
 0

Grow: User Guide

Grow: a program suite for growing Potential Energy
Surfaces

Version 2.2

This User Guide was written by Deborah Crittenden‡, with some reproduction
of the Grow 1.0 User Guide written by Michael Collins. The Grow 2.2 suite of
programs has been developed by Michael Collins, Meredith Jordan, Keiran
Thompson, Ryan Bettens, Alexander Duncan and Deborah Crittenden

‡ e-mail: d.crittenden@chem.usyd.edu.au

 1

Table of Contents

1. What’s new in Grow 2.2? 3

2. Conceptual overview 4

a. What is the Grow 2.2 package? 4

b. How is a potential energy surface constructed? 4

c. References 5

3. Ab initio methods available 6

a. Gaussian (98 and 03) 6

b. Aces2 6

c. Tips and Recommendations 6

4. Installing Grow 2.2 8

5. Setting up the system 10

a. Deciding on a molecule/reaction and the appropriate dynamics

method

10

b. Deciding on an appropriate level of ab initio theory 10

c. Generating geometries for the initial data set 11

6. Setting up the input files 12

a. Overview 12

b. IN_SYSTEM 13

c. IN_INTERP 15

d. IN_ATOMPERMS 18

e. IN_DX_SIZE 19

f. IN_ISEED 19

g. IN_GROW 20

h. IN_EMS 24

i. IN_TRAJ 25

j. IN_QDMC 28

7. Assembling a crude potential energy surface 31

8. Growing an accurate potential energy surface 32

9. Running trajectory and quantum diffusion Monte Carlo simulations 33

10. Understanding the output – trajectories 34

 2

11. Understanding the output – QDMC 36

12. Understanding the output – grow scripts and other programs 37

13. The programs 38

14. Using Grow on a supercomputer 41

a. choosehwt.scr 42

b. chooserms.scr 42

c. qdmc.scr 43

d. molecule.scr 44

15. Trouble-shooting 45

Appendix 1. Constructing interpolated potential energy surfaces – theory 48

Appendix 2. Simple one-dimensional interpolation illustration 53

Appendix 3. The treatment of classical bimolecular collisions 55

Appendix 4. The quantum diffusion Monte Carlo algorithm 61

 3

1. What’s new in Grow 2.2?

Grow 2.2 is based upon the original Grow 1.0 suite of programs developed by

Meredith Jordan, Keiran Thompson, Ryan Bettens, Alexander Duncan and Michael

Collins. A number of significant changes have been made to the original code. The

major new features include:

- addition of a Quantum Diffusion Monte Carlo (QDMC) module for

calculation of the lowest rovibrational eigenstate of a system

- python scripts to control the growing process, which replace the shell scripts

in the original version. This makes the Grow package more robust and gives it

greater portability.

- the ability to use the quantum chemistry package Aces2 as a source of ab

initio data, in addition to Gaussian. (Note: there is a known bug in the Aces

code that calculates numerical second derivatives from first derivatives)

- the ability to interpolate potential energy surfaces from density functional

data, using any exchange or correlation functional implemented in Gaussian03

- rearranged (modular) input files

- a second collection of python scripts to control the growing process, designed

to function on machines with queuing systems (NQS, PBS).

These additions and improvements have been implemented by Deborah Crittenden

and Keiran Thompson. As Grow 2.2 is significantly different to Grow 1.0, this user

manual is written as stand-alone documentation, and some information from the Grow

1.0 manual may be reproduced here.

 4

2. Conceptual overview

a. What is the Grow 2.2 package?

The Grow 2.2 package is a collection of scripts and programs that allow the user to

construct molecular potential energy surfaces for either unimolecular/bimolecular

reactions or bound-state systems. Classical trajectory simulations are used to sample

configuration space while constructing reactive surfaces while Quantum Diffusion

Monte Carlo (QDMC) simulations are used for bound-state systems. Classical

trajectory simulations can be carried out on a reactive surface to calculate reaction

cross sections, observable properties of the products (such as angular momentum and

vibrational energy distributions), and to explore the reaction mechanism. QDMC

simulations can be carried out to calculate the lowest energy rovibrational state of a

bound-state system, and to calculate the exact anharmonic zero point energy.

b. How is a potential energy surface constructed?

The potential energy surface is constructed as an interpolation of ab initio data. The

algorithm requires ab initio calculation of the energy, energy gradient and second

derivatives at a number of molecular configurations. The number of such calculations

required depends on the size of the system, the quantity being calculated and the

accuracy required of the potential energy surface. However, it is reasonable to expect

that you will need to carry out a minimum of around a thousand ab initio calculations.

The individual configurations and their associated energy information will be referred

to as ‘data points’. The collection of data points that define the potential energy

surface will be referred to as ‘the PES data set’. The Grow package is designed to

produce the most accurate possible PES for the least number of ab initio calculations

by carefully selecting the location of the data points from configurations accessed

during a trajectory simulution (for reactive surfaces) or QDMC simulation (for bound-

state surfaces), as these represent the chemically relevant regions of configuration

space. The algorithm for constructing the PES is illustrated diagrammatically below:

 5

A detailed description of the theory and methodology underlying the Grow package

can be found in the references at the end of this chapter. A brief description is given

in Appendix 1. A simple (but informative) one-dimensional illustration of the

interpolation scheme at work is provided in Appendix 2.

c. References

1. J. Ischtwan and M.A. Collins, J. Chem. Phys. 100, 8080 (1994)

2. M.J.T. Jordan, K.C. Thompson and M.A. Collins, J. Chem. Phys. 102, 5647 (1995)

3. M.J.T. Jordan, K.C. Thompson and M.A. Collins, J. Chem. Phys. 103, 9669 (1995)

4. M.J.T. Jordan, K.C. Thompson and M.A. Collins, J. Chem. Phys. 104, 4600 (1996)

5. K.C. Thompson and M.A. Collins, J. Chem. Soc, Faraday Trans. 93, 871 (1997)

6. K.C. Thompson, M.J.T. Jordan and M.A. Collins, J. Chem. Phys. 108, 8302 (1998)

7. R.P.A. Bettens and M.A. Collins, J. Chem. Phys. 111, 816 (1999)

8. R.P.A. Bettens, J. Am. Chem. Soc. 125, 584 (2003)

9. D.L. Crittenden, K.C. Thompson, M. Chebib and M.J.T. Jordan, J. Chem. Phys.

121, 9844 (2004)

10. D.L. Crittenden and M.J.T. Jordan, J. Chem. Phys. 122, 044102 (2005)

ab initio
calculation

initial data set

run dynamics observable
converged?

publish!

yes

no

choose new
geometry

add to
data set

 6

3. Ab initio methods available

a. Gaussian (98 and 03)

Analytic frequencies: hf, rhf, rohf, b3lyp, pw91, mp2, rmp2

Analytic gradients: mp4(sdq), ccd, rccd, mp2-force (do not use mp2-force! Provided

for debugging purposes only)

Energies only: romp2, rmp4, mp4, ccsd, rccsd, ccsd(t),rccsd(t), mp2-en (do not use

mp2-en! Provided for debugging purposes only)

b. Aces2

Analytic frequencies: rhf, uhf, rohf

Analytic gradients: rmp2, ump2, romp2, rmp4, ump4, rqcisd, uqcisd, rqcisd(t),

uqcisd(t), rccsd, uccsd, roccsd, rccsd(t), uccsd(t), roccsd(t), eom-ccsd, qccsd

c. Tips and recommendations

For ground state systems, we recommend using at least a density functional method

such as B3LYP or PW91, as implemented in the Gaussian03 suite of ab initio

programs. Of course, it is necessary to benchmark these methods against a higher

level of ab initio theory for the relative energies of geometries in the chemically

relevant regions of configuration space. Additional density functional methods can be

easily incorporated by editing the g03_dat.py file:

- add text ‘functional_name’ to the dictionary of methods and availability of

derivatives in the available[‘analytic frequencies’] list

- add the appropriate Gaussian03 command string to the dictionary of methods

and command strings, following the syntax of the currently available density

functional methods (B3LYP and PW91). It should only be necessary to make

a direct copy and replace the functional name to effect this change. Note: In

Gaussian03 it is necessary to specify BOTH the exchange AND correlation

functionals. Hence the correct nomenclature for PW91 is PW91PW91.

If a more systematic treatment of electron correlation is required, we recommend

using second order Moller-Plesset Perturbation Theory (rmp2), as implemented in

Gaussian03. If this treatment of electron correlation is insufficient, we recommend

using a coupled-cluster method (either rccsd or rccsd(t)), as implemented in Aces2.

 7

Coupled-cluster methods are recommended over configuration interaction methods as

they possess better formal properties (most notably size-consistency) for an

approximately equivalent computational cost. You will probably find, however, that it

is impossible to construct a converged potential energy surface for any system with

more than a couple of atoms within a reasonable time frame using these methods. If

you do choose to use an Aces2 coupled-cluster method, we provide an important

caveat here: Aces2 has a known bug in the code that calculates the second derivative

matrix, which may introduce a small (but unquantifiable) error. Use with caution!

For excited state systems, we recommend extra careful inspection of the level of ab

initio theory required. If a density functional method is appropriate, then this will be

by far the most computationally efficient method. Otherwise, we recommend using a

restricted open coupled-cluster method (roccsd or roccsd(t)) or equations-of-motion

coupled-cluster method (eom-ccsd) as implemented in Aces2, subject to the above

caveat on Aces2 calculations.

