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1. What’s new in Grow 2.2? 

Grow 2.2 is based upon the original Grow 1.0 suite of programs developed by 

Meredith Jordan, Keiran Thompson, Ryan Bettens, Alexander Duncan and Michael 

Collins. A number of significant changes have been made to the original code. The 

major new features include: 

- addition of a Quantum Diffusion Monte Carlo (QDMC) module for 

calculation of the lowest rovibrational eigenstate of a system 

- python scripts to control the growing process, which replace the shell scripts 

in the original version. This makes the Grow package more robust and gives it 

greater portability. 

- the ability to use the quantum chemistry package Aces2 as a source of ab 

initio data, in addition to Gaussian. (Note: there is a known bug in the Aces 

code that calculates numerical second derivatives from first derivatives) 

- the ability to interpolate potential energy surfaces from density functional 

data, using any exchange or correlation functional implemented in Gaussian03 

- rearranged (modular) input files 

- a second collection of python scripts to control the growing process, designed 

to function on machines with queuing systems (NQS, PBS). 

These additions and improvements have been implemented by Deborah Crittenden 

and Keiran Thompson. As Grow 2.2 is significantly different to Grow 1.0, this user 

manual is written as stand-alone documentation, and some information from the Grow 

1.0 manual may be reproduced here. 
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2. Conceptual overview 

a. What is the Grow 2.2 package? 

The Grow 2.2 package is a collection of scripts and programs that allow the user to 

construct molecular potential energy surfaces for either unimolecular/bimolecular 

reactions or bound-state systems. Classical trajectory simulations are used to sample 

configuration space while constructing reactive surfaces while Quantum Diffusion 

Monte Carlo (QDMC) simulations are used for bound-state systems. Classical 

trajectory simulations can be carried out on a reactive surface to calculate reaction 

cross sections, observable properties of the products (such as angular momentum and 

vibrational energy distributions), and to explore the reaction mechanism. QDMC 

simulations can be carried out to calculate the lowest energy rovibrational state of a 

bound-state system, and to calculate the exact anharmonic zero point energy. 

 

b. How is a potential energy surface constructed? 

The potential energy surface is constructed as an interpolation of ab initio data. The 

algorithm requires ab initio calculation of the energy, energy gradient and second 

derivatives at a number of molecular configurations. The number of such calculations 

required depends on the size of the system, the quantity being calculated and the 

accuracy required of the potential energy surface. However, it is reasonable to expect 

that you will need to carry out a minimum of around a thousand ab initio calculations. 

The individual configurations and their associated energy information will be referred 

to as ‘data points’. The collection of data points that define the potential energy 

surface will be referred to as ‘the PES data set’. The Grow package is designed to 

produce the most accurate possible PES for the least number of ab initio calculations 

by carefully selecting the location of the data points from configurations accessed 

during a trajectory simulution (for reactive surfaces) or QDMC simulation (for bound-

state surfaces), as these represent the chemically relevant regions of configuration 

space. The algorithm for constructing the PES is illustrated diagrammatically below: 
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A detailed description of the theory and methodology underlying the Grow package 

can be found in the references at the end of this chapter. A brief description is given 

in Appendix 1. A simple (but informative) one-dimensional illustration of the 

interpolation scheme at work is provided in Appendix 2. 
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3. Ab initio methods available 
 

a. Gaussian (98 and 03) 

Analytic frequencies: hf, rhf, rohf, b3lyp, pw91, mp2, rmp2  

Analytic gradients: mp4(sdq), ccd, rccd, mp2-force (do not use mp2-force! Provided 

for debugging purposes only) 

Energies only: romp2, rmp4, mp4, ccsd, rccsd, ccsd(t),rccsd(t), mp2-en (do not use 

mp2-en! Provided for debugging purposes only) 

 

b. Aces2 

Analytic frequencies: rhf, uhf, rohf 

Analytic gradients: rmp2, ump2, romp2, rmp4, ump4, rqcisd, uqcisd, rqcisd(t), 

uqcisd(t), rccsd, uccsd, roccsd, rccsd(t), uccsd(t), roccsd(t), eom-ccsd, qccsd 

 

c. Tips and recommendations 

For ground state systems, we recommend using at least a density functional method 

such as B3LYP or PW91, as implemented in the Gaussian03 suite of ab initio 

programs. Of course, it is necessary to benchmark these methods against a higher 

level of ab initio theory for the relative energies of geometries in the chemically 

relevant regions of configuration space. Additional density functional methods can be 

easily incorporated by editing the g03_dat.py file: 

- add text ‘functional_name’ to the dictionary of methods and availability of 

derivatives in the available[‘analytic frequencies’] list 

- add the appropriate Gaussian03 command string to the dictionary of methods 

and command strings, following the syntax of the currently available density 

functional methods (B3LYP and PW91). It should only be necessary to make 

a direct copy and replace the functional name to effect this change. Note: In 

Gaussian03 it is necessary to specify BOTH the exchange AND correlation 

functionals. Hence the correct nomenclature for PW91 is PW91PW91. 

If a more systematic treatment of electron correlation is required, we recommend 

using second order Moller-Plesset Perturbation Theory (rmp2), as implemented in 

Gaussian03. If this treatment of electron correlation is insufficient, we recommend 

using a coupled-cluster method (either rccsd or rccsd(t)), as implemented in Aces2. 
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Coupled-cluster methods are recommended over configuration interaction methods as 

they possess better formal properties (most notably size-consistency) for an 

approximately equivalent computational cost. You will probably find, however, that it 

is impossible to construct a converged potential energy surface for any system with 

more than a couple of atoms within a reasonable time frame using these methods. If 

you do choose to use an Aces2 coupled-cluster method, we provide an important 

caveat here: Aces2 has a known bug in the code that calculates the second derivative 

matrix, which may introduce a small (but unquantifiable) error. Use with caution! 

For excited state systems, we recommend extra careful inspection of the level of ab 

initio theory required. If a density functional method is appropriate, then this will be 

by far the most computationally efficient method. Otherwise, we recommend using a 

restricted open coupled-cluster method (roccsd or roccsd(t)) or equations-of-motion 

coupled-cluster method (eom-ccsd) as implemented in Aces2, subject to the above 

caveat on Aces2 calculations. 
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4. Installing Grow 2.2 
 

Grow 2.2 is provided as a tarred archive. To extract the Grow 2.2 package, copy the 

archive to your home directory and execute the command: 

tar xvf grow2.2.tar 
(or tar –xvf grow2.2.tar for older versions of tar) 

The archive you have extracted should possess the following directory structure: 

 

You will need to ensure that grow2.2/bin/ is in your path. For C-shell users, this 

means adding a line similar to: 

set path = ($path /home/username/grow2.2/bin) 
to your .cshrc file. 

For bash users, this means adding a line similar to: 

PATH = $HOME/grow2.2/bin:$PATH; export PATH 
to your .profile file. 

In addition, you will need to have a python interpreter installed on your system, and 

accessible from the command line. C-shell users will need to have a line similar to: 

set path = ($path /usr/opt/python2.2/bin/python) 
in their .cshrc file, where /usr/opt/ is the directory where the python2.2 package has 

been installed. Similarly, bash users should have a similar line: 

PATH = /usr/opt/python2.2/bin/python:$PATH; export PATH 
in their .profile file. 

Finally, the grow scripts assume that you have the ab initio packages configured such 

that they may be executed from the command line by the user. Again, this requires the 

executables to be present in the user’s path (as above). 

grow_2.1 

bin example src 

bfinvert 
buckle 
choose 
interptraj 
makevecs 
py_scripts 
qdmc90 
trajstart 
utilities 
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Having successfully extracted the source code and template input files, the next step 

is to recompile the executables for the platform you are working on. To do this, you 

will have to go through each the directories in grow2.2/sourcecode (except the 

py_scripts directory) and edit the FFLAG and F77 variables at the top of the 

Makefile to conform with the Fortran compiler you are using, then re-make the files. 

We have provided appropriate Makefiles for compiling these executables on DEC 

Alpha machines and Linux machines. To remove the executables and object files 

from the sourcecode subdirectories (especially useful where disk quota limits are an 

issue), type make clean in each directory after having compiled the executables 

using make. 
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5. Setting up the system 
 

a. Deciding on a molecule/reaction and the appropriate dynamics method 

The first step is to decide what system it is you want to study and what it is you want 

to know about the system you are studying. Unfortunately, neither of these steps are 

automated, as yet. If you are interested in studying a reactive system – either 

dissociation of a unimolecular system into two fragments or a bimolecular collision 

reaction or adhesion of a molecule to a surface – then you will need to use the 

classical trajectory code to perform your sampling and calculate your observables. If, 

on the other hand, you are interested in calculating the ground state nuclear 

vibrational wavefunction of a bound system – the method is equally applicable to 

tightly and loosely bound systems – then you will need to use the quantum diffusion 

Monte Carlo code.  

 

b. Deciding on an appropriate level of ab initio theory 

It is important to note that you need to choose an appropriate level of ab initio theory 

for the problem you are interested in. Clearly, the chemical accuracy of the results 

produced by Grow will depend on the chemical accuracy of the method you choose to 

construct the PES. To state the contrapositive; if you choose a chemically inaccurate 

ab initio method to construct the PES, then Grow will construct an accurate 

approximation to a chemically inaccurate PES, resulting in chemically inaccurate 

calculated observables. While it would be ideal to be able to use a highly correlated 

method with a large basis set for every problem of interest, in practice there must be a 

trade-off between chemical accuracy and computational expense.  

