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Abstract 

Traditionally, dynamically-typed languages have been difficult to compile effi­

ciently. This thesis explores dynamic compilation, a recently developed technique 

for compiling dynamically-typed languages. A dynamic compiler compiles and 

optimizes programs as they execute, using information collected from the running 

program to perform optimizations that are impossible to perform in a conven­

tional batch compiler. 

To explore these techniques we developed SKI, a dynamic compiler for Scheme. 

Tests on programs compiled by SKI, have shown that dynamic compilation tech­

niques can give a substantial increase in the performance Scheme programs. In 

some cases they can increase performance by up to 400%. 
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Chapter 1 

Introduction 

1.1 Introduction 

Dynamically-typed languages can not usually be compiled as efficiently as statically­

typed languages. This has prevented the widespread adoption of dynamically­

typed languages such as Scheme, Lisp and Smalltalk. 

There are three reasons why dynamically-typed languages are hard to compile 

efficiently: 

1. There is very little type information available to the compiler. 

2. They often have dynamic environments which permit the redefinition of 

existing procedures. 

3. They have a high procedure call frequency which impedes optimization. 

These reasons conspire to make it hard to compile even the simplest expressions. 

Consider this Scheme expression 

(define (add x y) ( + x y)) 

which creates a procedure called 'add' that adds two numbers together and re­

turns the result. Or does it? Let us look at it from a compiler's point of view. For 

one thing, there is nothing to indicate that 'x' and 'y' will be bound to numbers. 

Furthermore, the expression '( + x y)' calls the procedure bound to the variable 

'+',but at compile time we can not be sure that'+' will be bound to a procedure, 

let alone which procedure. Even if we assume that '+' is the standard addition 

1 



2 Chapter 1. Introduction 

procedure and that 'x' and 'y' are numbers, we still do not know what type of 

numbers they are-they could be integers, floating point numbers or complex 

numbers. 

In contrast the equivalent C function is full of information: 

int add(int a, int b) { return a + b; } 

A quick glance tells us that 'a' and 'b' are numbers, in fact they are integers. We 

also know that '+' is a builtin operator, which in this context adds two integers 

and returns an integer. 

The C version will execute in a few cycles. The Scheme version will take 

much longer. It has to check that '+' is a procedure and call it. Then, assuming 

that '+' is the standard addition procedure, it will have to check the types of its 

arguments and select the appropriate method for adding them together. 

Traditionally, there have been two approaches to solving these problems: com­

piler options and type declarations. 

Many Scheme compilers have options that allow the user to disable some of 

the dynamic features of the language. For instance, the user could specify that 

the standard procedures can not be changed. This would allow the compiler 

to inline the call to '+' in our example. Another option might specify that all 

variables that appear in numeric contexts contain small integers. Combining 

these two flags would allow the compiler to generate code for our example similar 

to that generated by the C compiler. Unfortunately, compiler options change the 

semantics of the language and in the case of the second option, compromise the 

safety of the language. 

Common Lisp is dynamically-typed, but it also allows type declarations [Ste84]. 

Common Lisp programmers can add type declarations to the parts to the program 

that need to be fast and leave the types unspecified in the rest of the program. 

This hybrid approach is becoming increasingly popular and has been adopted by 

two recent object oriented languages Cecil [Cha93] and Dylan [Sha92]. 

An alternative approach to efficiently compiling dynamically-typed languages 

is to use a dynamic compiler. A dynamic compiler is compiler that compiles and 

optimizes programs as they execute. The compiler can collect information from 

the running program and use it to optimize program as it runs. For instance, 

the compiler can collect information about the types of the arguments that a 
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procedure is commonly invoked with and create a special version of the procedure 

optimized for the common types. The compiler can also inline frequently executed 

procedures. If an inlined procedure is changed, then the compiler can undo the 

optimization. 

The objective of this thesis is to apply the techniques of dynamic compilation 

to Scheme [CR91]. To this end, we have developed SKI, a dynamic compiler for 

Scheme. SKI conforms to the "Revised4 Report on the Algorithmic Language 

Scheme" 1 (or R4RS) which is the de-facto standard for Scheme. 

1.2 Outline 

The next chapter discusses previous work in the field of dynamic compilation. 

Chapter 3 gives an overview of the structure of SKI, which is discussed in detail 

in Chapters 4, 5 and 6. The performance of SKI is analyzed in Chapter 7 and 

Chapter 8 concludes this thesis. 

1.3 Typographical Conventions 

There are many small programs and code fragments embedded in the text of this 

thesis. To make them easier to read, they are are laid out according to a set of 

typographical rules: 

Bold font is used for program keywords, e.g., if, lambda. 

'Roman font' is used for all other lexical forms, e.g., a-variable, 1234. If necessary 

these are enclosed in single quotes to distinguish them from the surrounding 

text, e.g., the variable 'a' is ... 

Italic font is used for meta-variables; variables which are used to hold unspecified 

parts of a program. E.g., (if abc). 

(Angle brackets) are used to denote non-terminals in extended BNF style gram­

mars. E.g., (if (exp1) (exp2) (expa) ). 

1 Revised4 = Revised Revised Revised Revised. 



4 Chapter 1. Introduction 

are used to denote repetition and as an anonymous meta-variable. E.g., a1 , 

a2 , ••• an and (lambda (x) ... ). 

[Square brackets] in Scheme code are equivalent to round brackets, selectively in­

termixing the round and square brackets makes Scheme code more readable. 

E.g., (let ([x 1]) ( + x 1)). 



Chapter 2 

Previous Work 

In this chapter we discuss previous and current research that is related to the 

goal of this thesis. This research falls into three categories: 

1. Research into using similar methods to achieve similar goals. E.g., using 

dynamic optimisation to increase the performance of dynamically typed 

languages. SELF, APL\3000 and Napier88 (Sections 2.1, 2.2 and 2.3) fall 

into this category. 

2. Research into using different methods to achieve the same goals. E.g., using 

type inference to eliminate type checking, like Soft Scheme (Section 2.4). 

3. Techniques that are somehow related, like BitBlt (Section 2.5). 

2.1 SELF 

SELF is a dynamically typed pure object oriented language under development 

by Stanford University and Sun Microsystems [US87, US91]. In SELF everything 

is an object and there are no classes. Each object encapsulates both its state 

and its behaviour. Unlike C++ [Str91], CLOS [Pae93] and other hybrid object 

oriented languages, there are no "simple" or "builtin" types. Even the simplest 

types are objects and the simplest operations are implemented as methods. 

Figure 2.1 shows the objects involved in adding two Cartesian points (3, 5) 

5 



6 Chapter 2. Previous Work 

Point traits 

oarent• Add Points method 

+ self "'"'''""' 

arg ... , ............... , 
code 
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~~ 
Polar Point traits 
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~1 Polar Point object Cartesian Point object 

parent• parent' parent• 

rho 5 X 3 X 7 
rho: ....... x: - x: -theta 60 y 5 y 9 

theta: ....... y: - -'11 -
A 

Figure 2.1: The objects involved in adding two Cartesian points in SELF. 



2.1. SELF 7 

and (7, 9) together in SELF.1 Each object consists of a number of slots and each 

slot has a name and a value. Sending a message consisting of a slot's name to 

an object returns the value of that slot or, if the value is a method, the method 

is executed. E.g., sending 'x' to A would return 3. The slots with names ending 

in a colon hold special methods which set the values of the slots with the same 

base name. Kg., sending 'x: 2' to object A sets the value of A's 'x' slot to 2. 

The traits objects hold the attributes shared by all objects of a type and have 

the same function as class objects in Smalltalk. The Point traits object holds 

attributes shared by all points such as the Add Points method. The Cartesian 

Points traits holds all attributes shared by Cartesian Point objects such as the 

methods for simulating a polar point, 'rho' and 'theta', 

To add the two points A and B, the message '+' is sent to A with B as an 

argument. Since A has no slot called '+' it passes the message onto its 'parent*' 

slot2 which references the point traits object C. C doesn't have a slot called '+' 
either, so it passes the message onto its parent P. P has a slot called '+' which 

contains a method, so the method is called with its argument slots,3 'self' and 

'arg', bound to the message's original receiver, A, and argument, B, as shown by 

the gray lines. 

The SELF code for the add points method is shown in Appendix A. L The 

line which sets the x value of the new point is 

newPoint x: x + ~· 

This line is composed of a number of message send operations. Each message 

and its arguments is indicated by an underline. The first message, 'x', is short 

for 'self x', It retrieves the x-coordinate from 'self', Le., the integer object 3. 

The second message, retrieves the x-coordinate from 'arg', Le. 7. The third 

sends the message '+' is sent to the result of 'x', 3, with the result of 'arg x', 

7, as its argument, i.e., '3 + 7'. The final message sets the x-coordinate of the 

new point 'newPoint' to the result of the previous message, 10. So, adding two 

1This is the "standard" SELF example which appears in many of the papers about SELF, 

This one is a composite of examples in [US91, CU89). 
2 An object may have one or more parent slots, they are distinguished from normal slots by 

a trailing asterisk 
3In SELF methods are a special kind of object and the method's slots are used for the same 

purpose as variables in other languages. 
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integers together and storing the result in an object takes at least four message 

send operations4 and as we have seen each message send requires at least one 

lookup in the object, If SELF programs are to be fast then message sends will 

have to be fast, 

The best way to make a message send fast is to perform the lookup part of 

the operation statically-at compile time, If this can be done, then slot access 

messages, like 'x', can be inlined and messages which invoke a method can be 

transformed into standard procedure calls or the method can be inlined, However, 

to perform the lookup at compile time, the compiler must know the type of the 

receiver of the message, but since SELF is dynamically typed, there is very little 

type information available to the compiler, 

To provide type information for the compiler the SELF team have used a 

number of techniques [CUL89, CU89, CU90, CU91, HCU91, Cha92, H94] which 

are described in the following sections, 

2.1.1 Customization 

Customization creates multiple versions of methods each of which is specialized 

on a the type of a different receiver, 

Specialization is a general technique which makes a special copy of a block of 

code in which the values of some parameters which were variable in the original 

are held constant, The parameters that the code is specialized on are generally 

the types or values of a set of variables, In some cases a runtime check is needed 

to ensure that the specialized version is executed only when the runtime values 

of the parameters match the values it was specialized on and if the check fails 

then the original version of the code is executed, In other cases, the check may 

be unnecessary or accomplished by other means, 

When a method is customized, it is specialized on one particular type of re­

ceiver, Within the customized method the type of 'self' slot is known statically 

and the lookup operations for all message sends to 'self' can be done statically, 

Since a large percentage of all messages are sent to 'self' this can increase perfor­

mance substantially, 

4We say "at least four" because the'+' method for numbers is probably implemented using 
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Cartesian Point traits 

parent• 

rho Add Points method 

theta (Cartesian) 

+ sell I 
ara I 

code 

Figure 2.2: Customization 

In the example in Figure 2.1 customized versions of the Add Points could be 

produced for both Cartesian and Polar points. The compiler can then ensure 

that specialized method is called only ever called for the correct type by adding a 

slot to that types' traits object as shown in Figure 2.2, to ensure that the method 

will only be called with the intended type as the receiver. 

2.1.2 Type Prediction 

Type prediction is used to predict the type of the receiver of a message based on 

the name of the message. 

Early versions of the SELF compiler [CUL89, CU89, CU91] used static rules 

like "the receiver of '+' is a small integer 90% of the time". Later versions of 

the compiler [HCU91, H94] uses dynamic type information obtained from the 

running program to predict the types of the receivers. 

When the compiler has predicted the type of the receiver of the message it 

"splits the message" and generates two copies of the message send, one for the 

expected case with the lookup done statically, the other for the general case 

which will perform the lookup at runtime. A runtime check also is generated 

which branches to the expected case if the prediction is correct and the general 

case otherwise. E.g., when the compiler encounters the expression 

i + 1 

it will predict that 'i' is an integer and generate the following (in psuedocode): 

a technique called double dispatching which would require another message send. 
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if islnteger{i) then 

i + 1 - Static lookup. 

else 

i + 1 - Dynamic lookup. 

end if. 
In this case the statically bound message send could be inlined and reduced to a 

call to a primitive. 

2.1.3 Type Analysis and Splitting 

Type analysis [CU90, Cha92) is used to propagate type information though a 

method so that type checks can be eliminated and message sends can be statically 

bound or eliminated. 

The sources of the type information are literal values, primitive operations, 

slots with known types and type tests. The type of a literal (e.g., a constant like 

'1') can be determined trivially and compiler also knows the types returned by 

all primitive operations. The types of some slots are also known , for instance in 

a customized method the type of 'self' is known. 

(a) Type information 
created by a type check. 

(b) Type information 
lost after a join. 

Figure 2.3: 

(c) Splitting preserves type 
information. 

Type tests can also be a source of type information. Figure 2.3a5 shows part 

of the control flow graph (or CFG, see Chapter 10 of [ASU86]) for the previous 

example. Before the type check the type of 'i' is unknown, in the true branch the 

5Figures adapted from (CU90]. 
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type of 'i' is known to be an integer and in the false branch it is anything but an 

integer. 

However, joins in the CFG can destroy type information as shown in Fig­

ure 2.3b. In cases like this the compiler can eliminate the join and split the code 

following the join into two copies as shown in Figure 2.3c. 

Early versions to the SELF compiler [CUL89, CU89] performed splitting only 

on the message send immediately following the join. Later versions [CU90] use 

extended splitting which can split many message sends if it is profitable, although 

the amount of splitting must be limited to keep the code size in check. 

(a) Before. (b) After. 

Figure 2.4: Loop splitting. 

Type analysis and splitting can also be applied to loops [CU90] to split off 

loops in which the types of some of the slots are constant for the entire loop. 

Figure 2.46 shows an example of loop splitting. 

2 .1.4 Inlining 

If the lookup part of a message send can be resolved statically and the message 

invokes a method, then the SELF compiler can choose to inline that method if it 

is small and not recursive. 

6 Figures adapted from [CU90]. 



12 Chapter 2. Previous Work 

Inlining a method doesn't just eliminate the call overhead, it can also provide 

opportunities for further optimization. In particular the types of the methods 

arguments can be propagated through the inlined body and the type of the return 

value of the method can be determined. 

2.2 APL\3000 

APL\3000 [Van77] is a dynamic incremental compiler/interpreter for APL which 

runs on Hewlett-Packard 3000 Series II minicomputers. APL is a dynamically 

typed language for mathematics with a rich set of data types and operators. Like 

Scheme, APL is also a dynamic in the sense that the meaning of names can be 

changed by the user and that the interpretation of an expression depends on the 

context. Figure 2.57 shows a three apparently identical expressions which have 

different meanings depending on the context in which they appear. 

X- A+B 

Integer Scalar Variable q Dyadic Primitive Function 
Integer Scalar Variable 

(a) 

X- A+B 

Integer Matrix Variable q Dyadic Primitive Function 
Real Matrix Variable 

(b) 

X- A+B 

Monadic User-Delined Function +q 
Monadic Primitive Function 
Niladic User-Delined Function 

(c) 

Figure 2.5: The meaning of APL expressions depends on the context. 

7Figure adapted from [Van77]. 
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Clearly the dynamic properties of APL make it difficult to compile. The 

solution adopted in APL\3000 is to compile each expression the first time it 

is evaluated, assuming that the types of the variables and the bindings of the 

operators remain constant. For instance, the expression in Figure 2.5b would be 

compiled with the assumptions that A is a variable holding an integer matrix, 

B is a variable holding a real matrix and + is the primitive addition function. 

The compiler also generates a prologue, or signature, for the compiled expression 

which checks that the assumptions are still valid. The first time the expression 

is executed the signature is skipped since the assumptions are guaranteed to be 

valid, but every subsequent time the signature is executed. If the signature fails 

the interpreter is signalled and the expression is recompiled. 

There are two kinds of code that the compiler can generate. These are known 

as hard and soft code. Hard code assumes that the size of the values in an 

expression will remain constant. If the signature fails because the size of values 

changes, then soft code is generated which will operate on any size arguments, 

but which may be less efficient. For instance, if A and B are bound to 2 x 2 

matrices the first time the expression is executed then the hard code generated 

will assume that they will always be 2 x 2 matrices. If the expression is executed 

with A and B bound to 4 x 4 then soft code will be generated. 

2.3 N apier88 

Napier88 [MBCD89] is a polymorphic language coupled with a persistent object 

store. Napier88 is statically typed, but has polymorphic procedures and data 

types, similar to generic packages in Ada [DOD83] and templates in C++ [Str91]. 

let sort= proc[ T ]( v : *T; lessThan : proc(T, T---+ bool)) 
begin 

end 

Figure 2.6: A polymorphic sort procedure 
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Figure 2.6a8 shows the declaration of a polymorphic sort procedure which 

can sort a vector of any type. The type is specified by a type variable 'T'. The 

arguments to the procedure are 'v', a vector of objects of type 'T', and 'lessThan', 

a procedure which takes two arguments of type 'T', compares them and returns 

a boolean. 

There are at least two strategies for compiling polymorphic procedures such 

as 'sort': 

1. The compiler can generate a single polymorphic procedure which works on 

any type. This is the strategy used by ML [MTH89]. 

2. The compiler can generate multiple copies of the procedure, each specialized 

to a particular type. This strategy is used by Ada and C++. 

Code generated using the first strategy requires less space, but runs more slowly. 

The second strategy produces faster code because the compiler has more informa­

tion to work with. E.g., the compiler knows the size of the objects the procedure 

manipulates. 

The strategy used in Napier88 is a mixture of the two. Initially, a single 

polymorphic procedure is compiled. This procedure is instrumented with profiling 

code to count the number of times it is invoked and the types that it is invoked 

with. When the procedure has been run a number of times the profiling data 

is examined and if the procedure is called frequently with some type then a 

specialised version of the procedure is generated for that type and linked into the 

system. 

2.4 Soft Scheme 

Soft Scheme [WC93] is a soft type system for Scheme. A type system infers 

and checks the types of variables and expressions in a program. Languages like 

ML [MTH89] and Haskell [HPJW+92] have static type systems that can infer the 

types of most expressions with no need for type declarations. However, static type 

system can occasionally fail and reject a correctly typed program. If this happens 

8Figures adapted from (CCKM94]. 
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then the programmer must insert a type declaration or rewrite the portion of the 

program that caused the failure. The type system will also reject incorrectly 

typed programs. 

In contrast, a soft type system attempts to infer the types of the variables and 

expressions in a program. Soft type systems represent the types of variables and 

expressions as sets of simple types. This makes them ideal for dynamically typed 

languages where variables and expressions can have a range of types. When the 

a soft type system fails, it does not reject the program but simply assumes that 

the expression that caused the failure can have any type and continues. 

A soft type system can be used for two purposes: 

1. An aid for understanding and debugging programs. The type system can 

report the types it discovers to the programmer so that he/she can check 

them against the model of the program in his/her head. It can also indicate 

the places where it failed so that the programmer can check them-if the 

type system failed then the program may be incorrect. 

2. The type system can pass the type information to the compiler so that type 

checks can be eliminated. 

Wright and Cartwright [WC93] modified the Chez Scheme compiler to make 

use of the type information generated by Soft Scheme. Programs compiled using 

the type system achieved speedups of up to 70% over programs with full type 

checking. 

Unfortunately, there are a two of major problems with Soft Scheme and soft 

type systems: 

1. They must operate over the entire program. Parts of the program cannot 

be checked in isolation. This can be impractical for large programs. 

2. They are imprecise in the presence of assignment or mutation. Assignment 

to a variable, particularly a global variable, can result in very large sets 

of types. This imprecision is propagated to expressions that reference the 

variable (see [WC93]). 

3. The type system depends on the types of the standard procedures. If the 

standard procedures are changed then the type system will fail. 
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These magnitude of these problems could be reduced if Scheme had a module 

system like ML. Modules could be checked in isolation and the effects of mutation 

might be limited to a module. Unfortunately standard Scheme doesn't yet have 

a module system. 

2.5 Bitblt 

Bitmap graphics kernels often make heavy use of the bit block transfer, or bitblt 

operation. Bitblt takes each bit from a source rectangle, src, and combines it 

with the corresponding bit in a destination rectangle, dest, using an operation 

6.9 

destx,y = srcx,y 6 destx,y 

Where x and y range over the rectangle, and 6 is a simple logical operator like 

and, or, xor, nand, ... , etc. 

Bitblt is typically implemented using two nested loops, the outer loop iterates 

along the y-axis and the inner loop iterates along the x axis. If bitblt is to be 

efficient then the inner loop must operate on machine words rather individual bits, 

but since the source and destination rectangles can have arbitrary bit alignment 

and may overlap, the inner loop can become quite complex and slow. 

One way to speed bitblt up is to specialize the inner loop for all combinations 

of operation, alignment and overlap. If there are 16 possible operations and 32 

possible alignments, then neglecting overlap there are 512 possible combinations. 

Clearly specialising for all possible cases will be expensive in terms of code size. 

Another solution [KEH91] is to generate specialized machine code for the 

inner loop at runtime. The runtime code generator needn't be very complex, 

essentially it just has to choose from a small number of templates and fill in the 

blanks. For instance, there might be a template for non-overlapping rectangles 

and several templates to handle overlapping rectangles. The blanks would be for 

the shifts to handle alignment and the instructions to perform the operation. 

