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Abstract 

My primary purpose of undertaking this project during the summer was to 

develop computational skills in R as well as apply the techniques learnt 

in class to weather data which is still a relatively unexplored research area in Pakistan 

utilising the capabilities of R 
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1. Introduction 

I undertook this project to expose myself to establish an understanding behind the working of R as well as apply 

the statistical knowledge acquired and developed through coursework completed till date. R being a predecessor 

to S-Plus is intensively utilised nowadays in industries ranging from management consulting, engineering to 

banking and finance in a wide range of applications. I decided to take up the challenge of analysing weather data 

through R, which I found is still a relatively un-researched area specifically using its capabilities for example in 

comparison to econometrics. The topic research is of a highly controversial nature which continues to baffle many 

scientists and ordinary citizens alike and supports lucrative multi-billion dollar industries like hybrid vehicles' 

production and wind mill Krohn (2000). 

During the course of this project the main objectives I achieved were running statistical analysis and building 

linear models of different forms, variables, locations in order to establish proper relationship primarily between 

time and temperature as well as the compare the two locations studied. In this report I will carry out a short, 

brief study of weather data of two locations i.e. Lahore and Karachi in Pakistan and discuss the results as well 

as their implication in a wide range of areas 

1.1 Dataset 
Acquiring a comprehensive dataset which had a record of almost four to six decades was one of the most 

complex task that was accomplished through the NOAA servers in the USA. The 'factory fresh' data itself 

required a lot of manipulation as it had great length of patches missing during times of war, the segregation of 

the Indo-Pak subcontinent. To be precise 8335 of datapoints were missing for Lahore and 25443 for Karachi. 

Both datasets included the following parameters: Station Number, pressure, visibility, wind gust, maximum and 

minimum temperature for the day in question. For the purposes of my project, I manipulated the data in order 

to include only the dates and the corresponding temperatures. The following amendments were made: 

• The data being imperial (i.e. in Fahrenheit) had to be converted in to Celsius to provide a better intuition 

and perspective for the analysis and for the reader. 

• The dates in the data itself were present as raw numbers eg. 19841008 which had to be turned into proper 

dates such as 08/10/1984 as well as the number of years from January 1, 1970 eg. 14.75 in order for R to 

easily analyse the numbers as well as do something meaningful which in this case was building models. The 

last step mentioned was established by dividing the number of days from January 1, 1970 such as 5387.04 

by 365.224 as explained by 

• The major data sets of the respective locations were subsetted further by winters and summers. The 

selection of seasons itself was based on summer and winter solstices web (2009) 

• Most importantly, despite my careful selection of time period due to missing values as mentioned above the 

dataset still had a string of values missing. Technically, such cases are also known as "Missing Completely 

at Random" (MCAR) as explained by Ms. J.Scheffer Scheffer (2002). There are many ways of dealing with 

such a scenario as listed below. 

1. Case Deletion: observations are deleted X1, Y1, ... Xn, Yn either pairwise or listwise, 
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2. Single Imputation: mean, median values are imputed in place of the missing data values, 

3. Multiple Imputation: the data is replicated, imputed and analyzed separately followed by a recombi­

nation of all the data sets together. 1 . 

However, I took a an approach of imputing mean values to missing cases 

1.2 Usage of R 
R itself is a versatile tool being utilised almost in every imaginable way with extensive discussions online at 

the CRAN servers, as well as at sites like http: I /www. r-bloggers. com/ aboutR Q & A blog. Also, a wide range 

of available 'packages' makes it a specially interesting tool kit to have for the future. However, this vast variety 

of packages itself is a double edged sword. As a relatively new user of R, I found a wide range of packages as 

well as a lack of extensive documentation such as the one's like MATLAB to be at times cumbersome although 

packages such as ggplot2 by Hadley Wickham made task such as making plots a lot easier. 

1The reader should to refer to Ms. J.Scheffer's paper for a complete discussion of the above given methods is beyond the scope of 

this report. Scheffer (2002) 
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2. Methods 

This section highlights the different methods used to analyse the data and their related assumptions. These are 

the areas that will be covered: 

• Linear Models and their assumptions 

• Hypothesis testing 

• Checking of assumptions 

• Comparison of models 

2.1 What is a linear model? 
The simplest linear model involves only one independent variable eg. time (in years) denoted by X and 

states that a dependent variable such as Temperature denoted by Y is related by a means of an equation. 

1tiodelling in this context refers to the development of a mathematical relationship that aims to establish and 

describe an equation between the X and Y variables. More specifically it aims to find out how the mean of Y, 

E(Y). In this case, E{Temperature} changes with changing conditions with the assumption that the variance of 

temperature remains unchanged. Also, any other variable independent variable such as time measured in years 

'contributing' information, enters the model as a predictor variable. By assumption, since X's are known they 

have individual have unknown multiplicative constants called parameters which affect the performance of the 

model itself. Normally these are denoted by f3o, (31, ... , f3n· For example,Y = f3o + f31X. Thus, the model is said 

to be linear in parameters as explained by Rawlings et al. (1998).Lacey states that the objective is to find the 

best estimates for (30 and (31 by minimizing the residual error between the observed and fitted value . 

Mathematically, E(Yi) = f3o + (31 (Xi) ::::? E(Temperature) = f3o + (31 (Yi) also known as the fitted regression 

line (30 = y-intercept at time t=O, (31 = the slope of line, with a unit of time as measured in years from 1970. 

But, what about the absolute value of Y;?. It is defined as : 

These are the implications of the assumptions mentioned above: 

1. The Ei of an observation i which also forms the deviation between observed and fitted observation for Xi 
-

have mean, f-L = 0 and have the same standard deviation(}. 