Beside the usual consideration of the time required to calculate the energy of your 

system, it is also necessary to consider the time required to calculate the first and 

second derivatives of the energy. This is dependent on both the number of 

calculations required to calculate the derivatives and the time each calculation will 

take. 
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Method Number of calculations 

analytic second derivatives 1 

analytic gradients 2(3N-6) + 1 

energies only (3N-6)(3N-5) + 1 

  

Overall, it is always fastest to calculate second derivatives analytically, and 

calculating second derivatives by numerical differencing of first derivatives is always 

faster than calculating second derivatives by numerical differencing of energies. This 

generally becomes a major consideration in choosing which method to use to 

construct a PES, given the large number of ab initio calculations necessary. 

 

c. Generating geometries for the initial data set 

If you are constructing a PES for a reactive system, you will need to perform some 

preliminary quantum chemistry to evaluate a known reaction path. If you know that 

there are multiple reaction paths, then it is wise to include as much information about 

these paths as you can access. It is important to note that you must include the 

minimum energy geometry for the reactants and sufficient long-range data for the 

separated products. The minimum number of geometries required is three: one which 

represents the minimum energy geometry, one which represents the transition state 

and one which represents the separated products. If the products are neutral, then an 

interfragment separation of 10-13 Bohr is probably sufficient for negligible remaining 

interaction. If the fragments possess large dipoles, then 15-20 Bohr may be better and 

if one species is charged then an interfragment separation of > 20 Bohr will probably 

be necessary. 

If you are constructing a PES for a bound system, you will need to first determine all 

the low-lying minima and, if possible, transition states to interconversion between 

those minima. While only one geometry, corresponding to the global minimum, is 

required to generate the initial data set, convergence of the potential energy surface 

can be rapidly accelerated by judicious choice of initial geometries. 
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6. Setting up the input files 
 

a. Overview 

Before describing the input files in detail, a summary table of the input files and the 

dependencies of each program on these files is provided: 

 

File Programs 

IN_ATOMPERMS trajstart, interptraj, qdmc 

IN_DX_SIZE diffsteps 

IN_EMS trajstart 

IN_GROW startPOT, grow 

IN_INTERP trajstart, interptraj, qdmc 

IN_ISEED trajstart, interptraj, qdmc 

IN_QDMC qdmc 

IN_SYSTEM trajstart, interptraj, qdmc 

IN_TRAJ interptraj 

 

In the following example input files, water will be used as the test system. The 

example files will be given and discussed in the same order as you will need to set 

them up. Please note that all lines in the input files must be included – the format of 

these files is assumed by the programs that use them. 
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b. IN_SYSTEM 

 
 

IN_SYSTEM file for water 
enter the number of atoms 
3 
enter the chemical symbols for the atoms, separated by commas 
O,H,H 
enter the atomic masses in amu 
15.9994 1.00794 1.00794 
The number of atoms in fragments a and b respectively are 
3,0 
The atom identification numbers in fragment a are 
1,2,3 
The atom identification numbers in fragment b are 
 
enter the bond lengths, in order, which give the cutoff for a 
real bond to exist between atoms i and j (units are bohr) 
4.0 
4.0 

4.0 

 

Notes: 

Line 1: A heading to describe the relevant system 

Lines 2 and 3: The number of atoms may not exceed the maximum value specified by 

the parameter natomm in various fortran programs (generally found in the .inc files). 

The programs have been set up with natomm = 35. If you wish to study a larger 

system than this, you will need to edit the source files. 

Lines 4 and 5: Enter the element symbols, separated by commas only (no spaces). The 

order of the atoms here is important. All previous ab initio jobs run must have the 

atoms in this order. All subsequent ab initio jobs will have the atoms in this order. 

Lines 6 and 7: The atomic masses must be entered in the same order as the chemical 

symbols 

Lines 8 – 13: These parameters define the reactant species in the bimolecular collision 

or unimolecular reaction, and hence are used by programs associated with performing 
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classical trajectory simulations. For bound-state calculations, these lines must still be 

present, but they are skipped during the process of reading in parameters. 

Lines 14,15 to end: Again, these parameters are only necessary for defining fragments 

during a reaction. If the distance between two atoms is less than the bond length given 

here, the atoms are considered bound. Conversely, the atoms are considered unbound 

when their separation exceeds the value given here. Note: the identity of the bonds are 

defined by: 

 

1-2     

1-3 2-3    

1-4 2-4 3-4   

1-5 2-5 3-5   

     

1-N 2-N 3-N  N-N 

 

The list of bond lengths is generated by reading down each column, starting with 

column 1 and appending subsequent columns. 
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c. IN_INTERP 

 
 

IN_INTERP file for water 
Enter 1 or 2 for one or two part weight function 
1 
Enter the weight powers q and p 
2, 9 
Enter the weight cutoffs for the inner and outer neighbour lists 
1.d-5   1.d-4 
Enter the # of time steps for updates of the outer and inner neighbour lists 
10   5 
Enter the maximum acceptable energy from POT, and expected minimum energy 
-75.5000000       -75.70622799 
Enter how many neighbours are used to define the confidence lengths 
10 
Enter the energy error tolerance which defines the confidence lengths 
5.d-4 
Number of clusters for neighbourlist reduction 
1 

 

Line 1: A heading to describe the relevant system 

Lines 2 and 3: Generally, the two-part weight function should be used. However, 

when the number of data points is less than approx. 100 (calculated as the total 

number of data points, including points generated by nuclear permutation symmetry = 

Nperm  × Ndata), there will be insufficient data to allow this. The one-part weight 

function should only be used to grow the surface until there are sufficient data points 

to use the two-part weight function. 

Lines 4 and 5: The weight powers (q and p) should be given by q=2, p >> (3N-3)/2, 

where N is the number of atoms. We recommend p = 9 for a 3 atom system, p = 12 

for 4 and 5 atoms systems and p =15 for 6 atoms.  

Lines 6 and 7: The weight cutoffs define the minimum contribution each data point 

must make to determining the overall energy (in the Taylor series summation) for the 

data point to be included on a list of data points “near” an arbitrary configuration. If 

the weight cutoff is small, more data points will be included on the neighbourlist, and 

your simulations will run more slowly. However, the accuracy of the surface will be 
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higher. Conversely, if the weight cutoff is larger, less data points will be included on 

the neighbourlist and your simulations will run faster, although the accuracy of the 

surface will be lower. The weight cutoffs can probably be left at the values shown, 

1.d-5 and 1.d-4. This implies an error of around 0.01 mEh in the PES due to neglect of 

minor contributions to the Taylor series summation. 

Lines 8 and 9: The number of time steps for updates of the inner and outer 

neighbourlists are predominantly dependent on the time step, for both QDMC and 

trajectory simulations. We recommend setting these values to 10 and 5. If the 

neighbourlists are not updated frequently enough, trajectories will fail to conserve 

energy. The QDMC algorithm is less sensitive to small discontinuities in the PES and 

thus also less sensitive to the values of these parameters. 

Lines 10 and 11: For trajectory simulations, the maximum acceptable energy should 

be set to zero while the PES is growing (all molecular energies are negative, so all are 

acceptable). The expected minimum energy should be set equal to the lowest energy 

data point in the POT file. For QDMC simulations, the aim is to accurately describe 

the low energy regions of the PES. In order to increase computational efficiency, we 

recommend setting the maximum acceptable energy equal to approximately double 

the harmonic zero-point energy of the system of interest. 

Note: during the early iterations of the growing process, the scheme may choose some 

new data points at ridiculous geometries with very high energies. When the PES is 

finished growing, there may be a small increase in interpolation accuracy is such data 

points are disregarded. Setting the maximum energy below the energies of such data 

points will cause the interpolation section of the QDMC or trajectory programs to 

completely disregard such data points. 

Lines 12-15: These parameters are used with the 2-part weight function only. The 

number of neighbours used to define the confidence radius is the variable M in 

Equation 3.13 of Bettens & Collins, J. Chem. Phys. 111, 816 (1999). The actual value 

is not critical. For a four-atom system, a value of 24 – 48 is suitable, for 5 or more 

atoms, a value in the range 50 – 150 may be more appropriate. The energy error 

tolerance is the parameter Etol in Bettens & Collins, J. Chem. Phys. 111, 816 (1999). 