 8

4. Installing Grow 2.2

Grow 2.2 is provided as a tarred archive. To extract the Grow 2.2 package, copy the

archive to your home directory and execute the command:

tar xvf grow2.2.tar
(or tar –xvf grow2.2.tar for older versions of tar)

The archive you have extracted should possess the following directory structure:

You will need to ensure that grow2.2/bin/ is in your path. For C-shell users, this

means adding a line similar to:

set path = ($path /home/username/grow2.2/bin)
to your .cshrc file.

For bash users, this means adding a line similar to:

PATH = $HOME/grow2.2/bin:$PATH; export PATH
to your .profile file.

In addition, you will need to have a python interpreter installed on your system, and

accessible from the command line. C-shell users will need to have a line similar to:

set path = ($path /usr/opt/python2.2/bin/python)
in their .cshrc file, where /usr/opt/ is the directory where the python2.2 package has

been installed. Similarly, bash users should have a similar line:

PATH = /usr/opt/python2.2/bin/python:$PATH; export PATH
in their .profile file.

Finally, the grow scripts assume that you have the ab initio packages configured such

that they may be executed from the command line by the user. Again, this requires the

executables to be present in the user’s path (as above).

grow_2.1

bin example src

bfinvert
buckle
choose
interptraj
makevecs
py_scripts
qdmc90
trajstart
utilities

 9

Having successfully extracted the source code and template input files, the next step

is to recompile the executables for the platform you are working on. To do this, you

will have to go through each the directories in grow2.2/sourcecode (except the

py_scripts directory) and edit the FFLAG and F77 variables at the top of the

Makefile to conform with the Fortran compiler you are using, then re-make the files.

We have provided appropriate Makefiles for compiling these executables on DEC

Alpha machines and Linux machines. To remove the executables and object files

from the sourcecode subdirectories (especially useful where disk quota limits are an

issue), type make clean in each directory after having compiled the executables

using make.

 10

5. Setting up the system

a. Deciding on a molecule/reaction and the appropriate dynamics method

The first step is to decide what system it is you want to study and what it is you want

to know about the system you are studying. Unfortunately, neither of these steps are

automated, as yet. If you are interested in studying a reactive system – either

dissociation of a unimolecular system into two fragments or a bimolecular collision

reaction or adhesion of a molecule to a surface – then you will need to use the

classical trajectory code to perform your sampling and calculate your observables. If,

on the other hand, you are interested in calculating the ground state nuclear

vibrational wavefunction of a bound system – the method is equally applicable to

tightly and loosely bound systems – then you will need to use the quantum diffusion

Monte Carlo code.

b. Deciding on an appropriate level of ab initio theory

It is important to note that you need to choose an appropriate level of ab initio theory

for the problem you are interested in. Clearly, the chemical accuracy of the results

produced by Grow will depend on the chemical accuracy of the method you choose to

construct the PES. To state the contrapositive; if you choose a chemically inaccurate

ab initio method to construct the PES, then Grow will construct an accurate

approximation to a chemically inaccurate PES, resulting in chemically inaccurate

calculated observables. While it would be ideal to be able to use a highly correlated

method with a large basis set for every problem of interest, in practice there must be a

trade-off between chemical accuracy and computational expense.

Beside the usual consideration of the time required to calculate the energy of your

system, it is also necessary to consider the time required to calculate the first and

second derivatives of the energy. This is dependent on both the number of

calculations required to calculate the derivatives and the time each calculation will

take.

 11

Method Number of calculations

analytic second derivatives 1

analytic gradients 2(3N-6) + 1

energies only (3N-6)(3N-5) + 1

Overall, it is always fastest to calculate second derivatives analytically, and

calculating second derivatives by numerical differencing of first derivatives is always

faster than calculating second derivatives by numerical differencing of energies. This

generally becomes a major consideration in choosing which method to use to

construct a PES, given the large number of ab initio calculations necessary.

c. Generating geometries for the initial data set

If you are constructing a PES for a reactive system, you will need to perform some

preliminary quantum chemistry to evaluate a known reaction path. If you know that

there are multiple reaction paths, then it is wise to include as much information about

these paths as you can access. It is important to note that you must include the

minimum energy geometry for the reactants and sufficient long-range data for the

separated products. The minimum number of geometries required is three: one which

represents the minimum energy geometry, one which represents the transition state

and one which represents the separated products. If the products are neutral, then an

interfragment separation of 10-13 Bohr is probably sufficient for negligible remaining

interaction. If the fragments possess large dipoles, then 15-20 Bohr may be better and

if one species is charged then an interfragment separation of > 20 Bohr will probably

be necessary.

If you are constructing a PES for a bound system, you will need to first determine all

the low-lying minima and, if possible, transition states to interconversion between

those minima. While only one geometry, corresponding to the global minimum, is

required to generate the initial data set, convergence of the potential energy surface

can be rapidly accelerated by judicious choice of initial geometries.

 12

6. Setting up the input files

a. Overview

Before describing the input files in detail, a summary table of the input files and the

dependencies of each program on these files is provided:

File Programs

IN_ATOMPERMS trajstart, interptraj, qdmc

IN_DX_SIZE diffsteps

IN_EMS trajstart

IN_GROW startPOT, grow

IN_INTERP trajstart, interptraj, qdmc

IN_ISEED trajstart, interptraj, qdmc

IN_QDMC qdmc

IN_SYSTEM trajstart, interptraj, qdmc

IN_TRAJ interptraj

In the following example input files, water will be used as the test system. The

example files will be given and discussed in the same order as you will need to set

them up. Please note that all lines in the input files must be included – the format of

these files is assumed by the programs that use them.

 13

b. IN_SYSTEM

IN_SYSTEM file for water
enter the number of atoms
3
enter the chemical symbols for the atoms, separated by commas
O,H,H
enter the atomic masses in amu
15.9994 1.00794 1.00794
The number of atoms in fragments a and b respectively are
3,0
The atom identification numbers in fragment a are
1,2,3
The atom identification numbers in fragment b are

enter the bond lengths, in order, which give the cutoff for a
real bond to exist between atoms i and j (units are bohr)
4.0
4.0

4.0

Notes:

Line 1: A heading to describe the relevant system

Lines 2 and 3: The number of atoms may not exceed the maximum value specified by

the parameter natomm in various fortran programs (generally found in the .inc files).

The programs have been set up with natomm = 35. If you wish to study a larger

system than this, you will need to edit the source files.

Lines 4 and 5: Enter the element symbols, separated by commas only (no spaces). The

order of the atoms here is important. All previous ab initio jobs run must have the

atoms in this order. All subsequent ab initio jobs will have the atoms in this order.

Lines 6 and 7: The atomic masses must be entered in the same order as the chemical

symbols

Lines 8 – 13: These parameters define the reactant species in the bimolecular collision

or unimolecular reaction, and hence are used by programs associated with performing

 14

classical trajectory simulations. For bound-state calculations, these lines must still be

present, but they are skipped during the process of reading in parameters.

Lines 14,15 to end: Again, these parameters are only necessary for defining fragments

during a reaction. If the distance between two atoms is less than the bond length given

here, the atoms are considered bound. Conversely, the atoms are considered unbound

when their separation exceeds the value given here. Note: the identity of the bonds are

defined by:

1-2

1-3 2-3

1-4 2-4 3-4

1-5 2-5 3-5

1-N 2-N 3-N N-N

The list of bond lengths is generated by reading down each column, starting with

column 1 and appending subsequent columns.

 15

c. IN_INTERP

IN_INTERP file for water
Enter 1 or 2 for one or two part weight function
1
Enter the weight powers q and p
2, 9
Enter the weight cutoffs for the inner and outer neighbour lists
1.d-5 1.d-4
Enter the # of time steps for updates of the outer and inner neighbour lists
10 5
Enter the maximum acceptable energy from POT, and expected minimum energy
-75.5000000 -75.70622799
Enter how many neighbours are used to define the confidence lengths
10
Enter the energy error tolerance which defines the confidence lengths
5.d-4
Number of clusters for neighbourlist reduction
1

Line 1: A heading to describe the relevant system

Lines 2 and 3: Generally, the two-part weight function should be used. However,

when the number of data points is less than approx. 100 (calculated as the total

number of data points, including points generated by nuclear permutation symmetry =

Nperm × Ndata), there will be insufficient data to allow this. The one-part weight

function should only be used to grow the surface until there are sufficient data points

to use the two-part weight function.

Lines 4 and 5: The weight powers (q and p) should be given by q=2, p >> (3N-3)/2,

where N is the number of atoms. We recommend p = 9 for a 3 atom system, p = 12

for 4 and 5 atoms systems and p =15 for 6 atoms.

Lines 6 and 7: The weight cutoffs define the minimum contribution each data point

must make to determining the overall energy (in the Taylor series summation) for the

data point to be included on a list of data points “near” an arbitrary configuration. If

the weight cutoff is small, more data points will be included on the neighbourlist, and

your simulations will run more slowly. However, the accuracy of the surface will be

 16

higher. Conversely, if the weight cutoff is larger, less data points will be included on

the neighbourlist and your simulations will run faster, although the accuracy of the

surface will be lower. The weight cutoffs can probably be left at the values shown,

1.d-5 and 1.d-4. This implies an error of around 0.01 mEh in the PES due to neglect of

minor contributions to the Taylor series summation.

Lines 8 and 9: The number of time steps for updates of the inner and outer

neighbourlists are predominantly dependent on the time step, for both QDMC and

trajectory simulations. We recommend setting these values to 10 and 5. If the

neighbourlists are not updated frequently enough, trajectories will fail to conserve

energy. The QDMC algorithm is less sensitive to small discontinuities in the PES and

thus also less sensitive to the values of these parameters.

