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Abstract 

Personal care products (PCPs) are a subset of emerging contaminants detected in waterways globally 

and include antimicrobial compounds, preservatives, organic UV-filters and industrial chemicals. These 

compounds are washed down household drains every day and can enter waterways via stormwater, 

sewer overflows and wastewater treatment plant effluents. There is growing concern about the effects 

of PCPs on aquatic ecosystems as many of these compounds impact microorganisms and are endocrine 

disruptors. Though research into the presence of PCPs is increasing, the majority of studies originate 

from Europe and North America and there is limited data on the presence and effects of PCPs in New 

Zealand waterways.  The results from the work undertaken in this thesis will contribute to the 

development of any future regulations for PCPs in New Zealand. 

The occurrence of PCPs and effects on bacterial community structure were investigated over six months 

in two Christchurch urban streams previously impacted by sewer overflows: Dudley Creek Diversion 

and Cross Stream. The UV-filters benzophenone-3 and octyl-methoxycinnamate, and bisphenol A were 

frequently detected. Concentrations of UV-filters were lower during the winter months. Other detected 

compounds included methyl paraben, octylphenol, o-phenylphenol and triclosan. Compounds were 

detected in the low ng/L range in stream water and low ng/g range in sediment. As no sewer overflows 

occurred over the course of the study there were limited differences observed between upstream and 

downstream concentrations. Previous sewer overflows were likely to be the source of benzophenone-3 

at Dudley Creek Diversion as downstream sediment concentrations were significantly higher than 

upstream. Triclosan was also detected in two sediment samples downstream at Dudley Creek Diversion 

in March and April but was not detected in any upstream samples. The sediment bacterial communities 

at Dudley Creek Diversion were significantly different at upstream and downstream sites of the 

overflow outfall indicating that contaminants derived from sewerage inputs may alter sediment bacterial 

community composition. Though concentrations were lower than those reported to have toxic effects 

in waterways, several compounds were identified using multivariate multiple regression with distance-

based linear modelling as having an effect on the structure of bacterial communities including 

benzophenone-3, octyl-methoxycinnamate, triclosan and bisphenol A.   

The effect of the antimicrobial triclosan on the photosynthetic activity of the green alga Stigeoclonium 

sp. and cyanobacteria Phormidium autumnale was investigated. Stigeoclonium sp. was more sensitive 

to triclosan than Phormidium autumnale, the 96 hr EC50 values were 1.23 and 3.17 mg/L, respectively. 

Both organisms examined are commonly found in New Zealand rivers and these results provide new 

information on the effect of PCPs in New Zealand waterways. 
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1 Introduction 

Stream ecosystems in urbanised areas are impacted by multiple stressors and as a result are vulnerable 

to severe degradation and modification.1 An increase in impervious surface cover leading to augmented 

surface runoff has been identified as the major effect of urbanisation on urban streams.2 Streams that 

drain urban land are regularly found to be in an ecologically degraded state.3 This observation has led 

to the term “urban stream syndrome” being used to describe the often degraded state of these 

ecosystems.3 Urban stormwater has been demonstrated to contribute to the deteriorating quality of 

receiving waters, carrying nutrient pollution and conventional contaminants such as heavy metals.4 In 

recent years stormwater contamination by a wide range of organic compounds has been highlighted 

with over 650 compounds identified as being present at trace concentrations.4  Though the primary 

source of contaminants is urban stormwater runoff, sewer overflows and wastewater treatment plant 

(WWTP) effluents can also be major contributors.3 Personal care products (PCPs) are a class of organic 

contaminants for which there is little data for urban streams in New Zealand. 

It has been acknowledged that the lack of regulations in place for PCPs is an issue for managing these 

compounds.5 There is very little monitoring of these unregulated compounds to determine their presence 

in the aquatic environment.5 The European Union has developed strategies to deal with some PCPs 

however globally limits and regulations for PCPs have not been specifically set for water bodies.5 

Knowledge of the presence and effects of PCPs in New Zealand waterways is critical to inform the 

development of any future regulations. This study investigates the occurrence and impact of PCPs in 

two Christchurch urban streams: Dudley Creek Diversion and Cross Stream. 

1.1 Significance of personal care products as emerging contaminants 

In most cases, the term ‘emerging contaminants’ (ECs) is used to describe unmonitored or unregulated 

contaminants. Research on their presence, and impacts on human health and the ecosystem could mean 

more ECs become candidates for regulation in future.6 Emerging contaminants have likely been present 

in the environment since their introduction, however as analytical instruments have become more 

sensitive in recent times and ECs are now detected, concern about their effects on ecosystems is 

growing.6  

Personal care products (PCPs) are used every day in households resulting in the release of chemical 

ingredients, along with degradation products, into the environment.7 Personal care products are a subset 

of emerging contaminants and are recognised as trace pollutants which have recently been identified in 

freshwater systems. These compounds may pose a threat to human and ecosystem health.8 Compounds 

classed as PCPs include antimicrobial compounds, preservatives, organic UV-filters and industrial 
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chemicals such as BPA.9 Sewer overflows and stormwater runoff have been recognised worldwide as 

a source of PCPs entering urban waterways.10 

Personal care products are often studied alongside pharmaceuticals which are used to treat disease and 

are also released into the aquatic environment via domestic wastewater.11 There have been more than 

150 studies investigating the presence of pharmaceuticals and personal care products (PPCPs) in 

receiving waters.12  However, often only a few PCPs are focused on in an individual study and the suite 

of compounds analysed between studies are not consistent, making it difficult to compare levels of PCP 

pollution.12 Further, 80% of studies on the occurrence of PPCPs come from Europe and North 

America.12 Of these studies, considerably more research has been conducted into investigating the 

occurrence of pharmaceuticals in the environment than personal care products and there is a large focus 

on water bodies receiving WWTP effluent.7 To gain a more comprehensive understanding of PCP 

contamination in waterways on a global scale, studies in other regions are needed, along with expanding 

the range of compounds analysed, with a larger focus on personal care products.12  

1.2 Key target analytes and effects on physiological processes 

Triclosan 

Triclosan is a broad spectrum synthetic antimicrobial compound primarily found in many personal care 

products including toothpaste, hand soap and deodorant. Other uses include incorporation into plastic 

materials and kitchen utensils.13 Triclosan is classed as a halogenated aromatic hydrocarbon with 

phenolic, diphenyl ether and polychlorinated biphenyl functionalities (Figure 1.2a).14 Triclosan’s mode 

of action for bacteria is the inhibition of the enzyme enoyl acyl carrier protein reductase leading to 

blocked lipid biosynthesis.15 In PCPs, triclosan is included at around 0.1% to 0.3% (w/w) and the 

formulations are applied externally.14 Consequently triclosan is washed off into domestic wastewater 

with no metabolic changes.14 Release from PCPs into domestic wastewater is the main source of 

triclosan in the environment.14 A recent review calls for triclosan to be considered on the priority list 

for emerging contaminants due to its widespread use and toxic effects on aquatic organisms.14 Lack of 

available monitoring data could be a key reason for the absence of triclosan on lists prioritising 

contaminants of concern.14 

Triclosan can readily photodegrade13 and has a low aqueous solubility and with a high octanol-water 

partitioning coefficient (log KOW = 4.8), has the potential to bioaccumulate.14 The degradation product 

of triclosan, methyl triclosan (mTriclosan) is more lipophilic than the parent compound and is resistant 

to photodegradation causing further environmental concern.14, 16 
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Both triclosan and mTriclosan have been found to bioaccumulate in algae, with concentrations in algae 

detected at an order of magnitude higher than water samples from the same stream.17  Accumulation 

has also been observed in higher trophic level species such as snails,18 fish18 and dolphins19. Several 

studies have indicated triclosan toxicity for a number of species including invertebrates, fish, 

macrophytes and algae.13, 20 Algae show the greatest sensitivity to triclosan with adverse effects on 

growth displayed below 1 µg/L.7 

 

 

 

Figure 1.2a. Triclosan 

Parabens 

Parabens are esters of para-hydroxybenzoic acid and have either an alkyl or benzyl group.21 Parabens 

are typically found in a wide range of foodstuffs, pharmaceuticals and cosmetics as preservatives due 

to their broad spectrum antimicrobial and antifungal properties and have been used for approximately 

100 years.21 Increased alkyl chain length gives increased antimicrobial function and decreased water 

solubility, often resulting in the use of multiple parabens in products to achieve optimal antimicrobial 

activity.22 The European Union regulates the use of parabens in cosmetics. However, for the 

environment, particularly water, there are no guidelines for acceptable concentrations.21 The structures 

of methyl and propyl paraben are presented in Figure 1.2b. 

 

 Parabens have displayed estrogenic activity, a cause of human health and environmental concern 

however the potency of the effect is still debated.23 In rainbow trout ethyl-,propyl- and butyl paraben 

all showed estrogenic activity between 100 and 300 mg/kg body weight however the level of exposure 

required to reach these concentrations would not be typical in the environment. 22a Reduced sperm 

counts in animals have also been reported, but not at environmentally relevant concentrations.22b 

Parabens have been shown to biodegrade under aerobic conditions and have an estimated low to 

moderate potential for bioaccumulation with log KOW values in the range of 1.96 and 3.57.22a  

 

 

 

Figure 1.2b. Methyl paraben (i) and Propyl paraben (ii). 
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UV filters 

Sunscreen and many products contain UV filters including skin creams, cosmetics and hair dyes.24 UV-

filters are also used in building materials and paints.25 Organic UV-filters absorb UV light to protect 

the skin or hair. Like other PCPs UV filters are washed off and enter domestic waste water or can be 

directly input into rivers/lakes during swimming or bathing.24, 26 With growing public awareness of the 

harmful damage of UV radiation there has been an increase in the use of sunscreen, causing concern 

regarding the environmental impact of UV filters.27 As a result, research on the occurrence of UV filters 

in PCPs and the environment is increasing.26  

Due to the high lipophilicity of some UV-filters, there is potential for bioaccumulation in aquatic 

organisms.24 The log KOW values for compounds in this study have been reported as 3.8 for 

benzophenone-3 (BP-3; Figure 1.2c), 5.1 for 4-Methylbenzylidene camphor 5.1 (4-MBC) and 6.0 for 

octyl methoxycinnamate (OMC; Figure 1.2c).24 UV-filters have been measured in fish and 4-MBC has 

been reported in fish at substantially higher concentrations than in respective surface water samples.24, 

28 Effects on various organisms have also been examined with 4-MBC and OMC showing estrogenic 

effects in fish and BP3 adversely effecting reproduction.29 Microalgae have been shown to be more 

sensitive to UV-filters than organisms of higher trophic levels.26 An EC50 value is defined as the 

concentration of a toxicant that induces a response halfway between the baseline and maximum 

response. For BP3 exposure the EC50 for the microalgae Isochrisis galbana 13.87 µg/L compared with 

3118.19 µg/L for sea urchin larvae.30 

 

 

 

 

 

 

Figure 1.2c. Octyl methoxycinnamate (i) and benzophenone-3 (ii). 

Surfactant degradation products 

Nonylphenol (NP) and octylphenol (OP) ethoxylates are the most commonly used alkylphenol 

ethoxylates (APEOs) non-ionic surfacants.31 Alkylphenol ethoxylates are used in formulations for many 

products including detergents32, pesticides32, textiles33 and paints33 and are ubiquitous in wastewater 

due to their widespread use.32 There are two main degradation pathways for APEOs, the non-oxidative 

i. 
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pathway which occurs mostly in WWTPs and the oxidative pathway which is dominant in natural 

waters.31 Nonylphenol and OP are degradation products of their corresponding ethoxylates and are of 

concern due their endocrine system toxicity which is greater than the parent compounds.31 Nonylphenol 

and OP are relatively stable in the environment.34 Both OP and NP are confirmed estrogen mimics.35 

Estrogenic responses have been caused in fish by both NP and OP including vitellogenin production 

induced by both alkylphenols in male fish at 5 µg/L.34  

 

 

 

 

Figure 1.2d. Octylphenol (i) and nonylphenol (i). 

Bisphenol A 

Bisphenol A (BPA) is a widely used chemical, important industrially in the production of epoxy resins 

and polycarbonate plastics.36 Many everyday products contain these plastics including DVDs, sports 

equipment, food cans and reusable bottles.36 Bisphenol A is frequently detected in surface waters 

globally.37 The primary route for BPA into the environment is sewage effluent and landfill sites with 

some contribution from leaching of BPA from products into the environment.37 The half-life for BPA 

in freshwater is less than 5 days with bacteria being the primary influence on its degradation. 38 

Exposure of aquatic organisms to BPA has increased as usage of products containing the chemical has 

risen.37, 39 Endocrine disruption is of particular concern and has been observed in aquatic organisms as 

BPA is classified as a xenoestrogen.38-39 Delayed emergence in the midge Chhironomus riparus has 

been reported at exposure of just 0.078 µg/L and at an exposure of 1.75-2.4 µg/L a reduction in sperm 

density was measured in the brown trout, Salmo trutta f. fario.37 Significant inhibition of growth was 

observed for the algae Chlorella pyrenoidosa and Scenedesmus obliquus in acute toxicity tests with 

EC50 values of 63.53 and 26.72 mg/L respectively.40 Another study has also reported an EC50 value for 

growth inhibition of the alga Cyclotella caspia in the mg/L range (7.96 mg/L).41 

 

 

 

Figure 1.2e. Bisphenol A 
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1.3 Fate of emerging contaminants in the environment 

Organic chemicals including emerging contaminants can undergo a range of physical, chemical and 

biological processes once released into the environment. These processes may leave the chemical 

structure unchanged or result in transformation of the chemical.42 Chemical, photochemical, and 

biological, particularly microbial transformations generate new compounds.42 Transformation products 

are often also environmentally relevant due to increased toxicity or persistence. For example BP3 can 

be degraded to BP1 which has been shown to be weakly estrogenic7, 43 while methyl triclosan, the 

microbial degradation product of triclosan, is of concern due to greater environmental stability and 

lipophilicity compared to its parent compound.13 

Sorption can prevent degradation of the chemical by other processes such as biodegradation44 and 

photodegradation,45 while reducing the bioavailability of the compound.42 The chemical structure of the 

pollutant and the mineral and organic matter content of the sediments or suspended particulates govern 

the extent to which sorption processes in the aquatic environment occur.42 Neutral chemicals, such as 

those studied in this thesis, will adsorb onto sediments and suspended particulates with neutral 

hydrophobic surfaces which becomes more favourable with increasing amounts of organic carbon.42 

The octanol/water partitioning coefficient KOW describes the ability of organic contaminants to sorb to 

particulates and sediment.46 Compounds with high log KOW values ( >5) are likely to easily absorb to 

sediments.46 

Accumulation of emerging contaminants may also occur in biota as described for specific chemicals in 

section 1.3. For aquatic biota direct partitioning between the water, sediments, and organisms is one of 

the key bioaccumulation processes as well as the more complicated partitioning between consumed 

food and the internal transport of the chemical within the organism.42 Metabolism of the chemical may 

or may not occur before excretion, or the parent compound and/or any degradation products may 

accumulate in the organism within different tissues.42  

Photochemical transformation due to sunlight is considered the most important abiotic degradation 

process for organic chemicals in surface waters.47 Direct photodegradation may occur if compounds are 

able to absorb sunlight in the UV wavelength region.48. Indirect photodegradation can occur in the 

presence of photoreactive chemicals, such as nitrate and humic substances, which can generate strong 

oxidants after reactions under sunlight. The oxidants can then degrade contaminants present in the 

water.48 

Though many personal care products may undergo degradation as described above, parent compounds 

may continuously be released into the environment due to their frequent use and introduction to 

domestic wastewater.7 Thus the term “pseudo-persistent” is commonly used to describe such 

contaminants.49 
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1.4 Photosynthetic microorganisms in urban streams 

The impacts on streams in urban areas have been studied in recent years using the change of structure 

and function of aquatic biota as a focus.50 The greatest abundance of plant biomass in aquatic 

environments is comprised of algae, making an appropriate choice for aquatic toxicological studies. 

However the effect of urbanisation on algal biomass has rarely been studied.3  Studies have investigated 

the impacts of urbanisation on algae through correlating community composition with particular water 

quality parameters such as salinity, pH and nutrient concentrations.50  However, algae have been 

underutilised in the field of antimicrobial ecotoxicity. This is despite their unique role as primary 

producers and crucial links in aquatic food webs.17 Further studies are required to improve knowledge 

on the effects of antimicrobial compounds on benthic microorganisms, including algae and bacteria. 

This will assist in improved predictions of the implications for aquatic ecosystems exposed to these 

antimicrobial compounds.17 

Typically soaps, toothpastes and other personal care products (PCPs) contain antimicrobial compounds 

which are designed to kill or prevent the growth of potentially harmful microorganisms.8  Sewer 

overflows release domestic wastewater into streams and non-target microorganisms can be 

inadvertently exposed to antimicrobial compounds.8 Species diversity and abundance can be affected, 

potentially altering the nutrient processing capacity and natural food web structure of affected streams.8 

Microorganisms are particularly sensitive indicators to environmental change and reflect the health of 

an aquatic ecosystem.8 

1.5 Effects of triclosan on freshwater microorganisms 

 

There is growing concern about the effect of TCS on aquatic ecosystems, largely due to the compound’s 

antimicrobial properties.51 Uncertainties remain on the effects of TCS on benthic organisms.7 A recent 

study conducted in the USA used an artificial stream experiment to expose microbial communities to 

environmentally relevant concentrations of TCS. Bioassays were conducted on exposed samples.51 

Triclosan exposure had a significant effect on the proportion of TCS resistant bacteria within 

sediments.51 There was a 6-fold increase in the relative number of cyanobacterial sequences, increasing 

from <1% of the total community to just over 5%.51 In turn, there was a clear die-off of algae in the 

community. This suggests that cyanobacteria are more resistant to TCS than algae which could have 

serious consequences for freshwater ecosystems as cyanobacteria are a public health concern.51 

Previous studies have also shown that exposure to TCS decreases the biomass of some green algae 

genera relative to algal communities in non-impacted sites, potentially altering community structure.8 

 



Chapter 1 

8 

 

1.6 Cyanobacteria and risk to human health 

Cyanobacteria are microorganisms with both bacterial and algal characteristics. When environmental 

conditions are favorable some species can multiply rapidly.52 Proliferations may form as blooms, 

benthic mats and crusts.52 Some cyanobacteria produce toxins (cyanotoxins) which can be harmful and 

potentially fatal when animals including humans are exposed to them.52 Phormidium, a genera of 

cyanobacteria in which toxin production has been confirmed, is common in lakes and rivers in New 

Zealand.52-53 Anatoxin-a and homoanatoxin-a are two neurotoxins produced by Phormidium. There 

have been confirmed dog fatalities from these toxins in New Zealand.53 

 Every summer there is a risk of exposure to cyanotoxins as people take part in recreational freshwater 

activities. Sewer overflows may cause concentrations of antimicrobial compounds such as triclosan to 

increase in streams, which may suppress algal growth and enable cyanobacteria to proliferate in the 

absence of competition from other organisms if cyanobacteria are more resistant to the compound.51 

Little is known about the triggers of cyanobacteria proliferations and toxin production. When benthic 

mats detach from a substrate, it is thought that cyanotoxins may be released into the water as the mats 

degrade.52 Therefore, a risk is also posed to drinking water supplies.52   

1.7 Project Objectives 

Currently there are no regulations regarding acceptable concentrations of chemicals derived from PCPs 

in New Zealand waterways and there is limited data available regarding their occurrence and toxicity.54 

As these compounds could have ecological impacts at environmental concentrations it is important for 

more research on their existence and toxicity to be conducted.54 Little is known about the triggers of 

cyanobacteria proliferations and more understanding is needed to determine if antimicrobials such as 

TCS create favourable conditions for growth of cyanobacteria in New Zealand waterways. 

The overall aims of this thesis are to: 

 Determine if sewer overflows are a significant source of emerging contaminants and in 

particular anti-microbial compounds in Canterbury urban waterways. 

 Characterise the composition and relative abundance of benthic microbial communities 

upstream and downstream of sewer overflow sites. 

 Measure the effects of triclosan on two common species of photosynthetic organisms (a 

cyanobacterium and green alga) found in urban waterways. 
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1.8 Thesis Structure 

The following two chapters present the experimental work carried out as part of this thesis. The first 

component was a field study which investigated the occurrence of emerging contaminants and their 

impact on microbial community structure in two urban streams (Chapter two). In Chapter Three the 

results of a study measuring the effects of the antimicrobial compound triclosan on the cyanobacterium 

Phormidium autumnale and green alga Stigeoclonium sp. are presented. Key conclusions and 

recommendations are summarised in Chapter Four. 
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2 Temporal variation of emerging organic contaminants and 

bacterial communities in urban streams 

2.1 Introduction 

Chemical contamination of urban streams can have significant impacts on their ecology.2 The amount 

of contamination and class of contaminants present in streams is dependent on the extent and type of 

urbanisation and consequently stormwater drainage, as well as the presence of sewer overflows and 

wastewater treatment plant (WWTP) effluent.2 Altered physio-chemical parameters and an increase in 

contaminants in urban streams is generally observed including oxygen demand, conductivity, 

suspended solids, nutrients and metals.2 There is limited data on concentrations of personal care 

products (a subset of emerging organic contaminants) in urban streams. Sources of PCPs include 

hygiene products such as hand soap, cleaning products and industrial chemicals as described in section 

1.1.9 These are washed down the drain everyday thus entering domestic wastewater, and potentially the 

environment.7 Advancements in WWTP technologies have resulted in reductions in chemical 

contaminants entering receiving waterways. However, sewer overflows are still common word wide, 

and untreated sewage can enter streams during storms when the sewer system reaches capacity.2  

Dudley Creek Diversion and Cross Stream are two urban streams in Christchurch, New Zealand which 

have sewer overflow outfalls entering them. The two streams were selected for this study and were 

investigated over a six month period from March – September 2015. Water and sediment samples were 

collected monthly and analysed for a suite of phenolic antimicrobial compounds and other compounds 

commonly found in PCPs, as well as for trace elements, nutrients, water quality parameters and bacterial 

community composition. 

