.T.A. Posted to comp .lang. scheme. c newsgroup,

Feburary 4, 1994.

Joel F. Bartlett. Scheme->0 a Portable Scheme-to-O Compiler. Re­

search Report 89 1, DEC Western Research Laboratory, Palo Alto,

California, January 1989.

[CCKM94] Quintin Cutts, Richard Connor, Graham Kirby, and Ron Morrison.

[Cha92]

[Cha93]

[CR91]

[Cri92]

[CU89]

An Execution-Driven Approach to Code Generation. In Proc. of

the Seventeenth Annual Computer Science Conference, pages 83-92.

Austrailian Computer Science Communications, 1994.

Craig Chambers. The Design and Implementation of the SELF

Compiler1 an Optimizing Compiler for Object-Oriented Program­

ming Languages. PhD thesis, Stanford University, 1992.

Craig Chambers. The Cecil Language: Specification and Rationale.

Technical Report TR-93-03-05, Department of Computer Science

and Engineering, University of Washington, 1993.

William Clinger and Jonathan Rees. Revised4 Report on

the Algorithmic Language Scheme. A CM Lisp Pointers IV,

1991. FTPable from al tdorf. ai. mit. edu and WWWable from

ftp://altdorf.ai.mit.edu/archive/scm/HTML/r4rs_toc.html.

R. Cridlig. An optimizing ML to C compiler. In Workshop on ML

and its applications. ACM, 1992.

Craig Chambers and David Ungar. Customization: Optimiz­

ing Compiler Technology for SELF, a Dynamically-Typed Object­

Oriented Programming Language. In Proceedings of the SIGPLAN

BIBLIOGRAPHY 139

[CU90]

[CU91]

[CUL89]

[DC93)

[DOD83]

[FM91]

[Gab85]

[Gil91]

'89 Conference on Programming Language Design and Implementa­

tion, pages 146-160, 1989. Published as SIGPLAN Notices, 24(7).

Craig Chambers and David Ungar. Iterative Type Analysis and Ex­

tended Message Splitting: Optimizing Dynamically-Typed Object­

Oriented Programs. In OOPSLA '90 Proceedings, pages 150-164.

Association for Computing Machinery, 1990. Published as BIG­

PLAN Notices, 24(?).

Craig Chambers and David Ungar. Making Pure Object-Oriented

Languages Practical. In OOPSLA '91 Proceedings, pages 1-15. As­

sociation for Computing Machinery, 1991. Published as SIGPLAN

Notices, 25(6).

Craig Chambers, David Ungar, and Elgin Lee. An Efficient Im­

plementation of SELF, a Dynamically-Typed Object-Oriented Lan­

guage Based on Prototypes. In OOPSLA '89 Proceedings, pages

49-70. Association for Computing Machinery, 1989. Published as

SIGPLAN Notices, 24(10).

Jeffery Dean and Craig Chambers. Training Compilers for Better

Inlining Decisions. Technical Report 93-05-05, University of Wash­

ington, 1993.

U.S. Department of Defence. Reference Manual for the Ada Pro­

gramming Language, 1983.

Scott E. Fahlman and David B. McDonald. Design Considerations

for CMU Common Lisp. In Topics in Advanced Language Imple­

mentation [Lee91].

Richard P. Gabriel. Performance and Evaluation of Lisp Systems.

MIT Press, 1985.

Dave Gillespie. p2c - Pascal to C translator, version 1.20, 1991.

Available for FTP from csvax. cs. cal tech. edu.

140 BIBLIOGRAPHY

[H94] Urs Holzle. Adaptive Optimization for Self: Reconciling High Per­

formance with Exploratory Programming. PhD thesis, Stanford Uni­

versity, August 1994.

[Hau94]

[HCU91]

[HDB90]

[HP90]

B. Hausman. Turbo Erlang: Approaching the Speed of C, chapter 0,

pages 119-135. Kluwer Academic Publishers, 1994.

Urs Holzle, Craig Chambers, and David Ungar. Optimizing

Dynamically-Typed Object-Oriented Languages With Polymorphic

Inline Caches. In ECOOP '91, European Conference on Object Ori­

ented Programming, pages 21-38. Springer Verlag, 1991.

Robert Hieb, R. Kent Dybvig, and Carl Bruggeman. Representing

Control in the Pr~sence of First-Class Continuations. In Proceedings

of the SIGPLAN '90 Conference on Programming Language Design

and Implementation, pages 66-77, 1990.

John L. Hennessy and David A. Patterson. Computer Architecture:

a Quantitative Approach. Morgan Kaufman, 1990.

[HPJW+92] P. Hudak, S.L. Peyton Jones, P.L. Walder, B. Boutel, J. Fair­

bain, J. Fasel, M. Guzman, K. Hammond, J. Hughes, T. Johnsson,

R. Kieburtz, R.S. Nikhil, W. Partian, and J. Peterson. Report on the

functional programming language Haskell, Version 1.2. SIGPLAN

Notices, 1992.

[JGS93]

[Jon92]

[Jou93]

N. Jones, K. Gomard, and P. Sestoft. Partial Evaluation and Auto­

matic Program Generation. Prentice Hall International, 1993.

Simon L. Peyton Jones. Implementing lazy functional languages

on stock hardware: the Spineless Tagless G-machine. Journal of

Functional Programming, 2(2):127-202, April1992.

Norman P. Jouppi. Cache write policies and performance. In Pro­

ceeedings of the 20th Annual International Symposium on Computer

Architecture, pages 191-201. ACM Press, May 1993.

BIBLIOGRAPHY 141

[KEH91] David Keppel, Susan J. Eggers, and Robert R. Henry. A Case for

Runtime Code Generation. Technical Report 91-11-04, Dept. of

Computer Science and Engineering, Seattle, 1991.

[KKR+86] David Kranz, Richard Kelsey, Jonathan Rees, Paul Hudak, James

Philbin, and Norman Adams. ORBIT: An Optimising Compiler for

Scheme. In Proceedings of the ACM SIGPLAN'86 Symposium on

Compiler Construction, pages 219-233. ACM Press, June 1986.

[KR78]

[KR88]

[Lee91]

Brian W. Kernighan and Dennis M. Ritchie. The C Programming

Language. Prentice-Hall, Englewood Cliffs, New Jersey, 1978.

Brian W. Kernighan and Dennis M. Ritchie. The C Programming

Language. Prentice-Hall, Englewood Cliffs, New Jersey, 2nd edition,

1988.

Peter Lee. Topics in Advanced Language Implementation. MIT

Press, Cambridge, Massachusetts, U.S.A, 1991.

[MBCD89] R. Morrison, A. L. Brown, R. C. H. Connor, and A. Dearie. The

Napier88 Reference Manual. University of St. Andrews, 1989.

[Mey88] Bertrand Meyer. Object-oriented software construction. Prentice­

Hall, 1988.

[MTH89]

[Nor95]

[Omo93]

[Pae93]

Robin Milner, Mads Tofte, and Robert Harper. The Definition of

Standard ML. MIT Press, Cambridge, MA, 1989.

Kevin Normoyle. Re: Cache write miss policies. Per­

sonal email message from Kevin. Normoyle@Eng. Sun. COM reference

<9501231929. AA26575@gluon. Eng. Sun. COM> received 24 January,

1995.

Stephen Omohundro. The Sather 1.0 Specification. Technical re­

port, International Computer Science Institute, Berkeley, 1993.

Andreas Paepcke. Object Oriented Programming: The GLOB Per­

spective. MIT Press, 1993.

142

[Pet94]

[Pet95]

[Ple91]

[SA94]

[SH87]

[Sha92]

[SHC94]

BIBLIOGRAPHY

Mikael Pettersson. RML- A New Language and Implementation

for Natural Semantics. In M. Hermenegildo and J. Penjam, editors,

Proceedings of the 6th International Symposium on Programming

Language Implementation and Logic Programming, volume 844 of

Lecture Notes in Computer Science, pages 117-131. Springer Verlag,

1994.

Mikael Pettersson. Simulating Tailcalls in C. Submitted to

Functional Programming and Computer Architecture '95, FTPable

from ftp.ida.liu.se:/pub/labs/pelab/rml/tailcall.ps.gz,

January 1995.

Uwe F. Pleban. Compilation Issues in the Screme Implementation

for the 88000. In Topics in Advanced Language Implementation

[Lee91].

Zhong Shao and Andrew W. Appel. Space Efficient Closure Rep­

resentations. In Conference Record of the 1994 ACM Symposium

on Lisp and Functional Programming. Association for Computing

Machinery, June 1994.

Peter A. Steenkiste and John L. Hennessy. Tags and Type Check­

ing in LISP: Hardware and Software Approaches. In Proceedings

of the Second International Conference on Architectural Support

for Programming Languages and Operating Systems, pages 50-59.

ACM/IEEE, October 1987.

Andrew Shalit. Dylan: An object-oriented dynamic language. Apple

Computer Inc., Cupertino, CA, 1992.

Zoltan Somogyi, Fergus James Henderson, and Thomas Charles

Conway. The implementation of Mercury, an efficient purely declar­

ative logic programming language. Technical report, Dept. of Com­

puter Science, University of Melbourne, 1994. WWWable from:

http://www.cs.mu.oz.au/~zs/papers/mercury.ps.gz.

BIBLIOGRAPHY 143

[SPA92]

[Sta92]

[Ste78]

[Ste84]

[Ste91]

[Str91]

[Sun90]

[SW94]

[TAL91]

[TDM94]

SPARC International. The SPARC Architecture Manual, Version

8, 1992.

Richard M. Stallman. Using and porting Gnu CC, Version 2.0. Free

Software Foundation Inc., 1992.

Guy L. Steele. RABBIT: A Compiler for Scheme. Technical Report

AI Memo 474, MIT, 1978.

Guy L. Steele jr. Common Lisp: The Language. Digital Press, 1984.

Peter A. Steenkiste. The Implementation of Tags and Run-Time

Type Checking. In Topics in Advanced Language Implementation

[Lee91].

Bjarne Stroustrup. The C++ Programming Language. Addison­

Wesley, Reading, Massachusetts, 2 edition, 1991.

Sun Microsystems. getrusage (2), 1990.

M. Serrano and P. Weis. 1 + 1 = 1: an optimizing caml compil. In

ACM SIGPLAN Workshop on ML and its Applications, 1994.

D. Tarditi, A. Acharya, and P. Lee. No assembly require:

Compiling Standard ML to C. Technical Report CMU-CS-

90-187, Carnegie Mellon University, Pittsburg, Pennsylvania,

School of Computer Science, March 1991. FTPable from

dravido.soar.cs.cmu.edu:/usr/nemo/sml2c.

David Tarditi, Amer Diwan, and Eliot Moss. Memory Subsystem

Performance of Programs Using Copying Garbage Collection. In

Conference Record of the 21st Annual ACM Conference on Princi­

ples of Programming Languages, pages 1-14, January 1994.

[THL+86] GeorgeS. Taylor, Paul N. Hilfinger, James R. Larus, David A. Pat­

terson, and Benjamin G. Zorn. Evaluation of the SPUR Lisp Archi­

tecture. In The 13th Annual International Symposium on Computer

Architecture, pages 444-452. IEEE and the ACM, IEEE Computer

144

[US87]

[US91]

[Van77]

[VP89]

[WC93]

[Wi192]

[YH85]

BIBLIOGRAPHY

Society Press, June 1986. Published as Computer Architecture News,

14(2).

David Ungar and Randall B. Smith. SELF: The power of simplicity.

In OOPSLA '87 Proceedings, pages 227-242. Association for Com­

puting Machinery, 1987. Published as SIGPLAN Notices, 22(12).

David Ungar and Randall B. Smith. SELF: The power of simplicity.

Lisp and Symbolic Computation, 4(3), 1991.

Eric J. Van Dyke. A Dynamic Incremental Compiler for an Interpre­

tive Language. Hewlett-Packard Journal, 28(11):17-23, July 1977.

Steven R. Vegdahl and Uwe F. Pleban. The Runtime Enviroment

for Screme, a Scheme Implementation on the 88000. In Proceed­

ings of the Third International Conference on Architectural Support

for Programming Languages and Operating Systems, pages 172-182.

ACM/IEEE, 1989. Published as SIGPLAN Notices, 24(Special Is­

sue).

Andrew K. Wright and Robert Cartwright. A Practical Soft Type

System for Scheme. Technical Report TR93-218, Dept. of Computer

Science, Rice University, Houston, December 1993.

Paul R. Wilson. Uniprocessor Garbage Collection Techniques.

In Y. Bekkers and J. Cohen, editors, Memory Management: In­

ternational Workshop IWMM 92, number 637 in Lecture Notes

in Computer Science, pages 1-42, Berlin, 1992. Springer Ver­

lag. This paper and an expanded version are FTPable from:

cs.utexas.edu:/pub/garbage.

Taiichi Yuasa and Masami Hagiya. Kyoto common lisp report.