2. All the c:i's are independently & identically distributed. 

3. Thus, Ei ~ N(O, (}2 ) as explained by Rawlings et al. (1998) 

Violation of the above stated assumptions can distort the results of the hypothesis testing conducted on lin­

ear models but not the parametric estimates themselves as explained by Rawlings et al. (1998). All the tests 

conducted including t-tests, F-tests require the data set's (i.e. the error term's) distribution to be normally 

distributed. In such a scenario F-tests are considered to be rather robust to changes in normality Hill & Lewicki 

(2006). The method I use to investigate normality are described in later sections as well as a technique known as 

transformation of variables is explained in the following section. The bulk of both location's data started from 

1973 and so the linear model output give intercept at time t=O which is thus calculated as the January 1, 1970. 
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2.1.1 Harmonic Models 

Often data modeled exhibits periodic behavior which repeats itself every s time periods and the frequency, 

Wi = 2n-j Si, 

1. s = 4 quarterly data 

2. s = 12 monthly data 

3. s = 365.224 daily data (applicable to this scenario as the available data's frequency was daily) 

4. i = 1,2,3 ... n is the explanatory variable (i=t= number of days since 1 January, 1970) 

The basic idea being that however the raw data is constructed be it hourly, daily, bi-monthly are converted to a 

to a fraction of the interval of periodicity eg. a year in this case, then multiplying the result by 2n. The general 

equation then becomes: 

as explained by Cox (2006),Rawlings et al. (1998). As for the form applicable to the weather data: 

. 2nt 21rt 
Yt = (30 + (31 (Years) + (32 sm( 

365
.
224

) + (33 cos( 
365

.
224

) + Et 

Like any other model, harmonic models have their own theoretical shortcomings eg. years of unequal lengths i.e. 

leap year may create problems over extremely lengthy time periods such as 1000 years. 

2.1.2 Transformation of variables 

Linear modelling is based on the assumptions discussed in section 2.1. One of the main problems with real­

life data is that often the data in general, its error terms violate the assumptions. Therefore, in the related linear 

models there is a prevalence of non-normality associated with the distribution of the error terms. Following the 

consequences of non-normality of a model's error terms I transform the predictor variables in hopes of achieving 

a better result. 

2. 2 Hypothesis Tests 
In this section I will briefly discuss the main tests conducted to check the significance of results of the linear 

models including F-tests, t-tests their associated p-values studentized Breusch-Pagan test, 1 

1. F-test indicates in a simple linear model whether Xi (time in years) explains a significant proportion of 

the variance observed in Yi(temperature) =} Ha : f31 -=/= 0 compared to the null hypothesis that the fitted 

model is largely dependent only on the intercept i.e. f3o, where H 0 : (31 =0 Technically what it is aims to 

explain is whether 
F = (TSS RSS)/(k- 1) 

RSS/(n- k) 
, where, TSS= total sum of squares RSS = residual sum of squares k= number of parameters in the 

model n= number of observations in the model An F-test statistic for a multiple regression model such as 

the one involving harmonic regression is testing to check whether all predictors are i.e. (31, (32, ... f3n are 

significantly contributing to the independent variable. Empirically, if the calculated F-value has a p-value 

which is less than the a given value of a=0.05, then, the null hypothesis is rejected. In this case, it has the 

following general interpretation for the liner models I constructed: 
1 Basic knowledge of the above-mentioned tests' underlying theory is assumed, otherwise the reader is advised to consult any guide 

on mathematical statistics 
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• Simple Linear models: time measured in years has contributed to X degrees per year changes m 

temperature over a period of 1 year in comparison to the null hypothesis where fh =0 

• Harmonic model: Time as well as its transformation as mentioned in section 2.1.1 have contributed 

to changes in temperature over a cyclical period of a year in comparison to model where all the 

parameters are zero. 

2. T-tests in this case investigate whether individual parameters calculated in the model are not significantly 

different from 0 versus the alternative that they are (on an individual basis) significant i.e. fJo of: 0, fJ1 of: 
0, ... fJn of: 0 . They use the p-values and a= 0.05 in a fashion similar to the F-tests described above. 

2.2.1 Test for constant variance 

The test that I use is known as Breusch Pagan(B-P) test and it tests whether a model's residuals have the 

same variance as defined by the linear model assumption versus the alternative hypothesis that they are not. 

Mathematically, 

, which are homoscedastic models 

which are heteroscedastic models 

• Again a p-value, calculated if less than the normal value of a= 0.05. The null hypothesis is rejected. 

• By construction if the test is being carried out on a basic model with just fJo i.e. the intercept at time t=O 

then the test results are invalid. 

2.3 Checking for underlying assumptions for normality 
I use normal Q-Q plot for each model constructed, to 'judge' the normality of the underlying models. The 

interpretation is as follows: the closer the data points are to the 45° line, the closer is the model's underlying 

distribution to normal distribution 

2.4 Comparing models 
Aka.ike's An Information Criterion (AIC) is a common measure of comparing models, it is calculated in the 

following method: AIC = 2K- 2ln (L), where K is the number of parameters in the model and Lis the maximum 

likelihood value of the model. Lowest value of AIC amongst the models gives the best answer as explained by 

R Development Core Team (2010). 

6 



3. Results 

In this section of the report I will discuss the findings of the exploratory data analysis as well as the technical 

output related to both the locations using a combination of plots as well as statistical tests conducted on the 

data sets. 

3.1 Exploratory Data Analysis 

3.1.1 Five number summary 

Location Min Max 1st Q Median 3rd Q }/lean Standard Deviation 

Lahore 7.00 41.00 20.00 24.02 29.00 24.04 6.56 

Karachi 10.00 39.00 24.00 27.00 29.00 26.08 4.17 

Lahore has a larger range than Karachi, as it is hotter in summers and colder in winters than Karachi on average. 

In my opinion, the empirical results tend to underestimate the mean of Lahore primarily due to the imputation 

of mean for a good proportion of the time studied. 