2.1.1 Benthic microorganisms and molecular taxonomy 

In aquatic environments, microorganisms are often found in complex, surface attached communities 

called biofilms.55 As biofilms are attached to a surface, the residence time of microorganisms is longer 

relative to the transport of water and thus microorganisms’ community structure may undergo change 

over time.55 Benthic biofilms generally dominate microbial life in streams and their biodiversity can 

determine the metabolic health of their microbial communities and consequently the functioning of the 

aquatic ecosystem they reside in.55 Proteobacteria, Bacteroidetes and cyanobacteria are the most 

prominent bacterial groups in freshwater biofilms.55 Sediment bacterial communities are also integral 

to ecosystem function.56 Environmental factors such as pH, organic carbon and nitrogen have often 

been able to explain bacterial community variation in streams. .55 Urban streams are known to receive 
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increased inputs of contaminants such as nutrients and metals, and bacterial community structure in 

sediments has been shown to be significantly different between urban and nonurban stream sites.57  

There is limited data for the impacts of emerging contaminants on microbial communities in urban 

streams. The antimicrobial compound triclosan has been shown to impact sediment bacterial 

community structure and algae. Increased relative abundance of cyanobacteria has been observed in a 

bacterial sediment community after exposure with a decrease in abundance of green algae,51 green algae 

have also been visually damaged in biofilm communities after triclosan exposure while diatoms in the 

same community recovered.58 Triclosan can also inhibit biofilm development and decrease biofilm 

bacterial diversity.59 

High through-put sequencing (HTS) has advanced the study of microbial communities and numerous 

studies have used HTS to characterise bacterial communities in a range of environments.60 High 

through-put sequencing allows multiple samples to be sequenced at once and tens of thousands of 

amplicon sequences may be generated from a single sample.60  High through-put sequencing was used 

to characterise bacterial community compositions at Dudley Creek Diversion and Cross stream 

upstream and downstream of known sewerage overflow sites. Thereby the influence of PCPs, among 

other water quality variables, on structuring bacterial community composition was examined.  

2.1.2 Study Objectives 

The objectives of the field study were to: 

 Determine the occurrence of PCPs and steroid hormones at Dudley Creek Diversion and 

Cross Stream in sediment and water samples at sites upstream and downstream of sewer 

overflow outfalls. 

 Characterise bacterial community composition in biofilm and sediment samples from the 

study sites and determine whether there is variation between sites. 

 Determine which environmental variables explain variation in bacterial community 

composition. 

2.2 Methods 

2.2.1 Sampling 

The two urban streams, Cross Stream and Dudley Creek Diversion, were selected after consultation 

with the Christchurch City Council (CCC). Analysis of data provided by the CCC showed that of the 

water bodies receiving sewer overflows in Christchurch which could be classified as streams and were 

safe to sample water, sediment and biofilms, these two had received the most overflows in the last three 

years. Both Dudley Creek and Cross Stream (Figure 2.2.1) are in the Avon River catchment and drain 
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a number of impervious surface including roofs, road surfaces, pavements and parking areas.61 Cross 

Stream is located in the western area of the catchment. Dudley Creek Diversion is a timber lined drain 

designed to aid in the prevention of flooding of Dudley Creek, a major tributary of the Avon River that 

drains a large area of Christchurch between Elizabeth II Drive and Bealey Avenue.62 Sampling took 

place as close to the 30th of each month as possible, beginning on the 30th of March 2015 and ending on 

the 15th of September 2015 (referred to as the sampling taken place for August as sampling was not 

possible that month). At each overflow site three sampling points were selected using a gradient 

approach: 10 m upstream of the overflow outfall (control), 5 m downstream of the outfall, and 50 m 

downstream of the outfall. Sampling began at the point furthest downstream to ensure substrate and 

flows were not disturbed upstream of any point before sampling. Water samples were collected before 

sediment and biofilm samples. Samples were collected for analysis of PCPs and steroid hormones, 

heavy metals, nutrients, suspended solids, total organic carbon (TOC) and benthic bacteria community 

composition (sediment and biofilms). Only samples collected upstream and 5 m downstream of the two 

outfalls were eventually analysed due to financial and time constraints.  

 

Figure 2.2.1. Dudley Creek Diversion and Cross Stream. 

2.2.1.1 Samples for chemical analysis 

Personal care product samples 

Water samples were collected in 4 L amber glass bottles. A 4 L duplicate sample and sample for spiking 

were also collected each day. Samples were filtered in the laboratory on the same day as collection 

through Whatman GF/C filters before acidification to pH 2 using sulphuric acid.63 Filters were frozen 

at -20 ˚C for analysis of suspended solids for emerging contaminants. 

Sediment samples were collected in 250 mL polystyrene containers with a stainless steel spatula cleaned 

with ethanol between sites. In the laboratory sediments were sub-sampled (approximately 200 g) for 

emerging contaminant analysis and frozen at -20 ˚C until extraction. 
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Trace elements  

Samples for total and dissolved metal analysis were collected at each sampling point in 50 mL 

polyethylene centrifuge tubes. A duplicate sample was taken at one sampling point each day. Water 

samples were processed in the clean room at the University of Canterbury. Samples for dissolved metal 

analysis were filtered with mixed cellulose filters (0.45 µm Millex). All water samples were acidified 

to pH<2 with ultrapure quartz distilled nitric acid. Samples were refrigerated until analysis by 

Inductively Coupled Plasma - Mass Spectrometry (ICP-MS).64 Sediment samples for metal analysis 

were subsampled from the same collection container as the emerging contaminants and stored in the 

same manner. 

Nutrients 

Nutrient samples were collected in 50mL polyethylene centrifuge tubes. One sample was collected at 

each upstream and downstream site for total nitrogen (TN) and total phosphorous (TP), a second sample 

for dissolved reactive phosphorous (DRP), nitrate (NO3
-), nitrite (NO2

-) and ammonium (NH4
+) 

analysis. The TN and TP samples were not filtered and approximately 40-45 mL was collected. The 

samples for DRP, NO3-N , NO2-N, and NH4-N were filtered with a 0.45 µm filter and approximately 

40-45 mL was collected. All nutrient samples were stored frozen (-20 ˚C) until analysis.  

Total suspended solids and total organic carbon  

Suspended solid samples and TOC samples were collected from each sampling point in 1 L Schott 

bottles and 1 L amber glass bottles, respectively. A duplicate sample was collected each day for each 

analyte. All samples were stored refrigerated until analysis. 

2.2.1.2 Samples for molecular analysis 

Triplicate biofilm samples were taken using Whirl-pak™ Speci-sponges™ at each sampling point. The 

entire top and side surfaces of three rocks was swabbed at each site.65 Triplicate sediment samples were 

also taken by filling three 1.7 mL DNA free Eppendorf tubes with sediment to three quarters full with 

a sterilised stainless steel spatula. Gloves were changed at each site and ethanol was used to wash down 

bags and spatulas to ensure cleanliness. Each sample was stored in a separate plastic bag. All molecular 

samples were stored frozen at -20 ˚C until analysis. 
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2.2.2 Materials 

Materials for emerging organic contaminants analysis 

Chemicals 

Individual 1000 µg/L natives standard solutions were prepared in acetonitrile (ACN) from solid 

standards of p-hydroxybenzoic acid butyl ester (mParaben), p-hydroxybenzoic acid ethyl ester 

(eParaben), p-hydroxybenzoic acid propyl ester (pParaben), p-hydroxybenzoic acid butyl ester 

(bParaben), benzyl  4-hydroxybenzoate (benzyl paraben), 4-octylphenol (OP), 4-methyl-benzylidene 

camphor (4-MBC), (2-hydroxy-4-methoxyphenyl)-phenylmethanone (BP-3) and octyl-

methoxycinnamate (OMC), all purchased from Accustandard, 4-chloro-3,5-dimethylphenol 

(chloroxylenol), 2-phenylphenol (o-phenylphenol), 2-chlorobuta-1,3-diene (chlorophene), 4,4-

isopropylidenediphenol diacetate (BPA diacetate),  2,4-dihydroxybenzophenone (BP-1), 3-

phenoxybenzyl alcohol (3-PBOH), 2,2 -bis( 4-hydroxy-phenyl)propane (BPA), 2,4,4’-trichloro-2’-

methoxydiphenyl ether (mTriclosan), estrone (E1), 17β-estradiol (E2), estriol (E3), and 17α-

ethinylestradiol (EE2), all purchased from Sigma-Aldrich, 4-n-nonylphenol (NP) purchased from 

Fluka, and 5-chloro-2-(2,4-dichlorophenoxy)phenol (triclosan) purchased from Dr Ehrenstorfer GmbH. 

The individual standards were then diluted to prepare a 1 µg/L mixed natives standard. 

The internal standard 2,2-bis(4-hydroxy-3-methylphenyl)propane (BPC) was purchased from Sigma-

Aldrich. Three additional internal standards were used for the sediment samples; 13C2-mono-

2ethylhexyl phthalate (13C2-mEHP), 13C2-monoethyl phthalate (13C2-mEP), and 13C6-3-

phenoxybenzoic acid (13C6-3PBA,) and were purchased from Cambridge Isotope Laboratories Inc. 

Carbon-13 labelled surrogates including 13C6-mParaben, 13C6-bParaben, 13C6-NP, 13C12-triclosan and 

13C6-BPA, purchased from Cambridge Isotope Laboratories Inc, were prepared in acetonitrile to make 

a 1 µg/mL combined standard. 

The solvents used at the University of Canterbury were all HPLC grade including acetonitrile (ACN), 

methanol (MeOH), dichloromethane (DCM), and acetone. A purification system at the University of 

Canterbury was used to obtain MilliQ (MQ) water (Millipore, USA). Sodium sulfate (puriss. P.a. ACS, 

anhydrous, granulated), purchased from Sigma Aldrich, and concentrated sulphuric acid (ACS grade) 

were also used throughout the project. 

For derivatisation of standards and samples, N-Methyl-N-(trimethylsilyl)trifluoroacetamide (MSTFA) 

for GC derivatisation, ≥98.5% was purchased from Fluka. 2-mercaptoethanol and ammonium iodide 

were purchased from Aldrich. 

For work carried out at Plant and Food Research, HPLC grade MeOH (Optima), DCM (submicron 

filtered), acetone (submicron filtered), isopropanol (IPA, submicron filtered) and pentane (pesticide 
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grade) were purchased from Fisher Scientific. MQ water was obtained from the in-house purification 

system (Integral 5 Millipore Instrument, USA). Dipotassium phosphate (powder, A.C.S reagent) was 

purchased from J.T Baker. Potassium dihydrogen phosphate (monobasic, molecular biology grade) was 

purchased from Sigma. Sodium sulphate (anhydrous, AR grade) was purchased from Mallinckrodt. 

Celite was purchased from Sigma. Diatomaceous earth and Ottawa sand were purchased from Restek. 

Materials 

Strata-X 33u Polymeric Reversed Phase solid phase extraction (SPE) cartridges (500 mg/6 mL), Strata 

Florisil clean-up cartridges (1000 mg/6 mL) and GF/C Whatman filter papers were used throughout for 

solid phase extractions. 

For Accelerated Solvent Extractions (ASE) undertaken at Plant and Food Research, GF/C filter papers 

and ASE filter papers were purchased from Dionex. Strata-X 33u SPE cartridges (1g/20 mL giga tube) 

and Strata Florisil clean-up cartridges (2g/12 mL) were used for SPE and florisil clean up steps.  

2.2.3 Personal care products and steroid hormones analysis 

2.2.3.1 Water samples 

Sample Extraction 

The filtered water samples were extracted the day following sampling using the method of Emnet et al 

(2015).63, 66 Solid phase extraction (SPE) cartridges were rinsed with 4 × 5 mL DCM/MeOH (95:5). 

The solvent was allowed to soak into the cartridge for 2 minutes after each addition before flowing 

through the cartridges under gravity. Cartridges were then dried under vacuum before elution of 2 × 5 

mL MeOH followed by 2 × 5 mL MQ. Again the solvent soaked into the cartridge for 2 minutes on 

each addition. Samples were connected to the SPE cartridges with transfer tubes secured with plugs and 

extracted at a flow rate of 15 – 20 mL/min. Sample bottles were rinsed with 30 mL of MQ water after 

sample extraction which was also passed through the cartridge.  Cartridges were dried under vacuum 

before the florisil clean-up step. Florisil cartridges were filled to the top of the label with granular 

sodium sulfate and rinsed with 2 × 5 mL acetone then dried under vacuum.  The SPE cartridges were 

connected to the top of the florisil/sodium sulphate cartridges and eluted into 40 mL amber glass vials 

with 6 × 5 mL DCM/MeOH (95:5). The solvent was allowed to soak into the cartridge for 2 minutes 

each elution. Samples were then split in two by drying each sample down under nitrogen and gentle 

heating (~ 40 ºC) before a quantitative transfer (1 × 500 µL, 2 × 250 µL) to a 10 mL volumetric flask 

and being made up to volume. A 5 mL glass bulb pipette was then used to transfer half of the sample to 

an amber glass vial. The remaining half of the sample was transferred to a new amber glass vial. Extracts 

were stored at 4˚c until analysis.  
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Quality assurance/Quality control 

All glassware was rinsed three times with MeOH, DCM and ACN before use. The sodium sulfate and 

GF/C filter papers were both rinsed with MeOH and ACN. The sodium sulphate had previously been 

baked at 500°C to remove organic carbon and moisture. 

Quality control samples were included in every extraction batch, prepared along with the field samples. 

As described above for the water samples, a duplicate and spike were collected at one sampling point 

each day. The duplicate was prepared in the same manner as other the other samples. The spiked sample 

was spiked with 100 µL of a 1 µg/L mixed natives standard. A 4 L MQ sample and an SPE cartridge 

were also spiked with 100 µL of the same mixed natives standard. Every extraction batch also included 

a MQ blank and cartridge blank to account for any contribution of analytes to the samples during 

extraction. All stream samples, blanks and spikes were spiked with 50 µL of the 1 µg/mL 13C labelled 

surrogate standard in order to determine the analyte recovery for each sample extraction. A comparative 

standard was also prepared prior to extraction by dispensing the same amount of the natives and 

surrogate standards used for the spiking above into a pre-weighed amber glass vial. The vial was 

weighed again after addition of the standards. Percentage spike recoveries relative to the comparative 

standard for natives and 13C labelled surrogates are presented in Tables 2.2.3a – f. 

Due to the fast flowing water at the two streams, the duplicate sample taken on each sampling occasion 

was not truly a duplicate. To confirm the repeatability of the extraction, duplicate samples (4 L) were 

subsequently collected from both Dudley Creek Diversion and Cross Stream. The duplicates were 

mixed together and measured out to 4 L each (2 L from each original duplicate) prior to extraction and 

subsequent analysis. Duplicate % differences are displayed in Table 2.2.3g. 

Table 2.2.3a. 13C labelled surrogate percentage recoveries for stream water (4L), n = 22 (RSD = 

relative standard deviation, C.I = confidence interval). 

Compound Average %RSD Lower 95% C.I Upper 95% C.I 

BPA (ring 13C6) 104.9 26.3 91.8 118.0 

bParaben (ring 13C6) 113.6 24.3 102.3 124.8 

E2 (ring 13C6) 91.6 15.3 85.9 97.4 

mParaben (ring 13C6) 122.1 34.2 105.0 139.1 

NP (ring 13C6) 113.3 16.9 105.5 121.1 

TCS (ring 13C6) 104.6 26.2 93.4 115.8 
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Table 2.2.3b. 13C labelled surrogate percentage recoveries for MQ water (4L), n = 14 (RSD = relative 

standard deviation, C.I = confidence interval). 

Compound Average %RSD Lower 95% C.I Upper 95% C.I 

BPA (ring 13C6) 117.3 31.9 94.1 140.5 

bParaben (ring 13C6) 105.4 24.5 91.9 119.0 

E2 (ring 13C6) 89.6 18.6 80.9 98.4 

mParaben (ring 13C6) 105.5 28.0 90.0 121.0 

NP (ring 13C6) 118.3 21.0 105.3 131.3 

TCS (ring 13C6) 104.2 21.4 92.5 115.9 

 

Table 2.2.3c. 13C labelled surrogate percentage recoveries for SPE cartridges, n = 14 (RSD = relative 

standard deviation, C.I = confidence interval). 

Compound Average %RSD Lower 95% C.I Upper 95% C.I 

BPA (ring 13C6) 105.3 26.1 88.2 122.3 

bParaben (ring 13C6) 103.6 15.8 95.0 112.2 

E2 (ring 13C6) 81.5 12.1 76.4 86.7 

mParaben (ring 13C6) 103.4 20.7 92.2 114.7 

NP (ring 13C6) 111.2 19.1 100.0 122.3 

TCS (ring 13C6) 103.0 13.5 95.7 110.3 
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Table 2.2.3d. Percentage spike recoveries for stream water (4 L), n = 7 (RSD = relative standard 

deviation, C.I = confidence interval). 

Compound Average %RSD Lower 95% C.I Upper 95% C.I 

3PBOH 118.1 14.4 105.5 130.7 

4MBC 133.1 17.2 116.2 150.0 

BP-1 134.3 14.3 120.0 148.5 

BP3 136.3 16.5 119.6 152.9 

BPA 126.4 8.6 118.4 134.4 

BPA-DA 122.7 15.0 109.0 136.3 

bParaben 132.1 14.7 117.8 146.4 

bzParaben 127.0 16.8 111.2 142.8 

Chlorophene 113.2 14.0 101.5 124.9 

Chloroxylenol 131.4 17.2 114.6 148.1 

E1 94.8 57.5 54.4 135.1 

E2 102.3 21.4 86.1 118.5 

E3 105.0 12.3 93.7 116.3 

EE2 111.1 12.1 101.1 121.0 

eParaben 115.8 17.3 101.0 130.7 

mParaben 124.8 18.2 108.0 141.7 

mTCS 112.8 13.3 101.7 123.8 

NP 105.8 13.7 95.0 116.6 

OMC 125.2 15.4 110.9 139.4 

OP 136.1 16.5 119.4 152.8 

OPP 212.4 31.4 163.0 261.8 

pParaben 113.2 18.6 97.6 128.8 

TCS 115.1 14.2 103.0 127.3 
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Table 2.2.3e. Percentage spike recoveries for MQ water (4 L), n = 7 (RSD = relative standard 

deviation, C.I = confidence interval). 

Compound Average %RSD Lower 95% C.I Upper 95% C.I 

3PBOH 111.3 12.7 100.8 121.8 

4MBC 123.5 12.5 112.1 135.0 

BP-1 117.5 18.3 101.6 133.5 

BP3 111.9 34.8 83.0 140.8 

BPA 103.2 11.0 94.8 111.6 

BPA-DA 116.6 9.6 108.4 124.9 

bParaben 112.9 13.4 101.7 124.1 

bzParaben 116.9 12.6 106.0 127.8 

Chlorophene 108.6 9.3 101.1 116.0 

Chloroxylenol 169.8 34.6 126.3 213.3 

E1 80.0 47.8 51.7 108.4 

E2 101.6 13.0 91.8 111.4 

E3 79.2 51.3 43.6 114.8 

EE2 104.8 6.3 99.9 109.7 

eParaben 107.0 16.7 93.8 120.3 

mParaben 112.3 19.2 96.4 128.3 

mTCS 113.5 12.6 102.9 124.1 

NP 101.1 10.3 93.4 108.8 

OMC 116.0 15.3 102.9 129.2 

OP 124.3 19.0 106.8 141.8 

OPP 177.0 29.4 138.4 215.5 

pParaben 107.3 14.0 96.2 118.4 

TCS 108.9 9.3 101.4 116.4 
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Table 2.2.3f. Percentage spike recoveries for SPE cartridge (4 L), n = 7 (RSD = relative standard 

deviation, C.I = confidence interval). 

Compound Average %RSD Lower 95% C.I Upper 95% C.I 

3PBOH 99.4 9.6 92.3 106.5 

4MBC 108.9 9.1 101.5 116.2 

BP-1 102.3 10.2 94.6 110.0 

BP3 95.1 32.5 72.2 118.0 

BPA 94.2 10.1 87.2 101.3 

BPA-DA 105.8 7.1 100.3 111.4 

bParaben 100.1 9.2 93.3 106.9 

bzParaben 104.3 9.0 97.4 111.3 

Chlorophene 97.5 8.0 91.7 103.3 

Chloroxylenol 130.7 34.0 97.8 163.6 

E1 93.5 48.9 59.6 127.3 

E2 84.2 14.7 75.0 93.3 

E3 88.1 12.6 78.4 97.8 

EE2 92.1 10.7 84.8 99.4 

eParaben 94.3 11.8 86.1 102.6 

mParaben 96.7 13.0 87.4 106.0 

mTCS 95.0 8.9 88.7 101.3 

NP 92.6 11.0 85.1 100.1 

OMC 98.5 16.0 86.9 110.1 

OP 98.7 16.0 87.0 110.4 

OPP 132.8 33.4 99.9 165.6 

pParaben 94.7 9.6 88.0 101.4 

TCS 97.4 8.0 91.6 103.1 

 

Table 2.2.3g. Percentage difference of 13C surrogates and detected compounds between duplicates 

from Dudley Creek Diversion (DC) and Cross Stream (CS). 

Compound DC % Difference CS % Difference 

BP3 37.6 29.6 

BPA 5.4 29.5 

BPA (ring 13C6) 0.6 4.2 

bParaben (ring 13C6) 7.3 6.1 

E2 (ring 13C6) 2.4 4.9 

mParaben 10.7 ND 

mParaben (ring 13C6) 7.7 6.7 

NP (ring 13C6) 19.6 5.6 

OMC 61.6 51.7 

OP 5.3 ND 

TCS (ring 13C6) 3.0 6.7 
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2.2.3.2 Sediment and particulate phase samples 

Sample Preparation 

For particulate phase samples, a cellulose filter and GFC grade filter paper were inserted into a capped 

22 mL stainless steel ASE cell, pushed firmly to the base. A small amount of diatomaceous earth was 

compacted atop of the filters. The filter paper containing the sample was folded in half and carefully 

cut into small strips as to not remove any particulates. The sample was added to four grams of 

diatomaceous earth and the mixture was blended for 5 sec in an IKA high speed laboratory mill. The 

homogenized mixture was compacted into the ASE cell by bumping the cell on the bench and using a 

cell packing tool to apply pressure. Another two grams of diatomaceous earth was blended for 5 sec in 

the laboratory mill to “rinse” any residual sample on the mill base and blade and compacted into the 

ASE cell as before. 

Thawed sediments (ca. 30 g, wet weight) were packed into pre-weighed ASE cells with a cellulose and 

GFC grade filter paper as above. The cell was weighed again and the weight of packaged sediment 

recorded. 

The remaining space in the ASE cell was filled with solvent cleaned Ottawa sand for both particulate 

phase and sediments before spiking with 50 µL of the 1 µg/L 13C-labelled surrogate standard. A 

cellulose filter paper was placed in the top of the cell with the packing tool and the cell was sealed with 

a stainless steel cap.  