A value of 2.d-4 (0.2 mEh) is reasonable for a four-atom system, while a larger system 

might be given a slightly larger value. This is approximately how small you might 

expect the average interpolation error to be. 
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Lines 16-17: The number of clusters for neighbourlist reduction parameter is only 

used by the QDMC code. You should aim to have between 20-50 data points per 

cluster by considering the total number of data points, including points generated by 

nuclear permutation symmetry = Nperm  × Ndata. 
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d. IN_ATOMPERMS 

 
 

IN_ATOMPERMS file for water 
 enter the order of the group 
          2 
 enter each atomic perm old..new, separated by a comment line 
           1           1 
           2           2 
           3           3 
  ******* 
           1           1 
           2           3 
           3           2 
  ******* 

 

This file defines the symmetry of the molecule in terms of the allowed permutations 

of the indistinguishable atoms in the molecule. You can generate the list of all 

possible permutations by executing the cnpiperms utility from the working directory, 

provided you have already set up the IN_SYSTEM file. If this results in a group 

which is unmanageably large, and you wish to regard some permutations as 

infeasible, a smaller permutation symmetry group can be constructed by either: 

- labelling the atoms in the IN_SYSTEM file e.g. O,H1,H2 will result in 

distinguishable hydrogen atoms 

- constructing the IN_ATOMPERMS file by hand. If you wish to construct this 

file by hand, the contents of the file should adhere to the following syntax: 

Line 1: A heading to describe the relevant system 

Lines 2 and 3: A heading – “enter the order of the group” followed by the number of 

permutations you wish to allow, entered on a separate line 

Line 4: A heading – “enter each atomic permutation, old… new, separated by a 

comment line” 

Line 5 to end: the permutations, in the format shown above, with a blank line between 

each set. Note: the first set of permutations must correspond to the identity 

permutation. 
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e. IN_DX_SIZE 

 
 

step size for numerical derivatives by finite difference 
0.001 

 

Line 1: title line 

Line 2: the step size (in Bohr) for displacements in internal coordinates 

 

 

f. IN_ISEED 

 
 

 
  2109689680 

 

Line 1: blank line 

Line 2: initial seed for random number generator 
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g. IN_GROW 

 

################################################ 
## Grow2.2 input file to control python scripts - simple   ## 
################################################ 
molecule name                       water 
maximum number of iterations       4 
convergence check every             4 
sampling method is                  qdmc 
convergence method is               qdmc 
rms points to add per iteration     1 
hwt points to add per iteration     9 
ab initio package               g98 
charge                           0 
spin                             1 
scratch directory               /scratch/ 
read-write file                  default 
memory limit                     100mb 
number of processors            default 

job type (simple or scaled)     simple 
simple method                   mp2 
simple basis set 
O H 0 
3-21G 
**** 
 
+++ 
universal basis set             3-21G 
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################################################ 
## Grow2.2 input file to control python scripts - scaled  ## 
################################################ 
molecule name                       water 
maximum number of iterations       4 
convergence check every             4 
sampling method is                  qdmc 
convergence method is               qdmc 
rms points to add per iteration     1 
hwt points to add per iteration     9 
ab initio package               g98 
charge                           0 
spin                             1 
scratch directory    /scratch/ 
read-write file                  default 
memory limit                     100mb 
number of processors            default 
job type (simple or scaled)     scaled 
high correlation method         mp4(sdq) 
low correlation method          mp2 
small basis set 
O H 0 
3-21G 

**** 
 
+++ 
large basis set 
O H 0 
6-31G 
**** 
 
+++ 
universal basis - small         3-21G 
universal basis - large         6-31G 
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Line 1: The name of the system is used as the suffix for a large number of temporary 

files created by the script. This name is used for reference purposes by the scripts, and 

must be referred to when restarting a startPOT or grow run. 

Line 2: The maximum number of iterations is the number of cycles of sampling, 

choosing and ab initio calculations that will be carried out by the script. The total 

number of ab initio calculations that will be carried out is equal to the number of 

iterations times the total number of points (h-weight and rms) chosen per iteration. 

The QDMC sampling calculations use the input file IN_QDMC.small and the 

trajectory sampling calculations use the input file IN_TRAJ.small. 

Line 3: Convergence check calculations use the input files IN_QDMC.large and 

IN_TRAJ.large for QDMC and trajectory simulations, respectively. 

Lines 4 and 5: The keywords for sampling and convergence check simulations are 

qdmc (for quantum diffusion Monte Carlo) and classical (for classical trajectories). 

Lines 6 and 7: The number of points to add per iteration using one of two criterion for 

choosing ‘optimal’ data points – either by root-mean-squared deviation from the 

existing data (rms) or high probability of being in a chemically relevant region of 

configuration space (hwt). 

Line 8: The ab initio packages available are g98, g03 and aces2. 

Lines 9 – 14: Are machine-specific and system-specific variables used to set up the ab 

initio calculations. Charge and spin have their usual meanings from ab initio theory. 

The scratch directory must be the full address (no use of wildcards such as ~ to 

specify home directory) and must end in /. The read-write file string must be in the 

format required by the ab initio program chosen. We recommend leaving this set as 

‘default’, which will use the default read-write files set up by the ab initio program. 

The memory limit card specifies the amount of virtual memory requested in the ab 

initio input file. The number of processors line is only valid for Gaussian03. For all 

other ab initio programs, and for single-processor jobs in Gaussian03, we recommend 

that you leave this setting as ‘default’. 

Lines 15 – end: Determine the level of ab initio theory used to construct the PES. Jobs 

may be either ‘simple’ – calculated at a single level of theory, or ‘scaled’ – the PES is 

calculated at a relatively low level of theory then corrected for basis set and electron 

correlation deficiencies in a G2-type fashion, according to the formula: 

ΔEhigh,large = ΔEhigh,small + ΔElow,large – 2ΔElow,small  
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The simple and scaled calculations require different input, as illustrated in the 

examples above.  

The ab initio method for the simple calculations is specified on the ‘simple method’ 

line. The available methods and keywords are given in Chapter 3. The basis sets must 

be specified twice – once using the term ‘simple basis set’ and once using the term 

‘universal basis set’. The ‘simple basis set’ input is used in constructing Gaussian 

input files, and the basis set must be specified according to the Gaussian Gen basis 

specifications. This basis set input is read from the line following ‘simple basis set’ to 

the line containing the delimiter ‘+++’. The basis set read from the end of the line 

containing ‘universal basis set’ is used in constructing Aces2 input files.  

The ab initio methods for the scaled calculations are read from the ‘high correlation 

method’ and ‘low correlation method’ lines. Again, the basis sets must be specified 

twice – once in Gaussian input format and once in Aces2 input format. The small 

basis set Gaussian input is read from the line following ‘small basis set’ to the 

delimiter ‘+++’. Similarly, the large basis set is read from the line following ‘large 

basis set’ to the delimiter ‘+++’. The Aces2 basis sets are read from the ends of the 

‘universal basis – small’ and ‘universal basis – large’ lines. 

Note: the basis set input in both Gaussian and Aces2 format must be present. 
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h. IN_EMS 
 

 

The Markov walk control parameters 
Enter the number of Markov steps, and the stepsize for fragment a 
1000,0.02 
Enter the number of Markov steps, and the stepsize for fragment b 
1000,0.02 
bonds to constrain (bond number, length in bohr) 
0  4.0 
0  4.0 
0  4.0 
Cartesian geometry for separated initial fragments (Bohr) 
 0.0000000000000000E+00   0.0000000000000000E+00   0.0000000000000000E+00 
 0.0000000000000000E+00   0.2098017302776257E-15   0.1823368639565938E+01 
 0.0000000000000000E+00   0.1784174494261178E+01  -0.3760246930460953E+00 
  

This input file contains parameters to control the Monte Carlo (Markov walk) 

generation of initial atomic positions and velocities for the classical trajectories, 

according to the “efficient microcanonical sampling” scheme of Schranz et al. J. 

Chem. Phys. 94, 1487 (1991). The program, trajstart, produces a microcanonical 

vibrational energy distribution for each reactant fragment, with zero rotational angular 

momentum. 

Line 1: title line 

Lines 2 – 5: The number of Markov steps and stepsize for each fragment can probably 

be left at the values shown. For further details on the appropriate values for these 

parameters, consult the reference given below. 

Line 6 and the next NC2 lines (where N is the number of atoms): A constraint flag of 0 

means that the bond is unconstrained during the Markov walk whereas a constraint 

flag of 1 means that the bond is constrained to the value given (useful for constraining 

a molecule to remain in the vicinity of a saddle point). Although the actual bondlength 

for unconstrained bonds is irrelevant, a value must be present. 

Final N+1 lines: A title line followed by the Cartesian geometry of the separated 

initial fragments (in Bohr). Note: although the atom labels must not be included here, 

the atom order for these geometries must be the same as specified in the IN_SYSTEM 

file. 
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i. IN_TRAJ 

 
 

System is water 
Enter the time step, # of steps, # of steps between prints, # of trajectories 
0.001d0,   20000,    200,   100 
Enter the energy of frag a, energy of frag b, relative trans energy (in au) 
0.010,0.0,0.0 
Enter the allowed relative error in the energy conservation of traj. 
4.d-7 
Enter the maximum impact parameter, initial fragment separation (in au) 
0.00,15.0 
Enter the fraction of trajectory points output 
1.d0 
Do we stop trajectories with low energy? 0=no, 1=yes 
1 

 

Line 1: A heading to describe the relevant system 

Lines 2 and 3: A time step for the velocity Verlet trajectory integrator (in atomic 

units: 1 a.u. = fs). The value chosen for this parameter is motivated by the trade-off 

between accuracy (as measured by conservation of energy during the trajectory 

simulation) and computational expense (the computer time required to simulate a 

given length of real time). If the time step is too large, the trajectories will not 

conserve energy with the tolerance given on line 7. It may require some 

experimentation to determine the optimal value of this parameter. Note: energy 

conservation is also related to frequency of neighbourlist updates, as specified in the 

file IN_INTERP. 