Simple runtime generated code can outperform a highly optimized static code 

by a factor of four [KEH91]. If the runtime code generator does some simple 

9Some bitblts have two sources and two operators. destx,y = (srclx,y 61 src2x,y) 62 destx,y· 
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optimizations, for instance unrolling the inner loop, the generated code can be 

as much as ten times faster. 
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Chapter 3 

Overview of the SKI Compiler 

This chapter presents an overview of the structure of the SKI compiler as a prelude 

to the in-depth discussion of the comp.iler in the following chapters. 

3.1 Structure of the Compiler 

Figure 3.1 shows the basic structure and modus operandi of the compiler: 

L The front end (Chapter 4) takes standard Scheme expressions, transforms 

them into equivalent expressions in an intermediate language called SKI­

CPS and then performs some simple optimizations on them. 

2. The back end (Chapter 5) takes SKI-CPS expressions and transforms them 

into executable code. 

3. The code is executed and information is gathered about the procedures 

that are executed, how frequently they are executed and what types they 

are executed with. 

4. Based on the information collected, the compiler decides whether the ex­

pressions are worth further optimization. 

5. Using the information and the SKI-CPS versions of the expressions, the 

compiler attempts to further optimize the code and produces new SKI­

CPS expressions and passes them to the back end to be executed again 

(see Chapter 6). 

19 
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Front End 

Transforms program Into 
lntermeadlate language. 

Does simple optimisations. 

Back End 
Generates execuatable 

code. 

Dynamic Optimiser 

Optimises code using 
Information gathered 

when It was run. 

Figure 3.1: Overview of SKI 
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6. This process is repeated until it is no longer profitable to optimize the 

expressions any further. 



22 



Chapter 4 

The Front End 

SKI's front end performs the initial transformation of Scheme programs into an 

intermediate language and some simple optimizations on this intermediate form. 

The front end is structured as a sequence of passes. As shown in Figure 4.1, 

each pass takes the output of the previous pass and performs a simple transforma­

tion on it. The overall effect is that the program is transformed into successively 

simpler forms. 

The front end can be further divided into two halves. The first half trans­

forms programs into the CPS intermediate language. The second half performs 

simple optimizations on the CPS representation before passing it to the back 

end for code generation (Chapter 5). The output of the front end is also stored 

and, together with dynamically collected information, used as the input for the 

dynamic optimizations (Chapter 6). 

This chapter is structured as follows: Sections 4.1, 4.2 and 4.3 cover the initial 

passes leading up to the transform into the intermediate language. Sections 4.4 

and 4.5 discuss the CPS intermediate language and CPS transformation pass 

respectively. Sections 4.6, 4. 7 and 4.9 cover the optimization passes. Finally, 

section 4.10 discusses the implementation of the front end and the internal rep­

resentation of the intermediate language. 

23 
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Figure 4.1: Overview of the front end. Passes are in bold. 

4.1 Rewriting 

Scheme expressions can be composed of a number of different types of expres­

sion. Some, such as lambda, if and variable reference, are known as primitive 

expressions because they are essential and it would be impossible to write pro­

grams without them. Other types of expression are known as derived expressions 

because they can be written in terms of primitive expressions. 

SKI's rewriting pass transforms a Scheme program by rewriting most of the 

derived expressions as primitive expressions. This simplifies subsequent passes as 

they have fewer types of expression to deal with. 

A good example of a derived expression is the and expression. The and 

expression has the syntax: 

(and (exp1) (exp2) ... ) 

The ( exp)s are evaluated in order and if one of them evaluates to false then false 

is returned. If all the ( exp)s evaluate to true values then the value of the last 

( exp) is returned1 . 

1 In Scheme any value that is not false, '#f', is true, though in some older versions of Scheme 
the empty list, '()',is also considered to be false. 
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An and expression can be rewritten by (repeatedly) applying these three rules 

from Section 7.3 of the R4RS [CR91]: 

(and) - #t 

(and ( exp)) ( exp) 

(and (exp1) (exp2) ... ) 

(let ( (x ( expt)) 

(thunk (lambda () (and (exp2) ... )))) 

(ifx (thunk) x)) 
In the third rule, the value of ( exp1) is bound to the variable 'x' since it must 

be evaluated once only, but its value is used twice in the if. The rest of the 

( exp)s are placed inside a lambda to delay the their evaluation until their values 

are required, and to prevent them from "capturing" the variable 'x'2 . Creating 

and calling the procedure 'thunk' may.look inefficient, but the procedure will be 

inlined by the .8-reduction pass (Section 4.7). The following is an example of 

applying these rules to an expression: 

(and (null? left) (null? right)) 

::::? (let ((x (null? left)) 

(thunk (lambda() (and (null? right))))) 

(if x (thunk) x)) 

::::? (let ((x (null? left)) 

(thunk (lambda () (null? right)))) 

(ifx (thunk) x)) 

It is possible to rewrite any Scheme expression in terms of the six primitive 

expression types: literal, variable reference, procedure call, lambda, if and set!. 

We choose not to rewrite letrec and let expressions in this pass, leaving them 

for subsequent passes to rewrite, but we do rewrite let* and let loop. Letrecs 

will be rewritten in the assignment conversion pass (section 4.3) and lets in the 

cps-conversion pass (Section 4.4). This pass also recognizes and emits prim 

expressions which are not defined by the R4RS [CR91]. These are used used 

extensively in the standard library to directly call SKI's primitives. 

2The initialization expressions of a let are evaluated in the scope enclosing the let and can't 
"see" variables bound by the let. 
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The rewriting pass also rewrites quasiquote3 expressions into expressions using 

builtin procedures like 'cons' and 'append'. The procedures that do this were 

borrowed from the Scheme->C compiler [Bar89] . 

4.2 • a-conversion 

The a-conversion pass renames all variables so that they have unique names. 

These are generated by concatenating the original variable name, an underscore 

and an unique number. Counters are maintained for each variable name en­

countered, so the first occurrence of 'x' becomes 'x_O', the second 'x_l ', and so 

on. 

So that variable names can be used as C identifiers in generated code, all 

non-alphanumeric .characters in identifiers, such as '+', '?' and '!', are replaced 

by underscore delimited names. For example 'eq?' becomes 'eq_hook_O'. Minus 

characters, '-', are replaced by underscores except when they are at the beginning 

or end of an identifier. So 'frobnicate-thing' becomes 'frobnicate_thing_O', but '-' 

becomes 'minus_O'. These transformations try to maintain the readability of the 

Scheme identifiers while converting them into legal C identifiers. 

Global variables are also detected in this pass and assigned locations in the 

global table. These are discussed further in the next section. 

4.3 Assignment conversion 

The assignment .conversion pass removes all variable assignment expressions. This 

is achieved by detecting all the variables that are assigned to and replacing them 

with memory cells to hold their values. 

More formally: for each local variable v which is assigned in a set! expression, 

we introduce a variable v' which has the same scope as v and which is bound to 

a cell that contains the initial value of v. We then replace all references to v with 

expressions that return the value of cell v' and replace all assignments (set! v x) 

with expressions that set the value of cell v' to x. 

3 Quasiquote is a way of generating almost constant data structures. For example the 
quasiquote expression '(1 a ,x) evaluates to (1 a 3) when 'x' is bound to 3. 
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For variables bound by a let we can substitute a cell for the set!'d variable: 

(let ( ( v (in it))) ==> (let ( ( v' (prim $make-cell (in it)))) 

.. . v ... 

(set! v (exp)) 

... ) 

. . . (prim $get-cell v') ... 

(prim $set-cell! v' ( exp)) 

... ) ' 
but for variables bound by a lambda we introduce a new cell variable: 

(lambda ( v) ==> (lambda ( v) 

... v ... 

(set! v ( exp)) 

... ) 

(let ( ( v' (prim $make-cell v))) 

. . . (prim $get-cell v') ... 

(prim $set-cell! v' ( exp)) 

... )). 
The expression (prim $make-cell x) returns a new cell initialized to x, (prim 

$get-cell y) returns the current value of cell y and (prim $set-cell! y w) stores w 

in cell y. 

As we mentioned in Section 4.1, the assignment conversion pass also rewrites 

letrec expressions. The reason for this is that letrecs are rewritten using a 

special kind of assignment and the assignment conversion pass has all the infor­

mation about which variables are assigned. Letrecs can be rewritten as follows: 
(letrec ( ( v1 ( init1)) ==> (let ( ( v1 ( undefinect)) 

... ) ... ) 
(body)) (set! v1 (init1)) 

(body)). 
However if we use these rules and then use the standard assignment conversion 

discussed above, the simple data and control flow analysis in the Known call 

optimization pass (Section 6.6.1) will be impeded because it will have to try to 

trace values through cells. 

Rather than this we introduce the notion of once-cells. Once-cells are similar 

to normal cells except that they are assigned once and only once. The conversion 

becomes: 
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(letrec ( ( v1 ( init1)) 

" . ) 

" . ) 

Chapter 4. The Front End 

(let ( ( v~ (prim $make-once-cell)) 

" . ) 
(prim $set-once-cell! v~ ( init1)) 

(prim $get-once-cell vD 
" . ) 

unless any of the vi are set!'d, in which case the set!'d variables are replaced 

with normal cells. E.g., 

(letrec ( (a (in ita)) 

(b (initb))) 

(set! a ( exp)) 

" . ) 

(let ( (a' (prim $make-cell-undef)) 

(b' (prim $make-once-cell))) 

(prim $set-cell! a' ( inita)) 

(prim $set-once-cell! b' ( initb)) 

(prim $set-cell! a' ( exp)) 

... ) . 
The primitive '$make-cell-undef' makes a cell initialized to a undefined value. 

This transformation makes analysis much easier since once-cells will only ever 

have one value after they have been set-essentially the initialization of the vari­

able is separated from it's declaration. 

Global variables are assumed to be set!'d, but rather than store them in sep­

arate cells we store them in a mutable table called the global table. All references 

to globals are replaced with calls to the primitive '$get-global' and all assignments 

to globals, including defines, are replaced with a call to '$set-global!': 
(define x 3) =} (prim $set-global! n 3) 

( ... x ... ) ( ... (prim $get-global n) ... ) 
where n is the offset of 'x' in the global table. This is the offset allocated by the 

a-conversion pass. 

After assignment conversion the values of variables don't change all mutation 

happens in memory. This simplifies the following passes because we don't have 

to keep track of changing variables and we are free to substitute values for vari­

ables or equivalent variables for one another. The real advantage of assignment 

conversion only becomes apparent when we introduce closures, see Section 5.1. 

Assignment conversion was introduced by Kranz et al. in the Orbit Scheme 
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compiler [KKR+86]. Scheme->C [Bar89] also uses a similar idea. 

The ScHEMEXEROX [ACS93] compiler also performs assignment conversion 

and treats cells which are assigned only once specially. It attempts to collect 

these cells and transform the assignments into a letrec! 

4.4 The Intermediate Language 

Many compilers transform programs into an intermediate representation which 

is more amenable to analysis and optimization than the source language. This 

intermediate representation is often considered to be a language in itself and is 

often referred to as an intermediate language. 

Intermediate languages may also be independent of source language and the 

target architecture making it easy to reuse parts of compilers for new languages 

and architectures. The Amsterdam Compiler Kit and GNU C<J4 [Sta92] are good 

examples, supporting several source languages and many target architectures. 

There are many different kinds of intermediate languages. A few examples 

are: 

RTL or Register Transfer Language is the language used by GNU CC [Sta92] 

and a number of other GNU compilers. RTL represents a program as a 

sequence of simple instructions for an abstract register machine. RTL is a 

kind of three address code (see [ASU86]). 

SSA or Static Single Assignment form. SSA is a restricted form of a three 

address code, in which each variable or register is assigned only once and 

never changes. 

EM is the intermediate language used by the Amsterdam Compiler Kit. It is a 

language for a simple abstract stack machine. 

STG or Spineless Tagless G-machine. STG is a language for an abstract graph 

reduction machine. STG is used for compiling non-strict functional lan­

guages such as Haskell [Jon92]. 

4GNU CC was originally a C compiler, but it now has "front-ends" for Ada 9X, Pascal, 
C++, Fortran77 and Objective-C, with further languages planned. 
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CPS or Continuation Passing Style. CPS is a style of writing programs in which 

flow of control and data is represented by continuations. Continuations are 

functions which represent the rest of the program and which take a sin­

gle argument, the result of executing the current expression. Continuation 

passing style intermediate languages are used in the Rabbit [Ste78] and Or­

bit [KKR+86] Scheme compilers and the SML/NJ [App92] SML compiler. 

SKI uses CPS. Like SSA and three address codes, CPS isn't a single language, 

but rather a style of language. Before we introduce SKI's version of CPS, we will 

demonstrate the ideas behind CPS with an example. 

4.4.1 CPS example 

The Scheme procedure:5 

(define f 

(lambda (x) 

(4- (* x x) (* 2 x) 1))) 
can be expressed in continuation passing style Scheme as: 6 

(define f 

(lambda (x k) 

(* x x [lambda (u) 

( * 2 x [lambda (v) 

(4- u v 1 k)])]))) 
Each function ('f', '4-', '*') has been given a new parameter, which holds its 

continuation, and a continuation is supplied to each function call. Specifically, 

'k' is the continuation of 'f', and the continuation of the first call to '*' is 

[lambda (u) ... ]. Each continuation takes exactly one argument, which is there­

sult of the function which calls it. So 'v' in the continuation [lambda (v) ( 4- u v 1 k)] 

will be bound to 2 · x and the result of 'f' is passed to 'k'. 

If we step through the example, expression by expression, we can see exactly 

what happens at each point. 

5 Note that in Scheme'+' and'*' are procedures of zero or more arguments. 
6Note that this is still a legal Scheme program. 
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(lambda (x k) ... ) Entering the function, 'x' is bound to some 

number, 'k' is the continuation of the whole 

function. 

(*XX ... ) 

[lambda (u) ... ] 

(*2x ... ) 

[lambda (v) ... ] 

The function '*' is called, with arguments 

'x' and 'x' and a continuation. '*' multi­

plies its arguments and calls its continua­

tion with the result. 

The result of * is bound to 'u'. 

* is called again and passes its result to 

which binds the result to 'v'. 

( + u v 1 k) '+' is called with arguments 'u', 'v' and 1. 

It calls 'k', with the result of the 'f'. 

31 

It should now be clear why this is called continuation passing style. For each 

procedure call, a continuation is passed to the procedure, which calls the contin­

uation with its result. This is equivalent to the procedure call/return mechanism 

in imperative languages, but the "return" mechanism, calling the continuation, 

is made explicit. Kranz et al. [KKR+86] say that: 

... procedures do not 'return,' but rather 'continue into' the code 

represented by the continuation. 

Two of the advantages of CPS as a intermediate language are : 

1. The flow of control is absolutely explicit. At any point, the current contin­

uation represents the rest of the programs execution-it is easy see what 

happens next. For example, the order of evaluation of function arguments 

is explicit, and as we will see later, all transfers of control are represented 

by continuations. All procedure calls in CPS are tail calls, that is, they 

never need to save information on a stack to use when they return, this 

makes tail recursion optimization trivial. 

2. The flow of data is absolutely explicit. Data is propagated by the well 

understood, and simple, mechanisms of lexical scoping and procedure calls. 

The closure conversion transformation (Section 5.1) makes this even more 

explicit by eliminating the lexical scoping. 
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( exp) --+ (jmp ( carg) (cant)) 
I ( app ( var) ( ( arg) ... ) (cant)) 
I ( cif ( arg) (consequent-cant) (alternate-cant) (cant)) 

( carg) --+ ( arg) 
I (nlambda (kvar) ((var) .. . ) (rest-var) (exp)) 
I (prim (name) ( ( arg) ... ) ) 
I (cant) 

( arg) --+ ( var) 
I (litera0 

(cant) --+ ( clambda ( ( var)) ( exp)) 
I (kvar) 

Figure. 4.2: The SKI-CPS language. 

4.4.2 SKI's CPS intermediate language 

SKI uses a CPS based intermediate language, SKI-CPS, which is similar in 

spirit, but different in appearance, to that used in the Orbit paper [KKR+86]. 

This is a consequence of our decision to use Orbits CPS-conversion algorithm 

(Section 4.5). 

Orbit uses a dialect of Scheme with continuations, called CPS-Scheme, which 

is the similar to the language used in the example in the previous section, with 

the exception that the continuation is always the first argument in a function 

call. 

Figure 4.2 shows the SKI-CPS intermediate language. We will now explain 

what each form in the language does and show how they fit together. For clarity 

of explanation, we will start with (cant). 

A (cant) can either be a clambda or a (kvar). A clambda is continuation 

procedure, it binds the value passed to it to the variable, ( var), and executes the 

expression, (exp). The scope of the binding is the (exp). A (kvar) is a variable 

which holds a continuation. 

The top level forms are the expressions, (exp). This name is probably a 

misnomer since ( exp)s don't return a result, they call a continuation. 

A jmp form jumps to a continuation, (cant), passing value ( carg). A ( carg) is a 
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continuation argument, it generates a value that can be passed to a continuation. 

An app form calls the procedure in ( var) passing it some arguments, ( ( arg) ... ) 

and a continuation (cant). 

A cif is the CPS conditional expression. If the test-value ( arg) is not false 

then the consequent branch continuation, (consequent-cant) is called, otherwise 

the alternate branch continuation (alternate-cant) is called. The value passed to 

the branch continuations is the continuation of the whole expression (cant). The 

branch continuations call their argument when they are finished. E.g., in the 

example below 'v' will be bound to "true" if 'x' is true and "false" otherwise. 

(cifx 

( clambda (k1) (jmp "true" k1)) 

( clambda (k2 ) (jmp "false" k2)) 

(clambda (v) ... )) 
This is one of the places where SKI-CPS differs from CPS-Scheme. CPS-Scheme 

binds the continuation of the whole expression to a variable and the branch 

continuations call this variable when they are finished. E.g., the previous example 

would look like this: 

(jmp (clambda (v) ... ) 

( clambda (k) 

(cifx 

( clambda () (jmp "true" k)) 

(clambda () (jmp "false" k))))) 
Each approach has some advantages, the first keeps all of the information in 

one place, the cif, and this makes some of the conditional optimizations easier 

(Section 4.9). However it can result in one continuation having multiple names 

which complicates analysis in latter phases. 

As we mentioned previously, a ( carg) is something that has or produces a 

value which can be passed to a continuation. The reason that we have two kinds 

of arguments, the other being ( arg), is to limit the number of places that the 

more complex kinds argument (prims, nlambdas and clambdas) can appear. 

This simplifies the rest of the compiler a great deal. 

A nlambda makes a "normal" procedure which takes three kinds of argu­

ments. The (kvar) is bound to the continuation of the procedure, the ( var)s are 
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bound to the fixed7 arguments and the ( rest-var) is bound to the rest arguments. 

If the procedure has no rest arguments then we replace (rest-var) with '#f'. 

A prim calls the primitive (name) with some arguments. The value of the 

prim is the value returned by the primitive. Primitives don't take continuations, 

this allows us to write primitives as normal 'C' functions or macro. 

Finally, an ( arg), is an argument to a procedure, primitive, etc. It can either 

be a variable or a literal. A (litera0 can be any Scheme literal, e.g., 1, "hello 

world", 'a-symbol, '(a list). 

4.5 CPS-conversion 

As we mentioned in the previous section, SKI uses the same CPS conversion 

algorithm as Orbit [KKR+86) .with a few minor differences. The CPS converter 

is implemented as a small number of rewrite rules, which we will express using 

the function C and the helper function S. These functions take a Scheme form 

and a continuation, and yield a SKI-CPS expression, e.g., C[(exp)] k. 

Variables and literals are simply passed to the continuation: 

C[ (var)] k 

C[ (litera0] k 

(jmp ( var) k) 

(jmp (litera0 k) 

To convert a procedure call we simply convert all the operand expressions, 

( argi), binding their values to temporary variables ti, then we convert the oper­

ator expression, (op), binding it to t 0 and finally we call the procedure with its 

continuation 

C[((op) (arg1) (arg2) ... )]k = 
C[(arg1)] (clambda (t1) 

C[(arg2)] (clambda (t2) 

C[(op)] (clambda (to) 

(app to (h ... ) k)))) 

7 A Scheme procedures can take a variable number of arguments. For instance '(lambda (x 
y . r) ... )' takes two or more arguments. The first two will are bound to the fixed argument 
variables, 'x' and 'y', and the rest of the arguments are put in a list which is bound to the rest 
argument variable, 'r'. 
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This is slightly different from the way that Orbit does this transformation. Orbit 

converts (op) first, then converts the (argi)· In some cases slightly better code will 

be generated if we convert the operator last. The reason is that if the operator is 

a global variable and one of the arguments is a function call, then if we converted 

the operator first, the value of the global variable will be read into a local variable 

which will then have to be preserved across the function call (see section 5.1). 

For instance 

(+l(fx)) 

becomes 

((prim $get-globall) 1 (f x)) 

after assignment conversion. If we convert the operator first, we get8 

(jmp (prim $get-global 1) 

(clambda (to) 

(app f (x) 

( clambda ( t 1) 

(app t 0 (1 t1)))))) 
and the value of 'to' will have to be preserved across the call to 'f', but if we 

convert the operator last then the following code will be generated 

(app f (x) 

(clambda (t1 ) 

(jmp (prim $get-global1) 

(clambda (to) 

(app t0 (1 t1)))))) 
and there is no need to save any temporary variables. 