Sample Extraction 

Samples were extracted using a Dionex ASE 200 accelerated solvent extraction (ASE) system. Samples 

were consecutively extracted with two methods. The extraction was first carried out with a 50:50 

mixture of water/IPA at a temperature of 120 ºC and 2000 psi for 10 min under static extraction 

conditions. The extraction was repeated under the same conditions and the solvent extract collected in 

a silanized 60 mL glass vial. The same sample cell was then twice extracted with a 20:80 water/IPA 

mixture at 180 ºC and 2000 psi for 10 min and the extract collected in a second silanized 60 mL glass 

vial containing 3 mL of pentane to help reduce the loss of analytes by volatilisation. The sample was 

then rinsed with a 60% flush volume of the 20:80 water/IPA mixture and the solvent collected in the 

same glass vial. “Rinse” ASE cells were employed between sample cells to prevent any carry over of 

samples.  

Solid Phase Extraction Clean-Up 

The two vials containing the solvent extracts for each sample were combined in a single 1 L glass Schott 

bottle. Vials were rinsed and added to the same Schott bottle with 4 × 25 mL aliquots of phosphate 

buffer to ensure recovery of the solvent mix. A final volume of 650 mL was attained by adding 
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additional phosphate buffer. Organic contaminants were extracted from the phosphate buffer-IPA 

solution onto Strata-X SPE cartridges (1 g, 20 mL) at a flow rate of approximately 15 mL/minute. Once 

all solution had passed through the SPE cartridge the glass Schott bottle was rinsed three times with 

separate 20 mL aliquots of Milli-Q water which were also passed through the SPE cartridge. The 

cartridges were dried together under full vacuum for three minutes, then individually until the majority 

of residual water was removed. 

Solid Phase Extraction and florisil clean-up 

Contaminants were eluted from the Strata-X SPE cartridge and passed through a florisil SPE cartridge 

(Strata, 1 g, 6 mL) as a clean-up stage. A mixture of DCM-MeOH (95:5, 6 × 5 mL) was used to elute 

the contaminants into previously silanized 40 mL amber glass vials. In the third batch of the extracted 

samples the florisil cartridges became blocked due to cementing of the sodium sulfate from potential 

residual water eluted from the SPE cartridges. To complete the extraction for batch three, the SPE 

cartridges were connected to new florisil cartridges and elution was resumed. The sodium sulfate and 

florisil was removed from the blocked florisil cartridges and ground up with a cleaned pestle and mortar. 

The ground florisil and sodium sulfate were transferred into fresh SPE cartridges and extracted 

separately with 30 mL of the DCM-MeOH mixture. The extracts were then dried under nitrogen gas 

and combined.  

All extracts were reduced to near-dryness under nitrogen gas and gentle heating (40 ºC) before being 

quantitatively transferred with 1 × 0.5 mL and 2 × 0.25 mL DCM/MeOH (95:5) into GC vials. All 

extracts were stored refrigerated until further clean up. 

Gel Permeation Chromatography Clean-Up 

The 1 mL extracts were transferred into champagne glass shaped GPC vials followed by a quantitative 

transfer of 2 × 0.25 mL DCM/MeOH (95:5) via Pasteur pipettes packed with a small amount of solvent 

washed cotton wool and approximately 10 mg of Celite Hyflo Supercell filter agent. Gel permeation 

chromatography (GPC) was carried out using a Shimadzu Class VP GPC system controlled by a SCL-

10A VP System Controller and fitted with a LC-10AT VP Liquid Chromatograph connected to a SIL-

10AP Auto Injector, a SPD-10A UV-Vis Detector, and a FRC-10A Fraction Collector. Samples were 

injected (1500 µL) and eluted with DCM/MeoH (95:5) as the mobile phase at a flow rate of 2.5 mL/min. 

The desired fraction of GPC eluent corresponding to the band of target compounds was collected in 2 

× 22 mL glass vials (previously silanized). 

The collected fraction was reduced to near-dryness under nitrogen gas and gentle heating before a 

quantitative transfer with 4 × 0.25 mL DCM/MeOH (95:5) into 10 mL volumetric flasks. The extract 

was made up to 10 mL and split into two 15 mL amber glass vials with a 5 mL glass bulb pipette. The 

samples were stored refrigerated (4 ºC) until GC-MS analysis. 
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Dry Weight Determination 

Approximately 1 g of wet sediment was weighed into dry, labelled pre-weighed aluminium dishes. The 

dry weights of samples in the first batch of sediments were determined in triplicate. As the relative 

standard deviation was less than 5% for all samples, duplicates were used there on. The samples were 

dried in an oven at 105 ºC for 24 hrs followed by cooling in a desiccator for at least 10 minutes prior to 

weighing.  

Quality assurance/Quality control 

Every two batches of samples extracted by ASE (n = 7) alternately included a blank and spike ASE cell 

(the spike was spiked with 50 µL of the 1 µg/L standard solution and 13C-labelled surrogate standard). 

The blank and spiked cells contained diatomaceous earth and Ottawa sand but no sample. A 

comparative standard was prepared at the same time as the samples were spiked. Spike recoveries for 

samples and diatomaceous earth are displayed in Tables 2.2.3h – k. The diatomaceous earth, Ottawa 

sand, and cellulose filter papers were solvent extracted prior to use. The sodium sulfate was baked 

overnight at 500 °C before use. During the SPE clean-up a cartridge blank was included. 

Low recoveries for all 13C surrogates except NP were observed in sediment samples. This was likely 

due to matrix effects arising from the presence of co-extracted matrix components originating from the 

sediment. However recoveries for the diatomaceous earth were acceptable with the exception of OP. 
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Table 2.2.3h. 13C labelled surrogate percentage recoveries for sediment samples, n=17 (RSD = 

relative standard deviation, C.I = confidence interval). 

Compound Average %RSD Lower 95% C.I Upper 95% C.I 

BPA (ring 13C6) 31.3 36.8 25.8 36.7 

bParaben (ring 13C6) 2.0 400.0 0.0 5.7 

E2 (ring 13C6) 26.4 76.0 16.9 35.9 

mParaben (ring 13C6) 6.2 249.6 0.0 13.6 

NP (ring 13C6) 81.6 32.4 69.0 94.1 

TCS (ring 13C6) 0.0 0.0 0.0 0.0 

 

 

Table 2.2.3i. 13C labelled surrogate percentage recoveries for particulate phase samples, n=22 (RSD = 

relative standard deviation, C.I = confidence interval). 

Compound Average %RSD Upper 95% C.I Lower 95% C.I 

BPA (ring 13C6) 61.4 19.1 56.4 66.4 

bParaben (ring 13C6) 89.5 22.0 81.0 97.9 

E2 (ring 13C6) 67.2 23.3 60.5 73.9 

mParaben (ring 13C6) 125.7 27.7 110.8 140.6 

NP (ring 13C6) 76.7 27.9 67.6 85.8 

TCS (ring 13C6) 74.8 23.7 67.2 82.3 

 

 

Table 2.2.3j. 13C labelled surrogate percentage recoveries for diatomaceous earth spike, n=5 (RSD = 

relative standard deviation, C.I = confidence interval). 

Compound Average %RSD Lower 95% C.I Upper 95% C.I 

BPA (ring 13C6) 79.5 34.9 55.2 103.8 

bParaben (ring 13C6) 89.8 15.6 77.6 102.1 

E2 (ring 13C6) 83.5 10.6 75.8 91.2 

mParaben (ring 13C6) 129.9 3.5 125.9 133.9 

NP (ring 13C6) 89.9 6.6 84.7 95.0 

TCS (ring 13C6) 83.6 12.7 74.2 92.9 
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Table 2.2.3k. Percentage spike recoveries for diatomaceous earth spike, n=5 (RSD = relative standard 

deviation, C.I = confidence interval). 

Compound Average %RSD Lower  95% C.I Upper 95% C.I 

3PBOH 138.7 7.9 129.0 148.3 

4MBC 147.2 13.3 130.1 164.3 

BP-1 96.1 33.4 67.9 124.2 

BP3 134.3 11.9 120.2 148.3 

BPA 114.8 22.6 92.0 137.5 

BPA-DA 28.9 56.7 14.5 43.3 

bParaben 96.8 12.0 86.6 107.0 

bzParaben 91.1 23.9 72.0 110.2 

Chlorophene 100.0 13.3 88.4 111.6 

E1 66.6 57.6 33.0 100.2 

E2 89.2 13.9 78.3 100.0 

E3 86.2 23.0 68.8 103.6 

EE2 91.0 20.1 75.0 107.0 

eParaben 151.7 7.2 142.2 161.3 

mParaben 169.3 25.1 132.0 206.7 

mTCS 89.4 5.0 85.5 93.3 

NP 78.4 33.2 55.6 101.3 

OMC 120.2 21.0 98.1 142.4 

OP 312.3 49.8 176.0 448.7 

pParaben 120.2 14.1 105.4 135.0 

TCS 101.1 12.9 89.7 112.6 

 

2.2.4 GC-MS analysis 

Sample Derivatisation 

Preparation of MSTFA reaction mixture 

In a 5 mL glass reaction vial 11.4 mg of ammonium iodide, 17 µL of 2-mercaptoethanol and 285 µL of 

MSTFA were mixed by vortex then incubated at 65 ºC until the ammonium iodide was fully dissolved. 

The contents were vortexed periodically to aid in the dissolution of the ammonium iodide. The vial was 

then cooled to room temperature before the addition of 2715 µL of MSTFA. The mixture was 

homogenised by vortex and the vial was purged with nitrogen gas and sealed tightly to exclude air and 

moisture. The reaction mix was stored at 4 ºC for up to 10 days before it was necessary to prepare a 

fresh mixture. 
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Derivatisation of sample extracts 

Samples were dried under nitrogen gas at 40ºC before being quantitatively transferred to derivatisation 

vials (previously silanized) with 3 × 0.5 mL DCM/MeOH (95:5). Samples were again evaporated to 

dryness under nitrogen gas before adding 100 µL of the internal standard (1 µg/L BPC) and 30 µL of 

MSTFA reaction mix. Vials were vortexed and incubated for 45 minutes at 65ºC. After incubation the 

vials were allowed to cool to room temperature before being made up to 1 mL with iso-octane and 

transferred to GC vials. Samples were stored at 4 ºC before analysis. A 10 and 100 µg/L derivatisation 

check and a derivatisation blank were included in each batch of 24 samples. 

Due to the low recovery of the 13C surrogate compounds in the sediment samples, small aliquots of the 

second half of the sediment samples were re-analysed, trialling different dilutions of the sample. The 

final selected method of preparation was to dry 0.5 mL of sample under nitrogen and make the sample 

up to a final volume of 200 µL. 

Instrumental Analysis 

Gas Chromatography/Mass spectrometry (GC-MS) using a Shimadzu GC-2010 Gas Chromatograph, 

interfaced with a Shimadzu AOC-20i Auto Injector and a Shimadzu GCMS-QP2010Plus detector was 

used to analyse derivatised sample extracts and calibration standards. The Shimadzu GCMS Solution 

software (Version 2.70) was used for instrumental control, data acquisition and data processing. An 

Rxi-5Sil column (5% diphenyl/95% dimethyl polysiloxane) 30 m x 0.25 mm ID, 0.25 µm film 

thickness, with an integrated guard column (10 m, Integra-Guard) (Restek, Belleftone USA) was used 

for compound separation. Derivatised samples and calibration standards were injected into the injection 

port (1 µL) at 280 ºC in splitless mode. The splitless time was 1 min and the split flow rate was 50 – 

100 mL/min. The initial oven temperature (100 ºC) was held for 5 min, before being increased at a rate 

of 10 ºC/min to 300 ºC where the temperature was finally held for 15 min, for a total run time of 30 

min. The carrier gas was helium at a flow rate of 1 mL/min.  

Electron ionisation (EI) was used in selected ion mode (SIM) to obtain spectra at 70 eV with the ion 

source held at 200 ºC and the GC-MS interface at 250 ºC. Calibration of the MS against 

perflurotributylamine (PFTBA) was carried out before each run using the autotune function. 

Retention times and m/z ratios used for individual compounds are presented in Table 2.2.4a. Retention 

times and m/z ratios for the 13C labelled surrogates are presented in Table 2.2.4b. A nine point 

calibration curve (0, 1, 2.5, 5, 10, 25, 50, 100 and 250 ng/L) was used to quantify target analytes against 

the relative response of the internal standard.  
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Table 2.2.4a. Retention times and SIM mode detection parameters of analytes. 

Compound Rt (min) Quantifier ion (m/z) Qualifier ions (m/z) 
13C6 3-PBA* 17.86 277 233, 392, 203 

13C6 mEP* 14.67 255 227, 181, 166 

3PBOH 17.05 183 227,272, 257, 211 

4MBC 19.38 254 128, 155, 239 

BP-1 20.60 343 344, 164, 271 

BP3 19.48 285 286, 242, 223, 180 

BPA 20.654 357 358, 372, 171 

BPA-DA 21.92 213 228, 270 

bparaben 16.17 195 193, 210, 266, 251 

BPC* 21.27 385 386, 400 

bzParaben 20.348 193 300, 85 

Chlorophene 17.778 275 290, 165 

Chloroxylenol 11.62 213 228, 215 

E1 24.35 342 218, 244, 327 

E2 24.58 416 285, 129, 326 

E3 26.526 504 414, 345, 386 

EE2 25.26 425 285, 232, 440 

eParaben 13.75 238 193, 223, 210 

mEHP 13C6* 19.65 225 302, 254, 232 

mParaben 12.79 224 209, 177, 193 

mTCS 19.91 252 302, 254, 232 

NP 17.84 292 180, 165 

OMC 21.92 178 161, 133, 290 

OP 14.71 207 151,208, 191 

OPP 14.19 211 227, 242 

pParaben 14.97 237 210, 193, 252 

TCS 19.91 360 345, 362, 310 

*Internal Standard 

Table 2.2.4b. Retention times and SIM mode detection parameters of isotopically labelled surrogates. 

Compound Rt (min) Quantifier ion (m/z) Qualifier ions (m/z) 

BPA (ring 13C12) 20.65 369 370, 384 

nparaben (ring 13C6) 16.17 216 201, 199, 272 

E2l (ring 13C6) 24.59 288 422, 332 

mparaben (ring 13C6) 12.79 215 230, 199 

NP (ring 13C12) 17.84 186 298, 171 

TCS (ring 13C12) 19.94 372 359, 374, 322 
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Calibration Curve 

Calibration standards were prepared by adding 50 µL of the 1 µg/mL stock internal standard to each 

derivatisation vial and the appropriate amounts of native and 13C surrogate standards to create nine 

calibration standards (0, 1, 2.5, 5, 10, 25, 50, 100 and 250 ng/mL). Standards were reduced to dryness 

under a gentle flow of N2 and heating (~40 ºC). The MSTFA derivatisation mix was then added to each 

vial (30 µL) and derivatised in the same way as for samples. Standards were made up to 500 µL with 

isooctane. A new set of calibration standards were prepared every 48 hrs, and analysed after the first 10 

samples in a batch. The intensity of the chromatogram analyte peaks were referenced against the internal 

standard to form a calibration curve with nine points in units of ng/mL. The concentration of each 

compound in each standard was entered into the calibration software, with a consistent concentration 

of 100 ng/mL used for the internal standard for each sample. The ratio of calibrated concentrations was 

recorded against the ratio of the target analyte peak area and internal standard peak area. For 

quantification of a compound in actual samples the ratio of the compound peak area and the internal 

standard of the sample’s chromatogram was calculated and reported via the calibration curve by the 

software.  

The internal standard BPC was used for all stream water and particulate phase samples. For sediment 

samples, three additional internal standards were added for quantification to overcome potential matrix 

enhancements in certain parts of the chromatograph. The internal standard mEP-13C6 was used to 

quantify the analytes chloroxylenol – bParaben. 3-PBA-13C6 was used to quantify the analytes 3-PBOH 

– NP. mEHP 13C6 was used to quantify the analytes 4-MBC – BP1. BPC was used for analytes BPA – 

E3. 

Instrumental and analysis Quality assurance/Quality control 

Before analysis of each batch the syringe needle was cleaned with toluene and DCM by sonication. The 

injection needle was also programmed to rinse three times each with isooctane, toluene and DCM before 

and after each sample injection.  

An isooctane blank was injected at the beginning of a new sample run to flush the system of any volatiles 

which may have accumulated in the system since the previous analysis. The injection of the first 10 

samples in a batch followed this with a repeat injection of the tenth sample. The full set of calibration 

standards, or alternatively, 0, 10 and 100 ng/L standards (every second batch) was then injected with a 

repeat injection of a sample and a standard to confirm the calibration, followed by the injection of a 

new isooctane blank to ensure there was no sample carry over. The remaining samples in the batch of 

24 were then injected followed by another repeat sample and standard injection and finally another 

isooctane blank. 
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Limits of detection (LOD) were calculated using EPA Method 8280A.67 The following equation was 

used to calculate the LOD: 

𝐿𝑂𝐷 =  
2.5 × 𝐶𝑖𝑠 × 𝐻𝑛 × 𝐷

𝐻𝑖𝑠 × 𝑅𝐹
 

Where: 

 Cis = The concentration of the internal standard in the sample. 

Hn = The peak height of the noise for the quantitation ion at the target analyte’s retention time 

if the target analyte is absent from the sample or near the target analyte’s retention time if the 

target analyte is present in the sample. 

D = The dilution factor. 

His = The peak height of the internal standard. 

RF = The response factor, or the ratio of the area of the target analyte to that of the internal 

standard multiplied by the ratio of the concentration of the internal standard to that of the target 

analyte in the lowest concentration calibration standard in which the target analyte is still 

detected. 

The limit of detection for each compound was calculated for three samples and averaged.  Limits of 

detection are displayed in Table 2.2.4c. 
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Table 2.2.4c. Limits of detection (LOD) of analytes in stream water and sediment, with lower and 

upper limits of 95% confidence, n = 3 (C.I = confidence interval). 

Compound  

LOD (Stream 

water, ng/L) 

 Lower 

95% C.I 

Upper 

95% C.I  

LOD (Sediment, 

ng/g) 

 Lower 

95% C.I 

   Upper         

95% C.I  

3PBOH 1.15 0.43 1.87 0.29 0.11 0.47 

4MBC 6.97 1.38 12.56 1.74 0.34 3.14 

BP-1 0.60 0.17 1.04 0.15 0.04 0.26 

BP3 1.22 0.35 2.10 0.31 0.09 0.52 

BPA 0.27 0.09 0.45 0.07 0.02 0.11 

BPA-DA 1.46 0.57 2.35 0.34 0.11 0.57 

bParaben 0.77 0.43 1.11 0.19 0.11 0.28 

bzParaben 1.72 1.09 2.35 0.43 0.27 0.59 

Chlorophene 1.39 0.35 2.44 0.35 0.09 0.61 

Chloroxylenol 0.68 0.32 1.04 0.17 0.08 0.26 

E1 8.15 2.10 14.20 0.97 0.28 1.65 

E2 2.62 0.94 4.29 0.40 0.18 0.62 

E3 3.14 1.07 5.20 0.97 0.27 1.67 

EE2 3.16 0.34 5.99 0.65 0.19 1.11 

eParaben 1.01 0.13 1.89 0.25 0.03 0.47 

mParaben 1.31 1.07 1.56 0.33 0.27 0.39 

mTric 3.30 0.37 6.23 0.82 0.09 1.56 

NP 3.94 1.12 6.75 0.98 0.28 1.69 

OMC 1.09 0.44 1.74 4.95 0.00 14.11 

OP 0.13 0.11 0.16 0.03 0.03 0.04 

OPP 1.11 0.03 2.18 0.28 0.01 0.55 

pParaben 1.72 0.68 2.76 0.51 0.10 0.92 

Tric 1.14 0.24 2.03 0.28 0.06 0.51 

 

2.2.5 Trace element analysis 

Sediment Preparation 

Sediment samples were dried at 70ºC to ensure any bacteria were destroyed. Once samples were 

completely dry they were sieved (< 2mm) and sediments weighed (1 g ± 0.05g) into individual 50 mL 

polycarbonate centrifuge tubes for each sample. To each sample, 4 mL of 50% nitric acid and 10 mL 

of 20% hydrochloric acid was added and samples were left to stand overnight. Samples were refluxed 

on a hotplate for 40 min at 80 ºC. Samples were cooled to room temperature before making the samples 

up to 20 mL with MQ water. Samples were again left overnight to allow particulates to settle out. 

Samples were diluted in the University of Canterbury clean room by adding 0.5 mL of sample to 10 mL 

of 2% nitric acid to give a 21 × dilution.68 QA/QC samples included a duplicate, two blanks and certified 

reference material (CRM; Standard Reference Material® 2702, National Institute of Standards and 

Technology, USA) which were prepared in the same manner as samples.  
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Analysis 

Sediment and water samples were analysed by Agilent 7500 series ICP-MS fitted with a collision cell 

(He gas) to remove polyatomic interference. Metals analysed for included aluminium (27Al), antimony 

(121Sb) arsenic (75As), cadmium (111Cd), chromium (53Cr), copper (63Cu), lead (208Pb), iron (57Fe), 

manganese (55Mn), nickel (60Ni) and zinc (66Zn). An internal standard, Rhodium (108Rh), was added on-

line. A water CRM was included in each batch (Synthetic 1643 CRM, Inorganic Ventures). A duplicate 

sub-sample was analysed after every 10 samples, followed by a duplicate and 3 mL triplicate sub-

sample spiked with 30 µL of a 100 ppb standard after every 20th sample. Before each run, the instrument 

was calibrated with a blank and standards ranging from 0.1-1000 ppb. Percentage differences were 

calculated for duplicates, and spike and CRM recoveries were recorded for quality control (Table 2.2.5a 

– e). Detection limits for water and sediment are displayed in Table 2.2.5f. 

Table 2.2.5a. Percentage differences for field duplicates, n=7 (C.I = confidence interval). 

Element 

Average % 

Difference 

Std. 

Dev. 

Lower 

95% C.I 

Upper 

95% C.I 

Al 10.9 4.3 7.5 14.4 

As 5.8 5.4 1.5 10.1 

Cu 18.9 20.5 2.5 35.3 

Fe 11.0 18.5 -3.8 25.8 

Mn 8.7 12.9 -1.6 19.1 

Ni 18.2 11.8 8.7 27.6 

Pb 11.6 9.2 4.2 18.9 

Sb 20.3 6.8 14.8 25.7 

Zn 14.0 13.3 3.3 24.6 

Table 2.2.5b. Percentage spike recoveries for trace metal analysis of water samples, n=4 (C.I = 

confidence interval). 

Element Average 

Std. 

Dev. 

Lower 

95% C.I 

Upper 

95% C.I 

Al 108.2 9.8 98.6 117.8 

As 104.3 9.5 95.0 113.6 

Cd 105.7 10.1 95.9 115.6 

Cr 100.8 17.1 84.1 117.6 

Cu 101.3 12.7 88.9 113.7 

Fe 153.8 63.8 91.3 216.3 

Mn 109.1 13.8 95.5 122.6 

Ni 100.4 9.6 91.0 109.8 

Pb 104.3 6.8 97.6 111.0 

Sb 93.5 10.7 83.1 104.0 

V 105.0 10.4 94.9 115.1 

Zn 134.0 29.5 105.1 162.9 
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Table 2.2.5b. Percentage spike recoveries for trace metal analysis of sediment samples, n=2 (C.I = 

confidence interval). 