3.1.2 Average Plots 

In order to give a general view the following plots were constructed whereby the means of both the seasons i. e. 

winter and summers were calculated as well degree 2, polynomial splines were added to the plots for individual 

seasons. 
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Figure 3.1: Lahore 

3.1.3 Density Plots 
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Figure 3.2: Karachi 

Density plots of absolute temperature data for both the locations are shown. The aim in this section is to show 

the plots visually to demonstrate the underlying distribution of the largest data set for each location, however, 

each respective location's underlying model distribution is dependent on the distribution of its error terms of 

the specific model being studied as discussed in section 2.1. Lahore's plot 3.3 has a head and shoulder pattern 

due to three factors: Lahore had about three years long imputed data utilising the mean value of 24.02° which 
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forms the head, the shoulders form the other two peaks on either ends occurring at 14.23°, 31.2° respectively 

corresponding to the hot and cold seasons. In comparison, 3.4 Karachi's density plot is a rather smooth and 

has two distinct peaks occurring at twenty degrees, twenty -seven degrees for summers and winters respectively. 

The aforementioned reasoning will become clearer in the next section. 

0. 12-

0. 10-

0.08-

~ 
" '0 0.06-

0.04-

0.02-

0.00-

' 10 ' 15 ' ' 20 25 
Temperature 

' 30 

Figure 3.3: Lahore 
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Figure 3.4: Karachi 
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3.1.4 Summer and Winter Comparative plots 
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Figure 3.5: Summer-Winter histograms overlaid with the density plot for Lahore 
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Figure 3.6: Summer-Winter histograms overlaid with the density plot for Karachi 
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3.1.5 Normal Q-Q plots 

Normal Q-Q Plot Normal Q-Q Plot 
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Figure 3.7: Karachi 
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3.2 Linear Models 
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Figure 3.8: Lahore 
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There are in total 16 models with 8 models for each location. They are discussed in the following order: 

1. Complete data model with no predictors 

2. Complete data model only with years as a predictor - simple model 

3. Complete data model with years, sine and cosine terms as predictors- harmonic model 

4. Extreme comparison models with no predictors 

5. Extreme comparison model only with years as predictor and a dummy indicator variable (1 for summers 

and 0 for winters) - (additive terms) 
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6. Extreme comparison model with sine and cosine terms in addition to the previously defined variables -

(additive terms) 

7. Extreme comparison model only with years as predictor and a a dummy indicator variable (1 for summers 

and 0 for winters) - (multiplicative terms) 

8. Extreme comparison model with sine and cosine terms in addition to the previously defined variables -

(multiplicative terms) 

3.2.1 Karachi's results 

Residuals: 

Min 1Q Median 

-16.0777 -2.0777 0.9223 

Coefficients: 

3Q Max 

2.9223 12.9223 

Estimate Std. Error t value Pr(>ltl) 

(Intercept) 26.07772 0.03498 745.5 <2e-16 *** 
Residual standard error: 4.175 on 14244 degrees of freedom 

This model's coefficient is significant i.e. f3o is significantly different from zero as indicated by the p-value and 

at time, t=O there is a temperature of 26.08°. The 'residual standard error' is a studentized version of the above 

given residuals from the model. These are used to check the equal variance assumption in B-P tests in all the 16 

models constructed. 

Residuals: 

Min 1Q Median 3Q Max 

-15.9551 -2.3509 0.6047 3.0286 13.3207 

Coefficients: 

Estimate Std. Error t value Pr(>ltl) 

(Intercept) 25.579970 0.078030 327.824 < 2e-16 *** 
Years 0.022121 0.003101 7.133 1.03e-12 *** 
Residual standard error: 4.167 on 14243 degrees of freedom 

Multiple R-squared: 0.00356,Adjusted R-squared: 0.00349 

F-statistic: 50.88 on 1 and 14243 DF, p-value: 1.029e-12 

This model's coefficient is significant and i.e. f3o is significantly different from zero as indicated by the p-value 

of the t-test and at time, t=O in this model there is a temperature of 25.58°. In addition, the slope of the years 

component is contributing on average a 0.02 degree per year to model. The model on the whole is considered to 

be significant as indicated by the p-value (for the F-test) in the last line. In this case only a mere 0.36% of the 

model's variation can be attributed to the time (i.e. year variable). 

Residuals: 

Min 1Q Median 3Q Max 

-15.5871 -2.5276 0.5216 3.1691 12.6806 

Coefficients: 
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Estimate Std. Error t value Pr(>ltl) 

(Intercept) 135.1261 14.2494 9.483 < 2e-16 *** 
Years -4.4624 0.6267 -7.121 1.12e-12 *** 
SINE 240.7968 34.1218 7.057 1.78e-12 *** 
COSINE -107.6734 14.0412 -7.668 1. 85e-14 *** 
Residual standard error: 4.158 on 14241 degrees of freedom 

Multiple R-squared: 0.008358,Adjusted R-squared: 0.008149 

F-statistic: 40.01 on 3 and 14241 DF, p-value: < 2.2e-16 

According to harmonic regression this model's coefficient is significant and has a f3o is significantly different from 

zero as indicated by the p-value of the t-test and at time, t=O in this model there is a temperature of 135.13°. In 

addition, the slope of the years component is contributing on average a -4.46 degree per year to model. The model 

on the whole is considered to be significant in comparison to a model where there are no predictors as indicated 

by the p-value in the last line. The sine and cosine terms have coefficients of 240.8 and -107.67 respectively. This 

contribution's significance can be 'judged ' by a major increase in R-squared statistics in comparison to say the 

last model. In this case 0.84% of the model's variation can be attributed to the range of predictors involved in 

this harmonic regression model. 

Residuals: 

Min 1Q 

-15.1961 -3.1961 

Coefficients: 

Median 

0.8039 

3Q Max 

3.8039 9.8039 

Estimate Std. Error t value Pr(>ltl) 

(Intercept) 26.1961 0.0927 282.6 <2e-16 *** 
Residual standard error: 4.54 on 2398 degrees of freedom 

This model's coefficient is significant and i.e. f3o is significantly different from zero as indicated by the p-value 

and at time, t=O there is a temperature of 26.20°. 