Technical report, Research Institute for Mathematical Sciences, Ky­

oto University, 1985.

	Abstract
	Acknowledgements
	Contents
	Chapter 1
	1.1 Introduction
	1.2 Outline
	1.3 Typographical Conventions

	Chapter 2
	2.1 SELF
	2.2 APL\3000
	2.3 Napier88
	2.4 Soft Scheme
	2.5 Bitblt

	Chapter 3
	3.1 Structure of the Compiler

	Chapter 4
	4.1 Rewriting
	4.2 α-conversion
	4.3 Assignment conversion
	4.4 The Intermediate Language
	4.5 CPS-conversion
	4.6 Redundant Binding Elimination
	4.7 β-reduction
	4.8 η-reduction
	4.9 Conditional Optimizations
	4.10 Implementation

	Chapter 5
	5.1 Closure conversion
	5.2 Callee-save variables
	5.3 SKI's closure allocation algorithm
	5.4 C as a Target
	5.5 Generating C
	5.6 Run-Time Type System

	Chapter 6
	6.1 Type Predictor
	6.2 Specializer
	6.3 β-expander or Inliner
	6.4 Constant Folding
	6.5 Common Subexpression Eliminator
	6.6 Other optimizations

	Chapter 7
	7.1 Methodology
	7.2 Loop
	7.3 Fibonacci
	7.4 Deriv

	Chapter 8
	8.1 Discussion
	8.2 Future Work
	8.3 Conclusion

	Appendices
	A.1 Example SELF code
	A.2 CPS version of nested if optimization
	A.3 Tail call macro for the SPARC
	A.4 Tail call macro for the i386
	A.5 Library procedures
	A.6 The Deriv Benchmark Program

	Bibliography

 HistoryItem_V1
 TrimAndShift

 Range: all odd numbered pages
 Trim: none
 Shift: move right by 42.52 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 1812
 271
 Fixed
 Right
 42.5197
 0.0000

 Odd
 3
 AllDoc
 43

 CurrentAVDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus3
 Quite Imposing Plus 3.0e
 Quite Imposing Plus 3
 1

 18
 150
 148
 75

 1

 HistoryItem_V1
 AddMaskingTape

 Range: all pages
 Mask co-ordinates: Horizontal, vertical offset 552.87, -3.88 Width 89.24 Height 848.71 points
 Origin: bottom left

 1
 0
 BL

 Both
 1
 AllDoc
 347

 CurrentAVDoc

 552.8745 -3.881 89.2359 848.7108

 QITE_QuiteImposingPlus3
 Quite Imposing Plus 3.0e
 Quite Imposing Plus 3
 1

 23
 150
 149
 150

 1

 HistoryItem_V1
 AddMaskingTape

 Range: all pages
 Mask co-ordinates: Horizontal, vertical offset -35.89, 823.49 Width 651.81 Height 22.31 points
 Origin: bottom left

 1
 0
 BL

 Both
 1
 AllDoc
 347

 CurrentAVDoc

 -35.8884 823.4908 651.81 22.309

 QITE_QuiteImposingPlus3
 Quite Imposing Plus 3.0e
 Quite Imposing Plus 3
 1

 23
 150
 149
 150

 1

 HistoryItem_V1
 AddMaskingTape

 Range: all pages
 Mask co-ordinates: Horizontal, vertical offset -25.22, -3.88 Width 41.71 Height 842.89 points
 Origin: bottom left

 1
 0
 BL

 Both
 1
 AllDoc
 347

 CurrentAVDoc

 -25.2188 -3.881 41.7081 842.8911

 QITE_QuiteImposingPlus3
 Quite Imposing Plus 3.0e
 Quite Imposing Plus 3
 1

 23
 150
 149
 150

 1

 HistoryItem_V1
 AddMaskingTape

 Range: all pages
 Mask co-ordinates: Horizontal, vertical offset -30.07, -3.88 Width 768.20 Height 28.13 points
 Origin: bottom left

 1
 0
 BL

 Both
 1
 AllDoc
 347

 CurrentAVDoc

 -30.0686 -3.881 768.2046 28.1287

 QITE_QuiteImposingPlus3
 Quite Imposing Plus 3.0e
 Quite Imposing Plus 3
 1

 23
 150
 149
 150

 1

 HistoryItem_V1
 AddMaskingTape

 Range: From page 150 to page 150
 Mask co-ordinates: Left bottom (96.64 695.46) Right top (182.97 772.08) points

 0
 96.643 695.4579 182.969 772.0844

 150
 SubDoc
 150

 CurrentAVDoc

 QITE_QuiteImposingPlus3
 Quite Imposing Plus 3.0e
 Quite Imposing Plus 3
 1

 149
 150
 149
 1

 1

 HistoryItem_V1
 AddMaskingTape

 Range: From page 148 to page 148
 Mask co-ordinates: Left bottom (177.15 582.94) Right top (207.22 600.40) points

 0
 177.1493 582.9431 207.2179 600.4023

 148
 SubDoc
 148

 CurrentAVDoc

 QITE_QuiteImposingPlus3
 Quite Imposing Plus 3.0e
 Quite Imposing Plus 3
 1

 149
 150
 147
 1

 1

 HistoryItem_V1
 AddMaskingTape

 Range: From page 145 to page 145
 Mask co-ordinates: Left bottom (328.30 349.18) Right top (354.49 371.49) points

 0
 328.304 349.1839 354.4928 371.4929

 145
 SubDoc
 145

 CurrentAVDoc

 QITE_QuiteImposingPlus3
 Quite Imposing Plus 3.0e
 Quite Imposing Plus 3
 1

 149
 150
 144
 1

 1

 HistoryItem_V1
 AddMaskingTape

 Range: From page 144 to page 144
 Mask co-ordinates: Left bottom (337.19 362.76) Right top (346.89 368.58) points

 0
 337.1919 362.7633 346.8915 368.583

 144
 SubDoc
 144

 CurrentAVDoc

 QITE_QuiteImposingPlus3
 Quite Imposing Plus 3.0e
 Quite Imposing Plus 3
 1

 149
 150
 143
 1

 1

 HistoryItem_V1
 AddMaskingTape

 Range: From page 143 to page 143
 Mask co-ordinates: Left bottom (300.18 357.91) Right top (418.51 384.10) points

 0
 300.1753 357.9135 418.5098 384.1023

 143
 SubDoc
 143

 CurrentAVDoc

 QITE_QuiteImposingPlus3
 Quite Imposing Plus 3.0e
 Quite Imposing Plus 3
 1

 149
 150
 142
 1

 1

 HistoryItem_V1
 AddMaskingTape

 Range: From page 142 to page 142
 Mask co-ordinates: Left bottom (121.86 246.37) Right top (459.41 673.15) points

 0
 121.8618 246.3686 459.4063 673.1489

 142
 SubDoc
 142

 CurrentAVDoc

 QITE_QuiteImposingPlus3
 Quite Imposing Plus 3.0e
 Quite Imposing Plus 3
 1

 149
 150
 141
 1

 1

 HistoryItem_V1
 AddMaskingTape

 Range: From page 141 to page 141
 Mask co-ordinates: Left bottom (147.89 311.36) Right top (224.52 369.55) points

 0
 147.8923 311.3557 224.5188 369.5529

 141
 SubDoc
 141

 CurrentAVDoc

 QITE_QuiteImposingPlus3
 Quite Imposing Plus 3.0e
 Quite Imposing Plus 3
 1

 149
 150
 140
 1

 1

 HistoryItem_V1
 AddMaskingTape

 Range: From page 141 to page 141
 Mask co-ordinates: Left bottom (383.59 363.73) Right top (403.96 377.31) points

 0
 383.5915 363.7332 403.9605 377.3126

 141
 SubDoc
 141

 CurrentAVDoc

 QITE_QuiteImposingPlus3
 Quite Imposing Plus 3.0e
 Quite Imposing Plus 3
 1

 149
 150
 140
 1

 1

 HistoryItem_V1
 AddMaskingTape

 Range: From page 141 to page 141
 Mask co-ordinates: Left bottom (306.00 357.91) Right top (350.61 387.01) points

 0
 305.995 357.9135 350.613 387.0121

 141
 SubDoc
 141

 CurrentAVDoc

 QITE_QuiteImposingPlus3
 Quite Imposing Plus 3.0e
 Quite Imposing Plus 3
 1

 149
 150
 140
 1

 1

 HistoryItem_V1
 AddMaskingTape

 Range: From page 139 to page 139
 Mask co-ordinates: Left bottom (282.72 355.97) Right top (356.43 409.32) points

 0
 282.7161 355.9736 356.4327 409.3211

 139
 SubDoc
 139

 CurrentAVDoc

 QITE_QuiteImposingPlus3
 Quite Imposing Plus 3.0e
 Quite Imposing Plus 3
 1

 149
 150
 138
 1

 1

 HistoryItem_V1
 AddMaskingTape

 Range: From page 135 to page 135
 Mask co-ordinates: Left bottom (393.29 365.67) Right top (412.69 376.34) points

 0
 393.291 365.6731 412.6901 376.3427

 135
 SubDoc
 135

 CurrentAVDoc

 QITE_QuiteImposingPlus3
 Quite Imposing Plus 3.0e
 Quite Imposing Plus 3
 1

 149
 150
 134
 1

 1

 HistoryItem_V1
 AddMaskingTape

 Range: From page 135 to page 135
 Mask co-ordinates: Left bottom (332.18 364.70) Right top (347.70 377.31) points

 0
 332.1838 364.7032 347.7031 377.3126

 135
 SubDoc
 135

 CurrentAVDoc

 QITE_QuiteImposingPlus3
 Quite Imposing Plus 3.0e
 Quite Imposing Plus 3
 1

 149
 150
 134
 1

 1

 HistoryItem_V1
 AddMaskingTape

 Range: From page 133 to page 133
 Mask co-ordinates: Left bottom (390.38 319.12) Right top (672.64 522.81) points

 0
 390.3811 319.1153 672.6381 522.8059

 133
 SubDoc
 133

 CurrentAVDoc

 QITE_QuiteImposingPlus3
 Quite Imposing Plus 3.0e
 Quite Imposing Plus 3
 1

 149
 150
 132
 1

 1

 HistoryItem_V1
 AddMaskingTape

 Range: From page 133 to page 133
 Mask co-ordinates: Left bottom (190.57 546.08) Right top (672.64 845.80) points

 0
 190.5703 546.0848 672.6381 845.801

 133
 SubDoc
 133

 CurrentAVDoc

 QITE_QuiteImposingPlus3
 Quite Imposing Plus 3.0e
 Quite Imposing Plus 3
 1

 149
 150
 132
 1

 1

 HistoryItem_V1
 AddMaskingTape

 Range: From page 133 to page 133
 Mask co-ordinates: Left bottom (85.82 284.20) Right top (424.33 664.42) points

 0
 85.8152 284.1969 424.3296 664.4194

 133
 SubDoc
 133

 CurrentAVDoc

 QITE_QuiteImposingPlus3
 Quite Imposing Plus 3.0e
 Quite Imposing Plus 3
 1

 149
 150
 132
 1

 1

 HistoryItem_V1
 AddMaskingTape

 Range: From page 131 to page 131
 Mask co-ordinates: Left bottom (250.71 100.88) Right top (295.33 125.12) points

 0
 250.7076 100.8754 295.3255 125.1242

 131
 SubDoc
 131

 CurrentAVDoc

 QITE_QuiteImposingPlus3
 Quite Imposing Plus 3.0e
 Quite Imposing Plus 3
 1

 149
 150
 130
 1

 1

 HistoryItem_V1
 AddMaskingTape

 Range: From page 131 to page 131
 Mask co-ordinates: Left bottom (189.60 99.91) Right top (219.67 177.50) points

 0
 189.6004 99.9054 219.669 177.5018

 131
 SubDoc
 131

 CurrentAVDoc

 QITE_QuiteImposingPlus3
 Quite Imposing Plus 3.0e
 Quite Imposing Plus 3
 1

 149
 150
 130
 1

 1

 HistoryItem_V1
 AddMaskingTape

 Range: From page 129 to page 129
 Mask co-ordinates: Left bottom (339.94 613.01) Right top (514.54 726.50) points

 0
 339.9435 613.0117 514.5354 726.4965

 129
 SubDoc
 129

 CurrentAVDoc

 QITE_QuiteImposingPlus3
 Quite Imposing Plus 3.0e
 Quite Imposing Plus 3
 1

 149
 150
 128
 1

 1

 HistoryItem_V1
 AddMaskingTape

 Range: From page 129 to page 129
 Mask co-ordinates: Left bottom (388.44 362.76) Right top (408.81 376.34) points

 0
 388.4412 362.7633 408.8103 376.3427

 129
 SubDoc
 129

 CurrentAVDoc

 QITE_QuiteImposingPlus3
 Quite Imposing Plus 3.0e
 Quite Imposing Plus 3
 1

 149
 150
 128
 1

 1

 HistoryItem_V1
 AddMaskingTape

 Range: From page 129 to page 129
 Mask co-ordinates: Left bottom (320.54 362.76) Right top (357.40 368.58) points