Converting primitives is similar to converting procedure calls. 

C[(prim (prim-name) (arg1) (arg2) ••. )] k = 

C[(arg1)] (clambda (t1) 

C[(arg2)] (clambda (t2 ) 

(jmp (prim (prim-name) (t1 tz ... )) k))) 

8 For clarity, all redundant bindings have been eliminated from these examples. The SKI­
CPS code in these examples is more representative of the output of the redundant binding 
elimination phase (Section 4.6) rather than the CPS conversion phase. The output of the CPS 
conversion phase is considerably more verbose. 
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Converting lambdas requires three rules. The first rule converts lambdas 

with fixed arguments, the second converts lambdas with a fixed number of ar­

guments and a rest argument, and the last converts lambdas with only a rest 

argument. 

C[(lambda ((arg1) (arg2) ... ) (body))] k 

(jmp (nlambda k1 ((arg1) (arg2) ... ) #f S[(body)] k1) k) 
C[(lambda ((arg1) (arg2) .... (rest)) (body))] k = 

(jmp (nlambda k1 ((arg1) (arg2) ... ) (rest) S[(body)] k1) k) 

C[(lambda (rest) (body))] k = 

(jmp (nlambda k1 () (rest) S[ (body)] k1) k) 

S converts the bodies of lambdas and lets which are sequences of expressions. 

S[ ( exp1) ( exp2) ... ] k 

S[ ( exp)] k 

C[ ( exp1)] ( clambda ( ign) S[ ( exp2) ... ] k) 

C[(exp)] k 

'ign' is a temporary variable which will never be used. 

It is possible to transform lets into lambdas in the rewriting phase (Sec­

tion 4.1), but we chose not to since lets are useful in assignment conversion 

phase. Transforming lets directly into CPS also reduces the amount of work for 

later phases, in particular rewriting lets as lambdas and then CPS transforming 

would produce many candidates for ,8-reduction (Section 4.7). 

C[ (let ( ( ( var1) ( exp1)) 

( ( var2) ( exp2)) 

... ) 
(body))] k = 
C[ ( exp1)] ( clambda ( ( var1)) 

C[(exp2)] (clambda ((var2)) 

S[(body)] k)) 

The final type of expression that we have to convert is the if expression. 
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C[(if (test-exp) (exp1) (exp2))] k 

C[(test-exp)] (clambda (t) 

(cif t 

(clambda (k1) C[(exp1)] k1) 

(clambda (k2) C[(exp2)] k2) 

k)) 
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To complete the CPS conversion, we have to provide the first continuation. 

To do this we wrap a clambda around the top-level continuation using the 7 
function, which takes a top-level expression and returns a SKI-CPS expression. 

/[(exp)] = (clambda (k) C[(exp)] k) 

When the SKI-CPS expression is exe~uted, the runtime environment calls this 

clambda with another continuation which is bound to k, the expression is exe­

cuted and eventually calls k with its result and the runtime resumes execution. 
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4.6 Redundant Binding Elimination 

The SKI-CPS expressions produced by the CPS-converter in the previous section 

are rather verbose. In particular there are many sub-expressions of the form: 

(jmp a (clambda (v) ... ) ; Binds value of a to v. 

which are redundant in since references to the variable v can be replaced with a. 

In practice it is possible to eliminate all such sub-expressions when: 

1. a is a variable or a literal of an immediate type and not a symbol,9 

2. v is never referenced and a is not a side-effecting primitive, or, 

3. a is a clambda and vis. referenced exactly once. 

The condition on the first rule is for two reasons. Firstly, removing the binding 

may result in duplication of the literal and therefore duplication of the code 

required to construct the literal, this code can be quite complex (see Section 5.5). 

Secondly, some aggregate types (e.g. pairs and strings) are mutable and if they 

were duplicated then mutation might lead to unpredictable results. 10 

Rule two removes dead code-code that will never be executed and values 

that will never be used, but doesn't remove primitives which cause side effects. 

The last rule moves continuations which are only used once to the point where 

they are used, but avoids duplicating continuations. 

Redundant binding elimination is a simple case of the /3-reduction transfor­

mation discussed in the next section, but it is desirable for it to be a separate 

pass since it is used to "tidy up" after other optimization passes. It also simplifies 

other passes since it ensures that SKI-CPS expressions are in a regular form in 

which any value is bound to at most one variable. 

9See section 5.6.1 for definition of immediate types. 
10The R4RS states that the it is an error to mutate the value of a literal expression, but 

doesn't require implementations to raise an error if a literal value is mutated. SKI, like many 
other Scheme implementations, will not raise an error, this would complicate the run-time 
system (see Section 5.6). Therefore it is desirable that if a constant is mutated then the result 
should be predictable. 
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4. 7 jJ-reduction 

The /3-reduction transformation performs inline expansion [Bak92, App92] of all 

procedures which are called exactly once and and don't escape. Escaping pro­

cedures are procedures which are stored in data structures or global variables, 

passed to other procedures, or returned by the enclosing procedure. For instance 

in the following example, the procedure 'g' escapes 3 times: 

(lambda() 

(let ([g (lambda () ... )]) 

(set! global g) 

(h g) 

g)) 

; Stored in global, 

; passed to a function, and 

; returned. 

When the /3-reduction pass detects a procedure that meets the above condi­

tions, its call is replaced with a copy body of the procedure in which all references 

to the formals have been replaced with the call's arguments. For simplicity this 

is actually done in two phases. The first phase replaces the application with the 

body and binds the arguments to the formals: 
(jmp (nlambda k (x1 ... ) #f ==? (jmp (cant) (clambda (k) 

(body)) (jmp a1 (clambda (x1) 

( clambda (!) 

( app f ( a1 ... ) (cant)))) (body))))))). 

The second phase finishes the renaming by running the redundant binding elim­

ination transform to remove the bindings we just introduced. Figure 4.3 shows 

an example of a /3-reduction. 

If a procedure has a rest argument it can still be /3-reduced, but it is neces­

sary to insert code to construct the rest list. E.g. if a procedure which takes one 

fixed argument and a rest argument 'r' is called with arguments (1 2 3) then the 

following code would be generated to construct the rest list: 

(jmp (prim $cons 3 '()) 

( clambda ( t) 

(jmp (prim $cons 2 t) 

(clambda (r) ... )))). 
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(jmp (nlambda k (x y z) #f 
(app + (x y) 

(clambda (t) 
(app + (t z) k)))) 

(clambda (f) 
(app f (1 2 3) 

(clambda (r) ... )))) 

(a) The nlambda 'f' is called once and 
doesn't escape-,8-reduce it. 

(app + (1 2) 
(clambda (t) 
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(jmp (clambda (r) ... ) 
(clambda (k) 

(jmp 1 
( clambda (x) 

(jmp 2 
( clambda (y) 

(jmp 3 
(clambda (z) 

(app + (x y) 
(clambda (t) 

(app + (t z) k) 
)))))))))) 

(b) Pass 1: Substitute the body and bind the 
arguments. 

(app + (t 3) 
(clambda (r) ... )))) 

(c) Pass 2: Remove the redundant 
bindings introduced in pass 1. 

Figure 4.3: A example of ,8-reduction. 
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/)-reduction is different from general inline expansion in that it is guaranteed 

not to increase the size of the program-it will always result in a simpler program. 

4.8 '1}-reduction 

7]-reduction is similar to /)-reduction. Like /)-reduction it is a form of inline ex­

pansion, but rather than expanding procedures which are called once, it expands 

procedures which do nothing but call other procedures. E.g., 

(jmp (nlambda k (a1 ... ) => (app g (x1 ... b1 ... ) (cant)). 

(app g (a1 ... b1 ... ) k)) 

(clambda (f) 

(app f (xl ... )))) 
The bi above are to indicate that the. g may take more arguments than f, but 

the order of the extra arguments is not important to the transform. 

77-reduction is accomplished using the same two phase technique as /)-reduction 

(see previous section), and like /)-reduction it always results in a simpler program. 

4. 9 Conditional Optimizations 

The conditional optimization pass consists of three transformations for optimizing 

conditional, cif expressions. These transformations were taken from the Orbit 

paper [KKR+86]P 

The first transformation eliminates the unreachable branches in cifs where 

the test value is a literal. E.g., 
(cif l =} 

then-branch 

else-branch 

cant) 

(jmp cant then-branch) l -1= #f, 

(jmp cant else-branch) l = #f, 

The jmp may then become a candidate for redundant binding elimination.12 

The second transformation is very similar to the first, it propagates the 

11 This paper also contains a long example showing how effective these optimizations can be, 
which we will not duplicate here. 

12Remember that branch continuations of a cif take the continuation of the cif as an 
argument. 
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boolean values of variables into the branches of a conditionals. For example, 

in 

( cif v then-branch else-branch cant) 

the boolean value of the variable v is known to be true in then-branch and false 

in else-branch. Therefore if a cif which tests v is encountered in the branches we 

can eliminate one of the branches. 
(cif v =} 

consequent 

alternate 

cant) 

(jmp cant consequent) if v true, 

(jmp cant alternate) if v false. 

The last transformation rearranges nested conditional expressions where the 

result of one conditional is used as the test value of the other. E.g., in Scheme:13 

(if (if a b c) d e) . 

Which, by rearranging the order of the ifs, can be transformed into: 

(if a (ifb de) (ifc de)), 

or to avoid duplicating d and e: 

(let ([x (lambda () d)] 

[y (lambda() e)]) 

(if a (if b (x) (y)) (if c (x) (y)))). 
Unlike the previous optimizations this one actually increases the complexity of 

the program, but it is worthwhile since it often leads to more optimizations. In 

particular it is often possible to eliminate one, or sometimes both of the ifs that 

were introduced. Kranz et al. (KKR+86] gives an example of this. 

4.10 Implementation 

At the start of this chapter we stated that the front end is structured as a num­

ber of passes, each of which performs some transformation on the program and 

hands it onto the next pass. In practice it is organised slightly differently. Some 

logically independent passes are combined into a single pass, and some logical 

13We will use Scheme for the following examples since the CPS versions are rather verbose. 
The full CPS version of this transform is shown in Section A.2 
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passes require two passes over the program, one to gather information, the sec­

ond to perform the transformations. For example, rewriting and a-conversion 

(Sections 4.1 and 4.2) are done in a single pass. ,8-reduction and 17-reduction 

(Sections 4.7 and 4.8) are also done in a single pass, but require a separate infor­

mation gathering pass to discover which procedures escape and how often each 

procedure is used. 

The optimization passes are actually performed several times since some opti­

mizations introduce or uncover opportunities for further optimization, and as we 

mentioned above redundant binding elimination pass is used to "tidy up" after 

the transformations. 
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Chapter 5 

The Back End 

The back end takes SKI-CPS expressions generated by either the front end 

(Chapter 4) or the dynamic optimize),' (Chapter 6) and generates C code which 

is compiled by the C compiler and linked into the running system. Figure 5.1 

shows an overview of the back end. 

In the remainder of this chapter we dicuss the reasons for closure allocation 

and callee save variables (section 5.1 and 5.2). We then detail the closure allo­

cation algorithm used by SKI (Section 5.3). Sections 5.4 and 5.5 discuss issues 

invloved in generating C code and finally Section 5.6 discusses the runtime type 

system. 

5.1 Closure conversion 

Before we can generate executable code, there are two problems that must be 

solved: 

1. SKI-CPS, like Scheme, has lexically scoped procedures. This means that 

procedures can be nested inside other procedures, and these nested pro­

cedures can refer to variables declared in the procedures enclosing them. 

Variables which are referenced in one procedure, but declared in an enclos­

ing procedure are said to be free in the inner procedure. 

2. When a procedure, a, calls another procedure, b, the values of a's variables 

must be saved somewhere so that they can be restored when b returns, or 
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Figure 5.1: Overview of the back end of SKI. 
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equivalently, when b calls a's continuation. 

It turns out that these problems are very closely related and that the mechanisms 

used to solve them are very similar. 

Note: In the following discussion we assume that the target architecture of 

the compiler is register based, rather than stack based. We also assume that each 

variable is mapped onto a register and that there are sufficient registers to hold 

all active variables. 

Traditionally, languages with lexically scoped procedures, like Algol and Pas­

cal, put free variables into linked activation records on a stack (see Chapter 7 

of The Dragon Book [ASU86]). If we were to use linked activation records on a 

stack for Scheme, the program in Figure 5.2a would have a stack like the one in 

Figure 5.2b when executing procedure .'g'. The variable 'x' which is free in 'g' can 

be accessed in 'g' by indirection through the access link. The stack can also be 

used to save variables across procedure calls, the variables are pushed onto the 

stack before the procedure call and restored from the stack after the call returns. 

(define f 
(lambda (x) 

(let ([g (lambda (y z) 
(+ (* x y) z))]) 

(g 2 3)))) 

(a) 

Stack 

Activation record for 'I' 

Activation record for 'g' 

(b) 

Figure 5.2: A Scheme program with nested procedures and the corresponding stack with access 
links between activation records. Note: The stack grows downwards. 

Stack allocation of activation records would work well if nested procedures 

never escaped from the enclosing procedures. However, Scheme procedures can 

be passed as arguments to other procedures, returned from their enclosing pro­

cedures and stored indefinitely in data structures. Consider what happens if we 

change the program in Figure 5.2a so that 'f' now returns 'g': 
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(define f 

(lambda (x) 

(let ([g (lambda (y z) 

(+ (* x y) z))]) 
g))). 
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When 'f' returns its activation record is popped off the stack and destroyed, so 

there is nowhere for 'g's access link to point. 

Heap 

Activation record for 'f' 

Closure for 'g' 

Figure 5.3: A heap allocated activation record and closure. 

The obvious solution to this problem is to store the activation records on the 

heap rather than the stack and when we return a procedure we can return a 

pointer to the procedure plus a pointer to its enclosing activation record. This 

pair of pointers is called a closure. Since the heap is garbage collected activation 

records that are no longer necessary will be reclaimed eventually and activation 

records which are still pointed to by a closure will be retained. Figure 5.3 shows 

the closure returned by the modified version of 'f'. 

There are many ways to represent closures, the two most obvious are called 

linked and fiat. Linked closures are similar to linked activation records. The 

closure for each procedure has a pointer to the closure of the enclosing procedure. 

In contrast, a flat closure holds copies of all the variables that are free in its 

procedure. Figure 5.4a shows the linked closures for the case where procedure 'C' 

is nested inside procedure 'B' which is nested inside procedure 'A' and Figure 5.4b 

shows the flat closures for the same case. Note that it is unnecessary to store 

all of a procedures variables in the closures. In the linked case, 'A's closure only 

needs to contain those variables which are free in 'B' and 'C', and 'C's closure 

doesn't need to hold any variables since it encloses no other procedures. In the 
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Closure for 'A' 
Closure for 'A' 

codeptr 

Closure for 'B' 

Closure for 'C' 

--~".J!.fr__ 
Closure for 'C' 'A's varlabkls 

------
'B's varlabes 

(a) (b) 

Figure 5.4: Linked closures and flat closures 

flat case, 'B's closure need only hold copies of those variables which belong to 'A' 

and are free in 'B', 'A's closure need not hold any variables since 'A' has no free 

variables. 

Flat closures have the advantage that access to the variables they contain 

takes a small constant time, whereas access to variables in linked closures is 

linear in the depth of nesting. The disadvantage of flat closures is that they 

may require more memory than linked closures since variables may be duplicated 

among many closures, flat closures may also take more time to create than linked 

closures. 

One possible problem with flat closures is that assignment to a variable which 

is duplicated in two or more closures might lead to inconsistent results. E.g., in 

the code fragment shown in Figure 5.5a, 'm' is free in 'p' and 'q'. If we make 

make closures for 'p' and 'q' naively, as shown in Figure 5.5b, then the value 

of 'm' in 'p's closure could be updated independently of the value of 'm' in 'q's 

closure. Fortunately we will not encounter this problem in SKI since the code will 

have been assignment converted (Section 4.3) and, as shown in Figure 5.6, 'm' is 

no longer free in 'p' and 'q' as it has been replaced by a cell, the reference to this 

cell, 'm-cell' may be duplicated freely. Without assignment conversion we would 
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(definer 
(lambda (m) 

(let ([p (lambda () 

(set! m ... ) 
... )] 

[q (lambda() 

... ))) 

(set! m ... ) 

. ")]) 

(a) 
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Closure for 'p' 

E-~~~~-1 

Closure for 'q' 

E-~~~~-1 

(b) 

Figure 5.5: Assignments can lead to problems when variables are copied. 

(definer 
(lambda (m) 

(let ([m-cell (prim $make-cell m)]) 
(let ([p (lambda () 

(prim $set-cell! m ... ) 
... )] 

[q (lambda() 

(prim $set-cell! m ... ) 
... )]) 

... )))) 

(a) 

Closure for 'p' 

(b) 

Figure 5.6: Mutable variables are shared with assignment conversion. 
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have to arrange to do something similar when we introduce closures or discard 

the idea of fiat closures. Of course, linked closures don't have this problem, since 

'm' would be in 'r's closure. 

The problem of how and where to save variable across procedure calls still 

remains. It is still possible to save variables on the stack, but this can lead to 

problems with first class continuations. These problems occur when a continua­

tion "captures" the stack. 

(define task-queue '()) 
(define (enqueue-task k) ... ) 
(define (dequeue-task) ... ) 
(define (suspend-task) 

(call-with-current-continuation [lambda (k) 
(enqueue-task k) 
( (dequeue-task) #f)])) 

Figure 5. 7: A simple coroutine package. 

Consider the simple coroutine package outlined in Figure 5.7. 'enqueue-task' 

puts a coroutine, represented by a continuation, in the task queue, 'dequeue­

task' gets the next coroutine off the task list and 'suspend-task' suspends the 

current coroutine and resumes execution of the next coroutine in the task queue. 

When 'suspend-task' is executed by a coroutine, it calls the builtin procedure 

'call-with-current-continuation' (or 'call/ cc'). 

'Call/cc' stores the current state of execution into a continuation object, 

'calljcc' then passes the continuation object to its argument which must be a 

single argument procedure. A continuation object behaves as if it were a proce­

dure of one argument, calling the continuation object resumes execution at the 

point immediately after the call to 'call/cc' that created the continuation. The 

return value of 'call/ cc' is the argument that was passed to the continuation.1 

Continuations are first-class objects with indefinite extent, they may be stored in 

variables and called again at anytime in the future, they may also be called any 

number of times. 

1E.g., (calljcc [lambda (k) (k 1)])::::} 1. 
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So in 'suspend-task', the continuation object is bound to 'k' and stored in the 

task-queue. The next coroutine is resumed by retrieving its continuation object 

from the task queue and calling it. 

Coroutine A 

'suspend-task' 
-1---------l 

i'3 
lll 
.2 

r-1---------1 

5 CoroutlneB , 
! 

'--1-------1 

Figure 5.8: Using a stack in the presence of first class continuations leads to excessive copying. 

If variables are saved on the stack then the "current state of execution" in­

cludes the stack. This means that when a continuation is created the stack must 

be copied into the continuation object, and when the continuation is called the 

stack must be copied back again. Figure 5.8 shows what happens when we switch 

coroutines. When coroutine A invokes 'suspend-task' a copy of the stack is copied 

into a continuation object by 'call/cc'. The stack is "unwound" and when the 

next task is resumed, its stack is restored when its continuation is called. 

Copying the stack back and forth can be very expensive in both time and mem­

ory. There have been several attempts to reduce this cost. Hieb et al. [HDB90] 

proposed a scheme that uses stack segments to limit the amount of copying. In 

this scheme it is only necessary to copy some part of a stack segment when a 

continuation is invoked. This is especially useful when continuations are used to 

implement exceptions which are often created but rarely invoked. 

A far simpler, but more contentious scheme is to dispense with the stack 

entirely and save variables in special records, which we will call closures, on the 

heap. This is much simpler than saving variables on the stack since we do not 

have to worry about copying anything for continuations-the saved variables part 

of the "current state of execution" is just a reference to a closure, which may refer 

to previous closures if they are necessary. 
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It may seem confusing that we call these new records closures when we already 

have objects called closures that do something entirely different, but it turns out 

that these records perform exactly the same function as "normal" closures. Con­

sider this expression and its SKI-CPS equivalent: 
(let ([s ... ]) =? (jmp ... 

(+ (* 3 t) s)) (clambda (s) 

(app * (3 t) 

(clambda (u) 

(app + (us) ... ))))). 
The variable 's' must be saved across the call to '*'. Interestingly, 's' is also a 

free variable in the continuation of the call to '*', (clambda (u) ... ), in fact it 

turns out that those variables which have to be saved across procedure calls are 

those variables which are free in the continuation of the call, therefore the record 

that we save these variables in is a closure for the continuation of the call. 

In practice the closures created for continuation procedures are slightly dif­

ferent from the closures created for "normal" procedures. Continuation closures 

don't contain a pointer to the continuation's code for two reasons. 

1. There is no need to represent the continuation and its closure as a single 

value. The compiler can maintain a mapping between a continuation and 

its closure. 