Element Average Std. Dev. Lower 95% C.I Upper 95% C.I 

Al 189.6* 80.1 78.6 300.5 

As 104.1 17.2 80.2 128.0 

Cd 103.9 3.3 99.4 108.5 

Co 108.5 17.0 84.9 132.1 

Cr 102.6 16.0 80.4 124.8 

Cu 100.6 2.9 96.5 104.6 

Fe 224.9* 150.2 16.7 433.0 

Mn 106.4 13.2 88.1 124.7 

Ni 100.8 12.0 84.2 117.4 

Pb 118.3 18.9 92.0 144.5 

Sb 117.2 6.4 108.3 126.0 

V 102.2 20.7 73.5 130.8 

Zn 125.2 0.6 124.4 126.1 

*Al and Fe recoveries are high due to relatively low spike concentration compared to 

sample concentration. 

Table 2.2.5d. Sediment CRM % recoveries, n=2 (C.I = confidence interval). 

Element Average Std. Dev. Lower 95% C.I Upper 95% C.I 

As 87.7 12.6 70.3 105.1 

Cd 97.3 0.1 97.1 97.5 

Co 78.1 6.3 69.4 86.7 

Cr 63.9 4.8 57.2 70.6 

Mn 80.1 8.8 68.0 92.3 

Ni 63.7 11.8 47.3 80.1 

Pb 84.4 21.5 54.5 114.2 

Sb 17.6 2.2 14.7 20.6 

V 68.3 7.5 57.8 78.7 
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Table 2.2.5e. Water CRM % recoveries, n=4 (C.I = confidence interval). 

Element Average Std. Dev. 

Lower 95% 

C.I. 

Upper 95% 

C.I. 

Al 118.4 13.9 104.9 132.0 

As 104.3 8.5 96.0 112.7 

Cd 103.2 1.2 102.0 104.4 

Co 108.7 6.9 101.9 115.5 

Cr 101.0 19.3 82.1 119.9 

Cu 104.1 4.6 99.6 108.6 

Fe 137.1 8.4 128.9 145.3 

Mn 114.5 7.8 106.9 122.2 

Ni 104.6 7.1 97.6 111.6 

Pb 103.6 4.5 99.1 108.1 

Sb 113.5 5.2 108.4 118.6 

V 111.6 8.6 103.2 120.0 

Zn 101.6 5.3 96.4 106.8 

 

Table 2.2.5f. Limits of detection (LOD) for water trace element analysis of water (µg/L) and 

sediment. 

Element LOD (ug/L) LOD (ug/g) 

Al 10 4.2 

V 1 0.42 

Cr 1 0.42 

Mn 0.1 0.04 

Fe 1 0.42 

Co 0.1 0.04 

Ni 1 0.42 

Cu 0.1 0.04 

Zn 1 0.42 

As 0.1 0.04 

Cd 0.1 0.04 

Sb 0.1 0.04 

Pb 0.1 0.04 
 

 

 



Chapter 2  

34 

 

2.2.6 Nutrients  

Filtered water samples collected from sampling points 10 m upstream of the sewer overflow and 5 m 

downstream of the sewer overflow point at each stream were analysed by Hill Laboratories. Total NH4-

N (LOD = 0.010 mg/L), NO2-N (0.002 mg/L), NO3-N + NO2-N (0.002 mg/L), and DRP (LOD = 0.004 

mg/L) were tested for using the following methods, respectively: Phenol/hypochlorite colorimetry; 

Automated Azo dye colorimetry, automated cadmium reduction and molybdenum blue colorimetry.69  

2.2.7 Total organic carbon analysis 

Calibration Standard Preparation 

A 1000 µg/L standard stock solution was prepared for total carbon (TC) and inorganic carbon (IC) 

analyses. For the TC stock standard reagent grade Potassium hydrogen phthalate (KHP) was dried for 

an hour at 110 ºC. After cooling in a desiccator, 2.125 g of KHP was made up to 1000 mL in a 

volumetric flask with MQ water and stirred. The 1000 µg/L IC standard was prepared by drying reagent 

grade sodium bicarbonate in a desiccator overnight. Reagent grade sodium carbonate was dried for an 

hour at 250 ºC then cooled in a desiccator. After cooling, 3.497 g of sodium bicarbonate and 4.412 g of 

sodium carbonate were made up to 1000 mL in a volumetric flask with MQ water and stirred. The 1000 

µg/L TC and IC standards were then serially diluted to obtain two sets of calibration standards at 

concentrations of 100 µg/L, 50 µg/L, 25 µg/L, 10 µg/L, and 5 µg/L. 

Analysis 

Samples were analysed for TC and IC on the Shimadzu ASI-L TOC analyser in the Department of 

Chemical and Process Engineering, University of Canterbury. Samples, including a duplicate and blank 

were then analysed for TC and IC in acid washed glass tubes. The average percentage difference for 

duplicates was 7.58%. Total organic carbon (TOC) was calculated by subtracting IC from TC values 

obtained. 

2.2.8 Total suspended solids analysis 

For each total suspended solids (TSS) sample a Whatman GF/C 47mm filter paper was dried at 105˚C 

for at least one hour. Filter papers were cooled in a desiccator for 30 mins then weighed. One litre of 

sample was filtered through one dried and pre-weighed filter paper under vacuum. The graduated 

cylinder and filtration equipment was rinsed with MQ water so all solids were collected on the filter 

paper. Vacuum was applied until all liquid was removed from the filter paper. Filter papers were dried 

at 105˚C for an hour before being cooled for 30 mins in the desiccator and reweighed to determine the 

mass of the filter paper plus solids. A duplicate sample was included in each batch. The average 

percentage difference for duplicates was 18.7%.  
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2.2.9 Molecular analysis 

Biofilm samples were prepared for DNA extraction by first adding 40 mL of DNA free water (Life 

Technologies, USA) to the bags containing the Whirl-pak™ Speci-sponges™ (Nasco, USA) under 

laminar flow. The biofilm was then squeezed out of the sponges using a stomacher (Colworth 400; AJ 

Seward, UK) for 2 mins. Water and biofilm was then transferred to 50 mL centrifuge tubes under 

laminar flow and samples were centrifuged (3000 × g for 10 mins). The supernatant was decanted off 

and the pellets had DNA extracted from them with the PowerSoil® DNA Isolation Kit (MoBio 

Laboratories, USA) following the provided instructions. 

Sediment samples (ca. 0.25 g) were added to tubes provided in the PowerSoil® DNA Isolation Kit 

(MoBio Laboratories, USA) and were extracted following the same provided instructions.  

The bacterial specific primers 341F (5′-CCTACGGGNGGCWGCAG-3′) and 805R (5′-

GACTACHVGGGTATCTAATCC-3′)70, modified to include Ilumina™ adapters, were used to amplify 

a region of the 16S rRNA gene approximately 400 bp in length. PCR reactions were carried out in 50 

µL volumes made up with 25 μL of AmpliTaq Gold® 360 master mix (Life Technologies), 5 μL CG 

inhibitor (Life Technologies), 1 μL of each 10 μM primer, 16 μL of DNA free water and about 20 ng 

of template DNA. PCR cycling conditions were: 95 °C 10 mins, followed by 27 cycles of 95 °C 30 

secs, 50 °C 30 secs, 72 °C 60 secs, and a final extension of 72 °C 7 mins. For DNA template samples 

which failed to amplify, the PCR reaction was again performed with addition of 4 μL BSA to the 50 μL 

mix and reduction of water to 12 μL. The PCR cycling conditions were changed to: 95 °C 10 mins, 

followed by 50 cycles of 95 °C 30 secs, 48 °C 30 secs, 72 °C 60 secs, and a final extension of 72 °C 7 

mins. PCR products were visualised under UV illumination after 1% agarose gel electrophoresis with 

Red Safe DNA Loading Dye. PCR products were purified (Agencourt® AMPure® XP Kit; Beckman 

Coulter, USA), quantified (Qubit® 20 Fluorometer, Invitrogen), diluted to 10 ng/L and submitted to 

New Zealand Genomics Limited (Auckland, New Zealand) for library preparation. Sequencing adapters 

and sample-specific indices were added to each amplicon via a second round of PCR using the 

NexteraTM Index kit (IlluminaTM). Amplicons were pooled into a single library and paired-end 

sequences (2 × 300) generated on a MiSeq instrument using the TruSeqTM SBS kit (IlluminaTM). 

Sequence data were automatically demultiplexed using MiSeq Reporter (v2), and forward and reverse 

reads assigned to samples. 

The MOTHUR work-flow was used to perform bioinformatics analysis of HTS data.71 Contigs were 

assembled from paired-end reads. Duplicate sequences were removed and contigs length filtered. 

Chimeras were removed using the UCHIME algorithm72 followed by sequence alignment to the SILVA 

bacteria reference73. Sequences were grouped in operational taxonomic units (OTUs) using 0.02 

pairwise sequence distance cut off values. The number of reads in each sample was rarefied to account 
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for differential sequencing depth among samples. OTUs were classified to identify taxonomic 

annotation using the Ribosomal Database Project (RDP) taxonomic database Version 9.74 Unknown 

chloroplast sequences were removed.  

2.2.10 Statistical analysis 

Differences between concentrations for detected EOCs, trace elements, nutrients and water quality 

parameters at upstream and downstream sites and between streams were tested using paired t-tests and 

t-tests respectively, conducted in R Studio.75  

High throughput sequencing OTUs were 4th root data transformed. Differences in bacterial community 

structure between; sediment and biofilms, sites (sediment data only) and upstream and downstream 

were visualised using non-metric multidimensional scaling (nMDS)  based on Bray-Curtis similarities 

with 100 random restarts and were plotted in two dimensions. Differences among the above groups and 

between sampling months were tested using permutational multi-variate analysis of variance 

(PERMANOVA; Anderson, 2005)76 using PERMANOVA+ (Anderson et al., 2008)77 and PRIMER v7 

(Clarke and Gorley, 2015)78. 

Before testing correlations between bacterial community structure and environmental variables, a 

pollution index (P.I) was calculated based on the concentrations of elements detected in sediments using 

the following equation based on the method of Kalender et al, 2013:79 

𝑃. 𝐼 = (𝐶𝐹1 × 𝐶𝐹2 × 𝐶𝐹3 × … … 𝐶𝐹𝑛)1/𝑛 

 Where: 

CF = Contaminant factor (the ratio obtained by dividing the concentration of each element in 

the sediment by the background value)80. 

N = The number of elements used in the equation. 

The sums of total emerging contaminants (Total ECs) in water and sediment samples were used for 

correlations with biofilm and sediment bacterial communities, respectively. Total antimicrobial 

compounds in sediment samples (sum of mParaben and TCS) was also used for correlations with 

sediment bacterial communities. 

The relationship between bacterial community structure and environmental variables was analysed 

using multivariate multiple regression using distance-based linear modelling (DistLM) in Primer 7. A 

marginal test was used where individual variables were fitted separately to test their relationship with 

bacterial OTU data (ignoring other variables), followed by a stepwise selection procedure, conditional 

on variables already included in the model and using the AICc selection criteria. The conditional test 
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identifies the subset of variables that best predicts the observed pattern in bacterial community structure. 

Both the conditional and marginal tests were undertaken with 9999 permutations using Bray-Curtis 

similarities. Draftsman plots were used to check collinearity and skewness among predictor variables. 

Most of the environmental variables used in the analyses were transformed to meet the assumption of 

homogeneity of dispersion. Where zero values were present, a pre-transformation factor of 0.1 was 

added. The variables used for correlations with sediment bacterial community structure were log (P.I), 

temperature, log10 (DO), log (conductivity), pH, log (NH3 + 0.1), log (NO3
- + 0.1), DRP, log (mParaben 

+ 0.1), log10 (OPP + 0.1), log10 (OP + 0.1), log (BP3 + 0.1), log (BPA), log (OMC +0.1) log (total 

ECs), and log (total antimicrobials). All preceding PCP variables used sediment concentrations, the 

following PCP variables used stream water concentrations. The variables used for correlations with 

biofilm bacterial community structure were temperature, log10 (DO), log (conductivity), log 10 (pH), 

log (TOC), log (NH3 + 0.1), log (NO3
- + 0.1), DRP, log (Al), Zn, log10 (Cu), Ni, log10 (OP +0.1), log 

(BP3 +0.1), log (BP1 + 0.1), BPA, log (OMC + 0.1) and log (Total ECs).  

The resulting model was visualised using DistLM, where the ordination axes are linear combinations 

of the environmental variables that maximally explain biotic variation. 

A hierarchically-clustered shade plot (Primer7) using averages across sample replicates was used to 

visualise dominate bacterial class among samples. Species richness (R), Shannon-Wiener diversity 

index (H’) and Pielou evenness index (J) were calculated in PRIMER 7 using the DIVERSE function 

and t-tests were used to determine differences between indices for Cross Stream and Dudley Creek 

Diversion. 
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2.3 Results 

2.3.1 Personal care products and steroid hormones 

The EOCs which were detected in stream water were BP1, BP3, BPA, mParaben, OMC and OP. 

Concentrations for detected analytes in stream water are presented in Table 2.3.1a. The UV-filter BP3 

was detected in 18 out of 22 samples and BPA was detected in 20 out 22 samples. Concentrations were 

generally in the low ng/L range. The highest concentration detected was for OMC (17.9 ng/L). No 

significant differences were observed between upstream and downstream sites for the detected 

compounds. Higher concentrations of BPA stream water concentration were measured at Dudley Creek 

Diversion than Cross Stream (p = ≤ 0.05). At both streams the UV-filter BP3 appeared to be present at 

lower concentrations in the winter months (June to August) than in March to April, while the UV-filter 

OMC was not detected in any samples from June to August. 

Table 2.3.1a. Upstream and downstream stream water concentrations (ng/L) of emerging organic 

contaminants at Dudley Creek Diversion (DC) and Cross Stream (CS) from March – August 2015. 

Compound Site March   April    May    June    July August 

BP1 DC upstream ND ND 1.6 <DL ND ND 

 DC downstream ND ND 1 0.7 ND ND 

 CS upstream NA ND ND 6 ND ND 

  CS downstream NA ND ND <DL ND ND 

BP3 DC upstream 4.1 ND 2.9 1.7 <DL <DL 

 DC downstream 3.7 3.6 1.6 1.9 <DL <DL 

 CS upstream NA 3.8 4.7 ND ND <DL 

  CS downstream NA 3.1 0.6 1.2 ND <DL 

BPA DC upstream 7.6 8.1 5.8 6.5 4.8 3.2 

 DC downstream 6.2 8.1 3.6 6.8 5 4.5 

 CS upstream NA 1.3 4 0.4 0.8 ND 

  CS downstream NA <DL 0.5 ND 0.9 1.4 

mParaben DC upstream 1.9 ND 12.9 ND ND ND 

 DC downstream <DL <DL 2.4 ND ND ND 

 CS upstream NA ND ND ND ND ND 

  CS downstream NA ND ND ND ND ND 

OMC DC upstream 9.5 9.8 9.6 ND ND ND 

 DC downstream 17.9 6.4 ND ND ND ND 

 CS upstream NA 4.9 9.6 ND ND ND 

  CS downstream NA 4.4 6 ND ND ND 

OP DC upstream 0.5 2.1 0.2 ND ND ND 

 DC downstream 0.5 0.7 ND ND ND 0.3 

 CS upstream NA ND ND ND ND ND 

  CS downstream NA ND ND ND ND 0.1 

NA = Stream not sampled that month; ND = Not Detected; <DL = Signal observed but less than 

detection limit. 
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Compounds detected in the particulate phase samples (Table 2.3.1b) were similar to those in water 

samples except for the absence of BP1 and addition of OPP. Methyl paraben was detected more 

frequently in the particulate phase than in the stream water samples (detected in 50% of particulate 

phase samples) however most concentrations were below the limit of detection. Bisphenol A was 

detected at a similar frequency as in the water samples. Benzophenone-3 generally had higher 

concentrations in the dissolved phase (Figure 2.3.1a – b). Concentrations of BPA tended to be higher 

in the dissolved phase at Dudley Creek Diversion (Figure 2.3.1c) while the particulate phase was 

dominant at Cross Stream (Figure 2.3.1d). OMC was detected less frequently in the particulate phase 

samples than in stream water samples (14% and 41% respectively) but concentrations were similar. 

Concentrations of OP were also similar between the dissolved and particulate phases. In the same 

sample a particular compound was not always detected in both the water and particulate phase. 

Table 2.3.1b. Upstream and downstream particulate concentrations (ng/L) of detected EOCs at 

Dudley Creek Diversion (DC) and Cross Stream (CS) from March – August 2015. 

Compound Site March April May June July August 

BP3 DC upstream 1.1 1.2 < DL 0.5 0.8 0.3 

 DC downstream ND 1.4 < DL 0.9 0.5 0.4 

 CS upstream NA 1.0 1.2 0.4 0.8 ND 

  CS downstream NA 1.0 1.1 0.6 0.3 0.8 

BPA DC upstream 2.1 0.4 2.3 2.2 3.2 1.9 

 DC downstream ND ND 3.8 2.9 2.4 2.2 

 CS upstream NA ND 11.6 2.2 1.6 2.7 

  CS downstream NA ND 1.3 4.1 2.0 1.5 

mParaben DC upstream 1.4 < DL ND ND ND ND 

 DC downstream < DL < DL ND < DL < DL ND 

 CS upstream NA < DL ND < DL ND ND 

  CS downstream NA < DL ND < DL ND < DL 

OMC DC upstream ND ND ND ND 9.9 ND 

 DC downstream 5.2 ND ND ND ND ND 

 CS upstream NA ND ND ND ND 2.1 

  CS downstream NA ND ND ND ND ND 

OP DC upstream ND ND ND 0.2 0.5 0.1 

 DC downstream 0.2 ND 0.1 0.4 0.1 0.4 

 CS upstream NA ND 1.0 ND 0.1 0.6 

  CS downstream NA ND 0.3 0.5 0.1 0.6 

OPP DC upstream ND ND 2.3 1.2 1.5 1.3 

 DC downstream ND ND ND 1.4 1.1 1.4 

 CS upstream NA ND 5.6 1.3 1.6 ND 

  CS downstream NA ND 1.8 ND 1.2 0.6 

ND = Not Detected; <DL = Signal observed but less than detection limit. 
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Figure 2.3.1a. Dissolved and particulate phase concentrations of BP3 at Dudley Creek Diversion (US 

= Upstream, DS = Downstream). 

 

Figure 2.3.1b. Dissolved and particulate phase concentrations of BP3 at Cross Stream (US = 

Upstream, DS = Downstream). 
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Figure 2.3.1c. Dissolved and particulate phase concentrations of BPA at Dudley Creek Diversion (US 

= Upstream, DS = Downstream).  

 

Figure 2.3.1d. Dissolved and particulate phase concentrations of BPA at Cross Stream (US = 

Upstream, DS = Downstream).  

Reported concentrations for sediments are provisional due to the low recoveries of the 13C surrogate 

compounds in sediment samples. The EOCs which were detected in sediment samples were BP3, BPA, 

mParaben, OMC, OPP, OP and TCS (Table 2.3.1c). Bisphenol A was detected in all sediment samples 

at concentrations ranging from 0.7 - 10.2 ng/g. The highest concentration detected was for mParaben 

(61.8 ng/g). The UV-filter BP3 was also frequently detected (13 out of 17 samples). Triclosan was 

detected at the downstream Dudley Creek Diversion site consecutively in March and April at 10.5 and 

5.3 ng/g, respectively. Concentrations of BP3 were significantly higher at the downstream Dudley 

Creek Diversion site than upstream (p < 0.05). No significant differences were observed for the other 
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detected compounds between upstream and downstream sites for sediment samples. The sediment 

concentrations of mParaben at Dudley Creek Diversion were significantly higher than at Cross Stream, 

while the opposite trend was observed for OPP sediment concentrations (p < 0.05). 

Table 2.3.1c. Upstream and downstream sediment concentrations (ng/g) of EOCs at Dudley Creek 

Diversion (DC) and Cross Stream (CS) from March – August 2015. 

Compound Site March April May June July August 

BP3 DC upstream NA NA NA ND NA ND 

 DC downstream 0.3 0.6 NA 1.9 1.3 0.7 

 CS upstream NS 0.3 0.7 ND 1.5 0.7 

  CS downstream NS 0.6 ND 0.9 0.8 1.6 

BPA DC upstream NA NA NA 8 NA 7.1 

 DC downstream 3.8 10.2 NA 4.1 8.2 6.2 

 CS upstream NS 0.8 1.7 6.4 8.1 1.8 

  CS downstream NS 0.9 2.6 0.7 2 6.2 

mParaben DC upstream NA NA NA 61.8a NA ND 

 DC downstream 5.1 20.7 NA 5.1 ND 7.4 

 CS upstream NS 2.6 ND ND 7.9 ND 

  CS downstream NS ND ND ND ND ND 

OMC DC upstream NA NA NA ND NA 8.9 

 DC downstream ND ND NA 5.5 ND ND 

 CS upstream NS ND ND ND ND ND 

  CS downstream NS ND ND <DL <DL ND 

OP DC upstream NA NA NA ND NA 3.6 

 DC downstream ND ND NA 1.6 ND 2.4 

 CS upstream NS ND 0.5 1.4 ND 0.5 

  CS downstream NS 0.3 ND ND ND 1 

OPP DC upstream NA NA NA ND NA 0.7 

 DC downstream ND ND NA ND 1.1 0.3 

 CS upstream NS 0.6 0.4 0.6 ND 1.6 

  CS downstream NS 0.9 1.1 0.9 0.8 0.7 

TCS DC upstream NA NA NA ND NA ND 

 DC downstream 10.5 5.3 NA ND ND ND 

 CS upstream NS ND ND ND ND ND 

  CS downstream NS ND ND ND ND ND 

* NA = Insufficient material to analyse; NS = Stream not sampled that month; ND = Not Detected; 

<DL = Signal observed but less than detection limit. 
aThe value for mParaben of 61.8 ng/g was above the calibration curve. The sample was unable to be 

reanalysed due to instrumental issues and time constraints. 
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2.3.2 Trace elements 

Measured concentrations for total trace elements and dissolved trace elements are presented in Table 

2.3.2a and 2.3.2b. Aluminium, Fe, Mn and Zn were detected in all samples. While lead and copper were 

also consistently detected, about a third to a half of the measured concentrations were below detection 

limits. All cadmium and chromium concentrations were below the detection limit. Arsenic and nickel 

were detected in over half of the samples. For all elements there were no significant differences between 

upstream and downstream sites for both Dudley Creek Diversion and Cross Stream.  