 0
 320.5443 362.7633 357.4026 368.583

 129
 SubDoc
 129

 CurrentAVDoc

 QITE_QuiteImposingPlus3
 Quite Imposing Plus 3.0e
 Quite Imposing Plus 3
 1

 149
 150
 128
 1

 1

 HistoryItem_V1
 AddMaskingTape

 Range: From page 128 to page 128
 Mask co-ordinates: Left bottom (222.74 344.33) Right top (362.41 524.75) points

 0
 222.7372 344.3341 362.4107 524.7458

 128
 SubDoc
 128

 CurrentAVDoc

 QITE_QuiteImposingPlus3
 Quite Imposing Plus 3.0e
 Quite Imposing Plus 3
 1

 149
 150
 127
 1

 1

 HistoryItem_V1
 AddMaskingTape

 Range: From page 127 to page 127
 Mask co-ordinates: Left bottom (497.08 -3.88) Right top (629.96 151.31) points

 0
 497.0762 -3.8798 629.9601 151.313

 127
 SubDoc
 127

 CurrentAVDoc

 QITE_QuiteImposingPlus3
 Quite Imposing Plus 3.0e
 Quite Imposing Plus 3
 1

 149
 150
 126
 1

 1

 HistoryItem_V1
 AddMaskingTape

 Range: From page 127 to page 127
 Mask co-ordinates: Left bottom (319.57 355.97) Right top (412.69 385.07) points

 0
 319.5744 355.9736 412.6901 385.0722

 127
 SubDoc
 127

 CurrentAVDoc

 QITE_QuiteImposingPlus3
 Quite Imposing Plus 3.0e
 Quite Imposing Plus 3
 1

 149
 150
 126
 1

 1

 HistoryItem_V1
 AddMaskingTape

 Range: From page 127 to page 127
 Mask co-ordinates: Left bottom (411.72 296.81) Right top (451.49 316.21) points

 0
 411.7202 296.8063 451.4883 316.2054

 127
 SubDoc
 127

 CurrentAVDoc

 QITE_QuiteImposingPlus3
 Quite Imposing Plus 3.0e
 Quite Imposing Plus 3
 1

 149
 150
 126
 1

 1

 HistoryItem_V1
 AddMaskingTape

 Range: From page 126 to page 126
 Mask co-ordinates: Left bottom (279.96 348.21) Right top (532.15 629.50) points

 0
 279.9645 348.2139 532.1529 629.501

 126
 SubDoc
 126

 CurrentAVDoc

 QITE_QuiteImposingPlus3
 Quite Imposing Plus 3.0e
 Quite Imposing Plus 3
 1

 149
 150
 125
 1

 1

 HistoryItem_V1
 AddMaskingTape

 Range: From page 125 to page 125
 Mask co-ordinates: Left bottom (487.38 104.76) Right top (564.00 157.13) points

 0
 487.3766 104.7552 564.0031 157.1328

 125
 SubDoc
 125

 CurrentAVDoc

 QITE_QuiteImposingPlus3
 Quite Imposing Plus 3.0e
 Quite Imposing Plus 3
 1

 149
 150
 124
 1

 1

 HistoryItem_V1
 AddMaskingTape

 Range: From page 125 to page 125
 Mask co-ordinates: Left bottom (155.65 28.13) Right top (213.85 137.73) points

 0
 155.652 28.1287 213.8493 137.7336

 125
 SubDoc
 125

 CurrentAVDoc

 QITE_QuiteImposingPlus3
 Quite Imposing Plus 3.0e
 Quite Imposing Plus 3
 1

 149
 150
 124
 1

 1

 HistoryItem_V1
 AddMaskingTape

 Range: From page 125 to page 125
 Mask co-ordinates: Left bottom (118.79 607.19) Right top (218.70 732.32) points

 0
 118.7937 607.192 218.6991 732.3162

 125
 SubDoc
 125

 CurrentAVDoc

 QITE_QuiteImposingPlus3
 Quite Imposing Plus 3.0e
 Quite Imposing Plus 3
 1

 149
 150
 124
 1

 1

 HistoryItem_V1
 AddMaskingTape

 Range: From page 125 to page 125
 Mask co-ordinates: Left bottom (396.20 310.39) Right top (429.18 412.23) points

 0
 396.2009 310.3857 429.1794 412.231

 125
 SubDoc
 125

 CurrentAVDoc

 QITE_QuiteImposingPlus3
 Quite Imposing Plus 3.0e
 Quite Imposing Plus 3
 1

 149
 150
 124
 1

 1

 HistoryItem_V1
 AddMaskingTape

 Range: From page 124 to page 124
 Mask co-ordinates: Left bottom (393.45 341.42) Right top (448.74 407.38) points

 0
 393.4493 341.4243 448.7368 407.3812

 124
 SubDoc
 124

 CurrentAVDoc

 QITE_QuiteImposingPlus3
 Quite Imposing Plus 3.0e
 Quite Imposing Plus 3
 1

 149
 150
 123
 1

 1

 HistoryItem_V1
 AddMaskingTape

 Range: From page 123 to page 123
 Mask co-ordinates: Left bottom (314.72 340.45) Right top (418.51 373.43) points

 0
 314.7246 340.4543 418.5098 373.4328

 123
 SubDoc
 123

 CurrentAVDoc

 QITE_QuiteImposingPlus3
 Quite Imposing Plus 3.0e
 Quite Imposing Plus 3
 1

 149
 150
 122
 1

 1

 HistoryItem_V1
 AddMaskingTape

 Range: From page 122 to page 122
 Mask co-ordinates: Left bottom (390.54 327.84) Right top (440.01 397.68) points

 0
 390.5395 327.8449 440.0072 397.6817

 122
 SubDoc
 122

 CurrentAVDoc

 QITE_QuiteImposingPlus3
 Quite Imposing Plus 3.0e
 Quite Imposing Plus 3
 1

 149
 150
 121
 1

 1

 HistoryItem_V1
 AddMaskingTape

 Range: From page 122 to page 122
 Mask co-ordinates: Left bottom (337.19 350.15) Right top (345.92 380.22) points

 0
 337.1919 350.1538 345.9215 380.2225

 122
 SubDoc
 122

 CurrentAVDoc

 QITE_QuiteImposingPlus3
 Quite Imposing Plus 3.0e
 Quite Imposing Plus 3
 1

 149
 150
 121
 1

 1

 HistoryItem_V1
 AddMaskingTape

 Range: From page 117 to page 117
 Mask co-ordinates: Left bottom (366.13 346.27) Right top (402.02 373.43) points

 0
 366.1323 346.274 402.0206 373.4328

 117
 SubDoc
 117

 CurrentAVDoc

 QITE_QuiteImposingPlus3
 Quite Imposing Plus 3.0e
 Quite Imposing Plus 3
 1

 149
 150
 116
 1

 1

 HistoryItem_V1
 AddMaskingTape

 Range: From page 117 to page 117
 Mask co-ordinates: Left bottom (320.54 345.30) Right top (369.04 416.11) points

 0
 320.5443 345.3041 369.0421 416.1108

 117
 SubDoc
 117

 CurrentAVDoc

 QITE_QuiteImposingPlus3
 Quite Imposing Plus 3.0e
 Quite Imposing Plus 3
 1

 149
 150
 116
 1

 1

 HistoryItem_V1
 AddMaskingTape

 Range: From page 116 to page 116
 Mask co-ordinates: Left bottom (330.40 359.85) Right top (355.62 369.55) points

 0
 330.4022 359.8534 355.6211 369.5529

 116
 SubDoc
 116

 CurrentAVDoc

 QITE_QuiteImposingPlus3
 Quite Imposing Plus 3.0e
 Quite Imposing Plus 3
 1

 149
 150
 115
 1

 1

 HistoryItem_V1
 AddMaskingTape

 Range: From page 115 to page 115
 Mask co-ordinates: Left bottom (335.09 365.67) Right top (341.88 377.31) points

 0
 335.0937 365.6731 341.8834 377.3126

 115
 SubDoc
 115

 CurrentAVDoc

 QITE_QuiteImposingPlus3
 Quite Imposing Plus 3.0e
 Quite Imposing Plus 3
 1

 149
 150
 114
 1

 1

 HistoryItem_V1
 AddMaskingTape

 Range: From page 115 to page 115
 Mask co-ordinates: Left bottom (374.86 -3.88) Right top (659.06 127.06) points

 0
 374.8618 -3.8798 659.0587 127.0641

 115
 SubDoc
 115

 CurrentAVDoc

 QITE_QuiteImposingPlus3
 Quite Imposing Plus 3.0e
 Quite Imposing Plus 3
 1

 149
 150
 114
 1

 1

 HistoryItem_V1
 AddMaskingTape

 Range: From page 114 to page 114
 Mask co-ordinates: Left bottom (153.87 239.58) Right top (210.13 284.20) points

 0
 153.8704 239.5789 210.1278 284.1969

 114
 SubDoc
 114

 CurrentAVDoc

 QITE_QuiteImposingPlus3
 Quite Imposing Plus 3.0e
 Quite Imposing Plus 3
 1

 149
 150
 113
 1

 1

 HistoryItem_V1
 AddMaskingTape

 Range: From page 108 to page 108
 Mask co-ordinates: Left bottom (387.63 356.94) Right top (413.82 376.34) points

 0
 387.6296 356.9435 413.8184 376.3427

 108
 SubDoc
 108

 CurrentAVDoc

 QITE_QuiteImposingPlus3
 Quite Imposing Plus 3.0e
 Quite Imposing Plus 3
 1

 149
 150
 107
 1

 1

 HistoryItem_V1
 AddMaskingTape

 Range: From page 108 to page 108
 Mask co-ordinates: Left bottom (331.37 360.82) Right top (357.56 370.52) points

 0
 331.3722 360.8234 357.561 370.5229

 108
 SubDoc
 108

 CurrentAVDoc

 QITE_QuiteImposingPlus3
 Quite Imposing Plus 3.0e
 Quite Imposing Plus 3
 1

 149
 150
 107
 1

 1

 HistoryItem_V1
 AddMaskingTape

 Range: From page 107 to page 107
 Mask co-ordinates: Left bottom (16.95 -3.88) Right top (124.61 66.93) points

 0
 16.9484 -3.8798 124.6134 66.9269

 107
 SubDoc
 107

 CurrentAVDoc

 QITE_QuiteImposingPlus3
 Quite Imposing Plus 3.0e
 Quite Imposing Plus 3
 1

 149
 150
 106
 1

 1

 HistoryItem_V1
 AddMaskingTape

 Range: From page 107 to page 107
 Mask co-ordinates: Left bottom (180.87 46.56) Right top (234.22 128.03) points

 0
 180.8708 46.5579 234.2183 128.0341

 107
 SubDoc
 107

 CurrentAVDoc

 QITE_QuiteImposingPlus3
 Quite Imposing Plus 3.0e
 Quite Imposing Plus 3
 1

 149
 150
 106
 1

 1

 HistoryItem_V1
 AddMaskingTape

 Range: From page 107 to page 107
 Mask co-ordinates: Left bottom (426.27 331.72) Right top (443.73 354.03) points

 0
 426.2695 331.7247 443.7287 354.0337

 107
 SubDoc
 107

 CurrentAVDoc

 QITE_QuiteImposingPlus3
 Quite Imposing Plus 3.0e
 Quite Imposing Plus 3
 1

 149
 150
 106
 1

 1

 HistoryItem_V1
 AddMaskingTape

 Range: From page 107 to page 107
 Mask co-ordinates: Left bottom (317.63 343.36) Right top (412.69 381.19) points

 0
 317.6345 343.3642 412.6901 381.1924

 107
 SubDoc
 107

 CurrentAVDoc

 QITE_QuiteImposingPlus3
 Quite Imposing Plus 3.0e
 Quite Imposing Plus 3
 1

 149
 150
 106
 1

 1

 HistoryItem_V1
 AddMaskingTape

 Range: From page 104 to page 104
 Mask co-ordinates: Left bottom (140.29 -3.88) Right top (249.90 60.14) points

 0
 140.291 -3.8798 249.8959 60.1372

 104
 SubDoc
 104

 CurrentAVDoc

 QITE_QuiteImposingPlus3
 Quite Imposing Plus 3.0e
 Quite Imposing Plus 3
 1

 149
 150
 103
 1

 1

 HistoryItem_V1
 AddMaskingTape

 Range: From page 100 to page 100
 Mask co-ordinates: Left bottom (320.70 352.09) Right top (426.43 378.28) points

 0
 320.7027 352.0938 426.4278 378.2826

 100
 SubDoc
 100

 CurrentAVDoc

 QITE_QuiteImposingPlus3
 Quite Imposing Plus 3.0e
 Quite Imposing Plus 3
 1

 149
 150
 99
 1

 1

 HistoryItem_V1
 AddMaskingTape

 Range: From page 99 to page 99
 Mask co-ordinates: Left bottom (422.39 105.73) Right top (463.13 121.24) points