2. Memory usage can be reduced by sharing closures between continuations. 

5.1.1 Stack Allocation vs. Heap Allocation 

We mentioned previously that saving variables on the heap is contentious. There 

is currently some debate about whether saving variables on the heap is as efficient 

as saving them on a stack, which is summarised in the rest of this section. The fol­

lowing assumes the reader has some knowledge of modern computer architecture 

and in particular cached memory subsystems.2 

In Garbage Collection Can Be Faster that Stack Allocation [App87], Appel 

2 A good book about computer architecture is Computer Architecture: a Quantitative Ap­
proach by Hennessy and Patterson [HP90] and a good overview of garbage collection can be 
found in Uniprocessor Garbage Collection Techniques by Wilson [Wil92]. 
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calculated that in terms of instruction counts, allocation of continuation closures3 

on a garbage collected heap is faster than allocation on the a stack. His argument 

is as follows: 

• Copying garbage collectors only ever touch live date and the amount of live 

data in a heap is (usually) much smaller than the amount of garbage. 

• The cost of reclaiming the memory occupied by garbage is proportional to 

the amount of live data. 

• The costs of allocating memory on heaps and stacks is roughly the same. 

When the heap is managed by a copying, compacting garbage collector 

allocation is just a matter of an add to the heap's free pointer. On a stack 

it is just an add to the stack pointer. 

• The cost of reclaiming memory from a stack is one instruction per object, 

an add to adjust the stack pointer. 

• So, if the amount of memory occupied by dead closures is sufficiently larger 

that that occupied by live closures then reclaiming it using garbage collec­

tion is faster than reclaiming it from the stack. 

Appel calculated that the crossover point is when the number of dead clo­

sures is about 7 times the number of live closures, and that when this ratio is 

exceeded then heap allocation with copying garbage collection is cheaper than 

stack allocation. 

The principle argument against Appel's theory is that it failed to account for 

the fact that modern computers have cached, hierarchical memory systems and 

that stacks exhibit good cache locality whereas heaps have poor locality and tend 

to "thrash" caches [HDB90]. 

Recently, Tarditi et al. [TDM94) and, Appel and Shao [AS94] have published 

results which indicate that programs using heap allocation do have good locality 

of reference. 

They re-did Appel's original analysis in greater detail and found that the 

instruction count costs of heap allocation and stack allocation are exactly the 

3 For the purposes of this discussion we are only interested in continuation closures, it is 
assumed that normal closures an other large objects are heap allocated. 
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same. They also simulated cache behaviour for a variety of cache sizes and found 

that while heap allocation and stack allocation have similar read miss rates, 

heap allocation results in a much higher write miss rate. Depending on cache 

architecture, the high write miss rate can have significant performance impact or 

none at all. 

There are a number of policies for handling write misses (Jou93]: 

Write-allocate: When a write misses, allocate a line in the cache and either: 

Fetch-on-write: Fetch the contents of the cache line from memory (ex­

cept for the word that is to be overwritten) and perform the write. 

Write-validate: Mark the words in the cache line as invalid, except for 

the one written to. If a read hits a word that is marked invalid then 

read the word (or the rest of the line) from memory. 

Write-through: When a write misses, perform the write in memory. Only 

allocate cache lines on read misses. 

If write-allocate with write-validate4 is used, then write misses cost nothing, 

but fetch-on-write results in wasted memory traffic as the words fetched to fill 

the cache line will probably be overwritten. Write-through will also cause much 

memory traffic, since the locations written out to memory will probably be read 

soon afterward and will have to loaded back into the cache. 

Appel and Shao [AS94] concluded that heap allocation will have similar perfor­

mance to stack allocation if the cache supports write-allocate with write-validate, 

or there are cache hint or pre-fetch instructions which can be used to simulate 

write allocation [App94]. 

Unfortunately, current implementations of the two architectures SKI currently 

runs on, the SPARC and the Intel 386, do not have good policies for handling 

cache write misses. However, this is an implementation issue rather than a ar­

chitectural issue-maybe future implementations of the architectures will have 

better cache write miss policies.5 Despite this SKI uses heap allocation since 

4 Also known as write-allocate with sub-block-placement. 
5The UltraSPARC processor, due to be released sometime in 1995 will have a write-allocate 

with write-validate second level cache [Nor95]. 
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it is much than simpler stack allocation and 'call/ cc' can be implemented very 

efficiently. 

5.2 Callee-save variables 

The problem with saving variables in closures across function calls is that many 

closures are created and almost immediately discarded. This is costly for two 

reasons. 

1. Referencing memory is expensive. Creating a closure to store n variables 

takes n + 1 store instructions, 1 for each of the variables and 1 for the 

tag (see Section 5.6), and loading them back into registers takes n load 

instructions. 

2. Since the memory used by closures must be reclaimed by garbage collection, 

the more closures we allocate the more frequently we have to garbage collect. 

These problems are also faced in more conventional languages which store 

variables on the stack. There are two policies that can be used for saving reg­

isters. The policy we have assumed until now is to have the calling function 

(the caller) save those registers which are live across the call, or equivalently 

save those registers which are imported by the continuation. This is called the 

caller-save policy. The other policy to have the called function (the callee) save 

those registers which it needs and restore them before it returns. 

Both policies have their advantages and disadvantages. The callee-save policy 

has the advantage that it only saves those registers which it needs use, but it has 

no way of knowing whether the registers it saves contain useful information-it 

could save some registers needlessly. Conversely, the advantage of the caller-save 

policy is that only those registers which need to be saved are saved, but the caller 

has no way of knowing that the callee will use any of the registers it saves-it 

too could save some registers needlessly. 

In practice a mixture of the two policies appears best. The registers are 

partitioned into two sets, one set is caller-save and the other is callee-save. 
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Appel [App92, AJ89] showed how it is possible to use the callee-save policy 

in CPS. Each continuation is given m6 extra arguments in addition to the result 

argument. E.g., 

(clambda (v) ... ) (clambda (v c1 c2 ... em) ... ). 

These are used to pass either the values of the variables that the continuation im­

ports, if there are less than m, or the first m- 1 imported variables and reference 

to a closure containing the rest. Each procedure is also given m extra arguments 

in addition to its continuation and its "normal" arguments. E.g., 

(nlambda k (a1 a2 ... ) =* (nlambda k (c1 c2 ... Cm a1 a2 ... ) 

... ) ... ). 
The values of these arguments must be passed to continuation of the procedure. 

(app f (a b) 
(clambda (v) 

(app g (x y) 
( clambda (w) 

;; Uses v, y, z. 
)))) 

(a) 

(app f (x y z a b) 
(clambda (x1 y1 z1 v) 

(app g (v y1 z1 X1 Y1) 

(clambda (v1 y2 Z2 w) 

)))) 

(b) 

Figure 5.9: Adding callee-save variables. The callee-save variables are indicated by sans-serif. 

Using these arguments a caller can pass variables to its continuation across a 

procedure call without having to save them in memory. The callee is, of course, 

free to save the variables as long as it restores them before passing them to 

its continuation. We therefore call the variables we pass using these arguments 

callee-save variables. 

Figure 5.9a shows a (somewhat idealised) sequence of two procedure calls. 

The first continuation, (clambda (v) ... ), imports the variables 'x', 'y' and 'z' 

from an enclosing scope. The second continuation imports 'v', 'y' and 'z'. Using 

only closures7 we would have to save 'x', 'y' and 'z' in closure, and pass the closure 

to the first continuation. We would then retrieve 'x', 'y' and 'z' from the first 

6The value of m is constant over the entire program. 
7I.e., a pure caller-save policy. 
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closure and save 'v', 'y' and 'z' into a second closure and pass it to the second 

continuation ... The cost to the caller of this would be 2 x (3 + 1) = 8 stores 

to create two 3 variable closures and 2 x 3 = 6 loads to retrieve the variables. 

However if we use callee-save variables (as shown in Figure 5.9b) we can reduce 

the cost of saving the variables to almost zero.8 

5.3 SKI's closure allocation algorithm 

In the previous two sections we have discussed methods for saving variables across 

procedure calls and for accessing variables declared in lexically enclosing proce­

dures. In this section we present an overview of the algorithm that SKI uses to 

decide whether a variable needs to be stored and where it should be stored. We 

call this algorithm the closure allocation algorithm, but it really should be called 

the closure and callee-save variable allocation algorithm since it has to decide 

whether to make a variable callee-save or store it in a closure. 

Closure allocation is a difficult problem [SA94, App92] and finding a perfect 

solution to it may be impossible. SKI uses a simple heuristic algorithm which 

appears to perform quite well. 9 SKI's algorithm is influenced by the algorithm 

recently developed by Shao and Appel [SA94] for the SML/NJ compiler, but is 

much simpler. 

As mentioned previously there are two kinds of closures: closures for "normal" 

procedures which hold variables that a procedure imports from enclosing scopes 

and continuation closures which are used to save variables across procedure calls. 

We will call these nlambda closures and clambda closures. 

Allocating nlambda closures is very easy, we simply have to calculate the 

imports set for each nlambda and make a closure that contains the imports set 

and a pointer to the code for the nlambda. 

The imports set of a lambda (nlambda or clambda) is defined as the set­

difference10 of the set of variables referenced in the body of the lambda and the 

8 The extra cost could probably be reduced to one register-to-register move instruction to 
move 'v' from the result register to the first callee save register in the first continutation. 
Assuming that all variables are mapped into registers. 

9 All that can be said about it is that it is better than the algorithms that came before it. 
10The set-difference of two sets A and B is defined as the set of elements in A which are not 
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set of variables declared by the lambda. 

So the transformation for nlambdas is: 

(jmp (nlambda k (a1 a2 ... ) 

... ) 
(clambda (f) 

... )) 
=* 
(jmp (nlambda k cl (c1 c2 ... em a1 a2 ... ) 

... ) 
(clambda (t) 

(jmp (prim $make-clo t it i2 ... ) 

( clambda (f) 

... )))). 
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Where the t is a temporary introduced to hold the pointer to the procedures 

code, f now references the procedures closure, it, i 2, ... are the variables that 

the procedure imports, cl is the procedures closure and c1 , c2 , ... em are the pro­

cedures callee-save variables. Within the body of the procedure, the callee-save 

variables are associated with the procedures continuation, k, and wherever the 

continuation is called the callee-save variables are passed. E.g., 

(jmp r k) =* (jmp c1 c2 ... Cm r k) 

(app g (Pl P2 ... ) k) (app g (cl c2 ... Cm P1 P2 ... ) k) 
and if k appears as the continuation of a cif, 

(cif v (clambda (k1) ... ) (clambda (k2) ... ) k) 

then the callee-save variables are associated with k1 and k2 as well. 

Allocating clambda closures is harder. Firstly, we have to decide which 

clambdas escape and therefore need special attention, and secondly, we have to 

decide whether the escaping clambda needs a new closure or whether we can 

provide all the variables it imports using using callee-save variables and existing 

closures. 

An escaping clambda is defined as one which is passed as the continuation 

to a procedure, e.g., 

(app f (a1 a2 ... ) (clambda (v) ... )), 

in B. 
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or one which appears in the continuation position of a cif, which has a procedure 

application in either of its branches, e.g., 

( cif v ( clambda (k1) ... ) 

( clambda (k2) 

(app f ( ... ) 
... )) 

(clambda (v) ... )). 
This special case is because we can generate better code for cifs which don't have 

applications in the branches (see Section 5.5). 

Before allocating closures we first determine the imports and uses sets for 

each lambda ( clambda or nlambda) and the range information on each im­

ported variable. The uses set .is a subset of the imports set mentioned above, it 

contains those variables which are imported and used within the lambda before 

any enclosed clambdas. E.g., 

(clambda (a) 

(jmp (prim $cons b a) 

( clambda (p) 

(jmp (prim $cons c p) 

( clambda ... ) ) ) ) ) 

j imports: (c b) uses: (b) 

j imports: (c) uses: (c) 

The uses set determines which variables need to be in registers for each clambda. 

The range information is the number of escaping clambdas that must be 

crossed before a variable is next used. The number of escaping clambdas is 

an indication of the amount of time until the variable is next used. This is 

determines whether a variables is made callee-save or whether it is stored in a 

closure, variables which are to be used soon are made callee-save if possible, 

variables that are not used for a long time are stored in closures. 

Figure 5.10 shows SKI's strategy for saving variables for escaping clambdas: 

• Every escaping clambda gets m callee-save variables. If the clambdas 

imports can be satisfied by the with m or fewer variables then they are 

passed via the callee-save variables (Figure 5.11a). 

• If the clambda imports more than m variables then the first m- 1 are 
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Figure 5.10: SKI's strategy for clambda closures. Parts in grey are optional. 

passed by making them callee-save and the last callee-save variable is used to 

pass a closure containing the rest of the imports (Figure 5.11b). Variables 

are made callee-save according to their priority. A variable's priority is 

determined using the range information and by whether the variable is 

already callee-save or not. Variables which will be used sooner are given 

priority over those that will be ·used later and variables that are already 

callee-save are given priority over those that aren't, these two rules help 

make closures last longer and help keep the most frequently used variables 

in registers. 

If a first level closure already exists then we check it to see whether it can be 

reused. This is possible when the set of variables in the existing closure is a 

superset of the variables imported by the clambda or when the differences 

between the two sets can be covered by the changing some of the callee-save 

variables. 

• The second level closure is used to hold variables which are long lived but 

referenced infrequently and would otherwise be copied from one first level 

closure to another. As an approximation we fill the second level closure 

with the enclosing nlambdas callee-save variables and it's continuation. 

As a further approximation, we only make the second level closure if there 

are two or more escaping clambdas between the start of the nlambda and 

the use of the continuation. The second level closure is created at the start 

of the nlambda, if a first level closure is created for any escaping clambda 

then the first level closure is is made to reference the second level closure 

(Figure 5.11 c) otherwise the last callee-save variable references the second 

level closure (Figure 5.1ld). 
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I Callaa-sava varlablas I 

(a) No closures. 

First laval clambda closure 

Callaa-sava varlables 

(b) Just the first level closure. 

Second level clambda closure 

Callee-sava varlablas 

(c) The first level and second level closures. 

Second level clambda closure 

Callaa-sava varlables 

(d) Just the second level closure. 

Callaa-save varlables 
Nlambda closure 

(e) Second level and nlambda closures, empty first­
level closure. 

Figure 5.11: Some of the permutations possible for SKI's clambda closure strategy. 
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• The nlambda closure is the enclosing nlambdas closure. A reference to it 

is kept if it holds more than one variable that is not referenced until after 

an escaping clambda. This also helps to reduce copying from closure to 

closure. If a first level closure is created then it will reference the nlambda 

closure, if there is no first level closure then the last callee-save variable 

will reference the last nlambda closure, unless there is also a second level 

closure in which case a otherwise empty first level closure will be created 

to reference both (Figure 5.11e). 

At the start of each clambda we check that the variables in the clambda's 

uses set are in registers. If they are not then code is generated to load them 

from whichever closure they are in. Loading variables from the second level and 

nlambda closures when there is a first level closure is made as efficient as possible, 

as we cache the reference to the second level closure in a register. Loading the 

first variable from a second level closure costs two loads, one to load the reference 

to the second level closure from the first level closure and a second to load the 

variable, but loading another variable from the same closure only costs a single 

load. 
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5.4 C as a Target 

SKI generates C code as its target language. In recent years this has become a 

popular method of code generation. Several other Scheme compilers generate C 

including Bartlett's Scheme->C compiler [Bar89], and more recently SCHEMEXE­

ROX [ACS93], Bigloo Scheme compiler and GambitC. Other languages which have 

been compiled to C include: procedural languages such as Pascal [Gil91], Fortran 

(the GNU f2c compiler) and Napier88 [CCKM94]; statically typed object-oriented 

languages such as Eiffel [Mey88] and Sather [Omo93]; strict and non-strict func­

tional languages such as ML [TAL91, Cri92, SW94], Erlang [Hau94], Sisal and 

Haskell [Jon92]; declarative languages such as Mercury [SHC94] and RML [Pet94]; 

dialects of Lisp such as Kyoto[YH85] Common Lisp and GNU Common Lisp. 

Reasons for choosing C as the target, rather assembly language or raw machine 

code are: 

1. It simplifies the compiler. Generating assembler or raw machine code is 

difficult, although there are tools such as code generator generators which 

can help. If a code generator generator had been used it would still be 

neccessary to write tables to drive it (i.e. to map our primitive operations 

onto the machines), and have to present our intermediate language to it 

in a form that it could understand. Even then other problems like register 

allocation might have to be solved. 

Generating C is much easier. Furthermore it is possible to take advantage 

to the C compiler to do register allocation, instruction scheduling and other 

optimizations. 

2. C is easy to debug. The C code generated by the compiler can be debugged 

using standard debugging tools. On the other hand, code generators and 

the code generated by them are notoriously difficult to debug. 

3. C is portable. Because it generates C, SKI is easily portable and in fact has 

already been ported from Sun SPARCstations running SunOS 4.1 to Intel 

386 based PCs running Linux. SKI should be portable to any architecture 

that runs a modern version of Unix. 
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If we generated assembly language or machine code we would have to write 

a new code generator for each architecture, or if we used code generator 

generator then we would have to write new tables to drive it. 

However, generating C is not without disadvantages: 

1. It is slow and inefficient. To execute some code m our scheme system 

we have to generate the C code, write it to a file, invoke the C compiler 

to compile it, link the object file that the C compiler generated into our 

Scheme system and finally run it. All this takes quite a long time, generally 

a few seconds on a fast workstation. It is also wastes CPU time, since the 

code has to be written to a file, read back in, parsed, etc. 

Clearly this kind of performance is not suitable for a production quality in­

teractive environment, but for an experimental system it is quite sufficient. 

2. The semantics of Scheme do not map exactly onto the semantics of C. In 

particular C procedure calls are not properly tail recursive, integer arith­

metic in C doesn't not detect overflows and we have to interface the gen­

erated code with the garbage collector that manages the Scheme systems 

heap. Fortunately, it is not too hard to work around these problems, (see 

Section 5.4.1). 

The remainder of this section deals with generating C code. First we discuss 

the problem of making C procedure calls properly tail recursive. We then describe 

SKI generates C code from SKI-CPS. Finally, we describe the interface between 

the generated code and the garbage collector. 

5.4.1 Tailcalls 

The major difficulty with generating efficient C code is that function calls in C 

are not properly tail recursive. To be properly tail recursive, the compiler must 

generate efficient code for tail calls. 

A function call is a tailcall if it is the last thing that happens in a function 

before it returns. For example, the function call 'f(i-1)' in Figure 5.12 is a tailcall, 

but 'g(i-1)' is not. Since a tailcall is the last thing that happens in a function 
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void f(int i) 
{ 

f(i- 1); 
} 

(a) A tailcall. 

Figure 5.12: 
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void g(int i) 
{ 

g(i- 1); 

} 

(b) Not a tailcall. 

before the function returns, it is not necessary to save the state of the function 

across the call. A efficient tailcall not should increase the size of the stack and in 

general should not increase the amount of memory used by the program. 

void fl(int i) 
{ 

} 

again: 

i = i- 1; 
goto again; 

Figure 5.13: Simple tail recursion elimination. 

Some C compilers11 can recognize simple recursive tailcalls and perform the 

tail recursion elimination, transforming a function like 'f' in Figure 5.12 into 

something similar to 'fl' in Figure 5.13, which is functionally identical, but will 

not cause any stack growth. 

However the author is not aware of any C compiler that can generate properly 

tail recursive code when the functions are not immediately recursive, like the 

functions in Figure 5.14 where 'j' calls 'k' in the tail position and and 'k' calls 'm' 

in the tail position, all of these calls could be done with no net growth in stack 

space. 

11For instance GNU CC [Sta92]. 
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void j(int x) 
{ 

k(x + 1); 
} 

void k(int y) 
{ 

m(y- 1); 
} 

Figure 5.14: Non recursive tailcalls. 

Efficient tailcalls are necessary for two reasons: 
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1. The R4RS standard requires all Scheme implementations to be properly tail 

recursive. 

2. All calls in CPS are tailcalls. If the compiler doesn't generate efficient code 

for tailcalls then our programs may run very slowly and use a lot of memory . 

. The problem of efficient tailcalls in C and other languages which don't have 

them has been encountered before and there are a number of possible solutions. 

Ignore Tailcalls 

One non-solution is to ignore the problem. The Scheme->C compiler [Bar89] 

performs its own tail recursion elimination for simple tail recursive procedures 

like the one shown in Figure 5.12, but generates normal C function calls for all 

other tailcalls. 

The advantage of this scheme is that the C code emitted by the compiler is 

very portable and most of the time the performance will be reasonable compared 

to some of the other schemes discussed later. The disadvantages are that the 

compiler no longer conforms to the standard and that sometimes programs will 

use a large amount of memory or even fail to work owing to limits on the amount 

of memory available. 
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The Pushy scheme 

sp+l-------l 

(a) Save sp by calling 
'setjmp' ... 

Stack frames and 
objects. 

sp + 1--------l 

(b) When the stack 
reaches a certain size, 
reset it by calling 
'longjmp' ... 

sp+l-------l 

(c) Continue execu­
tion ... 

Figure 5.15: Using the Pushy scheme. sp is the stack pointer. 

A similar solution is the Pushy scheme which was recently invented by Baker 

[Bak94]. The Pushy scheme uses normal C function calls in place of tailcalls. 