Lines 10 and 11: For trajectory simulations, the maximum acceptable energy should

be set to zero while the PES is growing (all molecular energies are negative, so all are

acceptable). The expected minimum energy should be set equal to the lowest energy

data point in the POT file. For QDMC simulations, the aim is to accurately describe

the low energy regions of the PES. In order to increase computational efficiency, we

recommend setting the maximum acceptable energy equal to approximately double

the harmonic zero-point energy of the system of interest.

Note: during the early iterations of the growing process, the scheme may choose some

new data points at ridiculous geometries with very high energies. When the PES is

finished growing, there may be a small increase in interpolation accuracy is such data

points are disregarded. Setting the maximum energy below the energies of such data

points will cause the interpolation section of the QDMC or trajectory programs to

completely disregard such data points.

Lines 12-15: These parameters are used with the 2-part weight function only. The

number of neighbours used to define the confidence radius is the variable M in

Equation 3.13 of Bettens & Collins, J. Chem. Phys. 111, 816 (1999). The actual value

is not critical. For a four-atom system, a value of 24 – 48 is suitable, for 5 or more

atoms, a value in the range 50 – 150 may be more appropriate. The energy error

tolerance is the parameter Etol in Bettens & Collins, J. Chem. Phys. 111, 816 (1999).

A value of 2.d-4 (0.2 mEh) is reasonable for a four-atom system, while a larger system

might be given a slightly larger value. This is approximately how small you might

expect the average interpolation error to be.

 17

Lines 16-17: The number of clusters for neighbourlist reduction parameter is only

used by the QDMC code. You should aim to have between 20-50 data points per

cluster by considering the total number of data points, including points generated by

nuclear permutation symmetry = Nperm × Ndata.

 18

d. IN_ATOMPERMS

IN_ATOMPERMS file for water
 enter the order of the group
 2
 enter each atomic perm old..new, separated by a comment line
 1 1
 2 2
 3 3

 1 1
 2 3
 3 2

This file defines the symmetry of the molecule in terms of the allowed permutations

of the indistinguishable atoms in the molecule. You can generate the list of all

possible permutations by executing the cnpiperms utility from the working directory,

provided you have already set up the IN_SYSTEM file. If this results in a group

which is unmanageably large, and you wish to regard some permutations as

infeasible, a smaller permutation symmetry group can be constructed by either:

- labelling the atoms in the IN_SYSTEM file e.g. O,H1,H2 will result in

distinguishable hydrogen atoms

- constructing the IN_ATOMPERMS file by hand. If you wish to construct this

file by hand, the contents of the file should adhere to the following syntax:

Line 1: A heading to describe the relevant system

Lines 2 and 3: A heading – “enter the order of the group” followed by the number of

permutations you wish to allow, entered on a separate line

Line 4: A heading – “enter each atomic permutation, old… new, separated by a

comment line”

Line 5 to end: the permutations, in the format shown above, with a blank line between

each set. Note: the first set of permutations must correspond to the identity

permutation.

 19

e. IN_DX_SIZE

step size for numerical derivatives by finite difference
0.001

Line 1: title line

Line 2: the step size (in Bohr) for displacements in internal coordinates

f. IN_ISEED

 2109689680

Line 1: blank line

Line 2: initial seed for random number generator

 20

g. IN_GROW

Grow2.2 input file to control python scripts - simple ##

molecule name water
maximum number of iterations 4
convergence check every 4
sampling method is qdmc
convergence method is qdmc
rms points to add per iteration 1
hwt points to add per iteration 9
ab initio package g98
charge 0
spin 1
scratch directory /scratch/
read-write file default
memory limit 100mb
number of processors default

job type (simple or scaled) simple
simple method mp2
simple basis set
O H 0
3-21G

+++
universal basis set 3-21G

 21

Grow2.2 input file to control python scripts - scaled ##

molecule name water
maximum number of iterations 4
convergence check every 4
sampling method is qdmc
convergence method is qdmc
rms points to add per iteration 1
hwt points to add per iteration 9
ab initio package g98
charge 0
spin 1
scratch directory /scratch/
read-write file default
memory limit 100mb
number of processors default
job type (simple or scaled) scaled
high correlation method mp4(sdq)
low correlation method mp2
small basis set
O H 0
3-21G

+++
large basis set
O H 0
6-31G

+++
universal basis - small 3-21G
universal basis - large 6-31G

 22

Line 1: The name of the system is used as the suffix for a large number of temporary

files created by the script. This name is used for reference purposes by the scripts, and

must be referred to when restarting a startPOT or grow run.

Line 2: The maximum number of iterations is the number of cycles of sampling,

choosing and ab initio calculations that will be carried out by the script. The total

number of ab initio calculations that will be carried out is equal to the number of

iterations times the total number of points (h-weight and rms) chosen per iteration.

The QDMC sampling calculations use the input file IN_QDMC.small and the

trajectory sampling calculations use the input file IN_TRAJ.small.

Line 3: Convergence check calculations use the input files IN_QDMC.large and

IN_TRAJ.large for QDMC and trajectory simulations, respectively.

Lines 4 and 5: The keywords for sampling and convergence check simulations are

qdmc (for quantum diffusion Monte Carlo) and classical (for classical trajectories).

Lines 6 and 7: The number of points to add per iteration using one of two criterion for

choosing ‘optimal’ data points – either by root-mean-squared deviation from the

existing data (rms) or high probability of being in a chemically relevant region of

configuration space (hwt).

Line 8: The ab initio packages available are g98, g03 and aces2.

Lines 9 – 14: Are machine-specific and system-specific variables used to set up the ab

initio calculations. Charge and spin have their usual meanings from ab initio theory.

The scratch directory must be the full address (no use of wildcards such as ~ to

specify home directory) and must end in /. The read-write file string must be in the

format required by the ab initio program chosen. We recommend leaving this set as

‘default’, which will use the default read-write files set up by the ab initio program.

The memory limit card specifies the amount of virtual memory requested in the ab

initio input file. The number of processors line is only valid for Gaussian03. For all

other ab initio programs, and for single-processor jobs in Gaussian03, we recommend

that you leave this setting as ‘default’.

Lines 15 – end: Determine the level of ab initio theory used to construct the PES. Jobs

may be either ‘simple’ – calculated at a single level of theory, or ‘scaled’ – the PES is

calculated at a relatively low level of theory then corrected for basis set and electron

correlation deficiencies in a G2-type fashion, according to the formula:

ΔEhigh,large = ΔEhigh,small + ΔElow,large – 2ΔElow,small

 23

The simple and scaled calculations require different input, as illustrated in the

examples above.

The ab initio method for the simple calculations is specified on the ‘simple method’

line. The available methods and keywords are given in Chapter 3. The basis sets must

be specified twice – once using the term ‘simple basis set’ and once using the term

‘universal basis set’. The ‘simple basis set’ input is used in constructing Gaussian

input files, and the basis set must be specified according to the Gaussian Gen basis

specifications. This basis set input is read from the line following ‘simple basis set’ to

the line containing the delimiter ‘+++’. The basis set read from the end of the line

containing ‘universal basis set’ is used in constructing Aces2 input files.

The ab initio methods for the scaled calculations are read from the ‘high correlation

method’ and ‘low correlation method’ lines. Again, the basis sets must be specified

twice – once in Gaussian input format and once in Aces2 input format. The small

basis set Gaussian input is read from the line following ‘small basis set’ to the

delimiter ‘+++’. Similarly, the large basis set is read from the line following ‘large

basis set’ to the delimiter ‘+++’. The Aces2 basis sets are read from the ends of the

‘universal basis – small’ and ‘universal basis – large’ lines.

Note: the basis set input in both Gaussian and Aces2 format must be present.

 24

h. IN_EMS

The Markov walk control parameters
Enter the number of Markov steps, and the stepsize for fragment a
1000,0.02
Enter the number of Markov steps, and the stepsize for fragment b
1000,0.02
bonds to constrain (bond number, length in bohr)
0 4.0
0 4.0
0 4.0
Cartesian geometry for separated initial fragments (Bohr)
 0.0000000000000000E+00 0.0000000000000000E+00 0.0000000000000000E+00
 0.0000000000000000E+00 0.2098017302776257E-15 0.1823368639565938E+01
 0.0000000000000000E+00 0.1784174494261178E+01 -0.3760246930460953E+00

This input file contains parameters to control the Monte Carlo (Markov walk)

generation of initial atomic positions and velocities for the classical trajectories,

according to the “efficient microcanonical sampling” scheme of Schranz et al. J.

Chem. Phys. 94, 1487 (1991). The program, trajstart, produces a microcanonical

vibrational energy distribution for each reactant fragment, with zero rotational angular

momentum.

Line 1: title line

Lines 2 – 5: The number of Markov steps and stepsize for each fragment can probably

be left at the values shown. For further details on the appropriate values for these

parameters, consult the reference given below.

Line 6 and the next NC2 lines (where N is the number of atoms): A constraint flag of 0

means that the bond is unconstrained during the Markov walk whereas a constraint

flag of 1 means that the bond is constrained to the value given (useful for constraining

a molecule to remain in the vicinity of a saddle point). Although the actual bondlength

for unconstrained bonds is irrelevant, a value must be present.

Final N+1 lines: A title line followed by the Cartesian geometry of the separated

initial fragments (in Bohr). Note: although the atom labels must not be included here,

the atom order for these geometries must be the same as specified in the IN_SYSTEM

file.