The Australian and New Zealand Conservation Council (ANZECC) provides guidelines for 95% 

freshwater species protection (Table 2.3.2) were used for comparison.81 This level of protection was 

used to interpret stream water results for dissolved metals. In August, dissolved concentrations of 

aluminium and zinc at Dudley Creek Diversion exceeded their respective ANZECC guidelines (Figure 

2.3.2a and 2.3.2b). All other metal concentrations were below their respective guidelines.  

All elements were mainly associated with the dissolved phase. The average percentage of total 

concentration in the dissolved phase for Al, As, Cu, Fe, Mn, Ni, Pb, and Zn were 54.3%, 91.1%, 90.1%, 

72.5%, 79.9%, 85.1%, 90 % and 78.7%, respectively.  

Table 2.3.2. Australian and New Zealand Environment and Conservation Council guidelines for 95% 

freshwater species protection. 

Element Conc. (µg/L) 

Al 55 

Cr 1 

Mn 1900 

Ni 11 

Cu 1.4 

Zn 8 

As (III) 24 

Ag 0.05 

Cd 0.2 

Pb 3.4 
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Table 2.3.2a. Upstream and downstream total element concentrations for Dudley Creek Diversion 

(DC) and Cross Stream (CS) from March – August 2015 (µg/L). Values exceeding the ANZECC 

value are highlighted in bold. 

Element Site March April May June July August 

Al DC upstream 8.8 8.9 4.9 7.2 8.5 64.3 

 DC downstream 5.8 8.7 1.8 7.1 7.9 68.6 

 CS upstream NA 3.6 1.0 2.3 2.1 6.8 

  CS downstream NA 3.2 1.3 2.7 1.8 8.6 

As DC upstream < DL 0.2 < DL 0.3 0.3 0.2 

 DC downstream 0.1 0.2 < DL 0.3 0.3 0.2 

 CS upstream NA < DL < DL 0.2 0.2 < DL 

  CS downstream NA < DL < DL 0.2 0.2 < DL 

Cu DC upstream < DL 0.1 < DL 0.1 < DL 0.5 

 DC downstream < DL < DL 0.1 0.1 0.1 0.5 

 CS upstream NA 0.2 < DL 0.3 0.3 0.3 

  CS downstream NA 0.3 0.2 0.3 0.3 0.3 

Fe DC upstream 86.4 110.3 59.6 99.8 110.8 334.2 

 DC downstream 108.8 114.3 20.9 99.5 116.5 342.9 

 CS upstream NA 21.4 4.6 22.7 18.3 37.7 

  CS downstream NA 21.2 14.5 23.2 17.1 44.6 

Mn DC upstream 8.7 11.9 6.8 9.6 12.1 25.4 

 DC downstream 11.8 12.1 4.2 11.1 14.5 25.8 

 CS upstream NA 1.0 0.2 0.8 0.7 0.9 

  CS downstream NA 1.0 0.8 1.0 0.7 1.1 

Ni DC upstream ND ND < DL 0.2 0.2 < DL 

 DC downstream ND ND < DL 0.2 0.2 < DL 

 CS upstream NA < DL < DL 0.3 0.3 < DL 

  CS downstream NA < DL < DL 0.3 0.3 < DL 

Pb DC upstream < DL < DL < DL 0.1 0.1 1.0 

 DC downstream 0.1 < DL < DL 0.1 0.1 1.1 

 CS upstream NA 0.2 < DL 0.1 0.1 0.3 

  CS downstream NA 0.2 < DL 0.2 0.1 0.3 

Sb DC upstream < DL < DL < DL < DL < DL < DL 

 DC downstream 0.1 < DL < DL < DL < DL < DL 

 CS upstream NA < DL < DL < DL < DL < DL 

  CS downstream NA ND < DL < DL < DL < DL 

Zn DC upstream 5.4 6.9 2.2 7.6 2.6 7.8 

 DC downstream 2.7 9.0 1.5 5.8 2.7 8.1 

 CS upstream NA 4.1 3.3 3.0 2.5 1.9 

  CS downstream NA 5.0 4.5 10.5 2.2 2.8 

† NA: Not applicable as that site could not be sampled that month; <DL: Below the limit of detection 

for analysis. 
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Table 2.3.2b. Upstream and downstream dissolved element concentrations for Dudley Creek 

Diversion (DC) and Cross Stream (CS) from March – August 2015 (µg/L). Values exceeding the 

ANZECC guideline are highlighted in bold. 

Element Site March April May June July August 

Al DC upstream 0.8 3.5 2.6 2.7 3.5 59.4 

 DC downstream 3.1 3.9 1.4 3.2 3.3 61.8 

 CS upstream NA 1.4 0.6 0.7 0.8 5.8 

  CS downstream NA 1.8 1.0 1.1 0.9 8.0 

As DC upstream ND 0.1 < DL 0.2 0.3 0.2 

 DC downstream 0.1 0.2 < DL 0.3 0.3 0.2 

 CS upstream NA < DL < DL 0.2 0.2 0.0 

  CS downstream NA < DL < DL 0.2 0.2 0.0 

Cu DC upstream < DL < DL < DL < DL < DL 0.5 

 DC downstream 0.0 < DL < DL < DL < DL 0.5 

 CS upstream NA 0.2 < DL 0.2 0.2 0.3 

  CS downstream NA 0.2 0.2 0.3 0.2 0.3 

Fe DC upstream 21.3 65.0 34.9 52.1 68.5 324.1 

 DC downstream 64.2 67.2 8.8 59.0 67.4 335.0 

 CS upstream NA 18.0 4.5 19.2 15.2 36.2 

  CS downstream NA 15.9 13.0 17.7 15.4 40.6 

Mn DC upstream 4.0 11.2 6.8 9.6 11.9 24.8 

 DC downstream 11.4 11.7 4.4 10.6 13.7 25.7 

 CS upstream NA 1.0 0.2 0.8 0.6 0.8 

  CS downstream NA 1.0 0.8 0.9 0.7 1.0 

Ni DC upstream < DL < DL < DL 0.1 0.1 <DL 

 DC downstream < DL < DL < DL 0.1 0.1 <DL 

 CS upstream NA < DL < DL 0.3 0.3 <DL 

  CS downstream NA < DL < DL 0.3 0.3 <DL 

Pb DC upstream < DL < DL < DL < DL < DL 0.9 

 DC downstream < DL < DL < DL < DL < DL 1.0 

 CS upstream NA < DL < DL < DL < DL 0.2 

  CS downstream NA < DL < DL < DL < DL 0.2 

Sb DC upstream < DL < DL < DL < DL < DL < DL 

 DC downstream < DL < DL < DL < DL < DL < DL 

 CS upstream NA < DL < DL < DL < DL < DL 

  CS downstream NA < DL < DL < DL < DL < DL 

Zn DC upstream 0.6 6.0 1.6 3.7 2.5 7.6 

 DC downstream 2.6 7.2 1.0 5.5 2.6 8.1 

 CS upstream NA 3.5 1.3 2.7 2.1 1.9 

  CS downstream NA 4.5 3.1 4.2 2.1 2.6 

† NA: Not applicable as that site could not be sampled that month; <DL: Below the limit of detection 

for analysis. 
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Figure 2.3.2a. Dissolved aluminium concentrations at Dudley Creek Diversion compared to the 

ANZECC guideline for 95% freshwater species protection. 

 

Figure 2.3.2b. Dissolved zinc concentrations at Dudley Creek Diversion compared to the ANZECC 

guideline for 95% freshwater species protection. 

The concentrations of trace elements measured in sediment samples are presented in Table 2.3.2d. 

Concentrations of Cd, Pb and Sb were significantly higher in downstream sediment samples at Dudley 

Creek Diversion (p ≤ 0.05). The concentration for Cu exceeded the interim sediment quality guideline 

(ISQG; Table 2.3.2c) once at Dudley Creek Diversion and once at Cross Stream. The guideline for Pb 

was exceeded in every sample from Cross Stream, however there were no exceedances at Dudley Creek 

Diversion. Zinc concentrations exceeded the ISQG in three out five samples taken from the downstream 

site at Dudley Creek Diversion. All other values were below the ANZECC guidelines. Pollution indices 

were all below 1 except for the sample taken in March from the downstream Dudley Creek Diversion 
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site, indicating that the two streams are mostly unpolluted by metals (Table 2.3.2e). There were no 

significant differences between upstream and downstream values for either stream, or between streams 

(p > 0.05). 

Table 2.3.2c. Australian and New Zealand Environment and Conservation Council interim sediment 

quality guideline (ISQG) trigger values for trace elements (µg/g). 

Element ISQG Trigger Value 

As 20 

Cd 1.5 

Cr 80 

Cu 65 

Ni 21 

Pb 50 

Sb 2 

Zn 200 
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Table 2.3.2d. Upstream and downstream sediment concentrations for Dudley Creek Diversion (DC) and Cross 

Stream (CS) from March – August 2015 (µg/g). Values exceeding the ANZECC interim sediment quality 

guideline Trigger Value are in bold. NA = Insufficient material to analyse; NS = Stream not sampled that month 

Element Site March April May June July August 

Al DC upstream NA NA NA 4687 NA 6572 

 DC downstream 5542 5240 NA 5724 5567 7701 

 CS upstream NS 4671 4721 4711 4663 5249 

  CS downstream NS 4723 4089 4642 5223 5121 

As DC upstream NA NA NA 4.4 NA 6.7 

 DC downstream 14.0 8.1 NA 3.6 11.8 14.8 

 CS upstream NS 2.2 1.8 1.9 1.9 2.2 

  CS downstream NS 1.7 1.6 1.6 2.1 2.0 

Cd DC upstream NA NA NA 0.1 NA 0.0 

 DC downstream 0.3 0.1 NA 0.1 0.2 0.2 

 CS upstream NS 0.1 0.1 0.1 0.1 0.1 

  CS downstream NS 0.1 0.1 0.1 0.1 0.1 

Cr DC upstream NA NA NA 8.5 NA 15.0 

 DC downstream 21.4 11.3 NA 10.6 22.3 29.0 

 CS upstream NS 9.0 8.3 8.4 8.6 9.9 

  CS downstream NS 8.4 8.0 8.0 9.5 9.7 

Cu DC upstream NA NA NA 7.6 NA 13.7 

 DC downstream 207.5 15.1 NA 18.2 17.2 29.9 

 CS upstream NS 31.1 21.3 90.0 20.4 16.9 

  CS downstream NS 16.5 19.9 19.6 24.5 19.2 

Fe DC upstream NA NA NA 11206 NA 16953 

 DC downstream 11981 11784 NA 12315 12363 14646 

 CS upstream NS 10562 9528 9470 8984 10675 

  CS downstream NS 9652 8742 9515 9325 9493 

Mn DC upstream NA NA NA 183.0 NA 514.2 

 DC downstream 191.0 245.1 NA 179.3 217.4 236.2 

 CS upstream NS 127.1 125.6 121.5 122.0 139.5 

  CS downstream NS 127.5 114.0 122.1 132.0 129.6 

Ni DC upstream NA NA NA 6.3 NA 10.8 

 DC downstream 7.9 7.3 NA 7.9 8.2 9.6 

 CS upstream NS 7.5 7.1 6.9 7.0 7.7 

  CS downstream NS 6.9 6.1 6.6 7.5 7.2 

Pb DC upstream NA NA NA 19.4 NA 18.5 

 DC downstream 47.8 26.7 NA 30.6 28.4 36.6 

 CS upstream NS 199.2 115.0 156.9 68.6 51.5 

  CS downstream NS 70.6 73.7 69.6 60.8 82.5 

Sb DC upstream NA NA NA 0.1 NA 0.1 

 DC downstream 0.5 0.3 NA 0.1 0.2 0.5 

 CS upstream NS 0.3 1.3 0.4 0.3 0.2 

  CS downstream NS 0.1 9.0 0.1 0.1 0.2 

Zn DC upstream NA NA NA 93.4 NA 112.5 

 DC downstream 244.2 119.1 NA 134.3 213.2 205.7 

 CS upstream NS 95.6 89.6 84.8 105.0 92.3 

  CS downstream NS 67.1 70.0 78.2 99.4 90.6 
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Table 2.3.2e. Pollution indices for sediment samples (Value >1 indicate metal pollution exists and are 

highlighted in bold). 

Site March April May June July August 

DC upstream NA NA NA 0.37 NA 0.52 

DC downstream 1.09 0.53 NA 0.48 0.70 0.85 

CS upstream NS 0.56 0.47 0.56 0.44 0.42 

CS downstream NS 0.39 0.38 0.40 0.45 0.43 

* NA = Insufficient material to analyse; NS = Stream not sampled that month. 

2.3.3 Nutrients 

Concentrations for NH4-N, NO2-N and DRP were either below the detection limit or close to the 

detection limit (Table 2.3.3a). Nitrate concentrations were 1 – 2 orders of magnitude higher than the 

other nutrients. Average NO3-N concentrations ranged from 0.53 – 0.92 mg/L across the sites. There 

were no significant differences between upstream and downstream sites at both streams (p < 0.05). 

Table 2.3.3a. Summary statistics for nutrients at upstream and downstream Dudley Creek Diversion 

and Cross Stream sites (mg/L). 

       Ammonia       Nitrite       Nitrate       DRP 

 Range Mean Range Mean Range Mean Range Mean 

DC Upstream 0.030 - 0.049 0.039 <DL - 0.003 0.001 0.38 - 0.58 0.53 0.005 - 0.009 0.007 

DC Downstream 0.028 - 0.052 0.042 <DL - 0.003 0.002 0.52 - 0.57 0.54 0.005 - 0.012 0.002 

CS Upstream <DL <DL <DL <DL 0.87 -0.94 0.92 0.005 - 0.006 0.005 

CS Downstream <DL - 0.046 0.009 <DL - 0.003  0.001 0.57 - 0.94 0.84 0.004 - 0.006 0.005 
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2.3.4 Water quality parameters 

Water quality parameters are summarised in Table 2.3.4. Ranges and averages for measured values for 

upstream and downstream were generally similar across both sites and no significant differences were 

observed. Dissolved oxygen concentrations were significantly lower at Cross Stream than Dudley Creek 

Diversion (p <0.05). 

Table 2.3.4. Summary statistics for water quality parameters at upstream and downstream Dudley 

Creek Diversion and Cross Stream sites. 

       DO (mg/L)       Temperature (˚C)       Conductivity (mS/m) 

 Range  Mean Range  Mean Range  Mean 

DC Upstream 7.9 - 8.4 8.1 12.2 - 14.1 13.0 13.8 - 15.7 14.8 

DC Downstream 8.0 - 8.6 8.3 12.1 - 14.0 12.9 12.7 - 15.8 14.7 

CS Upstream 4.5 - 6.2 5.5 13.1 - 14.1 13.5 14.6 - 18.4 17.3 

CS Downstream 4.8 - 6.2 5.6 13.1 - 14.1 13.5 14.5 - 18.4 17.2 

       pH       TOC (mg/L)       TSS (mg/L) 

 Range  Mean Range  Mean Range  Mean 

DC Upstream 6.8 - 7.4 7.2 9.4 – 15.0 12.5 0.6 - 1.3 1.0 

DC Downstream 6.9 - 7.4 7.2 7.8 - 14.1 11.9 0.4 - 1.0 0.8 

CS Upstream 6.2 – 7.0 6.7 15.1 - 18.4 17.0 0.8 - 1.3 1.1 

CS Downstream 6.3 – 7.0 6.7 11.4 - 17.9 14.9 0.5 - 1.1 0.8 
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2.3.5 Benthic bacterial community composition 

Classes of bacteria present in the biofilm and sediment were Acidobacteria, Actinobacteria, 

Alphaproteobacteria, Betaproteobacteria, Cyanobacteria, Gammaproteobacteria and Nitrospira. At 

Cross Stream the dominant Class of bacteria in biofilm were Alphaproteobacteria while 

Betaproteobacteria were most abundant in the sediment communities. Gammaproteobacteria were the 

dominant Class in sediment communities at Dudley Creek Diversion. Cyanobacteria were the least 

dominant class in sediment samples while Acidobacteria and Nitrospira were less dominant than 

Cyanobacteria in biofilm samples (Figure 2.3.5a). 

 

Figure 2.3.5a. Hierarchically-clustered shade plot illustrating the relative dominance of the seven 

identified Classes of bacteria among samples. The number of reads per samples were fourth root 

transformed. 

Dudley Creek Diversion and Cross stream had very similar mean values and there were no significant 

differences for number of OTUs, species richness, Shannon-Weiner Index and Pielou Index however 

these values were more spread for Dudley Creek Diversion (Table 2.3.5a). 

Table 2.3.5a. Summary of mean biological parameters for bacterial OTUs from sediment samples at 

Cross Stream and Dudley Creek Diversion. 

Location   

No. of 

reads 

No. of 

OTUs 

Shannon diversity 

(H') 

Richness 

(S) 

Evenness 

(J) 

Dudley Creek Diversion Mean 1686 79 3.76 10.63 0.86 

 Std. Dev. 710 4 0.26 0.58 0.06 

Cross Stream Mean 1763 79 3.84 10.49 0.88 

  Std. Dev. 300 3 0.09 0.40 0.02 
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Bacterial assemblages clustered according to their sample type (sediment verses biofilm; Figure 2.3.5b). 

PERMANOVA confirmed there was a significant difference between the two sample types (F = 45.463, 

p ≤ 0.001). Bacterial community structure in sediment was also significantly different between the two 

sampling sites (PERMANOVA, F = 32.771, p ≤ 0.001; Figure 2.3.5b). Samples taken from Cross 

Stream formed a tighter cluster separate from those from Dudley Creek Diversion. There was no 

significant difference between upstream and downstream sites at Cross Stream for either sediment or 

biofilm samples (p > 0.001). At Dudley Creek Diversion there was a significant difference observed for 

sediment samples between upstream and downstream sites (PERMANOVA, F = 5.2121, p ≤ 0.001; 

Figure 1.2.5b). 

A significant difference was identified among sampling months for sediment samples at Dudley Creek 

Diversion (PERMANOVA, F = 2.4484, p ≤ 0.001) and Cross Stream (PERMANOVA, F = 1.869, p ≤ 

0.001). Pairwise tests identified among which months these differences occurred (Table 2.3.5b). In 

particular March was significantly different to all other months at Dudley Creek Diversion.  

Table 2.3.2b Pairwise PERMANOVA P-values for bacterial sediment communities by month at 

Dudley Creek Diversion (DC) and Cross Stream (CS). Values in bold are significant (p<0.05). 

Groups P-Value (DC) P-Value (CS) 

March, April 0.0083 NA* 

March, May 0.0367 NA 

March, June 0.0025 NA 

March, July 0.0312 NA 

March, August 0.0026 NA 

April, May 0.2297 0.6584 

April, June 0.342 0.1348 

April, July 0.2106 0.0382 

April, August 0.3137 0.0208 

May, June 0.0114 0.127 

May, July 0.2526 0.4687 

May, August 0.0137 0.0018 

June, July 0.0513 0.1142 

June, August 0.0498 0.0145 

July, August 0.0825 0.0032 
*NA = CS not sampled in March. 
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Figure 2.3.5b. Non-metric multidimensional scaling plots based on Bray-Curtis similarities of; 

(A) Bacterial communities in sediment and biofilm samples, (B) Bacterial sediment communities 

at Cross Stream and Dudley Creek Diversion, (C) Bacterial sediment communities upstream and 

downstream of the sewer overflow outfall at Dudley Creek Diversion. 

 

A 

B 
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2.3.6 Correlations between bacterial community composition and chemical parameters 

The multivariate regression analysis showed that all environmental variables (water quality, nutrients, 

sediment P.I. and sediment PCP values) individually had a significant relationship with sediment 

bacterial community structure, except triclosan (Table 2.3.6a). The greatest amount of variation was 

explained by DO (28.7%) and NO3-N (27.6%). The sequential model found that seven variables 

together explained 50.9% of bacterial community structure. Plots based on DistLM analysis indicate 

that OMC, triclosan and BPA were highly important in structuring the bacterial communities from 

Dudley Creek Diversion, and conductivity, BP3 and DRP were identified as strongly associated with 

samples from Cross Stream (Figure 2.3.6).  

Table 2.3.6a. Results of multivariate multiple regression (DistLM) using bacterial 16S rRNA sediment data and 

environmental variables for; (A) each variable taken individually (ignoring other variables) and, (B) stepwise 

selection variables, where amount explained by each variable added to the model is conditional on variables 

already in the model (i.e. those variable listed above it). Prop: proportion of variance in species data explained by 

that variable; Cumul: cumulative proportion of variance explained. 

(A) Marginal test F-Value P-Value Prop.   

log(P.I) 3.27 0.0096 0.054  

Temperature 6.00 0.0005 0.095  

log10(DO) 22.94 0.0001 0.287  

log(Conductivity) 15.67 0.0001 0.216  

pH 12.75 0.0001 0.183  

log(TOC) 8.91 0.0001 0.135  

log(NH3+0.1) 19.00 0.0001 0.250  

log(NO3
-+0.1) 21.70 0.0001 0.276  

DRP 10.02 0.0001 0.150  

log(mParaben+0.1) 3.61 0.0068 0.060  

log10(OPP+0.1) 2.61 0.0288 0.044  

log10(OP+0.1) 6.71 0.0002 0.105  

log(BP3+0.1) 6.51 0.0003 0.102  

log(TCS+0.1) 2.00 0.07 0.034  

log(BPA) 12.31 0.0001 0.178  

log(OMC+0.1) 8.73 0.0001 0.133  

log(Total ECs) 18.78 0.0001 0.248  

log(Total Antimicrobials) 3.55 0.0056 0.059  

     

(B) Sequential tests F-Value P-Value Prop. Cumul. 

log10(DO) 22.94 0.0001 0.287 0.287 

log(BP3+0.1) 5.35 0.0001 0.062 0.349 

log(Conductivity) 2.98 0.0053 0.033 0.383 

DRP 3.01 0.0045 0.033 0.415 

log(OMC+0.1) 3.09 0.0014 0.032 0.447 

log(Tric+0.1) 3.78 0.0004 0.037 0.485 

log(BPA) 2.47 0.0103 0.024 0.509 
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†P.I = Pollution index, DO = Dissolved oxygen, TOC = Total organic carbon, DRP = Dissolved reactive 

phosphorous, mParaben = Methyl paraben, OPP = O-phenylphenol, OP = Octylphenol, BP3 = Benzophenone-3, 

TCS = Triclosan, BPA = Bisphenol A, OMC = Octyl methoxycinnamate. 