Coefficients: 

Estimate Std. Error t value Pr(>ltl) 

(Intercept) 18.777897 0.247570 75.849 < 2e-16 

as.factor(Indicator) [T.1] 10.248404 0.201234 50.928 < 2e-16 

Years 0.024273 0.008935 2.717 0.00664 

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 

Residual standard error: 4.928 on 2396 degrees of freedom 

Multiple R-squared: 0.5203,Adjusted R-squared: 0.5199 

F-statistic: 1300 on 2 and 2396 DF, p-value: < 2.2e-16 

*** 
*** 

** 

Basic interpretation: All the coefficients are significant as indicated by the model, however, this time round the 

interpretation is that at that the years component does contribute around 0.02 degrees per year however, the 

indicator function i.e. contributes 10 degrees in the summers. The model as a whole is significant as shown by 

the p-value. 52.03% of the variation in temperature is explained by the above given model's predictors. 
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Residuals: 

Min 1Q Median 3Q Max 

-10.0916 -1.4522 -0.0148 1.4445 8.9476 

Coefficients: 

Estimate Std. Error t value Pr(>ltl) 

(Intercept) 29.109111 0.228865 127.189 < 2e-16 

as.factor(Indicator) [T.1] -7.713643 0.400254 -19.272 < 2e-16 

Years 0.020098 0.004381 4.588 4.72e-06 

SINE 0.065938 0.110808 0.595 0.552 

COSINE -9.114813 0.235788 -38.657 < 2e-16 

Residual standard error: 2.416 on 2394 degrees of freedom 

Multiple R-squared: 0.7173,Adjusted R-squared: 0.7169 

F-statistic: 1519 on 4 and 2394 DF, p-value: < 2.2e-16 

*** 
*** 

*** 

*** 

Basic interpretation: All the coefficients except the sine term's are significant as indicated by their individual 

p-values corresponding to their t-statistics. The sine term is insignificant as it has a p-value greater than a 

of 0.05. At time t=O the intercept become 29.12 degrees. The year component's interpretation is around 0.02 

degrees per year however, the indicator variable i.e. contributes -7.7 degrees in the summers on average. The 

model as a whole is significant as shown by the p-value. 71.73% of the variation in temperature is explained by 

the above given model's predictors. 

Residuals: 

Min 1Q Median 3Q Max 

-12.239 -2.227 0.086 2.189 10.871 

Coefficients: 

(Intercept) 

as.factor(Indicator) [T.1] 

Estimate Std. Error t value Pr(>ltl) 

23.329834 0.209827 111.186 < 2e-16 *** 

4.808953 0.296031 16.245 < 2e-16 *** 
Years -0.012777 0.008287 -1.542 0.123 

as.factor(Indicator)[T.1] :Years 0.066809 0.011728 5.696 1.37e-08 *** 
Residual standard error: 3.234 on 2395 degrees of freedom 

Multiple R-squared: 0.4932,Adjusted R-squared: 0.4926 

F-statistic: 777 on 3 and 2395 DF, p-value: < 2.2e-16 

The model itself is significant so we reject the null hypothesis. The coefficients of the model are all significant 

as indicated by their p-values, except the year's component as it has a p-value greater than 0.05. The R2 is now 

49.32% so approximately 50 percent of the model's variation is explained by its predictor variables. Temperature 

at t=O is at 23.33 degrees. 

Residuals: 

Min 1Q Median 3Q Max 

-10.1691 -1.1997 -0.0045 1.1458 6.7885 

Coefficients: 
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Estimate Std. Error t value Pr(>ltl) 

(Intercept) 27.464888 0.356743 76.988 < 2e-16 

as. factor(Indicator) [T .1] -1.858218 0.505581 -3.675 0.000243 

Years -0.015147 0.005485 -2.762 0.005795 

SINE -2.646601 0.223691 -11.831 

COSINE -7.257198 0.351940 -20.621 

as.factor(Indicator)[T.1] :Years 0.070226 0.007763 9.047 

as.factor(Indicator)[T.1] :SINE 3.973578 0.250801 15.844 

as.factor(Indicator)[T.1]:COSINE 4.232484 0.533725 7.930 

Residual standard error: 2.14 on 2391 degrees of freedom 

Multiple R-squared: 0.7784,Adjusted R-squared: 0.7778 

F-statistic: 1200 on 7 and 2391 DF, p-value: < 2.2e-16 

< 2e-16 

< 2e-16 

< 2e-16 

< 2e-16 

3.33e-15 

*** 
*** 
** 
*** 
*** 
*** 
*** 
*** 

The model itself is significant so the null hypothesis is rejected. The coefficients of the model are all significant 

as indicated by their p-values, the R squared value is now 77.84% so approximately 78 percent of the model's 

variation is explained by its predictor variables. Temperature at t=O is at 27.46 degrees. 

3.2.2 F- test for linear model comparison 

Model 1: Temperature- Years 

Model 2: Temperature - Years + SINE + COSINE 

Res.Df RSS Df Sum of Sq F Pr(>F) 

1 14243 247372 

2 14241 246180 2 1191.2 34.453 1.183e-15 *** 

Model 1: Temperature - as.factor(Indicator) * Years 

Model 2: Temperature - as.factor(Indicator) * (Years + SINE+ COSINE) 

Res.Df RSS Df Sum of Sq F Pr(>F) 

1 2395 25053 

2 2391 10953 4 14100 769.48 < 2.2e-16 *** 

Model 1: Temperature - as.factor(Indicator) + Years + SINE + COSINE 

Model 2: Temperature - as.factor(Indicator) * (Years + SINE + COSINE) 

Res.Df RSS Df Sum of Sq F Pr(>F) 

1 2394 13974 

2 2391 10953 3 3020.6 219.79 < 2.2e-16 *** 

Model 1: Temperature - 1 

Model 2: Temperature - as.factor(Indicator) * (Years + SINE + COSINE) 