 25

i. IN_TRAJ

System is water
Enter the time step, # of steps, # of steps between prints, # of trajectories
0.001d0, 20000, 200, 100
Enter the energy of frag a, energy of frag b, relative trans energy (in au)
0.010,0.0,0.0
Enter the allowed relative error in the energy conservation of traj.
4.d-7
Enter the maximum impact parameter, initial fragment separation (in au)
0.00,15.0
Enter the fraction of trajectory points output
1.d0
Do we stop trajectories with low energy? 0=no, 1=yes
1

Line 1: A heading to describe the relevant system

Lines 2 and 3: A time step for the velocity Verlet trajectory integrator (in atomic

units: 1 a.u. = fs). The value chosen for this parameter is motivated by the trade-off

between accuracy (as measured by conservation of energy during the trajectory

simulation) and computational expense (the computer time required to simulate a

given length of real time). If the time step is too large, the trajectories will not

conserve energy with the tolerance given on line 7. It may require some

experimentation to determine the optimal value of this parameter. Note: energy

conservation is also related to frequency of neighbourlist updates, as specified in the

file IN_INTERP.

For reactive systems, the number of allowed time steps can be as large as you like,

since the trajectories are automatically stopped when the product fragments are

separated by the original reactant separation given on line 9. For classical simulations

of bound-state systems (note: this is possible, but not recommended), you should

consider the time scale of the event you are interested in observing, and set the

number of time steps accordingly.

The number of time steps between prints parameter determines the frequency at

which output information is written to the files OUT_INTERP and TOUT (The

TOUT file contains the set of configurations from which the new data points are

 26

chosen by the program choose). Warning: if this parameter is excessively small, then

the number of configurations written to TOUT may exceed the maximum specified in

the source file choose.inc in the choose/ directory. Further, the OUT_INTERP file

may become unmanageably large.

The number of trajectories to be performed should be around 10 in the

IN_TRAJ.small file and around 1000 in the IN_TRAJ.large file. The maximum

possible number of trajectories is defined in the traj.inc file in both the trajstart/ and

interptraj/ directories.

Lines 4 and 5: The internal energies of the fragments are total energies (kinetic +

potential), given relative to the equilibrium energy of the fragment. Note: this

energies must be specified in atomic units (Eh).

Lines 6 and 7: The absolute relative error in energy conservation which is allowed

during a trajectory before the trajectory is terminated and counted as “bad”. Typically,

this parameter should be on the order of 1.d-7. This would, for example, correspond

to an error of 1.d-5 Eh in a system with a total energy of 100 Eh.

Lines 8 and 9: The maximum impact parameter can be set to zero in IN_TRAJ.small.

In IN_TRAJ.large, a reasonable value would be the sum of the approximate van der

Waals radii of the two reactant fragments. If you wish to calculate an accurate

reaction cross section, the maximum impact parameter should be set to the minimum

impact parameter at which no reaction is observed, to ensure that all possible reactive

trajectories have been sampled. How to determine this value for the maximum impact

parameter is presented in Appendix 3.

The initial fragment separation determines the “extent” of the PES in the reactant and

product “valleys”. All trajectories will start with the two fragments separated by this

distance (unless constrained by bond length in IN_EMS), and any trajectory is

terminated if the fragments are moving apart and separated by more than this

distance. As the TOUT file cannot contain geometries with fragments separated by

more than this distance, the POT file will also not contain data points for such

geometries. The value of the initial fragment separation has to be chosen on physical

grounds. We suggest that 10-15 Bohr is sensible for neutral systems with no strongly

dipolar fragments, 15-20 Bohr if dipoles are large and 20-25 Bohr for charged

systems.

 27

Lines 10 and 11: This parameter should be set to 1.0 in IN_TRAJ.small and 0.0 in

IN_TRAJ.large. Using these parameters, the molecular configuration is printed to the

TOUT file with the frequency determined by the ‘number of steps between prints’

parameter on line 3 for the sampling runs. No molecular configurations are printed to

file during the convergence runs.

Lines 12 and 13: Trajectories with low energy should be stopped during the sampling

phase: this parameter should be set to 1 in IN_TRAJ.small. This enables the Grow

algorithm to add data where the existing data predicts “unphysical” holes in the PES.

Trajectories with low energy should be allowed to continue during convergence runs:

this parameter should be set to 0 in IN_TRAJ.large.

 28

j. IN_QDMC

The IN_QDMC file for water
number of seed geometries
1
numbers of walkers: min, max, walkers per geom
500,1500,1000
blocks: total number, number until equilibrium, steps per block
10,5,1000
descendant weighting: # of generations, delay between generations, number of steps
5, 250, 1000
time step
1.0
feedback parameter
1.0
maximum step size for initial displacements from equilibrium
0.5
probability of writing a walker to TOUT
1.0

histograms: upper and lower bounds, bin size
15.0, 0.0, 0.05
restart (y for yes, n for no)
n
symmetrize bond histograms? (y for yes, n for no)
n
geometry in bohr (additional geoms must be separated by a blank line)
 0.0000000000000000E+00 0.0000000000000000E+00 0.0000000000000000E+00
 0.0000000000000000E+00 0.3454907916233456E-16 1.8226681435876140E+00
 0.0000000000000000E+00 1.7834890555985659E+00 -0.3758732226199827E+00

Line 1: title line

Lines 2 and 3: The number of geometries at which to base populations of

walkers/replicas. For molecules with a single, well-defined minimum energy

conformation (like water and methane), this parameter should be one. For molecules

with multiple approximately isoenergetic local minima (generally, but not necessarily,

accessible through torsional motion), it is more sensible to ‘seed’ the simulation with

equal populations of walkers created in each minimum.

 29

Lines 4 and 5: The minimum number of walkers, an upper bound on the total number

of walkers, and the number of walkers to create near each minimum energy geometry.

Note: the total number of walkers (number of seed geometries × number of walkers

per seed geometry) should fall approximately in the middle of the minimum and

maximum numbers of walkers.

Lines 6 and 7: Collectively, these parameters determine the length of the QDMC run.

The total number of steps per simulation is the product of the ‘number of blocks’ with

the ‘number of diffusion steps per block’. This is divided into an equilibration stage

and a production stage. The simulation is divided into ‘blocks’ for two reasons:

1. to facilitate calculation of error bars, as discussed in Appendix 4

2. to moderate the frequency with which sampled configurations are written to

the TOUT file. Following equilibration, the entire ensemble of replicas is

printed to the TOUT file at the end of each block. Therefore, the number of

geometries can be calculated as [‘total number of blocks’ – ‘number to

equilibrium’] × total number of walkers.

The total number of steps should vary according to system size and run type

(sampling or convergence). We recommend 10,000 time steps for sampling runs and

at least 50,000 time steps per convergence run. Typically, 10 or 20 separate

convergence runs are required to obtain production quality results.

Lines 8 and 9: The descendant weighting algorithm (as discussed in Appendix 4) is

used to calculate vibrationally-averaged internal coordinates. The results obtained

should be independent of the parameters chosen here, provided that the generations

are initiated at a long enough time interval and that the descendant weighting runs are

long enough. The error bars on the observables calculated by descendant weighting

can be reduced by increasing the number of generations. Note: the total number of

descendant weighting steps plus time step offset for initiation may not exceed the total

number of steps you have specified for the production stage of the QDMC run.

Lines 10 and 11: The time step (in atomic units of imaginary time!). The time step can

probably be left at the value given, 1.0 a.u.

Lines 12 and 13: The feedback parameter controls the sensitivity of relationship

between the number of replicas created in each branching step and the trial energy.

Again, this parameter can probably be left at the value given, 1.0.

 30

Lines 14 and 15: The initial geometries of the walkers are generated by displacement

along the Cartesian axes from the equilibrium geometry. This parameter controls the

magnitude of this displacement.

Lines 16 and 17: This parameter should be set to 1.0 in IN_QDMC.small and 0.0 in

IN_QDMC.large.

Lines 18 and 19: The wavefunction histograms are constructed by binning the replicas

into internal coordinates at every step of the QDMC simulation. The upper bound

should be set to approximately double the longest bond length in the equilibrium

geometry. The lower bound should be left at 0.0. The bin size determines the

resolution of the histograms and the choice of bin size is motivated by two factors: the

number of data available for binning and the required resolution. A higher resolution

(smaller bin size) requires more data i.e. a longer simulation run. For most purposes,

the bin size can probably be left at 0.05 Bohr.

Lines 20 and 21: The QDMC simulation can be restarted from the population of a

previous simulation, using the IN_RESTART file. If the flag in IN_QDMC is set to

‘y’, then the initial population of walkers will be taken from IN_RESTART. If the

flag is ‘n’, then the initial distribution is generated by random displacements of the

atoms from equilibrium. The functionality is particularly useful for performing

multiple convergence runs. This flag must be set to ‘n’ for in both IN_QDMC.small

and IN_QDMC.large, for the first few iterations of the Grow script (until the at least

one sampling → convergence cycle has taken place). We recommend only setting this

flag to ‘y’ for production runs on the converged surface.

Lines 22 and 23: The bond histograms can be automatically symmetrised to

incorporate nuclear permutation symmetry by setting this flag to ‘y’. This

symmetrisation can also be carried out by post-processing of the histogram data.

Lines 24 and 25: The Cartesian coordinates of the equilibrium geometry/geometries

(in Bohr). Note: the first geometry follows the title line directly, but additional

geometries must be separated by a blank line. Note: although the atom labels must

not be included here, the atom order for these geometries must be the same as

specified in the IN_SYSTEM file.