 

 

Figure 2.3.6. DistLM plots on the basis of Bray-Curtis similarities of bacterial OTUs DNA from; (A) 

sediment communities at Dudley Creek Diversion and Cross Stream, (B) sediment communities at 

upstream and downstream locations at Dudley Creek Diversion. Vectors showing the best 

environmental predictors are overlaid at a correlation level > 0.2 (Pearson correlation; BP3 = 

Benzophenone-3, BPA = Bisphenol A, DRP = Dissolved reactive phosphorous, OMC = Octyl 

methoxycinnamate). 

A 

B 
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For biofilm, seven environmental variables showed a significant relationship with bacterial community 

structure (temperature, DO, conductivity, TOC, Zn, OMC and total ECs). The sequential model found 

that two variables together explained 40.8% of bacterial community structure (Total ECs and DO, Table 

2.3.6b). 

Table 2.3.6b. Results of multivariate multiple regression (DistLM) using bacterial 16S biofilm data and 

environmental variables for; (A) each variable taken individually (ignoring other variables) and, (B) stepwise 

selection variables, where amount explained by each variable added to the model is conditional on variables 

already in the model (i.e. those variable listed above it). Prop: proportion of variance in species data explained by 

that variable; Cumul: cumulative proportion of variance explained. Significant values are bolded (P ≤ 0.05). 

(A) Marginal Tests F-Value      P-Value    Prop.  

Temperature 4.50 0.0048 0.177  

log10 (DO) 3.09 0.0255 0.128  

log (Conductivity) 3.24 0.0192 0.133  

log (pH) 1.82 0.1208 0.080  

log (TOC) 2.62 0.0448 0.111  

log (NH3 + 0.1) 1.34 0.2033 0.060  

log (NO3
- + 0.1) 2.17 0.0743 0.093  

DRP 0.99 0.3704 0.045  

log (Al)  2.37 0.0571 0.101  

Zn 3.46 0.0218 0.141  

log10 (Cu) 1.64 0.1447 0.072  

Ni 1.83 0.1178 0.080  

log10 (OP + 0.1) 1.04 0.354 0.047  

log (BP3 + 0.1) 1.26 0.2515 0.057  

log (BP1 + 0.1) 1.69 0.1409 0.075  

BPA  1.20 0.2807 0.054  

log (OMC + 0.1) 5.17 0.0031 0.197  

log (Total ECs)  7.85 0.0001 0.272  

     

(B) Sequential tests F-Value P-Value   Prop. Cumul. 

log (Total ECs)  7.85 0.0004 0.27207 0.27207 

log10 (DO)  4.60 0.0008 0.13619 0.40826 
†DO = Dissolved oxygen, TOC = Total organic carbon, DRP = Dissolved reactive phosphorous, OPP = O-

phenylphenol, OP = Octylphenol, BP3 = Benzophenone-3, BP1 = Benozphenone-1, BPA = Bisphenol A, OMC 

= Octyl methoxycinnamate. 
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2.4 Discussion 

2.4.1 Sewer overflow record 

The last sewer overflows before the beginning of the field study occurred at Cross Stream in April 2014, 

and at Dudley Creek Diversion in June 2014. No sewer overflows occurred over the duration of the 

study. This is likely the reason that there were no significant differences in concentrations between 

upstream and downstream sites in stream water samples for all classes of contaminants analysed. It is 

therefore likely that the detected PCPs and metals in stream water were derived from stormwater inputs. 

Wastewater infrastructure was damaged in the Christchurch earthquakes and leaking pipes in the 

sewage network still occur.82 

2.4.2 Commonly detected personal care products 

As there is limited data available for urban waterways that do not receive WWTP discharges the results 

from the current study are useful to enable comparisons to concentrations of PCPs in water bodies of 

receiving a wide range of inputs. 

2.4.2.1 Stream water and particulate phase samples 

UV-filters were the most frequently detected compound class in stream water and particulate phase 

samples. Benzophenone-3, the most commonly detected UV-filter was measured in 55% of stream 

water samples (max. 4.1 ng/L) and in 82% of particulate phase samples (max. 1.4 ng/L). Concentrations 

of BP3 were generally higher in the dissolved phase than particulate phase. The log KOW value of BP3 

is relatively high (3.8),83 hydrophobic organic contaminants with high log KOW values are usually 

associated with the particulate phase of samples, especially particles high in organic carbon.84 Though 

the organic carbon content of the particulate phase was not directly measured, total organic carbon 

(TOC) concentrations for stream water samples ranged from 7.8 – 18.4 mg/L in the present study. It is 

likely that a large fraction of the TOC content was associated with the dissolved phase in the samples 

as total suspended solid (TSS) concentrations were low (0.6 – 1.3 mg/L). This may have influenced the 

lesser partitioning to the particulate phase than expected, based on the log KOW value of BP3. Stream 

water concentrations of BP3 (max. 4.7 ng/L) were in the lower range of those reported previously for 

freshwater including  a Spanish River draining both agricultural and urban areas (max. 27 ng/L), in 

moderately polluted rivers in Japan (4 – 12 ng/L) and similar to the concentration detected in a 

moderately polluted river in Taiwan (3 ng/L) .85 Higher concentrations have been detected in more 

heavily polluted rivers such as in Bangkok (116 ng/L).86 In freshwater BP3 has been measured up to 

125 ng/L.87 Observationally, BP3 stream water concentrations appeared to be lower in the later winter 

months (all concentrations <DL for July and August). Higher concentrations of UV-filters in freshwater 

bodies have been reported for summer months compared with winter months in the literature, though 
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direct inputs due to recreational inputs can influence this trend. Overall the cause of higher 

concentrations in summer months is likely due to higher usage of products containing UV-filters.27  

Eco-toxicological data for UV-filters is scarce,29 however the levels of BP3 detected at Dudley Creek 

Diversion and Cross Stream are not likely to be toxic to algae (the EC50 for the microalge Isochrisis 

galbana was reported as 13.87 µg/L), or higher level organisms as microalgae have been shown to be 

the most sensitive class of organism to BP3.26 

The UV-filter OMC was detected in 45% of stream water samples (4.4 – 17.9 ng/L) and in only 14% 

of particulate phase samples. The log KOW value of OMC is 6.0 and thus it is expected that 

concentrations would be higher in the particulate phase than the dissolved phase.27 This was the case at 

Dudley Creek Diversion in July and Cross Stream in August where OMC was detected in the particulate 

phase but not in the dissolved phase. However for the highest stream water concentration (17.9 ng/L), 

the corresponding particulate phase concentration was 5.2 ng/L. This result could also be influenced by 

the TOC content as described for BP3. Based on stream water concentrations, there also appears to be 

some temporal variation for OMC as it was not detected in the winter months (June to August). 

Frequently detected compounds in surface waters impacted by WWTP effluent may reflect the low 

removal rates of those compounds in WWTPs.88 This is not applicable to the streams in this thesis which 

are impacted by stormwater and untreated sewage, thus the relative frequency of certain compounds 

detected may differ. In this study BP3 was detected more frequently than OMC. In contrast OMC was 

more frequently detected than BP3 in Korean Rivers,88 as well as in heavily and moderately polluted 

rivers in Japan, possibly due to lower removal efficiencies of OMC in WWTPs.85b Stream water 

concentrations for OMC (4.4 – 17.9 ng/L) were comparable to measured concentrations in moderately 

polluted (12 – 91 ng/L), and background (0 – 18 ng/L) sites in Japan.85b 

Bisphenol A was the most ubiquitous compound in stream water samples (91% detection frequency; 

max. 8.1 ng/L) and had the same detection frequency as BP3 in the particulate phase (82%; 0.4 – 11.6 

ng/L). There is limited data on the distribution of BPA between the dissolved and particulate phase in 

urban stream water, however a study conducted in France found that across three catchments, the 

average amount of BPA in the particulate phase was 18%.4 There was no significant difference between 

sites, indicating that the distribution was dependent on the physical and chemical properties of BPA 

such as its log KOW value (3.4)89 which indicates some partitioning to the particulate phase is likely.4 

This was not the case in the current study where BPA concentrations were generally higher in the 

particulate phase than the dissolved phase at Cross Stream, but lower at Dudley Creek Diversion. Total 

organic carbon was also generally higher at Cross Stream than Dudley Creek Diversion which could be 

a reason for the differences in distribution. Organic carbon has been identified as a possible key factor 

influencing the distribution between phases of EOCs, including BPA.90 No temporal trends were 

observed in the present study which is not surprising since BPA is ubiquitous in the environment.91 
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Stream water concentrations of BPA in the current study (max. 8.1 ng/L) were similar to minimum 

detected concentrations in Japan (6.5 – 431 ng/L) and Korea (1.0 – 272 ng/L).92 BPA has been detected 

in lakes along the Yangtze River in China up to 141 ng/L.93 Concentrations in the Elbe River, Germany 

ranged from levels similar to those in the current study to much higher levels (9 – 776 ng/L).94 A 

predicted no effect concentration (PNEC) of BPA for aquatic organisms, based on three trophic levels, 

has been estimated as 1 µg/L.95  Therefore concentrations of BPA in Dudley Creek Diversion and Cross 

Stream are unlikely to result in negative effects on organisms.  

Methyl paraben was less frequently detected in stream water (23% of samples; <DL – 12.9 ng/L) than 

the UV filters and BPA, and was detected in 50% of particulate phase samples, though only one 

particulate phase sample was above the detection limit and had a concentration of 1.4 ng/L. The higher 

concentrations measured in the stream water samples reflect the low log KOW value of methyl paraben 

(1.66) which indicates that the compound is more likely found in the dissolved phase.96 Concentrations 

were similar to surface water concentrations measured in Pittsburgh (2.2 – 17.3 ng/L),97 Switzerland 

(3.1 – 17 ng/L)98 and Portugal (3.3 – 16 ng/L).99 Stream water concentrations have recently been 

measured an order of magnitude higher than those in the current study in a Brazilian river draining 

urban and rural areas which had an average concentration of 8.0 µg/L.100 Methyl paraben was not 

detected in the winter months (June – August), a similar trend to the UV-filters in the current study. 

There is little comment in the literature on temporal variation of methyl paraben in stream water, 

however concentrations in sewage sludge have been reported to remain constant over a four year study 

period.101  

Based on reported eco-toxicological data for methyl paraben (impacted reproduction of Ceriodaphnia 

dubia at 11 mg/L102; acute LC50 for Daphnia magna was 24.6 mg/L and >160 mg/L for Pimephales 

promelas103) , it is unlikely that aquatic organisms will be impacted by concentrations in Dudley Creek 

Diversion and Cross Stream. As no other parabens were detected in the current study, aquatic organisms 

at the study sites are not at risk of binary or synergistic effects of parabens, which is an area of growing 

concern.104 

Octylphenol was also detected in both stream water (32% of samples; 0.1 – 2.1 ng/L) and particulate 

phase samples (68% of samples; 0.1 – 1.0 ng/L), with generally similar concentrations between phases. 

Octylphenol has been measured directly in stormwater at concentrations up to 72 ng/L in France.4 The 

average percentage of total OP in the dissolved phase in the French study was 45%.4 Reported 

concentrations elsewhere are orders of magnitude higher than in the current study, though the study 

sites tend to have more industrial land use in surrounding areas than in the present study. In Italy a river 

receiving textile factory waste had a measured OP concentration of 0.11 µg/L.95 Average concentrations 

of OP in several Portuguese rivers impacted by agricultural and industrial runoff ranged from 0.04 – 

2.13 µg/L.105 Stream water concentrations were closer to those detected in the Yellow River in China 
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which is an important drinking water source (14.66 – 17.72 ng/L).106 No seasonal trends were observed 

for OP concentrations, likely due to its wide spread use with sources including paint, concrete, building 

materials, asphalt and some vehicle parts.4 The UK Environment Agency has issued a PNEC for OP of 

0.12 µg/L for aquatic organisms, much higher than concentrations detected in the current study.95 

O-phenylphenol was detected in particulate samples (0.6 – 5.6 ng/L) but not in stream water samples. 

Partitioning of OPP would be expected as it has a log KOW value of 3.09.107 It is somewhat surprising 

that the antimicrobial compound was not detected in stream water samples as other compounds in this 

study with higher KOW values were. This could be due to the fast flowing nature of the streams and any 

pulses of OPP may have not been collected in stream water samples. There is limited data in the 

literature for comparison, however OPP had been detected in water samples from two Portuguese rivers 

with average concentrations of 6.6 and 32 ng/L.99 

2.4.2.2 Sediment samples 

Sediment concentrations are provisional to the low recoveries of the 13C surrogate standards. 

UV-filters were also the most frequently detected class of compound in sediment samples however 

there is limited data in the literature regarding the occurrence of UV-filters in sediment. Benzophenone-

3 was the only PCP to have a significant difference in upstream and downstream sediment 

concentrations at Dudley Creek Diversion. As BP-3 was not detected in any of the upstream samples at 

Dudley Creek Diversion it is possible that sewage overflows in the previous year were the source of 

BP3. The detection frequency of BP3 (67%) was similar to that in Spanish river sediments (65%), 

however concentrations were generally lower in the present study compared with the Spanish 

concentrations (0.3 – 1.9 and <DL – 27 ng/g, respectively).83 In Norway, BP3 was not detected in 

sediment samples from a lake and fjord receiving WWTP effluent.26 Benzophenone 3 was also not 

detected in a recent study which measured sediment concentrations of UV-filters from polluted Iberian 

rivers.108 Octyl methoxycinnamate was less frequently detected in sediment samples from the current 

study (24% of samples; <DL – 8.9 ng/g) than BP3, as was the case for stream water.  Reports from the 

literature indicate that globally, OMC is more commonly found in freshwater sediment than BP3. In the 

Iberian study where BP3 was not detected, OMC was found in three sediment samples which were 

relatively similar to the concentrations measured in the current study (7.5, 22.9 and 18.9 ng/g).108 Both 

the fjord and lake in the Norwegian study also contained OMC at concentrations ranging from 8.5 – 

16.4 and 9.9 – 19.8 ng/g, respectively.26 Further, OMC sediment concentrations in the current study 

were comparable to the concentrations reported for all classes of rivers in the Japanese study mentioned 

in section 2.4.2.1; heavily polluted (2.2 – 9.6 ng/g), moderately polluted (3.8 – 30 ng/g), and background 

(2.0 – 8.0 ng/g).85b The variation in water concentrations (section 2.4.2.1) but consistency in sediment 

concentrations between site class in the Japanese study may mean that OMC does not readily degrade 
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in sediment. The results from the current study reflect this as OMC was detected in sediment in the last 

three months of the study when it was not detected in surface water. 

Bisphenol A was detected in every sediment sample (0.7 – 10.2 ng/g) in the current study, again this is 

likely due to the compounds ubiquitous nature. 91 Sediment concentrations in a German study ranged 

from 66 – 343 ng/g94 while sediment concentrations from a large river in Italy were comparable to the 

current study ranging from 7 – 22 ng/g.109 Concentrations of BPA can vary greatly depending on the 

site and its associated inputs. In Taiwan the concentration of BPA in sediments from 16 major rivers 

ranged from 0.37 – 491.54 ng/g.110 Rivers with higher BPA concentrations in the study had received 

effluents from an industrial area as well as untreated municipal wastewater.110 

Methyl paraben was more frequently detected in sediment samples (35% of samples; 2.6 – 61.8 ng/g) 

than stream water samples, though not as frequently as in other parts of the world. A study investigated 

sediment concentrations from several locations in the United States, Japan and Korea, and detected 

methyl paraben in 100% of the samples.111 Concentration ranges were similar to the current study 

including 0.312 – 45.5 ng/g, 2.59 – 17.8 ng/g and 2.43 – 16.2 ng/g for the United States, Japan and 

Korea, respectively.111 At Cross Stream, methyl paraben was only detected in upstream sediment 

samples indicating that sewer overflows are not the primary source of the compound at this site and 

stormwater may be more important in regards to methyl paraben inputs. In June at Dudley Creek 

Diversion, methyl paraben was detected at both upstream and downstream sites in sediment samples. 

The concentration measured in the upstream sample was much higher than in the downstream sample, 

indicating that non-point source stormwater may also be the primary source of methyl paraben at Dudley 

Creek Diversion. Potential sources of methyl paraben in stormwater include paint, varnishes, and 

pesticides.112 

The concentrations of triclosan measured in the current study (10.5 and 5.3 ng/g) were in agreement 

with the concentration range in marine sediments in a South Australian Inlet impacted by a WWTP 

outfall (5 – 27 ng/g). 113 Triclosan has also been measured in marine sediment from Spain (0.27 – 130.7 

ng/g)114 and in estuarine sediments in the USA at concentrations up to 800 ng/g.115 The last sewer over 

flow at Dudley Creek Diversion occurred 8 months prior to the detection of triclosan in sediments 

samples at the site in March and April 2015. The predicted half-life of triclosan in sediment is 240 days 

and a biodegradation study reported the half-life of triclosan in aerobic soil to be 18 days.116 The initial 

sediment concentration of triclosan in the Dudley Creek sediment could have been approximately 

double the measured concentration in March 2015, had the last sewer overflow been the source of the 

compound, based on the half-life derived from computer modelling. Based on the sediment degradation 

half-life found in the biodegradation study for aerobic soil (18 days), the initial triclosan concentration 

could have been much more than double. This is possible as the measured concentration in the present 

study for April was approximately half of that measured in March. 
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Octylphenol was detected in 47% of sediment samples (0.3 – 3.6 ng/g). Studies reporting concentrations 

of OP in sediment are dominated by those originating from China. Comparable concentrations of OP 

have been reported in China at a riverine delta connecting an estuary to the South China Sea (0.4 – 3.0 

ng/g).117 Higher concentrations were measured in sediment from a river undergoing rapid urbanisation 

in China (15.9 – 49.6 ng/g).118 The maximum OP concentration in the current study was similar to the 

minimum concentration detected in lake sediment from China where concentrations ranged from 2.69 

– 166.87 ng/g.93  

The sediment concentrations of OPP measured in the current study (0.3 – 1.6 ng/g) were lower than the 

mean concentration of OPP in river sediment from China (21.78 ng/g).107 O-phenylphenol was detected 

at upstream and downstream sites at similar concentrations. Non-point source stormwater could 

therefore be a source of the contaminant which is used in a wide range of products including glues, 

concrete additives, leather, and as an active ingredient in disinfectants.99 

2.4.3 Trace element concentrations compared to New Zealand and global trends 

Maximum concentrations of Cu, Pb and Zn reported for other urban streams in the wider Avon 

Catchment (7, 3.7 and 190 µg/L, respectively) were higher than those in the current study (Table 2.4.3). 

119 Dissolved element concentrations have been measured in rivers at their base flow in Wellington, 

New Zealand (Table 2.4.3). Zinc was measured up to 80 µg/L whereas the highest concentration in the 

current study was 8.1 µg/L. Copper concentrations in Wellington rivers were also higher than the two 

Christchurch streams (1.1 – 2.1 µg/L). Both Cr and Cd concentrations were also below the detection 

limits. The highest recorded Pb concentration in Wellington was 0.3 µg/L compared to 1.0 µg/L 

measured in Dudley Creek Diversion.120 Trace element concentrations in the current study were 

generally below ANZECC guidelines for 95% species protection and are therefore not likely to impact 

organisms in Cross Stream and Dudley Creek Diversion.81 

Globally, similar dissolved concentrations have been reported in England for Mn, Pb and Zn. Other 

elements tended to reach higher concentrations (Table 2.4.3).121 However another river in the United 

Kingdom with urban inputs generally had higher mean concentrations for all trace elements.122 Urban 

and Rural rivers in Ireland had an average Al concentration of 69 µg/L.123 

Significantly higher concentrations have been reported internationally for polluted streams including in 

Turkey124 and Houston where concentrations at four urban sites ranged from 0.29 – 0.98 mg/L for Fe 

and 0.03 – 0.22 mg/L for Zn (Table 2.4.3).125 

Sediment concentrations for Cu, Pb and Zn (7.6 – 207.5, 18.5 – 199.2 and 67.1 – 244.2 µg/g, 

respectively) were generally higher than thos reported for another Christchurch urban stream (Cashmere 

Stream; 9.3, 16 and 98 µg/g, respectively).126 
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Table 2.4.3. Dissolved metal concentrations compared to the literature (concentrations are all µg/L 

except where denoted with *, the concentration is mg/L). 

Element 

Present Study 

Concentration 

Range (ug/L) 

Literature 

Values (ug/L) 

Location of 

Study 

Al 0.8 - 61.8 3 - 831 England121 

  55 (mean) UK122 

  69 (mean) Ireland123 

    0.17 - 133.5* Turkey124 

As <DL - 0.3 0.68 (mean) UK122 

    10 - 290 Turkey 

Cd <DL 0.01 - 0.61 England121 

    3 -15 Turkey124 

Cr <DL 0.34 (mean) UK122 

    16 - 110 Turkey124 

Cu <DL - 0.5 1.1 - 2.1 Wellington120 

  0.1 - 3 England121 

  2.43 (mean) UK122 

    11 - 94 Turkey124 

  <DL – 7a Christchurch119 

Fe 4.5 - 335.0 142 (mean) UK122 

    0.25 - 48* Turkey124 

  0.29 – 0.98* Houston125 

Mn 0.2 - 25.7 0.2 - 73.3 England121 

    86.7 (mean) UK122 

Ni <DL - 0.3 0.1 - 1.2 England121 

    4.0 (mean) UK122 

Pb <DL - 1.0 0.3 (max.) Wellington120 

  0.05 - 0.63 England121 

  2.7 (mean) UK122 

    11 - 370 Turkey124 

  <DL – 3.7a Christchurch119 

Sb <DL 0.50 (mean) UK 

Zn 0.6 - 8.1 80 (max.) Wellington120 

  0.2 - 11.8 England121 

  21.60 (mean) UK122 

    150 - 4100 Turkey124 

  0.03 – 0.22* Houston125 

  <DL – 190a Christchurch119 
a Concentrations are presented for urban streams in the Avon catchment only. Detection limits for Cu, Pb and Zn 

were 2, 1.5 and 1 µg/L, respectively, and therefore data from this report is difficult to compare to results from 

the current study.  
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2.4.4 Bacterial community composition and correlations with chemical data 

Gammaproteobacteria were dominant in sediment at Dudley Creek Diversion and betaproteobacteria at 

Cross Stream. Alphaproteobacteria were dominant in biofilm. A study in South Australia has reported 

the presence of gammaproteobacteria in stream sediment at a site impacted by WWTP effluent while 

the same class of bacteria were not present at less impacted sites indicating that gammaproteobacteria 

are associated with streams polluted by wastewater.127 Gammaproteobacteria have also been found to 

be dominant in river sediments of varying degrees of pollution.127 Betaproteobacteria were also 

relatively abundant in the same sediments, while Cyanobacteria, Nitropirae, Actinobacteria and 

Acidobacteria were much less abundant, as was observed in the current study.127 Alphaproteobacteria 

have also been reported as the dominant proteobacteria in Czech stream biofilms.128 

Though DO, conductivity and DRP concentrations were not directly measured in the sediments, these 

water quality parameters could indirectly influence bacterial sediment community composition and thus 

were kept in the statistical analysis. In the stepwise DistLM analysis DO explained 28.7% of the 

sediment bacterial community structure. Dissolved oxygen concentrations were significantly lower at 

Cross Stream than Dudley Creek Diversion which may be why the water quality parameter explained a 

relatively large percentage of sediment community structure. It is also possible the lower DO at Cross 

Stream is one of the factors that influenced the significantly different sediment bacterial community 

structures between the two streams.  Microbial community composition in Belgian river sediment was 

also positively correlated with DO after the introduction of a WWTP improving the water quality of the 

river which previously received untreated sewage.129 Dissolved oxygen is also a known limiting factor 

for the growth of aerobic microorganisms.130  

After DO, BP3 explained the second largest proportion (6.2%) of variation in sediment community 

composition. Data on the effects of BP3 and other UV filters on bacterial communities are very scarce, 

likely because UV filters are not designed to have antimicrobial properties. Other microorganisms such 

as microalgae have been shown to be more sensitive to BP3 than higher order species, though the EC50 

value reported for the microalgae (13.87 µg/L) was much higher than concentrations detected in the 

current study.26 There was also a significant difference between BP3 concentrations upstream and 

downstream of the sewer overflow outfall which may have influenced the bacterial community 

composition at the same site. 