When the stack gets larger than a certain limit it fixes up the stack by calling 

the standard C function 'longjmp', discarding all the old activation records, as 

shown in Figure 5.15. In addition the stack can also be used for first generation 

storage in a generational garbage collection system-objects are allocated on the 

stack and before the stack is fixed up the live objects are copied into the second 

generation space. This relies on all calls being tail calls and no call may return 

since it might pop objects off the stack. The Pushy scheme is therefore well suited 

to use with CPS since in CPS all calls are tailcalls and no call ever returns. 

A recent study of the performance of a number of tailcall schemes on various 

architectures [Pet95] and found that the performance of the Pushy scheme is 

competitive with other techniques on some architectures and quite bad on others. 

The reasons for its bad performance appear on other to be: 

• The Pushy scheme interacts badly with Register Windows on the SPARC [SPA92] 

and causes many register window flushes which are quite expensive andre­

quire intervention from the operating system. This problem can be solved 

with a small amount of inline assembler similar to that shown on Page 72. 
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• Many modern architectures (e.g., SPARC, Alpha, Power) allocate large 

stack frames for function calls. This results in frequent stack fix-ups or 

poor cache performance. 

UUO handler 

int argl, arg2, ... ; 

fptr j() 
{ 

} 

int x = arg1; 

arg1 = x + 1; 
return k; 

fptr k() 
{ 

} 

int y = arg1; 

arg2 = y- 1; 
returnm; 

Figure 5.16: Using a UUO handler. Arguments are passed in global variables. 

Another solution is to use a UUO handler, which was invented by Steele for the 

Rabbit Scheme compiler [Ste78], which compiles Scheme into MacLisp, though 

this technique has also been used in compilers that emit C [TAL91, Jon92]. A 

UUO handler is a loop of the form. 

fptr next; 

while(next =next()); 

Where 'next' is a pointer to a function which returns a pointer to a function ... 

Each function in the program then returns the address of the function to call 

next to the UUO handler. E.g., Figure 5.16 shows the functions in Figure 5.14 
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rewritten to use a UUO handler, 'j' returns a pointer to 'k' to the UUO handler, 

the UUO handler then calls 'k' which returns 'm' and so on ... 

The UUO handler clearly does tailcalls with no net stack growth-the stack 

frame of each function is removed when the function returns-but: 

1. It is slow. Returning from a function is approximately as costly as calling 

a function, therefore a tailcall using a UUO handler is approximately as 

expensive as two function calls. 

2. Since there is no way for a C function to return more than one value, 

arguments to functions can't be passed in registers across tailcalls. The 

usual way around this is to store the arguments on a global variables across 

the call. This makes tailcalls even slower. 

Big Switch 

Another alternative is to compile the entire program as a single switch statement, 

as shown in Figure 5.17. Each source function becomes a case in the switch and 

is given a unique integer is its label. A function is called by storing the number 

of the function in 'next' and falling out of the switch. Arguments are passed in 

local variables which, hopefully, are mapped onto machine registers. 

This scheme is quite straightforward but it has two disadvantages: 

1. Calls are indirect-a jump to the beginning of the switch and then, de­

pending on how well the compiler compiled the switch, an indirect jump to 

the body of the function. However, this problem can be eliminated using 

GNU CC's "Labels as Values" extension [Pet95, Sta92]. 

2. More seriously, the entire program in the source languages is transformed 

into a single very large C function which would take a long time to compile, 

especially with optimization.12 

This problem can be partially overcome by compiling each source module 

(or file) into a separate C function and using the switch for intra-module 

calls and a modified UUO handler for intermodule calls. Pettersson [Pet95] 

12Many optimizations are quadratic (or worse) in the length of the function. 
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int main() 
{ 

} 

int arg1, arg2, ... ; 
int next; 

while(1) 
switch(next) 
{ 

case 42: 
{ 

} 

int x = arg1; 

arg1 = x + 1; 
next= 43; 
break; 

I* j(int x) *I 

case 43: I* k{int vJ * 1 
{ 

} 

} 

int y = arg1; 

arg1 = y- 1; 
next= 44; 
break; 

Figure 5.17: The Big function approach. 

71 
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found that this technique has very good performance since most calls are 

intramodule calls, but unfortunately it is too coarse grained for SKI which 

must be able to recompile and replace individual functions. The best we 

could do in SKI would be to map each escaping SKI-CPS function onto a 

C function with a switch. This would degenerate into the UUO handler 

scheme. 

Inline Assembler 

#define TAIL_CALL2(dest, aO, al) 
{ 

} 

register SKI __ argO asm ("%iO"); 
register SKI __ argl asm C'%i1"); 
__ argO = (SKI) aO; 
__ argl = (SKI) al; 
asm volatile ( 

"jmpl %0, %%gO, %%gO 
restore" 

"r" (dest), "r'' ( __ argO), "r" ( __ argl) 
"%i7"); 

DO..NOTHING(); 

Figure 5.18: A two argument tailcall macro for the SPARC. 

The final option is to replace the standard C calling sequence with one of our 

own which is tail recursive. GNU CC, and many other C compilers, allow the 

programmer to embed assembly language statements into C functions. We can 

make use of this facility to define our own tail call sequence. Note that it is only 

necessary to replace the calling sequence, we can still make use of the standard 

function entry sequence13 with a few restrictions. Figure 5.18 shows a two argu­

ment tailcall macro for the SPARC, the macro makes use of several non-standard 

features of GNU C and is explained in full in Appendix A.3. 

13 Also known as the function prologue. 
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The inline assembler solution can be as fast as the standard C calling sequence, 

on the SPARC it uses the same sequence of instructions as a call to a function 

pointer, and coincidently the same sequence as a return from a function. 14 

The disadvantages of this scheme are twofold: 

1. It is non-portable. That said, the amount of code that must be changed 

is very small, but changing it does require knowledge of the architecture 

and calling sequence. Appendix A.4 shows a tailcall macro for Intel 386 

machines running Linux so that the reader can compare it with the macro 

for the SPARC in Appendix A.3. 

2. If it is necessary to pass more arguments than there are registers in the 

standard calling sequence then the extra arguments must be passed in global 

variables. In a "normal" call the extra arguments would be pushed onto the 

stack and then popped off the stack when the call returns by the caller, but 

since tailcalls never return this is impossible. This isn't a major handicap on 

modern architectures which have many registers, the SPARC for instance, 

uses 6 registers for passing arguments in the standard calling sequence, 

but on older register poor architectures like the Intel 386 this may lead to a 

serious drop in performance, the standard calling sequence uses no registers 

on 386s running Linux 1.0. 

Storing arguments in global variables is slightly slower than storing them 

on the stack. With RISC architectures like the SPARC the extra cost is 

in loading the address of the global(s), Pettersson [Pet95) discusses this in 

more detail. 

14Since calling a continuation is a tail call, this is a good thing! 
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5.5 Generating C 

Generating C code from SKI-CPS is quite straight forward since each SKI-CPS 

construct can be relatively easily transformed into a C construct. 

The first step in generating Cis to isolate all nlambdas and escaping clambdas 

(see Section 5.3) since each will become a separate C function. The lambdas are 

replaced by unique labels which become the names of the functions. At the same 

time we isolate all literals of aggregate types and replace them with references to 

special global variables which will be initialised to hold the values of the literals. 

E.g., for nlambdas 

(jmp (nlambda ... ) 

... ) 
for escaping clambdas 

(app f ( ... ) 
(clambda ... )) 

( cif t ( clambda (k1) ... ) ~ 

( clambda (k2 ) ••• ) 

(clambda ... )) 
and for aggregate immediates and symbols, 

(jmp ( imm) ... ) 

(jmp (label nlambda..x) 

... ) ' 

(app f ( ... ) 
(label clambda_y)) 

(cif t (clambda (k1) ... ) 

(clambda (k2) ... ) 

(label clambda__z)), 

(jmp (prim $get-global q) ... ). 
Where 'nlambda..x', 'clambda_y' and 'clambda__z' are the labels generated for the 

lambdas, and q is the offset of the slot in the global table that the immediate will 

be placed in. 

Having extracted the functions, we can now generate the code for each. For 

notational convenience we express code generation as a function Q which takes a 

single argument, a SKI-CPS form, and yields the C equivalent. The transforma­

tion for clambdas is quite simple: 

Q[(clambda (c1 ... Cm r) (body))] 

~ SKLDEFUNn(clambda..x, SKI c1 , ... , SKI em, SKI r) 

Q[(body)] 

SKLENDFUN ( clambda..x) 

'SKI' is the C type for all the Scheme objects. 'SKLDEFUNn' is a C macro of n 

arguments which hides the difference between the C calling sequences on different 

architectures. Remember that the assembly language tailcall (Section 5.4.1) may 
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have to pass some arguments in registers and some in globals. For example on a 

architecture with two argument passing registers 

SKLDEFUN4( clambdaA2, SKI a, SKI b, SKI c, SKI d) 

expands to 
void clambdaA2(SKI a, SKI b) 

{ 

SKI c = GlobalArgReg[O]; 

SKId= GlobalArgReg[l]; 

{ 
'SKLENDFUN' closes the braces opened by 'SKLDEFUNn'. 

The transformation for nlambdas is somewhat harder because nlambdas 

have a rather complex calling convention. This calling convention is necessary 

for the following reasons: 

• The calling site has no knowledge of the number of arguments that the 

nlambda takes. 

• nlambdas can take a variable number of arguments. 

• The number of arguments passed to the nlambda has to be checked against 

then number expected, and an exception raised if the number is wrong. 

• There is a fixed number of registers (including those simulated with globals) 

for passing arguments in. 

Table 5.1 shows the calling convention for a procedure of k arguments when 

there are n argument passing registers, including those simulated by global vari­

ables. The calling convention is quite complex and is designed to be simple and 

fast for the common case when there are a small number of fixed arguments 

and no rest argument. In the more complex cases when there are a large num­

ber of fixed arguments and/ or a rest argument then the code generated for the 

nlambda gets quite complicated. 

In the simple case when the nlambda takes a fixed number of arguments j 

and j :::; r, then the code generated is also simple: 

Q[(nlambda cant clo (c1 ... Cm a1 ... aj) #f (body))] 
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Register 
Number(s) 

o ... m-1 

m 
m+1 
m+2 
m+3 ... n-1 

II 
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Use 

The callee-save variables. m is the number of callee-save 
variables. 
The continuation variable. 
The closure variable. 
The number of arguments, an unsigned integer. 
The arguments. 
If the number of arguments, k, is less than or equal to 
the number of registers remaining, r = n - ( m + 3), then 
all the arguments are passed in registers. 
If k ~ r then the first r - 1 arguments are passed in 
registers and the last register holds a list containing the 
rest of the arguments. 

Table 5.1: The calling convention for n argument passing registers (real and simulated). 

* SKLDEFUNb(nlambda....x, SKI c1 , ... , SKI cm, SKI cant, SKI clo, 

unsigned nargs, SKI a 1, ... , SKI aj) 

CHECK_NARGS_FIXED(nargs, j, nlambda....x); 

Q[(body)] 

SKLEND FUN ( nlambda....x) 

'CHECK_NARGS_FIXED' checks that the number of arguments passed, nargs, 

is the equal to the number expected, j, and if the check fails raises an exception.15 

If the nlambda takes a more than r fixed arguments then code is generated 

to extract the rest of the arguments from the list passed in the last argument 

register. For example, if m = 3 and n = 8 then for: 

(nlambda k clo (cs1 cs2 cs3 abc d) #f 

" . ) 
the last three arguments will be passed in the list and code will be generated to 

extract them. 

15 The exception is raised by calling a special continuation. 
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SKLDEFUN8(nlambdaA2, SKI csl, SKI cs2, SKI cs3, SKI k, SKI clo, 

unsigned nargs, SKI a, SKI lis) 

SKI b, c, d; 

CHECK_NARGS_FIXED(nargs, 4, nlambdaA2); 

b = SKLCAR(lis); lis= SKLCDR(lis); 

c = SKLCAR(lis); lis= SKLCDR(lis); 

d = SKLCAR(lis); 

SKLENDFUN ( nlambdaA2) 

77 

'SKLCAR' and 'SKLCDR' are C macros which perform the 'car' and 'cdr' prim­

itive operations. 

If the number of fixed arguments exceeds the number of argument passing 

registers and the nlambda takes a rest argument, then the rest argument is set 

to the tail of the list after the fixed arguments have been removed. E.g. if we 

modify the previous example so that it takes a rest argument 'r': 

(nlambda k clo ( csl cs2 cs3 a b c d) r 

... ) 
the code generated is: 

SKLDEFUN8(nlambdaA3, SKI csl, SKI cs2, SKI cs3, SKI k, SKI clo, 

unsigned nargs, SKI a, SKI lis) 

SKI b, c, d, r; 

CHECK_NARGS_REST(nargs, 4, nlambdaA3); 

b = SKLCAR(lis); lis= SKLCDR(lis); 

c = SKLCAR(lis); lis= SKLCDR(lis); 

d = SKLCAR(lis); lis= SKLCDR(lis); 

r =lis; 

SKLEND FUN ( nlambdaA3) 

'CHECK_NARGS_REST' is similar to 'CHECK_NARGS_FIXED' except that it 

checks that at least the expected number of fixed arguments was passed. 

When there are fewer r fixed arguments and a rest argument some of the 

arguments passed in registers should be in the rest list, so code is generated to 

add them onto the list. E.g., the code generated for: 
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(nlambda k clo (csl cs2 cs3) r 

" . ) 
which has no fixed arguments apart from the callee-save variables is: 

SKLDEFUN8(nlambda_44, SKI csl, SKI cs2, SKI cs3, SKI k, SKI clo, 

unsigned nargs, SKI ttl, SKI tt2) 

SKI r; 

CHECK_NARGS_REST(nargs, 0, nlambda_44); 

r = SKLNULL; 

switch(nargs) 

{ 

case 2: 

tt2 = SKLCONS(tt2, SKLNULL); 

default: 

r = tt2; 

case 1: 

r = SKLCONS(ttl, r); 

case 0: 

} 

SKLEND FUN ( nlambda_44) 

'SKLCONS' is a macro which implements the 'cons' primitive. 

Finally, when there are exactly r fixed arguments and a rest argument code 

is generated to distinguish between the case when there are zero rest arguments 

and the last register holds the final fixed argument, and the case when there are 

one or more rest arguments. 

Now that code has been generated for the nlambdas and escaping clambdas, 

we are in a position to generate code for the bodies of the lambdas. The code gen­

erated of a jmp depends on the continuation. If the continuation is a clambda 

then we generate a declaration for the clambdas argument and assign the value 

of the ( carg) to it: 

Q[(jmp (carg) (clambda (r) . o o ))] 

==? {SCM r = Q[(carg)]; 

} 
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If the continuations argument is never used then it is not necessary to declare 

it: 

Q[(jmp (carg) (clambda ((unused- var)) ... ))] 
::::} Q [ ( carg)]; 

If the continuation is a continuation variable then we generate a call to the con­

tinuation passing the continuationjs callee-save variables and the value of the 

jmp: 

Q[(jmp (cs1 ... csm (carg)) k)] 

::::} TAIL_CALLb(k, cs1l ... , csm, Q[(carg)]); 

The transformation for app expressions is similar: 

Q[(app (vart) (cs1 ... csm (arg1) ... (argj)) (cant))] 

::::} TAIL_CALL_UNKNOWNb(Q[(vart)], cs1, ... , csm, Q[(cont)], Q[(vart)], 

j, Q[(arg1)], ... , Q[(argi)]); 
The variable (vart) holds the closure of the target procedure and the macro 

'TAIL_CALL_UNKNOWN' checks that its first argument is a closure and calls 

the procedure in the first slot of the closure. 

The only complication arises when the number of arguments, j, exceeds the 

number of registers available, r. In this case a list is constructed with the last 

j - r + 1 arguments in it and placed in the last argument passing register. E.g., 

if we call procedure 'f' with four arguments 'a', 'b', 'c' and 'd' then the following 

code will be generated. 
{ SKI tt = SKLNULL; 

} 

tt = SKLCONS(d, tt); 

tt = SKLCONS(c, tt); 

tt = SKLCONS(b, tt); 

TAIL_CALL_UNKNOWN8(f, csl, cs2, cs3, k, f, 4, a, tt); 

Conditional expressions, cifs, are transformed into if statements: 
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(cif (var) (clambda (k1) (body1)) 

( clambda (k2) (body2 )) 

(cant)) 

=? if(Q[(var)] =f. SKLFALSE) { 

SKI k1 = Q[(cont)]; 

Q[(bodyl)] 

} else { 

} 

SKI k2 = Q[(cont)]; 

Q[ (body2)] 

'SKLFALSE' is the false value '#f'. 
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If the continuation of the cif is a clambda and it doesn't escape then we can 

generate more efficient code which no tail calls. E.g., the code generated for: 

( cif x ( clambda (kl) (jmp x kl)) 

(clambda (k2) (jmp y kl)) 

(clambda (r) ... )), 
which binds 'r' to the value of 'x' if 'x' is true and 'y' otherwise, is: 

{SKI r; 

if(x =f. SKLFALSE) { 

r = x; 

} else { 

r = y; 

} 

} 

The transformation for the continuations of cifs and apps, which can be either 

continuation variables or labels, is: 

Q[k] =? k 

Q[(labell)] =? (SKI) l 
The cast, '(SKI) l', is necessary because the label, l, is a C function pointer. This 

relies on the fact that function pointers are 4 byte aligned, and therefore appear 
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to be fixnums to the runtime system.16 

Finally, the transformations for ( carg)s and ( arg)s, which can be calls to prim-

itives, labels, literals and variables, are: 

Q[(prim name (arg1) ... (argj)) =} c-name(Q[(arg1)], ... , Q[(argj)]) 

=} (SKI) l Q[(labell)] 

Q[ ( litera0] =} makelit( (literal)) 

9M =} v 
c-name is the C name for the primitive, e.g., '$cons' =} 'SKLCONS', '$car' 

=} 'SKLCAR', etc., makelit generates an expression which makes a value with 

the value of the immediate, e.g., makelit(3) =} INT2SKI(3),17 makelit(#f) =} 

SKLFALSE, etc. 

16Fixnums have a tag of 00 in the least significant two bits. The least significant two bits of 
a 4 byte aligned pointer will also be 00, therefore function pointers will appear to be fixnums 
to the runtime system. See Section 5.6. 

17 'INT2SKI(3)' makes a fixnum with the value 3. 
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5.6 Run-Time Type System 

Language implementations need a way of representing their basic, built-in, types. 

Some, like C [KR78, KR88], map their basic types onto those data types provided 

by the machine, so that very little effort is required to support them. Others 

have more complex basic types requiring more support. Strongly-typed dynamic 

languages such as Scheme have a large number of built-in types which require 

that instances of types are tagged to distinguish them from one another. Some 

statically typed languages which have garbage collection, such as SML [App92], 

tag objects so that the garbage collector can know their types. 

An efficient tagging scheme is necessary since dynamic language implemen­

tations can spend a large amount of time on tag handling operations. Steen­

skiste [SH87, Ste91] has shown that some dialects of Lisp spend approximately 

one quarter of their runtime in tag handling when type checking is disabled and 

run 25% slower when checking is enabled. 

The cost of tag handling can be reduced in two ways. Firstly, eliminate as 

many tag handling operations as possible. This is the focus of the optimizations 

presented in Chapter 6. Secondly, make tag handling as inexpensive as possible 

by reducing the cost of the basic tag handling operations. These operations are18 : 

• Tagging - Converting between the machine representation of a value and 

the tagged representation. This usually involves adding some tag bits to 

the value and is sometimes called tag insertion. 

• Un-tagging - Converting a tagged value back into it's machine represen­

tation so that some operation can be performed on it. This is sometimes 

called tag removal. 

• Tag checking- Checking that a value is a certain type. 

The remainder of this section discusses the implementation of SKI's types and 

then compares SKI's types with the type schemes used by some other dynamic 

language implementations. 

18Steenkiste identifies one other kind of tagging operation which he calls tag extraction -
extracting the tag from a tagged value. Since tags are only ever extracted so that they can be 
checked we consider tag extraction to be part of the tag checking. 
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Fixnum I Signed inte~er bits lool True ID11I101 

Pointer I Pointer bits 1111 False I1DDI10I 

Other-lmmeadiates !Value bits 1???1101 Undefined 11011101 

Character !char bitsloool101 Unintialised 11101101 

Symbol I S:tmbol bits loo111DI Aggregate Tag 1????11111101 

Empty List lo101101 Unused 1o1j 

Figure 5.19: SKI's immediate types 

5.6.1 SKI's types 

SKI has two classes of types, immediates and aggregates. Immediate types are 

those types which hold a single value and which fit into a machine register, e.g., 

small integers, characters, symbols and pointers to aggregates. Aggregate types 

hold several values or are too large to fit into a register, e.g., pairs, vectors and 

floating point numbers. In this section we assume registers are 32 bits wide and 

the natural word size is 32 bits, but everything we discuss will work equally well 

on machines with other word sizes, especially 64-bit machines. 

Immediate Types 

The class of immediate types can be divided into three subclasses, fixnums, point­

ers and other-immediates. All immediates contain a tag field in their least sig­

nificant two bits as shown in figure 5.19. 