 31

7. Assembling a crude potential energy surface

Once you have generated the geometries corresponding to all known reaction paths

for a reactive surface or all known local minima for a bound surface (described in

section 5c), and set up the IN_SYSTEM file, you will need to run the ‘startPOT’
script to generate the ab initio data points. The ‘startPOT’ script works by searching

for the ‘standard orientation’ keyword to extract geometries contained in a Gaussian

log file (g03file.log). You should edit your Gaussian log file so that it contains only

the geometry/geometries that you wish to add as data points (especially important if

you have generated the geometries using a geometry optimisation or relaxed scan

algorithm – these output files will contain many similar geometries that do not all

need to be included in the data set).

The syntax for invoking the ‘startPOT’ script is:

python2.2 ../sourcecode/py_scripts/startPOT.py IN_GROW_molecule
g03file.log
If, for some reason, one of your ab initio jobs dies in the process of assembling your

crude PES, ‘startPOT’ can be restarted using the command:

python2.2 ../sourcecode/py_scripts/startPOT.py restart molecule
Warning: ‘startPOT’ assumes that you want to create a PES data file from scratch,

and will overwrite any data previously generated and saved as the ‘POT’ file. If you

want to run ‘startPOT’ twice (using two different Gaussian log files, for example)

you will need to either run the jobs in separate directories or save the first POT file

generated under a different name.

 32

8. Growing an accurate potential energy surface

The required input files for growing a potential energy surface using either trajectory

or QDMC sampling are listed in the table below:

trajectory QDMC

IN_SYSTEM IN_SYSTEM

IN_ATOMPERMS IN_ATOMPERMS

IN_GROW IN_GROW

IN_INTERP IN_INTERP

IN_ISEED IN_ISEED

IN_DX_SIZE IN_DX_SIZE

IN_EMS IN_QDMC.small

IN_TRAJ.small IN_QDMC.large

IN_TRAJ.large

Once the requisite files have been set up and you have generated your crude PES (as

described in section 7 above), you are ready to grow! The syntax for executing the

‘grow’ script is:

python2.2 ../sourcecode/py_scripts/grow.py IN_GROW_molecule
If, for some reason, one of your sampling or ab initio jobs dies in the process of

growing your surface, the script can be restarted using the command:

python2.2 ../sourcecode/py_scripts/startPOT.py restart molecule

 33

9. Running trajectory and quantum diffusion Monte Carlo simulations

The trajectory and QDMC codes can both be executed independently of the grow

scripts. The syntax for executing the trajectory code is:

trajstart > inic

interptraj < inic

The syntax for executing the QDMC code is:

qdmc90 N > OUT_QDMC.N

where N indexes the simulation number, to prevent overwriting output files.

 34

10. Understanding the output – trajectories

The trajectory output data is written to the files:

File name Produced

by

Contains

OUT_INITIAL trajstart echo of input parameters in the IN_* files

OUT_IMPACTPAR trajstart the impact parameter, energy and bondlengths

at the initial configuration of each trajectory

inic trajstart initial conditions for the trajectories

OUT_SUMMARY interptraj summary of the output of a trajectory

simulation, in terms of fragment products and

number of ‘low energy’, ‘bad’ and unfinished

trajectories

OUT_ANG interptraj the instantaneous rotational angular

momentum of the fragments at the completion

of each trajectory

OUT_BTS interptraj the outcome of each trajectory in terms of the

product composition

OUT_FINALBONDS interptraj the value of the bondlengths (Bohr) when the

trajectory is terminated

OUT_FINALCV interptraj the Cartesian coordinates and velocities of the

atoms when the trajectory is terminated

OUT_INTERP interptraj echo of input parameters in IN_INTERP. Also

contains periodic single-line progress reports

of the trajectories, using the abbreviations

defined below

OUT_VEL interptraj the kinetic energy of the relative motion of the

two product fragments at the completion of the

trajectory

TOUT interptraj collection of configurations accessed during

the trajectory simulations

 35

Abbreviation Definition

timps time in picoseconds

nforc number of data points used in the interpolation of the potential energy

at the current molecular configuration

nfin the status of the trajectory at termination:

0 = unfinished

1 = completed satisfactorily

2 = total energy not conserved - “bad”

3 = low energy trajectory (passed below expected minimum value)

errck the relative error in the total energy

ek current total kinetic energy

en current potential energy

 36

11. Understanding the output – QDMC

The QDMC data is output into 5 files: OUT_QDMC, OUT_BOND_HIST,

OUT_DIHED_HIST, TOUT and IN_RESTART.

OUT_QDMC contains an echo of the input parameters, followed by a header, then

periodic progress reports on the ensemble energy and number of replicas. At the end

of the simulation, the vibrationally-averaged zero-point energy (in kJ/mol and Eh),

vibrationally averaged bond lengths and an estimate of the error in the zero-point

energy (calculated using the ‘blocking algorithm’ – see Appendix 4) are printed.

The OUT_BOND_HIST and OUT_DIHED_HIST files contain the wavefunction

histograms for the bond lengths and dihedral angles, respectively. These files may

require some post-processing preceding visualization and some fortran utility files

have been provided for this purpose (see section 13).

The TOUT file contains the collection of replicas accessed during the QDMC

simulation, as printed out at the end of each block.

The IN_RESTART file is a print out of the Cartesian coordinates of the replicas at the

last step in the QDMC simulation. The title line contains information about the

number of replicas and the ensemble energy at the final step of the simulation.

 37

12. Understanding the output – grow scripts and other programs

Collectively, the grow scripts and fortran programs produce the PES data set, which is

stored in the file named ‘POT’. This is the most important file produced (and also

the most computationally expensive to produce), so be very careful not to delete or

overwrite it. The POT file contains a title line followed by the processed ab initio data

for each data point. The processed ab initio data is structured in the following way:

- Heading – “--- data point # XX’

- The N(N-1)/2 bondlengths, in the standard order

- The N(N-1)/2 coefficients, U1i, of the reciprocal bondlengths in the first local

internal coordinate, followed by the N(N-1)/2 coefficients, U2i, down to U(3N-

6)i.

- The energy of the data point

- The (3N-6) first derivatives with respect to the local internal coordinates

- The (3N-6) diagonal second derivatives with respect to the local internal

coordinates.

There are a number of other files produced by the fortran programs. These are

generally uninteresting, except for debugging, but are listed here for

completeness.

COUT – produced by the program ‘choose’. It contains the geometries which

have been selected from the TOUT file to become the next data point/s.

OUT_SV1 and OUT_SV2 – produced by the program ‘buckle’. Contain the

singular values for the intrafragment (SV1) and interfragment (SV2) B matrix (see

reference 6 in section 2)

OUT_MOL – produced by the program ‘buckle’. Contains the original geometry

from COUT and the distorted geometry produced by ‘buckle’.

 38

13. The programs

Program Function

choose Reads in the file ‘TOUT’, containing configurations accessed during

the trajectory or QDMC simulation, and chooses a specified number for

inclusion as data points in the ‘POT’ file.

buckle Distorts the geometry selected by ‘choose’ so that the molecule is not

planar or linear, to avoid singularities in the transformation to local

internal coordinates.

bfinvert Constructs the local internal coordinates and transforms the derivative

data generated by the ab initio calculation.

trajstart Generates initial conditions for the trajectories to be propagated using

‘interptraj’.

interptraj Propagates the trajectories. Creates various OUT_* files that contain

information about the calculated observables.

py_scripts Control the grow process. The main files of importance to the user are

grow.py, startPOT.py and the data files (e.g. g98_dat.py). The data files

can be edited to enable additional ab initio methods (see section 3c).

qdmc90 Calculates the exact ground-state nuclear vibrational wavefunction,

vibrationally-averaged zero-point energy, vibrationally-averaged bond

lengths and wavefunction histograms.

makevecs Makes the displacement vectors needed for the efficient calculation of

numerical derivatives.

utilities An assortment of useful little programs, whose functions are described

below. All the utility programs take data from standard input and write

to standard output e.g. ptoe < POT > energies.out. These programs also

read the IN_SYSTEM file, so should only be used in the directory in

which you are growing the PES.

 39

Program Function Syntax

Ang2Bohr Converts Cartesian geometries from

Angstrom to Bohr

Ang2Bohr < cartfile > outfile

Bohr2Ang Converts Cartesian geometries from

Bohr to Angstrom

Bohr2Ang < cartfile > outfile

basiscorr Combines the results of high and low

level calculations for ‘scaled’ potential

energy surfaces

Used exclusively by the

scripts

cart2dist Takes Cartesian coordinates and outputs

the pair-wise distances

cart2dist < cartfile > bondfile

cnpiperms Generates the IN_ATOMPERMS file

by constructing the complete nuclear

permutation symmetry (CNP) group

cnpiperms

diffsteps Uses the CARTVECS file to generate

the grad.geoms file which contains the

geometries required for calculating

numerical derivatives

Used exclusively by the

scripts

dist2cart Takes the pair-wise distances and

generates the Cartesian coordinates

dist2cart < bondfile > cartfile

en2freq Calculates the numerical second

derivatives from the ab initio energies

of the geometries in the grad.geoms file

Used exclusively by the

scripts

grad2freq Calculates the numerical second

derivatives from the ab initio gradients

of the geometries in the grad.geoms file

Used exclusively by the

scripts

ptob Extracts the bond lengths of the data

points in the POT file

ptob < POT > outfile

ptoe Extracts the energies of the data points

in the POT file

ptoe < POT > outfile

ptof Extracts the forces of the data points in

the POT file

ptof < POT> outfile

rotranz Rotates a geometry (in Cartesian Used exclusively by the

 40

coordinates) into “Z-matrix orientation” scripts

xmolmovie Reads in the TOUT file and creates an

output file that can be read by the

‘xmol’ program to create a movie of a

trajectory

xmolmovie > outfile

 41

14. Using Grow on a supercomputer

A separate installation of Grow is provided for use on machines with automated

queuing systems (and wall time limits). Note: the current ‘pbs’ implementation of

Grow has limited functionality, compared to the standard version. Notably, this

implementation can only construct ‘simple’ potential energy surfaces (not scaled) and

only for ab initio methods with analytic second derivatives. Further, the current

implementation is only set up to use quantum diffusion Monte Carlo sampling

(although the modifications required for trajectory sampling should be trivial). The

major difference between ‘pbs Grow’ and ‘standard Grow’ is that the standard Grow

script runs continuously in the background while the pbs Grow script is suspended

while the sampling, choosing and ab initio calculations are carried out by separate

scripts submitted to the pbs queuing system. In total, four such scripts are required:

- choosehwt.scr

- chooserms.scr

- qdmc.scr

- molecule.scr

Examples of these script files (again, using water as a test system) will be given on

the following pages.