Triclosan did not have a large impact on bacterial community composition as observed in other studies, 

51, 59 only explaining 3.2% of sediment bacterial community structure in the stepwise analysis and was 

not significant individually. Triclosan was only detected in two sediment samples which is likely the 

reason for this, whereas BP3 was more frequently detected.  
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Trace elements did not contribute to the structure of bacterial communities in step-wise analyses for 

either sediment or biofilm. Another New Zealand study using stream water amended with Zn, Cu and 

Pb in an artificial flow chamber reported a significant change in biofilm bacterial community structure 

after just 3 days of exposure.131 However concentrations in the flow chamber experiment (500 µg/L Zn, 

50 µg/L Cu and 50 µg/L Pb) were much higher than concentrations measured at Cross Stream where 

biofilm samples were taken from in the current study.131 Biofilms in the same study were shown to 

recover, becoming more similar to unexposed populations once transferred to uncontaminated water.131 

It is therefore possible that biofilms in the environment, such as in the current study may be able to 

recover from pulses of increased metal contaminants. Most trace element concentrations in the current 

study were also below ANZECC guidelines and therefore may not have been high enough to induce 

change in bacterial community structure.   

Bacterial sediment communities at Dudley Creek Diversion in March were significantly different from 

those sampled in all other months. The only pollution index value greater than 1 (indicating metal 

pollution) occurred in March at Dudley Creek Diversion which could be a reason behind the bacterial 

community trend. However, as discussed above, metals were not found to be important in structuring 

community composition. The lowest BP3 and BPA sediment concentrations measured at Dudley Creek 

Diversion were both recorded in March. Both of these compounds were important in the sequential 

DistLM analysis and could be a factor in the temporal difference in community composition. 

2.5 Conclusion 

Compounds detected in stream water samples included the UV-filters BP1, BP3 and OMC along with 

the most ubiquitous compound BPA, and less frequently detected mParaben and OP. All compounds 

that were detected in stream water were also detected in the particulate phase except BP1. 

Concentrations of the detected PCPs were in the low ng/L range and were below concentrations reported 

to be toxic to aquatic organisms. The highest concentration measured in stream water was for OMC 

(17.9 ng/L) which was similar to concentrations measured in moderately polluted rivers in Japan. 

Observed temporal patterns included lower concentrations of UV-filters form June to August, possibly 

caused by lower usage of products containing these compounds during winter. There were no significant 

differences in upstream and downstream concentrations for any compounds likely because no sewer 

overflows occurred during the 6 month study.  

In the sediment samples, BP3 was significantly higher at the upstream Dudley Creek Diversion site than 

downstream indicating sewer overflows as a potential source of the UV-filter. Bisphenol A was also 

the most frequently detected compound in sediment samples, representing its widespread inclusion in a 

range of products and industrial sources. Triclosan, the antimicrobial compound studied in Chapter 

Three, was detected in two downstream sediment samples in March and April at Dudley Creek 
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Diversion at concentrations of 10.5 and 5.3 ng/g. The results from this study contribute to the very 

limited data on concentrations of PCPs in New Zealand waterways. 

Several PCPs were shown to influence bacterial community structure including BP3, OMC, TCS and 

BPA. Triclosan did not impact bacterial community structure to the same degree as reported in other 

studies, though this could be because the compound was only detected in two samples. Trace elements 

were not found to play a role in bacterial community structure, however concentrations detected in this 

study were generally below ANZECC guidelines and were therefore unlikely to impact organisms at 

Cross Stream and Dudley Creek Diversion. 
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3 Effects of triclosan on photosynthetic microorganisms 

3.1 Introduction 

Triclosan is frequently detected in the aquatic environment and further information is required to 

determine its potential impacts on aquatic life.132 As triclosan is an antimicrobial compound there is 

particular concern over the effects on aquatic microorganisms such as algae.51 Algae play an important 

role in aquatic ecosystems as primary producers and impacts on these organisms may effect higher 

trophic levels.17 Triclosan was detected in stream sediments in this study (section 2.3.1) indicating that 

aquatic organisms in New Zealand waterways are exposed to this antimicrobial compound. 

The toxicity of triclosan to aquatic organisms has been investigated in several studies. A 2002 study by 

Orvos et al examined toxicity to a range of organisms including fish, invertebrates, and higher order 

plants.20 Reported  EC50 values for triclosan included invertebrates (Daphnia magna mortality 390 µg/L, 

48hrs and Ceriodaphnia dubia survival and reproduction 184.7 µg/L, 48hrs)20, fish (Pimephales 

promelas and Lepomis macrochirus mortality 260 and 370 µg/L, respectively, 96 hrs)20 and 

Macrophytes (Lemna gibba growth inhibition >62.5 µg/L, 7 d)20. Certain species of microalgae have 

been shown to be the most sensitive organisms to triclosan. The green algae Scenedesmus subspicatus 

had an EC50 for inhibition of biomass of 1.4 µg/L whereas a second green alga, Selenstrum 

capricornutum had an EC50 for growth inhibition of 4.46 µg/L.20, 135 Both of their values were 

significantly lower than the EC50 values reported for other aquatic organisms.20 The diatoms 

Skeletonema and Navicula, however, showed a greater resistance to triclosan compared with other 

microalgae with EC50 values of 66 and 19.1 µg/L, respectively.20 In a mesocosm study filamentous 

green algae in a biofilm community decreased in abundance and cellular integrity was impacted after 

exposure to triclosan while diatoms in the community recovered after a decrease in abundance.58 Other 

studies have documented impacts on river biofilms including inhibition of biofilm development and 

reduced species diversity,59 and decreased photosynthetic activity.136  

There is ongoing discussion as to the reason behind the significant differences in sensitivity of 

microalgae to triclosan.135 The variation in sensitivity to triclosan of microalgae could have implications 

for aquatic ecosystems. Species that are more tolerant to triclosan could become dominant in 

environments where this compound is present.51 Changes in community diversity may have 

implications on community function in higher food web levels, for example if less nutritious organisms 

increase in abundance.51 Drury et al showed that after exposure to triclosan there was a 6-fold increase 

in the relative number of cyanobacterial sequences, increasing from <1% of the total community to just 

over 5% while there was a clear reduction in abundance of green algae.51  
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Contrary to Drury et al’s findings, reductions in both algal and cyanobacterial biomass have been 

observed in other river biofilm communities, despite no significant impact on biomass of bacteria.137 

Other studies also suggest that algae are more sensitive to triclosan than bacteria despite this compound 

being used for its antibacterial properties. Triclosan was not found to be toxic to bacteria in marine 

periphyton communities where algae were impacted in a recent Swedish study.138 The microalga 

Selenastrum capricornutum was also shown to be 30-fold more sensitive to triclosan that the bacterium 

Vibrio fisheri.139  

In this study the effect of triclosan on the photosynthetic activity of a green alga Stigeoclonium sp. and 

the benthic cyanobacteria Phormidium autumnale was monitored over 96 hrs. Stigeoclonium is a 

common genus in New Zealand waterways and is known to dominate periphyton.140 The effect of metals 

on algae has been well studied and metals are known to be toxic to algae. For example, Copper (Cu) is 

an essential nutrient for aquatic life, however at concentrations as low as 1 µg/L it can be toxic.141 

Copper was used in this experiment to establish its toxicity to Stigeoclonium sp. and P. autumnale to 

enable comparison to other species’ sensitivity in the literature. As there is limited information on the 

toxicity of triclosan to New Zealand algae species, this study provides insight into the potential impacts 

of triclosan on primary producers in New Zealand waterways. 

3.1.1 Pulse amplitude modulated chlorophyll fluorometry 

In recent years toxicity tests using algae have progressed to include the use of Pulse Amplitude 

Modulated (PAM) flurometers.142 The development and use of PAM technology is due to enhanced 

understanding of chlorophyll fluorescence.143 The efficiency of photosynthetic activity at Photosystem 

II (PSII) reaction centres in algal cells is associated with chlorophyll fluorescence.144 Reaction centres 

in dark adapted algae are open and available to receive and process a photon. A saturating pulse (>3000 

µmol photon m-2s-1) closes all reaction centres so that additional photons absorbed will be reemitted as 

fluorescence or heat.144 Heat generation is favoured when the reaction centre is under stress while 

fluorescence is favoured when the reaction centre is not stressed. The maximum quantum yield (Fv/Fm) 

is a measure of the potential of a cell to undergo photosynthesis if all reaction centres are open at PS 

II.144 Thus PAM allows measurements of photosynthetic activity as an indicator of cell health. 
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3.1.2 Objectives 

The objectives of this experiment were to: 

 Determine the concentrations of triclosan that inhibit the photosynthetic activity of 

Stigeoclonium sp.and P. autumnale. 

 Determine whether Stigeoclonium sp. was more sensitive to triclosan than P. autumnale. 

 Determine the sensitivity of Stigeoclonium sp. and P. autumnale to copper to enable 

comparison to literature. 

3.2 Methods 

3.2.1 Culturing and bioassay design 

Isolation and culturing 

A biofilm sample was taken from a cobble in Cross Stream using a Whirl-pak™ Speci-sponge™ and 

placed in a clean container. Any long algae filaments were scraped directly into the container which 

was filled with stream water and capped. Filaments were isolated from samples by micro-pipetting and 

were transferred to 24-well plates (Becton Dickinson, USA) containing 500 µL of growth medium 

(MLA medium) per well.145 Successfully isolated strains (Stigeoclonium sp.) were incubated under 

standard conditions (100 ± 20 µmol photons m-2.s-1; 12:12 hour light:dark; 18 ± 1ºC) and maintained in 

50 mL plastic bottles (ThermoFisher Scientific, New Zealand). The P. autumnale strain CYN50 from 

the Cawthron culture collection (http://cultures.cawthron.org) was also grown under the same 

conditions.145 Both cultures were grown until sufficient biomass was obtained for the experiment. 

Range finding experiment 

 The concentrations of triclosan and copper used in the current study were determined based on the 

results of two initial range finding experiments exposing Stigeoclonium sp. to triclosan and one 

experiment exposing Stigeoclonium sp. to copper. Nominal triclosan concentrations in the first range 

finding experiment were 0, 0.05, 0.5, 5 and 50 µg/L (no observed effects), and 0, 0.005, 0.5, 0.5 and 5 

mg/L for the second experiment where no effect was observed at 0.5 mg/L and below but Stigeoclonium 

sp. were killed at 5 mg/L. Concentrations used in the Cu range finding experiment were 0.0001, 0.001, 

0.01, 0.1 and 1 mg/L. 

Media preparation 

Stigeoclonium sp. and P. autumnale  were exposed to triclosan and Cu separately in the Organisation 

for Economic Co-operation and Development (OECD) artificial freshwater medium.146 In this 

experiment, CuCl2.2H2O was emitted from the OECD medium as it could not be sourced in the 
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laboratory. Copper is an essential element for growth but at higher concentrations can impact cell 

function.141 Therefore the absence of CuCl2.2H2O may have affected the potential growth of triclosan 

exposed algae but for the Cu treatments any potential effect would have been insignificant compared to 

the levels of Cu added to the artificial freshwater (prescribed concentration of CuCl2.2H2O in the OECD 

medium is 0.012 µg/L)147. This experiment did not test growth as an end point so results should not 

have been affected.  

Five variations of triclosan spiked OECD medium were prepared (Table 3.2.1). Due to the low solubility 

of triclosan in water, five standards of triclosan were prepared in acetone at necessary concentrations 

so that when 25 µL of each standard was diluted to 250 mL with OECD medium the desired triclosan 

concentration was obtained. The standards in acetone were prepared in amber glass vials on ice to 

prevent photo-degradation of triclosan and evaporation of acetone. The final concentration of acetone 

in each of the OECD medium variations was 0.1% as recommended by the OECD to minimise solvent 

effects and a 0.1% acetone blank was included in the experiment to account for any effects.147 For each 

triclosan spiked medium preparation, the volumetric flask was chilled on ice before dispensing 25 uL 

of the triclosan standard into the flask. The OECD medium was immediately added with constant 

shaking until a volume of 250 mL had been reached. All glassware and vials used in the triclosan 

exposure experiment were solvent rinsed with HPLC grade dichloromethane (DCM), methanol 

(MeOH) and acetone prior to use.  

All glassware and vials used for Cu exposures were acid washed over night in 10% HNO3 and rinsed 

thoroughly with Milli-Q water. Five Cu concentrations were prepared by diluting the 100 mg/L (Cu) 

stock standard of CuSO4.5H2O with OECD medium in 250 mL volumetric flasks (Table 3.2.1).  

Experimental setup  

The Stigeoclonium sp. culture was transferred into four 50 mL Falcon tubes and centrifuged (20 min, 

3, 200 × g). The MLA media was removed using a pipette and the algal suspensions were combined 

into a single Falcon tube. The process of spinning down and pipetting off MLA media was repeated 

until a concentrated suspension of algae was obtained in about 5 mL of residual MLA medium. A 

homogenous algae suspension was made up to 45 mL with OECD artificial freshwater medium.  

The P. autumnale culture formed a mat within the flask. The mat was carefully teased apart into small 

pieces with sterilised tweezers. The size of the pieces was similar to the base of a well in a 96 well plate 

to enable sufficient coverage when carrying out PAM measurements. The P. autumnale culture was 

then centrifuged (10 min, 3, 200 × g) and the MLA medium removed and made up to 45 mL with OECD 

medium. 
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Aliquots (20 mL) of each OECD medium variation were pipetted in two sets of triplicates into pre-

labelled, glass scintillation vials. An aliquot (1 mL) of Stigeoclonium sp. suspension (Figure 3.2.1) and 

of P. autumnale was added to the two separate sets of test vials in triplicate.  

Table 3.2.1 Nominal triclosan and copper concentrations used for the exposure experiment. 

TCS (mg/L) Cu (mg/L) 

0 0 

0.70 0.05 

1.12 0.09 

1.79 0.16 

2.87 0.29 

4.59 0.52 

Triplicate control samples (no algae) were set up for each concentration to monitor toxicant 

concentration over the duration of the experiment. Each triplicate was sampled for both triclosan and 

Cu analysis at each sampling time (10 mL aliquots each). On the final day, aliquots (10 mL) were taken 

from replicates containing Stigeoclonium sp. to determine whether there was any microbial degradation 

or sorption of copper. Samples for Cu analysis were stored in 10 mL centrifuge tubes and acidified (< 

pH 2) in the University of Canterbury clean room with quartz distilled ultra-pure HNO3. Samples were 

then left to sit for one week before analysis. Samples for triclosan analysis were stored in solvent washed 

15 mL glass vials. Dichloromethane (2 mL) was added to each water sample for triclosan analysis 

immediately before shaking the vial to extract the triclosan from the water into the dichloromethane 

fraction. All samples were stored refrigerated until analysis. 

 

Figure 3.2.1. Stigeoclonium sp. suspension in glass scintillation vials. 

3.2.2 Analysis of health and survival by use of a pulse-amplitude modulated chlorophyll 

fluorometer 

A subsample (200 µL) of the homogenous Stigeoclonium sp. and a piece of P. autumnale in 200 µL of 

media were taken from each scintillation vial and dispensed into individual wells in a 96 well plate 

(OptiPlate-96, Black Opaque 96-well Microplate, Perkin Elmer) at 0, 24, 48, 72 and 92 hrs.148 A black 
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polythene cover was attached to the bottom of the plate to prevent light leakage between wells. The 

black frames of the wells also prevented light leakage.148 

A Walz Phyto-PAM instrument with an emitter detector fibre-optic (EDF) probe was used to carry out 

Pulse Amplitude Modulated (PAM) fluorometry on the samples at each sub-sampling period.148 The 

plate was dark adapted for at least 20 minutes before beginning measurements. The EDF probe was 

secured in place on a stand to maintain the same distance from algae cells for each measurement. The 

maximum quantum efficiency of the PSII photochemistry (Fv/Fm) and a rapid light curve (RLC) were 

determined for each sample by saturating the algae with a pulse of light at 2600 µmol quanta m-2s-1, 

pulse length 200 ms.148 The photon flux was then increased for 10 second pulses (PAR = 0, 1, 16, 32, 

64, 90, 120, 180, 295, 405 µmol photons-1m2s-1) respectively. The auto-gain function was used to 

optimise readings from samples with varying culture densities.148 

3.2.3 Analysis of water from bioassays 

Copper 

Samples were analysed for Cu concentration by Agilent 7500 series ICP-MS as per section 2.2.5 of this 

thesis. A water CRM was included in the analysis (Synthetic 1643 CRM, Inorganic Ventures; CRM Cu 

recovery = 105%). A duplicate sub-sample was analysed after every 10 samples, followed by a duplicate 

and 3 mL triplicate sub-sample sample spiked with 30 µL of a 1000 µg/L standard after every 20th 

sample. Duplicate percentage difference and spike recovery results are presented in Table 3.2.3. Before 

each run, the instrument was calibrated with a blank and standards ranging from 0.1-1000 µg/L. The 

detection limit for Cu was 0.1 µg/L. 

Table 3.2.3. Duplicate percentage difference (n = 9) and spike recovery (n = 5) for copper analysis 

(C.I = confidence interval). 

QA/QC Average Std. Dev. Lower C.I Upper C.I 

% Difference 3.3 3.3 1.5 5.1 

% Spike Recovery 88.4 2.6 86.7 90.0 

Triclosan 

The artificial freshwater samples were extracted by liquid-liquid extraction. The DCM fraction for each 

sample was removed from the amber glass vial and transferred to another pre-weighed amber glass vial 

with a Pasteur pipette. An additional 2 mL of DCM was added to the water sample and vortexed before 

leaving the sample to sit for 5 minutes. The DCM was removed from the sample and combined with 

the original DCM fraction. This was repeated once more. The combined extracts were dried under 

nitrogen gas at 40 ºC before re-weighing the vials to determine the amount of water transferred. The 

dried extracts were quantitatively transferred with MeOH (1×500 µL, 2×250 µL) to an amber glass 

High performance liquid chromatography (HPLC) vial to be analysed by HPLC.  
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The method of analysis was modified from that of Ricart et al 2010.149Samples were analysed by a 

Dionex HPLC fitted with an Ultimate® 3000 pump and autosampler coupled to an Ultimate® 3000 diode 

array detector. Samples were injected (20 µL) onto a 150 × 2 mm Phenomonex Gemini® column (5 µm 

particle size, C18 packing material, 110A particle pore size) with a Gemini® security guard column 

(C18 packing material, 4×2 mm internal diameter). The mobile phase was 90% MeOH, 10% Milli-Q 

water. Samples were run at a column temperature of 40 ºC and an isocratic flow rate of 0.2 mL/min for 

a total run time of 10 minutes. The detection wavelength was 280 nm, the retention time for triclosan 

was 3.8 minutes and 4.7 minutes for methyl triclosan. 

Seven calibration standards were prepared for triclosan (0, 3, 5, 10, 25, 50 and 75 µg/L) and methyl 

triclosan (0, 0.5, 1, 2, 5, 10 and 15 µg/L), and were run at the beginning and end of each run. Every ten 

samples 0, 3 and 50 and µg/L standards were run as a calibration check and to check for any carry over. 

Lower standards than those used for the calibration were used to calculate the LOD. The LOD for 

triclosan was 0.3 µg/L and 0.06 µg/L for methyl triclosan. 

3.2.4 Statistical analysis 

A three-parameter log-logistic model was fitted and EC50 and EC10 values for the Stigeoclonium sp. and 

P. autumnale were calculated using the drc package in R Studio.75, 150 The ratio of the EC50 values were 

calculated also using the drc package to determine whether there was a significant difference between 

the values for the Stigeoclonium sp. and P. autumnale.150 

3.3 Results 

3.3.1 Concentrations of water samples from bioassays 

Triclosan 

Nominal and analysed triclosan concentrations are presented in Table 3.3.1a. Lower concentrations 

detected for the samples taken at 96 hrs from the vials containing algae compared with the samples 

containing no algae indicate that there was some microbial degradation. Samples from vials containing 

Stigeoclonium sp. were only taken at 96 hrs therefore the exact concentrations the algae were exposed 

to throughout the experiment cannot be known. 
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Table 3.3.1a Average media triclosan concentrations (mg/L). 

 

Nominal 0 hrs 24 hrs 48 hrs  72 hrs 96 hrs  96 hrs* 

0 0 0 0 0 0 0 

0.7 0.62 0.66 0.68 0.67 0.65 0.53 

1.12 0.82 0.92 0.88 0.91 0.89 0.9 

1.79 1.95 1.98 2.09 2.01 1.99 0.98 

2.87 2.59 2.78 2.83 2.85 2.78 1.3 

4.59 3.79 4.36 4.35 4.23 4.02 1.82 

*Concentrations of samples taken at 96 hrs from vials containing Stigeoclonium sp. 

The measured 0 hr concentration were used for EC50 and EC10 calculations because there was an effect 

seen at 0 hrs and there was the largest decrease in photosynthetic activity between 0 and 24 hrs. 

Methyl triclosan 

Methyl triclosan was only detected in samples with the initial concentration of triclosan of 0.82 mg/L 

(the second lowest concentration). Measured concentrations were 0.03 mg/L at 72 hrs and 96 hrs and 

the compound was not detected at any other time period. 