For reactive systems, the number of allowed time steps can be as large as you like, 

since the trajectories are automatically stopped when the product fragments are 

separated by the original reactant separation given on line 9. For classical simulations 

of bound-state systems (note: this is possible, but not recommended), you should 

consider the time scale of the event you are interested in observing, and set the 

number of time steps accordingly. 

The number of time steps between prints parameter determines the frequency at 

which output information is written to the files OUT_INTERP and TOUT (The 

TOUT file contains the set of configurations from which the new data points are 
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chosen by the program choose). Warning: if this parameter is excessively small, then 

the number of configurations written to TOUT may exceed the maximum specified in 

the source file choose.inc in the choose/ directory. Further, the OUT_INTERP file 

may become unmanageably large. 

The number of trajectories to be performed should be around 10 in the 

IN_TRAJ.small file and around 1000 in the IN_TRAJ.large file. The maximum 

possible number of trajectories is defined in the traj.inc file in both the trajstart/ and 

interptraj/ directories. 

Lines 4 and 5: The internal energies of the fragments are total energies (kinetic + 

potential), given relative to the equilibrium energy of the fragment. Note: this 

energies must be specified in atomic units (Eh). 

Lines 6 and 7: The absolute relative error in energy conservation which is allowed 

during a trajectory before the trajectory is terminated and counted as “bad”. Typically, 

this parameter should be on the order of 1.d-7. This would, for example, correspond 

to an error of 1.d-5 Eh in a system with a total energy of 100 Eh. 

Lines 8 and 9: The maximum impact parameter can be set to zero in IN_TRAJ.small. 

In IN_TRAJ.large, a reasonable value would be the sum of the approximate van der 

Waals radii of the two reactant fragments. If you wish to calculate an accurate 

reaction cross section, the maximum impact parameter should be set to the minimum 

impact parameter at which no reaction is observed, to ensure that all possible reactive 

trajectories have been sampled. How to determine this value for the maximum impact 

parameter is presented in Appendix 3. 

The initial fragment separation determines the “extent” of the PES in the reactant and 

product “valleys”. All trajectories will start with the two fragments separated by this 

distance (unless constrained by bond length in IN_EMS), and any trajectory is 

terminated if the fragments are moving apart and separated by more than this 

distance. As the TOUT file cannot contain geometries with fragments separated by 

more than this distance, the POT file will also not contain data points for such 

geometries. The value of the initial fragment separation has to be chosen on physical 

grounds. We suggest that 10-15 Bohr is sensible for neutral systems with no strongly 

dipolar fragments, 15-20 Bohr if dipoles are large and 20-25 Bohr for charged 

systems. 
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Lines 10 and 11: This parameter should be set to 1.0 in IN_TRAJ.small and 0.0 in 

IN_TRAJ.large. Using these parameters, the molecular configuration is printed to the 

TOUT file with the frequency determined by the ‘number of steps between prints’ 

parameter  on line 3 for the sampling runs. No molecular configurations are printed to 

file during the convergence runs. 

Lines 12 and 13: Trajectories with low energy should be stopped during the sampling 

phase: this parameter should be set to 1 in IN_TRAJ.small. This enables the Grow 

algorithm to add data where the existing data predicts “unphysical” holes in the PES. 

Trajectories with low energy should be allowed to continue during convergence runs: 

this parameter should be set to 0 in IN_TRAJ.large. 
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j. IN_QDMC 

 
 

The IN_QDMC file for water 
number of seed geometries 
1 
numbers of walkers: min, max, walkers per geom 
500,1500,1000 
blocks: total number, number until equilibrium, steps per block 
10,5,1000 
descendant weighting: # of generations, delay between generations, number of steps 
5, 250, 1000 
time step 
1.0 
feedback parameter 
1.0 
maximum step size for initial displacements from equilibrium 
0.5 
probability of writing a walker to TOUT 
1.0 

histograms: upper and lower bounds, bin size 
15.0, 0.0, 0.05 
restart (y for yes, n for no) 
n 
symmetrize bond histograms? (y for yes, n for no) 
n 
geometry in bohr (additional geoms must be separated by a blank line) 
 0.0000000000000000E+00   0.0000000000000000E+00   0.0000000000000000E+00 
 0.0000000000000000E+00   0.3454907916233456E-16   1.8226681435876140E+00 
 0.0000000000000000E+00   1.7834890555985659E+00  -0.3758732226199827E+00 

 

Line 1: title line 

Lines 2 and 3: The number of geometries at which to base populations of 

walkers/replicas. For molecules with a single, well-defined minimum energy 

conformation (like water and methane), this parameter should be one. For molecules 

with multiple approximately isoenergetic local minima (generally, but not necessarily, 

accessible through torsional motion), it is more sensible to ‘seed’ the simulation with 

equal populations of walkers created in each minimum. 
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Lines 4 and 5: The minimum number of walkers, an upper bound on the total number 

of walkers, and the number of walkers to create near each minimum energy geometry. 

Note: the total number of walkers (number of seed geometries  × number of walkers 

per seed geometry) should fall approximately in the middle of the minimum and 

maximum numbers of walkers. 

Lines 6 and 7: Collectively, these parameters determine the length of the QDMC run. 

The total number of steps per simulation is the product of the ‘number of blocks’ with 

the ‘number of diffusion steps per block’. This is divided into an equilibration stage 

and a production stage. The simulation is divided into ‘blocks’ for two reasons: 

1. to facilitate calculation of error bars, as discussed in Appendix 4 

2. to moderate the frequency with which sampled configurations are written to 

the TOUT file. Following equilibration, the entire ensemble of replicas is 

printed to the TOUT file at the end of each block. Therefore, the number of 

geometries can be calculated as [‘total number of blocks’ – ‘number to 

equilibrium’] × total number of walkers. 

The total number of steps should vary according to system size and run type 

(sampling or convergence). We recommend 10,000 time steps for sampling runs and 

at least 50,000 time steps per convergence run. Typically, 10 or 20 separate 

convergence runs are required to obtain production quality results. 

Lines 8 and 9: The descendant weighting algorithm (as discussed in Appendix 4) is 

used to calculate vibrationally-averaged internal coordinates. The results obtained 

should be independent of the parameters chosen here, provided that the generations 

are initiated at a long enough time interval and that the descendant weighting runs are 

long enough. The error bars on the observables calculated by descendant weighting 

can be reduced by increasing the number of generations. Note: the total number of 

descendant weighting steps plus time step offset for initiation may not exceed the total 

number of steps you have specified for the production stage of the QDMC run. 

Lines 10 and 11: The time step (in atomic units of imaginary time!). The time step can 

probably be left at the value given, 1.0 a.u. 

Lines 12 and 13: The feedback parameter controls the sensitivity of relationship 

between the number of replicas created in each branching step and the trial energy. 

Again, this parameter can probably be left at the value given, 1.0. 
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Lines 14 and 15: The initial geometries of the walkers are generated by displacement 

along the Cartesian axes from the equilibrium geometry. This parameter controls the 

magnitude of this displacement. 

Lines 16 and 17: This parameter should be set to 1.0 in IN_QDMC.small and 0.0 in 

IN_QDMC.large. 

Lines 18 and 19: The wavefunction histograms are constructed by binning the replicas 

into internal coordinates at every step of the QDMC simulation. The upper bound 

should be set to approximately double the longest bond length in the equilibrium 

geometry. The lower bound should be left at 0.0. The bin size determines the 

resolution of the histograms and the choice of bin size is motivated by two factors: the 

number of data available for binning and the required resolution. A higher resolution 

(smaller bin size) requires more data i.e. a longer simulation run. For most purposes, 

the bin size can probably be left at 0.05 Bohr. 

Lines 20 and 21: The QDMC simulation can be restarted from the population of a 

previous simulation, using the IN_RESTART file. If the flag in IN_QDMC is set to 

‘y’, then the initial population of walkers will be taken from IN_RESTART. If the 

flag is ‘n’, then the initial distribution is generated by random displacements of the 

atoms from equilibrium. The functionality is particularly useful for performing 

multiple convergence runs. This flag must be set to ‘n’ for in both IN_QDMC.small 

and IN_QDMC.large, for the first few iterations of the Grow script (until the at least 

one sampling → convergence cycle has taken place). We recommend only setting this 

flag to ‘y’ for production runs on the converged surface. 

Lines 22 and 23: The bond histograms can be automatically symmetrised to 

incorporate nuclear permutation symmetry by setting this flag to ‘y’. This 

symmetrisation can also be carried out by post-processing of the histogram data. 

Lines 24 and 25: The Cartesian coordinates of the equilibrium geometry/geometries 

(in Bohr). Note: the first geometry follows the title line directly, but additional 

geometries must be separated by a blank line. Note: although the atom labels must 

not be included here, the atom order for these geometries must be the same as 

specified in the IN_SYSTEM file. 
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7. Assembling a crude potential energy surface 
 

Once you have generated the geometries corresponding to all known reaction paths 

for a reactive surface or all known local minima for a bound surface (described in 

section 5c), and set up the IN_SYSTEM file, you will need to run the ‘startPOT’ 
script to generate the ab initio data points. The ‘startPOT’ script works by searching 

for the ‘standard orientation’ keyword to extract geometries contained in a Gaussian 

log file (g03file.log). You should edit your Gaussian log file so that it contains only 

the geometry/geometries that you wish to add as data points (especially important if 

you have generated the geometries using a geometry optimisation or relaxed scan 

algorithm – these output files will contain many similar geometries that do not all 

need to be included in the data set). 