 0
 422.3896 105.7251 463.1278 121.2444

 99
 SubDoc
 99

 CurrentAVDoc

 QITE_QuiteImposingPlus3
 Quite Imposing Plus 3.0e
 Quite Imposing Plus 3
 1

 149
 150
 98
 1

 1

 HistoryItem_V1
 AddMaskingTape

 Range: From page 96 to page 96
 Mask co-ordinates: Left bottom (-50.79 179.44) Right top (751.36 845.80) points

 0
 -50.7902 179.4417 751.3628 845.801

 96
 SubDoc
 96

 CurrentAVDoc

 QITE_QuiteImposingPlus3
 Quite Imposing Plus 3.0e
 Quite Imposing Plus 3
 1

 149
 150
 95
 1

 1

 HistoryItem_V1
 AddMaskingTape

 Range: From page 93 to page 93
 Mask co-ordinates: Left bottom (190.57 -3.88) Right top (228.40 74.69) points

 0
 190.5703 -3.8798 228.3986 74.6866

 93
 SubDoc
 93

 CurrentAVDoc

 QITE_QuiteImposingPlus3
 Quite Imposing Plus 3.0e
 Quite Imposing Plus 3
 1

 149
 150
 92
 1

 1

 HistoryItem_V1
 AddMaskingTape

 Range: From page 92 to page 92
 Mask co-ordinates: Left bottom (315.85 351.12) Right top (367.26 377.31) points

 0
 315.8529 351.1238 367.2605 377.3126

 92
 SubDoc
 92

 CurrentAVDoc

 QITE_QuiteImposingPlus3
 Quite Imposing Plus 3.0e
 Quite Imposing Plus 3
 1

 149
 150
 91
 1

 1

 HistoryItem_V1
 AddMaskingTape

 Range: From page 91 to page 91
 Mask co-ordinates: Left bottom (321.51 362.76) Right top (415.60 373.43) points

 0
 321.5143 362.7633 415.6 373.4328

 91
 SubDoc
 91

 CurrentAVDoc

 QITE_QuiteImposingPlus3
 Quite Imposing Plus 3.0e
 Quite Imposing Plus 3
 1

 149
 150
 90
 1

 1

 HistoryItem_V1
 AddMaskingTape

 Range: From page 91 to page 91
 Mask co-ordinates: Left bottom (261.38 57.23) Right top (293.39 154.22) points

 0
 261.3771 57.2274 293.3856 154.2229

 91
 SubDoc
 91

 CurrentAVDoc

 QITE_QuiteImposingPlus3
 Quite Imposing Plus 3.0e
 Quite Imposing Plus 3
 1

 149
 150
 90
 1

 1

 HistoryItem_V1
 AddMaskingTape

 Range: From page 90 to page 90
 Mask co-ordinates: Left bottom (28.75 357.91) Right top (106.34 414.17) points

 0
 28.7461 357.9135 106.3426 414.1709

 90
 SubDoc
 90

 CurrentAVDoc

 QITE_QuiteImposingPlus3
 Quite Imposing Plus 3.0e
 Quite Imposing Plus 3
 1

 149
 150
 89
 1

 1

 HistoryItem_V1
 AddMaskingTape

 Range: From page 89 to page 89
 Mask co-ordinates: Left bottom (523.26 327.84) Right top (542.66 336.57) points

 0
 523.265 327.8449 542.6641 336.5745

 89
 SubDoc
 89

 CurrentAVDoc

 QITE_QuiteImposingPlus3
 Quite Imposing Plus 3.0e
 Quite Imposing Plus 3
 1

 149
 150
 88
 1

 1

 HistoryItem_V1
 AddMaskingTape

 Range: From page 89 to page 89
 Mask co-ordinates: Left bottom (541.69 360.82) Right top (574.67 409.32) points

 0
 541.6942 360.8234 574.6726 409.3211

 89
 SubDoc
 89

 CurrentAVDoc

 QITE_QuiteImposingPlus3
 Quite Imposing Plus 3.0e
 Quite Imposing Plus 3
 1

 149
 150
 88
 1

 1

 HistoryItem_V1
 AddMaskingTape

 Range: From page 87 to page 87
 Mask co-ordinates: Left bottom (271.08 343.36) Right top (427.24 452.97) points

 0
 271.0766 343.3642 427.2394 452.9691

 87
 SubDoc
 87

 CurrentAVDoc

 QITE_QuiteImposingPlus3
 Quite Imposing Plus 3.0e
 Quite Imposing Plus 3
 1

 149
 150
 86
 1

 1

 HistoryItem_V1
 AddMaskingTape

 Range: From page 87 to page 87
 Mask co-ordinates: Left bottom (275.93 341.42) Right top (386.50 434.54) points

 0
 275.9264 341.4243 386.5013 434.5399

 87
 SubDoc
 87

 CurrentAVDoc

 QITE_QuiteImposingPlus3
 Quite Imposing Plus 3.0e
 Quite Imposing Plus 3
 1

 149
 150
 86
 1

 1

 HistoryItem_V1
 AddMaskingTape

 Range: From page 85 to page 85
 Mask co-ordinates: Left bottom (173.11 -3.88) Right top (265.26 42.68) points

 0
 173.1112 -3.8798 265.2569 42.678

 85
 SubDoc
 85

 CurrentAVDoc

 QITE_QuiteImposingPlus3
 Quite Imposing Plus 3.0e
 Quite Imposing Plus 3
 1

 149
 150
 84
 1

 1

 HistoryItem_V1
 AddMaskingTape

 Range: From page 84 to page 84
 Mask co-ordinates: Left bottom (309.06 357.91) Right top (351.74 383.13) points

 0
 309.0632 357.9135 351.7412 383.1323

 84
 SubDoc
 84

 CurrentAVDoc

 QITE_QuiteImposingPlus3
 Quite Imposing Plus 3.0e
 Quite Imposing Plus 3
 1

 149
 150
 83
 1

 1

 HistoryItem_V1
 AddMaskingTape

 Range: From page 82 to page 82
 Mask co-ordinates: Left bottom (113.13 -3.88) Right top (206.25 65.96) points

 0
 113.1322 -3.8798 206.248 65.957

 82
 SubDoc
 82

 CurrentAVDoc

 QITE_QuiteImposingPlus3
 Quite Imposing Plus 3.0e
 Quite Imposing Plus 3
 1

 149
 150
 81
 1

 1

 HistoryItem_V1
 AddMaskingTape

 Range: From page 82 to page 82
 Mask co-ordinates: Left bottom (332.34 360.82) Right top (363.38 367.61) points

 0
 332.3421 360.8234 363.3807 367.613

 82
 SubDoc
 82

 CurrentAVDoc

 QITE_QuiteImposingPlus3
 Quite Imposing Plus 3.0e
 Quite Imposing Plus 3
 1

 149
 150
 81
 1

 1

 HistoryItem_V1
 AddMaskingTape

 Range: From page 81 to page 81
 Mask co-ordinates: Left bottom (467.98 -3.88) Right top (564.00 72.75) points

 0
 467.9776 -3.8798 564.0031 72.7466

 81
 SubDoc
 81

 CurrentAVDoc

 QITE_QuiteImposingPlus3
 Quite Imposing Plus 3.0e
 Quite Imposing Plus 3
 1

 149
 150
 80
 1

 1

 HistoryItem_V1
 AddMaskingTape

 Range: From page 81 to page 81
 Mask co-ordinates: Left bottom (385.53 361.79) Right top (403.96 373.43) points

 0
 385.5314 361.7933 403.9605 373.4328

 81
 SubDoc
 81

 CurrentAVDoc

 QITE_QuiteImposingPlus3
 Quite Imposing Plus 3.0e
 Quite Imposing Plus 3
 1

 149
 150
 80
 1

 1

 HistoryItem_V1
 AddMaskingTape

 Range: From page 81 to page 81
 Mask co-ordinates: Left bottom (324.42 357.91) Right top (355.46 375.37) points

 0
 324.4242 357.9135 355.4627 375.3727

 81
 SubDoc
 81

 CurrentAVDoc

 QITE_QuiteImposingPlus3
 Quite Imposing Plus 3.0e
 Quite Imposing Plus 3
 1

 149
 150
 80
 1

 1

 HistoryItem_V1
 AddMaskingTape

 Range: From page 80 to page 80
 Mask co-ordinates: Left bottom (500.14 222.12) Right top (601.99 305.54) points

 0
 500.1444 222.1198 601.9897 305.5359

 80
 SubDoc
 80

 CurrentAVDoc

 QITE_QuiteImposingPlus3
 Quite Imposing Plus 3.0e
 Quite Imposing Plus 3
 1

 149
 150
 79
 1

 1

 HistoryItem_V1
 AddMaskingTape

 Range: From page 77 to page 77
 Mask co-ordinates: Left bottom (325.39 360.82) Right top (344.79 371.49) points

 0
 325.3941 360.8234 344.7932 371.4929

 77
 SubDoc
 77

 CurrentAVDoc

 QITE_QuiteImposingPlus3
 Quite Imposing Plus 3.0e
 Quite Imposing Plus 3
 1

 149
 150
 76
 1

 1

 HistoryItem_V1
 AddMaskingTape

 Range: From page 77 to page 77
 Mask co-ordinates: Left bottom (358.37 574.21) Right top (382.62 592.64) points

 0
 358.3726 574.2135 382.6215 592.6426

 77
 SubDoc
 77

 CurrentAVDoc

 QITE_QuiteImposingPlus3
 Quite Imposing Plus 3.0e
 Quite Imposing Plus 3
 1

 149
 150
 76
 1

 1

 HistoryItem_V1
 AddMaskingTape

 Range: From page 76 to page 76
 Mask co-ordinates: Left bottom (367.26 8.73) Right top (437.10 80.51) points

 0
 367.2605 8.7296 437.0973 80.5063

 76
 SubDoc
 76

 CurrentAVDoc

 QITE_QuiteImposingPlus3
 Quite Imposing Plus 3.0e
 Quite Imposing Plus 3
 1

 149
 150
 75
 1

 1

 HistoryItem_V1
 AddMaskingTape

 Range: From page 76 to page 76
 Mask co-ordinates: Left bottom (315.85 356.94) Right top (354.65 381.19) points

 0
 315.8529 356.9435 354.6511 381.1924

 76
 SubDoc
 76

 CurrentAVDoc

 QITE_QuiteImposingPlus3
 Quite Imposing Plus 3.0e
 Quite Imposing Plus 3
 1

 149
 150
 75
 1

 1

 HistoryItem_V1
 AddMaskingTape

 Range: From page 75 to page 75
 Mask co-ordinates: Left bottom (328.30 359.85) Right top (363.22 376.34) points

 0
 328.304 359.8534 363.2224 376.3427

 75
 SubDoc
 75

 CurrentAVDoc

 QITE_QuiteImposingPlus3
 Quite Imposing Plus 3.0e
 Quite Imposing Plus 3
 1

 149
 150
 74
 1

 1

 HistoryItem_V1
 AddMaskingTape

 Range: From page 75 to page 75
 Mask co-ordinates: Left bottom (398.14 312.33) Right top (490.29 432.60) points

 0
 398.1408 312.3256 490.2865 432.6

 75
 SubDoc
 75

 CurrentAVDoc

 QITE_QuiteImposingPlus3
 Quite Imposing Plus 3.0e
 Quite Imposing Plus 3
 1

 149
 150
 74
 1

 1

 HistoryItem_V1
 AddMaskingTape

 Range: From page 75 to page 75
 Mask co-ordinates: Left bottom (444.70 352.09) Right top (547.51 428.72) points

 0
 444.6986 352.0938 547.5139 428.7202

 75
 SubDoc
 75

 CurrentAVDoc

 QITE_QuiteImposingPlus3
 Quite Imposing Plus 3.0e
 Quite Imposing Plus 3
 1

 149
 150
 74
 1

 1

 HistoryItem_V1
 AddMaskingTape

 Range: From page 75 to page 75
 Mask co-ordinates: Left bottom (421.42 185.26) Right top (456.34 205.63) points

 0
 421.4197 185.2615 456.3381 205.6305

 75
 SubDoc
 75

 CurrentAVDoc

 QITE_QuiteImposingPlus3
 Quite Imposing Plus 3.0e
 Quite Imposing Plus 3
 1

 149
 150
 74
 1

 1

 HistoryItem_V1
 AddMaskingTape

 Range: From page 75 to page 75
 Mask co-ordinates: Left bottom (420.45 220.18) Right top (448.58 264.80) points