Copper 

Nominal and analysed Cu concentrations are displayed in Table 3.3.1b. There was some loss of Cu in 

the vials with Stigeoclonium sp. as indicated by the concentrations of the media at 96 hrs. Analysed 0 

hr concentrations were used for EC50 and EC10 calculations.  

Table 3.3.1b Average media copper concentrations (mg/L). 

Nominal 0 hrs 24 hrs 48 hrs 72 hrs 96 hrs 96 hrs* 

0.00 0.00 0.00 0.00 0.00 0.00 0.00 

0.050 0.043 0.042 0.043 0.075 0.041 0.031 

0.090 0.080 0.057 0.060 0.083 0.059 0.045 

0.16 0.16 0.16 0.15 0.16 0.14 0.097 

0.29 0.28 0.28 0.27 0.26 0.22 0.15 

0.52 0.49 0.46 0.41 0.36 0.30 0.26 

*Concentrations of samples taken at 96 hrs from vials containing Stigeoclonium sp. 
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3.3.2 Triclosan Study 

Stigeoclonium sp. was more sensitive to triclosan than P. autumnale (Figure 3.3.2a). Triclosan had an 

effect on the Stigeoclonium sp. from 0 hrs while P. autumnale was not affected until 48 hrs. By 48 hrs 

the Stigeoclonium sp treatments exposed to the highest two concentrations of triclosan (2.59 and 3.79 

mg/L) had died with Fv/Fm values of 0 (Figure 3.3.2b). 

The EC10 and EC50 values for the Stigeoclonium sp. and P. autumnale are presented in Tables 3.3.2a – 

3.3.2b. The largest decrease in photosynthetic activity for the Stigeoclonium sp. was from 0 to 24 hrs 

where the EC50 value decreased from 3.71 mg/L to 1.93 mg/L. From 24 to 72 hrs the EC50 values 

remained relatively constant (1.90 – 1.97 mg/L). There was a further decrease at 96 hrs with a final 

EC50 value of 1.23 mg/L. The EC10 values for Stigeoclonium sp. were similar from 0 to 72 hrs ranging 

from 1.65 to 1.89 mg/L before decreasing to 0.69 mg/L at 96 hrs. 

The EC50 values for P. autumnale were similar at 48 and 72 hrs with values of 3.73 and 3.86 mg/L, 

respectively. The final EC50 value at 96 hrs also decreased slightly to 3.17 mg/L. The EC10 values for 

P. autumnale gradually decreased from 48 hrs with values of 3.31, 3.68 and 2.21 mg/L for 48, 72 and 

96 hrs, respectively.  

The ratio of 96 hr EC50 values for the Stigeoclonium sp. and P. autumnale was calculated to be 0.39 

(Lower limit = 0.31, Upper limit = 0.47), therefore the EC50 values were significantly different as neither 

the ratio nor the lower or upper limits of the ratio were equal to one. 

 

Figure 3.3.2a. Percentage yield (Fv/Fm; relative to the control) of Stigeoclonium sp. and P. autumnale 

after exposure to triclosan at 96 hrs (error bars are the standard error of the replicates). 
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Figure 3.3.2b. Percentage photosynthetic yield (Fv/Fm; relative to the control each day) of 

Stigeoclonium sp. after exposure to triclosan over 96 hrs. 

 

Table 3.3.2a EC50 values for Stigeoclonium sp. exposed to triclosan from 0 – 96 hrs. 

Time 

(hrs) 

EC50 

(mg/L) 

Std. 

Error 

Lower 

C.I 

Upper 

C.I 

0 3.71 0.31 3.08 4.34 

24 1.93 0.03 1.88 1.98 

48 1.90 0.09 1.84 2.03 

72 1.97 0.1 1.77 2.16 

96 1.23 0.06 1.11 1.36 

Table 3.3.2b EC10 values for Stigeoclonium sp. exposed to triclosan from 0 – 96 hrs. 

Time 

(hrs) 

EC10 

(mg/L) 

Std. 

Error 

Lower 

C.I 

Upper 

C.I 

0 1.77 0.31 1.14 2.4 

24 1.65 0.13 1.38 1.96 

48 1.75 0.42 1.24 2.3 

72 1.89 0.73 0.30 3.3 

96 0.69 0.06 0.56 0.8 
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Table 3.3.2c EC50 values for Phormidium autumnale exposed to triclosan from 0 – 96 hrs. 

Time 

(hrs) 

EC50 

(mg/L) 

Std. 

Error 

Lower 

C.I 

Upper 

C.I 

0 NEa NAb NA NA 

24 NE NA NA NA 

48 3.73 0.2 3.32 4.15 

72 3.86 0.47 2.9 4.83 

96 3.17 0.25 2.65 3.68 

Table 3.3.2d EC10 values for Phormidium autumnale exposed to triclosan from 0 – 96 hrs. 

Time 

(hrs) 

EC10 

(mg/L) 

Std. 

Error 

Lower 

C.I 

Upper 

C.I 

0 NEa NAb NA NA 

24 NE NA NA NA 

48 3.31 1.24 0.78 5.84 

72 2.68 1.00 0.64 4.77 

96 2.21 0.48 1.27 3.14 
a No effect was observed for this associated time period. 

b Not applicable as no EC50 value reported. 

 

3.3.3 Copper Study  

Stigeoclonium sp. was also more sensitive to copper than P. autumnale. The EC50 and EC10 values for 

Stigeoclonium sp. are presented in Tables 3.3.3a and 3.3.3b. There was no observed effect on P. 

autumnale for the tested concentration range over the 96 hrs. Stigeoclonium sp. was not affected until 

48 hrs with an EC50 value of 1.20 mg/L. This decreased to 0.56 mg/L at 96 hrs. The EC10 values 

decreased from 48 hrs from 0.37 mg/L to 0.21 mg/L at 96 hrs. Photosynthetic yield (Fv/Fm) for the 

highest treatment of copper showed the largest decrease from 0 to 96 hours (0.77 to 0.42 mg/L; Figure 

3.3.3). 



Chapter 3  

78 

 

 

Figure 3.3.3. Photosynthetic yield (Fv/Fm) of Stigeoclonium sp. and after exposure to copper sulfate 

[Cu] over 96 hrs (error bars are the standard error of the triplicates). 

 

Table 3.3.3a EC50 values for Stigeoclonium sp. exposed to copper sulfate from 0 – 96 hrs. 

Time 

(hrs) 

EC50 

(mg/L) 

Std. 

Error 

Lower 

C.I 

Upper 

C.I 

0 NEa NAb NA NA 

24 NE NA NA NA 

48 1.20 0.33 0.53 1.87 

72 1.34 0.47 0.37 2.31 

96 0.56 0.06 0.42 0.68 

Table 3.3.3b EC10 values for Stigeoclonium sp. exposed to copper sulfate from 0 – 96 hrs. 

Time 

(hrs) 

EC10 

(mg/L) 

Std. 

Error 

Lower 

C.I 

Upper 

C.I 

0 NEa NAb NA NA 

24 NE NA NA NA 

48 0.37 0.10 0.18 0.57 

72 0.31 0.06 0.19 0.43 

96 0.21 0.05 0.096 0.31 
a No effect was observed for this associated time period. 

b Not applicable due as no EC50 value reported. 
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3.4 Discussion 

3.4.1 Tolerance of the species 

In this study Stigeoclonium sp. was more sensitive to triclosan than P. autumnale. This finding  

corroborates the results of Drury et al who showed there was a 6-fold increase in the relative number of 

cyanobacterial sequences, increasing from <1% of the total community to ca. 5% and the abundance of 

green algae decreased after exposure to triclosan.51  The 96 hr EC50 value for Stigeoclonium sp. (1.23 

mg/L) was however much higher than values given for other species of green algae in the literature. 

Reported EC50 values for other green algae exposed to triclosan are one to three orders of magnitude 

lower, for example 1.4 µg/L (biomass inhibition, Scenedesmus subspicatus) and 4.46 µg/L (growth 

inhibition, Selenstrum capricornutum).20, 135 Previous studies on the effects of triclosan on 

photosynthetic activity of algae are limited, however the EC50 values reported in a short term study by 

Franz et al,  for photosynthetic inhibition ranged from 3.7 µg/L for the chlorophyte Scenedesmus 

vacuolatus to 900 µg/L for a periphyton community dominated by diatoms.139a This implies that even 

within an algae class, such as green algae, there can be different responses to triclosan depending on 

the species tested. Challenges arise from this finding in regards to predicting the effects of triclosan to 

a specific waterbody.  

The periphyton community dominated by diatoms in Franz et al’s study was grown from a sample taken 

from a river in Germany and had an EC50 value comparable to the EC50 value obtained for the green 

alga in this study.139a Triclosan has been detected in urban streams globally,7, 51 and was detected in 

stream sediment in this study (though not in Cross Stream where the green alga was obtained). It is 

therefore possible that the green alga in this study and the periphyton community in the German study 

had prior exposure to triclosan and may have developed resistance. Resistance to triclosan has been 

reported for bacteria in clinical settings with mechanisms including non-susceptible enoyl reductase 

enzymes, and cellular impermeability alterations.134  There is little known regarding the causes behind 

differences in species sensitivity to triclosan and the mechanism of action in algae is unclear.51 In 

Escherichia coli, triclosan specifically inhibits the enzyme enoyl-acyl carrier protein reductase (ENR), 

leading to blockage of lipid synthesis. Here triclosan mimics the enzymes natural substrate and acts 

site-specifically.139a The existence of ENR in bacteria, fungi and higher plants has been observed. 

Therefore the sensitivity of a particular algae species could be due to the presence or absence of ENR.139a   

The EC50 value for the Stigeoclonium sp. exposed to Cu after 96 hrs (0.56 mg/L) was an order of 

magnitude higher than reported (EC50 values) for other green algae in growth inhibition tests, 0.047 

mg/L (Tetraselmis sp.),151 0.046 mg/L (Chlorella sp.),152 and much higher than the EC50 value for 

Pseudokirchneriella subcapitata (0.8 µg/L).152 Reasons for differences in metal sensitivity between 

species is also an ongoing area of research. It is proposed that the uptake of copper into algal cells is a 
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two-stage process.151 The exterior of the cell membrane consists of metal binding sites which are 

metabolically active, where copper may enter the cells, and non-active sites where copper entry to the 

cell does not occur.151 The first step is fast adsorption to these sites.151 In marine microalgae it has been 

shown that inter-species differences in sensitivity to copper were not related to adsorption of copper to 

different algal cell walls.151 Internalisation of the metal across the cell membrane is the second step in 

metal uptake. It is thought that the process in the algal cell membrane occurs through ion pore channels 

or transporters. This is generally considered rate-limiting in the uptake of charged metal ions and 

therefore a significant factor in metal uptake and toxicity.151 

Levy et al reported that the sensitivity of algal species to copper was not related to external binding or 

only due to intracellular copper concentrations and uptake rates.151 They suggested that information on 

the localisation and form of copper within the cell is more important than total intracellular copper 

concentrations for predicting toxicity.151 For example, metals bound to heat sensitive proteins or to 

organelles may be more likely to be toxic. Species sensitivity may also depend heavily on cell 

detoxification mechanisms.151 A similar study measuring the relationship between metal-algal cell 

binding and copper sensitivity on a range of species found there was no correlation between differences 

in sensitivity and cell size, cell wall type, taxonomic group or solution-cell partition coefficients.141 This 

study also suggests that internal binding mechanisms or detoxification mechanisms may influence 

difference in sensitivity for different microalgal species.141 Therefore Stigeclonium sp. may have 

detoxification mechanisms better equipped to minimise Cu toxicity than many other microalgae species. 

Phormidium autumnale was not affected by any of the Cu concentrations (the highest concentration 

was 0.49 mg/L). A previous long term study also using  P. autumnale reported that growth was 

significantly affected by Cu at 0.25 mg/L though not all cells were killed.153 The concentration found 

to have a significant effect on growth for P. autumnale is about half the value of the top concentration 

used in the current study where no effect was observed. To gain a better understanding on the sensitivity 

of P. autumnale to Cu, the current study would need to be repeated at higher concentrations. For the 

cyanobacteria Anabaena torulosa, EC50 values for photosynthetic oxygen production were between 0.5 

and 0.7 mg/L depending on cell age.154 

A disadvantage of ecotoxicity assays such as this experiment is that experimental conditions are 

different to real ecosystems.155 Natural algae assemblages usually contain many species competing for 

light and nutrients. This experiment used unialgal cultures. The presence of other species could be 

linked to an increased sensitivity to toxicants.155 A study examining the impacts of algacides in unialgal 

and bialgal cultures found that the growth of the green alga  Pseudokirchneriella subcapitata was 

impacted by the presence of the cyanobacteria Aphanothece. clatharata while the cyanbacterium had 

similar growth rates in both the presence and absence of P. subcapitata.155 Further, the presence of the 

cyanobacterium was shown to be a more significant growth inhibiting factor for the green alga than the 
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algacide itself in treatments with a lower tconcentration.155 It may be possible to test these findings in a 

study similar to the current experiment by growing Stigeoclonium sp. in the same vial as P. autumnale.  

3.4.2 Microbial degradation of triclosan and loss of copper 

Decreased concentrations of triclosan and copper were observed in samples taken from vials containing 

algae at 96 hrs compared with vials containing no algae. This indicates that triclosan underwent 

microbial degradation possibly by both algae and any bacteria present in the culture. As the 

concentrations of triclosan in vials without algae were relatively constant over time, photodegradation 

was likely not a major factor. Bacteria have been shown to degrade triclosan in wastewater,156 pure 

cultures, soils and activated sludge.157 It is possible that some triclosan accumulated in Stigeoclonium 

sp. as bioaccumulation of triclosan has been reported in other algal species.17 Photodegradation was not 

likely to contribute to the degradation of triclosan as concentrations in the vials without algae were 

relatively constant over the 96 hours. The loss of Cu could have been caused by sorption of Cu to the 

cell wall, or uptake into the cell as described in section 3.4.1.151 

Triclosan can undergo methylation by microorganisms, an important biotransformation process for the 

compound.158 Methyl triclosan was only observed in samples taken from the second lowest triclosan 

concentration. Higher concentrations of triclosan may have killed any bacteria present in the media, 

preventing biotransformation. 

3.4.3 Environmental implications 

Due to its higher resistance to triclosan, P. autumnale may out compete green algae in water bodies 

receiving discharges containing this antimicrobial compound. As primary producers, algae play a 

crucial role in aquatic food webs,17 disruption to the composition of algae in aquatic communities could 

impact community function in higher food web levels.17 

It is plausible that an increased resistance to triclosan is one of the factors explaining the increase of P. 

autumnale proliferations in New Zealand. Although most blooms do not occur in urban streams, there 

have been reports of increased blooms downstream of wastewater treatment plants159 and at these sites 

triclosan may contribute to the increased abundance of Phormidium. Phormidium autumnale produces 

a range of neurotoxins in New Zealand, and ingestion of mats has led to many canine deaths and health 

warnings been issued for numerous New Zealand rivers.52 An increase in abundance of P. autumnale 

may increase the risk of exposure of humans and animals to cyanotoxins. 
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3.4.4 Future studies 

Due to the high EC50 value for the green algae, further work could be undertaken using other species of 

green algae to determine how triclosan affects a wider range of species. The experiment could also be 

conducted again for P. autumnale at higher concentrations of triclosan as a smaller effect was observed 

for this species. The Cu study should also be repeated with higher concentrations to ascertain the toxicity 

of Cu towards P. autumnale. Diatoms were unable to be cultured in this experiment but should be 

included in future studies as they are common in New Zealand rivers. 

3.5 Conclusion 

The green alga Stigeoclonium sp. was more sensitive to both triclosan and copper than the cyanobacteria 

P. autumnale. This could have implications for the environment where P. autumnale could become 

more abundant than green algae in waterways impacted by triclosan. Stigeoclonium sp., which is 

commonly found in New Zealand waterways, was however more tolerant to triclosan than other species 

of green algae previously studied, with an EC50 value of 1.23 mg/L, three orders of magnitude higher 

than those reported in the literature. This result creates challenges in predicting the effects of triclosan 

in waterways as it appears there can be species specific responses to the antimicrobial compound, even 

within similar groups of organisms, such as green algae. The results of the study provide important 

information that may be required for any future risk assessment of triclosan in New Zealand. 
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4 Conclusions and recommendations 

4.1 Key findings 

4.1.1 Occurrence of personal care products in urban streams and impacts on bacterial 

community structure 

UV-filters (BP1, BP3 and OMC) were the most frequently detected class of compounds in stream water, 

particulate phase, and sediment samples.  Benzophenone-3 was the most commonly detected UV-filter 

in all types of samples with concentrations measured up to 4.1 ng/L, 1.4 ng/L, and 1.9 ng/g in stream 

water, particulates, and sediments, respectively. The UV-filters tended to be present in stream water at 

lower concentrations in the winter months. Similar trends have been observed in the literature where 

higher concentrations of UV-filters were detected in summer months compared with winter months due 

to higher use of the compounds and recreational inputs in summer.27 

Bisphenol A was the most frequently detected compound in this study. Concentrations ranged from 

<DL to 8.1 ng/L in stream water which was similar to concentrations detected in Japan92, Korea92 and 

Germany94. No temporal patterns were observed for BPA likely due its ubiquitous nature in the 

environment.91 Personal care products that were less frequently detected in stream water included 

mParaben and OP which were measured at concentrations up to 12.9 ng/L and 2.1 ng/L, respectively. 

For all detected compounds in stream water, there were no significant differences between upstream 

and downstream concentrations of the sewer overflow outfall at either Cross Stream or Dudley Creek 

Diversion. No sewer overflows occurred over the six month study which is likely the cause of the lack 

of significant differences between upstream and downstream sites.  

It is possible however that sewer overflows were the source of BP3 in Dudley Creek Diversion 

sediments as concentrations downstream of the outfall were significantly higher than upstream (p < 

0.05). Triclosan was also detected in two downstream samples in March and April at Dudley Creek 

Diversion at concentrations of 10.5 and 5.3 ng/g. The last sewer overflow at Dudley Creek Diversion 

occurred 8 month prior to the study. It is therefore possible that initial concentrations of the 

antimicrobial compound where much higher if the degradation rate was similar to that reported in the 

literature for triclosan in aerobic soil (18 days).116 Other compounds detected in sediment (BPA, 

mParaben, OMC, OPP, and OP) did not show a significant difference in upstream and downstream 

sediment concentrations indicating that stormwater is the likely source of these of these compounds in 

the studied streams. These compounds are ingredients in a range of products, including mParaben in 
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paint, varnishes, and pesticides,112 and OPP in glues, concrete additives, leather, and as an active  

ingredient in disinfectants.99 

Though concentrations of PCPs were below reported PNECs and concentrations reported to be toxic to 

aquatic organisms, several compounds were identified as contributing to the structure of bacterial 

communities. The compounds BP3, OMC, TCS and BPA influenced sediment bacterial community 

structure while the sum of the detected PCPs in stream water were identified using DistLM modelling 

as playing an important role in structuring biofilm communities. Trace elements were not identified 

using the statistical analysis as influencing bacterial community structure in either sediment or biofilm 

despite reports in the literature of Zn, Cu and Pb impacting bacterial biofilm communities after just 3 

days.131 This finding could be because concentrations of trace elements were generally low. All 

concentrations were below ANZECC guidelines. 

4.1.2 Effects of triclosan on benthic photosynthetic microorganisms 

The green algae Stigeoclonium sp. was more sensitive to triclosan than the cyanobacteria P. autumnale. 

This finding is in agreement with that of Drury et al who showed that cyanobacteria increased from 

<1% of the total bacterial community in the study to ca. 5% while green algae decreased in abundance 

after exposure to triclosan.51  Despite the relative sensitivity of Stigeoclonium sp. to triclosan compared 

to P. autumnale, the 96 hr EC50 value for Stigeoclonium sp. (1.23 mg/L) was three orders of magnitude 

higher than values reported in the literature including 1.4 µg/L (biomass inhibition, Scenedesmus 

subspicatus) and 4.46 µg/L (growth inhibition, Selenstrum capricornutum).20, 135 Stigeoclonium sp. was 

cultured from a sample taken from Cross Stream. As triclosan was detected in stream sediment in this 

study and in urban streams globally, 7, 51 it possible that Stigeoclonium sp. had prior exposure to triclosan 

and may have developed resistance. It is also possible that even within an algae class, such as green 

algae, triclosan has species specific responses. This highlights the challenge in predicting the effects of 

triclosan on algae in waterways.  

Stigeoclonium sp. was also found to be more sensitive to Cu (96h hr EC50 of 0.56 mg/L) than P. 

autumnale (no observed effect). Stigeoclonium sp. was more tolerant to Cu than other green algae 

studied in the literature. Reported growth inhibition test EC50 values include, 0.047 mg/L (Tetraselmis 

sp.),151 0.046 mg/L (Chlorella sp.),152 and 0.8 µg/L (Pseudokirchneriella subcapitata).152 As noted 

above, within an algae class it is evident that contaminants can exhibit different responses depending 

on the species.  
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4.2 Implications and recommendations 

There is limited data on the presence and effects of PCPs in New Zealand waterways. The results from 

Chapter Two indicate that stormwater may be a source of PCPs for New Zealand waterways as 

compounds were detected in stream water despite there being no sewer overflows.  The data obtained 

in this study will assist in risk assessments and the development of any future regulations regarding 

acceptable levels of PCPs. The lack of regulations in place for PCPs creates challenges for managing 

these compounds.5 To increase the knowledge of the occurrence of PCPs in New Zealand, similar 

studies to the field study presented in Chapter Two should be undertaken throughout the country. The 

analysis of PCPs in sediment samples from the current study should also be revisited due to the 

difficulties encountered with low 13C surrogate recoveries. 

Personal care products were shown to influence benthic bacterial community structure. As bacteria can 

play important roles in aquatic ecosystems in the cycling of nutrients and carbon, changes to community 

structure could impact organisms of higher trophic levels.160 Regional councils do not currently monitor 

for PCPs but do monitor trace elements and nutrients in urban streams.126 As trace elements did not 

influence bacterial community structure, monitoring of PCPs is suggested to increase knowledge on 

response of microbial communities to these contaminants.  

Stigeoclonium sp. and P. autumnale are both commonly found in New Zealand waterways. Both of 

these species were tolerant to high concentrations of triclosan and Cu. In order to gain a greater 

understanding on the potential effects of triclosan in New Zealand waterways, ecotoxicity experiments 

should be carried out on a wider range of organisms, including diatoms which were unable to be cultured 

in this experiment. The experiment presented in this thesis could also be conducted again for P. 

autumnale at higher concentrations of triclosan as there was only a small effect observed for this species. 

The Cu study should also be repeated with higher exposure concentrations to ascertain the toxicity of 

Cu to P. autumnale.  
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