Res.Df RSS Df Sum of Sq F Pr(>F) 

1 2398 49436 

2 2391 10953 7 38483 1200.1 < 2.2e-16 *** 

Model 1: Temperature - as.factor(Indicator) +Years 

Model 2: Temperature - as.factor(Indicator) * Years 
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Res.Df RSS Df Sum of Sq 

1 2396 25392 

F Pr(>F) 

2 2395 25053 1 339.44 32.450 1.373e-08 **** 

Model 1: Temperature - 1 

Model 2: Temperature - as.factor(Indicator) * Years 

Res.Df RSS Df Sum of Sq F Pr(>F) 

1 2398 49436 

2 2395 25053 3 24383 776.97 < 2.2e-16 *** 

Model 1: Temperature - as.factor(Indicator) +Years 

Model 2: Temperature - as.factor(Indicator) + Years + SINE + COSINE 

Res.Df RSS Df Sum of Sq F Pr(>F) 

1 2396 25392 

2 2394 13974 2 11419 978.14 < 2.2e-16 *** 

Model 1: Temperature - 1 

Model 2: Temperature - as.factor(Indicator) + Years + SINE + COSINE 

Res.Df RSS Df Sum of Sq F Pr(>F) 

1 2398 121307 

2 2394 42837 4 78470 1096.4 < 2.2e-16 *** 

All the above model tests show that adding predictors lead to a rejection of the null hypothesis and the models 

in each case are said to be significant in comparison to the first one which shows that increasing the number of 

variables has lead to a better model. 

3.2.3 Lahore's Results 

Residuals: 

Min 1Q Median 3Q Max 

-17.036 -3.036 -0.019 4.964 16.964 

Coefficients: 

Estimate Std. Error t value Pr(>ltl) 

(Intercept) 24.03630 0.05103 471.1 <2e-16 *** 
Residual standard error: 6.32 on 15338 degrees of freedom 

This model's coefficient is significant and i.e. {30 is significantly different from zero as indicated by the p-value 

and at time, t=O there is a temperature of 24.04°. 

Coefficients: 

Estimate Std. Error t value Pr(>ltl) 

(Intercept) 23.396994 0.122662 190.744 < 2e-16 *** 
Years 0.028481 0.004876 5.841 5.29e-09 *** 
Residual standard error: 6.551 on 14241 degrees of freedom 

Multiple R-squared: 0.00239,Adjusted R-squared: 0.00232 

F-statistic: 34.12 on 1 and 14241 DF, p-value: 5.29e-09 
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This model's coefficient is significant and i.e. f3o is significantly different from zero as indicated by the p-value 

of the t-test and at time, t=O in this model there is a temperature of 23.40°. In addition, the slope of the years 

component is contributing on average a 0.03 degrees per year to model. The model on the whole is considered to 

be significant as indicated by the p-value in the last line. In this case only a mere 0.24% of the model's variation 

can be attributed to the time (i.e. year variable). 

Coefficients: 

Estimate Std. Error t value Pr(>ltl) 

314.535 <2e-16 *** (Intercept) 23.42390 

Years 0.02727 

SINE 

COSINE 

-0.89793 

-7.30699 

0.07447 

0.00296 9. 211 

0.04713 -19.053 

0.04712 -155.065 

<2e-16 *** 
<2e-16 *** 

<2e-16 *** 
Residual standard error: 3.976 on 14239 degrees of freedom 

Multiple R-squared: 0.6324,Adjusted R-squared: 0.6324 

F-statistic: 8167 on 3 and 14239 DF, p-value: < 2.2e-1 

This model's coefficient is significant and i.e. f3o is significantly different from zero as indicated by the p-value 

of the t-test and at time, t=O in this model there is a temperature of 23.42°. In addition, the slope of the years 

component is contributing on average a 0.03 degree per year to model. The model on the whole is considered 

to be significant in comparison to a model where there are no predictors as indicated by the p-value in the last 

line. Residual standard error again are used in the aforementioned model to test for homoscedasticity. The sine 

and cosine terms have coefficients of -.89 and -7.31 respectively. This contribution's significance can be 'judged 

' by a major increase in R-squared statistics in comparison to say the last model. In this case of 63.24% of the 

model's variation can be attributed to all the predictors involved in this harmonic regression model. 

Residuals: 

Min 1Q Median 3Q Max 

-17.448 -4.448 -0.431 5.552 15.552 

Coefficients: 

Estimate Std. Error t value Pr(>ltl) 

(Intercept) 24.4483 0.1452 168.4 <2e-16 *** 
Residual standard error: 7.112 on 2398 degrees of freedom 

This model's coefficient is significant and i.e. f3o is significantly different from zero as indicated by the p-value 

and at time, t=O there is a temperature of 24.45°. 

Coefficients: 

(Intercept) 

Estimate Std. Error t value Pr(>ltl) 

18.777897 0.247570 75.849 < 2e-16 *** 
as.factor(Indicator)[T.1] 10.248404 

Years 0.024273 

0.201234 50.928 < 2e-16 *** 
0.008935 2.717 0.00664 ** 

Residual standard error: 4.928 on 2396 degrees of freedom 

Multiple R-squared: 0.5203,Adjusted R-squared: 0.5199 

F-statistic: 1300 on 2 and 2396 DF, p-value: < 2.2e-16 
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Again all the coefficients are significant as indicated by the model, however, this time round the interpretation is 

that at that the years component does contribute around 0.02 degrees per year however, the indicator function 

i.e. contributes 10 degrees in the summers. The model as a whole is significant as shown by the p-value. 50.23% 

of the variation in temperature is explained by the above given model's predictors. 