 42

a. choosehwt.scr

#!/bin/bash
#PBS -P g23
#PBS -l walltime=01:00:00
#PBS -l vmem=1024MB
#PBS -l ncpus=1
#PBS -wd

choose < chooseHWt.inp

python2.2 ../sourcecode/py_scripts/grow.py restart water

Lines 1 – 6: machine and system-dependent information required to run the pbs job

Line 7: blank line (included for clarity, can be omitted)

Line 8: ‘choose’ program is called. Note: this syntax assumes that ‘choose’ can be

executed from the command line.

Line 9: blank line (included for clarity, can be omitted)

Line 10: the grow script must be restarted after choose has completed. This call

assumes that you are working in a grow2.2 subdirectory e.g. grow2.2/water/

b. chooserms.scr

#!/bin/bash
#PBS -P g23
#PBS -l walltime=01:00:00
#PBS -l vmem=1024MB
#PBS -l ncpus=1
#PBS -wd

choose < chooseRMS.inp

python2.2 ../sourcecode/py_scripts/grow.py restart water

This file is identical to the choosehwt.scr file, except that the file chooseRMS.inp is

used as input to the choose program rather than the file chooseHWt.inp.

 43

c. qdmc.scr

#!/bin/bash
#PBS -P g23
#PBS -l walltime=20:00:00
#PBS -l vmem=1024MB
#PBS -l ncpus=1
#PBS -wd
#PBS -l jobfs=1000MB

qdmc90 1 > OUT_QDMC.1
cp TOUT.1 TOUT

python2.2 ../sourcecode/py_scripts/grow.py restart water

Lines 1 – 7: machine and system-dependent information required to run the pbs job

Line 9: blank line (included for clarity, can be omitted)

Lines 10 and 11: ‘qdmc90’ program is called. Note: this syntax assumes that

‘qdmc90’ can be executed from the command line. The number following the qdmc90

call is not optional – it is required as input to the qdmc90 program, and is used to

index all the output files (including TOUT). As the grow scripts assume TOUT is not

indexed, it is necessary to copy TOUT.1 back to TOUT.

Line 12: blank line (included for clarity, can be omitted)

Line 13: the grow script must be restarted after qdmc90 has completed. This call

assumes that you are working in a grow2.2 subdirectory e.g. grow2.2/water/

 44

d. molecule.scr (In this case, water.scr – must have same stem as molecule name

specified in IN_GROW_molecule)

#!/bin/bash
#PBS -P g23
#PBS -l walltime=1:00:00
#PBS -l jobfs=5GB
#PBS -l vmem=700MB
#PBS -l software=g03
#PBS -l ncpus=1
#PBS -wd
#PBS -q express

USE_DOT=1; export USE_DOT
USE_G03=1; export USE_G03

. /opt/etc/system_profile
GAUSS_SCRDIR=$PBS_JOBFS; export GAUSS_SCRDIR

g03 < water.com > water.log

python2.2 ../sourcecode/py_scripts/grow.py restart water

Lines 1 – 14: machine and system-dependent information required to run the pbs job

Line 15: blank line (included for clarity, can be omitted)

Line 16: The ab initio package is called. In this case, a Gaussian03 job is run. Note:

the com file stem be the same as the molecule name entered in the

IN_GROW_molecule file. Likewise, the log file stem must be the same as the

molecule name entered in the IN_GROW_molecule file. This syntax assumes that the

ab initio package can be executed from the command line.

Line 12: blank line (included for clarity, can be omitted)

Line 13: the grow script must be restarted after the ab initio job has completed. This

call assumes that you are working in a grow2.2 subdirectory e.g. grow2.2/water/

 45

15. Trouble-shooting

Grow2.2 is still very much a work-in-progress, and is by no means unbreakable. A

number of possible complications may arise, and some of these (the ones we know

about or can anticipate) are addressed below:

1. One (or all) of the fortran programs crash with a “segmentation fault” or other

memory allocation error. The most likely cause of such behaviour is that the

array dimension limits are inappropriate (too small). You will need to edit the

*.inc files in each of the sourcecode/ subdirectories, and re-make the

executables. Important parameter statement variables that you may need to

change are:

- natomm = the maximum number of atoms allowed in the system

- ndatam = the maximum number of data points allowed in the POT file

- ngroupm = the maximum allowed number of elements in the symmetry

group

- maxt = the maximum allowed number of configurations in the TOUT file.

If this number is exceeded, you should decrease the frequency of print outs

by increasing the number of time steps between prints for trajectories or

decreasing the number of blocks run for qdmc while increasing the block

size to keep the total number of steps constant.

- nmax = the maximum allowed number of trajectories that can be specified

in IN_TRAJ. You can make this as big as your RAM allows.

- maxfo = the maximum allowed number of data points in the outer

neighbour list

- maxf = the maximum number of allowed data points in the inner

neighbour list

2. For large systems with a large number of data points in the PES data set, the

qdmc90 code may require more memory than you have available to your

machine. The solution is to use the ‘intermediate memory’ version of the code

we have supplied in the directory sourcecode/qdmc90_intmem. Note: this

version will only work with large data sets.

3. Trajstart crashes, complaining about the presence of identical data points.

Remove the identical data points and change the number in the IN_ISEED file

then continue.

 46

4. Even after addition of 100 (or more) data points, the configuration space is not

being explored adequately during the trajectory simulation, due to either a) no

reaction or b) trajectories failing to conserve energy:

a. The most likely cause of the trajectories failing to react is that the

reaction probability is low at the energy at which you are growing the

PES. This is unsatisfactory, since Grow will be unable to add data in

the product valley. Possible solutions include:

i. Increase the number of trajectories specified in IN_TRAJ to

more than 10 (say, around 100)

ii. Terminate Grow. Edit the IN_TRAJ file to vary the energy of

the fragments and/or the relative translational energy. Run

small sets of trajectories to see if the reaction probability can be

increased in this way. If so (say at least 1 in 10 trajectories

react), then change IN_TRAJ.small accordingly and restart

Grow.

iii. Terminate Grow. Change IN_EMS, IN_TRAJ and

IN_SYSTEM to correspond to the reverse reaction. Run small

sets of trajectories to see if the reaction probability for the

reverse reaction is at least 10%. If so, change IN_TRAJ.small

accordingly and restart Grow to construct the PES from the

reverse reaction, at least for around 100 data points.

iv. Terminate Grow. Change IN_EMS, IN_TRAJ and

IN_SYSTEM to correspond to starting trajectories at the saddle

point (remember to constrain the appropriate bond in

IN_EMS). Run small sets of trajectories to see if both possible

asymptotes are reached by the trajectories. If so, change

IN_TRAJ.small accordingly and restart Grow to construct the

PES from the saddle point, at least for around 100 data points.

b. After the addition of 100 or more data points, the trajectories may fail

to conserve energy, as indicated by a number of ‘bad’ trajectories

reported in OUT_SUMMARY. If this number is decreasing with the

addition of further data points, you probably don’t need to take any

action. However, if this number is remaining constant or increasing,

you may need to:

 47

i. Terminate Grow. Change the weight function in IN_INTERP

from 1 part to 2 part.

ii. Change the neighbourlist parameters in IN_INTERP. Try

decreasing the number of steps between updates of the inner

and outer neighbourlists and/or decreasing the cutoff for

inclusion of points on the neighbourlists (from 1.d-5 to 1.d-6

for example – an order of magnitude decrease).

iii. Look at the value of the allowed relative error in the energy

conservation which you specified in IN_TRAJ.small (and

IN_TRAJ.large). This error tolerance may be too low. You can

probably accept energy variations of up to 1.d-4 or 1.d-3 while

you are growing the PES.

48

48

Appendix 1. Interpolated PES

 The PES is given by an interpolation of Taylor expansions centered at data

points scattered throughtout the configuration space of the system. The surface can

be constructed using all the interatomic distances, R={R1, R2,.., RN(N-1)/2} as the

basis for the internal coordinates (N = the number of atoms). In practice, we use

inverse distances, Z, rather than bond lengths, where Zk = 1/Rk. A set of 3N-6 internal

coordinates are constructed as linear combinations of the Z, with a new set of

coordinates defined locally for each data point in the set. That is, the local internal

coordinates are:

!
(X 0)

(X) = ˜ U
T
Z . (A.1)

The !
(X 0)(X) is a set of 3N-6 linearly independent internal coordinates, for Z

sufficiently close to some data point Z0 = Z(X0).