Fixnums are fixed length integers consist of the least significant 30 bits of a 

signed integer and are tagged with 00. Fixnums can be converted into machine 

integers with a single shift instruction. Tagging fixnums with 00 means con­

version to machine integers is unnecessary for fixnum addition, subtraction and 

comparison, but some method of detecting overflow is required. Checking that a 

value is a fixnum requires only a single bitwise-and. For example the following 

sequence of SPARC [SPA92] instructions will branch to not_fixnum if the value 

in register %11 is not a fixnum: 
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andcc %11, 11b, %gO ! And %11 with 11b setting the condition codes 

! (cc) and ignoring the result (%gO is always zero). 

bnz not_fixnum ! Branch if not zero. 

Pointers are used to reference aggregate types on the heap. They consist of 

the most significant 30 bits of a machine pointer and a tag field of 11. Since 

aggregates are word aligned (the least significant two bits of a pointer are always 

zero) no information is lost by placing the tags in the least significant two bits. 

Un-tagging a pointer requires a single bitwise-and or an addition. If an addition 

is used for un-tagging then it can often be combined with an offset operation. 

For example taking the car of the pair pointed to by the register %12, requires 

an un-tagging operation, an offsetting operation and a load: 

add %12, -3, %13 

add %13, 4, %13 

1d [%13], %13 

! Un-tag. 

Add the offset of the car field. 

Load the car. 

The two additions can be combined and since the offset is a constant, the addition 

can be combined with the load giving: 

1d [%12 + 1] ' %13 ! Load the car. 

The other-immediates are types which are small enough to fit into a register, 

but do not need a special representation. Other-immediates all share a primary 

tag of 10, and include a secondary tag of three bits and an optional value. Ta­

ble 5.2 lists all of the other-immediates. Some other-immediate types have many 

values (e.g., characters and symbols), in these cases the value is stored in the 

upper 27 bits of the word. Other types only have one possible value, for in­

stance the empty list type. The boolean values true and false are also encoded 

as separate types. Checking the type of these values requires a bitwise-and and 

a comparison if the type is multi-valued or a comparison if the type has a single 

value. Un-tagging a multi-valued type requires a shift. 

The tag 01 is never used, this allows a pointer to be checked using a single 

bitwise-and operation, rather than a bitwise-and operation followed by a compare. 
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I Type 
Character 
Symbols 
Null 
True 
False 
Undefined 

Uninitialised 

I Description 

The empty list '0' 

The value returned by library procedures and special 
forms whose value is undefined or unspecified by the 
R4RS [CR91] (e.g., set!, for-each), also the value that 
vectors are initialised to if no other value is specified. 
The value of an uninitialised global variable, used 
internally. 

Aggregate tags The tag word of an aggregate, used internally. 

I Type 
Cell 

Pair 
Vector 
String 
Extern 
Flonum 

Forward 

Bignum 

Closure 

Table 5.2: Other immediates. 

I Description 

Cells hold the values of variables which are assigned to. 
See Section 4.3. 

Externs hold values which aren't SKI types. 
Flonums are SKI's real numbers, represented as a double 
precision float. This means fionums must be double-word 
aligned. 
Forwarding pointers are used by the garbage collector to 
point to a new copy of an object. 
Bignums are infinite precision integers. They consist of 
a word for the size and sign of the number and zero or 
more unsigned words for the bits. 
Closures hold a pointer to a procedure and the values of 
all the procedures free variables. 

Table 5.3: Aggregate types. 
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Vector 
Length (a fixnum) 

String 

Extern 
Anything (32 bits) 
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Size and Sign (a signed integer) 

L~\!~:,~~~~,9L!!!!?!~,,~,~~lll~-~J~!~,:::,"' 

Closure I 11000I111I10 
I Length (a fixnum) lao 
I Pointer to function 

Figure 5.20: SKI's aggregate types 

Aggregate Types 

Aggregate types are types which have several values, or are too large to fit in 

a register, or must be stored in memory for some reason. Table 5.3 lists SKI's 

aggregate types. 

All aggregate values are allocated on the heap and share the same basic for­

mat, a tag word identifing the type of the object followed by the value(s) of the 

object in subsequent words. Figure 5.20 shows the format of SKI's aggregates. 

Additionally all aggregate values must be at least two words long, so that they can 

be overwritten with a forward node during garbage collection. Variable length 

values, such as strings and vectors, are stored length first and with zero or more 

trailing values. 

Strings have a special representation. The characters are packed four to a 

word to reduce the space requirements. This means the primitives that insert 

and retrieve characters in strings must convert between the packed representation 

and the immediate representation. 

Bignums also have a special representation, the length word includes the sign 

of the bignum and is stored as a signed integer. This representation is used be­

cause bignums are implemented using the GNU MP multi-precision math library. 

Aggregates don't need tagging and un-tagging as their values can be accessed 

directly, but they do need to have their tags checked. Tag checking an aggregate 
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requires a pointer tag check, a load and a comparison. The comparison can be 

done in a single instruction, but the load is potentially expensive. Section 5.6.2 

discusses alternative tagging schemes that may be more efficient in this case. 

5.6.2 Other typing schemes 

Virtually every different dynamic language implementation has a different run­

time type system. SKI's was chosen to be simple to implement and reasonably 

efficient, but other implementors have chosen different tradeoff's. This section out­

lines the differences between SKI's run-time type system and the run-time type 

systems in other language implementations. We will limit the discussion to im­

plementations for general purpose hardware. Implementations on special purpose 

hardware such as Lisp Machines [TH~ +s6] have a different set of requirements. 

The major differences between run-time type systems are the location and 

number of tag bits in immediates and the types which are considered to be im­

mediates. There are two locations where it is reasonable to store the tag bits in 

a word, the high (most significant) bits and the low (least significant) bits. The 

advantage of putting the tags in the high bits is that more bits can usually be 

used. The Portable Standard Lisp compiler [SH87, Ste91] and the CMU Com­

mon Lisp compiler [FM91] both use the high five bits of a word for tags. When 

this number of tag bits is used, all the tagging information for aggregates can be 

encoded in the tag of a pointer to an aggregate, making a tag word unnecessary. 

The benefits of this are that memory usage is reduced and that tag checking 

doesn't require a potentially expensive load. 

One disadvantage of using the high bits for tags is that two tags must be 

used for fixnums, all zeros for positive fixnums and all ones of negative fixnums, 

so that addition and subtraction can be done without un-tagging. This means 

that checking that a value is a fixnum is quite an expensive operation. Another 

disadvantage is that all pointers have to be un-tagged before they are used, al­

though CMU Common Lisp uses a clever trick to avoid this when running on 

Mach 19 . Mach can allocate segments of memory at arbitrary addresses in a pro­

cesses address space, so the tag bits in the pointer can be thought of as segment 

19Mach is a Unix-like operating system being developed at CMU. 
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selectors and each segment will contain only one type of object. This trick should 

be possible on any modern version of Unix which supports the mmap () system 

call. SKI uses a trick like this to avoid fragmentation of the C heap. 

Putting the tag in the low bits has the advantages that only one tag is nec­

essary for fixnums, and that un-tagging a pointer can often be combined with 

using it as we showed in Section 5.6.1. 

Combining pointer use and un-tagging can give a speedup of 4% to 9% accord­

ing to Steenskiste [SH87], but doing this limits the number of tag bits that can be 

used to two or three. If two bit tags are used then all pointers will word aligned, 

if three bits are used then pointer will be double-word aligned and all objects will 

have to start on double-word boundaries, which will sometimes result in a word 

being wasted between objects. If four tag bits were used, then pointers would 

have to be quad word aligned and several words could be wasted between objects 

which would be unnacceptable20 . So most implementations use only two or three 

tag bits: SELF, Screme [Ple91, VP89], New Jersey SML [App92] and Scheme­

>C [Bar89] all use two bits. SCHEMEXEROX and Lucid Common Lisp [SH87] 

use three bits. If three bits are used then the tags of commonly used aggregates 

could be encoded in their pointers and only infrequently used aggregates would 

need a tag word. Scheme->C uses a restricted version of this idea, it uses two 

tag bits but has two types of pointers, one type for pairs and one for all other 

aggregates. 

The other major difference between run-time type systems is what types are 

immediate. Most Scheme and Lisp systems have more or less the same set of 

immediates that SKI has, with the exception of symbols. In SKI symbols are 

tagged as other-immediates and the top 27 bits are occupied with the hash in­

dex value of the symbol in the global symbol table. In some other systems, 

Screme [Ple91, VP89] and Scheme->C for example, symbols are a special kind of 

aggregate. They are special in the sense that there can be only one instance of 

each symbol since the R4RS [CR91] requires that two symbols that are spelt the 

same must be equal in the sense of eq?. Eq? is usually implemented as a word 

comparison so the pointers to the symbol aggregates must be the same. 

20If most objects were pairs occupying two words each, then 50% of the occupied memory 
would be wasted. 
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SELF has a somewhat different set of immediates. SELF uses a two bit tagging 

scheme and tags integers and pointers like SKI. The other two tags are used 

for floats and marks. Floats are stored as standard IEEE 32-bit floating point 

numbers (see appendix A of [HP90]) except that two bits are "stolen" from the 

exponent field so that they can be tagged21 . Marks, like aggregate tags in SKI, 

are used to mark the start of an object on the heap, but they have a unique tag 

because SELFs run-time system sometimes needs to scan through the heap to 

find all object of a certain type. 

In summary, SKis' run-time type system is reasonably efficient and is compa­

rable with other systems. There are several ways it could be made more efficient. 

The most obvious inefficiency in the run-time typing scheme is that tag-checking 

an aggregate requires a potentially expensive memory access. The obvious solu­

tion to this is to encode more type information in the pointer. We could single 

out one frequently used type and use the extra immediate tag for pointers to it, 

but we would no longer be able to tag-check a pointer in a single instruction. By 

using another bit to tag immediates, we could distinguish between three to five22 

more types without having to access memory. The cost of this scheme would 

be about the same as that of the current one, we wouldn't be able to tag-check 

pointers in one instruction, but we wouldn't have to so often. 

21The exponent field, which is in the middle of the float, is truncated and then the remainder 
of the exponent field and the mantissa field are shifted left to make room for the tag. 

22Steenkiste [SH87] suggests that 000 and 100 should be used to tag fixnums, to support fast 
indexing into word vectors (they wouldn't need un-tagging) and that 011 and 111 be used for 
pointers to other aggregates. In any case we have eight tag values and we need at least one for 
fixnums, one for other immediates and one for other pointers, which leaves a maximum of five 
values. 
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Chapter 6 

The Dynamic Optimizer 

The dynamic optimizer optimizes programs while they are executing. It uses 

information collected by running the program to assist in the optimization and 

then passes the re-optimized program to the back end (see Chapter 5) for code 

generation and insertion into the running system. 

Figure 6.1: Overview of the Dynamic Optimizations 

Figure 6.1 shows the basic structure ofthe dynamic optimizer. The three main 
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strategies employed by the dynamic optimizer are type prediction, specialization 

and inlining: 

Type prediction (Section 6.1) attempts to predict the types of variables during 

the execution of the program. The type information is used to eliminate 

type checking and to direct further optimization-effort is concentrated on 

the areas where the optimizer is most confident about the types since these 

are where the largest benefit can be expected. 

Specialization (Section 6.2) produces versions of procedures in which the types 

of at least some of the variables are known (see Sections 2.1 and 2.3). 

Inlining (Section 6.3) performs inline expansion of procedures1 to eliminate pro­

cedure call overhead and, more importantly, to introduce further optimiza­

tion opportunities. 

Other optimizations performed by the dynamic optimizer are: constant fold­

ing (Section 6.4) which tries to remove constant expressions, including constant 

type expressions, and common subexpression elimination (Section 6.5) which at­

tempts to eliminate common expressions. The dynamic optimizer also makes use 

of the optimizations we introduced in Chapter 4, especially redundant binding 

elimination (Section 4.6) and the conditional optimizations (Section 4.9). 

The optimizations tend to reinforce each other, each creating opportunities 

for the others, so they are applied iteratively until there is nothing further to be 

gained. 

6.1 Type Predictor 

The type predictor attempts to predict the types that variables will have when 

a program is executed. To be more precise, it tries to predict the types of the 

values contained in the variables, since in scheme a variable is a location which 

may hold a value of any type. 2 The scope of the type prediction is limited to 

1Similar to ,8-reduction but the size of the code may increase (see Section 4.7). 
2In the remainder of this chapter we will talk about "the types of variables" rather than the 

"types of values stored in variables" since this extra indirection is confusing and verbose. 
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single procedures since trying to predict the types of, for instance, all the variables 

in an entire program is much more difficult and time consuming. 

The type predictor employs two strategies, dynamic type prediction and static 

type prediction, to determine the types of some variables and then uses type prop­

agation to propagate the type information through the procedure in an attempt 

to infer the types of the rest of the variables. 

6.1.1 Dynamic Type Prediction 

Dynamic type prediction uses the running program to gather information about 

the types of variables. The primary method of gathering type information is 

by instrumenting the program so that. it records the types of variables and then 

letting it run for a while. The information gathered while the program was 

running can then be used to predict the types of the variables in the future. 

This method is based on the assumption that the distribution of the types of the 

variables in the program is relatively constant over time, although the values of 

the variables may vary. 

Another source of dynamic type information is the values stored in the pro­

gram's memory. The values of global variables, cells introduced by assignment 

conversion (Section 4.3) and variables stored in closures can be used as addi­

tional sources of type information. For example, all the closures for a particular 

procedure could be examined and type distributions determined for the variables 

imported by the procedure, likewise the type distribution of a global variable 

could be found by sampling it occasionally. 

SKI performs dynamic type prediction by instrumenting each nlambda so 

that the types of its arguments recorded each time it is invoked. The types are 

recorded using counters, one counter for each type and one set of counters for 

each argument. Each counter is initialized to 1 since we can not be certain that 

a type will never occur. Initialising the counter to 1 ensures that every type 

will have a non-zero probability of occurring. When a procedure been called a 

number of times, we can determine Pt(a), the probability that an argument a will 

be type t, by dividing count for that type Ct(a) by the sum of the counts of all 
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the types C(a). 

Pt(a) 

C(a) 
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ct(a) 
C(a) 

L ci(a) 

When a procedure is optimized, the argument variables are annotated with type 

sets which contain the types that the variable may have and the probability of 

occurrence of each type. The type sets for the argument variables contain all 

possible types since every type has a probability of at least ~· 

Currently SKI doesn't obtain any type information from the program's mem­

ory, but the inliner (Section 6.3) does use the values of global variables and closure 

variables. 

6.1.2 Static Type Prediction 

Static type prediction determines the types of variables by examining the struc­

ture of the program. The sources of type information it uses are calls to primitives, 

literals and procedure declarations. 

The set of types each primitive can return is known by the compiler. Some 

primitives can return only one type, for instance the '$cons' primitive always 

returns a pair. Other primitives can return a small set of types; the '$fix+' 

primitive, which two adds fixnums can return another fixnum or false if the 

addition overflows. 3 Finally, some primitives like '$car' can return any type. 

In the case where a primitive can return a small number of types, it can be 

useful to assign probabilities to the types returned. These probabilities can be 

useful for deciding what to optimize. For instance, the '$fix+' primitive will 

return a fixnum most of the time and false very occasionally, so the fixnum type 

is given a high probability and the false type a low probability. Code which 

depends on the type returned by the '$fix+' primitive can then be optimized for 

the common case. 

3The true and false values are considered to be members of two distinct single-valued types, 
because it is easier for the type predictor to keep track of two separate types than a single type 
that has two values, especially since the type predictor isn't concerned with the values of other 
types. 
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The problem with using primitives as the sources of type information is that 

programs written by users don't contain any calls to primitives, the primitives are 

encapsulated inside the standard library procedures. The static type prediction 

therefore depends on the inliner to perform inline expansion of the standard 

library procedures and expose the primitives. 

SKI's static type predictor annotates each variable which is bound to the 

result of a primitive or to a literal or procedure with a type set containing the 

types that the variable might have and probabilities of each type. Unlike the type 

sets produced by the dynamic type predictor, these type sets need not contain 

all possible types. 

Static type prediction is a limited form of type inference [WC93]. It is limited 

in that it is only concerned with the types of variables, whereas type inferencers 

are also concerned with the types of global data structures. 

6.1.3 Type Propagation 

Type propagation takes the type annotations which have been attached to some 

variables by the type predictors and propagates them through the procedure. 

Every reference to one of the annotated variables is itself annotated with the 

variables type. 

In addition, the type propagator tracks changes in a variables type set due to 

conditional expressions and type predicates. For example in the expression: 

(cifx 

(clambda (kl) body1 ) 

(clambda (k2) body2 ) 

cant) 
then it is certain that if 'x' is referenced in body1 it cannot be false, so false is 

removed from the type set given to references to 'x' in body1. Conversely, we 

can be certain that 'x' is false in body2 and all references to 'x' within can be 

given a type set which contains only false. This is similar to the boolean value 

propagation optimization mentioned in section 4.9. 

It is possible to extend this idea further to conditional expressions which 

branch on the result of a type predicate primitive. For example in the expression: 
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(jmp (prim $fixnum? y) 

( clambda ( t) 

(cif t 

( clambda (k3) body3 ) 

(clambda (k4) body4) 

cant))) 
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the type predicate, '$fixnum?', guarantees that within body3 'y' is a fixnum, so 

all references to 'y' in body3 are annotated with a type set which consists solely 

of fixnum and the type sets given to references to 'y' within body4 do not contain 

fixnum. 

It is also possible to calculate the probability of a type predicate returning 

true or false. If a type predicate tests for a type t, and the probability that its 

argument x is of type tis Pt(x) then the probability that it returns true is Pt(x) 

and the probability the predicate returns false is 1 - Pt(x). When the type of x 

is unknown is it is assumed that the predicate will return true or false with equal 

probability. 

6.2 Specializer 

The general idea behind specialization is to make a special copy of a block of code 

in which some parameters which were variable in the original are held constant. 

At runtime check is then used to decide whether to use the original block or the 

specialized block. For specialization to be successful, the parameters which are 

held constant must be selected so that they represent the common case, so that 

the cost of specialization (the runtime check and the decrease in code density) 

is outweighed by decrease in the runtime. To do this the specialization must 

increase the number of opportunities for optimization in the specialized block. 

SKI uses specialization to remove the uncertainty of type prediction, and spe­

cializes on the types of arguments to nlambdas. It does this by selecting an 

argument or combination of arguments whose types are particularly predictable, 

making a second copy of the body of the procedure and generating a conditional 

with type tests to distinguish between the bodies. Running the type predictors 

and the type propagator over the procedure will then annotate the specialized 
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version with the restricted type sets. E.g., if we decide to specialize the proce­

dure: 

(nlambda k (abc) #f 

body) 
for the case when 'a' is a fixnum, we get: 

(nlambda k (abc) #f 

(jmp (prim $fixnum? a) 

(clambda (t) 

(cif t 

( clambda (kl) 

bodys) 

(clambda (k2) 

body9 ) 

k)))). 
If we run the type predictors and the type propagator over the procedure, it will 

discover that in specialized copy of the body, body8 , 'a' is must be a fixnum and, 

as a side effect, 'a' can not be a fixnum in the unspecialized or general copy of 

the body, body9 . 

When a procedure is specialized on the types of two or more arguments then 

a special primitive '$type-test' is used to test the types, '(prim $type-test $pred1 

x $pred2 y)' yields true iff '(prim $pred1 x)' and '(prim $pred2 y)' both yield 

true. We use '$type-test' because we can generate more efficient code for it than 

we can generate for two or more nested cifs. 4 

6.2.1 When to specialize? 

6.3 /)-expander or Inliner 

/3-expansion performs essentially the same transformation as /3-reduction (see 

Section 4. 7). The differences between the two are: 

4The argument to '$type-test' are actually written differently, rather than put the names of 
type predicates in the list, which would be illegal (see the grammar on page 32), we encode the 
names as numbers. E.g., '(prim $type-test $fixnum? x $null? y)' is really encoded as '(prim 
$type-test 0 x 4 y)' and the names are decoded when code is generated for the prim. 
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• ,8-reduction performs inline expansion of procedures which are called once 

and never escape from the enclosing scope. ,8-expansion can inline any 

procedure. 

• The site where a procedure is expanded by ,8-reduction is in the same 

scope as the declaration of the procedure. This is not necessarily true for 

,8-expansion. The ,8-expander may have to retrieve the values of variables 

imported by a procedure it expands from the closure of the procedure. 

• When a procedure is ,8-reduced the program is guaranteed to be smaller 

and faster. No such guarantees can be made for ,8-expansion. The program 

will always be larger after a ,8-expansion, but it should be faster, though 

excessive ,8-expansion might increase the size of the program so much that 

it becomes slower due to increased paging or bad cache utilisation. 

The ,8-expansion transformation is otherwise the same as the ,8-reduction trans­

formation and the details of the transformation will not be repeated here (see 

Section 4. 7). 5 

When a procedure is ,8-expanded in a scope other than the one it was declared 

in, the values of the variables that it imports must be determined. This can be 

accomplished by locating the closure belonging to the instance of the procedure 

to be expanded in the programs heap and recovering the values from it. We call 

this closure inlining. If the value of a variable in the closure is of an immediate 

type and not a symbol then we convert it into a literal and generate code that 

binds it to the variable. If the value is a aggregate or a symbol then we put it in 

a global variable and generate code to retrieve it from the table. For example if 

the closure contains the values of two variables, 'a' and 'b', and the value of 'a' 

is a string and 'b' is the fixnum 12 then the code generated to inline the closure 

is: 

(jmp (prim $get-global n) 

(clambda (a) 

(jmp 12 

(clambda (b) 

body)))). 