Coefficients: 

Estimate Std. Error t value 

(Intercept) 20.78680 0.31313 66.384 

as.factor(Indicator) [T.1] 6.23964 0.44177 14.124 

Years -0.06432 0.01237 -5.201 

as.factor(Indicator)[T.1] :Years 0.17746 0.01750 10.139 

Residual standard error: 4.827 on 2395 degrees of freedom 

Multiple R-squared: 0.5401,Adjusted R-squared: 0.5395 

F-statistic: 937.4 on 3 and 2395 DF, p-value: < 2.2e-16 

Pr(>ltl) 

< 2e-16 *** 
< 2e-16 *** 

2.15e-07 *** 
< 2e-16 *** 

Basic interpretation: All the coefficients are significant as indicated by the model, however, this time round the 

interpretation is that at that the years component does contribute around -0.06 degrees per year however, the 

indicator function i.e. contributes 10 degrees in the summers. The model as a whole is significant as shown by 

the p-value. 54.01% of the variation in temperature is explained by the above given model's predictors. 

Coefficients: 

Estimate Std. Error t value Pr(>ltl) 

(Intercept) 

as.factor(Indicator) [T.1] 

Years 

SINE 

COSINE 

27.07495 

-2.32551 

-0.06660 

-2.04467 

-9.93205 

as.factor(Indicator)[T.1] :Years 0.18104 

as.factor(Indicator)[T.1] :SINE 3.67568 

as.factor(Indicator) [T.1] :COSINE 7.22891 

0.65377 41.413 < 2e-16 *** 
0.92654 -2.510 0.0121 * 
0.01005 -6.625 4.26e-11 *** 
0.40994 -4.988 6.55e-07 *** 

0.64497 -15.399 < 2e-16 *** 
0.01423 12.726 < 2e-16 *** 

0.45962 7.997 1.96e-15 *** 
0.97812 7.391 2.01e-13 *** 

Residual standard error: 3.922 on 2391 degrees of freedom 

Multiple R-squared: 0.6968,Adjusted R-squared: 0.6959 

F-statistic: 784.8 on 7 and 2391 DF, p-value: < 2.2e-16 

The model itself is significant so we reject the null hypothesis. The coefficients of the model are all significant 

as indicated by their p-values, the R squared value is now 69.68% so approximately 70 percent of the model's 

variation is explained by its predictor variables. 

3.2.4 F- test for linear model comparison 

Model 1: Temperature " Years 

Model 2: Temperature - Years + SINE + COSINE 

Res.Df RSS Df Sum of Sq F Pr(>F) 

1 14241 611105 

2 14239 225153 2 385952 12204 < 2.2e-16 *** 
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Model 1: Temperature - as.factor(Indicator) * Years 

Model 2: Temperature - as.factor(Indicator) * (Years + SINE + COSINE) 

Res.Df RSS Df Sum of Sq F Pr(>F) 

1 2395 55793 

2 2391 36786 4 19007 308.85 < 2.2e-16 *** 

Model 1: Temperature - as.factor(Indicator) + Years + SINE + COSINE 

Model 2: Temperature - as.factor(Indicator) * (Years + SINE + COSINE) 

Res.Df RSS Df Sum of Sq F Pr(>F) 

1 2394 42837 

2 2391 36786 3 6050.8 131.09 < 2.2e-16 *** 

Model 1: Temperature - 1 

Model 2: Temperature - as.factor(Indicator) * (Years + SINE + COSINE) 

Res.Df RSS Df Sum of Sq F Pr(>F) 

1 2398 121307 

2 2391 36786 7 84521 784.8 < 2.2e-16 *** 

Model 1: Temperature - as.factor(Indicator) +Years 

Model 2: Temperature - as.factor(Indicator) * Years 

Res.Df RSS Df Sum of Sq F Pr(>F) 

1 2396 58188 

2 2395 55793 1 2394.9 102.80 < 2.2e-16 *** 

Model 1: Temperature - 1 

Model 2: Temperature - as.factor(Indicator) * Years 

Res.Df RSS Df Sum of Sq F Pr(>F) 

1 2398 121307 

2 2395 55793 3 65514 937.43 < 2.2e-16 *** 

Model 1: Temperature - as.factor(Indicator) +Years 

Model 2: Temperature - as.factor(Indicator) + Years + SINE + COSINE 

Res.Df RSS Df Sum of Sq F Pr(>F) 

1 2396 58188 

2 2394 42837 2 15351 428.96 < 2.2e-16 *** 

Model 1: Temperature - 1 

Model 2: Temperature - as.factor(Indicator) + Years + SINE + COSINE 

Res.Df RSS Df Sum of Sq F Pr(>F) 

1 2398 121307 

2 2394 42837 4 78470 1096.4 < 2.2e-16 *** 

All the above model tests show that adding predictors lead to a rejection of the null hypothesis and the models 

in each case are said to be significant in comparison to the first one in each of the above cases. 
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3.3 BreuschPagan and Akaike information criterion tests 

Model DF B-P test Karachi Lahore 

1 Not applicable/0 Not applicable Not applicable Not applicable 

2 1 Heteroscedastic 6.74E-17 5.82E-171 

3 3 Heteroscedastic 1.98E-45 2.05E-138 

4 Not applicable/0 Not applicable Not applicable Not applicable 

5 2 Heteroscedastic 7.91E-121 1.22E-37 

6 4 Heteroscedastic 1.62E-87 3.92E-118 

7 3 Heteroscedastic 1.28E-116 6.83E-44 

8 7 Heteroscedastic 4.68E-100 1.78E-78 

AIC % ..0. in AIC AIC % ..0. in AIC 
Model DF 

Karachi within models Lahore within models 

1 0 81,142.50 100,093.10 

2 1 81,028.94 -0.140% 93,965.36 -6.122% 

3 3 81,093.70 0.080% 79,747.88 -15.131% 

4 0 14,070.53 16,224.00 

5 2 11,047.40 -21.486% 14,465.68 -10.838% 

6 4 12,476.26 12.934% 13,734.82 -5.052% 

7 3 12,445.98 -0.243% 14,366.75 4.601% 

8 7 10,469.12 -15.884% 13,375.50 -6.900% 

Comments 
The fact that model 8 in both the locations are the best model according to the AIC criterion can be attributed 

to the fact that it has the lowest likelihood function for both the locations and also had the highest number of 

variables. Both are heteroscedastic and naturally have the highest R2 for their locations. 