 Since the 3N-6 internal coordinates ! are well defined and linearly independent

at any nonplanar, non collinear geometry X(i), the Cartesian derivatives and second

derivatives of the PES at X(i) can be transformed into

!V

!"
i and

! 2V

!"i!" j :

!V

!Xn X(i)

=

k =1

3N"6

#
!$k
!Xn

!V

!$k $(i)
; (A.2a)

!2V

!Xn!Xm X(i)

=

k=1

3N "6

#
j=1

3N"6

#
!$k
!Xn

!$ j

!Xm

!2V

!$k!$ j $(i)

+

k =1

3N"6

#
!2$k

!Xn!Xm

!V

!$k $(i)
. (A.2b)

The calculations related to Eqs (A.1) and (A.2) are performed by the executable

bfinvert.

 If the data point configuration is (for example) near planar, some of the 3N-6

local internal coordinates, ! , are nearly linearly dependent and inverting Eq. (A.2) to

obtain the internal coordinates derivatives of the PES may be numerically unstable. To

49

49

avoid this problem, the molecular geometry is distorted (in a minimal sense) by the

executable buckle to ensure that Eq. (A.2) is well behaved.

 If the required energy and derivatives have been evaluated at each of Nd

molecular configurations, a modified Shepard interpolation gives the potential energy

at any configuration Z as a weighted average of the Taylor series about all Nd data

points and their symmetry equivalents:

V Z() = wgoi Z()Tgoi !()
i=1

Nd

"
g#G

" , (A.3)

with ! given by Eq.(A.1). The Taylor expansion, Ti, about the data point

!(i) = ˜ U
T

Z[X(i)] , is given by

Ti !() = V !(i)[] + !k " !k(i)[]
k=1

3N "6

#
$V

$!k !=!(i)
+
1

2!
!k "!k (i)[]

j=1

3N"6

#
k=1

3N "6

! j " ! j(i)[]
$2V

$!k$! j !=!(i)

.(A.4)

This second order expansion is unchanged by an orthogonal transformation of the

independent variables. Hence, if L is the matrix which diagonalises the matrix of

second derivatives:

L
T !

2V

!"2
L = K = diag(k1,..., k3N #6) , (A.5)

and we define !"(i) :

!"(i) = " # "(i) = L

T
$ #$(i)[] (A.6a)

= L
T ˜ U

T
Z # Z(i)[] (A.6b)

= M Z # Z(i)[] , (A.6c)

50

50

then we can write the Taylor expansion as a sum over fewer terms:

Ti !() = V "(i)[] + "k # "k (i)[]
k =1

3N#6

$
%V

%"k "="(i)

+ "k # "k (i)[]
2 %

2V

%"k
2

"="(i)

. (A.7)

This orthogonal transformation and associated, simpler, Taylor expansion is also

worked out by bfinvert.

 The weight function, wi, which gives the contribution of the ith Taylor

expansion to the potential energy at the configuration Z, is discussed below. In

Eq.(A.3), G denotes the symmetry group of the molecule; typically the Complete

Nuclear Permutation Inversion (CNPI) group, or some subgroup of feasible

permutations. Here, g o i denotes that the ith data point, Z(i), is transformed by the

group element g. The sum over g � G means that all permutationally equivalent data

points are included in the data set; the energy derivatives at permuted data points

being simple permutations of the original derivatives. The data set is "symmetrised",

so that the PES of Eq.(A.3) exhibits the full molecular symmetry.

 The form of the weight function has been discussed in detail elsewhere. In

qualitative terms, we would like the Taylor series, Ti, which is most accurate at Z to

have the highest weight in Eq.(A.3). However, since we do not know a priori which

Taylor series is most accurate, a procedure for determining the relative weight for each

data point must be established. Firstly, the weights are normalised (sum to unity) by

setting

wi (Z) =
!i(Z)

!goi (Z)

k =1

Nd

"
g#G

"
. (A.8)

51

51

One can show that Eq.(A.3) is an interpolation of the energy and of the first and

second derivatives at the data points, and that Eq.(A.3) becomes exact in the limit of

infinite data density for appropriate choices of the weight functions.

 To bias the weight function towards the Taylor expansions most likely to be

accurate, the unnormalised weight function, vi, is given by

!i (Z) =
Zk " Zk (i)

dk(i)

$
% %

&

'
((

2

k=1

N (N"1) / 2

)
*

+

,
,

-

.

/
/

q

+
Zk " Zk (i)

dk (i)

$
% %

&

'
((

2

k=1

N(N "1) / 2

)
*

+

,
,

-

.

/
/

p0

1
2

3
2

4

5
2

6
2

"1

. (A.9)

where q = 2 and p = 12 (are the usual values read in from IN_INTERP) The quantities

{dk(i), k=1,..,N(N-1)/2} define a confidence volume about the ith data point. If

Zk ! Zk (i)

dk(i)

"

$ $

%

&
' '

2

k=1

N (N!1) / 2

(<< 1, then the weight of the ith data point at Z varies only

with the low power q, while if
Zk ! Zk (i)

dk(i)

"

$ $

%

&
' '

2

k=1

N (N!1) / 2

(>> 1, the weight of the ith

data point is rapidly damped by the high power, p. The confidence lengths, {dk(i)},

are determined by a Bayesian analysis of the inaccuracy of the ith Taylor expansion at

M configurations close to Z(i):

dn (i)
!6

=
1

M

"V Z(k)[]
"Zn

!
"Ti Z(k)[]
"Zn

$
%
%

&

'
(
(
Zn (k) ! Zn (i)[]

)
*
+

, +

-
.
+

/ +

2

Etol
2
Z(k) ! Z(i) 6

k=1

M

0 . (A.10)

The {Z(k)} are taken to be the nearest M (read from IN_INTERP) neighbouring data

points of the remaining |G| ∞ (Nd-1) independent points in the data set. The error

tolerance (read from IN_INTERP), Etol, defines the accuracy required for Z to lie

within the confidence volume of Z(i). Since the set of |G| ∞ (Nd -1) independent

points is totally symmetric with respect to the symmetry group, the "confidence

length" dn(i) has the same value as that associated with the bond g o n at the data

point g o Z(i). Hence, the confidence lengths need only be evaluated at one version of

52

52

each data point. As discussed elsewhere, the accuracy of Eq.(A.3) is relatively

insensitive to the values of M and Etol:

 The location of the data points in Eq.(A.3) has been determined using the

iterative methods developed previously. In summary, an initial set of data points is

chosen to lie on or near the relevant reaction paths. The potential of Eq.(A.3) is then

well defined in the vicinity of the reaction paths. Classical trajectories are evaluated,

with initial conditions appropriate to the reaction(s) of interest, to explore the

relevant region of configuration space. Molecular configurations encountered during

these trajectories are recorded. One or more of these configurations is then chosen to

be a new data point; the ab initio energy, gradient and second derivatives are evaluated

at that point which is then added to the data set, generating a new version of the PES.

This process of simulating the reaction(s), choosing a configuration, performing the ab

intio calculations and adding a new data point to the set is repeated again and again

until the PES is "converged". Convergence is established by performing large scale

classical simulations of the reaction(s) of interest periodically during the "growth" of

the data set. When the observable properties of interest, eg a reaction probability, do

not change with increasing data set size, the PES is taken to be converged.

 The methods for choosing a new data point at each iteration have been

discussed in detail elsewhere. The "variance sampling" method places data points at

configurations where the uncertainly in Eq.(A.3) is highest. The "h weight" method

attempts to place data in regions where the trajectories often visit, but where few data

points are already present. In the current Grow script we have used both "variance

sampling" and "h weight" methods to choose data points following each sampling

cycle.

 53

Appendix 2. Simple one-dimensional interpolation illustration

Figure 1. The zeroth, first and second order Taylor expansions about the global

minimum

Figure 2. The zeroth, first and second order Taylor expansions about a point far from

equilibrium

Oth order

energy

coordinate

1st order

2nd order

Oth order

energy

coordinate

1st order

2nd order

 54

Figure 3. The relative weights of each Taylor expansion at points one quarter, one

half and three quarters distance between the points at which the Taylor expansions are

based.

Figure 4. Comparison of the two-point interpolated PES with the actual PES.

energy

coordinate

0.5

0.5

0.9

0.1

0.9

0.1

energy

coordinate

55

55

Appendix 3. The treatment of classical bimolecular collisions

For simplicity, we can consider one of the reactant molecular fragments as being at

rest, with its centre of mass at the origin of a Cartesian axis system. The other

fragment is a long way away from the origin, with its centre of mass in the xy plane.

Typically, we could put this second centre of mass at some large negative value of x

as shown in the figure.

The second fragment, initially at some large negative x position, is given a y coordinate

value of b, called the impact parameter, and a velocity, v, in the +x direction. The

impact parameter gets its name from the idea that if there was no interaction between

the fragments, the second fragment would pass by the first fragment a distance b

away. There is nothing artificial about this arrangement of the fragments; we can

always arrange our axis system to make any collision look like this initially. When R

(see Figure) is large, there is no interfragment force or potential.

If the fragments have masses ma and mb, then the reduced mass for the relative motion

is m:

m = (mamb)/(ma + mb).

56

56

The relative velocity of the pair is v, and the relative kinetic energy is Erel:

Erel = 1/2 m v2.