 0
 420.4497 220.1798 448.5785 264.7978

 75
 SubDoc
 75

 CurrentAVDoc

 QITE_QuiteImposingPlus3
 Quite Imposing Plus 3.0e
 Quite Imposing Plus 3
 1

 149
 150
 74
 1

 1

 HistoryItem_V1
 AddMaskingTape

 Range: From page 74 to page 74
 Mask co-ordinates: Left bottom (388.60 355.97) Right top (419.64 372.46) points

 0
 388.5995 355.9736 419.6381 372.4628

 74
 SubDoc
 74

 CurrentAVDoc

 QITE_QuiteImposingPlus3
 Quite Imposing Plus 3.0e
 Quite Imposing Plus 3
 1

 149
 150
 73
 1

 1

 HistoryItem_V1
 AddMaskingTape

 Range: From page 74 to page 74
 Mask co-ordinates: Left bottom (321.67 347.24) Right top (351.74 371.49) points

 0
 321.6726 347.244 351.7412 371.4929

 74
 SubDoc
 74

 CurrentAVDoc

 QITE_QuiteImposingPlus3
 Quite Imposing Plus 3.0e
 Quite Imposing Plus 3
 1

 149
 150
 73
 1

 1

 HistoryItem_V1
 AddMaskingTape

 Range: From page 73 to page 73
 Mask co-ordinates: Left bottom (540.72 439.39) Right top (649.36 844.83) points

 0
 540.7242 439.3897 649.3592 844.8311

 73
 SubDoc
 73

 CurrentAVDoc

 QITE_QuiteImposingPlus3
 Quite Imposing Plus 3.0e
 Quite Imposing Plus 3
 1

 149
 150
 72
 1

 1

 HistoryItem_V1
 AddMaskingTape

 Range: From page 70 to page 70
 Mask co-ordinates: Left bottom (385.69 349.18) Right top (417.70 382.16) points

 0
 385.6897 349.1839 417.6982 382.1624

 70
 SubDoc
 70

 CurrentAVDoc

 QITE_QuiteImposingPlus3
 Quite Imposing Plus 3.0e
 Quite Imposing Plus 3
 1

 149
 150
 69
 1

 1

 HistoryItem_V1
 AddMaskingTape

 Range: From page 70 to page 70
 Mask co-ordinates: Left bottom (330.40 362.76) Right top (346.89 377.31) points

 0
 330.4022 362.7633 346.8915 377.3126

 70
 SubDoc
 70

 CurrentAVDoc

 QITE_QuiteImposingPlus3
 Quite Imposing Plus 3.0e
 Quite Imposing Plus 3
 1

 149
 150
 69
 1

 1

 HistoryItem_V1
 AddMaskingTape

 Range: From page 69 to page 69
 Mask co-ordinates: Left bottom (189.60 99.91) Right top (221.61 132.88) points

 0
 189.6004 99.9054 221.6089 132.8839

 69
 SubDoc
 69

 CurrentAVDoc

 QITE_QuiteImposingPlus3
 Quite Imposing Plus 3.0e
 Quite Imposing Plus 3
 1

 149
 150
 68
 1

 1

 HistoryItem_V1
 AddMaskingTape

 Range: From page 67 to page 67
 Mask co-ordinates: Left bottom (428.21 249.28) Right top (457.31 261.89) points

 0
 428.2094 249.2785 457.308 261.8879

 67
 SubDoc
 67

 CurrentAVDoc

 QITE_QuiteImposingPlus3
 Quite Imposing Plus 3.0e
 Quite Imposing Plus 3
 1

 149
 150
 66
 1

 1

 HistoryItem_V1
 AddMaskingTape

 Range: From page 67 to page 67
 Mask co-ordinates: Left bottom (324.42 345.30) Right top (344.79 369.55) points

 0
 324.4242 345.3041 344.7932 369.5529

 67
 SubDoc
 67

 CurrentAVDoc

 QITE_QuiteImposingPlus3
 Quite Imposing Plus 3.0e
 Quite Imposing Plus 3
 1

 149
 150
 66
 1

 1

 HistoryItem_V1
 AddMaskingTape

 Range: From page 67 to page 67
 Mask co-ordinates: Left bottom (190.57 56.26) Right top (246.83 172.65) points

 0
 190.5703 56.2574 246.8278 172.652

 67
 SubDoc
 67

 CurrentAVDoc

 QITE_QuiteImposingPlus3
 Quite Imposing Plus 3.0e
 Quite Imposing Plus 3
 1

 149
 150
 66
 1

 1

 HistoryItem_V1
 AddMaskingTape

 Range: From page 66 to page 66
 Mask co-ordinates: Left bottom (125.74 57.23) Right top (168.42 78.57) points

 0
 125.7417 57.2274 168.4197 78.5664

 66
 SubDoc
 66

 CurrentAVDoc

 QITE_QuiteImposingPlus3
 Quite Imposing Plus 3.0e
 Quite Imposing Plus 3
 1

 149
 150
 65
 1

 1

 HistoryItem_V1
 AddMaskingTape

 Range: From page 65 to page 65
 Mask co-ordinates: Left bottom (381.65 351.12) Right top (425.30 385.07) points

 0
 381.6516 351.1238 425.2995 385.0722

 65
 SubDoc
 65

 CurrentAVDoc

 QITE_QuiteImposingPlus3
 Quite Imposing Plus 3.0e
 Quite Imposing Plus 3
 1

 149
 150
 64
 1

 1

 HistoryItem_V1
 AddMaskingTape

 Range: From page 65 to page 65
 Mask co-ordinates: Left bottom (324.42 347.24) Right top (379.71 397.68) points

 0
 324.4242 347.244 379.7116 397.6817

 65
 SubDoc
 65

 CurrentAVDoc

 QITE_QuiteImposingPlus3
 Quite Imposing Plus 3.0e
 Quite Imposing Plus 3
 1

 149
 150
 64
 1

 1

 HistoryItem_V1
 AddMaskingTape

 Range: From page 64 to page 64
 Mask co-ordinates: Left bottom (159.69 271.59) Right top (195.58 291.96) points

 0
 159.6901 271.5875 195.5784 291.9565

 64
 SubDoc
 64

 CurrentAVDoc

 QITE_QuiteImposingPlus3
 Quite Imposing Plus 3.0e
 Quite Imposing Plus 3
 1

 149
 150
 63
 1

 1

 HistoryItem_V1
 AddMaskingTape

 Range: From page 64 to page 64
 Mask co-ordinates: Left bottom (318.76 359.85) Right top (351.74 375.37) points

 0
 318.7628 359.8534 351.7412 375.3727

 64
 SubDoc
 64

 CurrentAVDoc

 QITE_QuiteImposingPlus3
 Quite Imposing Plus 3.0e
 Quite Imposing Plus 3
 1

 149
 150
 63
 1

 1

 HistoryItem_V1
 AddMaskingTape

 Range: From page 63 to page 63
 Mask co-ordinates: Left bottom (526.17 312.33) Right top (575.64 367.61) points

 0
 526.1749 312.3256 575.6426 367.613

 63
 SubDoc
 63

 CurrentAVDoc

 QITE_QuiteImposingPlus3
 Quite Imposing Plus 3.0e
 Quite Imposing Plus 3
 1

 149
 150
 62
 1

 1

 HistoryItem_V1
 AddMaskingTape

 Range: From page 60 to page 60
 Mask co-ordinates: Left bottom (332.34 363.73) Right top (344.95 370.52) points

 0
 332.3421 363.7332 344.9516 370.5229

 60
 SubDoc
 60

 CurrentAVDoc

 QITE_QuiteImposingPlus3
 Quite Imposing Plus 3.0e
 Quite Imposing Plus 3
 1

 149
 150
 59
 1

 1

 HistoryItem_V1
 AddMaskingTape

 Range: From page 58 to page 58
 Mask co-ordinates: Left bottom (383.75 358.88) Right top (408.97 379.25) points

 0
 383.7498 358.8835 408.9686 379.2525

 58
 SubDoc
 58

 CurrentAVDoc

 QITE_QuiteImposingPlus3
 Quite Imposing Plus 3.0e
 Quite Imposing Plus 3
 1

 149
 150
 57
 1

 1

 HistoryItem_V1
 AddMaskingTape

 Range: From page 58 to page 58
 Mask co-ordinates: Left bottom (246.99 284.20) Right top (361.44 380.22) points

 0
 246.9861 284.1969 361.4408 380.2225

 58
 SubDoc
 58

 CurrentAVDoc

 QITE_QuiteImposingPlus3
 Quite Imposing Plus 3.0e
 Quite Imposing Plus 3
 1

 149
 150
 57
 1

 1

 HistoryItem_V1
 AddMaskingTape

 Range: From page 58 to page 58
 Mask co-ordinates: Left bottom (167.45 131.91) Right top (226.62 197.87) points

 0
 167.4497 131.9139 226.617 197.8709

 58
 SubDoc
 58

 CurrentAVDoc

 QITE_QuiteImposingPlus3
 Quite Imposing Plus 3.0e
 Quite Imposing Plus 3
 1

 149
 150
 57
 1

 1

 HistoryItem_V1
 AddMaskingTape

 Range: From page 56 to page 56
 Mask co-ordinates: Left bottom (332.34 361.79) Right top (425.46 392.83) points

 0
 332.3421 361.7933 425.4579 392.8319

 56
 SubDoc
 56

 CurrentAVDoc

 QITE_QuiteImposingPlus3
 Quite Imposing Plus 3.0e
 Quite Imposing Plus 3
 1

 149
 150
 55
 1

 1

 HistoryItem_V1
 AddMaskingTape

 Range: From page 55 to page 55
 Mask co-ordinates: Left bottom (177.96 -3.88) Right top (289.51 79.54) points

 0
 177.9609 -3.8798 289.5058 79.5363

 55
 SubDoc
 55

 CurrentAVDoc

 QITE_QuiteImposingPlus3
 Quite Imposing Plus 3.0e
 Quite Imposing Plus 3
 1

 149
 150
 54
 1

 1

 HistoryItem_V1
 AddMaskingTape

 Range: From page 54 to page 54
 Mask co-ordinates: Left bottom (79.18 110.57) Right top (201.40 250.25) points

 0
 79.1838 110.5749 201.3982 250.2485

 54
 SubDoc
 54

 CurrentAVDoc

 QITE_QuiteImposingPlus3
 Quite Imposing Plus 3.0e
 Quite Imposing Plus 3
 1

 149
 150
 53
 1

 1

 HistoryItem_V1
 AddMaskingTape

 Range: From page 54 to page 54
 Mask co-ordinates: Left bottom (335.25 281.29) Right top (536.03 488.86) points

 0
 335.252 281.287 536.0327 488.8575

 54
 SubDoc
 54

 CurrentAVDoc

 QITE_QuiteImposingPlus3
 Quite Imposing Plus 3.0e
 Quite Imposing Plus 3
 1

 149
 150
 53
 1

 1

 HistoryItem_V1
 AddMaskingTape

 Range: From page 53 to page 53
 Mask co-ordinates: Left bottom (552.36 660.54) Right top (607.65 764.32) points

 0
 552.3636 660.5396 607.6511 764.3248

 53
 SubDoc
 53

 CurrentAVDoc

 QITE_QuiteImposingPlus3
 Quite Imposing Plus 3.0e
 Quite Imposing Plus 3
 1

 149
 150
 52
 1

 1

 HistoryItem_V1
 AddMaskingTape

 Range: From page 52 to page 52
 Mask co-ordinates: Left bottom (-243.81 258.98) Right top (154.84 845.80) points

 0
 -243.8113 258.9781 154.8403 845.801

 52
 SubDoc
 52

 CurrentAVDoc

 QITE_QuiteImposingPlus3
 Quite Imposing Plus 3.0e
 Quite Imposing Plus 3
 1

 149
 150
 51
 1

 1

 HistoryItem_V1
 AddMaskingTape

 Range: From page 52 to page 52
 Mask co-ordinates: Left bottom (113.13 119.30) Right top (667.95 845.80) points

 0
 113.1322 119.3045 667.9467 845.801

 52
 SubDoc
 52

 CurrentAVDoc

 QITE_QuiteImposingPlus3
 Quite Imposing Plus 3.0e
 Quite Imposing Plus 3
 1

 149
 150
 51
 1

 1

 HistoryItem_V1
 AddMaskingTape

 Range: From page 51 to page 51
 Mask co-ordinates: Left bottom (-181.89 319.12) Right top (316.66 829.31) points

 0
 -181.8925 319.1153 316.6645 829.3118

 51
 SubDoc
 51

 CurrentAVDoc

 QITE_QuiteImposingPlus3
 Quite Imposing Plus 3.0e
 Quite Imposing Plus 3
 1

 149
 150
 50
 1

 1

 HistoryItem_V1
 AddMaskingTape

 Range: From page 51 to page 51
 Mask co-ordinates: Left bottom (225.49 335.60) Right top (783.21 845.80) points