20 



4. Conclusion and Discussion 

In general all the model had significant components except one. All the models as shown by B-P tests in section 

indicate that the models were were not homoscedastic. This in itself does not make the analysis redundant. 

However, I would like to stress on the fact that further improvements such as adding a greater number of predictor 

variables as well as using better imputation techniques instead of pure mean imputation, with generally greater 

stochasticity could perhaps lead to a better analysis. There are many factors which have lead me to conclude 

that although significant the changes in temperature are miniscule they have no real direct impact on the human 

body however, I do agree with Wagner (1996) that weather events have become more extreme partly due to 

the main measured variable i.e. temperature as well as other factors such as inadequacy of rescue services, 

the lack of general infrastructure in the location of interest. In my viewpoint, the purpose of this project was 

to primarily explore R's computational capabilities and in the process also apply these to a weather data set. 

My own achievement at the moment remains limited to a better understanding of data analysis, the problems 

involved, as well as the practical application of such studies. I also believe that such projects can help academic 

institutions further develop potential industry related partnerships. 

Also, there are a few areas where such reports are utilised both within and outside Pakistan specially in 

feasibility studies such as the one undertaken by the Employment and Pakistan SNS (2006). Moreover, such 

studies developed and carried out with a greater number of parameters can aid governments, their policy and 

decision makers in their decision making progress. At the grass-roots level such a project may aid in the 

planning of flood barriers and the like which can help save several lives as well as the prevent the direct and 

indirect economic losses associated with such events. For example, in 2010, flash floods Pakistan experienced 

amongst one of the most devastating floods in history, which displaced several rural area families and stretched 

the nation's fundamental armed resources. UN Secretary-General Ban Ki-moon described the flash floods as, 

" . . . a slow-motion tsunami . Its destructive powers will accumulate and grow with time" 

Figure 4.1: 2010 Flash Floods, courtesy IMC UK 
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4.1 Future work 
I believe this project has a lot of potential to be further developed into a better model. In the near future, 

I intend to grow and extend this model with a higher number of predictors such as station pressure, humidity 

levels, extreme weather events with a deeper theoretical knowledge perspective gained through future courses like 

Bayesian Inference, Time Series Analysis, Generalised Linear Models along with possible corporate collaboration 

with the insurance industry and the Department of Geology, University of Canterbury. 

4.2 Research Experience 
Although, this was my first research experience but I strongly believe it gave me an excellent insight into 

the research carried out at Canterbury as well as its practical implications for a research based career. Also 

this particular project allowed me to apply the skills learnt in theoretical courses such as Monte Carlo Methods, 

Statistical Inference and Introductory Statistics. Finally, it also also gave me the chance to experience the 

problems faced by real life data analysts related to missing data, violation of important assumptions underlying 

the linear models. I may now safely admit that I can use R and Jh\TgXfor data analysis reports. 

Acknowledgements 
I would like to specifically thank and acknowledge Dr. Elena Moltchanova for her guidance and encouragement 

for letting me enrol in this summer project and explaining every aspect of the project. Also, I would like to 

thank the Department of Mathematics and Statistics for providing essential facilities as well as the necessary 

funding opportunity without which this would not have been possible. 

22 



A. R Command List 

Commands I utilised in R 

library- to load external packages such as session (saves, retrieves R session history), date and chron (used 

for date objects) , ggplot2 (graphics) 

fix- manipulation of a data frame 

attach - makes data frame objects easily available 

detach - opposite of attach 

rm - removes an item from the R Session 

ls - lists R Session's objects 

search - loads current list of R packages in use 

names- provides name of an R object 

as.numeric - turns an item into a numeric class 

substr - used for extracting information from a vector 

unclass, factor, length, with, by, list, data.frame, lapply, matrix, unlist, aggregate,rbind 

normally used in combination with other commands, for data manipulation format, subset, seq, nrows, 

rownames 

class - checks the object's class, 

round, as.character, as.integer - used for object manipulation 

na.omit - used in handling NaN values 

mean, summary, range,anova, sd - statistical functions 

as.Date, years, mdy.date, julian - handling date objects 

value - extracts values 

lm - to construct linear models 
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B. R Code 

###########Laying out Lahore's complete timeline - to calculate the ############# 

######################### total number of NaN values ############################ 

start=as.Date("1957-07-01") 

end=as. Date ("2011-12-30") 

timeline <- seq(start1,end1,by='1 day') 

length(wlhe$Month)-length(timeline) 

########### building of data frames for actual analysis ######################## 

wlhe_main <- data.frame(Date=as.Date(wlhe$Proper_Date),value=as.integer(wlhe$Temperature)) 

wlhe_main_1 <- data.frame(Date=as.Date(timeline), Temperature= with(wlhe, value[match(timeline, 

Date)])) 

#################### replacing missing values with mean ######################## 

wlhe_main_1$Temperature[is.na(wlhe4$Temperature)] <- mean(wlhe_main_1$Temperature, na.rm TRUE; 

#################### further data set amendments ############################### 

#############to convert julian dates to no. of years and calculate############# 

######### sine and cosine components for Harmonic regression ################### 

rownames(wlhe_main_1) <- seq(length=nrow(wlhe_main_1)) 

wlhe_main_1$Day<- month.day.year(unclass(wlhe_main_1$Date))$day 

wlhe_main_1$Year<- month.day.year(unclass(wlhe_main_1$Date))$year 

wlhe_main_1$Month <- month.day.year(unclass(wlhe_main_1$Date))$month 

wlhe_main_1$Years <- julian(wlhe_main_1$Month, wlhe_main_1$Day, wlhe_main_1$Year)/365.224 

wlhe_main_1$SINE<- with(wlhe_main_1, sin((2*pi*wlhe_main_1$Years))) 

wlhe_main_1$COSINE<- with(wlhe_main_1, cos((2*pi*wlhe_main_1$Years))) 