The syntax for invoking the ‘startPOT’ script is: 

python2.2 ../sourcecode/py_scripts/startPOT.py IN_GROW_molecule 
g03file.log 
If, for some reason, one of your ab initio jobs dies in the process of assembling your 

crude PES, ‘startPOT’ can be restarted using the command: 

python2.2 ../sourcecode/py_scripts/startPOT.py restart molecule 
Warning: ‘startPOT’ assumes that you want to create a PES data file from scratch, 

and will overwrite any data previously generated and saved as the ‘POT’ file. If you 

want to run ‘startPOT’ twice (using two different Gaussian log files, for example) 

you will need to either run the jobs in separate directories or save the first POT file 

generated under a different name. 
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8. Growing an accurate potential energy surface 
 

The required input files for growing a potential energy surface using either trajectory 

or QDMC sampling are listed in the table below: 

 

trajectory QDMC 

IN_SYSTEM IN_SYSTEM 

IN_ATOMPERMS IN_ATOMPERMS 

IN_GROW IN_GROW 

IN_INTERP IN_INTERP 

IN_ISEED IN_ISEED 

IN_DX_SIZE IN_DX_SIZE 

IN_EMS IN_QDMC.small 

IN_TRAJ.small IN_QDMC.large 

IN_TRAJ.large  

 

Once the requisite files have been set up and you have generated your crude PES (as 

described in section 7 above), you are ready to grow! The syntax for executing the 

‘grow’ script is: 

python2.2 ../sourcecode/py_scripts/grow.py IN_GROW_molecule 
If, for some reason, one of your sampling or ab initio jobs dies in the process of 

growing your surface, the script can be restarted using the command: 

python2.2 ../sourcecode/py_scripts/startPOT.py restart molecule 
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9. Running trajectory and quantum diffusion Monte Carlo simulations 
 

The trajectory and QDMC codes can both be executed independently of the grow 

scripts. The syntax for executing the trajectory code is: 

trajstart > inic 

interptraj < inic 

The syntax for executing the QDMC code is: 

qdmc90 N > OUT_QDMC.N 

where N indexes the simulation number, to prevent overwriting output files. 
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10. Understanding the output – trajectories 
 

The trajectory output data is written to the files: 

 

File name Produced 

by 

Contains 

OUT_INITIAL trajstart echo of input parameters in the IN_* files 

OUT_IMPACTPAR trajstart the impact parameter, energy and bondlengths 

at the initial configuration of each trajectory 

inic trajstart initial conditions for the trajectories 

OUT_SUMMARY interptraj summary of the output of a trajectory 

simulation, in terms of fragment products and 

number of ‘low energy’, ‘bad’ and unfinished 

trajectories 

OUT_ANG interptraj the instantaneous rotational angular 

momentum of the fragments at the completion 

of each trajectory 

OUT_BTS interptraj the outcome of each trajectory in terms of the 

product composition 

OUT_FINALBONDS interptraj the value of the bondlengths (Bohr) when the 

trajectory is terminated 

OUT_FINALCV interptraj the Cartesian coordinates and velocities of the 

atoms when the trajectory is terminated 

OUT_INTERP interptraj echo of input parameters in IN_INTERP. Also 

contains periodic single-line progress reports 

of the trajectories, using the abbreviations 

defined below 

OUT_VEL interptraj the kinetic energy of the relative motion of the 

two product fragments at the completion of the 

trajectory 

TOUT interptraj collection of configurations accessed during 

the trajectory simulations 
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Abbreviation Definition 

timps time in picoseconds 

nforc number of data points used in the interpolation of the potential energy 

at the current molecular configuration 

nfin the status of the trajectory at termination: 

0 = unfinished 

1 = completed satisfactorily 

2 = total energy not conserved - “bad” 

3 = low energy trajectory (passed below expected minimum value) 

errck the relative error in the total energy 

ek current total kinetic energy 

en current potential energy 
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11. Understanding the output – QDMC 
 

The QDMC data is output into 5 files: OUT_QDMC, OUT_BOND_HIST, 

OUT_DIHED_HIST, TOUT and IN_RESTART. 

OUT_QDMC contains an echo of the input parameters, followed by a header, then 

periodic progress reports on the ensemble energy and number of replicas. At the end 

of the simulation, the vibrationally-averaged zero-point energy (in kJ/mol and Eh), 

vibrationally averaged bond lengths and an estimate of the error in the zero-point 

energy (calculated using the ‘blocking algorithm’ – see Appendix 4) are printed. 

The OUT_BOND_HIST and OUT_DIHED_HIST files contain the wavefunction 

histograms for the bond lengths and dihedral angles, respectively. These files may 

require some post-processing preceding visualization and some fortran utility files 

have been provided for this purpose (see section 13). 

The TOUT file contains the collection of replicas accessed during the QDMC 

simulation, as printed out at the end of each block. 

The IN_RESTART file is a print out of the Cartesian coordinates of the replicas at the 

last step in the QDMC simulation. The title line contains information about the 

number of replicas and the ensemble energy at the final step of the simulation. 
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12. Understanding the output – grow scripts and other programs 
 

Collectively, the grow scripts and fortran programs produce the PES data set, which is 

stored in the file named ‘POT’. This is the most important file produced (and also 

the most computationally expensive to produce), so be very careful not to delete or 

overwrite it. The POT file contains a title line followed by the processed ab initio data 

for each data point. The processed ab initio data is structured in the following way: 

- Heading – “--- data point # XX’ 

- The N(N-1)/2 bondlengths, in the standard order 

- The N(N-1)/2 coefficients, U1i, of the reciprocal bondlengths in the first local 

internal coordinate, followed by the N(N-1)/2 coefficients, U2i, down to U(3N-

6)i. 

- The energy of the data point 

- The (3N-6) first derivatives with respect to the local internal coordinates 

- The (3N-6) diagonal second derivatives with respect to the local internal 

coordinates.  

 

There are a number of other files produced by the fortran programs. These are 

generally uninteresting, except for debugging, but are listed here for 

completeness. 

 

COUT – produced by the program ‘choose’. It contains the geometries which 

have been selected from the TOUT file to become the next data point/s. 

 

OUT_SV1 and OUT_SV2 – produced by the program ‘buckle’. Contain the 

singular values for the intrafragment (SV1) and interfragment (SV2) B matrix (see 

reference 6 in section 2) 

 

OUT_MOL – produced by the program ‘buckle’. Contains the original geometry 

from COUT and the distorted geometry produced by ‘buckle’. 
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13. The programs 
 

Program Function 

choose Reads in the file ‘TOUT’, containing configurations accessed during 

the trajectory or QDMC simulation, and chooses a specified number for 

inclusion as data points in the ‘POT’ file. 

buckle Distorts the geometry selected by ‘choose’ so that the molecule is not 

planar or linear, to avoid singularities in the transformation to local 

internal coordinates. 

bfinvert Constructs the local internal coordinates and transforms the derivative 

data generated by the ab initio calculation. 

trajstart Generates initial conditions for the trajectories to be propagated using 

‘interptraj’. 

interptraj Propagates the trajectories. Creates various OUT_* files that contain 

information about the calculated observables. 

py_scripts Control the grow process. The main files of importance to the user are 

grow.py, startPOT.py and the data files (e.g. g98_dat.py). The data files 

can be edited to enable additional ab initio methods (see section 3c).  

qdmc90 Calculates the exact ground-state nuclear vibrational wavefunction, 

vibrationally-averaged zero-point energy, vibrationally-averaged bond 

lengths and wavefunction histograms. 

makevecs Makes the displacement vectors needed for the efficient calculation of 

numerical derivatives. 

utilities An assortment of useful little programs, whose functions are described 

below. All the utility programs take data from standard input and write 

to standard output e.g. ptoe < POT > energies.out. These programs also 

read the IN_SYSTEM file, so should only be used in the directory in 

which you are growing the PES. 
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Program Function Syntax 

Ang2Bohr Converts Cartesian geometries from 

Angstrom to Bohr 

Ang2Bohr < cartfile > outfile 

Bohr2Ang Converts Cartesian geometries from 

Bohr to Angstrom 

Bohr2Ang < cartfile > outfile 

basiscorr Combines the results of high and low 

level calculations for ‘scaled’ potential 

energy surfaces 

Used exclusively by the 

scripts 

cart2dist Takes Cartesian coordinates and outputs 

the pair-wise distances 

cart2dist < cartfile > bondfile 

cnpiperms Generates the IN_ATOMPERMS file 

by constructing the complete nuclear 

permutation symmetry (CNP) group 

cnpiperms 

diffsteps Uses the CARTVECS file to generate 

the grad.geoms file which contains the 

geometries required for calculating 

numerical derivatives 

Used exclusively by the 

scripts 

dist2cart Takes the pair-wise distances and 

generates the Cartesian coordinates 

dist2cart < bondfile > cartfile 

en2freq Calculates the numerical second 

derivatives from the ab initio energies 

of the geometries in the grad.geoms file 

Used exclusively by the 

scripts 

grad2freq Calculates the numerical second 

derivatives from the ab initio gradients 

of the geometries in the grad.geoms file 

Used exclusively by the 

scripts 

ptob Extracts the bond lengths of the data 

points in the POT file 

ptob <  POT > outfile 

ptoe Extracts the energies of the data points 

in the POT file 

ptoe < POT > outfile 

ptof Extracts the forces of the data points in 

the POT file 

ptof < POT> outfile 

rotranz Rotates a geometry (in Cartesian Used exclusively by the 
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coordinates) into “Z-matrix orientation” scripts 

xmolmovie Reads in the TOUT file and creates an 

output file that can be read by the 

‘xmol’ program to create a movie of a 

trajectory 

xmolmovie > outfile 
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14. Using Grow on a supercomputer 
 