 0
 225.4887 335.6045 783.213 845.801

 51
 SubDoc
 51

 CurrentAVDoc

 QITE_QuiteImposingPlus3
 Quite Imposing Plus 3.0e
 Quite Imposing Plus 3
 1

 149
 150
 50
 1

 1

 HistoryItem_V1
 AddMaskingTape

 Range: From page 49 to page 49
 Mask co-ordinates: Left bottom (432.09 169.74) Right top (452.46 182.35) points

 0
 432.0892 169.7422 452.4583 182.3516

 49
 SubDoc
 49

 CurrentAVDoc

 QITE_QuiteImposingPlus3
 Quite Imposing Plus 3.0e
 Quite Imposing Plus 3
 1

 149
 150
 48
 1

 1

 HistoryItem_V1
 AddMaskingTape

 Range: From page 48 to page 48
 Mask co-ordinates: Left bottom (511.78 319.12) Right top (577.74 378.28) points

 0
 511.7839 319.1153 577.7408 378.2826

 48
 SubDoc
 48

 CurrentAVDoc

 QITE_QuiteImposingPlus3
 Quite Imposing Plus 3.0e
 Quite Imposing Plus 3
 1

 149
 150
 47
 1

 1

 HistoryItem_V1
 AddMaskingTape

 Range: From page 46 to page 46
 Mask co-ordinates: Left bottom (391.51 368.58) Right top (403.15 380.22) points

 0
 391.5094 368.583 403.1489 380.2225

 46
 SubDoc
 46

 CurrentAVDoc

 QITE_QuiteImposingPlus3
 Quite Imposing Plus 3.0e
 Quite Imposing Plus 3
 1

 149
 150
 45
 1

 1

 HistoryItem_V1
 AddMaskingTape

 Range: From page 45 to page 45
 Mask co-ordinates: Left bottom (511.63 151.31) Right top (610.56 214.36) points

 0
 511.6255 151.313 610.561 214.3601

 45
 SubDoc
 45

 CurrentAVDoc

 QITE_QuiteImposingPlus3
 Quite Imposing Plus 3.0e
 Quite Imposing Plus 3
 1

 149
 150
 44
 1

 1

 HistoryItem_V1
 AddMaskingTape

 Range: From page 43 to page 43
 Mask co-ordinates: Left bottom (328.30 353.06) Right top (349.64 378.28) points

 0
 328.304 353.0637 349.643 378.2826

 43
 SubDoc
 43

 CurrentAVDoc

 QITE_QuiteImposingPlus3
 Quite Imposing Plus 3.0e
 Quite Imposing Plus 3
 1

 149
 150
 42
 1

 1

 HistoryItem_V1
 AddMaskingTape

 Range: From page 41 to page 41
 Mask co-ordinates: Left bottom (434.03 335.60) Right top (445.67 342.39) points

 0
 434.0291 335.6045 445.6686 342.3942

 41
 SubDoc
 41

 CurrentAVDoc

 QITE_QuiteImposingPlus3
 Quite Imposing Plus 3.0e
 Quite Imposing Plus 3
 1

 149
 150
 40
 1

 1

 HistoryItem_V1
 AddMaskingTape

 Range: From page 41 to page 41
 Mask co-ordinates: Left bottom (327.33 362.76) Right top (352.55 372.46) points

 0
 327.334 362.7633 352.5529 372.4628

 41
 SubDoc
 41

 CurrentAVDoc

 QITE_QuiteImposingPlus3
 Quite Imposing Plus 3.0e
 Quite Imposing Plus 3
 1

 149
 150
 40
 1

 1

 HistoryItem_V1
 AddMaskingTape

 Range: From page 39 to page 39
 Mask co-ordinates: Left bottom (429.18 149.37) Right top (452.46 185.26) points

 0
 429.1794 149.3731 452.4583 185.2615

 39
 SubDoc
 39

 CurrentAVDoc

 QITE_QuiteImposingPlus3
 Quite Imposing Plus 3.0e
 Quite Imposing Plus 3
 1

 149
 150
 38
 1

 1

 HistoryItem_V1
 AddMaskingTape

 Range: From page 39 to page 39
 Mask co-ordinates: Left bottom (427.24 202.72) Right top (452.46 238.61) points

 0
 427.2394 202.7207 452.4583 238.609

 39
 SubDoc
 39

 CurrentAVDoc

 QITE_QuiteImposingPlus3
 Quite Imposing Plus 3.0e
 Quite Imposing Plus 3
 1

 149
 150
 38
 1

 1

 HistoryItem_V1
 AddMaskingTape

 Range: From page 38 to page 38
 Mask co-ordinates: Left bottom (391.51 364.70) Right top (406.06 376.34) points

 0
 391.5094 364.7032 406.0587 376.3427

 38
 SubDoc
 38

 CurrentAVDoc

 QITE_QuiteImposingPlus3
 Quite Imposing Plus 3.0e
 Quite Imposing Plus 3
 1

 149
 150
 37
 1

 1

 HistoryItem_V1
 AddMaskingTape

 Range: From page 38 to page 38
 Mask co-ordinates: Left bottom (319.73 359.85) Right top (349.80 379.25) points

 0
 319.7327 359.8534 349.8013 379.2525

 38
 SubDoc
 38

 CurrentAVDoc

 QITE_QuiteImposingPlus3
 Quite Imposing Plus 3.0e
 Quite Imposing Plus 3
 1

 149
 150
 37
 1

 1

 HistoryItem_V1
 AddMaskingTape

 Range: From page 37 to page 37
 Mask co-ordinates: Left bottom (426.27 255.10) Right top (452.46 265.77) points

 0
 426.2695 255.0982 452.4583 265.7677

 37
 SubDoc
 37

 CurrentAVDoc

 QITE_QuiteImposingPlus3
 Quite Imposing Plus 3.0e
 Quite Imposing Plus 3
 1

 149
 150
 36
 1

 1

 HistoryItem_V1
 AddMaskingTape

 Range: From page 37 to page 37
 Mask co-ordinates: Left bottom (549.45 323.00) Right top (596.98 413.20) points

 0
 549.4538 322.9951 596.9816 413.201

 37
 SubDoc
 37

 CurrentAVDoc

 QITE_QuiteImposingPlus3
 Quite Imposing Plus 3.0e
 Quite Imposing Plus 3
 1

 149
 150
 36
 1

 1

 HistoryItem_V1
 AddMaskingTape

 Range: From page 37 to page 37
 Mask co-ordinates: Left bottom (425.30 432.60) Right top (459.25 450.06) points

 0
 425.2995 432.6 459.248 450.0592

 37
 SubDoc
 37

 CurrentAVDoc

 QITE_QuiteImposingPlus3
 Quite Imposing Plus 3.0e
 Quite Imposing Plus 3
 1

 149
 150
 36
 1

 1

 HistoryItem_V1
 AddMaskingTape

 Range: From page 36 to page 36
 Mask co-ordinates: Left bottom (180.06 221.15) Right top (194.61 234.73) points

 0
 180.0592 221.1498 194.6085 234.7292

 36
 SubDoc
 36

 CurrentAVDoc

 QITE_QuiteImposingPlus3
 Quite Imposing Plus 3.0e
 Quite Imposing Plus 3
 1

 149
 150
 35
 1

 1

 HistoryItem_V1
 AddMaskingTape

 Range: From page 36 to page 36
 Mask co-ordinates: Left bottom (375.99 354.03) Right top (414.79 382.16) points

 0
 375.9901 354.0337 414.7883 382.1624

 36
 SubDoc
 36

 CurrentAVDoc

 QITE_QuiteImposingPlus3
 Quite Imposing Plus 3.0e
 Quite Imposing Plus 3
 1

 149
 150
 35
 1

 1

 HistoryItem_V1
 AddMaskingTape

 Range: From page 36 to page 36
 Mask co-ordinates: Left bottom (321.67 346.27) Right top (347.86 375.37) points

 0
 321.6726 346.274 347.8614 375.3727

 36
 SubDoc
 36

 CurrentAVDoc

 QITE_QuiteImposingPlus3
 Quite Imposing Plus 3.0e
 Quite Imposing Plus 3
 1

 149
 150
 35
 1

 1

 HistoryItem_V1
 AddMaskingTape

 Range: From page 32 to page 32
 Mask co-ordinates: Left bottom (380.84 351.12) Right top (429.34 376.34) points

 0
 380.8399 351.1238 429.3377 376.3427

 32
 SubDoc
 32

 CurrentAVDoc

 QITE_QuiteImposingPlus3
 Quite Imposing Plus 3.0e
 Quite Imposing Plus 3
 1

 149
 150
 31
 1

 1

 HistoryItem_V1
 AddMaskingTape

 Range: From page 32 to page 32
 Mask co-ordinates: Left bottom (314.88 357.91) Right top (371.14 374.40) points

 0
 314.8829 357.9135 371.1404 374.4027

 32
 SubDoc
 32

 CurrentAVDoc

 QITE_QuiteImposingPlus3
 Quite Imposing Plus 3.0e
 Quite Imposing Plus 3
 1

 149
 150
 31
 1

 1

 HistoryItem_V1
 AddMaskingTape

 Range: From page 32 to page 32
 Mask co-ordinates: Left bottom (160.66 148.40) Right top (190.73 204.66) points

 0
 160.66 148.4032 190.7287 204.6606

 32
 SubDoc
 32

 CurrentAVDoc

 QITE_QuiteImposingPlus3
 Quite Imposing Plus 3.0e
 Quite Imposing Plus 3
 1

 149
 150
 31
 1

 1

 HistoryItem_V1
 AddMaskingTape

 Range: From page 32 to page 32
 Mask co-ordinates: Left bottom (408.00 149.37) Right top (451.65 234.73) points

 0
 407.9987 149.3731 451.6466 234.7292

 32
 SubDoc
 32

 CurrentAVDoc

 QITE_QuiteImposingPlus3
 Quite Imposing Plus 3.0e
 Quite Imposing Plus 3
 1

 149
 150
 31
 1

 1

 HistoryItem_V1
 AddMaskingTape

 Range: From page 31 to page 31
 Mask co-ordinates: Left bottom (332.18 336.57) Right top (372.92 373.43) points

 0
 332.1838 336.5745 372.9219 373.4328

 31
 SubDoc
 31

 CurrentAVDoc

 QITE_QuiteImposingPlus3
 Quite Imposing Plus 3.0e
 Quite Imposing Plus 3
 1

 149
 150
 30
 1

 1

 HistoryItem_V1
 AddMaskingTape

 Range: From page 30 to page 30
 Mask co-ordinates: Left bottom (134.47 269.65) Right top (658.25 788.57) points

 0
 134.4713 269.6476 658.2471 788.5736

 30
 SubDoc
 30

 CurrentAVDoc

 QITE_QuiteImposingPlus3
 Quite Imposing Plus 3.0e
 Quite Imposing Plus 3
 1

 149
 150
 29
 1

 1

 HistoryItem_V1
 AddMaskingTape

 Range: From page 29 to page 29
 Mask co-ordinates: Left bottom (-17.00 305.54) Right top (498.05 622.71) points

 0
 -17.0001 305.5359 498.0462 622.7113

 29
 SubDoc
 29

 CurrentAVDoc

 QITE_QuiteImposingPlus3
 Quite Imposing Plus 3.0e
 Quite Imposing Plus 3
 1

 149
 150
 28
 1

 1

 HistoryItem_V1
 AddMaskingTape

 Range: From page 28 to page 28
 Mask co-ordinates: Left bottom (384.72 -3.88) Right top (445.83 71.78) points

 0
 384.7197 -3.8798 445.8269 71.7767

 28
 SubDoc
 28

 CurrentAVDoc

 QITE_QuiteImposingPlus3
 Quite Imposing Plus 3.0e
 Quite Imposing Plus 3
 1

 149
 150
 27
 1

 1

 HistoryItem_V1
 AddMaskingTape

 Range: From page 28 to page 28
 Mask co-ordinates: Left bottom (238.26 105.73) Right top (315.85 167.80) points

 0
 238.2565 105.7251 315.8529 167.8023

 28
 SubDoc
 28

 CurrentAVDoc

 QITE_QuiteImposingPlus3
 Quite Imposing Plus 3.0e
 Quite Imposing Plus 3
 1

 149
 150
 27
 1

 1

 HistoryItem_V1
 AddMaskingTape

 Range: From page 27 to page 27
 Mask co-ordinates: Left bottom (141.10 158.10) Right top (278.84 239.58) points

 0
 141.1026 158.1027 278.8363 239.5789

 27
 SubDoc
 27

 CurrentAVDoc

 QITE_QuiteImposingPlus3
 Quite Imposing Plus 3.0e
 Quite Imposing Plus 3
 1

 149
 150
 26
 1

 1

 HistoryItem_V1
 AddMaskingTape

 Range: From page 27 to page 27
 Mask co-ordinates: Left bottom (354.49 -3.88) Right top (570.79 188.17) points