####################### subsetting the main hot and cold - lahore ########################### 

hot_lhe <- subset(wlhe_main_1, Month==c(5:8)) 

rownames(hot_lhe) <- seq(length=nrow(hot_lhe)) 

cold_lhe <- subset(wlhe_main_1, Month==c(10,11,12,1)) 

rownames(cold_lhe) <- seq(length=nrow(cold_lhe)) 

cold_lhe$Indicator<- with(cold_lhe, 0) 

hot_lhe$Indicator<- with(hot_lhe, 1) 

######### extreme comparison data set with only the summers and winters ######## 

ecomp_lhe<- rbind(hot_lhe,cold_lhe) 
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########################## mean value curves ############################################## 

###################### for summer and winters alike ############################ 

mean_cold_lhe <-data.frame(mean_dates= aggregate(x=as.numeric(as.Date(cold_lhe$Date)), 

by list(factor(cold_lhe$Year)), FUN "mean"),mean_years = aggregate(x =cold_lhe$Temperature, 

by list(factor(cold_lhe$Year)), FUN "mean")) 

mean_cold_lhe$Date<- with(mean_cold_lhe,as.Date(chron(round(mean_cold_lhe$mean_dates.x)), 

format="%m/%d/%y")) 

mean_hot_lhe <-data.frame(mean_dates= aggregate(x=as.numeric(as.Date(hot_lhe$Date)), 

by list(factor(hot_lhe$Year)), FUN "mean"),mean_years = aggregate(x =hot_lhe$Temperature, 

by list(factor(hot_lhe$Year)), FUN "mean")) 

mean_hot_lhe$Date<- with(mean_hot_lhe,as.Date(chron(round(mean_hot_lhe$mean_dates.x)), 

format="%m/%d/%y")) 

######################################### plots################################# 

plot_comp_lhe <- ggplot(wlhe_main_1, aes(as.Date(Date), Temperature))+ 

geom_smooth(data=cold_lhe, method="lm", formula=y~poly(x, 2),colour="dark blue", se=F, size=2) 1 

geom_smooth(data=hot_lhe, method="lm", formula=y~poly(x, 2),colour="dark red", se=F, size=2) + 

geom_point(data=mean_cold_lhe, colour="dark red") + 

geom_point(data=mean_hot_lhe) + opts(title ="Lahore Temperature Outlook");plot9_lhe 

plot_density_lhe<- qplot(wlhe_main_1$Temperature, geom="density", 

main="Lahore Temperature Outlook")+ xlab("Temperature");plot10_lhe # 

################################################################################ 

###the density plot ''geom'' makes the assumption that the data is unbounded,# 

##########continuous and smooth which it may or may not be in practice########## 

###################### comparative plot ####################################### 

histogram_lhe<- ggplot(wlhe_main_1, aes(Temperature)) + 

geom_histogram(aes(y= .. density .. ), data= cold_lhe, fill="lightcyan3", colour 

alpha= 0.8, binwidth=1.2) + 

"lightcyan3", 

geom_histogram(aes(y= .. density .. ), data hot_lhe, fill="orangered",colour "orangered", 

alpha= 0.6, binwidth=1.2) + 

opts(panel.background=theme_rect(fill="NA", colour="black")) 

######## comparative histogram overlaid by a density plot ###################### 

histogram_lhe + stat_density(aes(y= .. density .. ), adjust=1.4, data=wlhe_main_1, fill="NA", 

colour="red", size=1.05) + xlab("Temperature (C)") + opts(axis.text.x=theme_text(size=10))+ 

opts (axis. title. x=theme_ text (size=10, face= 11 bold")) 
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################################ Normal Q-Q plots ############################## 

par(mfrow=c(2,2)) 

qqnorm(studres(m1_l), xlab="Linear Model 1") + abline (0, 1) 

qqnorm(studres(m2_l), xlab="Linear Model 2") + abline (0, 1) 

qqnorm(studres(m3_l), xlab="Linear Model 3") + abline (0, 1) 

qqnorm(studres(m4_l), xlab="Linear Model 4") + abline (0, 1) 

par(mfrow=c(2,2)) 

qqnorm(studres(m5_l), xlab="Linear Model 5") + abline(0,1) 

qqnorm(studres(m6_l), xlab="Linear Model 6") + abline(0,1) 

qqnorm(studres(m7_l), xlab="Linear Model 7") + abline(0,1) 

qqnorm(studres(m8_l), xlab="Linear Model 8") + abline(0,1) 

############################whole data models################################### 

summary(m3_1<- lm(Temperature-1, data=wlhe_main_1)) 

summary(m2_1<- lm(Temperature- Years + SINE + COSINE, data=wlhe_main_1)) 

summary(m1_1<- lm(Temperature-Years, data=wlhe_main_1)) 

#################### winter/summer extremes models ########################## 

summary(m4_1<- lm(Temperature-as.factor(Indicator)+Years + SINE + COSINE, data=ecomp_lhe)) 

summary(m5_1<- lm(Temperature -as.factor(Indicator)+Years,data = ecomp_lhe)) 

summary(m6_l<- lm(Temperature-1, data=ecomp_lhe)) 

############################## multiplication ################################# 

summary(m7_1<- lm(Temperature-as.factor(Indicator)*(Years+ SINE+ COSINE), data=ecomp_lhe)) 

summary(m8_l<- lm(Temperature -as.factor(Indicator)* Years,data = ecomp_lhe)) 

############################# F-tests to compare the plots##################### 

anova(m1_l,m2_l) 

anova(m8_l,m7_l) 

anova(m4_l,m7_l) 

anova(m6_l,m7_l) 

anova(m5_l,m8_l) 

anova(m6_l,m8_l) 

anova(m5_l,m4_l) 

anova(m6_l,m4_l) 
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