A separate installation of Grow is provided for use on machines with automated 

queuing systems (and wall time limits). Note: the current ‘pbs’ implementation of 

Grow has limited functionality, compared to the standard version. Notably, this 

implementation can only construct ‘simple’ potential energy surfaces (not scaled) and 

only for ab initio methods with analytic second derivatives. Further, the current 

implementation is only set up to use quantum diffusion Monte Carlo sampling 

(although the modifications required for trajectory sampling should be trivial). The 

major difference between ‘pbs Grow’ and ‘standard Grow’ is that the standard Grow 

script runs continuously in the background while the pbs Grow script is suspended 

while the sampling, choosing and ab initio calculations are carried out by separate 

scripts submitted to the pbs queuing system. In total, four such scripts are required: 

- choosehwt.scr 

- chooserms.scr 

- qdmc.scr 

- molecule.scr 

Examples of these script files (again, using water as a test system) will be given on 

the following pages. 
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a. choosehwt.scr 
 

#!/bin/bash 
#PBS -P g23 
#PBS -l walltime=01:00:00 
#PBS -l vmem=1024MB 
#PBS -l ncpus=1 
#PBS -wd 
 

choose < chooseHWt.inp 
 

python2.2 ../sourcecode/py_scripts/grow.py restart water 
 

Lines 1 – 6: machine and system-dependent information required to run the pbs job 

Line 7: blank line (included for clarity, can be omitted) 

Line 8: ‘choose’ program is called. Note: this syntax assumes that ‘choose’ can be 

executed from the command line. 

Line 9: blank line (included for clarity, can be omitted) 

Line 10: the grow script must be restarted after choose has completed. This call 

assumes that you are working in a grow2.2 subdirectory e.g. grow2.2/water/ 

 

b. chooserms.scr 
 

#!/bin/bash 
#PBS -P g23 
#PBS -l walltime=01:00:00 
#PBS -l vmem=1024MB 
#PBS -l ncpus=1 
#PBS -wd 
 

choose < chooseRMS.inp 
 

python2.2 ../sourcecode/py_scripts/grow.py restart water 
 

This file is identical to the choosehwt.scr file, except that the file chooseRMS.inp is 

used as input to the choose program rather than the file chooseHWt.inp. 
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c. qdmc.scr 
 

#!/bin/bash 
#PBS -P g23 
#PBS -l walltime=20:00:00 
#PBS -l vmem=1024MB 
#PBS -l ncpus=1 
#PBS -wd 
#PBS -l jobfs=1000MB 
 

qdmc90 1 > OUT_QDMC.1 
cp TOUT.1 TOUT 
 

python2.2 ../sourcecode/py_scripts/grow.py restart water 
 

Lines 1 – 7: machine and system-dependent information required to run the pbs job 

Line 9: blank line (included for clarity, can be omitted) 

Lines 10 and 11: ‘qdmc90’ program is called. Note: this syntax assumes that 

‘qdmc90’ can be executed from the command line. The number following the qdmc90 

call is not optional – it is required as input to the qdmc90 program, and is used to 

index all the output files (including TOUT). As the grow scripts assume TOUT is not 

indexed, it is necessary to copy TOUT.1 back to TOUT. 

Line 12: blank line (included for clarity, can be omitted) 

Line 13: the grow script must be restarted after qdmc90 has completed. This call 

assumes that you are working in a grow2.2 subdirectory e.g. grow2.2/water/ 
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d. molecule.scr (In this case, water.scr – must have same stem as molecule name 

specified in IN_GROW_molecule) 

 

#!/bin/bash 
#PBS -P g23 
#PBS -l walltime=1:00:00 
#PBS -l jobfs=5GB 
#PBS -l vmem=700MB 
#PBS -l software=g03 
#PBS -l ncpus=1 
#PBS -wd 
#PBS -q express 
 

USE_DOT=1; export USE_DOT 
USE_G03=1; export USE_G03 

. /opt/etc/system_profile 
GAUSS_SCRDIR=$PBS_JOBFS; export GAUSS_SCRDIR 
 

g03 < water.com > water.log 
 

python2.2 ../sourcecode/py_scripts/grow.py restart water 
 

Lines 1 – 14: machine and system-dependent information required to run the pbs job 

Line 15: blank line (included for clarity, can be omitted) 

Line 16: The ab initio package is called. In this case, a Gaussian03 job is run. Note: 

the com file stem be the same as the molecule name entered in the 

IN_GROW_molecule file. Likewise, the log file stem must be the same as the 

molecule name entered in the IN_GROW_molecule file. This syntax assumes that the 

ab initio package can be executed from the command line.  

Line 12: blank line (included for clarity, can be omitted) 

Line 13: the grow script must be restarted after the ab initio job has completed. This 

call assumes that you are working in a grow2.2 subdirectory e.g. grow2.2/water/ 
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15. Trouble-shooting 
 

Grow2.2 is still very much a work-in-progress, and is by no means unbreakable. A 

number of possible complications may arise, and some of these (the ones we know 

about or can anticipate) are addressed below: 

1. One (or all) of the fortran programs crash with a “segmentation fault” or other 

memory allocation error. The most likely cause of such behaviour is that the 

array dimension limits are inappropriate (too small). You will need to edit the 

*.inc files in each of the sourcecode/ subdirectories, and re-make the 

executables. Important parameter statement variables that you may need to 

change are: 

- natomm = the maximum number of atoms allowed in the system 

- ndatam = the maximum number of data points allowed in the POT file 

- ngroupm = the maximum allowed number of elements in the symmetry 

group 

- maxt = the maximum allowed number of configurations in the TOUT file. 

If this number is exceeded, you should decrease the frequency of print outs 

by increasing the number of time steps between prints for trajectories or 

decreasing the number of blocks run for qdmc while increasing the block 

size to keep the total number of steps constant. 

- nmax = the maximum allowed number of trajectories that can be specified 

in IN_TRAJ. You can make this as big as your RAM allows. 

- maxfo = the maximum allowed number of data points in the outer 

neighbour list 

- maxf = the maximum number of allowed data points in the inner 

neighbour list 

2. For large systems with a large number of data points in the PES data set, the 

qdmc90 code may require more memory than you have available to your 

machine. The solution is to use the ‘intermediate memory’ version of the code 

we have supplied in the directory sourcecode/qdmc90_intmem. Note: this 

version will only work with large data sets. 

3. Trajstart crashes, complaining about the presence of identical data points. 

Remove the identical data points and change the number in the IN_ISEED file 

then continue. 
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4. Even after addition of 100 (or more) data points, the configuration space is not 

being explored adequately during the trajectory simulation, due to either a) no 

reaction or b) trajectories failing to conserve energy: 

a. The most likely cause of the trajectories failing to react is that the 

reaction probability is low at the energy at which you are growing the 

PES. This is unsatisfactory, since Grow will be unable to add data in 

the product valley. Possible solutions include: 

i. Increase the number of trajectories specified in IN_TRAJ to 

more than 10 (say, around 100) 

ii. Terminate Grow. Edit the IN_TRAJ file to vary the energy of 

the fragments and/or the relative translational energy. Run 

small sets of trajectories to see if the reaction probability can be 

increased in this way. If so (say at least 1 in 10 trajectories 

react), then change IN_TRAJ.small accordingly and restart 

Grow. 

iii. Terminate Grow. Change IN_EMS, IN_TRAJ and 

IN_SYSTEM to correspond to the reverse reaction. Run small 

sets of trajectories to see if the reaction probability for the 

reverse reaction is at least 10%. If so, change IN_TRAJ.small 

accordingly and restart Grow to construct the PES from the 

reverse reaction, at least for around 100 data points. 

iv. Terminate Grow. Change IN_EMS, IN_TRAJ and 

IN_SYSTEM to correspond to starting trajectories at the saddle 

point (remember to constrain the appropriate bond in 

IN_EMS). Run small sets of trajectories to see if both possible 

asymptotes are reached by the trajectories. If so, change 

IN_TRAJ.small accordingly and restart Grow to construct the 

PES from the saddle point, at least for around 100 data points. 

b. After the addition of 100 or more data points, the trajectories may fail 

to conserve energy, as indicated by a number of ‘bad’ trajectories 

reported in OUT_SUMMARY. If this number is decreasing with the 

addition of further data points, you probably don’t need to take any 

action. However, if this number is remaining constant or increasing, 

you may need to: 
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i. Terminate Grow. Change the weight function in IN_INTERP 

from 1 part to 2 part. 

ii. Change the neighbourlist parameters in IN_INTERP. Try 

decreasing the number of steps between updates of the inner 

and outer neighbourlists and/or decreasing the cutoff for 

inclusion of points on the neighbourlists (from 1.d-5 to 1.d-6 

for example – an order of magnitude decrease). 

iii. Look at the value of the allowed relative error in the energy 

conservation which you specified in IN_TRAJ.small (and 

IN_TRAJ.large). This error tolerance may be too low. You can 

probably accept energy variations of up to 1.d-4 or 1.d-3 while 

you are growing the PES.  
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Appendix 1. Interpolated PES  

 The PES is given by an interpolation of Taylor expansions centered at data 

points scattered throughtout the configuration space of the system. The surface can 

be constructed using all the interatomic distances, R={R1, R2,.., RN(N-1)/2} as the 

basis for the internal coordinates (N = the number of atoms). In practice, we use 

inverse distances, Z, rather than bond lengths, where Zk = 1/Rk. A set of 3N-6 internal 

coordinates are constructed as linear combinations of the Z, with a new set of 

coordinates defined locally for each data point in the set. That is, the local internal 

coordinates are:  
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(X 0 )

(X) = ˜ U 
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Z . (A.1)  

 

The !
(X 0 )(X)  is a set of 3N-6 linearly independent internal coordinates, for Z 

sufficiently close to some data point Z0 = Z(X0). 