5In fact, SKI uses the same code for ,6-expansion, ,6-reduction and ry-reduction. 
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Here n is offset of the variable holding the string in the global table and body is 

the body of the procedure. 

Closure inlining is possible for two reasons. 

1. Closures are immutable and once created they cannot be modified. This 

means that it is possible to include a value from a closure in a program, 

since it can't be changed. 

2. The value of an aggregate in a closure is actually a reference to the real 

value in memory and references can be copied freely without copying the 

real value. 

6.3.1 Deciding what /)-expand 

The mechanics of {3-expansion are quite simple. The difficulty is in deciding 

which procedures to {3-expand and when to stop {3-expansion. The benefits of 

{3-expansion are twofold. 

1. The overhead of the procedure call is eliminated. 

2. The expansion "uncovers" information which can be used for further opti­

mization. 

The cost of {3-expansion is the increase in code size, which may increase paging 

and decrease cache locality. In an extreme case it could lead to the program 

running out of memory. Obviously we should {3-expand those procedures which 

are most likely to benefit, but have the least impact on the cost. 

The first benefit is essentially a small constant speedup-if a procedure call 

takes x nano-seconds, then inlining a procedure will make it x ns faster every 

time it is executed. This leads us to two conclusions. 

1. Since the benefit is a small constant, inlining will benefit small procedures 

proportionally more than larger ones. Inlining small procedures will also 

cost less (in some cases may it cost nothing6 ) since the code generated for a 

small procedure could be smaller than the code generated for the procedure 

call. 
6 Or less than nothing! 
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2. Since the benefit is small, it must be allowed to accumulate to produce a 

noticeable speedup. To do this, we can either expand a large number of 

procedure calls, or expand those procedure calls which are most frequent. 

Clearly the latter is better than the former, since expanding a large number 

of calls would be expensive. Conversely, infrequently executed procedure 

calls should not be expanded since the costs would outweigh the benefits. 

The second benefit is harder to quantify. In some cases a ,8-expansion will 

generate an opportunity for a very profitable optimization or sequence of opti­

mizations. An obvious example is expansion of a call to a function with constant 

arguments which is reduced to another constant, e.g., '(* 3 5)' could be reduced 

to '15'. In other cases ,8-expansion may lead to no further optimizations. 

The best that we can hope to do is to expand calls which appear to offer 

opportunities for further optimization. As a heuristic, procedures with many 

calls to primitives are often good candidates for expansion since type prediction 

and optimisations like constant folding and common subexpression elimination 

operate on primitives (see Sections 6.1, 6.4 and 6.5). Call sites where the type 

information on the arguments is good or some of the arguments constant also 

make good candidates. 

One solution is to have the compiler "learn" which procedures and call sites 

,8-expand well. Dean and Chambers [DC93] describe a modification to the SELF 

compiler which records details of each ,8-expansion in a database. The details 

include the name of the procedure, information about the types and values of the 

arguments, and a metric indicating how successful the ,8-reduction was. Using 

this information the compiler can deduce rules like: "Procedure 'f' ,8-expands 

well when its third argument is an integer" and use these rules to guide further 

expansion. 

Currently SKI has no rules for deciding what to inline, but instead it interac­

tively asks the user whether it should inline a procedure call. 

6.4 Constant Folding 

Constants folding is a essentially simple form of partial evaluation [JGS93] which 

evaluates simple expressions that are constant at compile time and replaces them 
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with constants. In languages like C and Pascal, constant expressions are usually 

expressions involving arithmetic operators with constant operands, e.g., a C com­

piler might replace the expression '1 + 2' with the constant 3 (see Section 10.2 of 

The Dragon Book [ASU86]). 

In SKI constant expressions take the form of calls to primitives where the 

arguments are constants or, if the primitive is a type predicate, where the type 

of the arguments is known. Constants in SKI-CPS are either immediates or 

variables which are bound to immediates. For example, the prim expressions in 

both 

(jmp (prim $fix+ 2 3) 

... ) 

(jmp 3.14 

(clambda (a) 

(jmp (prim $flo-negate a) 

... ))) 
are constant expressions which can be eliminated giving 

and 

(jmp 5 

... ) 

(jmp 3.14 

(clambda (a) 

(jmp -3.14 

... ))) 
respectively. These expressions can then be further simplified by using the redun-

dant binding eliminator (see Section 4.6). In particular if 'a' is never referenced 

again then its binding will be eliminated. 

When a primitive is a type predicate and the type of its argument is known 

then we may be able to eliminate the predicate according to the following rules. 

• If the predicate is true for all types in the type set then it can be replaced 

with true. 

• If the predicate is false for all types in the type set then it can be replaced 

7 '$Flo-negate' negates a flonum 
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with false. 

• Otherwise the predicate remains unchanged. 

For example, if the type set of 'i' is {fixnum} in 

(jmp (prim $fixnum? i) 

( clambda ( t) 

( cif t brancht branch 1 cant))), 
then the predicate (prim $fixnum? i) can be replaced with '#t'. The redundant 

binding eliminator can then eliminate the binding of 't' giving 

(cif #t brancht branch1 cant), 

and the conditional optimiser (see Section 4.9) can eliminate the cif and the 

unreachable branch branch1. 

6.5 Common Subexpression Eliminator 

Common subexpression elimination (or CSE) identifies expressions which are 

identical and computed more than once, it then replaces the duplicate expres­

sions with a variable containing the result of evaluating the first expression. E.g., 

in the following C fragment: 
x1 = x + i + 1; 

y1 = y + i + 1; 

the expression 'i + 1' is duplicated and can be eliminated by assigning 'i + 1' to 

a temporary, 't', and substituting 't' for each occurrence of 'i + 1': 
t = i + 1; 

x1 = x + t; 
y1 = y + t; 

Like constant folding, CSE in SKI operates on primitives. The common subex­

pression eliminator traverses each nlambda procedure and when it encounters a 

call to a primitive, m: 

(jmp (prim Pm am1 am2 • • • amk) 

(clambda (vm) ... )) 
it stores the name and arguments in a table along with the variable that the 

result will be bound to Vm· If it later encounters a primitive call, n: 
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(jmp (prim Pn an1 an2 ••• ank) 

(clambda (vn) ... )) 
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that is identical to m, i.e., Pn = Pm and an; = amp then it replaces n with a 

reference to Vm: 

(jmp Vm 

(clambda (vn) ... )). 

Not all primitives can be eliminated. Primitives that rely on, or side-effect, 

global state can't be eliminated, e.g., '$read-char' ,8 '$set-global!', etc. Others 

which rely on the values of mutable data structures in memory require special 

precautions. For instance, repeated calls to '$vector-ref' with the same arguments 

can be eliminated iff there are no intervening calls to '$vector-set!'. 9 If there is a 

single call to '$vector-set!' between the two identical calls to '$vector-ref', even 

if it appears to mutate a different vector, then the second '$vector-ref' cannot be 

eliminated. This last restriction, is a result of alias problem which is illustrated 

in Figure 6.2. 

(jmp (prim $vector-ref a 10) ; 1 
(clambda (s) 

(jmp (prim $vector-set! b 10 w) ; 2 
( clambda (ign) 

(jmp (prim $vector-ref a 10) ; 3 
(clambda (t) 

... )))))) 

Figure 6.2: An example of the alias problem. 

If 'a' and 'b' are references to distinct vectors then it is possible to eliminate 

the the second '$vector-ref' replacing it with a reference to 's'. If, however 'a' 

and 'b' refer to the same vector, that is they are aliases for each other, then the 

meaning of the program would be changed. So unless it can be proved that 'a' 

can never alias 'b' it is illegal to eliminate the second '$vector-ref'.10 In general 

8 '$read-char' gets the next char form and input port, like 'getc' in C. 
9 (prim $vector-ref vi) returns the value of element 'i' of vector 'v'. (prim $vector-set! vi 

x) sets element 'i' of 'v' to the value of 'x'. 
10The alias problem occurs with any mutable aggregate type, we use vectors purely as an 

example. 
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it is difficult to decide whether two variables are aliases for each other so SKI 

conservatively assumes that all references of the same type are aliases. 11 See 

Chapter 10 of The Dragon Book [ASU86) for a more complete discussion of the 

alias problem. 

6. 6 Other optimizations 

In this sections we briefly discuss a number of optimizations which have not been 

implemented in the current version of SKI, but which could be included in a 

future version. 

6.6.1 Known Procedure Calls, 7]-splitting and Once-Cell 

Elimination 

If the target of a procedure call is known at compile time then it is possible to 

optimize the procedure calling sequence in a number of ways: 

• The address of the procedure can be included in the generated code as a 

constant instead of being fetched from the closure. 

• Since the target is known to be a procedure, it is not necessary to check it 

at runtime (see Section 5.5). 

• If all the calls to a procedure are known calls then we can eliminate the 

runtime check on the number of arguments (see Section 5.5). 

• If the target procedure is in the same scope as the calling procedure and 

does not escape, then the closure can be eliminated and the values of the 

variables the procedure imports can be passed to it as arguments. This can 

get quite complex in the presence of recursive procedures. For example, 

if the set of variables imported by procedure a is I(a) and procedure b 

imports I(b). Then if a calls b, I(a) must be augmented to include the 

variables in I(b), and if b calls a then I(b) must be augmented to include 

11 In some languages, C for instance, it is impossible to assume even this and compilers must 
assume that all pointers are aliases. 
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I (a). Fortunately it is possible to find the fixed points of these sets by 

iteratively computing 

In( a) U In(b) 

In(b) U In(a) 

until In+l(a) = In(a) and In+l(b) = In(b). In this limited case the equations 

will converge on their fixed points in a single iteration, but in the general 

case when there are multiple recursive it may require a number of iterations. 

ry-splitting is the opposite of ry-reduction (see section 4.8). ry-reduction elim­

inates procedures which do nothing but call other procedures, ry-splitting intro­

duces them! E.g., the ry-splitting transform is (in Scheme): 

(let ([f (lambda (a) ... )]) ==> (let ([f (lambda (a) ... )]) 

... ) (let ([fl (lambda (b) (fa))]) 

... )). 
If we then replace all escaping references to 'f' with 'fl ', then the first procedure, 

'f', becomes a non-escaping known procedure which doesn't need a closure. The 

introduced procedure 'fl' becomes a stub which retrieves the variables imported 

by 'f' from its, 'fl 's, closure and passes them to 'f'. ry-splitting is especially useful 

for recursive procedures like 'fibonacci' in Figure 6.3a. Both the internal recur­

sive calls to 'fib' could be transformed into known procedure calls and no closures 

would be needed except for the escaping version of the procedure. 

Unfortunately, the cells introduced by assignment conversion will obstruct this 

kind of optimization (see Section 4.3). Recall that the assignment conversion pass 

introduces once-cells to hold the variables bound by a letrec, see Figure 6.3b. 

However, it is possible to eliminate the once-cells. If a once-cell is set to a 

constant value or to a variable bound to a constant then the once-cell can be 

eliminated and all references to its value can be replaced by that constant, if the 

constant is a procedure then we can substitute a reference to the procedure. E.g., 

we can replace (prim $get-once-cell fib-cell) with a reference to the procedure 

bound to 'fib'. Calls to this reference then become known calls. 

An earlier version of SKI, performed known call optimization, ry-splitting and 

once-cell elimination, but the current version does not. 
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(define fibonacci 
(letrec ([fib 

fib)) 

(define fibonacci 

(lambda (n) 
(if(<= n 1) 

1 
(+(fib(- n 1)) 

(fib (- n 2)))))]) 

(a) Fibbonacci. 

(let ( [fib-cell (prim $make-once-cell))) 
(let ([fib 

(lambda (n) 

(+ ... 
((prim $get-once-cell fib-cell) (- n 2))))]) 

(prim $set-once-cell fib-cell fib) 
(prim $get-once-cell fib-cell)))) 

(b) Fibonacci with cells 

Figure 6.3: 
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A more detailed explanation of known call optimization and 17-splitting can 

be found in [App92]. As far as we are aware, once-cells and once-cell elimination 

are not used in any other compiler. Though once-cell elimination is similar to the 

"letrecification" transformation used in the SCHEMEXEROX compiler [ACS93]. 

6.6.2 Inlining Rest Lists 

If a procedure that has a rest argument is inlined either by ,8-reduction or ,8-

expansion (Sections 4.7 and 6.3) then the rest list for the procedure is constructed 

and bound to a variable. The inlined body of the procedure can then retrieve the 

rest arguments from the list. For example the procedure 

(define (foo. r) 

(let ([al (car r)]) 

... )) 
takes zero or more arguments and binds first value of the first argument to 'al'. 

If 'foo' is inlined at 

(foo x y z) 

then the following code is generated (in Scheme) 

(let ([r (prim $cons x (prim $cons y (prim $cons z '())))]) 

(let ([al (carr)]) 

... )). 
Unfortunately, inlining 'foo' hasn't achieved much, because when we store the 

values of 'x', 'y' and 'z' in the list, all the type information we have on them 

is lost to the (inlined) body of the procedure. We may, for instance, know that 

'x' is a fixnum, but we have to assume that 'al' can have any type because it is 

bound to the return value of the procedure 'car'. Even if we inline 'car' and get 

(let ([al (prim $carr)]) ... ) 

we still have to assume that 'al' can have any type since the '$car' primitive can 

return any type. 

Fortunately this problem can be resolved. During the constant folding we 

can evaluate the expression that constructs the rest list and create a special list, 

called a rlist, which holds the names of the variables rather than their values. 
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Then when we encounter a '$car' primitive with the rlist as its argument, we can 

eliminate the primitive and replace it with a variable. 

For example, constant folding 

(prim $cons x (prim $cons y (prim $cons z '()))) 

will yield the rlist ('x' 'y' 'z'), which will be temporarily bound to 'r'. Then when 

we encounter 

(let ( [ al (prim $car r)]) ... ) 

we can replace it with 

(let ([al x]) ... ). 

Similarly when if encounter 

(let ([rl (prim $cdr r)]) ... ) 

we can bind the remainder of the rlist ('y' 'z') to 'rl' and continue constant 

folding. Hopefully, we can eli~inate all the operations on the rest list and if the 

list is no longer used, we can eliminate the procedures that construct it. 

The next Scheme standard, the Revised5 Report on the Algorithmic Language 

Scheme, will include a new form of rest arguments which will be more efficient 

and easier to optimise. Each procedure that takes rest arguments will have two 

extra parameters: the number of rest arguments, and a procedure that returns 

the nth rest argument. This will allow the use of a more efficient data structure for 

holding the rest arguments and the procedure used to retrieve the rest arguments 

could be easily inlined. 
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Performance 

In this chapter the performance of the code generated by the SKI compiler is 

examined. In particular, we examin~ the effect of the dynamic optimizations 

presented in the previous Chapter. 

7.1 Methodology 

To investigate the effect of the optimizations a number of small benchmark pro­

grams were compiled with varying levels of optimization and the execution times 

compared. 

The benchmark programs are small for three reasons: 

1. The compiler is slow. 

2. Some of the dynamic optimizations require human intervention to guide 

them. ,6-expansion and specialization optimizations require the user to 

interactively tell them when to inline or specialize a procedure. 

3. There are still a number of bugs in the compiler, which tend to affect larger 

programs. 

The compiler is slow because it is a prototype and was designed for flexibility 

rather than performance. Many of the optimizations use two or more passes over 

the entire procedure that is being compiled, consisting of one or more passes to 

collect information and final pass to perform the transformations. Many of these 

109 
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passes could be combined but have been kept separate for ease of maintenance. 

The passes are also wasteful of memory and information with each making a 

new copy of the entire procedure and discarding all the information previously 

collected. This makes the compiler easier to maintain and modify, but it also 

makes it very inefficient. One measure of the inefficiency is that the compiler 

spends approximately 25% of its CPU time in garbage collection. 

The second reason, that the compiler requires guidance from a human, is 

more serious. The frequency of procedure calls in Scheme is so high that even for 

relatively small examples, many inlining decisions are required. Specialization 

also requires human intervention, but this is a single decision for each procedure. 

The thresholding heuristic currently used by the specializer (see Section 6.2.1) 

appears to be quite effective in deciding what parameters and types to specialize 

a procedure on. 

The small size of the benchmarks do have some advantages. It is possible to 

try many combinations of optimizations various optimizations to try to isolate 

the effect of each optimization. It is also possible to modify the benchmarks to 

determine the upper limits of the optimizations. 

7.1.1 Details 

The tests were conducted on a lightly loaded Sun SPARCStation 10/51 with 

128MB of RAM running SunOS 4.1.3u. The SPARCStation 10/51 has a single 

SuperSPARC processor clocked at 50MHz. The SuperSPARC processor is three­

way superscalar1 and has 36 kilobytes of on-chip, level 1, cache. The on-chip 

cache is split into a 20 kB instruction cache and a 16kB data cache. In addition 

the processor module includes a 1 MB level 2 cache. 

Each benchmark was run 10 times and the times were averaged. To measure 

the CPU time used by the benchmarks we used the getrusage (2) [Sun90) sys­

tem call. We only recorded the user time, the system time was ignored.2 The 

1This means it can issue up to 3 instructions per clock cycle, consisting of two integer/ALU 
operations and a single "special" instruction. Special instructions include branches and floating 
point operations. There are other restrictions on the instructions that can be issued, for instance 
only one of the ALU instructions can be a shift. 

2getrusage returns two times, the user time, which is the time spent by the process in user 
mode, and the system time, which is the time that the process spends running in kernel mode. 
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resolution of the clock used by getrusage is 1/100th of a second. We report all 

times in milliseconds. 

SKI's heap size was set at 4 MB. SKI's runtime system and the code generated 

by SKI was compiled using GNU CC version 2.5.8 with the "-02" flag. 

Each of the following sections introduces a single benchmark program and 

presents the results of running that benchmark with various optimization options. 

7.2 Loop 

(define (Ioopl n) 
(if (=:2 n 0) 

n 

(loopl ( -:2 n 1)))) 

(a) 

(define (looprec n) 
(letrec ([lp (lambda (i) 

(if(= i 0) 
i 
(lp (- i 1))))]) 

(lpn))) 

(b) 

Figure 7.1: The loop benchmark. 

The first benchmark is a simple loop which counts down from the initial value of 

its parameter 'n' to zero. Figure 7.1a shows the code for the loop which is written 

as a tail recursive function call. We choose not to use either of Scheme's looping 

constructs, the named let or the do loop, since they are just "syntactic sugar" 

for recursion. The loop is not implemented using an internal procedure, as shown 

in Figure 7.1b, since it would be slightly slower because of the extra indirection 

introduced by assignment conversion (see Section 4.3). If the compiler did known 

procedure call optimizations (Section 6.6.1) then an internal procedure would be 

slightly faster. 

The procedures '=:2' and '-:2' are simplified versions the standard '=' and 

'-' procedures. '=:2' and '-:2' take exactly two arguments while the standard 

procedures take one or more arguments and use rest lists. We use '=:2' and '-:2' 

to simulate the rest list inlining optimization discussed in Section 6.6.2. 
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Table 7.1 shows results of running the several variations on the loop bench­

mark with an initial argument of 1000000. 

Row 0 of the table gives the times collected when none of the dynamic opti­

mizations were enabled but with the front end optimizations enabled (see Chap­

ter 4). 

Row 1 of gives the times collected when 'loopl' was re-optimized and the calls 

to '=:2' and '-:2' inlined. 

The relative time column contains two numbers, the first number is ratio of 

the average time of the current row to the average time of the row indicated by 

the second number. So the entry in row 1 says that the version of 'loop1' with 

both procedure calls inlined executes in 27% of the time taken by the unoptimized 

version of 'loopl'. 

Why is it so much faster? Examiping the code that the compiler generated 

reveals three reasons: 

1. Two procedure calls have been eliminated. 

2. The un-optimized version creates one first level continuation closure per 

loop (see Section 5.3). This closure holds the continuation and one of the 

callee-save variables which allows 'n' to become a callee-save variable. When 

the two procedures are inlined, no closures are created. 

3. The second arguments to both '-:2' and '=:2' are both constants. The con­

stant folding optimization can eliminate the type tests on these arguments. 

The code for '-:2' and '=:2' is contained in Appendix A.5. 

Row 2 of the table shows the results of specializing 'loop1' for the case when 

'n' is a fixnum. The calls to '-:2' and '=:2' are inlined in the specialized version 

of the procedure's body and not inlined in the general version (see Chapter 6.2). 

Specialization doesn't produce a very dramatic speedup. The reason is that we 

are exchanging two type tests for a single type test. When 'loop1' is specialized, 

a type predicate is inserted at the head of the procedure to test the value of 

'n'. If 'n' is a fixnum then the specialized version of the procedure's body is 

executed, otherwise the general version is executed. When '=:2' is inlined in the 

specialized version, the constant folder can eliminate all the type tests on the 
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'=:2's first argument, which is now 'n', since 'n' is known to be a fixnum. The 

same thing happens when '-:2' is inlined. The net result is that one type test is 

inserted, and two are removed. 