 0
 354.4928 -3.8798 570.7928 188.1713

 27
 SubDoc
 27

 CurrentAVDoc

 QITE_QuiteImposingPlus3
 Quite Imposing Plus 3.0e
 Quite Imposing Plus 3
 1

 149
 150
 26
 1

 1

 HistoryItem_V1
 AddMaskingTape

 Range: From page 25 to page 25
 Mask co-ordinates: Left bottom (189.60 253.16) Right top (631.90 705.16) points

 0
 189.6004 253.1583 631.9 705.1575

 25
 SubDoc
 25

 CurrentAVDoc

 QITE_QuiteImposingPlus3
 Quite Imposing Plus 3.0e
 Quite Imposing Plus 3
 1

 149
 150
 24
 1

 1

 HistoryItem_V1
 AddMaskingTape

 Range: From page 23 to page 23
 Mask co-ordinates: Left bottom (509.69 -1.94) Right top (613.47 61.11) points

 0
 509.6856 -1.9399 613.4708 61.1072

 23
 SubDoc
 23

 CurrentAVDoc

 QITE_QuiteImposingPlus3
 Quite Imposing Plus 3.0e
 Quite Imposing Plus 3
 1

 149
 150
 22
 1

 1

 HistoryItem_V1
 AddMaskingTape

 Range: From page 20 to page 20
 Mask co-ordinates: Left bottom (407.03 406.41) Right top (513.72 584.88) points

 0
 407.0287 406.4113 513.7238 584.883

 20
 SubDoc
 20

 CurrentAVDoc

 QITE_QuiteImposingPlus3
 Quite Imposing Plus 3.0e
 Quite Imposing Plus 3
 1

 149
 150
 19
 1

 1

 HistoryItem_V1
 AddMaskingTape

 Range: From page 19 to page 19
 Mask co-ordinates: Left bottom (311.81 333.66) Right top (412.69 403.50) points

 0
 311.8148 333.6646 412.6901 403.5014

 19
 SubDoc
 19

 CurrentAVDoc

 QITE_QuiteImposingPlus3
 Quite Imposing Plus 3.0e
 Quite Imposing Plus 3
 1

 149
 150
 18
 1

 1

 HistoryItem_V1
 AddMaskingTape

 Range: From page 18 to page 18
 Mask co-ordinates: Left bottom (0.62 89.24) Right top (61.72 163.92) points

 0
 0.6174 89.2359 61.7246 163.9224

 18
 SubDoc
 18

 CurrentAVDoc

 QITE_QuiteImposingPlus3
 Quite Imposing Plus 3.0e
 Quite Imposing Plus 3
 1

 149
 150
 17
 1

 1

 HistoryItem_V1
 AddMaskingTape

 Range: From page 18 to page 18
 Mask co-ordinates: Left bottom (567.07 52.38) Right top (623.33 160.04) points

 0
 567.0713 52.3776 623.3287 160.0426

 18
 SubDoc
 18

 CurrentAVDoc

 QITE_QuiteImposingPlus3
 Quite Imposing Plus 3.0e
 Quite Imposing Plus 3
 1

 149
 150
 17
 1

 1

 HistoryItem_V1
 AddMaskingTape

 Range: From page 18 to page 18
 Mask co-ordinates: Left bottom (514.69 263.83) Right top (583.56 450.06) points

 0
 514.6937 263.8278 583.5605 450.0592

 18
 SubDoc
 18

 CurrentAVDoc

 QITE_QuiteImposingPlus3
 Quite Imposing Plus 3.0e
 Quite Imposing Plus 3
 1

 149
 150
 17
 1

 1

 HistoryItem_V1
 AddMaskingTape

 Range: From page 17 to page 17
 Mask co-ordinates: Left bottom (432.09 208.54) Right top (457.31 275.47) points

 0
 432.0892 208.5404 457.308 275.4673

 17
 SubDoc
 17

 CurrentAVDoc

 QITE_QuiteImposingPlus3
 Quite Imposing Plus 3.0e
 Quite Imposing Plus 3
 1

 149
 150
 16
 1

 1

 HistoryItem_V1
 AddMaskingTape

 Range: From page 17 to page 17
 Mask co-ordinates: Left bottom (369.04 368.58) Right top (457.31 393.80) points

 0
 369.0421 368.583 457.308 393.8018

 17
 SubDoc
 17

 CurrentAVDoc

 QITE_QuiteImposingPlus3
 Quite Imposing Plus 3.0e
 Quite Imposing Plus 3
 1

 149
 150
 16
 1

 1

 HistoryItem_V1
 AddMaskingTape

 Range: From page 16 to page 16
 Mask co-ordinates: Left bottom (512.75 330.75) Right top (550.58 432.60) points

 0
 512.7538 330.7548 550.5821 432.6

 16
 SubDoc
 16

 CurrentAVDoc

 QITE_QuiteImposingPlus3
 Quite Imposing Plus 3.0e
 Quite Imposing Plus 3
 1

 149
 150
 15
 1

 1

 HistoryItem_V1
 AddMaskingTape

 Range: From page 13 to page 13
 Mask co-ordinates: Left bottom (-109.15 -3.88) Right top (504.84 185.26) points

 0
 -109.1458 -3.8798 504.8358 185.2615

 13
 SubDoc
 13

 CurrentAVDoc

 QITE_QuiteImposingPlus3
 Quite Imposing Plus 3.0e
 Quite Imposing Plus 3
 1

 149
 150
 12
 1

 1

 HistoryItem_V1
 AddMaskingTape

 Range: From page 9 to page 9
 Mask co-ordinates: Left bottom (388.44 362.76) Right top (408.81 373.43) points

 0
 388.4412 362.7633 408.8103 373.4328

 9
 SubDoc
 9

 CurrentAVDoc

 QITE_QuiteImposingPlus3
 Quite Imposing Plus 3.0e
 Quite Imposing Plus 3
 1

 149
 150
 8
 1

 1

 HistoryItem_V1
 AddMaskingTape

 Range: From page 9 to page 9
 Mask co-ordinates: Left bottom (318.60 346.27) Right top (356.43 372.46) points

 0
 318.6044 346.274 356.4327 372.4628

 9
 SubDoc
 9

 CurrentAVDoc

 QITE_QuiteImposingPlus3
 Quite Imposing Plus 3.0e
 Quite Imposing Plus 3
 1

 149
 150
 8
 1

 1

 HistoryItem_V1
 AddMaskingTape

 Range: From page 4 to page 4
 Mask co-ordinates: Left bottom (490.44 181.38) Right top (600.05 309.42) points

 0
 490.4449 181.3816 600.0498 309.4157

 4
 SubDoc
 4

 CurrentAVDoc

 QITE_QuiteImposingPlus3
 Quite Imposing Plus 3.0e
 Quite Imposing Plus 3
 1

 149
 150
 3
 1

 1

 HistoryItem_V1
 AddMaskingTape

 Range: From page 4 to page 4
 Mask co-ordinates: Left bottom (433.22 67.90) Right top (604.90 290.02) points

 0
 433.2175 67.8969 604.8995 290.0166

 4
 SubDoc
 4

 CurrentAVDoc

 QITE_QuiteImposingPlus3
 Quite Imposing Plus 3.0e
 Quite Imposing Plus 3
 1

 149
 150
 3
 1

 1

 HistoryItem_V1
 AddMaskingTape

 Range: From page 4 to page 4
 Mask co-ordinates: Left bottom (-91.53 86.33) Right top (247.96 288.08) points

 0
 -91.5283 86.326 247.956 288.0767

 4
 SubDoc
 4

 CurrentAVDoc

 QITE_QuiteImposingPlus3
 Quite Imposing Plus 3.0e
 Quite Imposing Plus 3
 1

 149
 150
 3
 1

 1

 HistoryItem_V1
 AddMaskingTape

 Range: From page 3 to page 3
 Mask co-ordinates: Left bottom (2.40 116.39) Right top (243.92 278.38) points

 0
 2.399 116.3946 243.9179 278.3772

 3
 SubDoc
 3

 CurrentAVDoc

 QITE_QuiteImposingPlus3
 Quite Imposing Plus 3.0e
 Quite Imposing Plus 3
 1

 149
 150
 2
 1

 1

 HistoryItem_V1
 AddMaskingTape

 Range: From page 1 to page 1
 Mask co-ordinates: Left bottom (431.12 473.34) Right top (480.59 506.32) points

 0
 431.1193 473.3382 480.587 506.3167

 1
 SubDoc
 1

 CurrentAVDoc

 QITE_QuiteImposingPlus3
 Quite Imposing Plus 3.0e
 Quite Imposing Plus 3
 1

 149
 150
 0
 1

 1

 HistoryItem_V1
 AddMaskingTape

 Range: From page 1 to page 1
 Mask co-ordinates: Left bottom (471.86 303.60) Right top (700.77 433.57) points

 0
 471.8574 303.596 700.7668 433.57

 1
 SubDoc
 1

 CurrentAVDoc

 QITE_QuiteImposingPlus3
 Quite Imposing Plus 3.0e
 Quite Imposing Plus 3
 1

 149
 150
 0
 1

 1

 HistoryItem_V1
 AddMaskingTape

 Range: From page 1 to page 1
 Mask co-ordinates: Left bottom (-142.12 54.32) Right top (167.29 216.30) points

 0
 -142.1243 54.3175 167.2914 216.3

 1
 SubDoc
 1

 CurrentAVDoc

 QITE_QuiteImposingPlus3
 Quite Imposing Plus 3.0e
 Quite Imposing Plus 3
 1

 149
 150
 0
 1

 1

 HistoryItem_V1
 AddMaskingTape

 Range: From page 1 to page 1
 Mask co-ordinates: Left bottom (379.71 307.48) Right top (467.01 381.19) points

 0
 379.7116 307.4758 467.0076 381.1924

 1
 SubDoc
 1

 CurrentAVDoc

 QITE_QuiteImposingPlus3
 Quite Imposing Plus 3.0e
 Quite Imposing Plus 3
 1

 149
 150
 0
 1

 1

 HistoryItem_V1
 AddMaskingTape

 Range: From page 1 to page 1
 Mask co-ordinates: Left bottom (253.62 323.97) Right top (441.79 369.55) points

 0
 253.6174 323.9651 441.7888 369.5529

 1
 SubDoc
 1

 CurrentAVDoc

 QITE_QuiteImposingPlus3
 Quite Imposing Plus 3.0e
 Quite Imposing Plus 3
 1

 149
 150
 0
 1

 1

 HistoryItem_V1
 AddMaskingTape

 Range: From page 1 to page 1
 Mask co-ordinates: Left bottom (384.56 718.74) Right top (611.53 845.80) points

 0
 384.5614 718.7369 611.5309 845.801

 1
 SubDoc
 1

 CurrentAVDoc

 QITE_QuiteImposingPlus3
 Quite Imposing Plus 3.0e
 Quite Imposing Plus 3
 1

 149
 150
 0
 1

 1

 HistoryItem_V1
 AddMaskingTape

 Range: From page 1 to page 1
 Mask co-ordinates: Left bottom (490.29 595.55) Right top (570.79 699.34) points

 0
 490.2865 595.5526 570.7928 699.3378

 1
 SubDoc
 1

 CurrentAVDoc

 QITE_QuiteImposingPlus3
 Quite Imposing Plus 3.0e
 Quite Imposing Plus 3
 1

 149
 150
 0
 1

 1

 HistoryItem_V1
 AddMaskingTape

 Range: From page 1 to page 1
 Mask co-ordinates: Left bottom (432.09 555.78) Right top (522.29 614.95) points

 0
 432.0892 555.7844 522.295 614.9517

 1
 SubDoc
 1

 CurrentAVDoc

 QITE_QuiteImposingPlus3
 Quite Imposing Plus 3.0e
 Quite Imposing Plus 3
 1

 149
 150
 0
 1

 1

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: none
 Shift: move left by 8.50 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 1812
 271
 Fixed
 Left
 8.5039
 0.0000

 Both
 3
 AllDoc
 43

 CurrentAVDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus3
 Quite Imposing Plus 3.0e
 Quite Imposing Plus 3
 1

 149
 150
 149
 150

 1

 HistoryItem_V1
 AddMaskingTape

 Range: From page 147 to page 147
 Mask co-ordinates: Left bottom (380.91 363.73) Right top (431.34 381.19) points

 0
 380.9073 363.7332 431.3449 381.1924

 147
 SubDoc
 147

 CurrentAVDoc

 QITE_QuiteImposingPlus3
 Quite Imposing Plus 3.0e
 Quite Imposing Plus 3
 1

 0
 150
 146
 1

 1

 HistoryItem_V1
 AddMaskingTape

 Range: From page 147 to page 147
 Mask co-ordinates: Left bottom (330.47 361.79) Right top (355.69 381.19) points

 0
 330.4696 361.7933 355.6884 381.1924

 147
 SubDoc
 147

 CurrentAVDoc

 QITE_QuiteImposingPlus3
 Quite Imposing Plus 3.0e
 Quite Imposing Plus 3
 1

 0
 150
 146
 1

 1

 HistoryItem_V1
 AddMaskingTape

 Range: From page 142 to page 142
 Mask co-ordinates: Left bottom (-4.98 122.21) Right top (208.41 493.71) points