 Since the 3N-6 internal coordinates !  are well defined and linearly independent 

at any nonplanar, non collinear geometry X(i), the Cartesian derivatives and second 

derivatives of the PES at X(i) can be transformed into 
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The calculations related to Eqs (A.1) and (A.2) are performed by the executable 

bfinvert. 

 If the data point configuration is (for example) near planar, some of the 3N-6 

local internal coordinates, ! , are nearly linearly dependent and inverting Eq. (A.2) to 

obtain the internal coordinates derivatives of the PES may be numerically unstable. To 
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avoid this problem, the molecular geometry is distorted (in a minimal sense) by the 

executable buckle to ensure that Eq. (A.2) is well behaved. 

 

 If the required energy and derivatives have been evaluated at each of Nd 

molecular configurations, a modified Shepard interpolation gives the potential energy 

at any configuration Z as a weighted average of the Taylor series about all Nd data 

points and their symmetry equivalents: 
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with !  given by Eq.(A.1). The Taylor expansion, Ti, about the data point 

!(i) = ˜ U 
T

Z[X(i)] , is given by 
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This second order expansion is unchanged by an orthogonal transformation of the 

independent variables. Hence, if L is the matrix which diagonalises the matrix of 

second derivatives: 

 

L
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and we define !"(i) : 
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then we can write the Taylor expansion as a sum over fewer terms: 
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This orthogonal transformation and associated, simpler, Taylor expansion is also 

worked out by bfinvert. 

 

 The weight function, wi, which gives the contribution of the ith Taylor 

expansion to the potential energy at the configuration Z, is discussed below. In 

Eq.(A.3), G denotes the symmetry group of the molecule; typically the Complete 

Nuclear Permutation Inversion (CNPI) group, or some subgroup of feasible 

permutations. Here, g o i denotes that the ith data point, Z(i), is transformed by the 

group element g. The sum over g � G means that all permutationally equivalent data 

points are included in the data set; the energy derivatives at permuted data points 

being simple permutations of the original derivatives. The data set is "symmetrised", 

so that the PES of Eq.(A.3) exhibits the full molecular symmetry. 

 The form of the weight function has been discussed in detail elsewhere. In 

qualitative terms, we would like the Taylor series, Ti, which is most accurate at Z to 

have the highest weight in Eq.(A.3). However, since we do not know a priori which 

Taylor series is most accurate, a procedure for determining the relative weight for each 

data point must be established. Firstly, the weights are normalised (sum to unity) by 

setting 
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One can show that Eq.(A.3) is an interpolation of the energy and of the first and 

second derivatives at the data points, and that Eq.(A.3) becomes exact in the limit of 

infinite data density for appropriate choices of the weight functions. 

 To bias the weight function towards the Taylor expansions most likely to be 

accurate, the unnormalised weight function, vi, is given by 
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where q = 2 and p = 12 (are the usual values read in from IN_INTERP) The quantities 

{dk(i), k=1,..,N(N-1)/2} define a confidence volume about the ith data point. If 

Zk ! Zk (i)

dk(i)
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(  << 1, then the weight of the ith data point at Z varies only 

with the low power q, while if 
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(  >> 1, the weight of the ith 

data point is rapidly damped by the high power, p. The confidence lengths, {dk(i)}, 

are determined by a Bayesian analysis of the inaccuracy of the ith Taylor expansion at 

M configurations close to Z(i): 

 

dn (i)
!6

=
1

M

"V Z(k)[ ]
"Zn

!
"Ti Z(k)[ ]
"Zn

# 

$ 
% 
% 

& 

' 
( 
( 
Zn (k ) ! Zn (i)[ ]

) 
* 
+ 

, + 

- 
. 
+ 

/ + 

2

Etol
2
Z(k) ! Z(i) 6

k=1

M

0 . (A.10)  

 

The {Z(k)} are taken to be the nearest M (read from IN_INTERP) neighbouring data 

points of the remaining |G| ∞ (Nd-1) independent points in the data set. The error 

tolerance (read from IN_INTERP), Etol, defines the accuracy required for Z to lie 

within the confidence volume of Z(i). Since the set of |G| ∞ (Nd -1) independent 

points is totally symmetric with respect to the symmetry group, the "confidence 

length" dn(i) has the same value as that associated with the bond g o n at the data 

point g o Z(i). Hence, the confidence lengths need only be evaluated at one version of 



 

 

52 

52 

each data point. As discussed elsewhere, the accuracy of Eq.(A.3) is relatively 

insensitive to the values of M and Etol:  

 The location of the data points in Eq.(A.3) has been determined using the 

iterative methods developed previously. In summary, an initial set of data points is 

chosen to lie on or near the relevant reaction paths. The potential of Eq.(A.3) is then 

well defined in the vicinity of the reaction paths. Classical trajectories are evaluated, 

with initial conditions appropriate to the reaction(s) of interest, to explore the 

relevant region of configuration space. Molecular configurations encountered during 

these trajectories are recorded. One or more of these configurations is then chosen to 

be a new data point; the ab initio energy, gradient and second derivatives are evaluated 

at that point which is then added to the data set, generating a new version of the PES. 

This process of simulating the reaction(s), choosing a configuration, performing the ab 

intio calculations and adding a new data point to the set is repeated again and again 

until the PES is "converged". Convergence is established by performing large scale 

classical simulations of the reaction(s) of interest periodically during the "growth" of 

the data set. When the observable properties of interest, eg a reaction probability, do 

not change with increasing data set size, the PES is taken to be converged.  

 The methods for choosing a new data point at each iteration have been 

discussed in detail elsewhere. The "variance sampling" method places data points at 

configurations where the uncertainly in Eq.(A.3) is highest. The "h weight" method 

attempts to place data in regions where the trajectories often visit, but where few data 

points are already present. In the current Grow script we have used both "variance 

sampling" and "h weight" methods to choose data points following each sampling 

cycle. 
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Appendix 2. Simple one-dimensional interpolation illustration 
 

Figure 1. The zeroth, first and second order Taylor expansions about the global 

minimum 

 

Figure 2. The zeroth, first and second order Taylor expansions about a point far from 

equilibrium 
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Figure 3. The relative weights of each Taylor expansion at points one quarter, one 

half and three quarters distance between the points at which the Taylor expansions are 

based. 

 

Figure 4. Comparison of the two-point interpolated PES with the actual PES. 
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Appendix 3. The treatment of classical bimolecular collisions 

For simplicity, we can consider one of the reactant molecular fragments as being at 

rest, with its centre of mass at the origin of a Cartesian axis system. The other 

fragment is a long way away from the origin, with its centre of mass in the xy plane. 

Typically, we could put this second centre of mass at some large negative value of x 

as shown in the figure. 

    

 

The second fragment, initially at some large negative x position, is given a y coordinate 

value of b, called the impact parameter, and a velocity, v, in the +x direction. The 

impact parameter gets its name from the idea that if there was no interaction between 

the fragments, the second fragment would pass by the first fragment a distance b 

away. There is nothing artificial about this arrangement of the fragments; we can 

always arrange our axis system to make any collision look like this initially. When R 

(see Figure) is large, there is no interfragment force or potential.  

If the fragments have masses ma and mb, then the reduced mass for the relative motion 

is m: 

m = (mamb)/(ma + mb). 
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The relative velocity of the pair is v, and the relative kinetic energy is Erel: 

Erel = 1/2 m v2. 

To simulate the range of possible gas phase collisions of these two molecules at a 

given Erel, and given internal energies of the two fragments, we must evaluate the 

dynamics of a large number of such collisions which differ in their initial conditions as 

follows. The orientation of the two fragments must be chosen from a selection of 

random orientations. The impact parameter, b, must be chosen from a random 

distribution of values, for which the probability of selecting some b between b and b + 

db is proportional to 2πb db (if you rotate the figure about the x axis, the collision is 

the same, and the second fragment has swept out an anulus of area 2πb db in the yz 

plane of possible approaching second fragments). In practice, we only allow b to vary 

up to some maximum allowed impact parameter, as for larger values of b, the 

interfragment forces are never large, i.e. the fragments miss each other, and the 

collision is trivial. The internal structure of the two fragments, and the velocities of 

the fragment's atoms with respect to its own centre of mass, must be randomly 

selected according to some distribution. Here we take a microcanonical distribution for 

each fragment. The executable trajstart does all of the above. 