Row 3 shows the results of inlining the recursive call to 'loop1 ', this is equiva­

lent to unrolling the loop by one iteration. All calls to '-:2' and '=:2' are inlined. 

The difference is not as large it was when we first inlined '-:2' and '=:2', because 

there are no closure creations to eliminate. 

Row 4 shows the result of unrolling the specialized version of the loop. This 

is not as effective as we might expect since the specialization has no effect on the 

unrolled copy of the loop. The reason is that even though 'n' is known to be a 

fixnum in the first, specialized, copy of the loop, we don't know the type of 'n' 

in the second, unrolled, copy. This is because when we do the subtraction we 

have to check the result to m?ke sure that the subtraction didn't overfiow.3 If 

the subtraction did overflow then we have to convert its operands to bignums and 

do it again. Testing the result of the subtraction requires a branch and after the 

branch all type information about the result is lost. So in the unrolled copy of 

the loop the type of 'n' is unknown and none of the type tests can be eliminated. 

Finally, row 5 shows the result of unrolling the loop 3 times with no special­

ization. 

(define (loop2 n) 
(if (prim $fix= n 0) 

n 
(loop2 (prim $fix- n 1)))) 

(a) loop2 

(define (loop3 n) 
(if (prim $fix= n 0) 

n 
(loop3 (prim $fix-non 1))))) 

(b) loop3 

Figure 7.2: 

Rows 6, 7, and 8 show results of performing some of the same tests on 'loop2'. 

As shown in Figure 7.2a, 'loop2' is the same as 'loop1' except that the calls to 

'=:2' and '-:2' have been replaced with calls to primitives. The point of this 

3In ski, a fixnum subtraction overflows when the result less than -(230). 
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experiment is to show the cost of generic arithmetic. Unlike all the variations 

on 'loopl' discussed above, 'loop2' will fail silently if it is passed a flonum or a 

bignum, or if the subtraction causes an overflow; 'loopl' one will always work no 

matter what kind of number it is passed. 

As we can see from the relative time column, 'loop2' is significantly faster 

than 'loopl' and since 'loop2' implicitly assumes that 'n' is a fixnum, it is not 

affected by the loss of type information when the loop is unrolled. 

Rows 9, 10 and 11 shows the results of performing the same tests on 'loop3', 

which is a variation on 'loop2'. The difference between the two is that in 'loop3' 

'$fix-' primitive is replaced with '$fix-no'. '$fix-no' doesn't check the subtrac­

tion for overflow. 

Strangely, the un-optimized version of 'loop3' (Row 9) is slower than the un­

optimized version of 'loop2' (Row 6),. However, the unrolled versions of 'loop3' 

(Rows 10 and 11) are faster the the corresponding versions of 'loop2' (Rows 7 

and 8), which is what we would expect. 

The SELF compiler uses range analysis on integers to eliminate overflow check­

ing [CU90]. If SKI could do the same, then it might be able to compiler 'loop1' 

so that it is as fast as 'loop3' without sacrificing safety. 

7.3 Fibonacci 

(define (fib n) 
(if ( <=:2 n 1) 

1 
(+:2 (fib (-:2 n 1)) 

(fib (-:2 n 2))))) 

Figure 7.3: fib 

Our second benchmark, 'fib', is the "classic" recursive Fibonacci function. For 

the same reasons that we discussed in the previous section, 'fib' is written as a 

global procedure and uses simplified, two argument, procedures for arithmetic.4 

Table 7.2 shows the results of evaluating '(fib 28)'. 

4The source code for '+:2' and '<=:2' is included in Appendix A.5 
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Row 1 of the table shows that inlining '+:2', '-:2' and '<=:2' has results 

similar to inlining '-:2' and '=:2' in 'loopl', but the effect is not as large. The 

reason is that we can't completely eliminate the creation of continuation closures, 

though the number of closures created is reduced from three in the un-optimized 

version to one in the optimized version. 

Row 2 of the table shows that the effect of specializing 'fib' for the case when 

'n' is a fixnum is also quite small. In this case specialization introduces one type 

test and eliminates three. 

Unfortunately, an elusive bug in the compiler prevented us from inlining the 

recursive calls and unrolling 'fib'. 

7.4 Deriv 

The final benchmark is the Deriv benchmark shown in Figure 7.4. Deriv is 

taken from the Gabriel benchmark suite which was created by Richard Gabriel 

to measure the performance of Lisp implementations [Gab85]. Deriv was written 

by Vaughan Pratt and was ported to Scheme by William Clinger. The full source 

for Deriv, including comments, is included in Appendix A.6. 

Deriv computes the symbolic derivatives of expressions. Unlike the previous 

benchmarks Deriv does no arithmetic, operates mostly on symbols and lists. The 

numbers in expressions are treated like symbols. 

Table 7.3 shows the results of calling 'deriv' 20,000 times with the argument 

'(+ (* 3 x x) (*ax x) (+ b x) 5)'5 . 

Unfortunately, the same bug that affected the previous benchmark also affect 

'deriv'. The bug appears to occurs when a procedure that starts with sequence 

(if exp then (procedurecall)) 

is inlined, but it does not occur in all such sequences! 

Row 1 of the table gives the results of inlining all small procedures except for 

those that started with the above sequence. The procedures inlined were 'not', 

'pair?', 'eq?' and 'cons'. The procedures that were not inlined because of the bug 

were 'car' and 'cdr'. 'map', 'cadr' and 'caddr' were not inlined because of their 

size. 
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(define (deriv-aux a) (list 'I (deriv a) a)) 

(define ( deriv a) 
(cond 

((not (pair? a)) 
(cond ((eq? a 'x) 1) (else 0))) 

( ( eq? (car a) '+) 
(cons '+ (map deriv (cdr a)))) 

( ( eq? (car a) '-) 
(cons '-:- (map deriv 

(cdr a)))) 
( ( eq? (car a) '*) 
(list '* 

a 
(cons'+ (map deriv-aux (cdr a))))) 

( ( eq? (car a) 'I) 
(list '-

(list 'I 
( deriv ( cadr a)) 
( caddr a)) 

(list 'I 
( cadr a) 
(list '* 

(else 'error))) 

(caddr a) 
( caddr a) 
(deriv (caddr a)))))) 

Figure 7.4: The Deriv Benchmark 
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Row 2 gives the results of inlining special versions 'car' and 'cdr' which do 

not provoke the compiler bug (see Appendix A.5) as well as all the procedures 

inlined above. 

Row 3 gives the results of inlining the 'list' procedure as well as all procedures 

inlined by the example in row 2. 

We did not try specializing 'deriv' as its argument 'a' has no obvious most 

frequent type tQ specialize it on. 'a' is pair or a symbol with almost equal fre­

quency. 

The speedup achieved by inlining is not as great as that achieved in the 

previous two benchmarks. This is probably due to two factors. Firstly, still 

makes a large number of procedure calls, and secondly, deriv creates many lists. 



Chapter 8 

Conclusions 

Research is what I'm doing when I don't know what I'm doing. 

- Wernher von Braun [Arn86] 

8.1 Discussion 

As the previous chapter shows, dynamic compilation techniques can yield a sub­

stantial increase the performance of Scheme programs. The execution speed of 

simple programs increased by a factor of three or four, but the increase was less 

substantial for more complex programs. 

Surprisingly, the increase in performance that we observed came primarily 

from inlining procedures rather than eliminating type checking. We had expected 

that eliminating type checking would have a greater impact on the performance 

than we observed. Further work is needed to clarify these issues. 

8.2 Future Work 

Much work needs to be done on the SKI to increase the stability and useabilty 

of the compiler so that its performance can be evaluated on larger programs. In 

particular, a set of heuristics for deciding when to inline procedures is urgently 

needed. 

SKI could also perform more optimizations than it currently does. Known 

call optimisation and rest list inlining (see Sections 6.6.1 and 6.6.2) could result 
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substantial increases in performance. Another optimization that could make a 

big difference is splitting, as SKI's type predictor loses valuable type information 

after conditional expressions (see Section 2.1.3). Finally the specialization opti­

mization could be generalized to the continuations of procedure calls as these are 

a major source of uncertainty in type prediction. 

8.3 Conclusion 

SKI has demonstrated that dynamic compilation is an effective way of increasing 

the performance of Scheme programs, although more work is necessary to unleash 

its full benefits. 



Appendix A 

Miscellaneous 

A.l Example SELF code 

The following is the SELF code to add two points together copied from [US91]. 

+ arg = ( 
I newPoint I 
newPoint: copy. 

new Point x: x + arg x. 

newPoint y: y + arg y. 

new Point. 
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A.2 CPS version of nested if optimization 

If we CPS convert the nested if expression: 

(if (if a b c) de) 

we get (assuming for simplicity that a, b, c, d and e are variables or literals): 

(cifa 

(clambda (k1) (jmp b k1)) 

(clambda (k2 ) (jmp c k2)) 

(clambda (v) 

(cif v 

(clambda (k3) (jmp d k3)) 

( clambda (k4) (jmp e k4)) 

ko))). 
which can be transformed into: 

(jmp (nlambda k3 () #f (jmp d k3)) 

(clambda (dt) 

(jmp (nlambda k4 () #f (jmp e k4)) 

( clambda ( et) 

(cifa 

( clambda (jl) 

(cif b 

(clambda (h) (app dt () j2)) 

(clambda (j3) (app et () j3)) 

Jl)) 
( clambda (j4) 

(cif c 

ko))))) 

(clambda (j5) (app dt () js)) 

(clambda (j6) (app et () j5)) 

J4)) 

The real transform is slightly more complicated since it must be able handle cases 

where a, b, c, d and e are more complex expressions. 
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A.3 Tail call macro for the SP ARC 

o #define TAIL_CALL2(dest 1 a01 al) 
1 { 
2 register SKI __ argO asm (11 %i0 11

); 

3 register SKI __ argl asm (11 %i1 11
); 

4 __ argO = (SKI) aO; 
5 __ argl = (SKI) al; 
6 asm volatile ( 
7 11 jmpl %0, %%gO, %%gO 
8 restore 11 

9 
10 11 r 11 (dest) 1 

11 r 11 
( __ arg0) 1 

11 r 11 
( __ argl) 

11 11 %i 7 11
); 

12 
13 DO.-NOTHIN9(); 
14 } 

Figure A.l: A two argument tailcall macro for the SPARC. 

Figure A.l shows a C macro which tailcalls a function 'dese with two argu­

ments 'a01 and 'al 1
• The following is a line-by-line description of how the macro 

works: 

2-3 The variables ' __ argO' and ' __ argl' are declared to hold the arguments. The 

asm syntax is a GNU C extension which instructs the compiler to map the 

variables onto specific registers, in this case '%i0' and '%il', the first two 

input registers in the current register window. 

6 The keyword asm begins an inline assembler sequence. volatile tells the 

compiler that it shouldn't try to move or otherwise interfere with the se­

quence. 

7 jmpl is the SPARC jump-and-link instruction, it sets the program counter 

to the sum of its first two operands and stores the old value of the program 

counter in its third operand. The first operand '%0' is replaced by the 

register holding the destination address 'dest' (which is mapped into an 

unspecified register on line 10), the second and third operands specify the 
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'%gO' register which is always zero. So this instruction jumps to 'dest + 0' 

and discards the old value of the programme counter. 

8 The restore instruction, which is executed in the delay slot of the jmpl, 1 

switches to the previous register window. This means that the ''input" 

registers '%i0-%i7' become the output registers '%oO-%o7' of the previous 

register window. When the destination function is reached the first in­

struction executed in the standard function prologue will be a save which 

switches to the next register window and the output registers become the 

input registers again. 

The restore instruction also sets the stack pointer back to the value that 

it had when the calling function was entered, deallocating anything that 

was allocated on the sta<;:k. 

9 This line is used to tell the compiler where to find the result of the sequence, 

in this case there isn't one. 

10 This line tells the compiler where to put the arguments to the sequence. 

'
11 r 11 (dest)' tells the compiler to make sure that 'dest' is in a register, 

the string %0 in the sequnce is replaced with the name of the register. 

'
11 r 11 

( __ argO)' and ' 11 r 11 
( __ argl)' tell the compiler that the values of ' __ argO' 

and ' __ argl' are used to prevent it from eliminating them. 

11 This line tells the compiler that the value of '%i7', the stack pointer, is 

changed. 

13 This line, which is never executed, is used to inform the compiler that this 

macro never "returns." 'DO_NOTHING' is declared: 

volatile void DO_NOTHING(void) 

{ 

abort(); 

} 

1 I.e., before the jump is completed. 
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Using the keyword volatile like this indicates that 'DO_NOTHING' never 

returns and as an aid to debugging a core dump is generated (by 'abort') 

if 'DO..NOTHING' is ever executed. A better solution would be to declare 

that the asm sequence never returns but this is not currently possible. 
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A.4 

Appendix A. Miscellaneous 

Tail call macro for the i386 

0 SKI ExtraArgRegs[]; 
1 
2 #define TAIL_CALL2(dest, aO, al) 
3 { 
4 SKI *--ear = ExtraArgRegs; 
5 __ ear[O) = (SKI) aO; 
6 __ ear[l) = (SKI) al; 
7 asm volatile ( 
8 11 movl %%ebp, %%esp 
9 popl %%ebp 
10 jmp %0 11 

11 
12 
13 
14 
15 
16 } 

11 r 11 (dest) 
n%ebpu' n%espn); 

DO_NOTHING(); 

Figure A.2: Two argument tail call macro for the i386. 

Figure A.2 shows a two argument tailcall macro used by SKI on i386 based 

machines running Linux. It is similar in structure to the tailcall macro shown in 

Appendix A.3. The following discusses the differences on a line-by-line basis: 

4-6 The standard calling convention used on i386 machines running Linux 1.0 

doesn't pass any arguments in registers. Therefore we have to pass all 

arguments in a global array 'ExtraArgRegs)) ' __ ear' is a local pointer to the 

array which will (hopefully) be allocated in a register. 

8-9 These lines restore the stack pointer, %esp, and and base pointer, %ebp to 

the values that they had when the calling function was entered, deallocating 

anything that was allocated on the stack by the calling function. 

10 Finally we jump to the destination function, the address of which was placed 

in an unspecified register by line 12. 
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A.5 Library procedures 

The following is the Scheme code for some of the library procedures discussed 

in 7. 

(define =:2 

(lambda (x y) 

(cond ([prim $fixnum? x] 

(cond ([prim $fixnum? y] 

(prim $fix= x y)) 

([prim $bignum? y] 

(prim $big= (prim $fixnum->bignum x) y)) 

([prim $flonum? y] 

(prim $flo= (prim $fixnum->flonum x) y)) 

)) 

([prim $bignum? x] 

(cond ([prim $fixnum? y] 

(prim $big= x (prim $fixnum->bignum y))) 

([prim $bignum? y] 

(prim $big= x y)) 

([prim $flonum? y] 

(prim $flo= (prim $bignum->flonum x) y)) 

)) 

([prim $flonum? x] 

(cond ([prim $fixnum? y] 

))) 

(prim $flo= x (prim $fixnum->flonum y))) 

([prim $flonum? y] 

(prim $flo= x y)) 

([prim $bignum? y] 

(prim $flo= x (prim $bignum->flonum y))) 

) ) 
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(define -:2 

(lambda (x y) 

(cond ([prim $fixnum? x] 

(cond ([prim $fixnum? y] 

(or (prim $fix- x y) 

(prim $big- (prim $fixnum->bignum x) 

(prim $fixnum->bignum y)))) 

([prim $bignum? y] 

(prim $big- (prim $fixnum->bignum x) y)) 

([prim $flonum? y] 

(prim $flo- (prim $fixnum->flonum x) y)) 

) ) 

([prim $bignum? x] 

(cond ([prim $fixnum? y] 

(prim $bignum->fixnum? 

(prim $big- x (prim $fixnum->bignum y)))) 

([prim $bignum? y] 

(prim $big- x y)) 

([prim $flonum? y] 

(prim $flo- (prim $bignum->flonum x) y)) 

) ) 

([prim $flonum? x] 

(cond ([prim $fixnum? y] 

))) 

(prim $flo- x (prim $fixnum->flonum y))) 

([prim $flonum? y] 

(prim $flo- x y)) 

([prim $bignum? y] 

(prim $flo- x (prim $bignum->flonum y))) 

) ) 
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(define <=:2 

(lambda (x y) 

(cond ([prim $fixnum? x] 

(cond ([prim $fixnum? y] 

(prim $fix<= x y)) 

([prim $bignum? y] 

(prim $big<= (prim $fixnum->bignum x) y)) 

([prim $flonum? y] 

(prim $flo<= (prim $fixnum->flonum x) y)) 

)) 

([prim $bignum? x] 

(cond ([prim $fixnum? y] 

(prim $big<= x (prim $fixnum->bignum y))) 

([prim $bignum? y] 

(prim $big<= x y)) 

([prim $flonum? y] 

(prim $flo<= (prim $bignum->flonum x) y)) 

)) 

([prim $flonum? x] 

(cond ([prim $fixnum? y] 

))) 

(prim $flo<= x (prim $fixnum->flonum y))) 

([prim $flonum? y] 

(prim $flo<= x y)) 

([prim $bignum? y] 

(prim $flo<= x (prim $bignum->flonum y))) 

) ) 
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(define +:2 

(lambda (x y) 

(cond ([prim $fixnum? x] 

(cond ([prim $fixnum? y] 

(or (prim $fix+ x y) 

(prim $big+ (prim $fixnum->bignum x) 

(prim $fixnum->bignum y)))) 

([prim $bignum? y] 

(prim $big+ (prim $fixnum->bignum x) y)) 

([prim $flonum? y] 

(prim $flo+ (prim $fixnum->flonum x) y)) 

) ) 

([prim $bignum? x] 

(cond ([prim $fixnum? y] 

(prim $bignum->fixnum? 

(prim $big+ x (prim $fixnum->bignum y)))) 

([prim $bignum? y] 

(prim $big+ x y)) 

([prim $flonum? y] 

(prim $flo+ (prim $bignum->flonum x) y)) 

)) 

([prim $flonum? x] 

(cond ([prim $fixnum? y] 

))) 

(prim $flo+ x (prim $fixnum->flonum y))) 

([prim $flonum? y] 

(prim $flo+ x y)) 

([prim $bignum? y] 

(prim $flo+ x (prim $bignum->flonum y))) 

) ) 
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The following are the standard versions of the 'car' and 'cdr'. 

(define (car x) 

(if (prim $pair? x) 

(prim $car x) 

(c*r-err 'car))) 

(define (cdr x) 

(if (prim $pair? x) 

(prim $cdr x) 

(c*r-err 'cdr))) 
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These are the special versions of 'car' and 'cdr' which do not provoke the bug 

mentioned in Section 7.4. 

(define (car x) 

(if (prim $pair? x) 

(prim $car x) 

'error)) 

(define (cdr x) 

(if (prim $pair? x) 

(prim $cdr x) 

'error)) 

The difference between the two versions is that the special versions do not call 

the error reporting procedure 'c*r-err' if they are passed arguments of the wrong 

type. 
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A.6 The Deriv Benchmark Program 

The following is the full Scheme source of the Deriv benchmark from the Gabriel 

benchmark suite [Gab85]. 

; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; 

File: deriv.sch 

Description: The DERIV benchmark from the Gabriel tests. 

Vaughan Pratt Author: 

Created: 8-Apr-85 

Modified: 10-Apr-85 14:53:50 (Bob Shaw) 

23-Jul-87 (Will Clinger) 

9-Feb-88 (Will Clinger) 

Scheme Language: 

Status: Public Domain 

; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; 

''' 
''' 

DERIV -- Symbolic derivative benchmark written by Vaughn Pratt. 

It uses a simple subset of Lisp and does a lot of CONSing. 

Returns the wrong answer for quotients. 

Fortunately these aren't used in the benchmark. 

(define (deriv-aux a) (list '/ (deriv a) a)) 

(define (deriv a) 

(cond 

((not (pair? a)) 

(cond ((eq? a 'x) 1) (else 0))) 

((eq? (car a) '+) 

(cons '+ (map deriv (cdr a)))) 

((eq? (car a) '-) 

(cons '- (map deriv 

((eq? (car a) '*) 

(list '* 

(cdr a)))) 
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a 

(cons '+ (map deriv-aux (cdr a))))) 

((eq? (car a) '/) 

(list '-

(list 'I 
(deriv (cadr a)) 

(caddr a)) 

(list 'I 
(cadr a) 

(list '* 
(caddr a) 

(caddr a) 

(deriv (caddr a)))))) 

(else 'error))) 

(define (run) 

(do ((i 0 (+ i 1))) 

((= i 1000)) 

(deriv ' ( + (* 3 x x) (* a x x) (* b x) 5)) 

(deriv '(+ (* 3 x x) (* a x x) (* b x) 5)) 

(deriv '(+ (* 3 x x) (* a x x) (* b x) 5)) 

(deriv '(+ (* 3 x x) (* a x x) (* b x) 5)) 

(deriv '(+ (* 3 x x) (* a x x) (* b x) 5)))) 

, , , call: (run) 

(run-benchmark 11 Deriv 11 (lambda () (run))) 
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