To simulate the range of possible gas phase collisions of these two molecules at a

given Erel, and given internal energies of the two fragments, we must evaluate the

dynamics of a large number of such collisions which differ in their initial conditions as

follows. The orientation of the two fragments must be chosen from a selection of

random orientations. The impact parameter, b, must be chosen from a random

distribution of values, for which the probability of selecting some b between b and b +

db is proportional to 2πb db (if you rotate the figure about the x axis, the collision is

the same, and the second fragment has swept out an anulus of area 2πb db in the yz

plane of possible approaching second fragments). In practice, we only allow b to vary

up to some maximum allowed impact parameter, as for larger values of b, the

interfragment forces are never large, i.e. the fragments miss each other, and the

collision is trivial. The internal structure of the two fragments, and the velocities of

the fragment's atoms with respect to its own centre of mass, must be randomly

selected according to some distribution. Here we take a microcanonical distribution for

each fragment. The executable trajstart does all of the above.

According to classical mechanics, each atom in the system moves subject to Newton's

second law:

mi
d2ri

dt
2

= !
"V

"ri
,

where i = 1,..., natom, and ri = (xi ,yi ,zi) is the cartesian coordinate vector of atom i.

Starting from a configuration like that in the figure, the classical equations of motion

for the atoms are solved using a standard "velocity Verlet" algorithm. Time is broken

down into finite steps to solve the equations of motion for the collision of these two

molecular fragments. As time is incremented in steps, the forces on the atoms are

evaluated from the partial derivatives of the interpolated PES with respect to the

57

57

atomic cartesian coordinates, and the atomic velocities and positions are adjusted

according to the equations of motion. This calculation of the derivatives of the PES

(and the PES value) at each time step is the cpu time consuming part of the classical

simulation. Some parameters are set in IN_INTERP to make this task as fast as

possible. Firstly, the PES formula in Appendix 1 gives the PES as a sum over

weighted Taylor expansions about all the data points. However, at any particular

time step, most of the data points have negligible weights and we do not evaluate their

Taylor expansions if their weight falls below some tolerance, wtol. The data points

with large enough weights form the "neighbour list". Since, the weights only change

slowly with time, the neighbour list changes slowly and is only re-evaluated every so

many time steps. Actually, you have to enter, in IN_INTERP two "numbers of time

steps" that govern how frequently an "inner" and "outer" neighbour list are re-

evaluated. You will find that you also have to enter values for some parameters which

determine how the "weights" for each data point are evaluated. The precise meaning of

these parameters is discussed in Ref 7 of the Introduction.

 When the fragments "hit" each other, they may exchange some atoms (i.e.

react), before they fly apart (since they start apart with some relative velocity, they

always have enough energy to fly apart, although this may take a long time to occur).

When they are far enough apart (say they have reached a distance R again), the

interfragment forces are negligible. It is then possible to measure quantities like the

rotational angular momentum of the fragments, their relative velocity, etc. The

trajectory program interptraj prints out a file, OUT_FINALCV, which contains the

cartesian positions and velocities of all the atoms when the fragments have again

reached their initial separation.

58

58

Classical simulations with this code

 Of course, once you have constructed a PES (POT file) you can run classical

trajectory simulations independently of the Grow script.

You should:

(i) copy IN_TRAJ.large to IN_TRAJ , i.e. execute

cp IN_TRAJ.large IN_TRAJ

(ii) Edit IN_TRAJ (see section 6i) to specify the number of trajectories, the energies

of the fragments, etc.

(iii) Create the initial conditions for the trajectories by executing

trajstart > inic

where inic can be any convenient file name.

(iv) Evaluate the classical trajectories by executing

interptraj < inic > somefilename

Generally, there is no useful output in somefilename. See Chap. 5 for a

description of the output from interptraj.
Notes

 Some notes on how to evaluate classical cross sections are given below.

Sometimes, you may want to repeat one or more trajectories from a larger number that

you have evaluated. For example, you may discover, from peering at the OUT files

that one trajectory does something odd/interesting, and you would like to look at this

trajectory in more detail. You can retrieve the initial conditions for this trajectory from

the inic file (just edit the file). Then you might want to change the frequency with

which information is printed during a trajectory (number of steps between prints in

section 6i). Do not change the timestep for the trajectory, or you will change the

trajectory, since the trajectory integration is only approximate. The TOUT file can be

used to produce suitable input for a movie of the trajectory with the utility program

xmolmovie.

59

59

Classical cross sections

 It is a simple matter to calculate the classical cross section for a particular

reaction from a set of trajectories evaluated in interptraj. The probability or relative

frequency of some reaction in the trajectories can be found from OUT_SUMMARY.

For example, a 1000 trajectories for BH+ + D2 might give an OUT_SUMMARY file

like this:

 number of trajectories with low energy = 0

 number of unfinished trajectories = 0

 number of bad trajectories = 0

 Counts Fragments

 489 12 34

 89 134 2

 192 123 4

 170 124 3

 29 14 23

 31 13 24

Here 1 = B, 2 = H, 3 = D and 4 = D.

Clearly 489 trajectories did not give reaction; 192 + 170 = 362 gave BHD+ + D; 89

gave BD2+ + H; 29 + 31 = 60 gave BD+ + HD. The maximum impact parameter for

these 1000 trajectories was set in IN_CNT (in this example, it was 9 Bohr = 4.763

Å). Denoting this maximum impact parameter as bmax, and the relative frequency of

the reaction of interest as f (a fraction between 0 and 1), the reaction cross section, σ,

is given by

σ = f π bmax2.

60

60

This is f times the total area (cross section) of the circle of radius bmax, which is the

"target area" of the incoming fragment in the figure.

So, in this example, the cross section for BHD+ + D would be

σ(BHD+ + D) = (362/1000) π (4.763)2 Å2.

 = 25.8 Å2

Note that this result is subject to a statistical error due to the fact that only a finite

sample of trajectories was evaluated. A crude estimate of the standard deviation in the

relative frequency, f, that could be expected from repeated samples of 1000

trajectories is d:

d = [f (1 -f)/1000]1/2

The standard deviation for σ is dπ bmax2.

Thermal rate coefficients

 Version 1.0 of Grow does not provide direct calculation of thermal rate

coefficients. k(T) can be evaluated by taking a thermal average of the reaction cross

section (approximately, as the cross sections evaluated above apply strictly only to

molecules with initial zero rotational angular momentum). To find out how to evaluate

this thermal average, see any standard text, e.g. J. I. Steinfeld, J. S. Francisco, and W.

L. Hase, Chemical Kinetics and Dynamics (Prentice-Hall, Englewood Cliffs, NJ, 1989)

Chap. 8, and R. N. Porter and L. M. Raff, in Dynamics of Molecular Collisions, edited

by W. H. Miller (Plenum, New York, 1976) p. 1.

 61

Appendix 4. The quantum diffusion Monte Carlo algorithm

(1) Establish a population of Pnorm walkers by random displacement of each atom

from its equilibrium position by up to 0.5 Bohr along the Cartesian axes.

(2) Move the atoms, with the atomic displacements sampled from a Gaussian

distribution with variance,

!

v = 2" mass, where

!

" is the time step and

!

mass is the

mass of the atom being moved (in atomic units).

(3) Calculate the potential energies of the displaced walkers

(4) Evaluate the ensemble energy, Eens, as the average of the walker energies. If n

(number of steps) > nequil (number of steps to equilibrium), store the ensemble energy

and bin the bondlengths into histograms.

(5) Calculate the trial energy, Etrial, according to the equation:

!

Etrial = Eens "
Pcurr

Pnorm
"1.0

$
%

&

'
() fbp

where Eens is the ensemble energy as defined above, Pcurr is the current number of

walkers, Pnorm is the initial number of walkers created and fbp is the feedback

parameter.

(6) Calculate the branching weight of each walker, according to the equation:

!

w
i
= e

(E
trial

"E
i
)#

+ rand()

where Ei is the potential energy of the walker and rand() is a random number between

0 and 1.

(7) Perform the branching according to the values of the branching weights:

- wi < 1 → annihilate walker

- 1 < wi < 2 → leave walker

- 2 < wi < 3 → create 1 extra copy of the walker

- 3 < wi → create 2 extra copies of the walker

 62

Repeat steps 2 to 7 nequil times until both the ensemble energy and trial energy remain

relatively constant. Repeat steps 2 to 7 nprod times until the error bars on your energy

and nuclear vibrational wavefunction, as calculated using the blocking algorithm

described by H. Flyvbjerg and H.G. Petersen (J. Chem. Phys. 91, 461 (1989)) are

sufficiently small.

Basically, this algorithm involves calculating the standard deviation in the data set

following successive “blocking” transformations, where the blocking transformation

is defined by averaging entries 1 and 2, 3 and 4, 5 and 6 etc. There exists a plateau in

the value of the standard deviation following a sufficient number of “blocking

transformations”, given that the data set is sufficiently large. The value of the standard

deviation at this plateau is taken as an upper bound for the standard deviation of the

data set.

Vibrationally-averaged bondlengths are calculated using the descendant weighting

algorithm, as described by M.A. Suhm and R.O. Watts (Phys. Rep. 204, 293 (1991)).

Basically, this algorithm involves the following steps:

(1) At regular intervals (say, once every noffset time steps, a total of Ngen times)

following equilibration, index the walkers and record their configurations.

(2) Propagate the walkers for ndw time steps, keeping track of which walker is

descended from which parent

(3) At the end of each generation, count the number of walkers (n) descended from

each parent. Evaluate the expectation value of the vibrationally averaged bondlength

according to the formula:

!

r =

r
i
n
i

i=1

N
wal ker

"

n
i

i=1

N
wal ker

"

(4) Calculate the error in the vibrationally-averaged bondlengths as the standard

devation in the mean, averaging over all the Ngen generations.

	12621944_Grow 2.2 Manual.pdf
	12621944_Appendix 1
	12621944_Appendix 2
	12621944_Appendix 3
	12621944_Appendix 4