According to classical mechanics, each atom in the system moves subject to Newton's 

second law: 

 

mi
d2ri

dt
2

= !
"V

"ri
,  

 

where i = 1,..., natom, and ri = (xi ,yi ,zi) is the cartesian coordinate vector of atom i. 

Starting from a configuration like that in the figure, the classical equations of motion 

for the atoms are solved using a standard "velocity Verlet" algorithm. Time is broken 

down into finite steps to solve the equations of motion for the collision of these two 

molecular fragments. As time is incremented in steps, the forces on the atoms are 

evaluated from the partial derivatives of the interpolated PES with respect to the 
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atomic cartesian coordinates, and the atomic velocities and positions are adjusted 

according to the equations of motion. This calculation of the derivatives of the PES 

(and the PES value) at each time step is the cpu time consuming part of the classical 

simulation. Some parameters are set in IN_INTERP to make this task as fast as 

possible. Firstly, the PES formula in Appendix 1 gives the PES as a sum over 

weighted Taylor expansions about all the data points. However, at any particular 

time step, most of the data points have negligible weights and we do not evaluate their 

Taylor expansions if their weight falls below some tolerance, wtol. The data points 

with large enough weights form the "neighbour list". Since, the weights only change 

slowly with time, the neighbour list changes slowly and is only re-evaluated every so 

many time steps. Actually, you have to enter, in IN_INTERP two "numbers of time 

steps" that govern how frequently an "inner" and "outer" neighbour list are re-

evaluated. You will find that you also have to enter values for some parameters which 

determine how the "weights" for each data point are evaluated. The precise meaning of 

these parameters is discussed in Ref 7 of the Introduction. 

 When the fragments "hit" each other, they may exchange some atoms (i.e. 

react), before they fly apart (since they start apart with some relative velocity, they 

always have enough energy to fly apart, although this may take a long time to occur). 

When they are far enough apart (say they have reached a distance R again), the 

interfragment forces are negligible. It is then possible to measure quantities like the 

rotational angular momentum of the fragments, their relative velocity, etc. The 

trajectory program interptraj prints out a file, OUT_FINALCV, which contains the 

cartesian positions and velocities of all the atoms when the fragments have again 

reached their initial separation. 
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Classical simulations with this code 

 Of course, once you have constructed a PES (POT file) you can run classical 

trajectory simulations independently of the Grow script.  

You should: 

(i) copy IN_TRAJ.large to IN_TRAJ , i.e. execute 

cp IN_TRAJ.large IN_TRAJ 

(ii) Edit IN_TRAJ (see section 6i) to specify the number of trajectories, the energies 

of the fragments, etc. 

(iii) Create the initial conditions for the trajectories by executing 

trajstart > inic 

where inic can be any convenient file name. 

(iv) Evaluate the classical trajectories by executing 

interptraj < inic > somefilename 

Generally, there is no useful output in somefilename. See Chap. 5 for a 

description of the output from interptraj. 
Notes 

 Some notes on how to evaluate classical cross sections are given below. 

Sometimes, you may want to repeat one or more trajectories from a larger number that 

you have evaluated. For example, you may discover, from peering at the OUT files 

that one trajectory does something odd/interesting, and you would like to look at this 

trajectory in more detail. You can retrieve the initial conditions for this trajectory from 

the inic file (just edit the file). Then you might want to change the frequency with 

which information is printed during a trajectory (number of steps between prints in 

section 6i). Do not change the timestep for the trajectory, or you will change the 

trajectory, since the trajectory integration is only approximate. The TOUT file can be 

used to produce suitable input for a movie of the trajectory with the utility program 

xmolmovie. 
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Classical cross sections 

 It is a simple matter to calculate the classical cross section for a particular 

reaction from a set of trajectories evaluated in interptraj. The probability or relative 

frequency of some reaction in the trajectories can be found from OUT_SUMMARY. 

For example, a 1000 trajectories for BH+  +  D2 might give an OUT_SUMMARY file 

like this: 

 

  number of trajectories with low energy =   0 

 

  number of unfinished trajectories      =   0 

  number of bad trajectories             =   0 

 

  Counts    Fragments 

   489          12  34 

   89          134  2 

   192          123  4 

   170          124  3 

   29          14  23 

   31          13  24 

 

Here 1 = B, 2 = H, 3 = D and 4 = D. 

Clearly 489 trajectories did not give reaction; 192 + 170 = 362 gave BHD+ + D; 89 

gave BD2+ + H; 29 + 31 = 60 gave BD+ + HD. The maximum impact parameter for 

these 1000 trajectories was set in IN_CNT (in this example, it was 9 Bohr = 4.763 

Å). Denoting this maximum impact parameter as bmax, and the relative frequency of 

the reaction of interest as f (a fraction between 0 and 1), the reaction cross section, σ, 

is given by 

 

σ  =  f π bmax2. 
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This is f times the total area (cross section) of the circle of radius bmax, which is the 

"target area" of the incoming fragment in the figure.  

So, in this example, the cross section for BHD+ + D would be  

 

σ(BHD+ + D)  =  (362/1000) π (4.763)2   Å2. 

                      =  25.8  Å2 

Note that this result is subject to a statistical error due to the fact that only a finite 

sample of trajectories was evaluated. A crude estimate of the standard deviation in the 

relative frequency, f, that could be expected from repeated samples of 1000 

trajectories is d: 

 

d  =  [f (1 -f )/1000]1/2 

 

The standard deviation for σ is dπ bmax2. 

Thermal rate coefficients 

 Version 1.0 of Grow does not provide direct calculation of thermal rate 

coefficients. k(T) can be evaluated by taking a thermal average of the reaction cross 

section (approximately, as the cross sections evaluated above apply strictly only to 

molecules with initial zero rotational angular momentum). To find out how to evaluate 

this thermal average, see any standard text, e.g. J. I. Steinfeld, J. S. Francisco, and W. 

L. Hase, Chemical Kinetics and Dynamics (Prentice-Hall, Englewood Cliffs, NJ, 1989) 

Chap. 8, and R. N. Porter and L. M. Raff, in Dynamics of Molecular Collisions, edited 

by W. H. Miller (Plenum, New York, 1976 ) p. 1. 
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Appendix 4. The quantum diffusion Monte Carlo algorithm 
 

(1) Establish a population of Pnorm walkers by random displacement of each atom 

from its equilibrium position by up to 0.5 Bohr along the Cartesian axes. 

 

(2) Move the atoms, with the atomic displacements sampled from a Gaussian 

distribution with variance, 

! 

v = 2" mass, where 

! 

"  is the time step and 

! 

mass  is the 

mass of the atom being moved (in atomic units). 

 

(3) Calculate the potential energies of the displaced walkers 

 

(4) Evaluate the ensemble energy, Eens, as the average of the walker energies. If n 

(number of steps) > nequil (number of steps to equilibrium), store the ensemble energy 

and bin the bondlengths into histograms. 

 

(5) Calculate the trial energy, Etrial, according to the equation: 

! 

Etrial = Eens "
Pcurr

Pnorm
"1.0

# 

$ 
% 

& 

' 
( ) fbp 

where Eens is the ensemble energy as defined above, Pcurr is the current number of 

walkers, Pnorm is the initial number of walkers created and fbp is the feedback 

parameter. 

 

(6) Calculate the branching weight of each walker, according to the equation: 

! 

w
i
= e

(E
trial

"E
i
)#

+ rand()  

where Ei is the potential energy of the walker and rand() is a random number between 

0 and 1. 

 

(7) Perform the branching according to the values of the branching weights: 

- wi < 1  →  annihilate walker 

- 1 < wi < 2 → leave walker 

- 2 < wi < 3 → create 1 extra copy of the walker 

- 3 < wi → create 2 extra copies of the walker 
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Repeat steps 2 to 7 nequil times until both the ensemble energy and trial energy remain 

relatively constant. Repeat steps 2 to 7 nprod times until the error bars on your energy 

and nuclear vibrational wavefunction, as calculated using the blocking algorithm 

described by H. Flyvbjerg and H.G. Petersen (J. Chem. Phys. 91, 461 (1989)) are 

sufficiently small. 

 

Basically, this algorithm involves calculating the standard deviation in the data set 

following successive “blocking” transformations, where the blocking transformation 

is defined by averaging entries 1 and 2, 3 and 4, 5 and 6 etc. There exists a plateau in 

the value of the standard deviation following a sufficient number of “blocking 

transformations”, given that the data set is sufficiently large. The value of the standard 

deviation at this plateau is taken as an upper bound for the standard deviation of the 

data set. 

 

Vibrationally-averaged bondlengths are calculated using the descendant weighting 

algorithm, as described by M.A. Suhm and R.O. Watts (Phys. Rep. 204, 293 (1991)). 

Basically, this algorithm involves the following steps: 

 

(1) At regular intervals (say, once every noffset time steps, a total of Ngen times) 

following equilibration, index the walkers and record their configurations. 

 

(2) Propagate the walkers for ndw time steps, keeping track of which walker is 

descended from which parent 

 

(3) At the end of each generation, count the number of walkers (n) descended from 

each parent. Evaluate the expectation value of the vibrationally averaged bondlength 

according to the formula: 
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(4) Calculate the error in the vibrationally-averaged bondlengths as the standard 

devation in the mean, averaging over all the Ngen generations. 
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