 0
 -4.9767 122.2144 208.4134 493.7072

 142
 SubDoc
 142

 CurrentAVDoc

 QITE_QuiteImposingPlus3
 Quite Imposing Plus 3.0e
 Quite Imposing Plus 3
 1

 0
 150
 141
 1

 1

 HistoryItem_V1
 AddMaskingTape

 Range: From page 142 to page 142
 Mask co-ordinates: Left bottom (16.36 111.54) Right top (185.13 390.89) points

 0
 16.3623 111.5449 185.1345 390.892

 142
 SubDoc
 142

 CurrentAVDoc

 QITE_QuiteImposingPlus3
 Quite Imposing Plus 3.0e
 Quite Imposing Plus 3
 1

 0
 150
 141
 1

 1

 HistoryItem_V1
 AddMaskingTape

 Range: From page 113 to page 113
 Mask co-ordinates: Left bottom (318.83 340.45) Right top (357.63 383.13) points

 0
 318.8301 340.4543 357.6284 383.1323

 113
 SubDoc
 113

 CurrentAVDoc

 QITE_QuiteImposingPlus3
 Quite Imposing Plus 3.0e
 Quite Imposing Plus 3
 1

 0
 150
 112
 1

 1

 HistoryItem_V1
 AddMaskingTape

 Range: From page 109 to page 109
 Mask co-ordinates: Left bottom (424.56 57.23) Right top (444.92 81.48) points

 0
 424.5553 57.2274 444.9243 81.4762

 109
 SubDoc
 109

 CurrentAVDoc

 QITE_QuiteImposingPlus3
 Quite Imposing Plus 3.0e
 Quite Imposing Plus 3
 1

 0
 150
 108
 1

 1

 HistoryItem_V1
 AddMaskingTape

 Range: From page 103 to page 103
 Mask co-ordinates: Left bottom (354.72 -3.88) Right top (499.24 56.26) points

 0
 354.7185 -3.8798 499.2418 56.2574

 103
 SubDoc
 103

 CurrentAVDoc

 QITE_QuiteImposingPlus3
 Quite Imposing Plus 3.0e
 Quite Imposing Plus 3
 1

 0
 150
 102
 1

 1

 HistoryItem_V1
 AddMaskingTape

 Range: From page 104 to page 104
 Mask co-ordinates: Left bottom (332.57 362.76) Right top (346.15 369.55) points

 0
 332.5677 362.7633 346.1471 369.5529

 104
 SubDoc
 104

 CurrentAVDoc

 QITE_QuiteImposingPlus3
 Quite Imposing Plus 3.0e
 Quite Imposing Plus 3
 1

 0
 150
 103
 1

 1

 HistoryItem_V1
 AddMaskingTape

 Range: From page 97 to page 97
 Mask co-ordinates: Left bottom (225.71 -3.88) Right top (494.39 164.89) points

 0
 225.7144 -3.8798 494.392 164.8924

 97
 SubDoc
 97

 CurrentAVDoc

 QITE_QuiteImposingPlus3
 Quite Imposing Plus 3.0e
 Quite Imposing Plus 3
 1

 0
 150
 96
 1

 1

 HistoryItem_V1
 AddMaskingTape

 Range: From page 86 to page 86
 Mask co-ordinates: Left bottom (153.13 155.19) Right top (215.20 243.46) points

 0
 153.126 155.1928 215.2031 243.4588

 86
 SubDoc
 86

 CurrentAVDoc

 QITE_QuiteImposingPlus3
 Quite Imposing Plus 3.0e
 Quite Imposing Plus 3
 1

 0
 150
 85
 1

 1

 HistoryItem_V1
 AddMaskingTape

 Range: From page 85 to page 85
 Mask co-ordinates: Left bottom (327.56 347.24) Right top (361.51 367.61) points

 0
 327.5597 347.244 361.5082 367.613

 85
 SubDoc
 85

 CurrentAVDoc

 QITE_QuiteImposingPlus3
 Quite Imposing Plus 3.0e
 Quite Imposing Plus 3
 1

 0
 150
 84
 1

 1

 HistoryItem_V1
 AddMaskingTape

 Range: From page 80 to page 80
 Mask co-ordinates: Left bottom (320.93 349.18) Right top (354.88 375.37) points

 0
 320.9283 349.1839 354.8767 375.3727

 80
 SubDoc
 80

 CurrentAVDoc

 QITE_QuiteImposingPlus3
 Quite Imposing Plus 3.0e
 Quite Imposing Plus 3
 1

 0
 150
 79
 1

 1

 HistoryItem_V1
 AddMaskingTape

 Range: From page 75 to page 75
 Mask co-ordinates: Left bottom (331.44 -3.88) Right top (518.64 67.90) points

 0
 331.4395 -3.8798 518.6409 67.8969

 75
 SubDoc
 75

 CurrentAVDoc

 QITE_QuiteImposingPlus3
 Quite Imposing Plus 3.0e
 Quite Imposing Plus 3
 1

 0
 150
 74
 1

 1

 HistoryItem_V1
 AddMaskingTape

 Range: From page 72 to page 72
 Mask co-ordinates: Left bottom (388.83 366.64) Right top (420.83 378.28) points

 0
 388.8251 366.6431 420.8336 378.2826

 72
 SubDoc
 72

 CurrentAVDoc

 QITE_QuiteImposingPlus3
 Quite Imposing Plus 3.0e
 Quite Imposing Plus 3
 1

 0
 150
 71
 1

 1

 HistoryItem_V1
 AddMaskingTape

 Range: From page 72 to page 72
 Mask co-ordinates: Left bottom (324.81 362.76) Right top (353.91 375.37) points

 0
 324.8081 362.7633 353.9067 375.3727

 72
 SubDoc
 72

 CurrentAVDoc

 QITE_QuiteImposingPlus3
 Quite Imposing Plus 3.0e
 Quite Imposing Plus 3
 1

 0
 150
 71
 1

 1

 HistoryItem_V1
 AddMaskingTape

 Range: From page 62 to page 62
 Mask co-ordinates: Left bottom (331.60 356.94) Right top (355.85 369.55) points

 0
 331.5977 356.9435 355.8466 369.5529

 62
 SubDoc
 62

 CurrentAVDoc

 QITE_QuiteImposingPlus3
 Quite Imposing Plus 3.0e
 Quite Imposing Plus 3
 1

 0
 150
 61
 1

 1

 HistoryItem_V1
 AddMaskingTape

 Range: From page 61 to page 61
 Mask co-ordinates: Left bottom (337.26 364.70) Right top (345.02 368.58) points

 0
 337.2593 364.7032 345.0189 368.583

 61
 SubDoc
 61

 CurrentAVDoc

 QITE_QuiteImposingPlus3
 Quite Imposing Plus 3.0e
 Quite Imposing Plus 3
 1

 0
 150
 60
 1

 1

 HistoryItem_V1
 AddMaskingTape

 Range: From page 60 to page 60
 Mask co-ordinates: Left bottom (375.25 365.67) Right top (413.07 378.28) points

 0
 375.2457 365.6731 413.074 378.2826

 60
 SubDoc
 60

 CurrentAVDoc

 QITE_QuiteImposingPlus3
 Quite Imposing Plus 3.0e
 Quite Imposing Plus 3
 1

 0
 150
 59
 1

 1

 HistoryItem_V1
 AddMaskingTape

 Range: From page 59 to page 59
 Mask co-ordinates: Left bottom (323.68 359.85) Right top (412.92 399.62) points

 0
 323.6799 359.8534 412.9158 399.6216

 59
 SubDoc
 59

 CurrentAVDoc

 QITE_QuiteImposingPlus3
 Quite Imposing Plus 3.0e
 Quite Imposing Plus 3
 1

 0
 150
 58
 1

 1

 HistoryItem_V1
 AddMaskingTape

 Range: From page 50 to page 50
 Mask co-ordinates: Left bottom (300.56 358.88) Right top (359.73 371.49) points

 0
 300.5592 358.8835 359.7264 371.4929

 50
 SubDoc
 50

 CurrentAVDoc

 QITE_QuiteImposingPlus3
 Quite Imposing Plus 3.0e
 Quite Imposing Plus 3
 1

 0
 150
 49
 1

 1

 HistoryItem_V1
 AddMaskingTape

 Range: From page 47 to page 47
 Mask co-ordinates: Left bottom (208.26 254.13) Right top (276.15 274.50) points

 0
 208.2552 254.1283 276.1521 274.4973

 47
 SubDoc
 47

 CurrentAVDoc

 QITE_QuiteImposingPlus3
 Quite Imposing Plus 3.0e
 Quite Imposing Plus 3
 1

 0
 150
 46
 1

 1

 HistoryItem_V1
 AddMaskingTape

 Range: From page 45 to page 45
 Mask co-ordinates: Left bottom (388.67 366.64) Right top (408.07 373.43) points

 0
 388.6669 366.6431 408.066 373.4328

 45
 SubDoc
 45

 CurrentAVDoc

 QITE_QuiteImposingPlus3
 Quite Imposing Plus 3.0e
 Quite Imposing Plus 3
 1

 0
 150
 44
 1

 1

 HistoryItem_V1
 AddMaskingTape

 Range: From page 44 to page 44
 Mask co-ordinates: Left bottom (332.57 357.91) Right top (351.97 371.49) points

 0
 332.5677 357.9135 351.9668 371.4929

 44
 SubDoc
 44

 CurrentAVDoc

 QITE_QuiteImposingPlus3
 Quite Imposing Plus 3.0e
 Quite Imposing Plus 3
 1

 0
 150
 43
 1

 1

 HistoryItem_V1
 AddMaskingTape

 Range: From page 35 to page 35
 Mask co-ordinates: Left bottom (281.97 358.88) Right top (433.28 389.92) points

 0
 281.9718 358.8835 433.2849 389.922

 35
 SubDoc
 35

 CurrentAVDoc

 QITE_QuiteImposingPlus3
 Quite Imposing Plus 3.0e
 Quite Imposing Plus 3
 1

 0
 150
 34
 1

 1

 HistoryItem_V1
 AddMaskingTape

 Range: From page 28 to page 28
 Mask co-ordinates: Left bottom (337.42 361.79) Right top (348.09 371.49) points

 0
 337.4175 361.7933 348.087 371.4929

 28
 SubDoc
 28

 CurrentAVDoc

 QITE_QuiteImposingPlus3
 Quite Imposing Plus 3.0e
 Quite Imposing Plus 3
 1

 0
 150
 27
 1

 1

 HistoryItem_V1
 AddMaskingTape

 Range: From page 28 to page 28
 Mask co-ordinates: Left bottom (384.95 196.90) Right top (544.99 505.35) points

 0
 384.9453 196.9009 544.9879 505.3467

 28
 SubDoc
 28

 CurrentAVDoc

 QITE_QuiteImposingPlus3
 Quite Imposing Plus 3.0e
 Quite Imposing Plus 3
 1

 0
 150
 27
 1

 1

 HistoryItem_V1
 AddMaskingTape

 Range: From page 12 to page 12
 Mask co-ordinates: Left bottom (80.38 278.38) Right top (603.19 839.98) points

 0
 80.3793 278.3772 603.1852 839.9813

 12
 SubDoc
 12

 CurrentAVDoc

 QITE_QuiteImposingPlus3
 Quite Imposing Plus 3.0e
 Quite Imposing Plus 3
 1

 0
 150
 11
 1

 1

 HistoryItem_V1
 AddMaskingTape

 Range: From page 8 to page 8
 Mask co-ordinates: Left bottom (42.55 180.41) Right top (503.28 651.81) points

 0
 42.5511 180.4117 503.2798 651.8099

 8
 SubDoc
 8

 CurrentAVDoc

 QITE_QuiteImposingPlus3
 Quite Imposing Plus 3.0e
 Quite Imposing Plus 3
 1

 0
 150
 7
 1

 1

 HistoryItem_V1
 AddMaskingTape

 Range: From page 4 to page 4
 Mask co-ordinates: Left bottom (-292.08 -3.88) Right top (152.16 92.15) points

 0
 -292.0835 -3.8798 152.156 92.1458

 4
 SubDoc
 4

 CurrentAVDoc

 QITE_QuiteImposingPlus3
 Quite Imposing Plus 3.0e
 Quite Imposing Plus 3
 1

 0
 150
 3
 1

 1

 HistoryItem_V1
 AddMaskingTape

 Range: From page 1 to page 1
 Mask co-ordinates: Left bottom (262.57 430.66) Right top (302.34 445.21) points

 0
 262.5727 430.6601 302.3409 445.2095

 1
 SubDoc
 1

 CurrentAVDoc

 QITE_QuiteImposingPlus3
 Quite Imposing Plus 3.0e
 Quite Imposing Plus 3
 1

 0
 150
 0
 1

 1

 HistoryList_V1
 qi2base

